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Abstract
The steroid hormone aldosterone regulates sodium and potassium homeostasis. Aldosterone and
activation of the mineralocorticoid receptor also causes inflammation and fibrosis of the heart,
fibrosis and remodelling of blood vessels and tubulointerstitial fibrosis and glomerular injury in
the kidney. Aldosterone and mineralocorticoid-receptor activation initiate an inflammatory
response by increasing the generation of reactive oxygen species by nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and mitochondria. High salt intake potentiates these
effects, in part by activating the Rho family member Rac1, a regulatory subunit of reduced
NADPH oxidase that activates the mineralocorticoid receptor. Studies in mice in which the
mineralocorticoid receptor has been deleted from specific cell types suggest a key role for
macrophages in promoting inflammation and fibrosis. Aldosterone can exert mineralocorticoid-
receptor-independent effects via the angiotensin II receptor and via G-protein-coupled receptor 30.
Mineralocorticoid-receptor antagonists are associated with decreased mortality in patients with
heart disease and show promise in patients with kidney injury, but can elevate serum potassium
concentration. Studies in rodents genetically deficient in aldosterone synthase or treated with a
pharmacological aldosterone-synthase inhibitor are providing insight into the relative contribution
of aldosterone compared with the contribution of mineralocorticoid-receptor activation in
inflammation, fibrosis, and injury. Aldosterone-synthase inhibitors are under development in
humans.

Introduction
During volume depletion or hypoperfusion of the kidney, activation of the renin–
angiotensin–aldosterone system leads to vasoconstriction and volume expansion.
Aldosterone stimulates sodium reabsorption in the kidney via the sodium–chloride
cotransporter (NCC) in the distal convoluted tubule and the epithelial sodium channel
(ENaC) in the late distal convoluted tubule, the connecting tubule, and the collecting duct. In
the principal cells of the collecting duct, aldosterone, acting at the mineralocorticoid
receptor (MR), increases mRNA levels of serum/glucocorticoid-regulated kinase (SGK1).1

SGK1 phosphorylates the ubiquitin-protein ligase neuronal precursor cell expressed
developmentally down-regulated protein 4-2 (Nedd4-2), and prevents ubiquitylation and
degradation of ENaC.2 Aldosterone also induces the expression of glucocorticoid-induced
leucine zipper (GILZ), which inhibits mitogen-activated protein-kinase (MAPK) regulation
of ENaC.3 In the distal convoluted tubule, SGK1 phosphorylates Nedd4-2 and WNK4 and
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attenuates their inhibitory effects on the NCC.4,5 The net effect of aldosterone in the tubule
is sodium retention and potassium excretion.

Over the past 20 years, investigators have come to appreciate that aldosterone exerts direct
effects on the vasculature, heart and kidney beyond its effects on electrolyte handling in the
distal tubule. MRs are expressed in non-epithelial cells such as those of the heart
(cardiomyocytes6), vasculature (endothelial cells and vascular smooth muscle cells
[VSMCs])7, and kidney (mesangial cells8 and podocytes9), adipocytes,10 and monocytes.11

Seminal studies by the groups of Weber, Hostetter, Safar and many others demonstrated that
chronic administration of aldosterone in the setting of high salt intake causes both interstitial
and perivascular fibrosis in the heart,12 fibrosis of the aorta,13 and glomerulosclerosis and
interstitial fibrosis in the kidney.14 Prior to the development of fibrosis, aldosterone causes
monocyte and macrophage infiltration and increased expression of inflammatory markers
such as cyclooxygenase-2, monocyte chemoattractant protein 1, and intercellular adhesion
molecule 1 (ICAM1) in the heart, vasculature, and kidney.15,16 In the heart, perivascular
inflammation is followed by the proliferation of fibroblasts and myofibroblasts, collagen
production, perivascular fibrosis, and lastly, interstitial fibrosis.17 The proinflammatory and
profibrotic effects of aldosterone are prevented by MR antagonism in most models.13,16,18

Studies in humans confirm that MR activation contributes to cardiovascular fibrosis and
remodelling as well as to renal disease. In the Randomized Aldactone Evaluation Study
(RALES), spironolactone reduced mortality in heart failure patients who were already being
treated with standard therapy including an angiotensin-converting-enzyme (ACE)
inhibitor.19 The beneficial effect of spironolactone was associated with a reduction in
circulating biomarkers of extracellular matrix turnover, such as procollagen type III N-
terminal peptide.20 In the Eplerenone Post-Acute Myocardial Infarction Heart Failure
Efficacy and Survival Study (EPHESUS), eplerenone treatment reduced mortality in patients
with left ventricular dysfunction following myocardial infarction.21 Eplerenone reduces the
combined end point of death and hospitalization in patients with systolic dysfunction and
mild symptoms.22 Several small clinical trials have shown a beneficial effect of MR
antagonism on proteinuric renal disease in patients already treated with an ACE inhibitor or
angiotensin-receptor blocker;23 however, no large outcomes trials have been conducted, in
part because of concerns regarding the risk of hyperkalaemia during dual renin–angiotensin–
aldosterone system blockade in patients with renal insufficiency.23

This Review discusses the proinflammatory and profibrotic effects of aldosterone and MR
activation in the heart, vasculature and kidney. It focuses on recent studies attempting to
address the following questions: how is the MR activated when endogenous aldosterone is
suppressed, such as during high salt intake? Is activation of the MR in specific cell types
required to induce inflammation and fibrosis in the heart, the vasculature, or the kidney?
And does aldosterone promote inflammation and/or fibrosis through MR-independent
mechanisms? In many cases the answers to these questions are not yet definitive, but the
available evidence is discussed.

Aldosterone and MR activation increase ROS
Aldosterone and/or MR activation promote inflammation by stimulating the generation of
reactive oxygen species (ROS) such as superoxide and hydrogen peroxide, which activate
the proinflammatory transcription factors activator protein (AP)-1 and nuclear factor kappa
B (NFκB) (Figure 1).24 In the heart, the aldosterone-induced generation of ROS also
activates Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII),25 which
contributes to left ventricular remodelling following myocardial infarction.
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Aldosterone stimulates the formation of ROS through several mechanisms (Figure 1).
Aldosterone increases nicotinamide adenine dinucleotide phosphate [NADP(H)] oxidase
activity and oxidative stress in macrophages,26 endothelial cells,27 the heart,28 aorta,26,29

podocytes,9 and mesangial cells.30 MR activation also contributes to angiotensin-II-
mediated activation of NADPH oxidase in the heart and aorta.31–33 In the aorta, aldosterone
stimulates expression of NOX2 (gp91phox) and p22phox through an MR-dependent
mechanism and expression of p47phox through both angiotensin II type 1 (AT1)-receptor-
dependent and MR-dependent mechanisms.29 Conversely, p47phox-deficient mice are
protected against aldosterone-induced ROS production in the heart, as measured by
dihydroethidium fluorescence following myocardial infarction and infusion of aldosterone
by the osmotic minipump.25 Aldosterone-stimulated activation of NFκB in the heart is
prevented in NOX2-deficient mice.32 In rodent models, antioxidants such as the super-oxide
mimetic tempol, the NADPH oxidase inhibitor apocynin, and N-acetylcysteine have been
shown to decrease inflammation and injury.29,34–37

In addition, aldosterone decreases the vascular expression of glucose-6-phosphate
dehydrogenase, which reduces NADP+ to NADPH.38 The generation of ROS by aldosterone
further leads to endothelial dysfunction via the formation of peroxynitrite and the oxidation
of 5,6,7,8-tetrahydrobiopterin, an important co-factor for nitric oxide synthase (NOS).39

Aldosterone causes dephosphorylation of Ser1177 of protein phosphatase 2A leading to an
‘uncoupling’ of NOS.39 Aldosterone can contribute further to endothelial dysfunction by
inducing swelling and stiffness of endothelial cells through the MR and activation of
ENaC.40,41 Increased ambient sodium exacerbates this effect.

Aldosterone also stimulates mitochondrial production of ROS (Figure 1), an effect that has
been studied most extensively in renal cells. For example, aldosterone induces epithelial–
mesenchymal transformation (EMT) of cultured human proximal tubular cells via MR-
dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK)1/2 and
phosphorylation of p66Shc, an effector of mitochondrial dysfunction.42 The mitochondrial
respiratory chain complex I inhibitor, rotenone, but not the NADPH oxidase inhibitor
apocynin, blocks EMT in vitro and in vivo in mice treated with deoxycorticosterone
(DOCA) and salt (an animal model of steroid-induced, salt-sensitive hypertension).43

Overexpression of genes encoding regulators of mitochondrial function such as peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC1α) or silent mating type information
regulation 2 homolog 1 (SIRT1) prevents aldosterone- stimulated EMT.42 Similarly,
aldosterone-induced proliferation of mesangial cells is inhibited to a greater extent by the
mitochondrial respiratory chain inhibitor rotenone than by apocynin.44 Rotenone also
reverses aldosterone-induced podocyte injury.45 Rotenone and other inhibitors of
mitochondrial ROS generation reduce blood pressure more effectively in DOCA–salt-treated
mice than does genetic deletion of NOX2 or p47phox.46 The results of these studies suggest
that mitochondrial dysfunction contributes to the aldosterone-dependent or MR-dependent
formation of ROS to a greater extent than was previously appreciated.

Aldosterone can also stimulate NFκB activity and the inflammatory pathway directly by
activating the MR and increasing the phosphorylation and activity of SGK1 in mesangial
cells47 and the cortical collecting duct.48 Genetic deficiency of Sgk1 in mice protects against
angiotensin-II-induced macrophage infiltration and cardiac fibrosis,49 as well as albuminuria
and renal tubulointerstitial fibrosis.50

Inflammation begets fibrosis
Fibrosis occurs when collagen and matrix production exceeds their degradation by matrix
metalloproteinases (MMPs). As noted earlier, aldosterone-induced mitochondrial
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dysfunction leads to EMT of proximal tubule cells. Aldosterone stimulates the expression of
profibrotic molecules, such as transforming growth factor-β1 (TGF-β1), plasminogen
activator inhibitor 1 (PAI-1), endothelin 1 (ET-1), placental growth factor (PGF), connective
tissue growth factor (CTGF), osteopontin, and galectin-3.

TGF-β1 promotes fibrosis by stimulating cellular transformation of many cells to fibroblasts,
by increasing the synthesis of matrix proteins and integrins, and by decreasing the
production of MMPs.51 Aldosterone increases the expression of TGF-β1 in cultured
cardiomyocytes and treatment with aldosterone plus salt increases cardiac TGF-β1 in the
heart in most studies.52 Aldosterone induces TGF-β1 expression via the ERK1/2 pathway in
mesangial cells.53 Treatment with aldosterone plus salt increases the renal expression of
TGF-β1 in hypertensive rat models and increases the urinary excretion of TGF-β1 in normal
rats through an MR-dependent post-transcriptional effect.54

Aldosterone increases expression of PAI-1 in cultured endothelial cells, VSMCs,
cardiomyocytes and monocytes.11,55,56 In rat mesangial cells and renal fibroblasts, TGF-β1
and aldosterone act synergistically to increase PAI-1 expression and decrease extracellular
degradation.57 PAI-1, a member of the serpin (serine protease inhibitor) superfamily inhibits
the activation of plasminogen to plasmin by tissue plasminogen activator. PAI-1 promotes
fibrosis and remodelling by preventing plasmin-mediated MMP activation and extra-cellular
matrix degradation, but PAI-1 can also exert anti-fibrotic effects by retarding cellular
infiltration and impeding urokinase-type plasminogen activator (uPA) or plasmin- mediated
activation and the release of latent growth factors.58 PAI-1-deficient mice are protected
against aldosterone-induced glomerular injury.59 Aldosterone induces PAI-1 expression in
the heart; however, PAI-1 deficiency in the heart enhances aldosterone-induced or
angiotensin-II-induced fibrosis.59–61 This finding is consistent with results of studies in
senescent mice which have suggested that, in the heart, PAI-1 deficiency results in increased
TGF-β activity62 and increased infiltration of uPA-dependent macrophages.63

Increased expression of ET-1 can contribute to cardiovascular fibrosis and hypertrophy
stimulated by aldosterone and salt. ET-1 increases collagen synthesis by cardiac fibroblasts,
in part via a TGF-β1-dependent mechanism.64 Mineralocorticoid plus salt treatment
increases ET-1 expression in the heart and vasculature, whereas treatment with an
endothelin-A-receptor blocker prevents aldosterone-induced cardiac and vascular
fibrosis.65,66 Endothelin-A-receptor blockade decreases renal injury in spontaneously
hypertensive rats.67 In the medullary collecting duct cells of the kidney, aldosterone
modulates binding to a steroid-responsive element in the Edn1 gene, which encodes ET-1.68

Jaffe et al. have implicated PGF, a member of the vascular endothelial growth factor
(VEGF) family that promotes vascular cell proliferation, in aldosterone-mediated vascular
injury.69 Specifically, these investigators demonstrated that aldosterone simulates PGF
expression in mouse aortas and atherosclerotic human vessels via an MR response element
and found that PGF-deficient mice are protected against aldosterone-induced extracellular
matrix deposition in injured carotid arteries.

Osteopontin is a negatively charged extracellular matrix protein that promotes adhesion of
inflammatory cells.70 In VSMCs, aldosterone stimulates osteopontin expression through an
MR-dependent mechanism involving ERK and p38 MAPK.71 Osteopontin-deficient mice
are protected against aldosterone-induced fibrosis but they develop left ventricular
dilatation.72 Osteopontin-deficient mice are protected against oxidative stress, macrophage
and fibroblast infiltration in the kidney as well as EMT, interstitial fibrosis, and podocyte
injury.73
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Galectin-3 is a lectin that causes collagen production in cultured VSMCs, cardiac fibroblast
proliferation, fibrosis and left ventricular dysfunction.74,75 Aldosterone increases the
expression of galectin-3 in the heart.76 Calvier et al. have reported that galectin-3-deficient
mice are protected against aldosterone-induced aortic inflammation and fibrosis.75

Nitric oxide and the generation of cyclic GMP moderate many of the profibrotic effects of
aldosterone. For example, aldosterone increases PGF expression and protein secretion in
mouse aorta only after the endothelium has been denuded.69 Administration of a NOS
inhibitor exacerbates activation of the NFκB pathway, proteinuria and renal injury in
DOCA–salt-treated rats.77 Mice that lack the guanylyl cyclase-A receptor for natriuretic
peptides and are treated with aldosterone and salt develop increased oxidative stress,
increased proteinuria, mesangial expansion, and segmental sclerosis, compared with wild-
type mice.78

Based on the findings from these studies, it is fair to say that aldosterone increases the
expression of a number of profibrotic molecules and that the profile of these molecules is
not unique to aldosterone-induced fibrosis.

Nongenomic and MR-independent effects
The classical effect of aldosterone on sodium transport in the renal tubule involves
activation of the MR, which results in its dissociation from molecular chaperones, its
translocation into the nucleus, and its binding to hormone response elements in the
regulatory region of target gene promoters to enhance gene expression.79 Aldosterone can
also exert rapid nongenomic effects that are not blocked by inhibitors of transcription. These
rapid, nongenomic effects of aldosterone have been most extensively described in vascular
cells and tissues, where aldosterone causes a rapid increase in intra-cellular calcium through
phosphatidylinositol 3-kinase (PI3 kinase), diacylglycerol and protein kinase C (PKC).80

Aldosterone rapidly activates ERK1/2 in VSMCs, to promote a mitogenic and profibrotic
phenotype.71,81 Aldosterone enhances both rapid (10–15 min) and delayed (2 h) activation
of ERK1/2 by angiotensin II. Potentiation of the early activation of ERK1/2 involves the
transactivation of the epidermal growth factor receptor (EGFR), whereas the late phase
involves increased expression of the fibrotic and proliferative small and monomeric GTP-
binding protein Ki-ras2A and MAPK.81 Angiotensin-receptor blockade prevents the rapid
phosphorylation of ERK1/2 in VSMCs, but MR inhibition does not.81,82 By contrast,
spironolactone and inhibitors of transcription and protein synthesis prevent the late effect of
aldosterone and angiotensin II.82

These findings highlight the contribution of the EGFR to the cardiovascular effects of
aldosterone and to the crosstalk between aldosterone and angiotensin II in particular. In
human aortic smooth muscle cells, aldosterone induces EGFR expression via an interaction
between the ligand-bound MR and regions 316–163 bp and 163–1 bp of the EGFR
promoter.83 Interestingly, studies in mice with genetically decreased EGFR activity suggest
that EGFR contributes to angiotensin-II-induced cardiac hypertrophy and aldosterone-
induced vascular dysfunction, but not to aldosterone-salt-induced vascular or cardiac fibrosis
and remodelling.84,85 Systemic aldosterone administration induces phosphorylation of
EGFR and ERK in the kidney within 30 min.86 In cardiomyocytes, aldosterone
phosphorylates and enhances activity of the Na+/H+ exchanger (NHE-1) via transactivation
of the EGFR; this effect is blocked by MR antagonists but not by inhibitors of transcription
(that is, it is MR-dependent and nongenomic).87 In rabbit heart, aldosterone increases Na+/
K+/2Cl− co-transporter activity and decreases Na+/K+ pump activity through a nongenomic
effect on PKC epsilon type,88 which stimulates NFκB activation via MAPKs.89

Brown Page 5

Nat Rev Nephrol. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lemarie et al. used small interfering RNA to explore the specific contributions of the AT1a
and AT1b receptors and MR to crosstalk between aldosterone and angiotensin II in mouse
VSMCs.90 Their data suggest that activation of NFκB by either angiotensin II or aldosterone
requires both the AT1 receptor and the MR. Aldosterone can stimulate activation of ERK1/2
through an AT1-dependent, MR-independent mechanism, but requires AT1 and MR to
activate c-Jun NH2-terminal kinase (JNK).90 VSMC-specific knockout of the MR protects
mice from angiotensin-II-induced vascular superoxide production, contraction of resistance
blood vessels and hypertension, without affecting vascular structure.91

Identification of the receptor mediating the rapid, nongenomic effects of aldosterone has
proven difficult. Some rapid effects of aldosterone cannot be blocked by the MR antagonist
spironolactone, but may be blocked by its open-ring water-soluble metabolite, canrenoate, or
by eplerenone.92 Studies on fibroblasts derived from MR-deficient mice and on MR-
transfected human embryonic kidney (HEK) cells suggest that the MR contributes to the
nongenomic effects of aldosterone on the ERK1/2 and JNK pathway, but not to its rapid
effects on calcium.93,94 In addition, the nongenomic effects of aldosterone may facilitate
classical MR-mediated effects.88

Recent studies suggest a new candidate receptor for the nongenomic effects of aldosterone.
G-protein-coupled receptor (GPR) 30, an ‘orphan’ G-protein-coupled receptor expressed on
the cell surface, acts via members of the G-protein family of GTP-binding proteins (Figure
1).95 Gros et al. found that, in VSMCs, aldosterone activates both GPR30 and the MR to
activate PI3 kinase, ERK and myosin light chain phosphorylation.95 The contribution of
GPR30 to the effects of aldosterone depends on the relative expression of GPR30 versus
MR in cells; importantly, the authors reported that GPR30 expression declines in VSMCs
when they are cultured, suggesting that studies in cultured VSMCs may underestimate the
rapid, MR-independent effects of aldosterone in vivo. The authors further observed that
spironolactone and eplerenone partially blocked the effects of a GPR30 agonist in cells that
lacked the MR, consistent with prior studies suggesting that these drugs could prevent the
rapid effects of aldosterone.95 In a later paper, Batenburg et al. reported that either an EGFR
antagonist or a GPR30 antagonist prevented potentiation of angiotensin II-induced
vasoconstriction by aldosterone.96

Key role of salt and MR activation
The observation that MR antagonism decreases inflammation and fibrosis during conditions
of high salt intake, which is associated with suppression of circulating aldosterone
concentrations, suggests that ligands other than aldosterone might activate the MR. As noted
earlier, angiotensin II stimulates the MR via transactivation of the EGFR. Cortisol may
activate the MR in cells that lack the enzyme 11β-hydroxysteroid dehydrogenase (11β-
HSD2). Cortisol circulates at concentrations 100-fold to 1,000-fold higher than aldosterone
and binds to the MR with equal affinity. In epithelial cells, expression of 11β-HSD2
converts cortisol (or corticosterone in rodents) to an 11-ketometabolite that is inactive at the
MR.97 Some non-epithelial cells, such as endothelial cells,98 also express 11β-HSD2, but
cardiomyocytes and macrophages do not.99,100 In the glomerulus, both mesangial cells and
podocytes express 11β-HSD2.101,102

Because cardiomyocytes lack 11β-HSD2, the MR is typically occupied by glucocorticoids.
Funder and co-workers have proposed that glucocorticoids activate the MR under conditions
of oxidative stress. In a Langendorff model of myocardial infarction, researchers found that
cortisol increased cardiac infarct size and that this effect was blocked by spironolactone or
tempol, but not by the glucocorticoid-receptor (GR) antagonist, RU486.103 The GR agonist
dexamethasone also increased infarct size in this model and, paradoxically, so did the GR
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antagonist RU486.103 In a study investigating rats treated with the mineralocorticoid
deoxycorticosterone plus salt, RU486 did not reverse cardiac inflammation and fibrosis;
however, interpretation of this study is confounded by the fact that RU486 increased blood
pressure.104 Administration of corticosterone and salt to adrenalectomized rats did not
increase mRNA expression of osteopontin, NOX4 or p22phox in the heart unless 11β-HSD2
was inhibited, suggesting that activation of MR by corticosterone does not cause cardiac
inflammation under physiological conditions.105 In summary, the case that activation of
local cardiac MRs by glucocorticoids leads to inflammation has not been made beyond a
reasonable doubt.

Compelling evidence suggests that the Rho family member Rac1, a regulatory subunit of
reduced NADPH oxidase, activates the MR. Fujita and co-workers have reported that mice
in which Rac1 activity is increased due to the loss of a regulatory factor, RhoGDIa, have
increased MR activity and MR-dependent gene expression in the kidney, and develop focal
sclerosing glomerulosclerosis.106 Administration of either a Rac1 inhibitor or an MR
antagonist prevents kidney injury in this model, even though aldosterone concentration is
not increased. Likewise, overexpression of constitutively active Rac1 potentiates MR-
dependent transcription in vitro in HEK293 cells, even in the absence of aldosterone.

Increased Rac1 activity may contribute to MR activation during high salt intake. Shibata et
al. have reported that high salt intake induces Rac1 overexpression in the salt-sensitive Dahl
rat but not in salt-resistant Dahl rats.107 Furthermore, they showed that Tiam1, a Rac
guanine nucleotide exchange factor that promotes the transition of inactive GDP-bound Rac
to active GTP-bound Rac, mediates salt-induced Rac1 activation. Although aldosterone
concentrations are suppressed in both salt-sensitive and salt-resistant Dahl rats, eplerenone
or adrenalectomy prevented Rac1 activity being induced by a high salt intake in the Dahl
salt-sensitive rat, suggesting some dependence of Rac1 activity on aldosterone or MR
activation. Rac1-dependent activation also contributes to kidney injury in mice treated with
angiotensin II and salt.108

More recently, Nagase et al. have reported that Rac1 and ROS contribute to activation of the
MR in rat cardiomyocytes.109 Treatment of cardiomyocytes with an inhibitor of glutathione
synthesis increased ROS and increased translocation of MR into the nucleus, even when the
ligand binding site was mutated. The anti-oxidant N-acetylcysteine blocked activation of the
MR in cultured myocytes.

In short, the Rac1 pathway may account for MR activation under conditions such as high
salt intake, when endogenous aldosterone is decreased.

Effects of cell-specific MR activation
MR antagonism prevents cardiovascular and renal injury in rodent models and in clinical
trials. Because systemic administration of an MR antagonist increases sodium excretion and
reduces blood pressure in rodent models, it can be difficult to distinguish the effects of
systemic MR activation, sodium retention and hypertension on inflammation and fibrosis
from effects of local MR activation.

In order to dissect the effects of aldosterone from the effects of systemic hypertension on the
expression of profibrotic genes in the heart, Azibani et al. crossed hypertensive global renin
(Ren) transgenic mice with normotensive cardiac-specific aldosterone synthase (AS)
transgenic mice.76 Hypertension was associated with increased cardiac expression of genes
encoding fibronectin, CTGF and TGF-β1 and there was no difference in the cardiac
expression of these profibrotic genes between Ren and Ren-AS mice. By contrast, local
overexpression of aldosterone synthase increased cardiac expression of genes encoding
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monocyte chemoattractant protein-1, osteopontin, galectin-3, and the macrophage marker
CD68, independent of blood pressure (that is, expression of these genes was increased in AS
and Ren-AS mice but not in Ren mice). Interestingly, expression of brain natriuretic peptide
and bone morphogenic protein (BMP)-4, known to antagonize the effect of TGF-β1, was
decreased by expression of aldosterone synthase in the heart.

Studies in mice in which the MR has been selectively deleted from specific cell types
highlight the important contribution of inflammatory cell MR activation to inflammation and
fibrosis, and will be discussed below.

As noted earlier, McCurley et al. have reported that VSMC-specific knockout of the MR
protects mice from ageing-induced and angiotensin-II-induced hypertension, as well as from
angiotensin-II-induced oxidative stress.91 These mice are not protected against hypertension
induced by aldosterone plus salt, suggesting that renal sodium retention is the primary driver
of aldosterone-induced hypertension in this model. The central effects of MR activation on
salt appetite, vasopressin release and the sympathetic nervous system110 could also
contribute to the development of hypertension in these VSMC-specific knockout mice.

Role of cardiomyocyte MR
Cardiomyocyte-specific knockout of the gene encoding the MR protects mice against
ventricular dilatation and dysfunction following myocardial infarction.111 Infiltration by
inflammatory cells is increased in cardiomyocyte-MR-deficient mice following infarction
(Figure 2). At 8 weeks, cardiac expression of NADPH subunits NOX2 and NOX4 and of
profibrotic genes such as CTGF, fibronectin, and collagen, is decreased, as is the formation
of ROS. Lother et al. reported that cardiomyocyte-specific knockout of the gene encoding
the MR protected mice against left ventricular dilation and dysfunction during pressure
overload caused by aortic banding, whereas fibroblast-specific knockout of the gene
encoding the MR did not have a beneficial effect.112 In addition, neither cardiomyocyte-
specific nor fibroblast-specific knockout of the gene encoding the MR prevented
macrophage infiltration, inflammatory gene expression in the heart or cardiac hypertrophy
or fibrosis in this model. The data from these two studies indicate that the activation of MR
on cells other than cardiomyocytes contribute importantly to inflammation in the heart.

Role of macrophage MR
The macrophage plays a key role in cardiovascular inflammation, fibrosis and remodelling
induced by aldosterone and high salt intake. Aldosterone at physiological concentrations
increases the expression of pro-inflammatory genes in cultured macrophages, an effect that
is prevented by MR antagonism.99 MR antagonism decreases macrophage expression of the
profibrotic genes TGF-β1 and PAI-1 and increases expression of anti-fibrotic genes such as
HTRA1, which encodes a member of the trypsin family of serine proteases (Figure 2).99

Because macrophages do not express 11β-HSD2, physiological concentrations of
corticosterone may also be expected to activate the MR; however, although a low
concentration (10 nmol/l) of corticosterone induces the expression of the gene encoding
tumour necrosis factor in cultured macrophages, this effect is prevented by blocking the GR,
not by blocking the MR.99 Moreover, a higher concentration of cortisol (1 μmol/l) induces
alternative activation of macrophages.

Two groups have reported that macrophage-specific knockout of the gene encoding the MR
protects mice against interstitial and perivascular cardiac fibrosis induced by DOCA plus
salt113 or by chronic NOS inhibition and high salt intake (L-NAME plus salt).99,114 Young
and co-workers reported that mice with macrophage-specific knockout of the gene encoding
the MR have lower blood pressure but are not protected against cardiac hypertrophy induced

Brown Page 8

Nat Rev Nephrol. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by DOCA plus salt or by L-NAME plus salt, whereas Usher et al. reported that mice with
macrophage-specific knockout of the gene encoding the MR have increased blood pressure
during treatment with L-NAME plus salt and are protected against cardiac
hypertrophy.99,114 The two groups report differing effects of macrophage-specific knockout
of the gene encoding the MR on the recruitment of macrophages to the heart. The reason for
this difference is not readily apparent, but may reflect differences in the models used (for
example, differences in duration of L-NAME treatment) or differences in the derivation of
the macrophage-specific knockouts.

Role of endothelial cell MR
The endothelial cell promotes macrophage adhesion and infiltration via an MR-dependent
mechanism. Endothelial cells express functional MRs as well as 11βHSD-2.115 Aldosterone
stimulates expression of ICAM1 by endothelial cells (Figure 2) and promotes adhesion of
leukocytes to endothelial cells.115 Jeong et al. found that physiological concentrations of
aldosterone stimulate the release of von Willebrand factor and interleukin (IL)-18 from
human aortic endothelial cells, without stimulating tissue plasminogen activator (t-PA)
release.116 In this study, aldosterone enhanced the adherence of leukocytes to endothelial
cells by increasing P-selectin expression. The authors reported that aldosterone stimulates
endothelial exocytosis through a nongenomic, MR-dependent mechanism. Aldosterone
stimulated endothelial exocytosis within 10 min and exocytosis was not blocked by
actinomycin, but was blocked by MR inhibition.

Other immune-cell-specific MR effects
T-cell activation contributes to the inflammatory response to MR stimulation. Adoptive
transfer of T cells into mice lacking T cells and B cells increases the inflammatory and
hypertensive response to DOCA plus salt.117,118 In addition, aldosterone modulates
interactions between antigen-presenting cells (such as dendritic cells) and T cells (Figure 2).
Dendritic cells express MRs, and aldosterone increases activation of the MAPK pathway
and secretion of IL-6 and TGF-β1 from dendritic cells.119 Aldosterone-treated dendritic cells
activate CD8+ T cells and enhance IL-17 excretion by CD4+ T cells, through an MR-
dependent pathway.119 On the other hand, regulatory T cells decrease vascular injury
induced by aldosterone plus salt. Specifically, Kasal et al. found that adoptive transfer of
CD24+CD25+ cells prevented oxidative stress, inflammation, endothelial dysfunction, and
remodelling in mesenteric arteries from mice with high salt intake treated with
aldosterone.120

Endogenous aldosterone vs MR activation
Because endogenous aldosterone concentrations are suppressed during high salt intake and
as ligands other than aldosterone can activate the MR, the contribution of endogenous
aldosterone to MR-mediated inflammation and fibrosis has been the subject of interest.

Messaoudi et al. sought to clarify the role of aldosterone-specific activation of the MR in the
heart by identifying genes that were upregulated in mice overexpressing the cardiomyocyte
MR, and further upregulated by 7 days of treatment with low-dose aldosterone, but not by
treatment with corticosterone.121 They identified 43 genes regulated by aldosterone-
mediated activation of cardiac MR (23 that were upregulated and 20 that were
downregulated), including the genes encoding the growth factors CTGF and hepatocyte
growth factor, several potassium and calcium channel genes, and genes encoding cell
adhesion molecules such as cadherin 4 and integrin β6.
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The availability of mice lacking active aldosterone synthase, as well as pharmacological
aldosterone-synthase inhibitors, is enabling investigators to study the contribution of
endogenous aldosterone to inflammation and fibrosis. Lee et al. disrupted the mouse gene
encoding aldosterone synthase (Cyp11b2) by replacing its first two exons with sequences
coding for enhanced green fluorescent protein.122 These mice exhibit mild hypotension, as
well as hyperkalaemia and increases in renin that are both corrected by high salt intake.123

Using aldosterone-deficient (AS−/−) mice, Luther et al. determined that the induction of
Pai-1 and Et-1 expression in the heart by acute angiotensin II administration required
endogenous aldosterone, whereas acute angiotensin-II-induced expression of these
profibrotic genes in the aorta was aldosterone-independent. The investigators later compared
the effect of pharmacological blockade of the MR with spironolactone with the effect of
genetic aldosterone-synthase deficiency on chronic end-organ damage induced by
angiotensin II and salt in mice.124 They found that blockade of the MR with spironolactone
and genetic aldosterone synthase deficiency were associated with similar reductions in
cardiac and aortic fibrosis in mice treated with angiotensin II plus salt, but MR antagonism
prevented glomerular injury whereas aldosterone deficiency did not. Therefore, in the
kidney, angiotensin II caused injury via aldosterone-independent activation of the MR. Rafiq
et al. have reported that hydrocortisone also causes renal injury via activation of the MR.125

Trials of aldosterone-synthase inhibition
FAD286, the D-enantiomer of the aromatase inhibitor fadrozole, was developed as an
aldosterone-synthase inhibitor after it was recognized that fadrozole reduced aldosterone
concentrations without affecting cortisol concentrations in patients with breast cancer.
Fiebeler and co-workers demonstrated that either treatment with FAD286 or adrenalectomy
significantly reduced mortality, cardiac hypertrophy, albuminuria, and cardiac and renal
inflammation in rats doubly transgenic for the human genes encoding renin and
angiotensinogen.126,127 FAD286 also reduces inflammation and atherosclerosis in
apolipoprotein-E-deficient mice.128

LCI699 is the first orally available aldosterone-synthase inhibitor to be developed for use in
humans. In a proof-of-concept study, LCI699 decreased plasma aldosterone concentrations
by approximately 70% and increased concentrations of the aldosterone precursor 11-DOC
by more than 700% in patients with primary hyperaldosteronism.129 LCI699 had no effect
on basal concentrations of cortisol. LCI699 reduced office and ambulatory systolic blood
pressure and increased serum potassium concentration. In a subsequent study, LCI699 at
doses of 0.5 mg or 1.0 mg twice daily was less effective in reducing blood pressure in
patients with primary hyperaldosteronism than was eplerenone 50–100 mg twice daily, even
though LCI699 decreased aldosterone concentrations by 70–80%.130

Calhoun et al. tested the effect of 8 weeks of therapy with LCI699 (0.25 mg once daily, 0.5
mg once daily, 1.0 mg once daily and 0.5 mg twice daily) on blood pressure in a double-
blind, placebo-controlled and eplerenone-controlled trial in patients with essential
hypertension.131 LCI699 induced a dose-dependent reduction in systolic and diastolic blood
pressure, with the 1.0 mg per day dose having a similar effect on blood pressure as a 50 mg
twice daily dose of eplerenone. LCI699 and eplerenone both increased plasma renin activity.
At the highest dose (0.5 mg twice daily), LCI699 significantly decreased plasma aldosterone
concentration, whereas eplerenone (50 mg twice daily) increased plasma aldosterone
concentration. Paradoxically, the 0.5 mg twice-daily dose of LCI699 had less effect on
blood pressure than did the 1.0 mg per day dose, even though the 0.5 mg twice-daily dose
had a greater inhibitory effect on aldosterone synthesis. This finding that LCI699 0.5 mg
twice daily suppressed aldosterone but did not decrease blood pressure has been attributed to
increases in precursor mineralocorticoids.132 In Calhoun et al.’s study, one individual in
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each LCI699 treatment group had a recorded potassium concentration of >6 mmol/l, which
resolved on repeat testing without discontinuation of study medication.131 Overall, the effect
of LCI699 on serum potassium concentration was similar to the effect of eplerenone.
Although LCI699 had no effect on basal cortisol concentrations, the aldosterone-synthase
inhibitor significantly blunted the cortisol response to adrenocorticotropic hormone. To date,
the effects of aldosterone-synthase inhibition on inflammation or on cardiovascular or renal
injury have not been reported in humans.

Conclusions
In conclusion, aldosterone stimulates the production of ROS, inflammation and fibrosis of
the heart, vasculature, and kidney through both MR-dependent and MR-independent
mechanisms. GPR30 may mediate MR-independent effects of aldosterone in vascular cells.
In addition, during conditions of high salt intake, Rac1 activates the MR to produce
oxidative stress. Findings in mice with cell-specific deficiency of the MR suggest that
activation of local MRs (for example, on macrophages) induces fibrosis. The MR may be
activated or transactivated by ligands other than aldosterone. Studies in mice treated with
aldosterone synthase or aldosterone synthase inhibitors suggest that aldosterone is the
primary ligand involved in cardiac and vascular fibrosis, but that MR antagonism may be
necessary to prevent renal injury. Human studies suggesting that aldosterone-synthase
inhibitors may be less effective in reducing blood pressure than are MR antagonists also
suggest that ligands other than aldosterone activate the MR in the kidney.
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Key points

• Aldosterone or mineralocorticoid-receptor activation trigger the formation of
reactive oxygen species by NADPH oxidase and mitochondria that, in turn,
induce a proinflammatory and profibrotic phenotype

• Under conditions of high salt intake, Rac1 activates the mineralocorticoid
receptor and increases the formation of reactive oxygen species

• Aldosterone exerts rapid, transcription-independent effects (nongenomic effects)
that may be mediated by G-protein-coupled receptor 30 and transactivation of
the epithelial growth factor receptor

• Studies in mice in which the mineralocorticoid receptor has been selectively
deleted on specific cells indicate that systemic mineralocorticoid-receptor
activation is not necessary to induce local inflammation and fibrosis

• Aldosterone-synthase inhibition or deficiency prevents inflammation and
fibrosis in many rodent models of cardiovascular or renal injury
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Review criteria

PubMed was searched for articles published between 1960 and the present using the
terms “aldosterone”, “mineralocorticoid”, and/or “mineralocorticoid receptor” together
with the terms “oxidative stress”, “inflammation” and/or “fibrosis”. Full-text English-
language papers were reviewed and the bibliographies of these papers were searched for
additional leads. Focused searches were also conducted regarding topic areas identified in
the initial search. Emphasis was placed on papers published from 2009 onwards.
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Figure 1.
Mechanisms by which aldosterone and/or MR activation induce oxidative stress,
inflammation, and fibrosis. Activation of the MR by aldosterone results in dissociation of
chaperone proteins, translocation of the MR to the nucleus and activation of transcription.
MR activation induces oxidative stress by both NADPH oxidase and mitochondria. ROS
formed by NADPH oxidase oxidize CaMK-II. Oxidative stress triggers the activation of
proinflammatory transcription factors such as AP-1 and NFκB. Rac1 can also activate the
mineralocorticoid receptor. Aldosterone can induce rapid, nongenomic effects via GPR30.
Aldosterone and angiotensin II interact to cause rapid, nongenomic effects via
transactivation of the EGFR, resulting in the generation of ROS and phosphorylation of
ERK1/2. The green arrows indicate an activating or increasing effect; the black arrows
indicate a downstream consequence. See text for references. Abbreviations: Aldo,
aldosterone; AP-1, activator protein 1; AT1R, angiotensin II type 1 receptor; CAMK-II,
calcium/calmodulin-dependent protein kinase type II subunit gamma; Coll III, collagen III;
CTGF, connective tissue growth factor; EGFR, epidermal growth factor receptor; ERK1/2,
extracellular signal-regulated kinases 1 and 2 (ERK)1/2; ET-1, endothelin 1; GPR30, G-
protein-coupled receptor 30; MR, mineralocorticoid receptor; NADPH, nicotinamide
adenine dinucleotide phosphate; NFκB, nuclear factor kappa B; P, phosphate; PAI-1,
plasminogen activator inhibitor 1; PGF, placental growth factor; PI3K, phosphatidylinositol
3-kinase; ROS, reactive oxygen species; TGF-β1, transforming growth factor-β1.
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Figure 2.
Effects of cell-specific activation of the MR. Aldosterone activates the MR on macrophages
to produce inflammation, hypertrophy, and fibrosis in the heart. At low concentrations,
cortisol can also cause an inflammatory response via activation of glucocorticoid receptors.
At higher concentrations, cortisol induces alternative activation of macrophages. Activation
of MRs in cardiomyocytes increases the formation of ROS and might promote fibrosis.
Studies in which 11βHSD-2 is overexpressed in cardiomyocytes suggest that cortisol
opposes these effects. In endothelial cells, MR activation by aldosterone promotes
inflammation and adhesion of leukocytes; endothelial cells produce 11βHSD-2, rendering
cortisol inactive at the mineralocorticoid receptor. Stimulation of the MR on dendritic cells
increases production of IL-6 and TGF-β1, primes CD8+ T cells, and induces TH17
production by CD4+ cells. The dotted line indicates that the positive effect is not consistent
across studies (see text). The red lines indicate a decreasing effect. See text for references.
Abbreviations: 11βHSD-2, 11β-hydroxysteroid dehydrogenase type II; ADM,
adrenomedullin; Aldo, aldosterone; CCR5, C-C chemokine receptor type 5; Cort, cortisol;
COL III, collagen III; CTGF, connective tissue growth factor; F13A1, coagulation factor
XIII, A1 polypeptide; GR, glucocorticoid receptor; HTRA, high temperature requirement
factor A1; ICAM1, intercellular adhesion molecule 1; IL, interleukin; MMP, matrix
metalloproteinase; MR, mineralocorticoid receptor; PAI-1, plasminogen activator inhibitor
1; ROS, reactive oxygen species; TGF-β, transforming growth factor-β; TNF, tumour
necrosis factor; TREG, regulatory T cell; vWF, von Willebrand factor; Ym1, a secretory
protein produced by activated macrophages.
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