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Abstract

Climate change impact assessments are plagued with uncertainties from many 
sources, such as climate projections or the inadequacies in structure and parameters 
of the impact model. Previous studies tried to account for the uncertainty from one 
or two of these. Here, we developed a triple-ensemble probabilistic assessment 
using seven crop models, multiple sets of model parameters and eight contrasting 
climate projections together to comprehensively account for uncertainties from 
these three important sources. We demonstrated the approach in assessing climate 
change impact on barley growth and yield at Jokioinen, Finland in the Boreal cli-
matic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We 
further quantified and compared the contribution of crop model structure, crop 
model parameters and climate projections to the total variance of ensemble output 
using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic 
assessment, the median of simulated yield change was �4% and +16%, and the 

probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and
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Lleida, respectively, relative to 1981–2010. The contribution of crop model structure 
to the total variance of ensemble output was larger than that from downscaled cli-
mate projections and model parameters. The relative contribution of crop model 
parameters and downscaled climate projections to the total variance of ensemble 
output varied greatly among the seven crop models and between the two sites. The 
contribution of downscaled climate projections was on average larger than that of 
crop model parameters. This information on the uncertainty from different sources 
can be quite useful for model users to decide where to put the most effort when 
preparing or choosing models or parameters for impact analyses. We concluded that 
the triple-ensemble probabilistic approach that accounts for the uncertainties from 
multiple important sources provide more comprehensive information for quantifying 
uncertainties in climate change impact assessments as compared to the conventional 
approaches that are deterministic or only account for the uncertainties from one or 
two of the uncertainty sources.

K E YWORD S

barley, climate change, Europe, impact, super-ensemble, uncertainty

1 | INTRODUCTION

Impacts of climate change on future agricultural production and food

security have been of key concern because both climate risk and

global demand for agricultural production are expected to increase

(Godfray et al., 2010). Extensive studies have applied crop models to

simulate the potential impacts of climate change on crop growth and

productivity from site to global scale (e.g. Asseng et al., 2015; Challi-

nor, Wheeler, Hemming, & Upadhyaya, 2009; Porter et al., 2014;

Rosenzweig et al., 2014; R€otter, Palosuo et al., 2011; Tao, Hayashi,

Zhang, Sakamoto, & Yokozawa, 2008; Tao, Zhang, Liu, & Yokozawa,

2009; White, Hoogenboom, Kimball, & Walla, 2011). The simulations

were usually driven by climate projections from global climate mod-

els (GCMs) downscaled by statistical methods or regional climate

models (RCMs) (White et al., 2011). The climate change impact

assessments are plagued with uncertainties from many physical, bio-

logical and socioeconomic processes involved (Asseng et al., 2013,

2015; Challinor et al., 2009; Lobell & Burke, 2008; R€otter, 2014;

R€otter, Carter, Olesen, & Porter, 2011; Tao, Yokozawa, & Zhang,

2009; Tao, Zhang et al., 2009; Wallach, Mearns, Ruane, R€otter, &

Asseng, 2016; Wallach et al., 2017). Among others, uncertainties can

originate from greenhouse gas emission scenarios, climate projec-

tions of GCMs and their downscaling, crop model structure (different

crop models or model equations), input data and parameters (Challi-

nor, Smith, & Thornton, 2013; Wallach et al., 2017; White et al.,

2011). The uncertainties from climate change scenarios and their

downscaling have been investigated more often than those from the

structure and parameters of crop models (Porter et al., 2014; R€otter,

Carter et al., 2011). The uncertainties in structure and parameters of

crop models are mainly due to a shortage of high-quality experimen-

tal data and inadequacies in understanding the biophysical processes

of crop development, growth and grain formation to interactions

between genotype, management and environment. In addition, the

uncertainties can also be a result of choices crop modellers make

when designing their models and deciding their focus, for example

which processes to represent, and which level of detail and complex-

ity. The uncertainties in model structure (Asseng et al., 2013, 2015)

and parameters (Tao, Yokozawa et al., 2009; Tao, Zhang et al., 2009)

of crop models can make a large difference in quantifying the

impacts of future climate change and consequently in addressing the

adaptation options to climate change. The uncertainties therefore

should be as much as possible reduced, managed and quantified to

better assess potential climate impact and inform adaptation.

Recent studies have made great progress in dealing with these

uncertainties (Asseng et al., 2013, 2015; Challinor et al., 2009;

Iizumi, Yokozawa, & Nishimori, 2009; Palosuo et al., 2011; Porter

et al., 2014; R€otter, Carter et al., 2011, 2012; Tao et al., 2008; Tao,

Yokozawa et al., 2009; Tao, Zhang et al., 2009; Wallach et al.,

2016). For example a probabilistic assessment approach was devel-

oped for assessing future climate impact on rice productivity and

water use in China, based on 20 climate change scenarios and a

Monte Carlo technique, to account for the uncertainty from climate

projections (Tao et al., 2008). To account for the uncertainty from

model parameters in climate impact assessment, those associated

with the biophysical parameters in a crop model and the physical

parameters in a GCM were estimated for simulating groundnut yield

in India (Challinor et al., 2009). The study showed a relatively low

crop parameter uncertainty due to observational constraints on the

crop parameters. Furthermore, the probability distributions of bio-

physical parameter values in a crop model were systematically

inferred using the Bayesian probability inversion and a Markov Chain

Monte Carlo (MCMC) technique together with long-term observed



data on crop phenology and yield (Iizumi et al., 2009; Tao, Zhang

et al., 2009). These studies emphasized the importance of account-

ing for the uncertainties from crop and soil model parameters in cli-

mate impact assessment. To account for the uncertainties from both

climate projections and crop model parameters, a double-ensemble

probabilistic assessment approach was developed for evaluating cli-

mate change impact on maize productivity and water use in China

(Tao, Yokozawa et al., 2009). The study, using a single crop model,

60 sets of crop model parameters and 10 climate scenarios, sug-

gested that climate projections could generally contribute more

uncertainties to climate impact assessment than do crop model

parameters.

Recently, uncertainty from model structure has been of key

concern (Asseng et al., 2013, 2015; Bassu et al., 2014; Casta~neda-

Vera, Leffelaar, �Alvaro-Fuentes, Cantero-Mart�ınez, & M�ınguez,

2015; Li et al., 2015; Martre et al., 2015; Palosuo et al., 2011; Pirt-

tioja et al., 2015; R€otter, Carter et al., 2011, 2012; Vanuytrecht &

Thorburn, 2017; Wang et al., 2017). Major international efforts,

such as the Modelling European Agriculture with Climate Change

for Food Security (MACSUR) project (Ewert et al., 2015) and the

Agricultural Model Inter-comparison and Improvement Project

(AgMIP) (Rosenzweig et al., 2013), have made great progress in

quantifying and reducing uncertainty from model structure in simu-

lating the response of crop yields to climate (e.g. Palosuo et al.,

2011; R€otter et al., 2012) and under climate change (e.g. Asseng

et al., 2013, 2015; Bassu et al., 2014; Li et al., 2015; Martre et al.,

2015; Wang et al., 2017). For example Palosuo et al. (2011) esti-

mated the uncertainty from model structure by comparing eight

widely used crop models for winter wheat under current climatic

conditions across Europe. A similar study was carried out for barley

using nine crop models (R€otter et al., 2012). Subsequently, a con-

siderably larger number of different crop models were compared in

simulating climate change impact on crop yields in contrasting cli-

mate conditions (Asseng et al., 2013, 2015; Bassu et al., 2014; Li

et al., 2015; Martre et al., 2015). The results showed that simulated

climate change impacts on crop yield considerably varied across

models, owing to differences in model structure and parameter val-

ues, and the uncertainty in climate change impact assessment from

different crop models was larger than that from the downscaled

GCMs (Asseng et al., 2013).

Previous climate change impact studies tried to account for the

uncertainties from one or two of the key sources, such as climate

projections (e.g. Tao et al., 2008), crop model parameters (e.g. Challi-

nor et al., 2009; Iizumi et al., 2009; Tao, Zhang et al., 2009), crop

model parameters and climate projections together (Tao, Yokozawa

et al., 2009), crop model structure (Palosuo et al., 2011; R€otter et al.,

2012), crop model structure and climate projections (Asseng et al.,

2013, 2015; Bassu et al., 2014; Li et al., 2015) and crop model

structure and parameters (Wallach et al., 2017; Zhang, Tao, & Zhang,

2017). In this study, we developed a triple-ensemble probabilistic

assessment to account for the uncertainties from three important

sources together, that is crop model structure, crop model parameter

and climate change projection. Our hypothesis is that the triple-

ensemble probabilistic approach should provide a better basis for

quantifying uncertainties in assessing the impact of climate change

than do conventional approaches that are deterministic or only

account for the uncertainties from one or two of the sources. The

information on the uncertainty from different sources can be quite

useful for model users to decide where to put the most effort when

preparing or choosing models or parameters for impact analyses. We

demonstrated the approach by assessing climate change impact on

barley growth and yield at Jokioinen, Finland, in the Boreal climatic

zone, and at Lleida, Spain, in the Mediterranean climatic zone, using

seven crop models and multiple sets of crop model parameters

under eight contrasting climate projections for the 2050s. We fur-

ther quantified and compared the contributions of crop model struc-

ture, crop model parameters and climate projections to the total

variance of ensemble output using Analysis of Variance (ANOVA).

2 | MATERIALS AND METHODS

2.1 | Study sites

Two study sites with contrasting climate were chosen to represent

the North and South of current agro-climatic conditions for barley

cultivation areas in Europe. One is Jokioinen, Finland (60.81°N,

23.50°E, 104 m a.s.l.) in northern Europe and the other is Lleida,

Spain (41.63°N, 0.60°E, 190 m a.s.l.) in southern Europe. Jokioinen

has a Boreal climate, with an annual mean temperature of 4.6°C and

total precipitation of 628 mm for the period 1980–2010. At Jokioi-

nen, spring barley is generally sown in mid-May and harvested at

the end of August. Mean temperature and precipitation during the

barley growing season were 13.6°C and 252 mm for the period

1980–2010. Lleida has a Mediterranean climate, with annual mean

temperature and total precipitation of 15.0°C and 341 mm for the

period 1980–2010. At Lleida, winter barley is generally sown in mid-

November and harvested at the beginning of July; mean temperature

and precipitation during the barley growing season were 11.5°C and

227 mm at Lleida during 1980–2010. In general, the climate at

Lleida was much drier than that at Jokioinen.

2.2 | Crop models and data

An ensemble consisting of seven crop models of varying complexity

was applied. General information on the individual crop models is

presented in Table 1. The different approaches applied to modelling

major processes in the various crop models are summarized in

Table S1. All models are process-based and simulate crop growth,

development and productivity on a daily time step. There are some

differences among models in simulating major processes of crop

development, growth, light utilization, photosynthesis and evapotran-

spiration, biomass accumulation and grain formation (Table S1).

Detailed field experimental data, including soils, tillage, fertiliza-

tion, phenology, aboveground biomass at anthesis and maturity, yield

and agronomic management practices were obtained for two grow-

ing seasons at Jokioinen in 2002 and 2009 (Salo et al., 2016) and



for three growing seasons at Lleida from 1996 to 1999 (Cantero-

Martinez, Angas, & Lampurlanes, 2003). The barley cultivar in the

experiment was Annabell at Jokioinen, and Hispanic at Lleida. The

soils were Vertic Cambisol with a clay texture at Jokioinen, and

Xerofluvent typic with loam texture at Lleida. These experimental

data were used for crop model calibration and validation.

Observed daily weather data for solar radiation, minimum and

maximum temperature, precipitation, wind speed and air humidity

during the period 1980-2010 at the two sites were obtained from

the Finnish Meteorological Institute, the Spanish Agencia Estatal de

Meteorolog�ıa (AEMET) and other sources, as detailed in Pirttioja

et al. (2015). For future climate, eight contrasting GCMs were

selected from the Coupled Model Inter-comparison Project Phase 5

(CMIP5) ensemble (Table 2), driven by the emission scenario of Rep-

resentative Concentration Pathway (RCP) 8.5 for the period of the

2050s. The eight GCMs were selected based on their climatic sensi-

tivity, characterized by changes in annual mean temperature and pre-

cipitation, to preserve the range of uncertainties in CMIP5

(Figure S1, Table S2). This allowed us to quantify uncertainties in cli-

mate impact assessment due to uncertainties in the CMIP5 ensemble

by conducting fewer simulation experiments (Semenov &

Stratonovitch, 2015).

Daily climate scenarios for the 2050s at the two sites were con-

structed by applying change factors to observed weather data for

the period 1980–2010. For each GCM, the projected changes in

monthly maximum and minimum temperature, precipitation and solar

radiation between the 2050s and the baseline (1981–2010) were

downscaled by applying the LARS-WG weather generator to the

two sites, which interpolated the change factors from the neighbour-

ing GCM grids with inverse-distance weighting interpolation (Seme-

nov & Stratonovitch, 2015). Before applying change factors to

observed weather, monthly change factors were linearly interpolated

to daily change factors with the monthly change factors being

assigned to the middle day of the corresponding month. Finally, by

applying daily change factors to the observed daily weather, we con-

structed a daily local-scale scenario of 31 years for the 2050s from

each GCM that was used for crop model simulation. These crop sim-

ulations were compared with those using the baseline scenario, that

is the observed weather for 1980–2010.

2.3 | Crop model parameter perturbation and

modelling protocol

For each crop model, the key seven or eight crop model parameters

that are closely related to crop growth, development and grain for-

mation were identified by each crop modelling group based on sensi-

tivity analyses or previously gathered experiences on model

performance using different sets of parameters (Tao et al., 2016).

Based on detailed field trial data on barley response (phenology and

yield) to agronomic management practices and environmental condi-

tions at Jokioinen and Lleida, for each crop model the selected key

parameters (Table S3) were calibrated using the traditional trial-and-

error method. This was done based on 1 year’s trial data and then

validated against the remaining experimental data. At each site, for

each model, with its respective single set of calibrated parameters,

the differences between simulated and observed flowering and

maturity dates were less than 5 days, and the discrepancies between

observed and simulated yield were less than 20% (Tao et al., 2016).

Then, the potential value range for each of the important model

parameters was determined by consulting experts and the literature

for Jokioinen and Lleida respectively (Table S3). It was difficult to fix

these potential parameter ranges with high accuracy, yet, but for the

purpose of this study, plausible and approximate parameter ranges

were sufficient. The parameter ranges were set somewhat wider to

cover the potential variations of the parameters in the foreseeable

future, thus they could cover potential changes in future barley culti-

var traits to some extent. Next, for each of the most important

seven or eight parameters in a crop model, three representative val-

ues (V1, V2, V3) across the range of the parameter values (from Vmin

to Vmax), that is the value at the one-sixth point

(V1 = Vmin + (Vmax � Vmin)*1/6), middle point (V2 = (Vmin + Vmax)/2)

and five-sixth point (V3 = Vmin + (Vmax � Vmin)*5/6), were selected.

The three representative values for each of the seven or eight crop

model parameters were randomly combined, resulting in 3n (n is the

number of the selected parameters for a crop model) sets of param-

eters for each crop model and for Jokioinen and Lleida respectively.

Finally, with each crop model, simulations were conducted under the

baseline climate (1981–2010) and eight different projected climates

for the 2050s, using the single set of calibrated parameters and 3n

TABLE 1 Information on the seven crop models used in this study

ID Crop model Code Reference Documentation

1 CropSyst 4.15.04 CS Stockle, Donatelli, and

Nelson (2003)

http://modeling.bsyse.wsu.edu/CS_

Suite/cropsyst/index.html

2 HERMES 4.26 HE Kersebaum (2007) http://www.zalf.de/en/forschung_lehre/

software_downloads/Pages/default.aspx

3 MCWLA 2.0 MC Tao, Zhang et al. (2009) Request from fulu.tao@luke.fi

4 MONICA 1.2.5 MO Nendel et al. (2011) http://monica.agrosystem-models.com

5 SIMPLACE<Lintul2, Slim> SI Angulo et al. (2013) Request from frank.ewert@uni-bonn.de

6 SiriusQuality 2.0 SQ Martre et al. (2006) http://www1.clermont.inra.fr/siriusquality/

7 WOFOST 7.1 WF Boogaard and Kroes

(1998)

http://www.wofost.wur.nl

http://modeling.bsyse.wsu.edu/CS_Suite/cropsyst/index.html
http://modeling.bsyse.wsu.edu/CS_Suite/cropsyst/index.html
http://www.zalf.de/en/forschung_lehre/software_downloads/Pages/default.aspx
http://www.zalf.de/en/forschung_lehre/software_downloads/Pages/default.aspx
http://monica.agrosystem-models.com
http://www1.clermont.inra.fr/siriusquality/
http://www.wofost.wur.nl


sets of perturbed parameters, for Jokioinen and Lleida respectively.

The parameter perturbation method was applied to include all possi-

ble cases of parameters combinations. However, without assuming

any covariance among the parameters, this might lead to a slight

overestimation of uncertainty. Other resampling technique such as

hypercube could provide more random combinations but could result

in loss of some possible parameters combinations when limited sam-

pling times are used.

2.4 | Analyses

As shown in Figure 1, for each crop model, the simulated yield

changes under eight different projected climates between the 2050s

and the baseline climate (1981–2010), using the single set of cali-

brated parameters and 3n sets of perturbed parameters, respectively,

were first analysed and compared. For each crop model and climate

projection combination, the average yield change between the

30 years in the 2050s and the 30 years in the baseline (1981–2010)

was calculated in two steps. The yield change between each individ-

ual year in the 2050s and its corresponding year in the baseline was

first calculated, and then the resultant 30 yield change values were

averaged to represent the yield changes between the two periods.

Thereafter, we investigated the uncertainties from crop model struc-

ture, parameters and climate projections in the climate change

impact assessment.

We quantified the uncertainty from model structure by compar-

ing the seven different crop models in simulating yield changes

under the eight different climate projections for the 2050s with their

single set of calibrated parameters and 3n sets of perturbed parame-

ters respectively. The uncertainty from model parameters was quan-

tified by comparing the differences in simulated yield changes for

each of the seven crop models using their respective single set of

calibrated parameters and 3n sets of perturbed parameters under

baseline climate conditions and the eight different climate projec-

tions for the 2050s. The uncertainty from climate projections was

quantified by comparing the differences in simulated yield changes

under the eight different climate projections for the 2050s using

each of the seven crop models with their single set of calibrated

parameters and 3n sets of perturbed parameters respectively. Finally,

ANOVA was applied to quantify and compare the contribution of

crop model structure, crop model parameters and climate projections

to the total variance of ensemble output (Figure 1).

The relative contributions of model structure and climate projec-

tions to uncertainties were quantified by investigating the simulated

yield changes using the seven crop models and eight different cli-

mate projections, with their respective single set of calibrated

parameters and 3n sets of perturbed parameters respectively. For

each of the seven crop models, the relative contributions of model

parameters and climate projections to uncertainties were quantified

by investigating the simulated yield changes using eight different cli-

mate projections with their respective 3n sets of perturbed parame-

ters. In ANOVA, the total sum of squares (SST) and the sum of

squares (SS) from crop model structure (SSS), crop model parameters

(SSP), climate projections (SSC) and error (SSE) were calculated. Then,

the share of variance (%) by SSS, SSP, SSC and SSE was calculated as

SSS/SST*100%, SSP/SST*100%, SSC/SST*100% and SSE/SST*100%.

3 | RESULTS

3.1 | Projected climate change at the two sites by

the eight GCMs

There were quite large differences among the eight climate condi-

tions projected by the eight GCMs with different model structures

(Table 3). Across the eight climate projections, at Jokioinen, during

the barley growing period, mean minimum temperature (Tmin) and

maximum temperature (Tmax) were projected to increase by 1.5–

4.8°C and 1.5–5.2°C, respectively, during the 2050s, relative to

1981–2010. Mean precipitation was projected to change by �2% to

+13%. Mean solar radiation was projected to change by �2% to

TABLE 2 Information on the eight GCMs selected for this study

GCM Code Country Research centre Grid resolution Reference

ACCESS1-3 ACCESS Australia The Centre for Australian

Weather and Climate

Research

1.25° 9 1.88° Rashid, Hirst, and Dix (2013)

EC-EARTH EC-EARTH Europe EC-Earth consortium 1.122° 9 1.125° Hazeleger et al. (2012)

GFDL-CM3 GFDL USA Geophysical Fluid Dynamics

Laboratory, NOAA

1.99° 9 2.48° Dunne et al. (2013)

GISS-E2-R-CC GISS USA Goddard Institute for Space Studies 2.00° 9 2.50° Nazarenko et al. (2015)

HadGEM2-ES HadGEM UK UK Meteorological Office 1.25° 9 1.88° Jones et al. (2011)

IPSL-CM5A-MR IPSL France Institute Pierre Simon Laplace 1.26° 9 2.50° Dufresne et al. (2013)

MIROC-ESM MIROC Japan University of Tokyo, National

Institute for Envir. Studies,

Japan Agency for Marine-Earth

Science & Technology

2.77° 9 2.81° Watanabe et al. (2011)

MPI-ESM-MR MPI Germany Max-Planck Institute for

Meteorology

1.88° 9 1.88° Raddatz et al. (2007)



+12%. At Lleida, during the barley growing period, mean Tmin and

Tmax were projected to increase by 1.3–2.6°C, and 1.3–3.6°C, respec-

tively, relative to 1981–2010. Mean precipitation was projected to

change by �27% to +15%. Mean solar radiation was projected to

change by �1% to +10% (Table 3).

3.2 | Uncertainty from crop model structure

Using the seven crop models with their respective single set of cali-

brated model parameters, the simulated yield changes were quite

different by the seven crop models for both Jokioinen and Lleida.

The median of simulated yield changes in the 2050s ranged from

�34% to +8% at Jokioinen (Table 4) and from �39% to +138% at

Lleida (Table 5) across the eight climate projections, relative to

1981–2010. With their respective 3n sets of perturbed parameters,

the seven crop models also resulted in quite different yield changes

at both Jokioinen and Lleida. The median of simulated yield changes

in the 2050s ranged from �24% to +7% at Jokioinen (Table 4,

Figure 2) and from �19% to +75% at Lleida (Table 5, Figure 3)

across the eight climate projections, relative to 1981–2010. The

seven models were hardly consistent even in the impact sign of sim-

ulated yield change under the same climate projection. The CropSyst

projected a large yield decrease, whereas the SiriusQuality projected

a yield increase at Jokioinen under most of the climate projections

(Table 4). The CropSyst projected a large yield decrease, whereas

the HERMES and MONICA projected a large yield increase at Lleida

under most of the climate projections (Table 5). The differences in

the simulated yield changes could to some extent are ascribed to

the different responses of these crop models to the projected cli-

mate conditions. For example at Jokioinen, temperature during the

barley growing period was projected to increase most by MIROC

(Table 3); and as a result, barley yield was projected to decrease by

all seven crop models—yet but with quite different magnitudes,

under the climate projection (Table 4). At Lleida, precipitation during

the barley growing period was projected to increase by EC_EARTH

and decrease by the other seven GCMs, decreasing most by GFDL

(Table 3). As a result, barley yield was projected to increase by five

of the seven crop models under the climate projection by

F IGURE 1 Workflow of the study. Y represents simulated yield. ∆YMiGjPk and ∆YMiGjPk were computed based on each individual year

between the 2050s and the baseline, then averaged [Colour figure can be viewed at wileyonlinelibrary.com]



EC_EARTH; and decrease by four of the models under the climate

projection by GFDL (Table 5). The large differences between the

estimates from different crop models suggest that quite a large

uncertainty in climate impact assessments should originate from crop

model structure.

3.3 | Uncertainty from crop model parameters

At both Jokioinen and Lleida, for each crop model, the simulated

yield changes in the 2050s had quite a large range with 3n sets of

perturbed crop model parameters, particularly for the HERMES,

MCWLA and SIMPLACE (Figures 2 and 3). The results showed that

crop model parameter perturbations could lead to substantial differ-

ences in simulated yield changes under future climate projections,

even in the impact sign (Figures 2 and 3). For each crop model, the

median of simulated yield changes in the 2050s with their respec-

tive 3n sets of perturbed model parameters was also quite different

from that with their respective single set of calibrated model

parameters (Figures 2 and 3, Tables 4 and 5). For example at

Jokioinen, the median of simulated yield changes in the 2050s rela-

tive to 1981–2010 by the MCWLA model was +5% vs. �3% with

one versus 3n sets of perturbed model parameters, across the eight

climate projections (Figure 2, Table 4). For the WOFOST model,

this was �15% vs. �9% respectively. At Lleida, the median of sim-

ulated yield changes in the 2050s relative to 1981–2010 by the

MCWLA model was 36% vs. 26% with one vs. 3n sets of perturbed

model parameters, across the eight climate projections (Figure 3,

Table 5). For the WOFOST model, this was 12% vs. 22% respec-

tively. The SD ranged from 4% to 35% at Jokioinen (Table 4) and

3%–66% at Lleida (Table 5) across the seven crop models and eight

climate projections. The role of crop model parameter perturbation

was also clearly shown by the large differences between the simu-

lated yields with one vs. 3n sets of perturbed model parameters

under baseline climate conditions at both Jokioinen (Figure 2) and

Lleida (Figure 3). The large differences between the estimates using

different sets of model parameters suggest that a large uncertainty

in climate impact assessments should originate from crop model

parameters.

3.4 | Uncertainty from climate projections

Due to the very different projected climatic conditions (Table 3),

both at Jokioinen (Table 4) and Lleida (Table 5), the simulated yield

changes under the eight climate projections were distinct using each

crop model with their respective single set of calibrated parameters.

The simulated yield changes under the eight projections were also

different using each crop model with their respective 3n sets of per-

turbed parameters at Jokioinen (Figure 2, Table 4) and Lleida (Fig-

ure 3, Table 5). Finally, the simulated yield changes under the

climate projections were different with all the seven crop models

with either their single set or 3n sets of perturbed parameters at

Jokioinen (Figure 4, Table 4) and Lleida (Figure 4, Table 5) respec-

tively. Using a single crop model with its respective single set of cali-

brated parameters, the SD ranged from 3% to 20% at Jokioinen

(Table 4) and from 2% to 64% at Lleida (Table 5), across the eight

climate projections. Using a single crop model with its respective 3n

sets of perturbed parameters, the SD ranged from 4% to 35% at

Jokioinen (Figure 2, Table 4) and from 3% to 66% at Lleida (Fig-

ure 3, Table 5), across the eight climate projections. The differences

in the simulated yield changes could to some extent be ascribed to

the different climate projections from the eight GCMs. For example

at Jokioinen, Tmax during the barley growing period was projected to

increase from 1.5°C by MPI to 5.2°C by MIROC (Table 3); and as a

result, the crop model MCWLA resulted in different yield changes

from �10% under the climate projection by MIROC to +15% under

the climate projection by MPI (Table 4). At Lleida, precipitation dur-

ing the barley growing period was projected to change from �27%

by GFDL to +15% by EC-EARTH (Table 3); and as a result, the crop

model WOFOST resulted in different yield changes from �27%

under the climate projection by GFDL to +80% under the climate

projection by EC-EARTH (Table 5).

Using all the seven crop models with their respective 3n sets of

perturbed parameters, the probability density function of projected

yield changes was quite different for different climate projections

(Figure 4). The median of simulated yield changes in the 2050s, rela-

tive to 1981–2010, ranged from �12% to +3% at Jokioinen (Fig-

ure 4a, Table 4) and from �30% to +105% at Lleida (Figure 4b,

TABLE 3 Projected changes in mean

maximum temperature (Tmax), minimum

temperature (Tmin), precipitation and solar

radiation during the barley growing period

by the eight GCMs at Jokioinen and

Lleida for the 2050s, relative to 1981–

2010

GCMs

Jokioinen Lleida

Tmin

(°C)

Tmax

(°C)

Precipitation

(%)

Solar

radiation

(%)

Tmin

(°C)

Tmax

(°C)

Precipitation

(%)

Solar

radiation

(%)

ACCESS1-3 2.6 2.6 13 3 2.6 2.6 �18 6

EC-EARTH 2.5 2.5 10 0 2.2 2.2 15 0

GFDL-CM3 4.1 4.2 4 12 2.5 3.6 �27 10

GISS-E2-R-CC 2.5 2.4 6 �2 1.3 1.3 �1 �1

HadGEM2-ES 3.4 3.4 2 4 2.1 2.7 �1 5

IPSL-CM5A-MR 3.4 3.0 2 3 1.8 2.1 �4 0

MIROC-ESM 4.8 5.2 9 5 2.6 3.0 �18 10

MPI-ESM-MR 1.5 1.5 �2 1 1.4 1.6 �5 2
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Table 5) across the eight climate projections. The probability of

decreasing yield (defined as a share of projections among all crop

models with their respective 3n sets of perturbed parameters) in the

2050s relative to 1981–2010 was projected to range from 42% to

89% at Jokioinen and from 4% to 56% at Lleida across the eight cli-

mate projections.

3.5 | A triple-ensemble probabilistic assessment

accounting for the uncertainties from model

structure, model parameters and climate projections

To account for the uncertainties in assessment of climate change

impacts from model structure, model parameters and climate projec-

tions, a triple-ensemble probabilistic assessment approach was devel-

oped. It was based on the large number of crop model simulations (7

crop models 9 3n sets of model parameters 9 8 climate projec-

tions 9 30 years). All simulations were equally treated while con-

structing the ensemble. Based on the triple-ensemble probabilistic

assessments, the results showed that in Jokioinen and Lleida, respec-

tively, the median of simulated yield change was �4% and +16% in

F IGURE 2 Box–Whisker plots (whisker: minimum and maximum;

crosses: 0.01 and 0.99 percentiles; box: 0.25 quartile, median and

0.75 quartile; square: mean) of simulated yield changes at Jokioinen

for the baseline (1981–2010) and the 2050s under eight climate

projections (ACCESS, EC_EARTH, GFDL, GISS, HADGEM, IPSL,

MIROC, MPI) by seven crop models (CS, HE, MC, MO, SI, SQ, WF)

with their respective 3n (n is the number of selected parameters for

perturbation) sets of parameters. They were relative to the

simulations with their respective single set of calibrated parameters

for the baseline, and with 3n sets of parameters for the 2050s. The

boxplot reflects the interannual variation and parameter uncertainty

with the number of samples being 3n sets of parameters 9 30 years

F IGURE 3 Box–Whisker plots (whisker: minimum and maximum;

crosses: 0.01 and 0.99 percentiles; box: 0.25 quartile, median and

0.75 quartile; square: mean) of simulated yield changes at Lleida for

the baseline (1981–2010) and the 2050s under eight climate

projections (ACCESS, EC_EARTH, GFDL, GISS, HADGEM, IPSL,

MIROC, MPI) by seven crop models (CS, HE, MC, MO, SI, SQ, WF)

with their respective 3n (n is the number of selected parameters for

perturbation) sets of parameters. They were relative to the

simulations with their respective single set of calibrated parameters

for the baseline, and with 3n sets of parameters for the 2050s. The

boxplot reflects the interannual variation and parameter uncertainty

with the number of samples being 3n sets of parameters 9 30 years
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F IGURE 4 Probability density function of projected yield changes

for the 2050s under eight climate projections. The projections of

ACCESS, EC_EARTH, GFDL, GISS, HADGEM, IPSL, MIROC, MPI and

all of them by seven crop models with their respective 3n sets of

parameters are displayed for Jokioinen (a) and Lleida (b), relative to

their corresponding simulations for 1981–2010 with their respective

3n sets of parameters



the 2050s relative to 1981–2010, with the SD being 21% and 55%

respectively (Tables 4 and 5). The probability of yield decrease in the

2050s was projected to be 63% at Jokioinen and 31% at Lleida, rela-

tive to 1981–2010. The simulated yield change using the triple-

ensemble probabilistic assessment was quite different from those

using the approaches accounting for uncertainties from one or two

sources only (Figures 5 and 6). For example the simulated yield

change using different approaches ranged from �59% to +44% at

Jokioinen (Figure 5), and from �74% to +162% at Lleida (Figure 6).

3.6 | Contribution of crop model structure, crop

model parameters and climate projections to the total

variance of ensemble output

Using a single set of calibrated crop model parameters, the results of

ANOVA showed that the contribution of crop model structure and

climate projections to the total variance of ensemble output was

60% and 17%, respectively, at Jokioinen, and 65% and 11%, respec-

tively, at Lleida (Figure 7). Using 3n sets of perturbed crop model

parameters, it was 32% and 12%, respectively, at Jokioinen, and

41% and 12%, respectively, at Lleida (Figure 7). The sum of squares

by crop model structure and climate projections in the ANOVA of

climate change impact estimates with a single set of calibrated

parameters or 3n sets of parameters was much larger at Lleida than

that at Jokioinen (Figure S2). Obviously, the contribution of crop

model structure to the total variance of ensemble output was larger

than that of climate projections at both sites.

The relative contribution of crop model parameters and climate

projections to the total variance of ensemble output varied greatly

among the seven crop models and between the two sites (Figure 8).

The sum of squares by crop model parameters and climate projec-

tions in the ANOVA of climate impact estimates for each crop model

also varied greatly among the seven crop models and between the

two sites (Figure S3). The contribution of crop model parameters

varied from 6% for the CropSyst model to 92% for the HERMES

model at Jokioinen, and from 3% for the CropSyst model to 60% for

the SiriusQuality model at Lleida. The contribution of climate projec-

tions varied from 5% for HERMES model to 90% for the CropSyst

model at Jokioinen, and from 20% for the SIMPLACE model to 97%

for the CropSyst model at Lleida. On average, the contribution of

crop model parameters and climate projections was 42% and 46% at

Jokioinen, and 24% and 59% at Lleida respectively (Figure 8). For all

models but the SiriusQuality, the share of variance for model param-

eters at Jokioinen was higher than at Lleida. Four crop models, that

is MCWLA, MONICA, SiriusQuality and WOFOST, resulted in very

similar patterns of the shares of the different sources, whereas the

three other models were distinctly different but each with a very

special pattern. For the CropSyst, climate projections were overruling

may be due to the parameter selection or/and too narrow parameter

range. The HERMES behaved very differently at the two sites in

terms of the shares may be due to too wide parameter range at

Jokioinen.

4 | DISCUSSION

4.1 | Accounting for uncertainties from multiple

sources simultaneously using a super-ensemble

probabilistic assessment

Previous studies have investigated the uncertainty from one or two

of the important sources in climate change impact assessments. This

study investigated and compared, to our knowledge for the first

time, the uncertainties from the three key sources together, that is

crop model structure, crop model parameters and climate projec-

tions. We showed a large contribution from crop model structure,

GCMs and crop model parameters to the total variance of ensemble

output (Figures 7 and 8), warranting the need to further improve

crop models and GCMs and to optimize model parameters.

F IGURE 5 Comparisons of projected

yield changes under eight climate

projections at Jokioinen. Changes relative

to 1981–2010 are displayed for climate

projections by ACCESS, EC_EARTH, GFDL,

GISS, HADGEM, IPSL, MIROC, MPI, and all

of them by each single crop model and all

seven models together with their single

sets of calibrated parameters and 3n sets

of parameters respectively. The error bars

represent the SD of the corresponding

estimates



Improvement of crop models and parameterization is hindered

by both the shortage of high-quality experimental data, gaps in com-

prehensive experimental data sets as well as in full understanding of

certain ecophysiological processes such as crop development, growth

and grain formation and the various interactions between genotype,

management and environment (Kersebaum et al., 2015). However,

much more data exist than have actually been utilized to calibrate,

and especially validate existing model structure and parameterization

(Ainsworth & Long, 2005; Medlyn et al., 2015; Vanuytrecht & Thor-

burn, 2017). Up-to-date knowledge is often not exploited to improve

model structure. For example for crop responses to CO2, more data

are now becoming available, but have yet to be used in model

improvement (Ainsworth & Long, 2005; Medlyn et al., 2015; Vanuy-

trecht & Thorburn, 2017). Uncertainty from GCMs structure and

parameterization cannot easily be reduced either (Knutti & Sedlacek,

2013).

To better assess climate change impact and inform adaptation,

alternatively, sound approaches should be developed to account for

the uncertainties in climate change impact assessment. Here, the tri-

ple-ensemble probabilistic assessment was developed was based on

seven crop models, 3n (n = 7 or 8) sets of crop model parameters

and eight climate projections. The approach, presenting the results in

a probabilistic framework, provides more comprehensive information

for quantifying uncertainties in climate change impact assessments

than the conventional approaches that are deterministic or only

account for the uncertainties from one or two of the sources.

Besides the uncertainties from the structure and parameters of the

impact model and the GCM structure investigated here, those from

other important sources, such as greenhouse gas emission scenarios,

climate projection downscaling methods, climate model parameteri-

zation and initialization, could be further explored. Therefore, the tri-

ple-ensemble probabilistic assessment approach presented here can

be further developed into ‘a super-ensemble probabilistic

assessment’ by accounting for the uncertainties from more important

uncertainty sources.

4.2 | Contribution of crop model structure,

parameters and climate projections to uncertainties in

climate change impact assessments

We found the uncertainty from crop model structure was larger than

that from downscaled climate projections (Figure 7). The results are

supported by several previous studies on wheat (Asseng et al.,

2013), maize (Bassu et al., 2014) and rice (Li et al., 2015). The rea-

sons for the large uncertainty from crop model structure are compli-

cated. For example these models have different modelling

approaches for key crop development, growth, leaf area, photosyn-

thesis and evapotranspiration, biomass accumulation and grain for-

mation processes, as well as different temperature (Asseng et al.,

2015; Wang et al., 2017) and CO2 relationships (Duranda et al.,

2017; Hasegawa et al., 2017; Kersebaum & Nendel, 2014; Vanuy-

trecht & Thorburn, 2017). It is essential to improve the model

descriptions of temperature and CO2 relationships and modelling

approaches based on model comparison and evaluation and refine-

ment utilizing suitable high-quality experimental data (Hasegawa

et al., 2017; Wang et al., 2017).

The eight GCMs have different climatic sensitivity (Knutti & Sed-

lacek, 2013), and the projected climate was quite different (Table 5).

Despite extensive efforts to improve GCMs’ performance in the sim-

ulation of various aspects of the climate system in the CMIP5 pro-

ject, there are still substantial temperature biases and deficiencies in

the GCMs’ outputs (Knutti & Sedlacek, 2013). Consequently, climate

projections from GCMs need to be downscaled to local-scale climate

scenarios. One of the commonly used downscaling techniques is

based on a weather generator or/and change factors derived from

GCMs (Barrow & Semenov, 1995; Semenov & Barrow, 1997; Wilks,

F IGURE 6 Comparisons of projected

yield changes under eight climate

projections at Lleida. Changes relative to

1981–2010 are displayed for climate

projections by ACCESS, EC_EARTH, GFDL,

GISS, HADGEM, IPSL, MIROC, MPI, and all

of them by each single crop model and all

seven models together with their single

sets of calibrated parameters and 3n sets

of parameters respectively. The error bars

represent the SD of the corresponding

estimates



1992). Downscaling techniques can bring additional uncertainty in

climate scenarios (Wilby et al., 1998) and impact assessments; how-

ever, this uncertainty was not considered in this study. Possible rea-

son for the smaller uncertainty from downscaled climate projections

than from crop model structure could be that the differences among

the climate projections were still not large enough to cause dramatic

differences in response among the crop models, because crop

response to climate change is not evident or dramatic if climate

remains in the range below or above a threshold (S�anchez, Ras-

mussen, & Porter, 2014).

We also found that the relative contributions of crop model

parameters and climate projections to the total variance of ensemble

output varied greatly among the seven crop models and between

the two sites (Figure 8). The uncertainty from climate projections

was on average larger than that from crop model parameters (Fig-

ure 8), which is supported by Tao, Yokozawa et al. (2009). The

results suggest that more emphasis should be given to a representa-

tive preselection of GCMs for impact assessment and the selection

approach should be further elaborated. It is important to select the

GCMs that are capable of reproducing relevant weather patterns for

the impact sector of interest. In addition, the development of the

most likely probabilistic climate projection by weighting the perfor-

mance of various GCMs in long-term hindcast simulations may be a

promising solution (Das Bhowmik, Sharma, & Sankarasubramanian,

2017).

The crop model parameters were perturbed based on the cali-

brated set of crop model parameters and their possible ranges. Since

the value ranges of some parameters were large, the resultant simu-

lated yields with 3n sets of perturbed parameters had relatively large

differences. The 3n sets of parameters include all the possible combi-

nations of seven or eight crop model parameters. The possible inter-

dependencies among parameters were not taken into account.

Nevertheless, this could only lead to a slight overestimation of

uncertainties related to parameters because mismatch among the

parameters could happen only in rare cases. It is difficult to quantify

the overestimation of uncertainties due to the parameter mismatch

because the biophysical consistency between these model parame-

ters is not yet fully understood. In the future, better integrated

efforts among plant physiologists, geneticists, breeders and crop

modellers, which are based on more comprehensive datasets, will

allow better coupling of genotype-phenotype modelling and conse-

quently will provide more insight into plausible uncertainty space.

For climate projections in contrast, projected changes in different

weather variables are physically consistent. In addition, the uncer-

tainties from crop model parameters reflected not only the uncer-

tainties in biophysical processes, but also the effects of differing

traits for cultivars, which to some extent reflect uncertainty in

assumptions about genetic variations of the traits currently or in the

near future. The crop model parameters that were identified as influ-

ential by the different crop modelling groups differ among the mod-

els, as do their ranges of variation, which can contribute to the

uncertainties from crop model structures and parameters, too. For

example the special patterns of the shares of the different sources

for the CropSyst and HERMES (Figure 8) may be due to too narrow

and too wide parameter range respectively. The plausible range of

parameters for a specific environment or/and cultivar should be bet-

ter elaborated to constrain model parameters more rigorously in cli-

mate change impact assessment. More elaborate multiple-

environment trial data and some recently developed, advanced opti-

mization techniques for model parameters, such as the Bayesian

probability inversion and a Markov chain Monte Carlo (MCMC)

F IGURE 7 Share of variance by crop model structure and climate

projections in the simulated barley yield changes. Calculations were

carried out with seven crop models, eight climate projections, single

set of calibrated parameters (left) or 3n sets of parameters (right), for

Jokioinen and Lleida respectively. The error variance is that which is

neither due to crop model structure nor climate projections; hence,

in the right two columns (with 3n sets of parameters), the error

variance includes the share of crop model parameters

F IGURE 8 Share of variance by crop model parameters and

climate projections in the climate change impact assessments for

each crop model (CS, HE, MC, MO, SI, SQ, WO). For each crop

model, the left column is for Jokioinen and the right column is for

Lleida. The error variance is the share of variance which is neither

due to crop model structure nor climate projections



technique (Iizumi et al., 2009; Tao, Zhang et al., 2009), should be

useful to explore the optimal and biophysically sound crop model

parameters for a specific environment. The relative contribution of

crop model structure and parameters to the total variance of ensem-

ble output could not be rigorously and directly compared using

ANOVA in the settings of this study because the model parameter

set is specific to each crop model and cannot be applied by another

crop model. Nevertheless, the large deviations among the different

crop models (Figures 2 and 3) suggest that uncertainty from model

structure may generally be larger than that from model parameters,

particularly when crop models have been well calibrated. This is sup-

ported by a recent study of Zhang et al. (2017).

Our study suggests that the number of crop models and climate

projections, as well as the individual crop model ensemble members,

should be more rigorously selected, based on the characteristics of

the study area, the purpose of the study, and the advantages of a

certain model. Given the highly localized, management-specific nat-

ure of cropping systems, crop model selection and a plausible range

of parameters should be carefully justified for a specific environ-

ment. This point is supported by several previous studies, which

show that some crop models perform well in one environment but

not in another environment, and vice versa (Asseng et al., 2013;

Bassu et al., 2014; Huang, Huang, Yu, Ni, & Yu, 2017; Li et al.,

2015). Many crop models are developed for a specific focus and spa-

tial scale, consequently strong in some aspects but weak in others;

these should be kept in mind in the selection of crop model for a

specific task. In comparison to crop models and climate projections,

crop model parameterization contributes relatively little to overall

uncertainty. With this information in mind, model users can decide

where to put the most effort when preparing or choosing models or

parameters for impact analyses.

4.3 | Reducing and quantifying uncertainties in

climate change impact assessment

Several previous studies have indicated that crop models have the

largest uncertainties under extreme climatic conditions (Asseng et al.,

2015; Wang et al., 2017; Zhang & Tao, 2013). Understanding of the

impacts of extreme climates on the processes of plant development,

growth and grain formation is still relatively poor (e.g. Asseng et al.,

2015; Lesk, Rowhani, & Ramankutty, 2016; Lobell et al., 2013).

Therefore, model equations and model parameters should be further

elaborated, for example by improving the temperature and CO2

response functions in models using high-quality experimental data

under controlled environmental conditions (Asseng et al., 2015; Dur-

anda et al., 2017; Gabald�on-Leal et al., 2016; Maiorano et al., 2017;

R€otter, Carter et al., 2011; Wang et al., 2017). The model description

of CO2 relationships is another key uncertainty source for future

yield prediction needed to be reduced (Duranda et al., 2017; Hase-

gawa et al., 2017; Vanuytrecht & Thorburn, 2017). With the free-air

CO2 enrichment (FACE) experimental data, a recent study showed

that many maize models could not simulate the very low soil water

content at anthesis and the increase in soil water and grain number

brought about by elevated CO2 concentration under dry conditions,

model improvement with respect to simulating transpiration water

use and its impact on water status during the kernel-set phase was

thereby suggested (Duranda et al., 2017). Another study showed

that yield prediction in response to elevated CO2 concentration var-

ied significantly among 16 rice models. The variation was not associ-

ated with model structure or magnitude of photosynthetic response

to elevated CO2 concentration, but was significantly associated with

the predictions of leaf area. The improvement on model simulation

of leaf area and CO2 9 Nitrogen interaction was thereby suggested

(Hasegawa et al., 2017).

Besides, these impact uncertainties can be better quantified

through use of the super-ensemble probabilistic assessment

approaches than by conventional approaches (Wallach et al., 2016),

because the former provide better estimates and more information,

accelerating the communication of the results with stakeholders and

policy-makers in a probabilistic framework. Previous studies suggest

that the median value of a multimodel ensemble was more accurate

in simulating the crop temperature response and yields than any sin-

gle model (Asseng et al., 2013; Martre et al., 2015). When adopting

the median value, special attention should be paid to the cases when

half of the impact models provide one impact sign and the rest

provide the opposite sign. Our results suggest the use of super-

ensemble probabilistic assessments that account for the uncertain-

ties from multiple important sources should provide more useful

information, better quantification of the uncertainties, and conse-

quently better communication of the estimates. It should be kept in

mind that the focus of this paper was to investigate the uncertainty

from crop model structure, parameters and climate projections in cli-

mate impact assessment; with few exceptions such as future cultivar

traits adaptation options were not taken into account. This is sound

because these virtual cultivars can be fairly evaluated under a wide

range of reasonable sowing dates and agronomic management prac-

tices including those applied in this study. A wide spectrum of adap-

tation options can be incorporated in further studies. However,

elaboration of the super-ensemble probabilistic assessment demands

considerable computing power and resources, particularly for climate

impact assessment at a regional or global scale.
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