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Diabetes has become the epidemic of the 21st century, and with over 90% patients with diabetes becoming at a risk of devel-

oping retinopathy, diabetic retinopathy has emerged as a major public health concern. In spite of cutting edge research in the 

field, how retina and its vasculature are damaged by the diabetic milieu remains ambiguous. The environmental factors, life 

style or disease process can also bring in modifications in the DNA, and these epigenetic modifications either silence or acti-

vate a gene without altering the DNA sequence. Diabetic environment up- or downregulates a number of genes in the retina, 

and emerging research has shown that it also facilitates epigenetic modifications. In the pathogenesis of diabetic retinopathy, 

the genes associated with important enzymes (e.g., mitochondrial superoxide dismutase, matrix metalloproteinase-9 and thi-

oredoxin interacting protein) and transcriptional factors are epigenetically modified, the enzymes responsible for these epige-

netic modifications are either activated or inhibited, and the levels of microRNAs are altered. With epigenetic modifications 

taking an important place in diabetic retinopathy, it is now becoming critical to evaluate these modifications, and understand 

their impact on this slow progressing blinding disease. 
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Diabetic retinopathy is the most feared complication as over 

90% of the patients with diabetes for more than 20 years 

encounter some symptoms of retinopathy. With the number 

of diabetes increasing at an alarming rate, the number of 

people with retinopathy is expected to increase from 126.6 

million in 2011 to 191 million by 2030, and the vi-

sion-threatening retinopathy during this period will increase 

from 37.3 million to 56.3 million [1]. Due to high circulat-

ing glucose, the tiny blood vessels that nourish the retina are 

damaged, and in the early stages of the disease, microaneu-

rysms, hemorrhages, intra-retinal microvascular abnormali-

ties result in bleeding. If not controlled, this non-prolifera- 

tive stage could progress to proliferative stage where the 

new vessels begin to grow, ultimately resulting in retinal 

detachment and blindness [2]. 

The pathogenesis of diabetic retinopathy is complex; 

although hyperglycemia is considered as the leading cause 

of the development of diabetic retinopathy, however, hy-

pertension and dyslipidemia are also some of the major risk 

factors associated with the disease [35]. A number of 

metabolic abnormalities initiated by hyperglycemia are im-

plicated in the development of diabetic retinopathy. Oxida-

tive stress is regarded as one of the leading mechanisms in 

its development, and increase in oxidative stress in diabetic 

milieu is associated with a number of other interlinking 

metabolic abnormalities including the accumulation of ad-

vanced glycation end products, activation of protein kinase 

C, polyol and hexosamine pathways [2,68]. Though many 

leading laboratories are involved in cutting edge research to 

understand the etiology of this complex disease, the exact 

mechanism responsible for its development remains elusive.  



 Kowluru RA, et al.   Sci China Life Sci   June (2015) Vol.58 No.6 557 

1  Genetics and diabetic retinopathy 

In addition to metabolic and physiologic factors, pathogen-

esis of a disease is also influenced by genetic factors. Due to 

variability in the severity of retinopathy among patients 

with diabetes with similar risk factors, however, genetic 

associations with diabetic retinopathy remain unclear. Ge-

nome-wide association studies have identified a number of 

genetic variants that could explain some of the in-

ter-individual variations in the susceptibility of diabetes. A 

meta-analysis study has shown a significant variation in the 

AKR1B1gene, a gene encoding aldo-keto reductase family 1 

member B1, and this rate limiting enzyme of the polyol 

pathway is strongly associated with diabetic retinopathy [9]. 

Another meta-analysis study with patients with type 2 dia-

betes has shown a protective role of Pro12Ala polymor-

phism in the peroxisome proliferator-activated receptor-γ2 

gene in the incidence of retinopathy [10]. In contrast, recent 

studies have failed to find any associations between vascu-

lar endothelial growth factor (VEGF)-related single nucleo-

tide polymorphisms (rs6921438 and rs10738760) and the 

risk of retinopathy and nephropathy in patients with diabe-

tes [11]. Thus, the association between genetic factors and 

diabetic retinopathy needs further investigation. 

2  Epigenetics and gene regulation 

Epigenetics is now emerging as one of the important factors 

in many diseases as it can regulate the complex interplay 

between genes and the environment, and these heritable 

changes can occur without any change in the DNA se-

quence. Epigenetic change is a regular and natural phe-

nomenon, and can also be influenced by several factors in-

cluding age, the environment, lifestyle and disease state 

[12,13]. Epigenetic modifications can act like switches 

helping to control gene activity and allowing alternations in 

genome function without altering the gene sequences. At 

least three major epigenetic modifications including DNA 

methylation, histone modification and non-coding RNA are 

considered to initiate and sustain changes in gene regulation 

[14,15]. 

DNA is not a static, fixed entity, but instead it is   

‘highly dynamic’, and it responds to the environmental 

stimuli by modifying its properties in adapting to the 

changes [16]. Methylation of cytosine to 5-methyl cytosine 

(5mC) is considered as one of the major epigenetic modifi-

cation; methylation of the CpG islands, a CG rich region in 

the promoter of many genes, changes protein-DNA interac-

tions leading to alterations in chromatin structure, and this 

interferes with the binding of transcriptional machinery, 

resulting in gene suppression [17,18]. The hypomethylated 

DNA re-activates the repetitive genomic sequences, result-

ing in chromosomal instability and abnormal gene expres- 

sion [19,20]. DNA methylation is catalyzed by DNA methyl 

transferases (Dnmts), a family with five members—Dnmt1, 

Dnmt2, Dnmt3a, Dnmt3b and Dnmt3L; out of which only 

Dnmt1, Dnmt3a and Dnmt3b are catalytically active. 

Dnmt3a and Dnmt3b are de novo methyltransferases, and 

Dnmt1 is a maintenance enzyme important in regulating 

tissue-specific patterns of methylated cytosine residues 

[21,22]. Pathological Dnmt activity and aberrant 5mC for-

mation have been linked with neurodegeneration [23]. 5mC 

can be oxidized to 5-hydroxymethylcytosine (5hmC) by 

ten-eleven translocation enzymes, and 5hmC can also be 

further oxidized to generate 5-formylcytosine and 

5-carboxylcytosine [24]. A subfamily of DNA glycosylases 

are considered to promote active DNA demethylation by 

removing the 5-methylcytosine base, followed by cleavage 

of the DNA backbone at the abasic site, and the methylated 

cytosine is replaced by an unmethylated cytosine [25]. In 

contrast, the passive process involves absence/inactivation 

of Dnmt1 resulting hypomethylated DNA [26]. 

Chromatin, a composite structure of histones and nu- 

cleic acid, instructs the expression pattern of different genes, 

and conformational changes in the DNA, by altering the 

binding of transcription factors and its machinery, can 

change the gene expression. Among the 4-histone proteins, 

histone 2 (H2) exists in 2-subtypes, H2A and H2B which 

along with H3 and H4 forms a tetrameric structure, wrapped 

with 146 bp of nucleic acid [27]. This sophisticated DNA 

packaging still allows N-terminal sequences of histones to 

undergo modifications including acetylation, methylation 

and phosphorylation. These modifications can either open 

or restrict access to DNA by directly altering the electro-

static potential and/or the structure of the local chromatin 

environment or indirectly alter the recruitment of the effec-

tor proteins [28]. Histone modifications are regulated by a 

balance between the enzymes inserting or removing a group 

[29,30]. Acetylation of histones is one of the most common 

modifications; acetylation opens up the chromatin structure, 

which allows recruitment and binding of the transcription 

factor and RNA polymerase II [31]. A group of enzymes 

with opposing functions maintain the required acetylation 

status, while histone acetyltransferases (HATs) inserts an 

acetyl group on a lysine of the histone; histone deacetylases 

(HDACs) remove the acetyl group [29]. In contrast to acet-

ylation, methylation of histone, depending on the target site, 

can turns “off” or “on” the genes [32]. While trimethylation 

of histone H3 at lysine 4 (H3K4me3) is generally consid-

ered as an active mark for transcription, dimethylation of 

histone H3 at lysine 9 (H3K9me2) as a transcriptional si-

lencing mark.  In addition, depending on the degree of res-

idue methylation, different functions can be expected; 

monomethylated H4K20 (H4K20me1) and H4K20me3 are 

considered as transcriptional repressors, H4K20me2 is 

largely considered as an activator [3235]. Histone methyl-

transferases (HMT) catalyze the transfer of one, two, or 

three methyl groups to lysine (and arginine) residues of his-
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tone proteins. There are two major types of HMTs, ly-

sine-specific, which can be SET (Su(var)3-9, Enhancer of 

Zeste, Trithorax) domain containing or non-SET domain 

containing. Contrary to a relatively well defined histone 

methylating system, histone demethylation machinery is not 

well studied; LSD1, a lysine-specific histone demethylase, 

specifically removes methyl group from H3K4me and 

H3K9me [36,37]. 

Recent studies have shown that DNA methylation and 

histone modifications could function in concordance [38]; 

for example, Dnmt1, methyl CpG binding protein 2 (MeCP2) 

and methyl-CpG-binding domain proteins (MBDs) could 

associate with HDAC (39) or CpG methylation could coop-

erate with euchromatic histone methyltransferase 

SETDB1/ESET in histone H3 lysine 9 trimethylation, re-

sulting in gene regulation. In addition, histone modifying 

enzymes, SUV39h1 and EZH2 lysine histone methyltrans-

ferases can interact with Dnmt and regulate their functions 

[4042], and PRMT5-mediated methylation of arginine 

could silence gene expression via recruiting Dnmt3A [43]. 

Thus, both histone modification and DNA methylation 

could regulate the same gene. Although these epigenetic 

modifications do not have to be permanent, their response to 

the changing environment, and passing to the successive 

generations, makes them one of the most important drug 

targets for a chronic disease like diabetic retinopathy. 

Small noncoding RNAs (~22 nucleotides) are also con-

sidered to regulate gene expression as these microRNAs 

(miRNA) bind to the complementary sequences in the 3′ 
untranslated region of mRNAs, and cleave mRNA resulting 

in decreased protein synthesis and expression of the targeted 

gene [44,45]. Methylation of DNA and histone, and miRNA 

appear to work in concordance as the function of Dnmts 

depends on histone modification patterns, such as H3K9 

methylation and histone deacetylation and inhibition of 

Dnmts reactivates some of the miRNAs [46]. Since these 

epigenetic modifications are mainly caused by the local 

environment and can be passed on to the next generation, 

they are now being considered as some of the attractive tar-

gets for chronic disease, including diabetes and cancer [47]. 

3  Epigenetic modification and diabetes 

Glucose is critically important for the organisms for surviv-

al, but sustained levels of high glucose are detrimental, and 

can initiate a number of metabolic, biochemical and genetic 

abnormalities. It affects regulation of genes throughout the 

body. Recent work has suggested that diabetic milieu favors 

epigenetic modifications in various organs associated with 

micro- and macro-vascular complications [8,48,49]. Ge-

nome-wide DNA methylation study using blood cells from 

patients with type 1 diabetes has identified 19 potential CpG 

sites that are prone to DNA methylation in diabetes. 

S-Adenosyl methionine (SAM), the donor of methyl group 

for DNA methylation, is shown to influence the expression 

of genes related with diabetic complications, and blood de-

ficiency of SAM is reported in the patients with diabetic 

nephropathy [5053], and leukocytes from diabetic patients 

have reduced Dnmts levels [54]. Global hypomethylation 

and reduced level of SAM are also observed in Zebrafish 

with chemically induced diabetes [55]. In contrast, in Zuck-

er fatty rat, a model of type 2 diabetes, sustained global 

DNA hypermethylation is observed in the liver, and this is 

associated with abnormal metabolism of the methyl group 

[53]. These divergent patterns of DNA methylation in dia-

betes suggest that various tissues could be responding dif-

ferently to diabetes. 

Hyperglycemia is also associated with aberrant changes 

in H3K4me2 and H3K9me2 in human monocytic THP-1 

cells and increases histone acetylation in the chromatin re-

gion containing the promoter of the transcription factor, 

nuclear factor kappa B (NF-B)-p65 [56]. In vascular 

smooth muscle cells derived from type 2 diabetic mice, ir-

reversibly decreased levels of both H3K9me3 and methyl-

transferase Suv39H1 at the promoters of interleukin-6 and 

monocyte chemoattractant protein1 are observed, and 

SUV39H1 gene silencing irreversibly elevates the expres-

sion of inflammatory genes and decreases H3K9me3 at their 

promoters [57]. Monocytes from case subjects enrolled   

in landmark the Diabetes Control and Complications Trial 

and the follow up Epidemiology of Diabetes Interven-  

tions and Complications study have shown a significant 

association between H3K9 acetylation and hemoglobin A1C 

levels [58].  

In addition to histone modifications and DNA methyla-

tion, miRNAs are also associated with various diabetic 

complications. Increased levels of miR-377 and miR-21 are 

observed in the human and mouse mesangial cells exposed 

to hyperglycemic milieu [59,60]. Increased miR-377 levels 

have been linked to the induction of fibronectin, which con-

tributes to the renal fibrosis in hyperglycemia [59]. Glu-

cose-induced miR-146a downregulation is mediated 

through the HAT p300, suggesting an interrelationship be-

tween histone acetylation and miR-146a mediated fibron-

ectin expression and a possible functional link between 

miRNA expression and histone modification in diabetes 

[61]. Thus, epigenetic modifications appear to play an im-

portant role in the development of diabetes and its compli-

cations. 

4  Epigenetic modification in diabetic retinopa-

thy 

Diabetic retinopathy, a slow progressing disease, is associ-

ated with a number of metabolic abnormalities [2,7,8], 

however, the role of epigenetic modifications in diabetic 

retinopathy is still not clear. In a Finnish study, an associa-
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tion between the polymorphism in SUV39H2, a gene that 

encodes histone methyltransferases and microvascular com-

plications, including retinopathy has been observed in pa-

tients with diabetes [62]. In a cross-sectional study with 

over 1,000 patients having type 2 diabetes, analysis of their 

family history has suggested a possible genetic and epige-

netic basis for the development of diabetic retinopathy 

[63,64]. Experimental evidence using in vitro and in vivo 

models of diabetic retinopathy have shown that the activi-

ties of HDACs are increased and that of HATs are de-

creased in the retina and its capillary cells in diabetes, and 

global acetylation of histones is decreased [65]. However, 

contrary to this, others have shown significant increase in 

retinal histone acetylation in diabetes [66]; undermining the 

importance of further investigation into the role of histone 

modifying enzymes in the development of diabetic reti-

nopathy. 

Mitochondrial superoxide are considered as the unifying 

molecules connecting many metabolic abnormalities asso-

ciated with diabetic retinopathy [7,67,68], and in diabetes, 

retinal mitochondria are damaged and superoxide scaveng-

ing enzyme (superoxide dismutase) is dysfunctional [69]. 

We have shown that diabetes epigenetically modifies Sod2, 

the gene encoding mitochondrial superoxide dismutase, and 

H4K20me3, acetyl H3K9 and p65 subunit of NF-B (p65) 

are increased at its promoter/enhancer, H3K4 is demethyl-

ated and LSD1 binding is increased. These results have 

clearly suggested that epigenetic modifications have a major 

role in the regulation of superoxide levels, and thus in the 

development of retinopathy [70,71]. Furthermore, epigenet-

ic modifications are also implicated in the function of Nrf2, 

a master regulator which regulates the expression of stress 

responsive gene. Due to epigenetic modifications at the 

promoter of Kelch-like ECH associated protein 1 (Keap1, 

an intracellular inhibitor of Nrf2), the binding of transcrip-

tional factor Sp1 is increased. This results in increased ex-

pression of Keap1 and Keap1 tries to restrain the redox sen-

sitive transcription factor in the cytosol, impairing its tran-

scriptional activity and increasing oxidative stress. Fur-

thermore, due to increased H3K4me1, Nrf2 binding at its 

glutamate-cysteine ligase-antioxidant response element re-

gion 4 Gclc-ARE4 is decreased, resulting in decreased tran-

scripts of the catalytic subunit of glutamate-cysteine ligase, 

an important enzyme responsible for biosynthesis of the 

intracellular antioxidant, glutathione [7274]. 

In the pathogenesis of diabetic retinopathy, activation of 

matrix metalloproteinase-9 (MMP-9) is shown to damage 

mitochondria, and this initiates the apoptotic machinery 

[75,76]. MMP-9 is regulated by NF-B and the activation of 

NF-B is modulated by the acetylation of its p65 subunit. 

Sirt1, a deacetylase, plays an important role in the acetyla-

tion-deacetylation of p65, and the activity of retinal Sirt1 is 

decreased and the acetylation of p65 is increased in diabetes 

[77]. Consistent with this, retina from human donors with 

diabetic retinopathy have decreased H3K9me2 at MMP-9 

promoter, acetyl H3K9 levels are elevated, and this facili-

tates the recruitment of p65 at its promoter and upregulates 

MMP-9, damaging mitochondria and increasing superoxide 

levels [78]. In addition, epigenetic modifications of thiore-

doxin interacting protein, an endogenous inhibitor of anti-

oxidant thioredoxin, are associated with sustained Cox2 

expression seen in the retina in diabetes [79,80]. 

DNA methylation, an important epigenetic modification, 

is closely associated with the regulation of gene transcrip-

tion [17,18]. A case control study using patients having type 

2 diabetes has shown significantly higher levels of global 

DNA methylation in patients having diabetes with reti-

nopathy compared to those with no retinopathy, and although 

global DNA methylation appears to be independent of reti-

nopathy risk factors, e.g., hyperglycemia, dyslipidemia and 

hypertension, in these patients, the methylation status of 

DNA shows a correlation with the progression of retinopathy 

[63,64]. Experimental studies using in vitro and in vivo 

models of diabetic retinopathy have shown that the regula-

tory region of DNA polymerase gamma, an enzyme im-

portant in mitochondrial DNA biogenesis, is hypermethyl-

ated, and due to increased CpG methylation, its expression 

is reduced and its binding to the regulatory region of 

mtDNA is attenuated, resulting in subnormal mtDNA bio-

genesis [51]. These studies have clearly suggested that both 

the histone modifications and DNA methylation have im-

portant roles in maintaining mitochondrial homeostasis and 

regulating superoxide levels, which has an important role in 

the development of diabetic retinopathy. 

In addition to modifications of histones and DNA, the 

small non-coding RNAs can also regulate post-transcrip- 

tional gene expression by binding to their target messenger 

RNAs, resulting in alterations in gene transcription [44,45]. 

These miRNAs are stable, and this makes them as ideal 

biomarkers in several diseases, including diabetes. Their 

function is somewhat complex as the same miRNA can tar-

get a number of genes, and the same gene can be targeted 

by a number of miRNA [81,82]. Studies with experimental 

models of diabetic retinopathy have revealed a number of 

miRNAs with either increase or decrease in their expres-

sions. Experimental models of diabetic retinopathy have 

shown an association between the downregulation of 

miR-126, miR-146a and miR-200b and upregulation of 

VEGF, and downregulation of miR-146a is also associated 

with fibronectin production, and upregulation of miR-195 

with downregulation of deacetylase Sirt1. Upregulation of 

miR-29b in the early stages of diabetes is considered to be 

protective against apoptosis of the retinal ganglion cells 

[83,84]. These studies have clearly suggested the important 

role for miRNAs in regulating various aspects of diabetic 

retinopathy, including blood retinal breakdown and neo-

vascularization. 

Thus, diabetic environment favors epigenetic modifica-
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tions in the retina; DNA methylation and miRNAs are al-

tered and histones are modified. DNA methylation and his-

tone modifications could also affect miRNA levels. Due to 

epigenetic modifications, the binding of transcription fac-

tors (e.g., NF-B and Nrf2) and the expression of genes 

(Sod2, MMP-9, Keap1, TXNIP, VEGF, etc.) become ab-

normal, resulting in the metabolic, physiological and struc-

tural abnormalities, and the development of diabetic reti-

nopathy (Figure 1, Table 1). 

5  Therapeutic implications 

As mentioned above, epigenetic appears to play a major role 

in the development of diabetic retinopathy. Histone modifi-

cations have an important dynamic role in the regulation of 

gene expression; acetylation status of histones can directly 

influence the transcription of a gene. There is clearly a 

growing interest in the therapeutic use of HDAC inhibitors 

in the treatment of abnormalities in histone acetylases and 

deacetylases. Epigallocatechin-3-gallate is a strong histone 

acetylase inhibitor, and is shown to inhibit NF-B activation 

[85] and in the pathogenesis of diabetic retinopathy, activa-

tion of NF-B is considered to accelerate apoptosis of ca-

pillary cells, suggesting that inhibitor has potential to inhibit 

the development of diabetic retinopathy. Resveratrol, a nat-

urally occurring compound found in grapes, wine and euca-

lyptus, is a potent activator of Sirt1, and it also inhibits some 

histone deacetylases [86]. In addition, curcumin [87] and 

genistein [88] are also shown to activate histone acetylases  

and inhibit deacetylases [89]. Vorinostat (suberanilohy-

droxamic acid), a HDAC inhibitor, is now approved by 

FDA for Cutaneous T-cell lymphoma [90]. As with histone 

acetylating-deacetylating enzymes, histone methyltransfer-

ases are also being considered as targets for therapeutics. 

Enhancer of Zeste Homolog 2 (EZH2), important for 

H3K27 methylation, has been shown to be inhibited by 

3-deazaneplanocin, and specific inhibitors of EZH2, e.g., 

GSK126, seem to be showing promising results for the 

treatment of cancer. Epigenomic-based therapies targeting 

histone modifications are also being developed, and they 

offer new approaches for the treatment of ovarian cancer 

[91]. 

DNA methylation also plays a key role in gene regulation, 

and DNA methyltransferases are the key enzymes for DNA 

methylation. Nucleoside analogs incorporate into the DNA 

and trap all DNA methyltransferases, and the US Food and 

Drug Administration has already approved Dnmt inhibitors 

5-azacytidine (5-Aza-CR; azacitidine; Vidaza) and 5-aza- 

20-deoxycitidine (5-Aza-CdR; decitabine; Dacogen) for 

myeloid cancers and cutaneous T cell lymphoma. Non nu-

cleotide analogue RG108 is now in pre-clinical trials, and 

MG98 in phase I/II clinical trials [92]. VEGF receptor pro-

moter methylation is considered an important factor in de- 

termining the efficacy of the VEGF-targeted drugs on the 

proliferation of cancer tissue [93], and this has tremendous   

Table 1  Epigenetic modifications in diabetic retinopathy 

Enzymes/miRNAs Targets/modifications 

KDM5A, LSD1 Gclc promoter histone modification (H3K4me3, H3K4me1) 

SetD7/9 Keap1 promoter histone modification (H3K4me1) 

LSD1 MMP-9 promoter histone modification (H3K9me2, H3K9-Ac) 

LSD1, SUV420h2 Sod2 promoter histone modification (H3K4me1, H3K4me2, H4K20me3, H3K9-Ac) 

HAT (p300) TXNIP promoter 

Dnmts PolG1 promoter DNA methylation 

miR-200b Oxr1, VEGF 

miR-129b Rax 

miR-146 NF-B 

 

 

Figure 1 (color online)  Sustained hyperglycemic insult results in a number of metabolic (e.g., PKC, AGEs, polyol pathway, oxidative stress), physiological 

(vascular permeability etc.) and structural (capillary cell loss, hemorrhages etc.) abnormalities in the retina that culminate in the development of retinopathy. 

In addition, diabetic environment also favors epigenetic modifications in the histones and DNA, and alters miRNA levels. These epigenetic modifications 

also fuel into the metabolic/physiological/structural abnormalities associated with the pathogenesis of diabetic retinopathy. 
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clinical implications for diabetic retinopathy.  

Since miRNAs are considered as potential diagnostic 

biomarkers for disease, double-stranded miRNA mimics 

and anti-mRNA antisense oligo-deoxyribonucleotide are 

being used to target specific miRNA [84]. Also, since one 

miRNA can have a number of targets, a therapy targeting a 

specific miRNA can also alter other pathways associated 

with the disease [81,82]. However, one of the major caveats 

with the miRNA-based therapy could be their access to the 

posterior part of the eye and trouble with crossing the 

blood-retina barrier. 

As a number of epigenetic modifications are now being 

associated with the development of diabetic retinopathy, 

there is a great potential for therapeutics targeted towards 

these modifications to be applied for this sight-threatening 

disease. 
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