
Geophys. J. Int. (2009) 179, 787–812 doi: 10.1111/j.1365-246X.2009.04326.x

G
JI

G
eo

d
yn

a
m

ic
s

a
n
d

te
ct

o
n
ic

s

Contribution of gravitational potential energy differences to the
global stress field

Attreyee Ghosh,1 William E. Holt,2 and Lucy M. Flesch3

1Department of Earth Science, University of Southern California, CA 90059, USA. E-mail: attreyeg@usc.edu
2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
3Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA

Accepted 2009 July 6. Received 2009 June 26; in original form 2009 January 10

S U M M A R Y

Modelling the lithospheric stress field has proved to be an efficient means of determining the

role of lithospheric versus sublithospheric buoyancies and also of constraining the driving

forces behind plate tectonics. Both these sources of buoyancies are important in generating the

lithospheric stress field. However, these sources and the contribution that they make are depen-

dent on a number of variables, such as the role of lateral strength variation in the lithosphere,

the reference level for computing the gravitational potential energy per unit area (GPE) of the

lithosphere, and even the definition of deviatoric stress. For the mantle contribution, much

depends on the mantle convection model, including the role of lateral and radial viscosity

variations, the spatial distribution of density buoyancies, and the resolution of the convection

model. GPE differences are influenced by both lithosphere density buoyancies and by radial

basal tractions that produce dynamic topography. The global lithospheric stress field can thus

be divided into (1) stresses associated with GPE differences (including the contribution from

radial basal tractions) and (2) stresses associated with the contribution of horizontal basal

tractions. In this paper, we investigate only the contribution of GPE differences, both with

and without the inferred contribution of radial basal tractions. We use the Crust 2.0 model to

compute GPE values and show that these GPE differences are not sufficient alone to match

all the directions and relative magnitudes of principal strain rate axes, as inferred from the

comparison of our depth integrated deviatoric stress tensor field with the velocity gradient

tensor field within the Earth’s plate boundary zones. We argue that GPE differences calibrate

the absolute magnitudes of depth integrated deviatoric stresses within the lithosphere; short-

comings of this contribution in matching the stress indicators within the plate boundary zones

can be corrected by considering the contribution from horizontal tractions associated with

density buoyancy driven mantle convection. Deviatoric stress magnitudes arising from GPE

differences are in the range of 1–4 TN m−1, a part of which is contributed by dynamic topogra-

phy. The EGM96 geoid data set is also used as a rough proxy for GPE values in the lithosphere.

However, GPE differences from the geoid fail to yield depth integrated deviatoric stresses that

can provide a good match to the deformation indicators. GPE values inferred from the geoid

have significant shortcomings when used on a global scale due to the role of dynamically

support of topography. Another important factor in estimating the depth integrated deviatoric

stresses is the use of the correct level of reference in calculating GPE. We also elucidate the

importance of understanding the reference pressure for calculating deviatoric stress and show

that overestimates of deviatoric stress may result from either simplified 2-D approximations

of the thin sheet equations or the assumption that the mean stress is equal to the vertical stress.

Key words: Continental margins: convergent; Continental margins: divergent; Continental

margins: transform; Dynamics of lithosphere and mantle; Dynamics: gravity and tectonics;

Neotectonics.

1 I N T RO D U C T I O N

Since the advent of plate tectonics there have existed considerable controversies regarding the nature, magnitude and source of the forces

that drive tectonic plates. The lithospheric stress field serves as an important indicator of these plate-driving forces. Lateral density variations
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788 A. Ghosh, W. E. Holt and L. M. Flesch

within the lithosphere have been shown to be a major factor influencing the global stress field (Frank 1972; Artyushkov 1973; Fleitout &

Froidevoux 1982, 1983; Fleitout 1991; Coblentz et al. 1994; Coblentz & Sandiford 1994; Sandiford & Coblentz 1994; Coblentz et al. 1995;

Iaffaldano et al. 2006). Lithospheric deformation is not confined along narrow plate boundaries. Rather, deformation within many plate

boundary zones is distributed (McKenzie 1972; Molnar & Tapponnier 1975; England & McKenzie 1982; Molnar 1988; England & Jackson

1989; England & Molnar 1997; Flesch et al. 2000), with the bulk of crustal strain accommodated along major fault zones (Holt & Haines

1995; Holt et al. 2000; Thatcher 2007; Meade 2007). In present-day modelling of the tectonic stresses, the notion of rigid plates has been

replaced by the notion of the continental lithosphere behaving as a continuous medium (England & Jackson 1989). The importance of this is

the recognition that resulting crustal thickening and thinning leads to important internal lateral and vertical density variations; these lateral and

vertical variations profoundly influence the deviatoric stress field in the lithosphere. Furthermore, it has also been recognized that horizontal

dimensions of deformation far exceed the thickness of the lithosphere, and in this regard lithospheric deformation has been quantified in

terms of a thin viscous sheet to solve for the depth averaged or depth integrated deviatoric stresses within the lithosphere over large scales

(England & McKenzie 1982; Houseman & England 1986; England & Jackson 1989; England & Molnar 1997; Flesch et al. 2001; Ghosh

et al. 2006, 2008). The assumption that goes with the thin sheet approximation is that the gradients of shear tractions at the base of the plate

are negligibly small compared to the force of gravity acting on density.

In terms of a thin sheet approach, the sources of stress within the lithosphere can be divided into two main categories: (1) stresses

associated with differences in gravitational potential energy per unit area (GPE differences) and (2) stresses associated with horizontal

tractions. Note that gravity acting on density buoyancies below the lithosphere can lead to both radial and horizontal tractions. The radial

tractions can lead to dynamic topography. We define GPE as the depth integrated vertical stress from surface of variable topography down

to a common-depth reference level. Therefore, the GPE contribution can contain the contribution from radial tractions associated with

density buoyancy-driven convection, since present-day topography contains, in places, a component of topography that may have a dynamic

origin. Removing the inferred dynamic component from the GPE differences involves compensating the lithosphere model via elevation

adjustment. In this paper, we use the thin sheet approximation to quantify deviatoric stresses within the lithosphere that are associated with

GPE differences, both with and without the inferred contribution from dynamic topography.

Generally, our depth of integration is from the surface down to a constant reference level of 100 km below sea level. This incorporates

the lithosphere for most parts of the Earth. However, we do investigate one special case of the contribution from deeper continental keels.

Under the assumption that there is no buoyancy-driven mantle convection, no dynamic topography, and hence, equal vertical stress at the

depth of the deepest continental keels, we integrate to a greater depth to account for deeper density buoyancies associated with continental

keels. Although neglecting the above factors represents an oversimplified approximation, we nevertheless explore the influence of integrating

to the base of the deepest continental keels to quantify differences with our standard reference level of 100 km.

We also investigate the role of lateral strength variations in the lithosphere. We calculate the depth integrated deviatoric stresses on a

one-plate planet of uniform lithospheric viscosity, in addition to the more realistic stress calculations on an Earth-like planet with weak plate

boundaries. We show how the consideration of laterally variable viscosities in the lithosphere enable the calculated deviatoric stresses to have

a better match with stress and strain rate observations.

Calculation of GPE requires a level of reference. When the vertical stress is laterally variable at the base of the depth of integration, the

choice of reference level has important dynamic implications. In this paper, we discuss the reference level problem in calculating GPE, and

show that for a thin sheet calculation in which the vertical stress varies beneath topography along the base of the depth of integration, there

is only one correct level of reference. In particular, we show that for such cases, the shallow density anomalies have a more dominant effect

on the depth integrated deviatoric stresses than the deeper anomalies. Another important aspect of our study is to bring forward substantial

changes in stress magnitudes that arise by solving the full 3-D force-balance equations instead of the 2-D equations, and also the importance

of using a correct definition of deviatoric stress. Although the total forces driving lithospheric deformation are a combination of both GPE

differences (including contribution from radial tractions) and horizontal tractions arising from density buoyancy-driven mantle convection

(Lithgow-Bertelloni & Guynn 2004), our study focuses only on quantification of the GPE contribution. We have addressed the contribution

from horizontal tractions elsewhere (Ghosh et al. 2008). Our confidence in the magnitude and distribution of GPE variations exceeds our

confidence in the magnitude and direction of basal tractions associated with mantle convection. Nevertheless, if the contribution from GPE

differences can be correctly quantified, both with and without inferred dynamic topography, then the misfit of the associated depth integrated

deviatoric stress field with stress tensor indicators holds promise for constraining the contribution associated with horizontal basal tractions.

Therefore, it is important to isolate the contribution of GPE differences to depth integrated deviatoric stresses because they calibrate the

absolute magnitudes of deviatoric stresses acting within the lithosphere.

2 T H E F O RC E B A L A N C E E Q UAT I O N S A N D VA L I D I T Y

O F T H E T H I N S H E E T A P P ROX I M AT I O N

The force balance equations, which state that gradients of stresses are balanced by the force of gravity per unit volume, are given by

∂σij

∂x j

+ ρgi = 0, (1)

where σ i j is the ijth component of the total stress tensor, x j is the jth coordinate axis, ρ is the density and gi is the ith component of the

acceleration due to gravity (England & Molnar 1997). The above equations use summation notation, where i takes the values of x, y and z and
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Gravitational potential energy differences 789

the repeated index j represents the summation over x, y and z. For clarity we show the cartesian form of (1). However, we solve the spherical

form of (1) in our global calculations (see Appendix A).

We now explore the conditions under which the thin sheet approximation is valid. The basis of the thin sheet approach is that because

the horizontal distance scales are large in comparison with the thickness of the lithosphere, we can compute depth integrals of the force

balance equations down to a constant reference level, and then solve these equations for the depth integrals of deviatoric stress within that

layer. Expanding the z-equation from (1) and then integrating from the surface to the base of a uniform reference level, L, yields

∂

∂x

[ ∫ L

−h

σxz(z)dz

]
+

∂

∂y

[ ∫ L

−h

σyz(z)dz

]
+

∂

∂z

[ ∫ L

−h

σzz(z)dz

]
= −

∫ L

−h

ρgzdz. (2)

The approximation in the thin sheet approach is that

∂

∂x

∫ L

−h

σxz(z)dz +
∂

∂y

∫ L

−h

σyz(z)dz << −

∫ L

−h

ρgzdz, (3)

such that, from (2) we have

σzz(z) = −

∫ z

−h

ρg(z′)dz′. (4)

Assuming that σ xz(z) and σ yz(z) are linear, from zero at the surface to σ xz(L) and σ yz(L) at the base, L, then the question is how large can

the gradients of shear tractions be in order for (3) to hold ? Using 3000 kg m−3 for an average density of the lithosphere and a 100 km thick

lithosphere, we find that horizontal gradients in shear tractions applied to the base of the lithosphere at a depth of 100 km would have to be

as high as 6 MPa/10 km for the left-hand side of (3) to be 1 per cent of the magnitude of the right-hand side of (3), the vertical stress at

depth L. This is at least an order of magnitude higher than horizontal variations of tractions from large scale mantle circulation (Steinberger

et al. 2001; Becker & O’Connell 2001), and is likely to be much larger than the most extreme gradients in tractions that might occur beneath

subduction zones. Therefore, the ‘thin sheet’ approximation in (3) is valid, in which case we can use the relation in (4) for the vertical stress,

and solve only the two horizontal force balance equations to investigate depth integrals of horizontal deviatoric stress.

Substituting into (1) for the total stresses via the relationship, τij = σij − 1

3
σkkδij, where τ i j is the ijth component of the deviatoric stress

tensor, δi j is the Kronecker delta, and 1

3
σkk is the mean total stress and integrating (1) over the thickness of the lithosphere, we arrive at the full

horizontal force balance equations, neglecting flexure (England & McKenzie 1982; England & Houseman 1986; England & Molnar 1997;

Flesch et al. 2001):

∂τ̄xx

∂x
−

∂τ̄zz

∂x
+

∂τ̄xy

∂y
= −

∂σ̄zz

∂x
+ τxz(L) (5)

∂τ̄yx

∂x
+

∂τ̄yy

∂y
−

∂τ̄zz

∂y
= −

∂σ̄zz

∂y
+ τyz(L), (6)

where the over bars represent depth integration. The terms on the right-hand sides of eqs (5) and (6) constitute body-force-like terms,

the first terms representing horizontal gradients in GPE per unit area, and τ xz(L) and τ yz(L) representing tractions, arising from density

buoyancy-driven mantle convection, applied at the base of the thin sheet at depth L. We do not quantify the contributions of τ xz(L) and τ yz(L)

here, but have addressed them elsewhere (Ghosh et al. 2008).

The thin sheet approximation also implicitly assumes that vertical variations in horizontal velocity are small, or that one of the principal

axes of the stress or strain rate tensor is close to vertical. The presence of a basal traction boundary condition in (5) and (6), associated with

a deeper mantle density buoyancy contribution, calls for the need to evaluate the validity of this assumption. If one principal axis is close to

vertical, then depth integrals of shear stress should be small in comparison with depth integrals of horizontal deviatoric stress. Using 5 MPa

for σ xz(L), and assuming a linear gradient of σ xz(L), such that it is zero at the surface, the depth integrals of σ xz(z) are 2.5 × 1011 N m−1. This

is about 10 per cent of the magnitude of the depth integral of horizontal deviatoric stress in the lithosphere (Ghosh et al. 2008). Therefore,

even in the presence of basal tractions of significant magnitude, the assumption that one of the principal axes is near-vertical appears to be

valid.

The forcing terms in (5) and (6) are constrained by observations. For example, GPE per unit area is constrained by topography and

seismically defined crustal thicknesses (Crust 2.0 [G. Laske et al., Crust 2.0: A new global crustal model at 2 × 2 degrees, 2002, available

at http://mahi.ucsd.edu/Gabi/rem.html]) and tractions can be constrained by self-consistent circulation models that match plate motions,

dynamic topography and geoid (e.g. Wen & Anderson 1997). Depth integration over the entire plate thickness is indicated by bars over the

total stress and deviatoric stress terms, σ i j and τ i j , respectively. The vertically integrated vertical stress, σ̄zz , which is the negative of GPE per

unit area is given by

σ̄zz = −

∫ L

−h

[∫ z

−h

ρ(z′)gdz′

]
dz = −

∫ L

−h

(L − z)ρ(z)g dz (7)

based on a reference level of depth L (Jones et al. 1996). Here, ρ(z) is the density, L is a constant depth base of thin sheet, h is the topographic

elevation and g is the acceleration due to gravity.
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790 A. Ghosh, W. E. Holt and L. M. Flesch

3 M E T H O D F O R S O LV I N G T H E F O RC E B A L A N C E E Q UAT I O N S

The deviatoric stress field solution that we obtain is the mathematically unique solution that both balances the body force distribution (GPE

differences) and provides a global minimum in the second invariant of stress [following Flesch et al. (2001)]. We also take into account weak

plate boundaries and strong plates, as discussed further. Solutions to (5) and (6) for τ̄ij can be obtained, given distributions of
∂σ̄zz

∂x
and

∂σ̄zz

∂y

with τ xz(L) and τ yz(L) set to zero (e.g. Flesch et al. 2001; Ghosh et al. 2006). Alternatively, solutions can be obtained given distributions of

τ xz(L), τ yz(L), with gradients in GPE set to zero. The contribution from basal tractions can simply be added to the contribution from GPE

differences to obtain the full stress field (Ghosh et al. 2008). This motivates our study to correctly quantify the global solution associated with

GPE distribution to better understand the full global solution that has contributions from density variations at all depths.

Previously, most authors had used the geoid surface (sea level) as the reference level for calculating GPE (Fleitout 1991; Coblentz et al.

1994; Jones et al. 1996; Zoback & Mooney 2003), in which case,

σ̄zz
′ =

∫ L

−h

ρ(z)gz dz = σ̄zz + Lσzz(L). (8)

Thus, for areas in which σ zz(L) is a constant, the choice of reference level is irrelevant (Haxby & Turcotte 1978). However, this reference level

yields significantly different values from that obtained using (7) when the pressure, σ zz(L), at the reference level L is non-uniform, as we discuss

in a later section. We use both the Crust 2.0 model and the EGM96 geoid model (available from NIMA at http://164.214.2.59/GandG/wgs-

84/egm96.html) to calculate GPE. We show that the latter can only be used as a proxy for GPE if the pressure or vertical stress at the base of

the layer of integration is globally uniform.

We use a finite element method (described further) to solve the 3-D force balance equations over a global grid of 2.5◦ × 2.5◦ for the

spherical case, neglecting horizontal basal tractions, to quantify the contributions to deviatoric stresses arising from GPE differences. We

minimize the functional (after Flesch et al. 2001):

I =

∫

S

1

μ
[τ̄αβ τ̄αβ + τ̄ 2

γ γ ]dS +

∫

S

2λα

[ ∂

∂xβ

(τ̄αβ + δαβ τ̄γ γ ) +
∂σ̄zz

∂xα

]
dS, (9)

where μ is the relative viscosity, τ̄αβ is the vertically integrated horizontal deviatoric stress, τ̄γ γ = τ̄xx + τ̄yy, λα is the horizontal component of

the Lagrange multiplier for the constraint to satisfy the two force balance differential equations, σ̄zz is the vertically integrated vertical stress

(GPE per unit area) and S represents area of the entire Earth’s surface. In Flesch et al. (2001), μ was assigned a value of 1. We assign variable

values to μ to approximate weak plate boundary zones and strong plates. This is done in two ways. In the first case, an inverse relationship

between strain rates (from Kreemer et al. 2003) and relative viscosities, μ, is assumed (Fig. 1a). The relative viscosities of the deforming

plate boundary regions are obtained by assigning a reference viscosity to the moderately straining region in western North America with a

strain rate of 1.5 × 10−7 yr−1 via the relationship:

1

μ
= 1 +

(
1

μref

− 1

)√
E2

E2
ref

, (10)

where μref is the viscosity corresponding to the above-mentioned area, E2 = 2(ǫ̇2
xx + ǫ̇2

yy + ǫ̇2
xy + ǫ̇xx ǫ̇yy), where ǫ̇xx , ǫ̇yy and ǫ̇xy are strain

rates from Kreemer et al. (2003), and E2
ref is the reference value for E2, corresponding to the value for μref . The lowest viscosities occur

along the mid-oceanic ridges, whereas relatively higher viscosities occur in the deforming continental areas (Fig. 1a). The rigid plates (blank

regions) have the highest viscosities with a μ value of 1. We test different values for the reference viscosity, μref , such as 1/3, 1/30, 1/300

and 1/3000, where the reference region in western North America is 3, 30, 300 and 3000 times weaker than the plates, respectively. The

viscosity structure giving rise to the deviatoric stress field that matches the deformation indicators best is chosen. Taking into account the

above viscosity variations yields a focusing of stresses within the plates and fits well the observed SHmax orientations in most places within

the plates (Zoback 1992).

The second way takes into account the dependence of effective viscosities on lithospheric thickness in addition to strain rates (Fig. 1b).

The viscosity, μ′, in this case is given by

μ′ =
1

100

∫ L ′

−h

μdz =
1

100
(L ′ + h)μ, (11)

where L ′ + h is the thickness of the lithosphere and μ are the strain rate dependent viscosities. We consider both types of viscosities (eqs

10 and 11) in our models. However, all the figures are based on viscosities using the first method (Fig. 1a). Note that here L′ is no longer

constant; the variable base of the lithosphere is taken into account. In the case where GPE is calculated with a reference level of 100 km,

the maximum value of L′ is fixed at 100 km. Therefore, in this case, our depth integrals do not encompass the deeper lithospheric keels, but

take into account the variable depths of the oceanic lithosphere. However, we do address a case where L ′ = 270 km, a depth great enough to

include the keels. Note, in (11), the lithosphere thickness is normalized by a reference thickness of 100 km. Areas deforming at the same rate

will have different viscosities based on lithospheric thickness: thicker lithosphere will be stronger than lithosphere that is less thick.

We minimize (9) with respect to τ̄αβ using the variational principle (Morse & Feshbach 1953), which then yields the relation

τ̄αβ =
1

2

(
∂λα

∂xβ

+
∂λβ

∂xα

)
, (12)

C© 2009 The Authors, GJI, 179, 787–812

Journal compilation C© 2009 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
7
9
/2

/7
8
7
/6

6
4
9
5
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Gravitational potential energy differences 791

Figure 1. Logarithm of relative viscosity distribution for all the plates based on (a) strain rates from GSRM and (b) both strain rates and lithospheric thickness.

The white areas represent intra-plate regions with relative viscosity 1. A reference viscosity of μref ∼ 1
30

is chosen at the moderately fast straining western

North America (1.5 × 10−7 yr−1). Areas with higher viscosities than μref are deforming at a slower rate.

where τ̄αβ has the same relation with the vector of Lagrangian multipliers as does the strain rate, ǫ̇αβ , to the velocity vector. Substituting τ̄αβ

from (12) into the J functional below (Flesch et al. 2001) and then minimizing the functional J with respect to the Lagrange multipliers yields

the force balance equations that the Lagrange multipliers have to satisfy.

J =

∫

S

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

τ̄xx

τ̄yy

τ̄xy

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

�obs
xx

�obs
yy

�obs
xy

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

T

Ṽ −1

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

τ̄xx

τ̄yy

τ̄xy

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

�obs
xx

�obs
yy

�obs
xy

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ dS, (13)

where τ̄xx , τ̄yy and τ̄xy are the vertically integrated deviatoric stresses that we are solving for, Ṽ −1 is the covariance matrix (see Appendix A),

and �obs
xx = �obs

yy = − 1

3
σ̄zz and �obs

xy = 0 are potentials whose spatial derivatives involve body force equivalent terms. Minimizing J with

respect to the Lagrange multipliers provides a unique solution to the force balance equations that corresponds to the global minimum in the
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792 A. Ghosh, W. E. Holt and L. M. Flesch

second invariant of deviatoric stress (e.g. the functional in (9) is also optimized (Flesch et al. 2001)). The methodology of minimizing J in

(13) is analogous to solving the Weak formulation of the linear viscous problem, with generally laterally variable linear viscosity, where the

Lagrange multipliers in (12) hold the mathematical equivalence with velocity. The basis functions for the Lagrange multipliers are higher

order elements on the 2.5◦ × 2.5◦ square grid involving the Bessel form of bi-cubic spline interpolation (de Boor 1978; Beavan & Haines

2001) and λα = λβ = 0 on the boundary ∂S. This boundary is defined as two ring segments: one at 88◦S and one at 87◦N.

A full benchmarking exercise using this finite element methodology is described in the supplementary appendix of Ghosh et al. (2008),

where they have recovered the horizontal components of the deviatoric stress field associated with full degree 12 3-D convection models for

the globe. The full 3-D convection model has the long-wavelength components of 3-D flow in all of the present-day subduction zones. Ghosh

et al. (2008) show that the finite element method can recover these stress fields given only the body force equivalent terms from the full 3-D

model; it is not necessary to know the absolute viscosity magnitudes used in the 3-D convection models to recover stresses using this finite

element method. The body force equivalent terms derived from the 3-D convection model, and then separately applied in the thin sheet finite

element model, are the depth integrated vertical stresses, or GPE, including the contribution from dynamic topography and the horizontal

traction output at the reference level, L (see Ghosh et al. 2008). Similarly, Klein et al. (2009) have shown that if the relative viscosity variations

are known, then the exact deviatoric stress field can be recovered given known body force equivalents.

4 G P E F RO M C RU S T 2 . 0

We use the crustal thicknesses and densities from the Crust 2.0 model to calculate GPE per unit area. For the oceanic regions, we use the

cooling plate model based on ocean floor age data (Müller et al. 1997) and with revised parameters from Stein & Stein (1992) to define

densities there. Beneath the continental lithosphere, the densities of the last layer of the crustal model are replaced by an upper-mantle density

of 3300 kg m−3. The reference level, L, is chosen as 100 km (after Jones et al. 1996) in this particular case. Where no seafloor age data are

provided, the densities were not adjusted and the original Crust 2.0 model densities, together with the model crustal thickness and elevation

data, were used to define GPE. We also use a deeper reference level to take into account the density buoyancies associated with cratonic

roots, which we discuss in a later section. Because water and ice are unable to transmit significant tectonic shear stresses, effects of ice

and water layers are excluded from our GPE calculation. However, we take into account the pressure exerted by water and ice layers that

constitutes a boundary condition in the computation of the GPE integral (eq. 7). The GPE calculated from crustal thickness estimates of

Crust 2.0 show high values occurring at high elevation regions like the Andes, western North America, eastern Africa, Tibetan plateau, as

well as at the mid-oceanic ridges, with the maximum GPE occurring at the Tibetan plateau (Figs 2 and C1a). Lower elevation regions like the

ocean basins and topographically low continental areas exhibit low GPE. The resultant depth integrated deviatoric stress magnitudes show

a maximum depth integral of deviatoric tension at the Tibetan plateau (∼2 × 1012 N m−1) (Fig. C1a) and compressional deviatoric stresses

in the older oceans and low elevation continental regions (∼1–1.5 × 1012 N m−1). The mid-oceanic ridges are in deviatoric tension as are

Figure 2. Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from the uncompensated Crust 2.0 model. Tensional

deviatoric stresses are shown by red arrows whereas compressional deviatoric stresses are shown by black arrows. Length of the arrows are proportional to

the magnitude of stresses. Strike-slip regions are indicated by one tensional and one compressional pair of arrows. Areas having high GPE are in deviatoric

tension whereas areas having low GPE are in deviatoric compression. GPE on scalebar is in Newton metre−1 and corresponds to the depth integral of σ zz from

the Earth’s surface to the reference level L at 100 km below sea level.
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Gravitational potential energy differences 793

topographically high areas that have higher GPE values. Moreover, the depth integrated deviatoric stresses for the Indo-Australian plate agree

with the SHmax directions of the WSM (Zoback 1992; Reinecker et al. 2005) and those derived by Sandiford et al. (1995). Western North

America is dominated by tensional stresses whereas the rest of the continent east of the Rocky Mountains undergoes deviatoric compression

(Figs 2 and C1b). The Aegean region is dominated by strike-slip style of deformation (Fig. C1c). The stress pattern in the Central Indian

Ocean region (Fig. C1d) exhibits a rotation of the axes that matches the stress observations from the WSM in that region (Zoback 1992;

Reinecker et al. 2005). The stresses in eastern Africa show pure tension (Fig. C1e) with stress magnitudes decreasing southward.

It should be noted that the GPE values, and the deviatoric stresses, of the low elevation portions of old continents and old oceans are

similar (Fig. 2). This is because GPE is a function of both elevation and density. Although the continents have a greater elevation than the

oceans, the continental crust is in general less dense than the oceanic crust. Moreover, as the oceanic crust is thinner, a larger amount of

denser mantle is included in the depth integral of vertical stress in oceanic lithosphere in comparison to the depth integral through continental

lithosphere.

The above result for GPE and corresponding deviatoric stress solution is for an uncompensated Crust 2.0 model. That is, one interpretation

of the variable pressure at the reference level, L, is that, in addition to the contribution from lithosphere buoyancies, this model encompasses the

effect of radial tractions acting at the base of the lithosphere from deeper mantle density buoyancies. To investigate the effect of compensation,

an isostatic solution was computed by compensating our model [equal pressure,
∫ L

−h
ρgdz = σzz(L), at the reference level L]. The concept of

isostatic equilibrium dates back to the 19th century. The Airy model of isostatic compensation (Airy 1855) involves a constant density layer

with variable thickness while the Pratt model (Pratt 1855) is based on a constant thickness layer of variable density. What occurs on Earth is

possibly a combination of these two end-members, with different regions exhibiting each mechanism in varying degrees. The vertical stress

at the reference level, L, given by

σzz(L) =

∫ L

−h

ρ(z)gdz (14)

can be equilibrated either by adjusting the density of the upper mantle, ρ(z), or by adjusting the elevation, h, of the crustal blocks. In the

latter case, the adjustment constitutes the removal of the inferred dynamic topography that has resulted from radial tractions applied at the

reference level, L, [which is the inferred source of the variable values of σ zz(L)].

Upper-mantle densities are adjusted with respect to an average vertical stress σ zz(L) for the continents and oceans. Although the resultant

GPE differences and deviatoric stress solutions (Fig. 3) show values that are 10–20 per cent lower than the uncompensated case, the overall

style of deviatoric tension and compression remain unchanged.

In the second method, compensation is achieved by adjusting the elevations based on an average vertical stress, σ zz(L), for the continents

and oceans, while keeping the densities of the mantle unchanged. Thus, elevations of the crustal blocks are lowered or raised according to

whether the actual vertical stress at reference level L is greater or less than the global average vertical stress there. Compensation by density

adjustment does not acknowledge the existence of dynamic topography (discussed later), whereas in the latter case (Fig. 4), the entire deviation

from constant pressure at the reference level, L, is assumed to be associated with dynamic topography. The deviatoric stress field in Fig. 4,

therefore, represents the theoretical contribution of lithosphere buoyancies alone, with dynamic topography removed under the assumption

that all variations in vertical stress at the reference level are due to dynamic topography. What occurs on Earth is a combination of these two

Figure 3. Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from Crust 2.0, compensated by density adjustment.

The range of GPE values, as well as the absolute magnitudes of deviatoric stresses, decrease compared to the uncompensated (in Fig. 2) case, but the overall

pattern remains similar to that in Fig. 2.
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794 A. Ghosh, W. E. Holt and L. M. Flesch

Figure 4. Global distribution of vertically integrated horizontal deviatoric stresses and GPE calculated from Crust 2.0, compensated by elevation adjustment.

The range of GPE values, as well as the absolute magnitudes of deviatoric stresses, decrease compared to the uncompensated (in Fig. 2) as well as the other

compensated case (Fig. 3), but the overall pattern remains similar to that in Figs 2 and 3. Because compensation is achieved via elevation adjustment, Fig. 4 is

the theoretical response of lithosphere from internal buoyancies, with the influence of dynamic topography removed. Therefore, the GPE differences for young

versus old oceanic lithosphere in this model arise only from the elevation and density changes associated with lithospheric cooling.

end-members. On comparing the GPE differences and deviatoric stress magnitudes for the two compensated cases (Figs 3 and 4), we find

that magnitudes of both are reduced considerably in the latter case (compensation by elevation adjustment), although the deviatoric stress

patterns are similar. Due to increasing density moment as a function of mass anomalies considered at increasing distances away from the

reference level, L, (discussed in detail in Section 7), near-surface densities have a greater impact on the change in GPE than do deeper density

variations. This means that adjustment of elevation has a greater impact on GPE differences, and associated deviatoric stress magnitudes, than

the adjustment of density in the mantle. Another way of interpreting this result is that, assuming flexure to be negligible at long wavelengths,

if horizontal variations in σ zz(L) are inferred to be associated with mantle flow or dynamic support, then the resulting dynamic topography

is a major factor contributing to lithospheric GPE differences and deviatoric stresses associated with these GPE differences (compare Figs 2

and 4).

As a way of investigating the role of weak plate boundaries, we also compute deviatoric stresses with a uniform lithospheric viscosity (μ

= 1 in eq. 9) based on an uncompensated Crust 2.0 model. The resultant deviatoric stresses (Fig. 5) have magnitudes similar to those in the

uncompensated case. However, the plate boundaries, in this uniform viscosity case, have higher stresses as compared to the plate boundaries

in all the other cases (cases with lateral viscosity variations). When compared with the uncompensated result with lateral viscosity variations

(Fig. 2), the stress patterns appear similar in a few areas, but differ substantially in many regions, particularly in the continents. Furthermore,

the arcuate feature of compressive deviatoric stresses throughout the Indo-Australian plate boundary regions (observed in the WSM) is only

achieved when lateral viscosity variations in the lithosphere are taken into consideration (refer to Fig. C1d and compare with Fig. 5). Lateral

strength variations, with weak zones corresponding to the location of today’s plate boundary zones, and stronger zones corresponding to

position of the plates, therefore, plays a profoundly important role in affecting the deviatoric stress field.

5 D E E P E R L I T H O S P H E R I C D E N S I T Y B U OYA N C I E S

As mentioned earlier, we perform depth integrals to 100 km that is sometimes assumed to approximate the boundary between the non-

convecting lithosphere and the convecting mantle. However, the base of the lithosphere is variable in depth due to the presence of continental

keels, depth variations for different aged oceans, etc. Accounting properly for this variable depth involves sophisticated methods that we

do not attempt in this paper. One can approximate the influence of variable bottom lithosphere, however, by integrating down to a constant

reference level, equal to the depth of the deepest lithosphere. However, this can only be achieved under the assumption that there is no

buoyancy-driven mantle convection acting on the variable base of lithosphere, and no dynamic topography. This implies total compensation;

that is, equal vertical stress at the depth of the reference level (bottom of the deepest lithosphere).

To take into account the effects of the deeper density buoyancies associated with the lithosphere, the reference level, L, is extended

to a greater depth. Based on the lithospheric thickness model of Conrad & Lithgow-Bertelloni (2006), we take L to be at the depth of the
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Gravitational potential energy differences 795

Figure 5. Same as Fig. 2, but with laterally uniform lithospheric viscosity. Note that significant changes occur in deviatoric stress orientations in many of the

plate boundary zones (western North America, Mediterranean, Southeast Asia) as well as within the Indo-Australian plate region.

deepest lithosphere (∼270 km). Integrating to a depth of ∼270 km captures a significant portion of the asthenosphere. However, a constant

asthenospheric density outside of the very deep cratonic areas makes no contribution to the deviatoric stress field.

To achieve compensation at L, we adjust the densities of the subcrustal layer (layer between the base of the crust and the base of the

lithosphere) with respect to an average vertical stress at 270 km depth for continents and oceans. The asthenosphere layer (layer between the

base of the lithosphere and the reference level, L) is assigned a constant density of 3300 kg m−3. Based on these adjusted densities, the GPE

and the corresponding deviatoric stress field are calculated with viscosities varying as a function of both strain rates (Fig. 1a) and combined

strain rates and lithospheric thickness (Fig. 1b).

The absolute GPE values naturally increase when L is at a greater depth (Fig. 6). However, the GPE differences, and consequently the

deviatoric stress magnitudes, are lower than the corresponding model compensated at 100 km (Fig. 3). The overall depth integrated deviatoric

stress pattern in Fig. 6 is similar to the previous cases (Figs 2–4). The lower deviatoric stress magnitudes may indicate the influence of a lower

density (less than 3300 kg m−3) subcrustal lithospheric layer used in most of the regions to achieve compensation.

Figure 6. Same as Fig. 4, but compensated at the depth of the deepest lithosphere (∼270 km).
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796 A. Ghosh, W. E. Holt and L. M. Flesch

6 G P E F RO M G E O I D

We also calculate GPE from the EGM96 geoid data set. Geoid anomalies have been used to calculate GPE by Coblentz et al. (1994), Sandiford

& Coblentz (1994), Flesch et al. (2000, 2001). Coblentz et al. (1994) calculated geoid anomaly as

N = −
2πG

g2
Ul (15)

where G is the universal gravitational constant, g is the acceleration due to gravity and U is the GPE from geoid (given by (Turcotte &

Schubert 1982))

Ul = −

∫ L

0

ρ(z)gz dz = −
Ng2

2πG
. (16)

However, this relationship is true only if isostatic compensation prevails everywhere at the reference level L (Haxby & Turcotte 1978).

Otherwise, significant errors will be introduced if the geoid is used to infer GPE when dynamic topography is present. Moreover, the geoid

anomalies, and hence the computed GPE values, are also sensitive to the filtering techniques. Note that the integral in (16) is not equivalent

to the vertical integral of vertical stress, σ zz, or GPE, which is correctly shown in eq. (7). Instead,

∫ L

0

ρ(z)gz dz = σ̄zz −

∫ 0

−h

ρ(z)zg dz + L

∫ L

−h

ρ(z)g dz. (17)

Hence, the geoid can only be used as a proxy for GPE if the right most integral in (17) is a constant at reference depth L, meaning there is no

dynamic topography (Flesch et al. 2007). Note that if the last term in (17), the pressure at reference depth L, varies over long wavelengths,

then the geoid can be used as a proxy for GPE over length scales where those lateral variations in pressure are small. For example, for regional

scale models such as North America, it may be appropriate to use the geoid as a proxy for GPE (Humphreys & Coblentz 2007).

For comparison purposes, we evaluate the deviatoric stress field associated with GPE inferred from the geoid to quantify the differences

from a solution directly inferred from crustal structure. We use the EGM96 geoid model to approximate the GPE, with reference to a

mid-oceanic ridge column of lithosphere (after Coblentz et al. 1994). Like Flesch et al. (2001), and Jones et al. (1996) before them, we filter

the geoid such that terms below degree and order 7 are removed with a cosine taper to degree and order 11. A constant crustal and mantle

density of 2828 and 3300 kg m−3 are assumed (after Flesch et al. 2001). The deviatoric stresses are computed in the same way as from the

Crust 2.0 model.

There are many differences between the deviatoric stresses calculated from the geoid data set and those from the Crust 2.0 model. Both

GPE differences and the deviatoric stress field (Fig. 7) are in general lower than those from the Crust 2.0 solutions. The deviatoric tension

in western North America does not show up in the geoid solution. For the geoid solution, deviatoric compression in Northern Europe, the

Southeast Asian subduction zone and the North American continent change to deviatoric tension, or strike-slip style of deformation. The

mid-oceanic ridges in the geoid case constitute a much weaker signal than in the Crust 2.0 solutions. The matching of deviatoric stresses for

the Indo-Australian plate with the SHmax directions of the WSM is considerably poorer for the geoid case. Similar differences exist between

the geoid and uncompensated solution (Fig. 2), with the differences in magnitudes being greater.

Figure 7. Global distribution of vertically integrated horizontal deviatoric stresses and GPE inferred from the EGM96 geoid data set.
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Gravitational potential energy differences 797

7 R E F E R E N C E L E V E L S

For an uncompensated case, choice of reference level for the calculation of GPE has significant impact on the inferred deviatoric stresses

associated with internal density buoyancy distributions in the lithosphere. Gravitational potential energy values must be computed with respect

to some reference level and, depending on which reference level is chosen, the calculated GPE, and the associated deviatoric stresses, will

change if the topography is uncompensated. Historically, there has been a precedence of calculating GPE with the surface of the geoid (sea

level) as the reference level (Fleitout & Froidevoux 1982; Fleitout 1991; Coblentz et al. 1994; Jones et al. 1996; Zoback & Mooney 2003).

Fleitout (1991) gave the ‘moment law’:
∫ L

0

σzz(z) dz = δmgd, (18)

which states that the influence of an intralithospheric mass anomaly is proportional to its moment, the product of its amplitude δmg and depth

d. This means that the greater the depth of the mass anomaly, the larger the impact on the GPE and the associated stress field. If the sea

surface is treated as reference level, the above relation can be re-written as
∫ L

0

σzz(z)dz = g

∫ L

0

ρ(z)z dz. (19)

On the other hand, if we consider a constant depth level of L that is the maximum depth of integration, as the reference level, then the moment

equation will be modified to
∫ L

0

σzz(z) dz =

∫ L

0

[ ∫ z

0

ρ(z′)g dz′

]
dz =

∫ L

0

(
L − z)ρ(z)g dz = δmg(L − z). (20)

This implies that the near-surface density anomalies will have a greater effect on GPE, and the corresponding deviatoric stress field, than

deeper anomalies within the portion of the lithosphere considered in the depth integrals. However, the differences in reference level are

only relevant when topography is uncompensated. In the compensated case, the term in (20), σ zz(L), is a constant and the remaining term,∫ L

0
zρ(z)gdz is identical to that in (19), where the reference level is sea level. Although the inferred value of GPE is different, depending on

whether (18) or (20) is used, because deviatoric stress depends only on the gradient in GPE, (18) and (20) yield the same result when σ zz(L)

is a constant. However, when vertical stress σ zz(L) varies at the reference level, L, however, use of (18) and (20) will yield different estimates

of deviatoric stress. Recall that the thin sheet equations arise from depth integration of the full 3-D force balance equations, with limits of

integration from the surface, down to the reference level, L. The GPE term thus arises from the depth integration of the vertical stress, σ̄zz . To

remain consistent with the thin sheet approach, the only appropriate form for GPE is therefore equation (20), where the reference level is at

depth L.

8 D E V I AT O R I C S T R E S S M A G N I T U D E S

We argue that many previous calculations of depth integrals or depth averages of deviatoric stress magnitudes in Tibet as well as in the

mid-oceanic ridges, have been overestimated (Ghosh et al. 2006). Maximum difference in depth integrals of deviatoric stress between Tibet

and surrounding lowlands (τ̄xx |T ibet − τ̄xx |lowlands) is around 3.5–4 × 1012 N m−1, which is about a factor of two lower than previous estimates

of deviatoric stress difference (∼6–7 × 1012 N m−1) there (Molnar & Lyon-Caen 1988; Molnar et al. 1993). Also, the ridge-push force, or

the vertically integrated deviatoric stress magnitudes associated with the mid-oceanic ridges in our solution (∼1.5 × 1012 N m−1), is lower

than previous estimates of ridge-push (∼3 × 1012 N m−1) (Harper 1975; Lister 1975; Parsons & Richter 1980). This difference in deviatoric

stress magnitudes from previous estimates can be attributed to two factors: (i) either a 2-D approximation of the thin sheet applied along

a single profile and/or (ii) the form assumed for the hydrostatic state of stress, or both (Dalmayrac & Molnar 1981; Molnar & Lyon-Caen

1988). We use the term hydrostatic stress to refer to the reference pressure, P, subtracted from the total stress to obtain the deviatoric stress:

τ i j = σ i j − Pδi j . If P is assumed to be the lithostatic or vertical stress, σ zz, then the deviatoric stress is defined as τ i j = σ i j − σ zz δi j (which

we call 2-D definition of deviatoric stress). Such an assumption implies that the vertical component of the deviatoric stress, τ̄zz , is equal to

0, which is entirely a special case, and is unlikely to be applicable in many areas (Engelder 1994). If P is defined as the mean stress, then

deviatoric stress becomes τij = σij − 1

3
σkkδij (which we call a 3-D definition of deviatoric stress), with the constraint τ̄xx + τ̄yy + τ̄zz = 0

(Flesch et al. 2001).

The largest estimates of deviatoric stresses have resulted from solutions to simplified 2-D thin sheet equations, applied along a single

profile, along with the assumption that hydrostatic stress P is equal to the vertical stress, and τ zz = 0. In that case, the two horizontal force

balance equations reduce to a single equation:

∂σxx

∂x
= 0, (21)

which, after using a 2-D definition of deviatoric stress, gives τ̄xx = −σ̄zz+ a constant C as a solution to the depth integrated force balance

equation. That is, the depth integrated deviatoric stress magnitude equals GPE. On the other hand, using the same force balance equation, but

a definition of hydrostatic stress as the mean stress, yields τ̄xx = − 1

2
σ̄zz+ a constant C, a magnitude of a factor of two lower than the previous

case. The reason for lower stresses using the 3-D definition of deviatoric stress is that some of the potential energy differences get absorbed

in the vertical term τ̄zz , which is zero in the case with the 2-D definition.
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798 A. Ghosh, W. E. Holt and L. M. Flesch

Using the 3-D force balance equations, one of the horizontal deviatoric stresses, say τ̄xx , can be given as

τ̄ 3D
xx = σxx −

1

3
(σxx + σyy + σzz) (22)

and

τ̄ 2D
xx = σxx − σzz, (23)

according to the 3-D and the 2-D definitions of deviatoric stress, respectively. From this, the relation between the 2-D and the 3-D deviatoric

stresses can be written as

τ̄ 2D
xx = 2τ̄ 3D

xx + τ̄ 3D
yy , (24)

and similarly,

τ̄ 2D
yy = 2τ̄ 3D

yy + τ̄ 3D
xx (25)

τ̄ 2D
xy = τ̄ 3D

xy . (26)

The reason for still lower stresses by using the full 3-D equations is the presence of the horizontal terms τ̄yy and τ̄xy which are absent in the

case represented by a profile (eq. 21). Solutions using the full 3-D force balance equations, but a 2-D definition of deviatoric stress, yield

deviatoric stress magnitudes a factor of two or more higher than our previous 3-D solutions (Fig. 8).

One importance of evaluating the correct magnitude of deviatoric stresses lies in the fact that the onset of deformation of the Indian

ocean lithosphere has been explained by the high deviatoric stress magnitude (∼8 × 1012 N m−1) in that area associated with the large GPE

differences between Tibet and the Indian Ocean (Molnar et al. 1993). According to Molnar et al. (1993), a sediment laden oceanic lithosphere

would be capable of buckling at a deviatoric stress magnitude of ∼4.4 × 1012 N m−1. We do not disagree with this. However, the vertically

integrated deviatoric stress magnitude in that area, associated with the large GPE differences between Tibet and surrounding Indian Ocean, is

not more than ∼1.5–3 × 1012 N m−1 (Fig. 2, C1d). Therefore, deviatoric stresses required to produce the buckling must arise from additional

sources other than GPE differences alone. Moreover, the magnitude of the ridge-push force has been used to constrain the intra-plate stress

magnitude of the Indo-Australian plate (Reynolds et al. 2002) and to infer the degree of slab-plate coupling for the Java and Sumatra slabs

(Sandiford et al. 2005). However, GPE differences between ridge and surrounding regions is insufficient to cancel the N–S deviatoric tension

in Tibet associated with the excess GPE of Tibet (Figs 2–4 and C1a) (Ghosh et al. 2006). Because the total depth integrated deviatoric stress

acting on the lithosphere can be attributed to stress related to (1) GPE differences and (2) horizontal basal tractions arising from deeper

density buoyancies, the insufficiency of the ridge-push force in balancing the deviatoric tension at the Tibetan plateau calls for additional

deviatoric stresses of magnitude ∼2–3 × 1012 N m−1 associated with driving shear tractions at the base of the lithosphere in the Indian plate

region (Ghosh et al. 2008). The density buoyancy distribution giving rise to these driving tractions is related to the long history of subduction

of the Indian and Australian plates (Lithgow-Bertelloni & Richards 1995; Wen & Anderson 1997).

Figure 8. Global distribution of vertically integrated horizontal deviatoric stresses, calculated from an uncompensated Crust 2.0 model, based on a 2-D

definition of deviatoric stress (eqs 24–26). The stress magnitudes are a factor of two higher than all our previous solutions, calculated using a 3-D definition.
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Gravitational potential energy differences 799

9 C O M PA R I S O N O F C A L C U L AT E D D E V I AT O R I C S T R E S S E S W I T H T H E S T R A I N

R AT E T E N S O R F I E L D I N T H E P L AT E B O U N DA RY Z O N E S

We introduce a quantitative way of testing our modelled deviatoric stresses with strain rate information from the Global Strain Rate Map

(Kreemer et al. 2003; Holt et al. 2005). The Global Strain Rate Map (GSRM) is a velocity gradient tensor field solution for the entire Earth’s

surface. It is a high-resolution data set along the Earth’s diffuse plate boundary zones. The GSRM model is based on 5170 GPS stations as

well as Quarternary fault slip rate data. Our calculated deviatoric stress tensor is scored with the strain rate tensor from GSRM and we seek

to match direction of principal axes as well as style of faulting. We define a correlation coefficient (Flesch et al. 2007)

−1 ≤
∑

areas

(ǫ · τ )S/

(√∑

areas

(E2)S ∗

√∑

areas

(T 2)S

)
≤ 1 (27)

where

E =

√
ǫ2

xx + ǫ2
yy + ǫ2

zz + ǫ2
xy + ǫ2

yx =

√
2ǫ2

xx + 2ǫxxǫyy + 2ǫ2
yy + 2ǫ2

xy,

T =

√
τ 2

xx + τ 2
yy + τ 2

zz + τ 2
xy + τ 2

yx =

√
2τ 2

xx + 2τxxτyy + 2τ 2
yy + 2τ 2

xy

and

ǫ · τ = 2ǫxxτxx + ǫxxτyy + ǫyyτxx + 2ǫyyτyy + 2ǫxyτxy .

E and T are the second invariants of strain rate and deviatoric stress, respectively, ǫi j are strain rates from Kreemer et al. (2003), S is the

grid area and τ i j are the calculated vertically integrated deviatoric stresses. Normalization of ǫ · τ by E and T in eq. (27) ensures that the

correlation coefficient has no dependence on stress or strain rate magnitudes. The correlation coefficient only depends on a match of the

deviatoric stress tensor to the inferred style of faulting (relative magnitude of extensional and compressional strain rate principal axes) and

the match to the directions of principal axes between the stress and the strain rate tensors. A maximum correlation coefficient of +1 indicates

perfect fit. That is, the stress tensor and the strain rate tensor are exactly the same in terms of style and direction of principal axes, whereas a

coefficient of −1 indicates anti-correlation. For example, if the observed strain rate shows thrust faulting in an area, whereas our calculated

deviatoric stress predicts normal faulting in the same area, then the correlation coefficient will predict a value of −1. A value of 0 will imply

that the stress and the strain are uncorrelated. That is, for example, our modelled stresses predicting strike-slip faulting in an area of thrust or

normal faulting, where the compressional and extensional principal axes differ from those in the GSRM by 45◦.

The stress predictions from the different crustal and geoid models (Crust 2.0 and EGM96 Geoid) are compared with the strain rate

tensor field from GSRM. Such a comparison provides a quantitative means of evaluating the contribution that the GPE differences make to

the total stress tensor field within the plate boundary zones. A poor match, for example, highlights regions where additional stress component

associated with deeper density buoyancies, and associated tractions, are necessary to explain the deformation indicators, and hence total

deviatoric stress field. Higher correlation coefficients indicate a closer match between the stress tensor and strain tensor fields. Amongst the

different models that we test, the best fit to the deformation indicators is given by the one calculated from Crust 2.0 model, compensated

by density adjustment at 100 km, and with viscosities dependent only on strain rates (with reference viscosity ∼1/30, Fig. 3). The overall

correlation for this model is 0.60 (Table 1). Nevertheless, individual regions react differently to different models. For example, for a 100 km

reference level, the uncompensated model provides the best fit in areas like Eastern Africa and the Mediterranean (Tables 1 and 2, Figs 9 and

C2c,e), whereas in regions such as the Andes, Central Asia and to some extent the Western Pacific, the Indo-Australian plate boundary zone

Table 1. Correlation coefficients obtained from a comparison between different deviatoric stress models with the strain rate tensor field from

the GSRM model (see eq. 27) with reference level, L = 100 km and viscosities varying as a function of strain rates only (Fig. 1a).

Region of Number μref ∼ 1
3

μref ∼ 1
30

μref ∼ 1
300

μref ∼ 1
3000

interest of areas U CD CE U CD CE U CD CE U CD CE

Western 132 0.39 0.66 0.74 0.53 0.72 0.75 0.44 0.68 0.75 0.45 0.70 0.73

North America

Andes 89 0.14 0.60 −0.04 0.25 0.69 0.06 0.15 0.54 −0.04 0.22 0.67 0

Eastern Africa 164 0.40 0.09 0.10 0.31 −0.04 −0.06 0.38 0.16 0.06 0.40 −0.01 0.04

Mediterranean 83 0.52 0.44 0.49 0.55 0.52 0.50 0.55 0.54 0.49 0.50 0.48 0.46

Central Asia 187 0.26 0.33 0.14 0.32 0.41 0.32 0.31 0.42 0.30 0.30 0.38 0.27

Indo-Australian 174 0.68 0.71 0.70 0.69 0.77 0.74 0.64 0.61 0.67 0.60 0.70 0.67

plate boundary

Mid-oceanic ridges 292 0.82 0.86 0.87 0.79 0.85 0.87 0.77 0.83 0.84 0.66 0.76 0.76

Western Pacific 109 0.48 0.62 0.56 0.51 0.60 0.53 0.42 0.58 0.42 0.46 0.57 0.52

Southeast Asia 167 0.48 0.62 0.59 0.61 0.68 0.65 0.54 0.66 0.58 0.55 0.65 0.61

Total 1944 0.51 0.57 0.51 0.54 0.60 0.52 0.50 0.58 0.49 0.50 0.56 0.49

Note: The abbreviations U, CD and CE denote models that are uncompensated, compensated by density adjustment and compensated by

elevation adjustment, respectively.
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Table 2. Same as Table 1 but with viscosities varying as a function of both strain rates and lithosphere thickness (Fig. 1b).

Region of Number μref ∼ 1
3

μref ∼ 1
30

μref ∼ 1
300

μref ∼ 1
3000

interest of areas U CD CE U CD CE U CD CE U CD CE

Western North America 132 0.47 0.65 0.71 0.56 0.69 0.72 0.52 0.69 0.75 0.44 0.66 0.68

Andes 89 0.48 0.83 0.36 0.51 0.86 0.37 0.44 0.84 0.24 0.41 0.83 0.23

Eastern Africa 164 0.20 −0.31 −0.27 0.08 −0.35 −0.32 0.24 −0.17 −0.17 0.30 −0.3 −0.18

Mediterranean 83 0.44 0.40 0.44 0.52 0.48 0.51 0.55 0.52 0.49 0.50 0.43 0.49

Central Asia 187 0.25 0.33 0.20 0.33 0.40 0.36 0.37 0.46 0.39 0.29 0.37 0.33

Indo-Australian 174 0.65 0.75 0.70 0.60 0.75 0.68 0.61 0.72 0.69 0.56 0.68 0.62

plate boundary zone

Mid-oceanic ridges 292 0.70 0.81 0.81 0.63 0.78 0.78 0.65 0.76 0.76 0.53 0.64 0.65

Western Pacific 109 0.56 0.63 0.61 0.58 0.60 0.59 0.57 0.61 0.57 0.53 0.58 0.57

Southeast Asia 167 0.57 0.61 0.61 0.66 0.68 0.68 0.63 0.68 0.66 0.61 0.66 0.64

Total 1944 0.50 0.53 0.49 0.50 0.54 0.50 0.52 0.57 0.51 0.48 0.51 0.47

and Southeast Asia, the best fit is given by a model compensated by density adjustment (Tables 1 and 2). A model compensated by adjusting

the topography, on the other hand, gives the best fit to the strain rate tensor data in western North America, as well as in the mid-oceanic

ridges (Tables 1 and 2). In general, areas of continental deformation such as Central Asia (Fig. C2a), western North America (Fig. C2b) and

the Andes (Fig. 9), including areas such as to the Southeast of Africa (Fig. C2e) yield a poor fit to the deformation indicators. The Central

Indian Ocean (Fig. C2d), on the other hand, shows a very good match.

Models with viscosities varying as a function of both strain rates and lithosphere thickness fare worse when the overall fit is considered

(Table 2), with a highest correlation coefficient of 0.57 (with reference viscosity ∼1/300). The overall poor fit could potentially arise from

errors in the lithosphere thickness model. However, some areas, such as the Andes, and to a certain extent Central Asia, Southeast Asia, and

the Western Pacific, exhibit an improved fit when viscosities along plate boundaries are allowed to vary with lithospheric thickness as well.

A lithospheric model with a laterally uniform viscosity structure provides a poor fit to the strain rate tensor data (Table 3) with an overall

correlation coefficient of 0.31.

For models inclusive of deeper density buoyancy within the keels, the only region that undergoes some improvement in fitting is Africa

(Tables 4 and 5, Fig. 6). For all the other areas the fit either degrades or stays unchanged.

The Geoid model displays a poor fit in almost all the areas (Tables 6 and 7) with the exception of the mid-oceanic ridges. However, the fit

to the mid-oceanic ridges is still worse than in the Crust 2.0 case. In fact, the mid-oceanic ridges show high correlation for both the Crust 2.0

and the EGM96 models. The failure of the Geoid model to match the observed deformation in the plate boundaries could be associated with

the sensitivity of the geoid anomalies, and consequently the GPE values, to the filtering techniques. Calculation of GPE from geoid anomalies

also assumes no dynamic topography, as mentioned earlier in Section 6. The assumptions embedded in the use of geoid as a proxy for GPE

Figure 9. Correlation coefficients between observed strain rate tensors from the GSRM and deviatoric stress tensors, varying as a function of strain rates only,

arising from GPE differences from an uncompensated Crust 2.0 model (Fig. 2).
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Gravitational potential energy differences 801

Table 3. Correlation coefficients obtained from comparison between deviatoric

stress field from an uncompensated Crust 2.0 model with the strain rate tensor field

from the GSRM model with laterally uniform viscosity in the lithosphere.

Region of interest Number of areas μref = 1

Western North America 132 0.08

Andes 89 −0.20

Eastern Africa 164 0.63

Mediterranean 83 0.33

Central Asia 187 0.10

Indo-Australian plate boundary zone 174 0.30

Mid-oceanic ridges 292 0.78

Western Pacific 109 0.09

Southeast Asia 167 0.08

Total 1944 0.31

Table 4. Correlation coefficients obtained from a comparison between different deviatoric stress models with

the strain rate tensor field from the GSRM model with reference level L = 270 km and viscosities varying as

a function of strain rates only.

Region of interest Number of areas μref ∼ 1
3

μref ∼ 1
30

μref ∼ 1
300

μref ∼ 1
3000

Western North America 132 0.44 0.57 0.50 0.50

Andes 89 0.21 0.35 0.22 0.30

Eastern Africa 164 0.45 0.40 0.45 0.43

Mediterranean 83 0.51 0.54 0.53 0.48

Central Asia 187 0.24 0.27 0.26 0.26

Indo-Australian 174 0.74 0.77 0.72 0.73

plate boundary zone

Mid-oceanic ridges 292 0.86 0.84 0.82 0.73

Western Pacific 109 0.52 0.53 0.45 0.49

Southeast Asia 167 0.61 0.66 0.61 0.63

Total 1944 0.55 0.58 0.54 0.54

may therefore only be appropriate for regional scale modelling (e.g. Humphreys & Coblentz 2007), but on a global scale are problematic due

to the importance of dynamic topography.

The low to moderate values of correlation coefficients in many areas imply the inadequacy of lateral density variations within the

lithosphere alone to satisfy the observed deformation. Stresses, arising from density buoyancy-driven basal tractions are required to explain

the observed deformation along the plate boundaries (Ghosh et al. 2008). Ghosh et al. (2008) have shown a universal improvement in fit for

all regions when tractions associated with deeper density buoyancies are included. The role and need for such tractions is especially marked

in areas of high GPE, such as Central Asia (Figs 9 and C2a), where nearly pure tension is predicted by the GPE differences, but deformation

yields dominant strike-slip faulting there. The tractions associated with deeper mantle buoyancies integrate over great distances and provide,

for example, the needed compressional deviatoric stresses, which act together with GPE differences to provide total deviatoric stresses across

Tibet and the Andes in accord with deformation indicators (Ghosh et al. 2008).

1 0 C O N C LU S I O N S

The two main factors controlling lithospheric stress field are (1) gravitational potential energy differences arising from GPE variations within

the lithosphere and (2) horizontal basal tractions arising from mantle convection, which are coupled to the base of the lithosphere. In this

study, we quantify only the first of the above two factors. We show that dynamic topography likely makes a significant contribution to GPE

differences and the deviatoric stresses associated with these GPE differences (compare Figs 2 and 4). A correct quantification of (1) will

enable us to estimate the bounds on (2), the magnitude of the horizontal basal tractions associated with lithospheric coupling with deeper

mantle circulation. If dynamic topography can be removed from the GPE model (e.g. Fig. 4), then it is possible to infer the relative contribution

of GPE differences arising from lithospheric buoyancies alone and the contributions arising from deeper mantle circulation involving both

radial and horizontal tractions.

We calculate GPE from the Crust 2.0 and the EGM96 geoid models using both uniform lithospheric viscosity and varying viscosities for

plate boundaries as well as intraplate regions and show that laterally varying lithospheric strength is required to match the observed stress and

strain rate pattern. We take into account deeper density buoyancies associated with cratonic roots. We find that inclusion of deeper lithospheric

density buoyancies has little effect on the style and direction of the deviatoric stress field. Moreover, consideration of these deeper density

buoyancies in the keels is based on the premise that there is no buoyancy driven mantle convection and no dynamic topography. A simpler

model excluding the deeper keels fits the deformation indicators better. We clarify the usage of a correct level of reference (maximum depth
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Table 5. Same as Table 4, but with viscosities varying as a function of both strain rates and lithosphere

thickness.

Region of interest Number of areas μref ∼ 1
3

μref ∼ 1
30

μref ∼ 1
300

μref ∼ 1
3000

Western North America 132 0.52 0.60 0.56 0.47

Andes 89 0.56 0.60 0.54 0.51

Eastern Africa 164 0.26 0.13 0.27 0.28

Mediterranean 83 0.43 0.50 0.51 0.48

Central Asia 187 0.24 0.29 0.32 0.25

Indo-Australian 174 0.69 0.67 0.70 0.62

plate boundary zone

Mid-oceanic ridges 292 0.76 0.69 0.69 0.58

Western Pacific 109 0.57 0.58 0.56 0.54

Southeast Asia 167 0.61 0.69 0.68 0.65

Total 1944 0.53 0.54 0.55 0.50

Table 6. Correlation coefficients obtained from a comparison between different deviatoric stress models from

the Geoid data set with the strain rate tensor field from the GSRM model with viscosities varying as a function

of strain rates only.

Region of interest Number of areas μref ∼ 1
3

μref ∼ 1
30

μref ∼ 1
300

μref ∼ 1
3000

Western North America 132 −0.31 −0.20 −0.20 −0.22

Andes 89 −0.32 −0.31 −0.30 −0.34

Eastern Africa 164 −0.03 −0.06 −0.03 −0.04

Mediterranean 83 0.15 0.32 0.32 0.22

Central Asia 187 0.24 0.34 0.36 0.28

Indo-Australian 174 0.29 0.46 0.41 0.35

plate boundary zone

Mid-oceanic ridges 292 0.81 0.81 0.76 0.62

Western Pacific 109 −0.06 −0.07 −0.09 −0.13

Southeast Asia 167 0.20 0.23 0.19 0.17

Total 1944 0.17 0.22 0.21 0.15

of integration) for a thin sheet approach and show that GPE and associated deviatoric stresses calculated from geoid do not fit the observed

deformation in the Earth’s deforming plate boundary zones. The poor fit may be related to filtering methods, but we emphasize that on a global

scale, the geoid should be used with caution for inferring GPE. That is, the usage of the geoid to infer GPE involves the assumption that there

is no dynamic topograpy signature in the Earth’s gravity field. We also demonstrate how a 2-D definition of deviatoric stress, along with 2-D

force balance equations, can yield overestimates of the depth integrals of the deviatoric stress magnitudes. Finally, we use a quantitative way

of testing our stress models with strain rate information from Global Strain Rate Map. The stress models indicate that GPE differences are

an important component of the total global stress field. However, GPE differences by themselves are, in general, insufficient to explain the

total deviatoric stress field, particularly in areas such as Eastern Africa, Andes, and Central Asia; an added contribution from basal tractions

is required to explain the observed discrepancies between the models and observations (Ghosh et al. 2008). Although these basal tractions

are not in general large, they integrate over long distances to provide substantial additional stress input into the lithosphere (Bird et al. 2008;

Steinberger et al. 2001; Lithgow et al. 2009; Ghosh et al. 2008).
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A P P E N D I X A : S P H E R I C A L T R E AT M E N T

In spherical coordinates, the x, y and z directions of cartesian coordinates change to the φ, θ and r (radial) components, respectively. The

deviatoric stress tensor in the radial direction is

τrr = σrr −
1

3
σkk, (A1)

where σrr is the total stress tensor in the radial direction and 1

3
σkk is the mean total stress. The total stress tensor, σij = τij + 1

3
σkkδij, then

becomes

σij = τij + δij(σrr − τrr ), (A2)

where δi j represents the Kronecker delta. The force balance eq. (1) can be written in spherical coordinates as

1

cos θ

∂

∂φ

(
r 2σφφ

)
+

1

cos2 θ

∂

∂θ

(
r 2σφθ cos2 θ

)
+

∂

∂r

(
r 3σφr

)
= 0 (A3)

1

cos θ

∂

∂φ

(
r 2σφθ

)
+

1

2

∂

∂θ

(
r 2[σθθ + σφφ]

)
+

1

2 cos2 θ

∂

∂θ

(
r 2 cos2 θ [σθθ − σφφ]

)
+

∂

∂r

(
r 3σθr

)
= 0 (A4)

1

r cos θ

∂σφr

∂φ
+

1

r cos θ

∂

∂θ
(cos θσθr ) +

1

r
(2σrr − σφφ − σθθ ) +

∂σrr

∂r
− ρg = 0. (A5)

Vertically integrating (A3) and (A4) yields

1

cos θ

∂

∂φ

(∫ r0

rL

r 2σφφdr

)
+

1

cos2 θ

∂

∂θ

(∫ r0

rL

r 2σφθ dr cos2 θ

)
+ r 3

0 σφr |r0
− r 3

Lσφr |rL
= 0 (A6)

and

1

cos θ

∂

∂φ

(∫ r0

rL

r 2σφθ dr

)
+

1

2

∂

∂θ

(∫ r0

rL

r 2[σθθ + σφφ]dr

)
+

1

2 cos2 θ

∂

∂θ

(∫ r0

rL

r 2 cos2 θ [σθθ − σφφ]dr

)
+ r 3

0 σθr |r0
− r 3

Lσθr |rL
= 0 (A7)

where r0 is the radius from the centre of the Earth to the surface and rL is the radius from the centre to the base of the lithosphere. Substituting

(A2) in (A6) and (A7), we arrive at

1

cos θ

∂

∂φ

(∫ r0

rL

r 2τφφdr

)
−

1

cos θ

∂

∂φ

(∫ r0

rL

r 2τrr dr

)
+

1

cos2 θ

∂

∂θ

(
cos2 θ

∫ r0

rL

r 2τφθ dr

)
+

1

cos θ

∂

∂φ

(∫ r0

rL

r 2σrr dr

)
− r 3

Lτφr |rL
= 0 (A8)

and

1

cos θ

∂

∂φ

(∫ r0

rL

r 2τφθ dr

)
+

1

2

∂

∂θ

(∫ r0

rL

r 2τθθ dr +

∫ r0

rL

r 2τφφdr

)
−

∂

∂θ

(∫ r0

rL

r 2τrr dr

)

+
1

2 cos2 θ

∂

∂θ

(
cos2 θ

[ ∫ r0

rL

r 2τθθ dr −

∫ r0

rL

r 2τφφdr

])
+

∂

∂θ

(∫ r0

rL

r 2σrr dr

)
− r 3

Lτθr |rL
= 0,

(A9)
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Gravitational potential energy differences 805

which are equivalent to eqs (5) and (6) in text. Note that σφr |r0
and σθr |r0

are zero. For a thin sheet, the gradients of σφr and σθr are negligibly

small (see text). Moreover, the term 1

r
(2σrr − σφφ − σθθ ) is small compared to ρg. Hence, (A5) can be approximated as

∂σrr

∂r
− ρg = 0 (A10)

which implies

σrr = −

∫ r0

r

ρgdr (A11)

so that the GPE eq. (7) in spherical coordinates is equivalent to
∫ r0

rL

r 2σrr dr = −

∫ r0

rL

r 2

[ ∫ r0

r

ρgdr ′

]
dr = −

∫ r0

rL

ρg

[ ∫ r ′

rL

r 2dr

]
dr ′ = −

∫ r0

rL

1

3
ρg
(
r ′3 − r 3

L

)
dr ′ (A12)

Substituting r ′ = rE − z′ and rL = rE − L , we have

1

3

(
r ′3 − r 3

L

)
=

1

3

(
(rE − z′)3 − (rE − L)3

)
(A13)

= r 2
E (L − z′) − rE (L2 − z′2) +

1

3
(L3 − z′3) (A14)

= r 2
E (L − z′)

[
1 −

1

rE

(L + z′) +
1

3r 2
E

(L2 + Lz′ + z′2)

]
(A15)

where rE is the constant radius of the Earth and L is the depth to the base of the lithosphere. Eq. (A15), therefore, provides the magnitude of

error in GPE introduced by the flat-Earth approximation.

Let us denote GPE with the correct level of reference at the base of the lithosphere as σ̄ base
zz (eq. 7 in text), and let GPE with the sea level

or geoid as reference level be σ̄ geoid
zz (eq. 8 in text). From eqs (7) and (8),

σ̄ geoid
zz = σ̄ base

zz + L

∫ L

−h

ρ(z)gdz, (A16)

which in spherical coordinates can be written as∫ r0

rL

r 2σrr dr +

∫ rE

rL

r 2 PL dr = −

∫ r0

rL

1

3
ρg
(
r 3 − r 3

L

)
dr +

∫ r0

rL

1

3
ρg
(
r 3

E − r 3
L

)
dr (A17)

=

∫ r0

rL

1

3
ρg
(
r 3

E − r 3
)
dr (A18)

1

3

(
r 3

E − r 3
)

=
1

3

(
r 3

E − (rE − z)3
)

= r 2
E z − rE z2 +

1

3
z3 (A19)

where PL =
∫ r0

rL
ρgdr , is the pressure at the base of the lithosphere. The first term on the left-hand side of (A17) is the GPE term in (A12).

The I functional in eq. (9) is given by

I =

∫∫
1

μ

[
τ̄ 2
φφ + 2τ̄ 2

φθ + τ̄ 2
θθ + (τ̄φφ + τ̄θθ )2

]
cos θ dφ dθ

+

∫∫ {
2λφ

[
1

cos θ

∂τ̄φφ

∂φ
+

1

cos θ

∂

∂φ
(τ̄φφ + τ̄θθ ) +

1

cos2 θ

∂

∂θ
(cos2 θ τ̄φθ ) +

1

cos θ

∂

∂φ
σ̄rr

]

+ 2λθ

[
1

cos θ

∂

∂φ
τ̄φθ +

3

2

∂

∂θ
(τ̄θθ + τ̄φφ) +

1

2 cos2 θ

∂

∂θ
(cos2 θ [τ̄θθ − τ̄φφ]) +

∂σ̄rr

∂θ

]}
cos θ dφd θ

(A20)

where τ̄ij are the vertically integrated deviatoric stresses, σ̄rr is the vertically integrated vertical stress, or GPE, λφ , λθ represent the horizontal

components of the Lagrange multipliers, and μ is the relative viscosity.

The J functional in eq. (13) can be written in spherical coordinates as

J =

∫∫
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

τ̄φφ

τ̄θθ

τ̄φθ

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

�obs
φφ

�obs
θθ

�obs
φθ

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

T

Ṽ −1

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

τ̄φφ

τ̄θθ

τ̄φθ

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

�obs
φφ

�obs
θθ

�obs
φθ

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

cos θ dφ dθ (A21)

where

τ̄φφ = μ

(
1

cos θ

∂λφ

∂φ
− λθ tan θ

)
, (A22)

τ̄θθ = μ
∂λθ

∂θ
, (A23)
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τ̄φθ =
μ

2

(
∂λφ

∂θ
+

1

cos θ

∂λθ

∂φ
+ λφ tan θ

)
, (A24)

Ṽ−1 =
1

μ

⎛
⎜⎜⎜⎝

2 1 0

1 2 0

0 0 2

⎞
⎟⎟⎟⎠ (A25)

and

(�obs
φφ , �obs

θθ , �obs
φθ )T =

(
−

σ̄rr

3
, −

σ̄rr

3
, 0

)T

. (A26)

The relation between 2-D and 3-D stresses (eqs 24–26 in text) is given by

τ̄ 2D
θθ = 2τ̄ 3D

θθ + τ̄ 3D
φφ (A27)

τ̄ 2D
φφ = τ̄ 3D

θθ + 2τ̄ 3D
φφ (A28)

τ̄ 2D
φθ = τ̄ 3D

φθ . (A29)

A P P E N D I X B : DY NA M I C T O P O G R A P H Y

Dynamic topography is defined as the topography that arises from sub-lithospheric density anomalies, which drive mantle flow. The radial

component of mantle flow (τrr ) causes vertical displacements of the lithosphere producing dynamic topography. These kinds of topographical

features are in contrast to those created by density variations within the lithosphere that might be called static topography. The total topography

that we observe on the surface of the Earth is the net sum of these static and dynamic parts. Isolation of this dynamic topography provides a

constraint on the lithospheric contribution of topography. Thus, one aim of our study is to distinguish between these two types of topographies

by estimating the styles and magnitudes of dynamic topography from our crustal solutions. Estimates of global dynamic topography have

been provided by Hager et al. (1985), Cazenave et al. (1989), Panasyuk & Hager (2000), Steinberger et al. (2001), Steinberger (2007) and

Lithgow-Bertelloni & Guynn (2004). Cazenave et al. (1989) and Panasyuk & Hager (2000) calculated dynamic topography by removing the

effects of isostatic topography from the observed topography, the same way as we do here. Steinberger et al. (2001) and Lithgow-Bertelloni

& Guynn (2004) used mantle flow field whereas Hager et al. (1985) used geoid anomalies to calculate dynamically induced topography.

Figure B1. Global distribution of dynamic topography. The white and red areas indicate positive dynamic topography whereas the blue areas indicate negative

dynamic topography. The maximum dynamic topography ∼3.5 km occurs in Central East Africa. Topography on scalebar is in metres.
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Gravitational potential energy differences 807

GPE values from the uncompensated model contain the influence of dynamic topography as well. The weight of the lithospheric

column, σ zz(L), at reference depth L is given by σzz(L) =
∫ L

−h
ρ(z′)g(z′)dz′ = σ ◦

zz(L) + τzz(L), in the presence of dynamic topography. This

formulation ignores any contribution from flexure. Here, σ ◦
zz(L) is the reference stress, whereas τ zz(L) is the radial traction at reference level

L associated with deeper mantle flow that is responsible for producing dynamic topography. To remove the dynamic topography contribution,

an isostatically compensated solution (uniform vertical stress at depth L) is calculated. One way of compensating our solution, as stated

before, is by adjusting the elevations of the crustal blocks. Accordingly, areas with lower than average vertical stress at reference depth

L get elevated to achieve uniform vertical stress at reference level whereas those with higher than average vertical stress at depth L are

lowered in elevation. Thus, the difference between the compensated topography and observed topography should provide an estimate of the

magnitude of dynamic topography. In our model, the highest magnitude dynamic topography (∼3.5 km) occurs in eastern Africa (Fig. B1)

(Lithgow-Bertelloni & Silver 1998). Other areas of positive dynamic topography are Northern Atlantic near Greenland and parts of western

North America. Somewhat lower magnitude positive dynamic topography occurs along the mid-oceanic ridges. These are possible areas of

upwelling, whereas areas of negative dynamic topography include eastern North America, parts of western Europe, and the deeper oceans.

Our results bear considerable similarities to that of Panasyuk & Hager (2000) who computed dynamic topography in the above procedure;

the only difference is that they used a less fine crustal data set than we have. There might be possible errors in our estimates of dynamic

topography magnitudes due to uncertainties in the upper-mantle densities. However, this will not have any considerable effect on the styles

of dynamic topography.

A P P E N D I X C

Figure C1. Same as Fig. 2 with (a) Asia, (b) North America, (c) the Aegean region, (d) the Central Indian Ocean and (e) eastern Africa zoomed in.
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Figure C1. (Continued.)
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Gravitational potential energy differences 809

Figure C1. (Continued.)
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810 A. Ghosh, W. E. Holt and L. M. Flesch

Figure C2. Same as Fig. 9 with (a) Asia, (b) North America, (c) the Aegean region, (d) Central Indian Ocean and (e) Africa zoomed in and the unit tensors

shown on top of the correlation. Thick, clear arrows with grey outline are tensional axes of the predicted deviatoric stress tensors (unit tensor), whereas thin

grey arrows are the compressional axes of the predicted deviatoric stress tensors. Black denote the strain rate unit tensors. Thick black arrows are extensional

strain rate axes, thin black arrows are compressional.
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Gravitational potential energy differences 811

Figure C2. (Continued.)
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Figure C2. (Continued.)
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