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Abstract 35 
 36 
Submarine groundwater discharge (SGD) derived nutrient (NO2

-, NO3
-, NH4

+, PO4
3-, and 37 

SiO2) and trace element (Cd, Co, Cu, Fe, Mo, Ni, Pb, V and Zn) loadings were 38 

systematically assessed along the coast of Majorca Island, Spain.. Groundwater, Ra, 39 

nutrient and metal fluxes were assessed in a general survey around the island and in three 40 

representative coves during 2010. We estimated that brackish water discharges through 41 

the shoreline are important contributors to the DIN, SiO2, Fe and Zn budgets of the 42 

nearshore waters. Furthermore, our results showed that SGD-derived elements are 43 

conditioned by the hydrogeological formations of the aquifer and discharge type. Thus, 44 

while rapid discharges through karstic conduits are enriched in SiO2 and Zn, the large 45 

detrital aquifers of the island typically present enhanced concentrations of Fe. The 46 

estimated total annual inputs of chemicals constituents discharged by SGD to the coastal 47 
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waters were: DIN: 610 103 kg yr-1, SiO2: 1400 103 kg yr-1, Fe: 3.2 103 kg yr-1 and Zn: 2.0 48 

103 kg yr-1. Our results provide evidence that SGD is a major contributor to the dissolved 49 

pool of inorganic nutrients and trace metals in the nearshore waters of Majorca. 50 

 51 

 52 

 53 

54 
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Introduction 55 

The distribution and abundance of phytoplankton biomass and net primary 56 

production in the ocean is regulated by the availability of light and nutrients (mainly N, P, 57 

Fe), by physical processes of ocean circulation, mixed-layer dynamics, upwelling, 58 

atmospheric dust deposition, and the solar cycle1. The net primary production in the open 59 

waters of the Mediterranean Sea is primarily regulated by nutrient supply through vertical 60 

mixing2. Conversely, in the coastal waters and more particularly, in the nearshore waters 61 

of this oligotrophic sea, a large proportion of the marine productivity is regulated by the 62 

supply of 'new' solutes from land sources rather than by recycling or by vertical mixing3. 63 

Although river outflow has traditionally received most attention as the main pathway of 64 

nutrient and other element export from land, growing evidence demonstrates that 65 

significant delivery of terrestrial compounds can be also channeled through submarine 66 

groundwater discharges (SGD). SGD is known to deliver nutrients, metals and other 67 

land-derived compounds to the coastal ocean4–6 and growing evidence demonstrates that 68 

this submarine source is playing a key role in the sustainment of coastal ecosystems7–10. 69 

This may be particularly relevant in arid and semi-arid regions with scarce riverine 70 

outflow and in oligotrophic seas like the Mediterranean, where the mean annual 71 

contribution of SGD has been estimated to be in the range of 300 - 50000 km3yr-1 and 72 

could constitute a major source of terrestrial compounds to the overall budgets11,12.  73 

The geological characteristics of a given aquifer and its associated water flow, 74 

together with the human activities influencing its dynamics, determine the major aspects 75 

of the chemical composition of SGD. For example, karstified carbonate aquifers can 76 

exhibit rapid response to rainfall due to their underground structures of fractures and 77 

preferential conduits that can rapidly transfer the infiltrated water into the sea. Therefore, 78 
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residence time of groundwater in this type of aquifers is generally short, yielding greater 79 

flow than surface runoff13. Karst systems are also particularly vulnerable to pollution 80 

(such as agriculture) because of focused infiltration and rapid contaminant transport in 81 

the phreatic zone14. Karst conduits are a primary source of fresh groundwater15,16; 82 

nevertheless, the ecological significance of these discharges linking continental and open 83 

seawaters is generally very localized, and the environmental effects of karst discharges 84 

are more perceptible in nearshore locations, such as bays, coves and semi-enclosed areas, 85 

where the dilution due to mixing with open waters are reduced. 86 

SGD usually occurs as a slow and diffuse flux through permeable sediments in the 87 

nearshore17. Flow through detrital granular media is generally much slower and is driven 88 

by hydraulic gradients, and a number of forcing mechanisms which regulate the flux of 89 

new and recycled nutrients to seawater, fuelling and maintaining primary production18. 90 

Contrastingly with karst discharges, flow through porous media (as the case of detrital 91 

zones) allows for a higher degree of interaction between water and substrate, favoring ion 92 

exchanges. Flow in permeable coastal sediments includes an important component of 93 

recirculated seawater, which can comprise a high percentage of the total SGD flux19. 94 

Indeed, the mixing area between fresh and salty water in the coastal boundary of these 95 

aquifers is defined as a subterranean estuary20, and is an area of intense geochemical 96 

transformations21,22.  97 

Previous studies conducted in Majorca Island indicate that SGD is ubiquitous 98 

around the island representing a major vector of CO2, nutrients and Fe to the coastal 99 

waters9,10. However, the magnitude of the global SGD-driven of nutrients and trace 100 

metals to the coastal waters of Majorca Island is not yet well established. In this island, 101 
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both karst and detrital coastal aquifers are clearly identified, which provides with an ideal 102 

environment to compare the relative relevance of karstic and detrital groundwater 103 

discharges as a source of different elements to the nearshore ecosystem. In this study we 104 

estimate the terrestrial flux of nutrients and trace metals into the coastal waters of 105 

Majorca Island and evaluate the relative contribution of the different discharge types to 106 

the coastal dissolved inorganic nutrient and trace metal pools. Elucidating these 107 

contributions is relevant for the understanding of the temporal variations in the 108 

geochemistry of coastal waters and the consequent bottom-up controls of plankton 109 

dynamics. 110 

 111 

Materials and Methods 112 

Majorca Island. The Island of Majorca, located in the Western Mediterranean Sea, is the 113 

largest island of the Balearic archipelago (3.620 km2). The industrial activity in the island 114 

is scarce, and tourism at the coastline and agriculture inland are the principal controls on 115 

the landscape. Aquifers are generally unconfined, although changes in facies and 116 

geological structures may locally impose confined and semi-confined conditions9. Three 117 

major types of hydrogeological formations can be distinguished in the Island; the karstic 118 

aquifers of the Serras composed by limestones from Mesozoic era; the Marinas 119 

constituted by Miocene limestones and calcarenites; and the central detrital basins filled 120 

with Cenozoic sediments (frequently Miocene limestones and calcarenites as in the 121 

Marinas) overlapped by marine and continental deposits from a period of Plio-Quaternary 122 

(Figure 1).  123 
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With the aim of comparing SGD fluxes from different settings, we divided the 124 

Majorca coastline in (1) the limestone and calcarenite aquifer discharging diffusively 125 

through sedimentary areas in small coves along the coast (Coves), (2) the limestone and 126 

calcarenite aquifer discharging preferentially through natural conduits originated from 127 

rock fissuration or karstification (Karst) and, (3) the larger detrital aquifers discharging in 128 

the large Bays (i.e. Palma, Pollença and Alcudia Bays, Figure 1C) located in the NE and 129 

SW coast of the Island (Bays). Besides of the different structural and lithological 130 

characteristics of the aquifers, these areas support different human activities. Thus, 131 

detrital basins behold intensive agriculture and large urban nuclei and tourism resorts, 132 

whereas sparse populations based on traditional dryland agriculture and smaller tourism 133 

assets settle around the coves and karst areas.  134 

 135 

SGD flux estimation at selected sites. Comprehensive beach surveys were carried out at 136 

three coves located in the eastern coast of Majorca in November 2010 (see Figure 1). 137 

Santanyí and Romàntica are small coves where groundwater discharges to the sea are 138 

dominated by diffusive discharge through their sedimentary beaches, whereas Sa Nau is a 139 

very narrow cove in which brackish groundwater emanates through a submerged conduit 140 

located at some 30 meters from the shoreline. At each site, an onshore-offshore transect 141 

consisting in 8 to 11 points was sampled from a rubber boat to characterize the 142 

biogeochemical signal of the groundwater discharge. Surface samples were collected for 143 

the analysis of Ra, nutrients, trace metals and chlorophyll concentrations (Chl-a). Profiles 144 

of temperature and salinities down to the bottom were obtained with a CTD logger (RBR). 145 

Interstitial waters in the shore sediments were collected at different depths using 146 
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piezometers placed along the shoreline. For nutrients and metals analysis PVC-made 147 

multi-pore piezometers22 with acid-washed Teflon tubing were used, while we used a 148 

stainless steel Retract-a-Tip (AMS) drive-point piezometer for Ra samples.   149 

 150 

General survey. Surface coastal waters around Majorca Island were sampled at 41 151 

coastal stations located in the near-shore at water column depths of 2-3 m, between 26 152 

and 30 April 2010 (Figure 1A). The survey also included 5 open water stations located at 153 

a depth of 50m along the shelf. Precipitation was almost negligible during the weeks 154 

previous to the survey, except for 22 April 2010 when 26 L·m-2 were accumulated. Fresh 155 

water discharges from torrents were only observed at the proximity of Na Borges torrent 156 

(station 25) but fluxes from fractures and karstic conduits discharging above the sea level 157 

were visible along the northern coast of the island. At each station, surface water samples 158 

were obtained to determine the concentrations of nutrients, trace metals, Ra isotopes and 159 

Chl-a. Surface temperature and salinity were measured at each station using a handheld 160 

YSI 556 multiparameter probe. Additionally, 500 mL surface samples were obtained for 161 

accurate salinity measurements. These samples were kept in cold and dark conditions 162 

until measured in the laboratory with a RBR MS-315 micro-salinometer using IAPSO 163 

seawater standards. 164 

 165 

Nutrients, trace metal and chlorophyll analysis. Concentrations of dissolved NO2
-, 166 

NO3
-, NH4

+, PO4
3- and SiO2 were determined with an autoanalyzer (Alliance Futura) 167 

using colorimetric techniques23. The accuracy of the analysis was established using 168 
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Coastal Seawater Reference Material for Nutrients (MOOS-1, NRC-CNRC), resulting in 169 

107 ± 11 %, 107 ± 6 %, 100 ± 6 %, and 96 ± 3 % for PO4
3-, NO3

-, NO2
- and SiO2, 170 

respectively. Limit of detection (LOD), calculated as three-times the standard deviations 171 

of subsequent blank measurements, was PO4
3-: 0.05 µM, NO3

-: 0.001 µM, NO2
-: 0.001 172 

µM, and SiO2: 0.02 µM.. Trace-metal samples were acidified to pH<2 with ultrapure 173 

grade HCl (Merck) in a class-100 HEPA laminar flow hood and stored for at least 1 174 

month before extraction. Dissolved (<0.22 µm) metals (Cd, Co, Cu, Fe, Mo, Ni, Pb, V 175 

and Zn) were pre-concentrated by the APDC/DDDC organic extraction method24,25 and 176 

analyzed by ICP-MS (PerkinElmer ELAN DRC-e). The accuracy of the analysis was 177 

established using Coastal Seawater Reference Material for trace metals (NASS-5, NRC-178 

CNRC) (obtained recoveries of 105%, 103%, 106%, 96%, 95%, 98%, 106%, 103% and 179 

97% for Cd, Co, Cu, Fe, Mo, Ni, Pb, V and Zn, respectively). LOD, calculated as three-180 

times the standard deviations of subsequent blank measurements, was 6, 2, 83, 67, 275, 181 

12, 8, 271 and 287 pM for Cd, Co, Cu, Fe, Mo, Ni, Pb, V and Zn, respectively. The 182 

concentration of Chl-a in water samples was determined through fluorometric analysis26. 183 

The filters were extracted in 90% acetone overnight and fluorescence was measured on a 184 

Turner Designs fluorometer calibrated with pure Chl-a (Sigma Co.). 185 

 186 

Short-lived Ra isotopes and SGD flux calculations.  Radium isotopes were measured 187 

by filtering large volume seawater samples (10 L for piezometers and 60 L for coastal 188 

seawater samples) through MnO2-impregnated acrylic fiber (hereafter, Mn-fiber) at a 189 

flow rate <1 L min-1 to quantitatively extract Ra isotopes27. Once in the laboratory, the 190 

Mn-fibers were rinsed with Ra-free deionized water, partially dried28 and placed in a 191 
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Radium Delayed Coincidence Counter (RaDeCC) to quantify the short-lived Ra isotopes 192 

(223Ra and 224Ra)29. Uncertainties in activities of 223Ra and 224Ra were estimated 193 

following Garcia-Solsona et al. (2008)30.  194 

In the case of the three selected beaches, the brackish SGD flux (m3 d-1) into each coastal 195 

site was calculated as: 196 

𝑆𝐺𝐷 = 𝑓!"#𝑉/𝑇! 

where fSGD is the groundwater fraction in coastal waters, V is the volume affected by SGD 197 

(m3) that, in our case, is calculated from the salinity anomaly, and Tr (days) is the 198 

residence time of coastal water (Table 2). The decay of short-lived Ra isotopes can be 199 

used to estimate the residence time of coastal waters (Tr). However, since the residence 200 

time of the studied sites is expected to some few days, the decay of the short-lived Ra 201 

isotopes is likely masked by statistical uncertainties. In these situations, a maximum 202 

water residence time can be calculated from the relative errors associated with 223Ra and 203 

224Ra (d223
Ra and d224

Ra) and the decay constants of the two Ra isotopes (λ223 and λ224) as 204 

follows 31: 205 

𝑇! =
ln  (1− 𝑑!!"𝑅𝑎 !+ 𝑑!!"𝑅𝑎 !)

𝜆!!" − 𝜆!!"
 

The groundwater fraction (fSGD) in coastal waters can be determined by using the 2-end 206 

member mixing model detailed in the following equations32,33: 207 

𝑓!"# + 𝑓!"# = 1 

𝑓!"# 𝑅𝑎!"# +
!!" 𝑓!"# 𝑅𝑎!"# = 𝑅𝑎!"

!!"!!"
𝑒
!!!!"!! 

where f represents the relative fractions of the seawater (sea) and SGD end-members, 208 

224
Rsea and 224

RaSGD are the 224Ra activities in the sea and groundwater end-members, 209 
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respectively, 224
Racw is the average activity in cove waters, λ224 is the decay constant of 210 

224Ra and Tr (days) is the residence time of coastal water. Here we focus on 224Ra, 211 

because 223Ra would provide with equivalent information to that obtained from 224Ra but 212 

has larger counting errors. The concentration of 224
RaSGD was determined by 213 

extrapolating the 224Ra activity vs salinity trend. Values where then normalized to a 214 

salinity of 25, which allows for comparisons among the different coves. Nutrient and 215 

trace metal fluxes at the selected coves were determined by multiplying the Ra-derived 216 

SGD flow by the respective SGD concentrations at each site obtained also by 217 

extrapolating the nutrient/metal concentrations vs salinity trend to a salinity of 25. Notice 218 

that the selection of a different salinity to characterize SGD (fresh and brackish 219 

groundwater) would considerably change the water flow but would have no effect on the 220 

next flux of chemicals derived from fresh-SGD.  221 

 222 

We assumed that groundwater exchange only occurred through the intertidial zone of 223 

each cove, to minimize the effect of an intricate coastal geomorphology. Shoreline-224 

normalized nutrient and trace metal fluxes (mol·d-1
·m-1) obtained from the selected sites 225 

were used to characterize SGD-derived chemical fluxes from detrital bays (Palma Bay; 226 

from Rodellas et al., 201410), coves with sedimentary discharge (Santanyí and 227 

Romàntica) and coves with karstic discharge (Sa Nau). These fluxes were multiplied by 228 

the respective coast length of Bays (35000 m), Coves (26000 m) and Karst (8000 m) in 229 

Majorca to yield the total chemical flux derived from SGD around the island. 230 

 231 

Results and discussion 232 
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Cove surveys  233 

As shown in Figure 2, all three surveyed coves presented lowered nearshore 234 

salinities and enhanced 224Ra activities, indicative of SGD. Indeed, both variables 235 

presented very good correlations at Sa Nau and Romántica (r2=0.91 and 0.98, 236 

respectively) and somewhat lower at Santanyí (r2=0.61). The discharge signal was 237 

generally restricted to the waters confined within the cove and rapidly vanished to 238 

undetectable salinity anomalies and 224Ra values less than 5 dpm·100L-1 in the shelf 239 

waters stations. These activities, although low, are higher than those recorded in previous 240 

studies9 and in shelf water stations (224Ra <3 dpm·100L-1; Table 1). Most intense salinity 241 

variation occurred at Sa Nau were salinity decreased more than 1.2 units.  242 

Salinity measurements of interstitial water at the beachface were indicative of 243 

brackish water circulation through the sediment, ranging between 10.9 and 33.7 at 244 

Santanyí and 17.8 and 32.4 at Romàntica (Table S1). 224Ra measured in porewater at 245 

Santanyí and Romàntica coves (33.8 – 251.0 and 104.6-150 dpm·100L-1, respectively) 246 

were considerably enriched with respect to the activities measured in the seawater at each 247 

location (Mean ± SDV; 7.2 ± 1.6 and 7.8 ± 3.2 dpm·100L-1at Santanyi and Romántica, 248 

respectively). Sa Nau presented a different pattern, with interstitial 224Ra activities (23.1 249 

dpm·100L-1) comparable to the range measured in cove seawater (Mean ± SDV; 29.0 ± 250 

18.4 dpm·100L-1). This lower activity in porewater cannot explain the Ra in the cove 251 

suggesting that diffusive SGD inputs through the beachface were not the dominant Ra 252 

source at this site. A visible karstic conduit discharging waters with lower salinity (i.e. 253 

35.9) and 224Ra activities exceeding 58 dpm·100L-1 was most likely the main 254 

groundwater pathway to the cove seawater.  255 
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Concentrations of inorganic nutrients (DIN, PO4
3-, and SiO2) and metals (except 256 

Mo) in the interstitial waters of the three coves were larger than those in seawater (Table 257 

S1). As a result of SGD, nearshore DIN and SiO2 concentrations reached maximum 258 

values of 13.5 µM (Mean ± SDV; 6.6 ± 5.5 µM) and 22.3 µM (Mean ± SDV; 8.2 ± 8.6 259 

µM) at Sa Nau cove, respectively. Conversely, interstitial waters concentrations of PO4
3- 260 

and other metals such as Cd, Co, Cu, Ni and Pb were comparable to those in the outer 261 

stations at all the studied coves, even for the Sa Nau karstic site, revealing that either 262 

SGD is not a major source of these compounds or, particularly in the case of PO4
3-, that 263 

released concentrations are low and most probably rapidly consumed by the microbial 264 

and macroalgal communities in the cove. The lack of enrichment of these compounds in 265 

nearshore waters prevents estimating the SGD-derived inputs of these constituents using 266 

the approach developed here. On the other hand Fe and Zn were enhanced in nearshore 267 

waters allowing the calculation of their SGD-driven fluxes from the trend described by 268 

their concentrations in cove waters plotted against salinity (see methods).  269 

Comparison of the SGD-driven fluxes in the three systems studied and Palma 270 

Beach10 are presented in Table 2. SGD discharging through karstic conduits (Sa Nau) 271 

represents a major supplier of nutrients (DIN and, particularly, SiO2) to the coastal sea, 272 

whereas diffusive SGD through large bays (Palma Beach) releases the higher fluxes of 273 

dissolved Fe. This contrasting role of karstic and detrital systems is likely a consequence 274 

of their differences in the degree of interaction between water and substrate in the 275 

subterranean estuary. Groundwater in karstic systems is rapidly transported to the coastal 276 

sea through fractures and conduits, with groundwater residence times in the aquifer being 277 

generally short, limiting the interaction between groundwater and chemical compounds in 278 
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aquifer matrix. As a consequence, those compounds highly enriched in fresh groundwater, 279 

such as DIN and SiO2, behave conservatively along the mixing area where seawater acts 280 

just as a dilution agent. Unlike karst systems, SGD through diffusive discharge allows for 281 

enhanced water-solid interaction, and those constituents enriched in the fresh fraction of 282 

SGD may be removed from solution34. However, the biogeochemical reactions occurring 283 

at the subterranean estuary can also result in non-conservative additions of solutes present 284 

in the aquifer solids but not particularly enriched either in groundwater or seawater20,22. 285 

These complex reactions in the subterranean estuary are likely responsible of the higher 286 

trace metal inputs, particularly Fe, from the detrital bays relative to karstic systems. 287 

Indeed, in Palma Bay, Fe was highly enriched (1 to 3 orders of magnitude) in the 288 

subterranean estuary in relation to both fresh groundwater and seawater, what was 289 

attributed to the Fe-oxide reduction due to elevated dissolved organic carbon or anoxic 290 

groundwaters10. Aside from the differences between karstic and detritic discharge, 291 

anthropogenic factors should also be taken into account in this comparison. Indeed, the 292 

high SGD-derived DIN inputs from large detrital bays can be attributed to aquifer 293 

contamination produced by intensive agricultural practices in those areas.  294 

Coastal water characterization 295 

The coastal stations of the survey around Majorca were classified in three clusters 296 

(karst, coves and bays) according to coast geomorphology and SGD chemical properties. 297 

The main challenge was separating areas of SGD through karstic conduits (karst) from 298 

diffusive discharges (coves), as most karstic conduits in Majorca discharge below the sea 299 

surface. Based on the results of the previous section (cove surveys), the karst stations 300 

were identified from their lower salinity (<37.5) and high silicate concentration (>2 µM) 301 



 15 

in seawater (Figure S1). As shown in Figure 1, karst stations are distributed along the 302 

coasts of the two mountain ranges bounding the NW and SE coast of the island. All the 303 

stations where groundwater fluxes from fractures and karstic conduits discharging above 304 

the sea level were visually identified are clustered as karst stations, reinforcing the 305 

appropriateness of the criterion used. Station 25, which it is not in a karstic area but was 306 

affected by surface water flow, is also clustered as karst station under this criterion. 307 

The mean and range of all variables analyzed are presented in Table 1. 308 

Consistently with the oceanic water masses descriptions for the area35, shelf stations 309 

presented surface salinity values within a narrow range from 38.0 to 38.1, which is 310 

indicative that shelf waters represent a sole water mass. Contrastingly, nearshore samples 311 

displayed a wide range of salinities (29.9 to 38.1). All the coastal stations presented 224Ra 312 

activities above those in shelf water stations (0.7 - 2.8 dpm.100L-1), with activities 313 

ranging from 3.6 to 66.8 dpm.100L-1 for coves with diffusive discharge, 4.1 – 35.4 314 

dpm.100L-1 for karstic coves and from 2.8 to 11.1 dpm.100L-1 for those stations in large 315 

detrital bays (Table 1). These results are in good agreement with previously 224Ra values 316 

reported along the Majorca shoreline, where SGD was identified as the main freshwater 317 

source to the coastal water9.  318 

Even though the seasonal thermocline was not fully developed during this season, 319 

nutrient concentrations in the shelf were characteristic of oligotrophic conditions, with 320 

low concentrations of NOx (<0.001 - 0.08 µM) and PO4
3- (<0.05 – 0.07 µM) in surface 321 

waters (Table 2). As expected, mean nutrient concentrations (mainly NOx and SiO2) in 322 

the nearshore were higher than in shelf waters, while NH4
+ and PO4

3-, which did not 323 

display significant differences (Table 1). Nearshore enrichment was also reflected in 324 
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phytoplankton biomass measured as Chl-a, which on average doubled mean 325 

concentrations in shelf water stations (1.35 mg.m-3 and 0.64 mg.m-3, respectively) (Table 326 

1).  327 

Trace metals composition of nearshore surface waters around Majorca Island 328 

showed concentrations that are in agreement with other reported values in open waters of 329 

the Mediterranean Sea36,37 (ranges in nM Cd: 0.34 – 0.37 ; Co: 0.14 – 0.17, Cu: 4.49 – 330 

9.25 ; Fe: 2.38 – 3.63; Mo: 120.7 – 133.3; Ni: 3.67 – 4.19; Pb: 0.10 – 0.13; V: 12.21 – 331 

19.04 and Zn: 2.01 – 6.56). While some metals displayed a wide range of variation, Zn 332 

and Fe (and to a lesser extent Cu), showed enhanced concentrations in several nearshore 333 

stations.  334 

Ranges and mean concentrations of those parameters with enhanced 335 

concentrations in nearshore stations relative to outer stations (DIN, Si Fe, Zn and Chl-a) 336 

are shown in Figure 3, clustered as offshore stations, coves, karst and bays. While the 337 

range of concentrations overlap between different categories, the comparison of the 338 

clustered stations provide with some insights on the relevance of karstic and detritic 339 

systems as suppliers of different terrestrial compounds. DIN concentrations varied in a 340 

wide range, but the highest concentrations were measured in stations located in the large 341 

detrital bays. This is partially a consequence of the fertilization practices for intensive 342 

agriculture, including nutrient-rich sewage water reutilization, that have remarkably 343 

increased concentrations of NO3
- in the aquifers of the major bays (Figure 1). Despite the 344 

high nutrient loads that these aquifers receive, depending on the groundwater transit time, 345 

a large proportion of the nitrogen discharged through the sediments can be removed from 346 

solution, either through denitrifying bacteria or matrix-derived, solid-phase electron 347 
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donors (like Fe2+ or H2S)38. This may be a major difference from karstic aquifers, where 348 

denitrification is minimized due to their rapid transfer times and DIN inputs from SGD 349 

may be relevant even when nutrient content in the aquifer is not particularly high. On the 350 

other side, Si concentrations were remarkably higher in karstic areas (Figure 3). This 351 

higher concentration is likely consequence of the rapid transfer time from the aquifer to 352 

the near-shore seawater and the lower geochemical reactivity in the sediments. 353 

Fe was enriched at most surveyed locations, but concentrations in the large bays 354 

were remarkably enhanced in relation to coves and karstic stations (Figure 3). As 355 

indicated before, biogeochemical reactions in the subterranean estuary may considerably 356 

reduce Fe-oxides enhancing its concentrations in SGD10. Zinc presented lower differences 357 

among clusters, with the higher concentrations often associated to karstic and bays 358 

stations, most likely related to the land-use and human activities in the different areas.  359 

 360 

Estimation of bulk SGD flux in Majorca and its contribution to the chemical 361 

composition of coastal waters. 362 

The pattern observed in the selected coves (e.g. higher inputs of nutrients, 363 

particularly Si, from karstic discharges and higher supply of Fe from detrital bays) seems 364 

to be reproduced in the general survey around the Majorca Island. Using the flux of 365 

nutrients and trace metals calculated here for the coves (both karstic and detritic) and for 366 

detrital bays (Table 2), we calculated the nutrient and trace metal contribution of SGD in 367 

different settings around Majorca Island. The annual loads of those elements that are 368 

enhanced in nearshore waters (DIN, SiO2, Fe and Zn) from karstic, detrital coves and 369 
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detrital bays, as well as the overall fluxes, are provided in Table 3. The estimated total 370 

annual inputs of these chemicals to the coastal waters are: DIN: 610 103 kg yr-1, SiO2: 371 

1400 103 kg yr-1, Fe: 3.2 103 kg yr-1 and Zn: 2.0 103 kg yr-1. The fluxes through the 372 

detrital aquifers located in the large bays of the island represent significant fractions of 373 

the total discharges of DIN (56%) and, particularly, dissolved Fe (90%). Although coves 374 

with karstic discharges represent only ~10 % of the Majorca coast length, they are a 375 

major source of nutrients to the coastal waters of Majorca Island, supplying 44 % and 376 

74% of the total inputs of DIN and Si, respectively, derived from SGD. Our estimates 377 

reveal that the nitrogen flux from karstic discharges and diffusive discharge through large 378 

bays are therefore comparable, as a consequence of an interplay between the highest NOx 379 

concentrations in the aquifers of large bays and the lower removal rates expected in 380 

karstic-dominated discharges. 381 

The large input of N and Fe in the detrital bays enhances the productivity of nearshore 382 

waters, that displays higher Chl-a concentrations in the surface waters of the detrital bays 383 

(Figure 1 and Table 1). Along with N and P, Fe is a key element limiting phytoplankton 384 

growth in some marine environments. Even though the coastal waters of Majorca are 385 

often P-limited, we suggest that the large inputs of N and Fe in the detrital bays can 386 

increase phytoplankton growth because even low PO4
3- levels can support primary 387 

production through rapid turnover rates. Indeed, enhancement of nearshore NO3
- and lack 388 

of PO4
3- can drive N-limited coastal primary production to P-limitation4. These conditions 389 

can affect the phytoplankton community structure by favoring the proliferation of 390 

organisms capable of assimilating organic phosphorous forms.  391 
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We are aware that many processes that occur in the subterranean estuary (e.g. physic-392 

chemical transformation, benthic respiration, redox reactions, travel/flushing times, etc.) 393 

are not evaluated in this work and may influence the composition and concentrations of 394 

nutrients and metal loads. Nevertheless, overall results presented here indicate that the 395 

dissolved pool of nutrients (i.e. N and Si) and biogenic metals (i.e. Fe) in the coastal area 396 

of Majorca Island are significantly influenced by the SGD. The large input of N and Fe 397 

from the detrital aquifers enhances the productivity of nearshore waters that displays 398 

enhanced Chl-a concentrations in the coastal area. Thus, the role of this significant source 399 

in the cycling of chemical constituents and its effects on biogeochemical cycles of the 400 

oligotrophic marine environment of Majorca Island merits further investigation. 401 
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Figure Legends 547 

Figure 1. A) MODIS ocean color image (MODerate Resolution Imag- 548 

ing Spectroradiometer; source NASA: http://gdata1.sci.gsfc.nasa.gov/daac-549 

bin/G3/gui.cgi?instance_id=MODIS_DAILY_L3) for April 26, 2010 and sampling 550 

stations around Majorca Island from 26-30 April 2010 and map of sampling points at 551 

Romántica , Sa Nau and Santanyí. B) Hydrological formations of Majorca Island. C) 552 

Nitrate concentrations in wells (source IGME: 553 

http://www.igme.es/infoigme/aplicaciones/Aguas/); white dashed line delimits the main 554 

Plio-Quaternary aquifers. 555 

Figure 2. 224Ra activities and salinity anomalies in the three selected coves. Triangles 556 

indicate station position; white dotted lines represent the interface between SGD and 557 

coastal water defined by a salinity anomaly > 0.005; black dashed lines indicate the limit 558 

of the cove.  559 

Figure 3. Box plots of DIN, Si, Fe, Zn and Chl-a in the different regions (Oce: 560 

Shelfwaters; Cov: Coves; Kar: Karts; Bas: Basin). Dashed line is the median 561 

concentration of each parameter in the shelf water stations. The line within the box is the 562 

median, and the boundary of the boxes indicates the 25th and 75th percentiles. Error bars 563 

indicate the 10th and 90th percentiles. Filled circles show outlying points. 564 

 565 

 566 

 567 
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 568 

 569 

Table 1. Mean, minimum and maximum values of salinity, short-lived Ra isotopes 570 
activities, nutrients, trace metals and Chl-a concentrations observed in the coastal waters 571 
of Majorca Island. According to the different structural and lithological characteristics the 572 
coastline is divided in coves, karst and bays (see Material and Methods section)..  573 

 574 

575 

Mean min max Mean min max Mean min max Mean min max

Salinity 38.05 37.99 38.10 37.86 36.75 38.10 34.19 29.92 36.83 37.76 37.17 38.10

Chl.a/(mg.m
.3
) 0.64 0.29 1.08 0.96 0.22 1.86 0.89 0.54 1.56 2.20 1.11 5.09

223
Ra/(dpm.100L

.1
) 0.16 0.06 0.30 0.70 0.13 5.54 1.32 0.11 3.42 0.83 0.35 1.29

224
Ra/(dpm.100L

.1
) 1.73 0.92 2.77 8.13 3.56 66.77 14.13 4.09 35.37 6.12 2.76 11.11

NO2
.
,/µM/ 0.02 0.02 0.02 0.02 0.002 0.08 0.06 0.02 0.11 0.24 0.04 0.58

NO3
.
,/µM 0.03 <0.001 0.08 2.66 0.05 20.54 5.60 0.08 28.21 3.80 <0.001 9.54

NH4
+, µM 0.13 <0.07 0.17 0.17 <0.07 0.30 0.13 <0.07 0.20 0.17 <0.07 0.28

DIN,/µM 0.17 0.09 0.23 2.84 0.12 20.69 5.77 0.22 28.30 4.08 0.08 9.89

PO4
3-, µM 0.05 <0.05 0.07 0.06 <0.05 0.22 0.06 <0.05 0.14 0.04 <0.05 0.08

SiO2, µM 0.65 0.47 0.82 1.11 0.17 2.63 6.48 2.03 16.00 0.92 0.34 1.43

Cd, nM 0.35 0.34 0.37 0.33 0.30 0.35 0.31 0.20 0.35 0.34 0.30 0.37

Co, nM 0.15 0.14 0.17 0.16 0.12 0.24 0.18 0.14 0.27 0.23 0.16 0.29

Cu, nM 7.13 4.49 9.25 7.88 3.79 15.50 9.77 3.95 20.92 7.93 3.98 10.76

Fe, nM 3.27 2.38 3.63 4.99 1.58 14.91 4.78 2.62 6.68 7.72 5.52 12.24

Mo, nM 127.63 120.75 133.25 123.51 111.86 131.24 115.43 77.17 125.69 125.64 117.33 129.90

Ni, nM 3.95 3.67 4.19 3.96 3.55 5.92 3.96 3.11 4.33 4.11 3.64 4.55

Pb, nM 0.11 0.10 0.13 0.12 0.09 0.24 0.12 0.10 0.14 0.13 0.07 0.19

V, nM 15.87 12.21 19.04 15.18 9.61 22.05 12.84 7.67 15.43 15.62 11.80 23.48

Zn, nM 3.45 2.01 6.56 4.15 1.77 9.20 6.69 2.82 11.70 5.38 3.07 8.03

Shelf/waters Coves Karst Bays
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 576 
Table 2. SGD-derived fluxes of nutrients and metals normalized by shore lengths in the 577 
three coves and in Palma Beach. 578 
 579 

  580 

 581 

 582 

 583 

 584 
  585 

Type

Volume	  (·∙10
3
	  m

3
) 64 84 130 31000

Maximum Residence time (d) 1.7 1.5 1.2 8.4

SGD (m
3
·∙d
-1
) 260 (40	  %) 180 (40	  %) 4500 (20	  %) 56000

SGD/coastline	  (m
3
·∙d
-1
·∙m

-1
) 3.7 (40	  %) 1.2 (40	  %) 57 (20	  %) 13

DIN (mmol·∙d
-1
·∙m

-1
) 28 (500	  %) 21 (150	  %) 6500 (80	  %) 1900

SiO2 (mmol·∙d
-1
·∙m

-1
) 29 (50	  %) 22 (130	  %) 13000 (40	  %) 980

Fe (μmol·∙d
-1
·∙m

-1
) 250 (500	  %) 610 (200	  %) 500 (200	  %) 4100

Zn (μmol·∙d
-1
·∙m

-1
) 2900 (40	  %) 240 (500	  %) 1600 (80	  %) 890

*	  Rodellas	  et	  al.	  (2014).	  Uncertainties	  associated	  to	  SGD	  are	  ~20%

Palma*

Detrital	  bay

Santanyí Romàntica Sa Nau

Detrital	  cove Detrital	  cove Karstic	  cove
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 586 

Table 3. Island scale estimation of nutrient and metal fluxes and proportion supplied by 587 
each aquifer type. Only elements with significant enhancement are displayed.   588 

 589 

 590 

  N Si Fe Zn 

Coves (mol·yr-1) 2.3	  10
5
	   2.4	  10

5
	   4.1	  10

3
	   1.5	  10

4
	  

Karst (mol·yr-1) 1.9	  10
7
	   3.7	  10

7
	   1.5	  10

3
	   4.7	  10

3
	  

Bays (mol·yr-1) 2.4	  10
7
	   1.2	  10

7
	   5.2	  10

4
	   1.1	  10

4
	  

 	   	   	   	  
Coves (kg·yr-1) 3.3	  10

3
	   6.8	  10

3
	   2.3	  10

2
	   9.8	  10

2
	  

Karst (kg·yr-1) 2.7	  10
5
	   1.0	  10

6
	   8.2	  10

1
	   3.1	  10

2
	  

Bays(kg·yr-1) 3.4	  10
5
	   3.5	  10

5
	   2.9	  10

3
	   7.4	  10

2
	  

 	   	   	   	  
TOTAL (kg·yr-1) 6.1	  10

5
	   1.4	  10

6
	   3.2	  10

3
	   2.0	  10

3
	  

Coves (%) 0.5	   0.5	   7.1	   48.3	  

Karst (%) 43.8	   74.4	   2.5	   15.1	  

Bays (%) 55.6	   25.1	   90.4	   36.6	  

 591 
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Figure 3 596 
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