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Abstract

The present paper aims at applying the Finite Element Updating inverse method
to several sample geometries by the means of Digital Image Correlation. The
full-field data are experimentally obtained from three geometries exhibiting in-
creasing strain fields heterogeneities. For each test, a Finite Element model is
built and boundary conditions are duplicated from the measured displacements
at the sample borders. Field comparisons are performed at several time steps
until fracture occurs and a Levenberg-Marquardt method is used to solve the
optimization problem. Six parameters of an anisotropic elastic-plastic constitu-
tive model are identified and validated through the simulation of a deep-drawing
forming operation. Results show that identification quality is improved when
heterogeneous strain fields are used.

Introduction

Facing the increasing number of new materials and the diffi-
culties of identifying constitutive models that predict properly
the material behaviour during the forming process, industri-
als have induced in the early 90’s some scientific research that
challenges the usual way of identifying material models. This
former approach consists in fitting analytical model with the
experimental behavior (true stress/true strain curve). Basi-
cally, tests are led on standard geometries to isolate one ma-
terial behaviour from the others (e.g. a tensile test is assumed
to exhibit tensile behaviour only), then hypothesis concern-
ing the strain field homogeneity are made and lead to identify
the corresponding constitutive parameter. Once these consti-
tutive parameters are determined, the Finite Element (FE)
analysis is used to retrieve the stress/strain/displacement
fields, assuming that both geometry and boundary conditions
are known. This identification procedure exhibits two main
disadvantages: the numbers of tests may increase significantly
when complex models are in use and the hypothesis of homo-
geneous strain fields is neither always obvious nor easy to
satisfy. On the other hand, the so-called inverse approach
proposes to determine constitutive parameters from consid-
ering heterogeneous strain/displacement fields. In this case,
geometry and boundary conditions are known and so is the
resulting displacement field. Therefore, the only constitutive
parameters remain unknown. The chosen constitutive equa-
tions are, of course, assumed to be relevant.

As Summarized by [15] and [3], several different methods
have been developed to obtain the solution of such inverse
problems. Indeed five approaches lead to retrieve the con-
stitutive parameters when the stain homogeneity hypothesis
does not hold. Among these, the constitutive equation gap

method [25, 26], the equilibrium gap method [6, 9], the virtual
fields method [14, 39], the reciprocity gap method [21] and the
finite element model updating (FEU) technique [23, 35] are
currently used for identification purpose. In the present paper
the FEU approach has been chosen.

The FEU method provides constitutive parameters iter-
atively by comparing the measured data with the numerical
ones while parameters vary. The experiment is accurately
simulated in a FE model and the calculation is run with an
initial guess of the parameters values. The obtained displace-
ment fields are then compared to the measured ones, a cost
function is built and leads to a new set of parameters and
so forth, until convergence is reached. The inverse methods
applied to parameters identification such as defined first by
[23] have known massive improvements in the last decade.
Indeed, the FEU approach is now broadly used. Several au-
thors have applied FEU to identify material parameters using
so-called global measurements, such as reaction force of the
whole sample, as the material response. For instance, [12]
have identified 5 parameters of an elastic-plastic constitutive
law of aluminum alloy using tensile tests in a first approach
and a deep drawing test in a second one. Both results were
very close and authors conclude that this approach is an al-
ternative to the classical identification method. Moreover,
the experiments led by [45] have successfully identified both
elastic and elastic-plastic parameters using flexion tests. The
torque was used as the material response and the experimen-
tal and numerical curvature/torque curves were compared for
several parameters sets until fitting was reached. Both of
these studies have provided satisfactory results but none of
them was using full-field measurement as experimental data.
Meanwhile, [34] has developed a similar approach with the
use of full-field measurements. Shear-like tensile tests were
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performed and displacement fields were measured. A cost
function was built considering global reaction force and dis-
placement fields as the material responses. For the sake of
simplicity, only the early beginning of the plastic process was
taken into account and neither high strain nor necking was
considered. Recently this work has been completed by [22].
This latter study deals with through necking analysis of basic
tensile specimens with side notches. This geometrical singu-
larity ensures the necking to occur at the center of the sam-
ple and improves the heterogeneity of the strain fields. The
identification of two elastic-plastic model is achieved but no
conclusion is drawn upon the contribution of considering the
whole deformation process instead of the early stages of it.
Finally the work of [29] and [7] also has to be noticed. As
an improvement to the works presented above, it introduced
the use of a significantly more heterogeneous tests thanks to
bi-axial tensile tests. Cruciform samples are then used to
identify elastic-orthotropic parameters.

The present paper aims to show that identification quality
improves and the required number of experiments decreases
as the heterogeneity of strain fields increases. For this pur-
pose, the FEU inverse method is applied to several sample
geometries, using Digital Image Correlation data. Three ge-
ometries with increasing strain field heterogeneity are tested,
and provide the parameter set of an anisotropic elastic-plastic
model. For the sake of comparison, the same identification
procedure is used for the three geometries. Boundary condi-
tions of the FE model are strictly applied from the experiment
and allows the FE model to fit perfectly the experimental de-
formation process. Thus, the identification calculations are
run again using virtually noised experimental data in order
to exhibit and quantify the sensitivity of the identification
method to measurement noise. Finally, validation tests are
led on a deep-drawing operation and results are used to com-
pare the quality of the obtained parameter sets.

Experimental Setup

Material and samples geometries

All the samples under investigation are made of Commercially
Pure titanium T40, the limits of the chemical composition of
the material are given in Table 1. The average grain size
has been estimated to 6.4 µ m. This material, broadly used
in aeronautics and biomedical domains, consists of hot-rolled
sheets where the 0◦ direction is chosen to fit the rolling direc-
tion. As a consequence, 90◦ is the transverse direction of the
rolled sheet. Sheet thickness is 0.5 mm.

As shown in Fig. 1, three sample shapes were used. A
basic tensile sample (no.1) as used by [32], [13] and many
others, will first be investigated. Then, the sample geometry
is added a hole (no.2) as suggested by [28] and finally a shear-
like tensile sample (no.3) will be studied. This latter sample,
originally proposed by [34], is expected to exhibit both tensile
and shear behaviours.

Full-field measurements

In the present study, The Digital Image Correlation method
is used to assess the local displacements at the sample surface

with 7D correlation software [43]. The experimental setup is
shown in Fig. 2a.

Tests are led on a 5 kN INSTRON tensile device.
The samples undergo a prescribed displacement speed of
5 · 10−5 m · s−1 (corresponding to an approximate strain rate
ε̇ ≈ 1 · 10−3 s−1) until their ruin. Samples are speckled us-
ing black and white mate painting sprays. Digital images are
recorded during the deformation process at a frequency of
0.25 Hz using a Nikon D200 camera (focal distance 105 mm).
The image resolution is set to 2592 × 3872 grey level pixels
and stored as 8 bit (Fig. 2b). Moreover, axial reaction force is
recorded every 10 µs all along the test. For each test, the ini-
tial image is split in square elements that create a virtual grid
upon the sample surface. The resolution of this grid (extenso-
metric base) is set to 16×16 pixels (Fig. 2b), corresponding to
0.32× 0.32 mm2. The correlation process consists in looking
for the most probable deformed pattern in the neighbour-
hood of each node of this grid in terms of grey level. The
displacement fields of each element are then assessed by the
means of a bi-linear interpolation. Finally, the displacement
at image n is assessed by correlating the nth image with the
initial/undeformed image. The correlation parameter used in
the present study are summarized in Table 2.

The assessment of DIC technique uncertainties remains a
topical issue [5], [40] and [22]. Several parameters may have
influence on the measurement noise such as lighting, strain
gradients, off-plain displacements, numerical noise of the cam-
era and of course the quality of the speckle [37]. However, the
works of [5] and [8] (performed with the correlation parame-
ter presented in Table 2) state that the order of magnitude of
the DIC measurement noise remains inbetween 0.01 and 0.1
pixel.

Identification Scheme

Inverse flowchart

In the present study, the FEU solving flowchart (Fig. 3) is cho-
sen and applied to parameters identification . Experiments
are led and post-processed using 7D correlation software then
data are imported into Matlab. A finite element model of
the sample is designed and meshed using Abaqus-Explicit.
This latter FE model is multiply solved for several sets of
material parameters using the in situ prescribed conditions
obtained by the means of DIC. Then, the FE calculation out-
puts are post-processed using Matlab in order to build the
cost function that leads to the solution of the global identifi-
cation problem.

Cost-function

Since, the comparison between experimental and numerical
fields has to be computed, the relevant point is the manner
of writing this comparison down. Several authors such as
[34], [22] and [7] are using a weighted least square formulated
cost-function. The introduction of a weighting matrix has
basically two main kinds of formulation. First, it could be
made up of the experimental errors and make the cost func-
tion a statistical estimator as did by [28] or [34]. Each nodal
response is then compared with its experimental equivalent
and divided by the estimated error at the considered material
point. As a consequence, the more reliable a measure is, the
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Table 1: Chemical composition limits of commerciallypure grade 2 titanium
Element Ti C Fe N O H

Weight (%) Bal. 0.10 0.30 0.03 0.25 0.015
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Figure 1: Investigated geometries and DIC analysis zones (dimensions in mm).

(b)(a)

Figure 2: (a) Experimental setup. (b) 2592× 3872 grey level images from Nikon D200 camera and longitudinal displacement
field calculated by 7D correlation software.

Table 2: Main parameters of the Digital Image Correlation
Grid pattern grey level displacement fields
size size interpolation interpolation

16× 16 16× 16 bicubic bilinear
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Figure 3: Iterative solving flowchart of the inverse problem.

more weight it has on the identification solution. Another ap-
proach consists in considering the weighting matrix as a way
to give each material point the same weight. This solution
consists in dividing each local residual by the measured re-
sponse at this point. Such a formulation, used by [38], [7] and
[24], also allows the use, in the same cost-function, of several
kind of quantities exhibiting miscellaneous orders of magni-
tude. This latter approach is chosen in the present study.

Moreover, the residual quantity can be made of force
and/or displacement data [23]. As mentioned in [3], con-
sidering both force and displacement in the cost function for-
mulation lead to a better suited solution when strain concen-
tration is involved (geometries no.2 and no.3 for instance).
Therefore, in the present study, force and displacement data
has been mixed using a weighting matrix in order to obtain a
dimensionless formulation of the cost function. Indeed, longi-
tudinal and transversal displacements are added to the global
reaction force residual and the local difference between these
three measured data and the calculated values is the function
to be minimized. This cost-function can be written as follows:

f(p) =
1

2

[

Nt,Ns,Nn
∑

i,j,k=1

[





uexp
x,jk(p)− unum

x,jk

max
j,k

(uexp
x )





2

+





uexp
y,jk(p)− unum

y,jk

max
j,k

(uexp
y )





2

+Nn

(

F exp
j (p)− Fnum

j

maxj(F exp)

)2
]

i

]
1

2

.

(1)

Where p is the unknown parameter column, ux is the dis-
placement along the x axis (longitudinal axis) ,uy the dis-
placement along the y axis (transverse axis) and F is the
global reaction force of the sample. The scalar Nn is the num-
ber of nodes in the finite element mesh, Ns is the number of
time steps taken into account, and Nt is the number of tests
that are considered. Finally, maxj,k(u

exp
x ), maxj,k(u

exp
y ), and

maxj(F
exp) are respectively the nodes greatest values over

one step-time of the longitudinal and transversal displace-
ments and the global reaction force. Hence, the optimal set
of parameters must satisfy three conditions: matching the
two displacement fields and the global force response (which

is actually not a field response but a punctual one). The next
section discuss the algorithm used to solve this optimization
problem.

Optimization algorithm

Various numerical algorithms are available to solve non-linear
least square problems represented by a cost function such as
Eq. (1). Here, a Levenberg-Marquardt (LM) [30] and [33]
method is used to minimize the cost-function. This method
is known to have several advantages among which can be sin-
gled out that it does not require the assessment of the Hessian
matrix and it’s thus very easy to implement. Let’s recall that
the updating equation of a LM method is:

(

JTJ + λLMI
)

(

p(k+1) − p(k)
)

= JT r(p) (2)

Where r(p) is the residual column constituted by the three
(ux, uy and F ) relative field differences at each node. Ma-
trix J is the Jacobian matrix that is often called sensitivity
matrix. This latter matrix is assessed by computing the par-
tial derivative, among each constitutive parameter, of every
single system response (see section Sensitivity analysis). Fi-
nally, λLM is a damping parameter that has been introduced
by [30] to stabilize the Gauss-Newton method in the vicinity
of the optimum. The experimental errors on the measured re-
sponses (displacement fields and global reaction forces) lead
to the inexistence of an optimal parameters set. In other
words, updating the constitutive parameters is not sufficient
to obtain numerically the exact observed behaviour. Hence,
the optimization problem is ill-posed [28] and a basic Gauss-
Newton’s method may become very unstable around the op-
timum. The addition of the λLM parameter improves the
robustness of the algorithm near the optimum. As proposed
by [31], the value of λLM is assessed as follows:

λLM = θ ‖r(p)‖+ (1− θ)
∥

∥JT r(p)
∥

∥ (3)

Where θ ∈ [0, 1] is a real parameter that must be set a
priori and that rules both accuracy and convergence rate of
the algorithm. In the present work θ = 8 · 106.
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Sensitivity analysis

The so-called sensitivity analysis consists in assessing the
terms of the Jacobian matrix. As presented by [41], sensi-
tivity assessment is a major issue in parameter identification.
For this purpose a broadly used approach consists in com-
puting sensitivities by the means of finite differences. Even
though the calculation time is high, this approach is easy and
fast to implement. Solving each iteration require only k + 1
calculations if a forward (or backward) scheme is chosen. For
the sake of calculation time, a forward finite difference scheme
is used in this work, therefore sensitivities are assessed by the
following assumption:

Ji,j =
∂ri(p)

∂pj
≈

ri(p)− ri(p+∆pj)

2∆pj
(4)

Where j is the number of constitutive parameters to be
identified and i is the number of system response, ∆pj is
the relative perturbation on the jth parameter. The choice
of this perturbation ∆pj remains a controversial topic. In-
deed, the above equation exhibits a truncation error of ∆p2j
that tends toward zero when the perturbation decreases. On
the other hand, it has to be noticed that the decreasing of the
perturbation value increases the weight of the round-off error,
therefore the value of ∆pj results from a compromise between
these two errors. In the present study the perturbation value
is set to ∆pj = 0.01× pj .

Material and Numerical Model

Numerical model

The numerical model, developed using Abaqus, duplicates
the experiment in terms of geometry and boundary condi-
tions. The geometry is measured on the samples, modeled
and meshed using quadrangular shell elements (the number
of nodes varies from 1458 to 2201 depending on the consid-
ered geometry). The obtained meshes fit the three geometries
under investigation. As shown in Fig. 4, boundaries condi-
tions, are measured from the experiments using DIC and the
obtained displacements are prescribed at each node of the
upper and lower bounds of the mesh [1, 44, 10]. Both longi-
tudinal and transverse displacements are imposed. However,
the data measured from the DIC may not properly fit the
chosen nodes of the FE mesh. In other words, the displace-
ment data may be obtained at a material point that does not
match a node of the FE mesh because DIC grid and FE mesh
are different. Therefore, the DIC displacement fields are in-
terpolated at each node of the FE mesh so that the fields
comparisons (needed for the cost function assessment) can be
computed at the same material points (Fig. 4). This projec-
tion is processed using bi-linear interpolation shape functions.

Constitutive equations

The presented identification scheme can basically be applied
to any kind of constitutive model. In the present study, a clas-
sical anisotropic elastic-plastic model is considered. The elas-
tic strain is here defined by the Hooke’s formulation, where
E and ν, respectively the Young’s modulus and the Poisson’s
ratio are previously identified (E = 111.8 MPa and ν = 0.34).
A large strain framework is used and σ is the Cauchy stress

tensor, E is the Green-Lagrange strain tensor. The general-
ized standard material formalism provides the plastic strain,
that can be written as follows:

dEp = dλ
∂f(σ)

∂σ
, dλ ≥ 0 (5)

where dλ is a non-negative scalar. This latter formulation
allows the introduction of a yield surface and therefore a yield
criterion can be written:

f(σ) = J (σ)−R− σy (6)

Where R is the current yield stress, σy = 368.0 MPa is the
initial yield stress and J (σ) is the equivalent plastic stress.
In the present study, an orthotropic material behaviour will
be assumed and the Hill’s 1948 [19] criterion is used. This
criterion is commonly used for sheet metal anisotropic be-
haviour and it provides an expression of the equivalent stress.
In the case of plane stress, which is assumed here, the Hill’s
criterion gives:

J (σ) =
√

Fσ2
22 +Gσ2

11 +H(σ2
11 − σ2

22) + 2Nσ2
12 (7)

As a consequence, the description of material anisotropy
only requires four parameters to be identified. As presented
by [20], in practice the use of the Lankford’s coefficients is
easier. The present study will focus on the determination of
these coefficients that are defined in section Standard identifi-
cation. Moreover, the material hardening described by R has
to be considered. Several models have been developed in the
last decades in order to take into account those effects [16].
For the sake of simplicity, the Ludwik’s flow rule is chosen, it
is both easy to implement and to identify because only two
parameters are needed. The writing of such a flow rule is
recalled as:

R = K(Eeq
p )n (8)

Where, E
eq
p is the equivalent plastic strain. K and n

are two parameters to be identified. Finally, an anisotropic
elastic-plastic model is in use and the present identification
study deals with only six parameters.

Results and Validation

Standard identification

In order to offer a comparison criterion to the results obtained
by the means of inverse method, a standard identification has
been proceeded. As presented by [42], this approach is based
on several assumptions and provides a quick assessment of
material constitutive parameters. The strain fields obtained
using DIC are used to localize the necking area of the sample.
Therefore, only the local strain data are considered and the
volume conservation assumption is made to allow the assess-
ment of the width at the necking location and the trough-
thickness Hencky’s strain (εpIII) [17]. Thus, the true stress
can be computed and plotted versus the plastic equivalent
strain (Fig. 5a). Hence, the hardening curve is fitted using
a least-square routine which leads to identify both K and n:
the Ludwik’s parameters.

Anisotropic behaviour is also identified and the Hill’s pa-
rameters are assessed through the Lankford’s coefficients.
Let’s recall that those coefficients are defined as follows:
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Figure 4: Experimental field measurements and boundary conditions were interpolated from the DIC analysis.
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rθ =
dεpIII
dεpII

(9)

Where θ is the angle between the rolling and the applied
tensile direction. This ratio of the transverse plastic strain
rate to the thickness plastic strain rate is experimentally rep-
resented by the slope of the measured strains in the tensile
tests led at 0◦, 45◦ and 90◦ from the rolling direction. Their
respective least-square lines are also plotted in Fig. 5b. Fi-
nally the three Lankford’s parameters: r0, r45 and r90 are
identified and lead to assess the four Hill’s parameters that
are summarized in Table 3.

Inverse identification

For the sake of calculation time, the parameters identifica-
tion is processed considering only a restricted number of time
steps arbitrary chosen over the hardening curve. This number
Ns varies inbetween 5 and 7 and they can be seen as markers
in Fig. 6.

For every geometry, three tests are considered (Nt = 3):
at 0◦,45◦ and 90◦ except for geometry no.3 where two iden-
tification procedures are run: the first with Nt = 3 and the
second with Nt = 2. This aims to show that when strain fields
heterogeneity increases, the number of required tests may be
decreased without impairing the identification quality.

In order to impose the necking to occur at the same loca-
tion in experiments as in the FE analysis of geometry no.1, a
small width default (0.05 mm on each side) is introduced on
the initial mesh. No special treatment or assumption is made
for the other analysis. The initial hardening parameters are
arbitrarily chosen equal to K = 550 MPa and n = 0.3, the
Hill’s coefficients are chosen to initially match the isotropic
case: F = G = H = 0.5 and N = 1.5. The identified pa-
rameters are summarized in Table 3. and compared to those
identified using the standard method.

Table 3 shows that the proposed inverse method is able
to decrease the number of tests needed for identification and
thus the experimental work. Indeed parameters sets no.3-a
and no.3-b are very similar and can be considered as equal
(denoted set no.3).

As shown in Fig. 6, the four obtained sets (sets no.1, no.2,
no.3 and the standard identification set) are used to predict
the global reaction force of three tests with the different ge-
ometries. It can be seen that the set no.3 is the most able to
provide a good force prediction regardless of geometry. The
fitting of the set no.1 is very poor. Indeed this set, identified
in a pure tensile load case, appears to be unable to predict
the global reaction force when other kinds of strain fields are
involved (e.g. test no.3). This emphasizes the improvement
of parameter identification when heterogeneous strain fields
are used.

Moreover, Fig. 7 shows the identified resulting displace-
ment fields versus the experimental ones for set no.3, the
residual values are also plotted for both longitudinal and
transverse displacement fields. As can be seen, the optimiza-
tion process leads to the fitting of experimental and numerical
responses.

Experimental noise sensitivity

Since the parameter set is identified, the predicting capability
of it may be investigated. As pointed in many former studies
[11, 18, 35, 29, 2, 4, 36, 39], investigating the noise sensitivity
if the identification procedure is a good way to evaluate its
stability. In practice, the noise of the measuring tools may
be responsible for a high deviation of the obtained results.
As said above, the accuracy of DIC method is limited and
the measurement uncertainties assessment is a tough task.
However some authors [8, 5] state that their magnitude re-
mains inbetween 0.01 and 0.1 pixel. In the present study, dis-
placement fields were artificially noised using a sample-wide
random white noise of which magnitude varies. A random
uniform noise is applied to both longitudinal and transverse
displacement fields of the geometry no.3. The noise magni-
tude An is set to several increasing values then the obtained
parameter sets are compared. Results are summarized in Ta-
ble 4.

In addition, for the three noised sets, the predicted longi-
tudinal displacement field is compared to the noiseless field.
Fig. 8 shows the relative error e(Ai) for the three noised sets
versus the noiseless field such as:

e(Ai) =
Unum
x (p(Ai))− Unum

x (p(A0))

Unum
x (p(A0))

(10)

As can be noticed, the increasing of measurement noise
quickly impairs the quality of the predicted displacement
fields. This analysis shows that the FEU inverse method is
obviously noise sensitive but also that for the assumed noise
magnitude (between 0.01 and 0.1 pixel) the results disper-
sion remains acceptable (inferior to 3.9%) and in the range of
experimental uncertainties. Moreover, the obtained disper-
sion for 0.1 pixel matches other published results for inverse
methods such as [39] and [22].

Validation test

In order to verify the quality of the identified parameters sets,
validation tests are carried out. The three identified param-
eters sets are used to simulate the same deep-drawing op-
eration. Results are compared to the experimental data in
order to check which of the identified sets is the most able to
reproduce the observed experimental behaviour.

On one hand a deep-drawing device (Fig. 9a) is used for
the purpose of experimental validation. The elastic strength
of both springs is previously identified and the device is op-
erated using the same tensile machine as described above.
Three circular blanks following the geometrical specification
given in Fig. 9b are deep-drawn while operating force is
recorded. Hence, the geometrical responses of the three ob-
tained cups are measured. As shown on Fig. 9c the upper
profile of the cups exhibit anisotropic horns and the magni-
tude and frequency of it are investigated and measured. A
Coordinate Measuring Machine (CMM) is used to measure
the height of 120 points evenly spread along the upper pe-
riphery. On the other hand, a FE model is developed to
simulate the experimental deep drawing process. Solid ele-
ments are used to model the blank while die, blank-holder
and punch are considered as analytical rigid surfaces. The

∗2.66 GHz and RAM 0.98 Go
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Table 3: Parameters identified by inverse method.
Standard Geom. no.1 Geom. no.2 Geom. no.3-a Geom. no.3-b

identification
Ns - 6 4 6 6
Nt 3 3 3 3 2
Orientations 0◦-45◦-90◦ 0◦-45◦-90◦ 0◦-45◦-90◦ 0◦-45◦-90◦ 0◦-45◦

K (MPa) 366 349 267 284 280
n 0.46 0.45 0.40 0.50 0.49
F 0.30 0.31 0.21 0.16 0.16
G 0.19 0.10 0.22 0.18 0.20
H 0.81 0.90 0.78 0.82 0.78
N 2.22 0.95 2.00 2.02 2.02
fend/f0 - 22.0% 11.2% 9.35% 7.37%
CPU∗ (in s) - 3858 5835 9523 5376
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Figure 6: Comparison of the global force predictions of the four identified parameter sets.
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Figure 7: Experimental and identified displacement fields for the geometry no.3-a at 45◦ (5th time step). Residual fields
show the zones of good and bad predictions.

Table 4: Parameters sensitivity to measurement noisefor shear-like geometry (no.3).
An (pixel) 0 0.01 0.1 1
An (µm) 0 0.2 2 20
K 284 277 269 334
n 0.50 0.48 0.49 0.48
F 0.16 0.16 0.14 0.25
G 0.18 0.19 0.15 0.26
H 0.82 0.81 0.85 0.74
N 2.02 2.01 2.01 2.01
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Figure 8: Relative error of the longitudinal displacement fields for the three noised set.
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Figure 9: (a) Deep-drawing device, (b) cup geometry and (c) experimental cup shape.

applied load on the blank-holder is picked from the experi-
mental measurements. The friction coefficient is set to 0.2 in
agreement with former results [27]. Finally the identified pa-
rameter sets are successively used. Then, the upper profile is
compared to the experimental one (Fig. 10). The simulations
with inverse parameter sets exhibit very scattered anisotropic
responses, indeed eventhough geometries no.2 and no.3 show
a good fitting with the experimental measurements, the re-
sponse of geometry no.1 is poor. This latter set predicts horns
at the wrong place and with a bad magnitude. The simulation
using the parameters identified using geometry no.3 predicts
more accurately the magnitude of the horns than geometry
no.2 and no.1.

The results of the validation tests, presented in Fig. 10
show that the quality of the shape prediction increases with
the strain field heterogeneity. The numerical shape of the cup
has a better fitting of the experimental shape when shear-
like identified parameters are used. Eventhough the stan-
dard identification set remains the best for shape prediction,
among the three inverse sets, the increasing of the strain het-
erogeneity in the sample lead to a more accurate identification
of the material models.

Conclusions

In the present study, a FEU method has been used to iden-
tify the parameters of an anisotropic elastic-plastic model
using full-field measurements. Three geometries that ex-
hibit increasing strain heterogeneities have been investigated.
Boundary conditions were picked at the borders of the DIC
domain and strictly duplicated in the FE model. The results
show that considering two experiments can provide the same
results as three. Hence, the increasing of strain fields hetero-
geneity allows to perform less tests than homogeneous tests.
Validation tests and comparisons between the identified pa-
rameter sets have shown that the ability of predicting the real
deformation process is improved when the strain heterogene-
ity increases. However, the standard identification method re-
mains the most able to predict material behaviour. This high-
lights the necessity of more heterogeneous tests when inverse
methods are used. Finally, experimental data were noised
in the range of known admissible DIC uncertainties. The
obtained dispersions remain in the range of other published

works. The presented identification tool provides satisfying
results with kinematics data but cannot identify fully cou-
pled thermal-mechanical models so far. Thus, further works
will focus on considering both kinematic and thermal fields
but also on the ways to experimentally obtain heterogeneous
strain fields
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PhD thesis, Université de Savoie, 2005.
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[15] M. Grédiac. The use of full-field measurement methods
in composite material characterization: interest and lim-
itations. Composites Part A: Applied Science and Man-
ufacturing, 35:751–761, 2004.

[16] Z. Gronostajski. The constitutive equations for FEM

analysis. Journal of Material Processing Technology,
106:40–44, 2000.

[17] C. G’Sell, J.M. Hiver, and A. Dahoun. Experimental
characterization of deformation damage in solid poly-
mers under tension, and its interrelation with necking.

International Journal of Solids and Structures, 39:3857–
3872, 2002.

[18] T. Harth, S. Schwan, J. Lehn, and F.G. Kollmann. Iden-
tification of material parameters for inelastic constitutive
models: statistical analysis and design of experiments.
International Journal of Plasticity, 20:1403–1440, 2004.

[19] R. Hill. A theory of the yielding and plastic flow of
anisotropic metals. Proc. Roy. Soc. London Ser. A,
193:281–297, 1948.

[20] R. Hill. A user-friendly theory of orthotropic plastic-
ity in sheet metals. International Journal of Mechanical
Sciences, 35:19–25, 1993.

[21] M . Ikehata. Inversion formulas for the linearized prob-
lem for an inverse boundary value problem in elastic
prospection. SIAM Journal for Applied Mathematics,
50:1635–1644, 1990.

[22] J. Kajberg and G. Lindkvist. Characterization of mate-
rials subjected to large strains by inverse modeling based
on in-plane displacement fields. International Journal of
Solids and Structures, 41:3439–3459, 2004.

[23] K.T. Kavanagh and R.W. Clough. Finite element appli-
cations in the characterization of elastic solids. Interna-
tional Journal of Solids and Structures, 7:11–23, 1971.

[24] A. Khalfallah, H. Bel Hadj Salah, and A. Dogui.
Anisotropic parameter identification using inhomoge-
neous tensile test. European Journal of Mechanics
A/Solids, 21:927–942, 2002.
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