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Urban heat islands (UHIs) and their energy consumption are topics of

widespread concern. This study used remote sensing images and building and

meteorological data as parameters, with reference to Oke’s local climate zone

(LCZ), to divide urban areas according to the height and density of buildings and

land cover types. While analyzing the heat island intensity, the neural network

training method was used to obtain temperature data with good temporal as

well as spatial resolution. Combining degree-days with the division of LCZs,

a more accurate distribution of energy demand can be obtained by di�erent

regions. Here, the spatial distribution of buildings in Shenyang, China, and the

law of land surface temperature (LST) and energy consumption of di�erent LCZ

types, which are related to building height and density, were obtained. The LST

and energy consumption were found to be correlated. The highest heat island

intensity, i.e., UHILCZ 4, was 8.17◦C. The correlation coe�cients of LST with

building height and density were −0.16 and 0.24, respectively. The correlation

between urban cooling energy demand and building height was −0.17, and

the correlation between urban cooling energy demand and building density

was 0.17. The results indicate that low- and medium-rise buildings consume

more cooling energy.

KEYWORDS

urban heat island, energy consumption, degree-days, neural network, air temperature

inversion

Introduction

Climate change has become a formidable challenge faced by all countries in the world

because of its possible consequences (1). It impacts sea level rise, biodiversity, agricultural

production, frequency of extreme weather, human health, and energy demand (2). There

is a direct relationship between climate change and energy demand. Climate warming

mainly results from the excessive absorption of long-wave radiation from the underlying

surface by greenhouse gases (3). Large quantities of fossil fuels are utilized to meet the
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needs of human production and life processes, resulting in the

emission of greenhouse gases (4). Among them, global building

energy consumption accounts for ∼20 to 40% of total energy

consumption and∼33% of greenhouse gas emission (5).

To cope with rising temperatures and manage living

standards, residents increase the use of air-conditioning and

other refrigeration facilities to reduce indoor temperatures, but

these measures in turn intensify the heat island effect. The

environmental changes in cities are more complex, owing to

many impervious surfaces and human activities (6). High-

density buildings change the path and quantity of regional

energy absorption and storage, flow and reflection, release, and

consumption (7). The response of energy consumption and

demand to temperature rise is more complicated. There are

differences in the temperature of cities in different regions

and scales, at different times and seasons, and even in the

distribution characteristics of temperature within cities (8, 9).

In general, the growth in expenditure caused by the increase

in cooling demand exceeds the savings brought about by the

reduction in heating demand, especially at low latitudes. For

every 2◦C increase in the average land surface temperature

(LST), the global net building energy expenditure will increase

by 0.1% of the total global economic expenditure (10).

The estimation of energy consumption concentrates on the

city scale, and the estimation methods can be divided into

two categories: top-down and bottom-up (11). The top-down

approach is based on statistics and uses regional urban data to

estimate the spatial distribution of energy consumption across

cities, based on macroeconomic indicators such as population

density, income, energy prices and types, and urbanmorphology

(12). The bottom-up approach is based on each individual

building and can be a statistical or physical-based hybrid model

(13). Previous research has shown that the net energy impact of

the urban environment depends on climate type (14), the urban

context density, and functional and structural characteristics of

buildings (15).

To improve the accuracy of bottom-up methods, some

studies have incorporated local climate into the energy

performance simulation of urban buildings. The urban heat

island (UHI) effect, which refers to the phenomenon wherein

the temperature in cities is higher than that in suburban rural

areas (16), is also considered in the estimation of building

energy consumption. Palme et al. (17) put forward the method

of incorporating the UHI effect into building performance

simulation and found that when UHI is incorporated, the energy

demand increased by 15–200%. However, simulation methods

are often calculation-heavy, and the relationship between urban

features and energy consumption is indirect and unclear.

The intensity of heat islands is generally measured by the

temperature difference between urban and rural areas. However,

there has been no unified statement on how to define urban and

rural areas. Over the past century, many scholars have made

the division based on population density, building density, and

landscape differences, or used gradients to illustrate problems.

The duality of urban and rural areas has weakened with the

development of cities (18, 19). Stewart and Oke (20) proposed

the local climate zone (LCZ) concept to study UHIs, in which the

city is divided into different areas according to the height density

of buildings and other ground cover. Wong et al. (21) found that

the influence of floor area ratio on temperature in Singapore is as

high as 2◦C, and buildings can save 4.5% on energy consumption

by improving urban form. This deconstruction of urban internal

structure divides it into organizational units, which can account

for the internal form of buildings while segmenting urban areas,

and is suitable for studying the influence of urban form on the

thermal environment and energy demand.

The scope of energy consumption is highly complex, and all

climate changes determined by the urban environment should

be considered when performing simulations. For this reason,

some coupling techniques between the building energy model

and microclimate CFD model have been proposed (22, 23).

However, this considers too many measured data (such as

climate, wind speed, temperature, building texture, and thermal

radiation), which require longer calculation times and higher

costs. This is unfavorable for discussing the continuous changes

of heating and cooling energy demand in the future. Invidiata

and Ghisi (24) also emphasized that meteorological data were

not updated in time in the process of estimating indoor air

temperature. Obtaining reliable time-sensitive data to evaluate

energy consumption is a major challenge in this research.

The scope of energy consumption is highly complex.

Cooling energy consumption for the thermal environment

under the UHI effect can be calculated from electricity

consumption and remote sensing inversion data (25), such as

the effective U-value method, degree-days, bin method, load

frequency table method, equivalent full load hours, weighting

factor method, and heat balance method (26). For cities, the

degree-days method is simple and suitable for larger areas

(27); however, traditional degree-days can only describe a

single region at once and cannot analyze the distribution of

energy consumption within the entire city. Combined with local

climatic zone, the influence of different building forms and land

use types on the urban thermal environment and refrigeration

energy consumption can be examined in more detail. This

macroscopic and easy-to-measure method is more universal

and operable.

This new attempt requires more spatial distribution density

of meteorological data, and traditional station data cannot

meet the requirements. Traditional interpolation analysis using

meteorological station data is less accurate. Remote sensing data

is appropriate as continuous data. LST data is used frequently for

calculations of the surface heat island, whereas for the cooling

energy demands of urban dwellers indoors, air temperature

is clearly more appropriate. Mesoscale weather Research

and Forecasting Model and neighborhood-scale microclimate

simulations, for example, are not suitable for urban studies (28).
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Of the methods that can be applied, regression statistics is the

simplest and easiest to build; however, establishing a relevant

model depends on the time and place of data acquisition,

which may cause large errors. The temperature-vegetation index

method is highly dependent on plants; therefore, it is not

suitable for cities with a large impermeable surface coverage.

The surface energy balance method has good portability and

universality, but many physical parameters needed by the model

cannot be obtained directly by remote sensing, and the data

cannot be updated in real time. Such models yield sufficiently

accurate estimates, provided that all the required parameters

are involved in the calculation. The parameters is not always

possible, and thus, the data-driven model was selected. Neural

network machine learning relies on large amounts of sample

data, which can experience difficult modeling problems starting

as a black box and express the nonlinear relationship between

LST and air temperature (29, 30).

This study used remote sensing images, building data,

and meteorological data as parameters and referred to

Oke’s LCZ method to divide urban areas according to the

height and density of buildings and land cover types. The

research attempted to apply neural networks for retrieving air

temperature to calculate cooling energy demand, combining

the number of degree days with the division of local climatic

zones. The aims of the study were to improve energy demand

structure of space and provide a relevant reference for urban

planning under the prerequisite of ensuring the comfort of

urban residents.

Materials and methods

Study area

Shenyang City (Figure 1) is located in Northeast China,

central Liaoning (122◦24′59′′-123◦48′30 E; 43◦2′25′′-

41◦11′53′′N). The terrain gradually changes from hills in the

northeast to plains in the southwest. The region has a temperate,

semi-humid continental climate. Rainfall is concentrated in

the summer months, but the area is sunnier than South China,

making it conducive to the acquisition of remote sensing images.

It is the political, economic, and cultural center of the Northeast

region, as well as an important transportation hub. The building

types are diverse and comprised of varying building height

densities. Human activities have affected this area, leading to

local climate change. In recent years, the annual maximum

temperature in Shenyang exceeded 38◦C in the summer.

Data sources and processing

The data used mainly included MODIS remote sensing,

temperature, building outline, land cover, and administrative

division. Table 1 contains detailed information on the remote

sensing platforms and related data processing. In terms of

time selection, according to the “Uniform Standard for Civil

Building Design” GB 50352-2019, building climate zoning uses

the average temperature in July as the main reference for

summer. In traditional Chinese solar terms, dog days, the days

of highest temperature generally start in mid-July. Considering

the availability of data, the study period ranged from mid-

July to early August. The technical flowchart is shown in

Supplementary Figure 1.

Local climate zone

The urban form and nature of the surface are one of the

main reasons for the difference between the urban LST and

air temperature. In this study, we referred the definitions of

Stewart and Oke (20) to divide the city into LCZ A–G according

to the types of natural cover (Detailed classification diagrams

are in the Supplementary material). Vertically, the height of

the building class was divided from low-rise to super high-rise

buildings at consistent intervals of three floors. Horizontally, the

building densities were divided into dense and open building

groups with a boundary of 40%. Accordingly, LCZ 1–10 were

obtained (31). Finally, 17 categories were obtained, as shown in

Supplementary Table 1. The height (BH) and density (BD) of the

buildings were calculated on a 30 × 30m grid using Eqs. (1)

and (2).

BH =

n
∑

i=1
Hi

n
(1)

BD =

n
∑

i=1
Sbuilding

Sgrid
(2)

Where n represents the number of single buildings in a grid,

Hi represents the number of floors of the i-th building in a grid,

Sgrid represents the area of a grid, and Sbuilding represents the

base area of all buildings in the grid.

Heat island e�ect intensity

The LST was retrieved using Tan Zhihao’s single-

window algorithm, and Landsat was selected for heat

island intensity analysis (32) (see the calculation section

of the Supplementary materials). The intensity of the heat

island effect is usually measured by the temperature difference

between urban and rural areas. Stewart and Oke combined

this temperature difference with the local climate zoning of the

city and defined the formula of UHI intensity as the difference

between a certain type of LCZ (X) and LCZ D (low vegetation,
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FIGURE 1

The location of the study area.

such as grass) (33). The intensity of the heat island effect is

shown by Eq. (3).

UHILCZX = TLCZX − TLCZD (3)

Where UHILCZX and TLCZXrepresent the heat island effect

intensity and LST of a certain type of LCZ X, respectively, and

TLCZD represents the LST of the LCZ D type.

Cooling energy demand

Using the method of combining cooling degree-days (CDD)

(34) with LCZ, we calculated the change in building energy

demand for different types of LCZ at different summer

temperatures. The basic formula is shown in Eq. (5). According

to previous experience, 23–24◦C is the most comfortable

ambient temperature for human life (35), and the difference

between the interior design temperature of a building and the

heat balance temperature of the building is usually 3–7◦C (36).

Finally, the base temperature of the cooling day was determined

to be 26◦C.

CDD26 =

∑

days

(

t − tref

)+

(4)

Where CDD26 represents the number of cooling degree-

days with 26◦C as the base temperature, t is the average

temperature of approximately a month, and tref is the

base temperature.

Weather station data are generally used when calculating

the number of degree-days. However, the meteorological station

data were discrete point data, and were not detailed enough for

research on urban interior building patterns. Therefore, we used

remote sensing images in this study to retrieve air temperature

as the basic temperature data calculated by CCD to evaluate the

energy demand of buildings in a typical month.

Considering the accuracy and difficulty of calculation,

the four factors, namely remote sensing albedo, normalized

difference vegetation index (NDVI), elevation, and LST, were

selected (37–39). The meteorological station data in the study

area were used as the verification data, and the neural

network regression model (40, 41) was used to train a

model for inversion of air temperature. After several attempts,

the training algorithm was finally settled on Levenberg-

Marquardt, a toolbox already written in Matlab. For MODIS

MCD43C3 products, the daily surface albedo α of the

short-wave band can be calculated using Eqs. (5) and (6)

(42–44). Finally, the formula for calculating the building

energy demand under a certain type of LCZ is shown in

Eq. (7).

α = rαw + (1− r) αB (5)

r = 0.122+ 0.5 exp (−4.8 cos θ) (6)

CDD26 = (tLCZX − 26)+ (7)

In the formulas, αW represents the albedo of the white sky,

αBrepresents the albedo of the black sky, r represents the ratio

of the sky scattered radiation to the downward solar radiation,

and θ represents the solar zenith angle of the study area at noon.

The values required in Eqs. (5) and (6) are given in MODIS
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TABLE 1 Data sources and descriptions.

Type Description Time Resolution Data sources Process

Remote sensing data MODIS MOD11A2

(land surface

temperature products)

2018.07.12–

20180.8.04

1 km https://search.earthdata.nasa.

gov

Calculate the average daily

maximum land surface

temperature within the study

time range.

MOIDS MOD13A3

(vegetation

Index Products)

1 km

MODIS MCD43C3

(surface

albedo products)

0.05 deg Obtain the black and white sky

albedo in the shortwave band

(0.3∼5.0µm), also noon solar

altitude angle.

Landsat 8 OLI 30 m

TIRS

100 m

USGS https://glovis.usgs.gov

Meteorologicaldata Daily maximum

temperature

http://www.resdc.cn/ The average daily maximum

temperature corresponding to

the study tie.

Elevation ASTER GDEM V2 2018 30m China Academy of Sciences

http://www.gscloud.cn

Data splicing and clipping

Building outline Building outline and

floor number

2018 – Baidu Map Calculate the height of buildings,

and find the height and density of

the building within a 30m grid.

Land cover Land use cover type 2018 30m http://www.resdc.cn/ –

Administrative boundary – 2020 – – –

MCD43C3. tLCZX is the average air temperature within the study

time range of X under the LCZ system.

Results

Spatial pattern distribution of local
climate zones

The main urban area of Shenyang is dominated by low-

rise buildings, which are widely and evenly distributed, followed

by the middle-rise and mid-high-rise buildings, which are

concentrated in the center of the main urban area. The number

of buildings below 40% density is evenly distributed, rising

steeply up to 40%, reaching a peak, and then slowly falling. In

terms of spatial distribution, urban buildings were high-density

and low-density, with low-density buildings dominating, but

with no specific area of concentration. The LCZ distributions are

shown in Figure 2.

LCZ 10 accounted for 11.69% and featured the largest

proportion of building coverage due to the large number

of villages outside the built-up area; LCZ 9 ranked second,

accounting for 1.66%, and contained mostly residential land.

LCZ 2 accounted for the smallest proportion (0.94%) and was

concentrated in the city center, around the factory, near the

high-speed railway station, and on the south bank of the Hunhe

River. The proportion of LCZ 7 was slightly higher than that

of LCZ 2. Natural cover was dominated by cultivated land in

the northwest and lush forest land in the southeast, accounting

for 39.21 and 25.99%, respectively; sparse forest land accounted

for the lowest coverage (0.30%). The city center of Shenyang

is surrounded by arable land and woodland, but the center

itself has less green space and is crowded by buildings. The

surrounding development requires strengthening.

Urban thermal environment space

The LST (Figure 3) of the building coverage was generally

higher than that of the natural coverage. The average

temperature of various LCZ overall displayed the following

distribution law: LCZ 4 > LCZ 9 > LCZ 5 > LCZ 8 > LCZ

3 > LCZ 10 > LCZ 7 > LCZ 2 > LCZ 6 > LCZ 1 > LCZ E

> LCZ F > LCZ A > LCZ B > LCZ D > LCZ G > LCZ C

(Figure 4).

Among them, the temperature of LCZ D is 33.77◦C. The

highest heat island strength, UHILCZ 4, was 8.17◦C, and the
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FIGURE 2

LCZ distribution in study area. LCZ, Local climate zone.

FIGURE 3

Land surface temperature distribution.

lowest, UHILCZC, was −0.68. The lowest heat island strength of

the building coverage UHILCZ1 was 6.23◦C. The LST changes

of LCZ 1 were the most stable, with a standard deviation of

1.96, while LCZ G showed the most dramatic changes, with

a standard deviation of 4.11, and the standard deviations of

the other types were concentrated in the range of 2.8 ± 0.96.

LST was negatively correlated with building height, with a

FIGURE 4

Distribution of LST in LCZ (LST unit:◦C). LST, land surface

temperature. LCZ, local climate zone. The results are sampled

and counted according to the calculation results associated

with the LCZ grids.

FIGURE 5

Distribution of CDD in LCZ (CDD unit:◦C d). CDD, cooling

degree-days. The results are sampled and counted according to

the calculation results associated with the grid of the di�erent

LCZ plots.

Pearson correlation coefficient of −0.16, reaching significance

at the 0.01 level, and positively correlated with building density,

with a correlation coefficient of 0.24, reaching significance at

the 0.01 level. These results can be explained by the fact that

although higher buildings accumulate artificial materials and

create more light reflections in three dimensions, they also cast

larger shadows on the ground, which reduce the LST.
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FIGURE 6

Correlation between LST (CDD) and building density (LST

unit:◦C).

FIGURE 7

Correlation between LST (CDD) and building height (CDD

unit:◦C d).

Urban cooling energy demand

In neural network estimation of air temperature, 70% of the

data were randomly selected as the training sample, 15% as the

verification sample, and 15% as the test sample to invert the air

temperature. The model mean square error was RMSE= 0.32, R

= 0.92, and R2 = 0.84 (Supplementary Figure 4). According to

these data, the overall range of air temperature was included in

the distribution interval of the LST, and the value was between

28 and 33◦C. The various types of air temperature change ranges

were relatively stable and exhibited low volatility.

The average energy consumption of the building covering

generally presented the distribution law of LCZ 8 > LCZ 3 >

LCZ 9 > LCZ 4 > LCZ 2 > LCZ 7 > LCZ 5 > LCZ 6 > LCZ 1

FIGURE 8

CDD of study area. CDD, cooling degree-days.

> LCZ 10 (Figure 5). Among them, the maximum value of CDD

was 7.00◦C · d, the lowest value was 2.06◦C · d, and the standard

deviation of the different building coverage types varied between

0.232 and 0.76◦C · d. The Pearson correlation between urban

cooling energy demand and building height reached −0.17, and

the correlation with building density was 0.17, both of which

passed the 0.01 level two-tailed significance test. Compared with

the distribution of cooling energy demand, LST is more affected

by building height and density.

Discussion

Impact of local climatic zones on cities

The distribution of air temperature is more concentrated

than that of LST, and the temperature is lower; however, the

distribution difference between different local climatic zones is

not so obvious. LST and cooling energy demand are positively

correlated with building density. Compared with cooling energy

demand, LST is more affected by building density (Figure 6);

however, there is a weak negative correlation between LST and

building height (Figure 7). The negative correlation may be

explained by the addition of super high-rise buildings (43–45).

Although the taller buildings accumulate man-made materials

and produce more light reflection in three dimensions, they

also cast larger shadows on the ground, thus lowering the LST.

The correlation with building height is not as high as that with

building density because of these complex relationships.
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Figure 8 shows that the CDD value gradually increases from

the outskirts of the city to the center, but the range greater

than 5.0◦C · d surrounds the range of 4.5–5.0◦C · d, showing

a concave distribution. This phenomenon was attributed to the

effects of the Hun River, which flows east-to west and appears in

the south-central part of the study area, and Youth Street that

runs north to south and is located in the middle of the city.

The summer winds blow north through the Hunhe River and

pass through Qingnian Street, forming a ventilation corridor

that somewhat controls the regional temperature and reduces

the potential cooling energy demand (46). Based on the dark

red area in Figure 8, for general planning we recommend that

coverage by green spaces (47, 48) or water bodies is increased to

reduce energy consumption, and LCZ8, LCZ3, and LCZ9 should

be focused on and reduced.

The difference of air temperature is not as large as

that of land surface temperature, which also shows the

importance of the material selection of the underlying

surface from the side. It is recommended to increase

vegetation and water area, sprinkle water on the road, and

appropriately reduce the density of urban buildings to reduce

the temperature.

Limitations

The Landsat image for heat island intensity analysis

has relatively high resolution. Although Landsat’s temporal

resolution cannot meet the needs of daily data in the study

time range, the spatial distribution of LST in sunny weather is

still representative.

As a calculation method of cooling energy demand,

the degree-days are simple and effective in characterizing

urban energy; however, this method does not fully

consider the effect of individual building differences

(49, 50). For the study of overall characteristics, these

parameters are simplified in the modeling process, but for

urban planning, these factors are closely integrated with

energy conservation.

The accuracy of the model used in this study was

mainly limited by the remote sensing data and the number

of meteorological stations in the study area. Because the

calculation of energy consumption requires a high temporal

resolution of remotely sensed images, MODIS products

were finally selected from the available data (51, 52). The

air temperature retrieved by combining various factors

can show the characteristics of distribution in space, but

the improvement of the initial data quality can greatly

improve the accuracy of the results. Due to the limited

availability of data, this study selected provincial capital

cities with richer building data for analysis; however,

there are still missing data in some areas. Future studies

should focus on other thermal environment characteristic

indicators, simultaneously consider the energy consumption

requirements of cooling and heating, and use long time series

and high-resolution data.

Conclusions

This study used remote sensing images, building

data, meteorological data, and other basic data, referring

to Oke’s LCZ, to divide urban areas according to

the height and density of buildings and land cover

types, and explored the distribution characteristics of

energy consumption that may be generated by urban

residents’ refrigeration demand in different regional

thermal environments. The following conclusions

were obtained.

The main urban area of Shenyang is dominated by low-

rise buildings, which are widely and evenly distributed, and

mid-high-rise buildings, which are crowded in the center.

The distribution of air temperature is more concentrated

than that of LST, and the temperature is lower; thus, the

difference in the distribution among the various local climatic

zones is not evident.

The LST of the building covering is generally higher than

that of the natural covering. The average temperature overall

displays the distribution law as LCZ 4 > LCZ 9 > LCZ 5 >

LCZ 8 > LCZ 3 > LCZ 10 > LCZ 7 > LCZ 2 > LCZ 6 >

LCZ 1> LCZ E > LCZ F > LCZ A > LCZ B > LCZ D >

LCZ G > LCZ C. Among them, the temperature of LCZ D

is 33.77◦C. The highest heat island intensity of UHILCZ4 was

8.17◦C. The LST is negatively correlated with building height,

with a correlation coefficient of −0.16, reaching significance at

a level of 0.01; and a positive correlation with building density,

with a correlation coefficient of 0.24, reaching significance at the

0.01 level.

The average energy consumption of the building covering

generally presents the distribution law of LCZ 8 > LCZ

3 > LCZ 9 > LCZ 4 > LCZ 2 > LCZ 7 > LCZ 5 >

LCZ 6 > LCZ 1 > LCZ 10. Among them, the maximum

value of CDD was 6.997◦C · d, and the lowest value was

2.06◦C · d. The correlation between urban cooling energy

demand and building height reached −0.17, and the correlation

between urban cooling energy demand and building density

was 0.17, with both correlation coefficients shown to be

statistically significant through a two-tailed significance test (p

< 0.01).

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author/s.

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.992050
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al. 10.3389/fpubh.2022.992050

Author contributions

RY wrote the main manuscript text. JY directed and revised

the manuscript and contributed to all aspects of this work. LW,

XX, and JX conducted the experiment and analyzed the data. All

authors reviewed the manuscript.

Funding

This research study was supported by the National Natural

Science Foundation of China (Grant Nos. 41771178 and

42030409), the Fundamental Research Funds for the Central

Universities (Grant No. N2111003), Basic Scientific Research

Project (Key Project) of the Education Department of Liaoning

Province (Grant No. LJKZ0964), and Innovative Talents Support

Program of Liaoning Province (Grant No. LR2017017).

Acknowledgments

The authors would like to acknowledge all colleagues and

friends who have voluntarily reviewed the translation of the

survey and the manuscript of this study.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.

2022.992050/full#supplementary-material

References

1. He B. Potentials of meteorological characteristics and synoptic conditions
to mitigate urban heat Island effects. Urban Climate. (2018) 18:2426–
33. doi: 10.1016/j.uclim.2018.01.004

2. De Coninck H, Revi A, Babiker M, Bertoldi P, Buckeridge M, Cartwright A, et
al. “Strengthening and implementing the global response,” in Global Warming Of
1.5◦C: Summary for PolicyMakers, IPCC - The Intergovernmental Panel On Climate
Change. (2018), p. 313–443.

3. Montzka SA, Dlugokencky EJ, Butler JH. Non-Co2 greenhouse gases and
climate change. Nature. (2011) 476:43–50. doi: 10.1038/nature10322

4. Rodhe H. A comparison of the contribution of various gases to the greenhouse
effect. Science. (1990) 248960:1217–9. doi: 10.1126/science.248.4960.1217

5. Wei Y, Zhang X, Shi Y, Xia L, Pan S, Wu J, et al. A review of
data-driven approaches for prediction and classification of building
energy consumption. Renew. Sustain. Energy Rev. (2018) 18:821027–
1047. doi: 10.1016/j.rser.2017.09.108

6. Ren J, Yang J, Zhang Y, Xiao X, Xia JC, Li X, et al. Exploring thermal
comfort of urban buildings based on local climate zones. J Clean Prod. (2022)
22:340130744. doi: 10.1016/j.jclepro.2022.130744

7. Theeuwes NE, Barlow JF, Teuling AJ, Grimmond SB, Kotthaus S. Persistent
cloud cover over mega-cities linked to surface heat release. Npj Clim Atmosph Sci.
(2019) 9:2. doi: 10.1038/s41612-019-0072-x

8. Jaber SM, Abu-Allaban MM. Modis-based land surface temperature
for climate variability and change research: the tale of a typical
semi-arid to arid environment. Eur J Remote Sens. (2020) 53:81–
90. doi: 10.1080/22797254.2020.1735264

9. Peng J, Ma J, Liu Q, Liu Y, Hu Y, Li Y, et al. Spatial-temporal change of land
surface temperature across 285 cities in china: an urban-rural contrast perspective.
Sci Total Environ. (2018) 18:635487–497. doi: 10.1016/j.scitotenv.2018.
04.105

10. Clarke L, Eom J, Marten EH, Horowitz R, Kyle P, Link R, et al. Effects of long-
term climate change on global building energy expenditures. Energy Econ. (2018)
18:72667–677. doi: 10.1016/j.eneco.2018.01.003

11. Frayssinet L, Merlier L, Kuznik F, Hubert J, Milliez M, Roux J.
Modeling the heating and cooling energy demand of urban buildings at city
scale. Renew Sustain Energy Rev. (2018) 18:812318–2327. doi: 10.1016/j.rser.201
7.06.040

12. De Cian E, Lanzi E, Roson R. The Impact Of Temperature Change On Energy
Demand: A Dynamic Panel Analysis. (2007). doi: 10.2139/ssrn.984237

13. Swan LG, Ugursal VI. Modeling of end-use energy consumption in the
residential sector: a review of modeling techniques. Renew Sustain Energy Rev.
(2009) 13:1819–35. doi: 10.1016/j.rser.2008.09.033

14. Wan KKW, Tsang CL, Lam JC. Sensitivity analysis of building
energy use in different climates. Ifac Proceed Vol. (2010) 43:58–
62. doi: 10.3182/20100329-3-PT-3006.00013

15. Salvati A, Coch H, Cecere C. Urban morphology and energy performance:
the direct and indirect contribution in mediterranean climate. In: Plea2015
Architecture In (R)Evolution – 31st International Plea Conference. Italy. (2015).

16. Rizwan AM, Dennis LYC, Liu C. A review on the generation,
determination and mitigation of urban heat Island. J Environ Sci. (2008) 20:120–
8. doi: 10.1016/S1001-0742(08)60019-4

17. Palme M, Inostroza L, Villacreses G, Lobato-Cordero A,
Carrasco C. From urban climate to energy consumption. Enhanc Build
Perform Simul Includ Urban Heat Island Effect Energy Build. (2017)
145107–120. doi: 10.1016/j.enbuild.2017.03.069
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