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ABSTRACT  

Background. Genetic risk for bipolar disorder (BD) is conferred through many common alleles, while a 

role for rare copy number variants (CNVs) is less clear. BD subtypes schizoaffective disorder bipolar 

type (SAB), bipolar I disorder (BD I) and bipolar II disorder (BD II) differ according to the prominence 

and timing of psychosis, mania and depression. The factors contributing to the combination of 

symptoms within a given patient are poorly understood. 

 

Methods. Rare, large CNVs were analyzed in 6353 BD cases (3833 BD I [2676 with psychosis, 850 

without psychosis], 1436 BD II, 579 SAB) and 8656 controls. Measures of CNV burden were 

integrated with polygenic risk scores (PRS) for schizophrenia (SCZ) to evaluate the relative 

contributions of rare and common variants to psychosis risk. 

 

Results. CNV burden did not differ relative to controls in BD when treated as a single diagnostic 

entity. Burden in SAB was increased relative to controls (p-value = 0.001), BD I (p-value = 0.0003) 

and BD II (p-value = 0.0007). Burden and SCZ PRS were increased in SAB compared to BD I with 

psychosis (CNV p-value = 0.0007, PRS p-value = 0.004) and BD I without psychosis (CNV p-value = 

0.0004, PRS p-value = 3.9 x 10-5). Within BD I, psychosis was associated with increased SCZ PRS 

(p-value = 0.005) but not CNV burden. 

 

Conclusions. CNV burden in BD is limited to SAB. Rare and common genetic variants may contribute 

differently to risk for psychosis and perhaps other classes of psychiatric symptoms. 
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INTRODUCTION 

Classically conceptualized as an episodic mood disorder with alternating periods of mania and 

depression, the diagnosis of bipolar disorder (BD) encompasses heterogeneous clinical presentations 

that vary with respect to symptomatology (1, 2), comorbidity (3) and longitudinal course (4). There are 

3 diagnoses on the BD spectrum in current classifications of mental illness (5, 6): bipolar I disorder 

(BD I), bipolar II disorder (BD II) and schizoaffective disorder bipolar type (SAB). The criteria for these 

diagnoses differ from one another – and from clinically related diagnoses such as schizophrenia 

(SCZ) and major depressive disorder (MDD) – by nuances in the prominence and timing of manic, 

depressive and psychotic symptoms that are subject to change across versions of the same system 

of classification (5, 7, 8). The factors determining the combination of symptoms that occur in a given 

patient remain poorly understood. 

BD genetic risk is characterized by many common single-nucleotide polymorphisms (SNPs) of 

small effect across the genome (9), many of which also are implicated in clinically related psychiatric 

conditions (10, 11). The overlap between BD and SCZ is particularly high in this regard, with genetic 

correlation estimates between the two (rg = 0.6 – 0.7) comparable to estimates between BD I and BD 

II (rg = 0.7 – 0.8) (9–12). In contrast, rare variants – in particular, rare copy number variants (CNVs) – 

have not been consistently implicated in risk for BD (13, 14, 23–26, 15–22), unlike in SCZ where an 

increased burden of rare CNVs is well-established and recurrent risk CNVs have been identified (20, 

22, 27, 28). The largest genome-wide study of rare CNVs in BD to date found no differences in burden 

between approximately 2,600 cases and 8,800 controls(13). Smaller studies have been inconsistent 

(21, 22, 29). For instance, CNV burden in early-onset BD – a focus of BD CNV studies due to the 

increased rare CNV burden in neurodevelopmental disorders (25) – has been found by some (15, 16, 

20, 26) but not others (17, 21–23). Specific CNVs implicated in SCZ and neurodevelopmental disorders 

have been tested for association with BD, and a duplication of 16p11.2 implicated in SCZ (30) was 
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recently reported to be enriched in BD (13). Tested as a set rather than individually, these psychiatric 

CNVs are not significantly enriched in BD (21, 22, 26), nor have CNVs in BD consistently been found 

enriched for particular biological pathways or gene sets (15–17, 26). In total, the evidence that rare 

CNVs contribute to BD risk broadly is limited. 

There is mounting evidence suggesting that the common alleles conferring risk to BD and SCZ 

act at the symptom level (31, 32), rooting the clinical similarity of BD and SCZ at least partially in 

common genetic variation. In contrast, the relative absence of rare CNV burden in BD (13) raises the 

possibility that this class of variation confers risk to clinical phenomena more commonly associated 

with SCZ. Such phenomena could include both the nuances in the prominence and timing of 

psychotic symptoms that formally differentiate SCZ and BD diagnostic criteria (5, 6), as well as non-

diagnostic features such as differences in cognitive deficits (33) and clinical course that historically 

formed the basis for the dichotomization of BD and SCZ (34, 35). Profiling rare CNVs and common 

risk alleles in BD cases stratified by granular clinical data would provide the opportunity to more 

directly test whether these classes of genetic variation make differential contributions to particular 

psychiatric traits. To our knowledge, such studies are lacking. 

Here, we present results on a genome-wide study of rare CNV burden in 6,353 BD cases and 

8,656 controls. In addition, we compare the relative contribution of rare CNVs and common SCZ risk 

alleles to risk of psychosis, a clinical phenomenon that differentiates BD subtypes from one another 

and from SCZ. 

 

 

METHODS AND MATERIALS 
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Sample Description 

The International Cohort Collection for Bipolar Disorder (ICCBD) includes BD cases and unaffected 

controls from the Sweden Bipolar Disorder Cohort (SWEBIC), the Bipolar Disorder Research Network 

(BDRN) in the United Kingdom, and the Genomic Psychiatry Consortium (GPC) from the University of 

Southern California. Full ICCBD sample descriptions have been previously reported in a genome-

wide association study (GWAS) (12). The BDRN controls were collected as part of the Wellcome 

Trust Case Control Consortium; half were utilized in a genome-wide CNV burden analysis with a set 

of BD cases not in the current study (22), and the other half in a separate genome-wide CNV analysis 

(13). The subset of the SWEBIC cases and controls genotyped on the Affymetrix platform were in a 

previous report of genome-wide CNV burden in BD (20). Genome-wide CNV burden has not been 

reported before for the GPC cohort or for the SWEBIC cases and controls genotyped on the Illumina 

platform (45% of ICCBD cases in this study).  

 

Phenotyping methods 

SWEBIC clinical data was derived from 3 primary sources, which utilized a mixture of semi-structured 

interviews, retrospective chart review, and standardized rating scales. BDRN cases were assessed 

using Schedules for Clinical Assessment in Neuropsychiatry. GPC cases were assessed through a 

combination of focused, direct interviews and data extraction from medical records. On the basis of 

these data, best-estimate lifetime diagnoses were made according to DSM-IV criteria, and key clinical 

variables were rated. The inter-site reliability of diagnoses was assessed using Fleiss’ Kappa statistic 

for multiple raters (κ = 0.72 for the primary diagnostic variable). Full descriptions of the approaches 

utilized in the phenotyping of the ICCBD cohorts have been reported previously (12, 37) 

(Supplementary Text). For some analyses in this report, clinical variables beyond case-control 
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status were included from all 3 ICCBD sites, including age of onset, history of psychosis and family 

history. Age of onset was defined as the age at which first symptoms, impairment or diagnosis 

occurred. Psychosis was defined as the lifetime presence of hallucinations or delusions. Family 

history was defined as having any family member with any psychiatric diagnosis. For each variable, a 

set of standardized numerical values were derived, and site investigators harmonized datasets 

according to these metrics. This was necessary to facilitate analysis across sites that used different 

phenotyping approaches. 

 

Genotyping and ancestry covariates 

Sample collection and genotyping procedures for the ICCBD have previously been reported (12). In 

brief, for all ICCBD sites DNA was extracted from peripheral blood samples that had been collected 

and stored at -20oC. Samples were then genotyped at the Broad Institute, and genotypes were called 

using either Birdsuite (Affymetrix) or BeadStudio (Illumina). Ancestry covariates were derived from the 

genotyping data through multidimensional scaling (MDS) analysis on genome-wide identity-by-

descent distances calculated for all pairs of individuals. Quality control procedures implemented to 

derive the genotype calls utilized are detailed in an earlier genome-wide association study of this 

cohort (12).  

 

CNV calling and quality control 

Rare CNVs were identified using the Birdseye program in Birdsuite (38). Only subjects who passed 

quality control filters in an earlier GWAS of the same individuals(12) were considered for CNV 

analyses. CNVs were excluded if any of the following criteria were met: logarithm of the odds ratio 

score < 10, number of probes < 10, probe density of < 1 per 20 kilobases (KB), frequency in ICCBD > 

1%, or location within a region known to contain common CNVs or large genomic gaps (e.g., 
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centromeres). If in a given individual the distance between two CNVs was less than 20% of their 

combined size, they were considered artificially split by the calling algorithm and combined into a 

single event. For the BDRN cohort, only genomic regions covered in both cases and controls were 

retained in order to reduce batch effects resulting from cases and controls being genotyped on 

different Illumina arrays (Supplementary Text; Supplementary Figure 1). Subjects were removed 

for having total CNV number greater than two standard deviations different from the mean number of 

CNVs in the cohort (prior to applying filters for CNV frequency). Unless otherwise specified, burden 

analyses were restricted to autosomal CNVs > 100KB. Two events were considered equivalent for 

the purposes of defining frequency if one overlapped the other by at least 50%. Quality control checks 

were performed separately for the SWEBIC Affymetrix, SWEBIC Illumina, BDRN, and GPC cohorts 

(Table 1). In the context of burden analyses, we use the term “CNV” to refer to the combined set of 

deletions and duplications, and “singleton CNVs” were defined as any event that occurred once in the 

full ICCBD case-control cohort without consideration of whether the event was a deletion or a 

duplication. Singleton deletions and duplications were defined after first filtering the dataset for that 

type of event. As such, not all singleton deletions and duplications are in the singleton CNV group. 

 

CNV burden tests 

For our primary CNV burden tests, we defined CNV burden in 3 ways: the number of CNVs occurring 

per individual (the CNV number); the number of genes lying within CNVs per individual (the CNV 

gene count); the total distance covered by CNVs. We elected to focus on these 3 classes of burden 

because there is no clear class of burden most relevant to BD and these classes significantly differ 

between SCZ cases and controls (27). We stratified CNVs by 3 types: deletions only, duplications 

only, deletions and duplications (or “CNVs”); by 2 sizes: over 100KB and over 500KB; and by 2 

frequencies: singletons (a frequency of 6.7 x 10-5) and those occurring in less than 1% in the ICCBD. 
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This led to 36 tests between each of 7 pairs of phenotypes we compared: (1) BD cases to controls, 

(2) BD I cases to controls, (3) BD II cases to controls, (4) SAB cases to controls, (5) BD I cases to BD 

II cases, (6) BD I cases to SAB cases, and (7) BD II cases to SAB cases. Thus, a total of 252 tests 

comprised our primary assessment of CNV burden.  

Previous studies of CNV burden in BD have reported significant results for tests where the 

definition of burden fell outside the scope of these 252 tests. Manual curation of the literature 

identified 34 nominal associations at a p-value of less than 0.05 in the original report. We were able to 

follow-up 27 of these in the ICCBD (for the other 7, the original study included either SCZ cases or 

BD parent-child trios), of which 21 were not in our primary 252 tests. For these tests, we excluded 

ICCBD samples overlapping those in the original report.  

We also tested ICCBD CNVs (size > 100KB, frequency < 1%) for enrichment of 3 sets of 

CNVs previously identified in studies of BD, SCZ or neurodevelopmental disorders. The BD CNV set 

(16 deletions, 14 duplications) was comprised of autosomal de novo CNVs reported in 3 previous 

studies of BD trios (16, 17, 24). The SCZ CNV set (11 deletions, 8 duplications) was comprised of 

autosomal CNVs with suggestive evidence for association in a meta-analysis of over 20,000 SCZ 

cases and 20,000 controls (27). The neurodevelopmental CNV set (27 deletions, 18 duplications) was 

from a list curated for a previous report (17) after removing those overlapping the SCZ set. In order 

for a CNV in the test set to be considered overlapping with an ICCBD CNV, the ICCBD CNV was 

required to cover at least 50% of the test CNV and be of the same CNV type (i.e., deletion or 

duplication). 

All tests were performed using permutation in PLINK (39) controlling for genotyping platform 

and ICCBD site. Significance was evaluated using 10,000 permutations. The 252 tests in the primary 

assessment were 2-sided with the exception of 6 tests that had previously been reported as 

significant. A one-sided test in the direction of the association reported in the original paper was used 
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for these 6 tests as well as for the additional 21 tests following up previous associations and the 3 

tests of CNV sets.  

 

Multiple test correction for CNV burden tests 

In the genome-wide CNV burden analyses described above there are a total 276 tests (252 in our 

primary assessment of CNV burden, 21 tests of previous associations and 3 tests of CNV sets). The 

empirical tests performed in PLINK as described above were controlled for multiple testing using the 

false discovery rate (FDR) estimation method of Benjamini-Hochberg (40) implemented in R using the 

p.adjust() function. Using an FDR of 5%, tests with empirical p-values below 0.002 were considered 

study-wide significant. 

 

Contribution of CNV burden and SCZ PRS to psychosis 

Following results from our primary burden analyses, we analyzed CNV burden and loading of 

common SCZ risk alleles in BD I and SAB cases. BD II was excluded from these analyses to remove 

effects resulting from known differences in polygenic loading of SCZ alleles across BD subtypes (12). 

For these analyses, burden was defined as the number of CNVs greater than 500KB and present in 

less than 1% of the study sample. We focused on this particular burden class because it was the only 

class in our primary 252 tests where an increase was seen in SAB compared to controls, BD I and 

BD II (see Results). For these analyses, burden was tested using logistic regression, which returned 

similar results to permutation but allowed us to include in the model continuously-distributed ancestry 

covariates and facilitated the calculation of odds-ratios (ORs) for CNV burden (27). In the regression 

model, we used phenotype status as the dependent variable and CNV burden as an independent 

predictor variable. The OR was calculated as the exponential of the logistic regression coefficient, 

and OR > 1 represents increased risk for the “affected” phenotype in the model, which was 
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designated to be the phenotype more clinically similar to SCZ. Using a similar regression model, we 

carried out polygenic scoring analyses (41). Quantitative polygenic risk scores (PRS) were computed 

for each case subject based on the set of SNPs with p-values less than 0.5 in the second SCZ GWAS 

from the Psychiatric Genomics Consortium (PGC) (42). PRS analyses excluded ICCBD samples 

present in the PGC studies. We calculated the proportion of variance explained (Nagelkerke's R2) by 

SCZ PRS by subtracting the Nagelkerke's R2 attributable to covariates alone from the 

Nagelkerke's R2 for PRS plus covariates. Effect sizes for both CNV burden and SCZ PRS were 

calculated as a t-statistic that is the ratio of the coefficient of the burden or PRS variable and its 

standard error from a generalized linear regression model equation. As studies of SCZ have 

consistently demonstrated higher CNV burden in cases compared to controls (27, 28), cases were 

stratified by clinical dimensions related to SCZ (i.e., psychosis) and 1-sided statistical tests were used 

evaluating for higher rates in groups with the more SCZ-like phenotype.   

 

Power calculations 

We calculated power for tests of CNV burden in BD compared to controls, as well as between 

subtypes of BD stratified by psychosis. Specifically, calculations were performed for the 3 primary 

classes of burden assessed in BD compared to controls, and the 1 class of burden assessed in our 

analyses of psychosis.  Effect sizes ranging from 1 to 2.5 (by increments of 0.01) were utilized in the 

power calculations. To account for the possibility of allele frequency differences between cohorts, the 

effect size in the power calculation was divided by the standard error from the burden test. 
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RESULTS  

 

CNV burden in BD 

We assessed genome-wide differences in rare CNV burden between 6,353 BD cases and 8,656 

controls (Table 1). After initial filters for size (> 100KB) and frequency (occurring in < 1% of ICCBD), 

we observed 10,515 CNVs (3,970 deletions and 6,545 duplications). No difference in the CNV 

number was found between cases and controls (case rate = 0.698, control rate = 0.702, p-value = 

0.86). This was true both for deletions (case rate = 0.266, control rate = 0.264, p-value = 0.78) and 

duplications (case rate = 0.433, control rate = 0.439, p-value = 0.72). Similarly, no differences were 

observed between cases and controls with respect to the number of genes hit or the total distance 

covered by CNVs (Table 2; Supplementary Table 1). We calculated power to detect differences in 

these 3 burden classes across a range of effect sizes (Methods). Assuming effect sizes reported for 

SCZ (27), power of 100% was attained to identify differences between BD and controls for the 

number of genes hit and total distance covered by CNVs per individual, while 33% power was 

attained for the number of CNVs per individual. Following previous literature showing that rarer and 

larger CNVs carry increased burden for neuropsychiatric illness (28), we further filtered CNVs by size 

(> 500KB) and frequency (those that occur once in the 15,009 ICCBD individuals, a frequency of 6.7 

x 10-5). No burden in these classes was observed below our study-wide p-value threshold (Table 2; 

Supplementary Table 1). Similarly, manual curation of the literature identified 21 additional 

associations of BD and CNV burden (p-value < 0.05 in the initial report) that we followed-up here 

(Methods), none of which withstood correction for multiple tests (Figure 1; Table 3). Sets of CNVs 

previously implicated in neuropsychiatric disorders (Methods) were also not enriched for deletions or 

duplications in BD compared to controls. 
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BD is a heterogeneous disorder clinically, and a previous report of common variation in this 

cohort found evidence for genetic heterogeneity between clinical subtypes of BD (12). This 

information, combined with CNV burden being a well-established component of SCZ genetic 

architecture (27), led us to hypothesize that increased CNV burden may be present in the BD 

subtypes most clinically similar to SCZ. To test this hypothesis, we first sought to determine if CNV 

burden differed between BD subtypes (BD I n = 3,833, BD II n = 1,436, SAB n = 579) and controls (n 

= 6,383), as well as between BD subtypes and one another. Increased burden was seen in SAB 

compared to controls in all 3 of the primary burden classes evaluated, as well as compared to both 

BD I and BD II (Table 2). For one burden class, number of CNVs with size over 500KB and frequency 

< 1%, SAB had higher burden compared to controls (p-value = 0.001), BD I (p-value = 3 x 10-4; 

Figure 2a) and BD II (p-value = 7 x 10-4). We therefore elected to focus downstream CNV analyses 

on this class of burden. 

 

Contribution of CNV burden and SCZ PRS to psychosis in BD 

SCZ is the archetypal psychotic illness in current psychiatric classification systems (5) and increased 

CNV burden is a well-established component of its genetic architecture (27, 28). Psychosis is also a 

prominent component of BD, and the diagnostic criteria differentiating BD subtypes (e.g., BD I, SAB) 

from one another and from SCZ relate to the co-occurrence of psychosis with mania (5, 6). The 

observed CNV burden in SAB, a diagnosis that requires most of the criteria of SCZ be met, being 

absent in BD as a whole prompted inquiry into whether CNV burden contributes to psychosis or to 

non-diagnostic clinical phenomena that differentiate SAB from other BD subtypes, and whether the 

same pattern is seen for common SCZ risk alleles. We stratified the ICCBD cases by the prominence 

of psychotic symptoms, correlating psychosis risk with both the CNV burden and SCZ PRS (12, 32). 

Cases were stratified into SAB (n = 579), BD I with psychosis (n = 2,676) and BD I without psychosis 
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(n = 850). CNV burden was increased in SAB compared to BD I with and without psychosis (SAB rate 

= 0.116; BD I with psychosis rate = 0.069, p-value = 7.21 x 10-4; BD I without psychosis rate = 0.067, 

p-value = 4.42 x 10-4), but no difference was observed between BD I with and without psychosis (p-

value = 0.88; Figure 2b; Supplementary Figure 2). SCZ PRS were higher in SAB compared to BD I 

with psychosis (Nagelkerke's R2 = 0.004; p-value = 0.004) and in BD I with psychosis compared to BD 

I without psychosis (Nagelkerke's R2 = 0.003; p-value = 0.005; Figure 2b). We calculated the power 

to detect differences in CNV burden between these cohorts across a range of effect sizes 

(Supplementary Figure 3). At the effect size observed in the comparison of SAB to controls (OR = 

1.58), a nominally significant difference could be detected with 81% power between SAB and BD I 

with psychosis, 53% power between SAB and BD I without psychosis, and 84% between BD I with 

and without psychosis. 

 

 

DISCUSSION 

We observed no differences in the genome-wide burden of rare, large CNVs in a cohort of 6,353 BD 

cases and 8,656 controls. Furthermore, we did not find strong support for any previously reported BD 

CNV burden associations despite reproducing original analyses with respect to phenotypes compared 

and the cutoffs for CNV size and frequency used in quality control procedures. Taken together, the 

case-control analyses presented here confirm in a well-powered cohort that rare CNV burden is not a 

feature of BD when treated as a single diagnostic entity. 

Individuals with a diagnosis of BD comprise a clinically heterogeneous group, and the lack of 

CNV burden when BD is treated as a single diagnostic entity does not preclude a role of CNV burden 

in the pathogenesis of subsets of cases. Specifically, we hypothesized this may the case for 

individuals who present with psychotic symptoms in the absence of a major mood episode, given the 
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known CNV burden in SCZ (27, 28) and the clinical overlap between SCZ and BD. Indeed, we found 

that cases with SAB, who by definition experience psychosis both in the presence and absence of 

mania, have higher rates of large, rare CNVs compared to controls and other BD subtypes. The class 

of burden with the strongest signal genome-wide in SCZ compared to controls is the number of genes 

hit by deletions per individual (27). We observed this to also be the case in SAB compared to controls 

(Table 2). 

The diagnostic criteria differentiating BD I with psychosis, SAB and SCZ from one another 

relate to the prominence and timing of psychotic symptoms. Through deeper analyses comparing 

SAB and BD I, however, we found that CNV burden was unrelated to the presence of psychosis. This 

was in contrast to SCZ PRS, which were increased in the phenotypes characterized by more 

prominent psychosis. Taken together, these results suggest that common variants may contribute to 

psychotic symptoms whereas rare CNVs may contribute to dimensions of illness that differentiate 

psychotic illnesses from one another. One possibility in this regard is that CNVs may influence risk for 

cognitive deficits, which are more prominent in SCZ compared to BD and affect cognition in the 

general population (33). Another possibility is that CNV burden increases risk for spontaneous 

psychosis (i.e., the psychoses of SCZ and SAB) but not psychosis secondary to severe mental 

stress, which some argue is the mechanism underlying psychosis during mania. Alternatively, it is 

possible that compared to the persistent psychosis seen in SAB the psychosis of mania and/or 

depression are rated less reliably. Future studies with deeper phenotyping should aim to test these 

and other hypotheses. 

This study has important limitations. Diagnostic misclassification of SCZ cases with SAB is 

possible, and while unlikely could account for the observed PRS and CNV results. For some of these 

analyses, sample size is an important consideration, and we emphasize that these findings must be 

followed up in larger cohorts. If replicated, they would provide support for the notion that different 
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classes of genetic variants contribute to different classes of symptomatology in mood and psychotic 

syndromes. It might then be fair to inquire whether the higher CNV burden in SCZ compared to BD 

may be evidence not that they comprise two biologically distinct disease entities, but rather that 

clinicians are more likely to diagnose SCZ when a particular clinical phenomenon is present (e.g., 

cognitive deficits, spontaneous psychosis). These unresolved questions highlight the need for a 

multiscale approach to the study of mental illness, whereby integrating high-dimensional molecular 

and clinical data from each patient at the scale that GWAS has shown can be achieved may facilitate 

the development of a data-driven taxonomy. 
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CAPTIONS 

 
Table 1: Sample characteristics for ICCBD CNV analyses. 
 

Table 2: CNV burden in bipolar disorder. Burden metrics are presented for the following groups (N): BD treated as a 
single diagnostic entity (6353), controls (8656), BD I (3833), BD II (1436) and SAB (579). Three classes of CNV burden 
were assessed, indicated by the description above the dotted lines. Burden was compared between cases and controls, 
as well as between case subtypes. P-values are two-sided, uncorrected for multiple testing, and based on 10,000 
permutations testing for relative burden between the two groups. CNV type, size, and frequency refer to the filters applied 
for the test being reported.  Events refers to the number of CNVs total observed in the groups being compared for the 
specified parameters. P-values surpassing study-wide significance are shown in bold. Singletons are those CNVs that 
occur once within the full ICCBD case cohort when filtered for those greater than 100KB in size. KB=kilobases 
 
Table 3. Follow-up of previously reports of increased copy number variant burden in BD. Listed are all findings identified 
from manual curation of literature on rare copy number variant (CNV) burden in BD with a p-value below 0.05 in the 
original report. Details of the test performed in the original report that was reproduced in ICCBD are described in the test 
parameter fields and include the phenotypes compared, the definition of burden, and the filters applied for CNV frequency, 
type and size. Ratios were calculated as the burden in the first phenotype in the comparison field relative to the second 
phenotype. When the original report did not specify the CNV size studied all CNVs greater than 100KB were included in 
the ICCBD. Original reports where the test included either SCZ cases or BD trios could not be followed-up in the ICCBD, 
but are included in this table so as to consolidate all of the previously significant findings in rare CNV studies of BD. BD 
cases and controls in Bergen (2011) are part of the ICCBD, so for these follow-up tests only the ICCBD samples not in the 
original report were utilized. The controls in Grozeva (2010) comprise half of the BDRN controls in ICCBD; since there 
was no case overlap between these studies, all of these controls were included in the follow-up test in the ICCBD. The 
cases in Green (2015) are the BDRN cases in ICCBD, though these findings were not followed up in ICCBD as they 
involved SCZ cases. Early-onset was defined as less than 21 in Priebe (2012) and less than 18 in Zhang (2009) and 
ICCBD. Family history in Malhotra (2011) was defined as having a relative with bipolar disorder (I, II, SAB), schizophrenia, 
autism, MDD or intellectual disability; in ICCBD, it was defined as having a family member with any psychiatric history. 
Reported p-values for ICCBD are 1-sided from using 10,000 permutations to test for enrichment in the direction observed 
in the original report. Asterisks denote nominal significance observed in ICCBD. BD – bipolar disorder; CON – control; EO 
– early-onset bipolar disorder; FAM – bipolar disorder with a family history of psychiatric illness; SPOR – sporadic bipolar 
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disorder (i.e., no family history of psychiatric illness); SCZ – schizophrenia; SING – singleton; CNV – copy number variant; 
SCZ – schizophrenia; NR - not reported; NA - not applicable; N - number of individuals for the groups listed in the 
comparison field 
 
Figure 1. Replication of previous reports of CNV burden in BD. Curation of literature on CNV burden in BD identified 36 
instances where nominal association (p-value < 0.05) was reported. We were able to test 28 of these in the ICCBD. 
Plotted here are p-values in previous reports (x-axis) compared to the same test performed in ICCBD cohort (y-axis). 
There were 4 tests for which nominal significance was observed in the ICCBD data: (1) singleton deletions greater than 
100KB in cases compared to controls, (2) proportion of individuals with a singleton deletion greater than 100KB in cases 
compared to controls, (3) singleton deletions greater than 100KB in early onset cases compared to controls, and (4) 
proportion of individuals with a singleton deletion greater than 100KB in early onset cases compared to controls. None of 
these observations surpassed multiple test correction for the 27 tests we followed up in our data. 
 
Figure 2. Burden of rare CNVs (frequency < 1%) greater than 500KB in SAB compared to BD I. (a) Forest plot of CNV 
burden partitioned by site of collection, with the full ICCBD sample at the bottom. CNV burden is calculated by combining 
CNV deletions and duplications. The p-values presented here for burden tests used a logistic regression model predicting 
SAB-BD I status by CNV burden along with covariates. The odds ratio (OR) is the exponential of the logistic regression 
coefficient, and OR > 1 predicts increased SAB risk. (b) Comparison of BD and SAB to one another with respect to 
polygenic risk scores and CNV burden. Regression analyses were performed of phenotype (stratified by history of 
psychosis) on polygenic scores derived from a previous GWAS for SCZ (blue) and burden of CNVs with frequency less 
than 1% and size greater than 500KB (red). MDS components, study site and gender were used as covariates. The t-
statistic plotted on the x-axis is the ratio of the coefficient of the polygenic score or CNV burden variable and its standard 
error from the generalized linear model regression equation. The direction of the plotted bars indicates higher CNV burden 
or PRS in the phenotype listed first in the y-axis label. The p-values for whether polygenic risk scores or CNV burden 
differed significantly between phenotypes are shown at the far right. The Nagelkerke's R2 for the corresponding polygenic 
risk score comparisons were as 0.004 for SAB vs. BD I with psychosis, 0.011 for SAB vs. BD I without psychosis and 
0.003 for BD I with psychosis vs. BD I without psychosis. 
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