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Abstract 

Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are clinically, pathologically and etiologically disor-
ders embedded in the Lewy body disease (LBD) continuum, characterized by neuronal α-synuclein pathology. Rare 
homozygous and compound heterozygous premature termination codon (PTC) mutations in the Vacuolar Protein 
Sorting 13 homolog C gene (VPS13C) are associated with early-onset recessive PD. We observed in two siblings 
with early-onset age (< 45) and autopsy confirmed DLB, compound heterozygous missense mutations in VPS13C, 
p.Trp395Cys and p.Ala444Pro, inherited from their healthy parents in a recessive manner. In lymphoblast cells of the 
index patient, the missense mutations reduced VPS13C expression by 90% (p = 0.0002). Subsequent, we performed 
targeted resequencing of VPS13C in 844 LBD patients and 664 control persons. Using the optimized sequence kernel 
association test, we obtained a significant association (p = 0.0233) of rare VPS13C genetic variants (minor allele fre-
quency ≤ 1%) with LBD. Among the LBD patients, we identified one patient with homozygous missense mutations 
and three with compound heterozygous missense mutations in trans position, indicative for recessive inheritance. In 
four patients with compound heterozygous mutations, we were unable to determine trans position. The frequency 
of LBD patient carriers of proven recessive compound heterozygous missense mutations is 0.59% (5/844). In autopsy 
brain tissue of two unrelated LBD patients, the recessive compound heterozygous missense mutations reduced 
VPS13C expression. Overexpressing of wild type or mutant VPS13C in HeLa or SH-SY5Y cells, demonstrated that the 
mutations p.Trp395Cys or p.Ala444Pro, abolish the endosomal/lysosomal localization of VPS13C. Overall, our data 
indicate that rare missense mutations in VPS13C are associated with LBD and recessive compound heterozygous mis-
sense mutations might have variable effects on the expression and functioning of VPS13C. We conclude that com-
parable to the recessive inherited PTC mutations in VPS13C, combinations of rare recessive compound heterozygous 
missense mutations reduce VPS13C expression and contribute to increased risk of LBD.
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Introduction
Lewy body diseases (LBD) are a heterogeneous group of 

neurodegenerative brain diseases characterized by the 

presence of Lewy bodies and Lewy neurites, mainly com-

posed of aggregated α-synuclein in neurons. Two disor-

ders with substantial clinical, pathological and etiological 

overlap are at the two extremes of the LBD continuum: 

dementia with Lewy bodies (DLB) and Parkinson’s dis-

ease (PD) [14, 43]. In DLB patients, the early cognitive 

deterioration often resembles other dementias, but the 

presence of parkinsonism, visual hallucinations and delu-

sions, and rapid eye movement (REM)-sleep behavior 

disorder distinguishes DLB [28]. PD is primarily char-

acterized by manifestation of parkinsonism, however, 

mild cognitive impairment and subsequent dementia are 

observed in roughly 30% of PD patients [1]. Lewy body 

inclusions in PD brains are restricted to the brainstem 

and the limbic system, whereas the Lewy body pathology 

extends to the neocortex in DLB brains [8, 40]. DLB and 

PD have prevalences of 0.37% and 1–2%, in people aged 

65 years and older [35, 41]. Of all LBD patients, 85–95% 

are sporadic patients, nonetheless, families segregating 

LBD in a Mendelian manner have been described [3, 5, 

6, 29]. Family-based and genome-wide association stud-

ies identified over 70 PD loci with variable genetic con-

tributions to PD risk [3, 31]. A causal gene for DLB has 

not been identified yet. Targeted and genome-wide asso-

ciation studies associated the SNCA, GBA and APOE loci 

with increased risk of developing DLB [9, 18]. Acquired 

knowledge of the proteins derived from causal or risk 

genes provided valuable insights into the underlying dis-

ease mechanisms of LBD [2, 4, 16, 34, 38, 44]. Nonethe-

less, causal genes in families and risk genes in patient 

cohorts are together only a minor fraction of the genetic 

etiology of LBD. In this study, we started from a fam-

ily of healthy parents and two siblings with pathologi-

cally confirmed DLB at early-onset age (< 45 years). �e 

affected siblings tested negative for mutations in known 

LBD genes. Whole genome sequencing (WGS) of the 

siblings revealed compound heterozygous coding vari-

ants in VPS13C, p.Trp395Cys and p.Ala444Pro missense 

mutations, which were inherited from their parents in a 

recessive manner. Homozyous and compound heterozy-

gous loss-of-function (LOF) mutations due to premature 

termination codons (PTCs) were reported in recessive 

early-onset PD [11, 24, 37]. Since we showed that reces-

sive compound heterozygous missense mutations in the 

siblings lead to 90% loss of VPS13C, we aimed at finding 

other homozygous or recessive compound heterozygous 

carriers in DLB and PD patient cohorts.

Materials and methods
Note: Detailed protocols are available in the Additional 

file 1.

Belgian patient and control cohorts

Members of the Belgian BELNEU consortium were 

involved in the recruitment of LBD patients at neuro-

logical centers associated with university or general 

hospitals in Belgium [26]. �e LBD cohort comprised 

844 LBD patients with a mean age at onset age (AAO) 

of 62.9 ± 11.8  years (Additional file  1: Table  S1). In this 

cohort, 233 patients had a diagnosis of DLB, and 611 a 

diagnosis of PD. All patients underwent clinical examina-

tions by a neurologist and neuroimaging. Detailed infor-

mation on medical history of patient and family members 

were collected. A positive family history of disease was 

given if at least one first-degree relative was affected with 

a neurodegenerative brain disease. DLB patients were 

diagnosed in accordance with the established criteria for 

possible, probable or pathological DLB [27, 28], and PD 

patients according to the NINDS diagnostic criteria for 

PD [15]. A geographically matched control cohort con-

sisted of 664 individuals with a mean age at inclusion 

(AAI) of 72.0 ± 9.4  years (Additional file  1: Table  S1). 

Control individuals were recruited among healthy part-

ners of patients visiting a memory clinic, and negative for 

neurological or psychiatric antecedents or neurological 

complaints, or community-recruited individuals scoring 

> 25 on a Montreal Cognitive Assessment (MoCA) [33] 

with a negative individual or familial history of neurode-

generative or psychiatric diseases.

Whole genome sequencing and targeted resequencing

Short-read paired-end WGS of two siblings affected 

with DLB (family A, Fig.  1a), subsequent read align-

ment to the human reference genome (GRCh37/hg19) 

and base and variant calling were performed by Com-

plete Genomics™ Inc [13]. Targeted resequencing of 

all 86 coding exons and flanking splice sites of VPS13C 

was performed using amplicon-target PCR ampli-

fication (MASTR technology; Agilent), followed by 

sequencing on the MiSeq platform (Illumina). Sanger 

sequencing was used to analyze VPS13C exons 7–8, 27, 

37–38, 41, 46, 54, 60–61, 70–73, 76–77 and 80, which 

were < 85% 20X covered with the MASTR assay, and 
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to validate and genotype rare (minor allele frequency 

(MAF) ≤ 1%) coding and splice site variants with a 

potential impact on the protein sequence identified by 

targeted resequencing in patients and family members 

of whom DNA was available. Compound heterozygous 

variants were phased in order to identify carriers with 

trans configuration of VPS13C variants. Short tandem 

repeat (STR) markers were used to identify shared 

alleles and to determine haplotypes in individuals shar-

ing rare coding or splice site variants in VPS13C.

VPS13C mRNA and protein analysis

�e effect of splice-site variants on mRNA splicing was 

analyzed in silico and in cultured lymphoblast cells, if 

available, for carriers of compound heterozygous coding 

and splice-site mutations in VPS13C. For VPS13C mRNA 

expression analysis via quantitative RT-PCR, total RNA 

was isolated from cultured lymphoblast cells of family A 

and 3 unrelated control individuals. Western blotting, to 

evaluate the effect of coding and splice site variants on 

VPS13C protein expression, was performed on protein 

Fig. 1 Homozygous and compound heterozygous VPS13C mutations in 2 Belgian LBD families and in a LBD cohort. a Pedigree of family A and B. 

Family A with two siblings affected with DLB and carriers of trans compound heterozygous rare mutations, p.Trp395Cys/p.Ala444Pro. The index 

patient P1 (black arrow), received a pathological diagnosis of diffuse LBD of the neocortical type. Family B with one affected patient (P3) with 

compound heterozygous mutations, p.Thr1218Ala/p.Ile2789Thr. Patient P3 had a pathological diagnosis of LBD, of the predominant amygdala 

type. Additionally, patient P3 had full AD pathology in all three neuropathological changes, A3B3C3 [20, 28]. To make the pedigrees anonymous, 

we used diamonds for the family members and the patients (black symbol) and we added to the pedigree only family members needed to 

show the cis/trans location of the VPS13C mutations. Slashed symbols indicate deceased family members. b Linear presentation of the VPS13C 

protein with domains based on [22], protein nomenclature according to NP_065872.1. Above, we positioned the homozygous or compound 

heterozygous mutations with a MAF of ≤ 1%, observed in the families and in the DLB and PD cohorts. The VPS13Cα domain is involved in transport 

of glycerophospholipids, the putative WD40 modules contain the binding site for late endosomes/lysosomes and the DH-like  (DHL)-pleckstrin 

homology (PH) domains is the lipid droplet-binding region of VPS13C [22]. We showed published PTC mutations and deletions below the VPS13C 

protein, with at the left first author name and year of publication [11, 24, 37]
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lysates of lymphoblast cells, if available, of patient P1 

and the unaffected parents of family A, homozygous 

and compound heterozygous carries and of unrelated 

control individuals negative for rare VPS13C variants 

(MAF ≤ 1%). Also, VPS13C protein expression was evalu-

ated via Western blotting in brain tissue of patients P1 

and P3 with trans compound heterozygous VPS13C mis-

sense mutations and 2 unrelated control individuals neg-

ative for rare VPS13C variants (MAF ≤ 1%).

Subcellular localization of VPS13C

cDNA constructs containing the coding sequence of 

wild type (WT) or mutant (p.Trp395Cys or p.Ala444Pro) 

human VPS13C were transfected in HeLa or SH-SY5Y 

cells to perform immunohistochemistry and live cell 

labeling.

Neuropathology

Autopsy brains of DLB patients P1 (family A) and P3 

(family B) with trans compound heterozygous VPS13C 

missense mutations were fixed in formalin for 13 weeks 

and 5  weeks, respectively. Samples, taken from the 

frontal cortex areas 4, 6, 8, 9, 10, 11, 12, 24 and 46, the 

superior temporal cortex, hippocampus and amygdala, 

parietal and occipital cortex, the thalamus, neostria-

tum, pallidum, mesencephalon, pons, medulla oblongata 

and cerebellum. Cytological stains included Cresyl-Vio-

let, Hematoxylin–Eosin, and Klüver-Barrera as myelin 

stain. Immunohistochemistry, performed with antibod-

ies against β-amyloid (4G8), hyperphosphorylated tau 

(AT8), ubiquitin, TDP-43, FUS, p62 and α-synuclein.

Statistics

Burden and variance-component tests implemented in 

the optimized sequence kernel association test (SKAT-

O) provided in the R package SKAT v2.0.0, used to 

investigate association of single VPS13C variants with 

MAF ≤ 1% and PD. First, power calculation was per-

formed within the SKAT framework using a logistic test 

for dichotomous traits (target sequence: 12,941 bp, causal 

variant percentage = 20%, negative variant percent-

age = 20%, Maximal OR = 5). Under these conditions, the 

total sample cohort required to reach 80% power with a 

0.05 significance level is at least 1050 individuals. Our 

patient and control cohorts consist of 1508 individu-

als and met the requirements. Adjustment to SKAT-O 

applied taken the small sample size (< 2000 individuals). 

Gender was included as covariate. We considered a two-

sided p value < 0.05 significant. To investigate association 

between bi-allelic VPS13C variants and LBD, we com-

pared statistically the variant frequencies between the 

patient and control group using Fisher’s exact statistics. 

Data are represented as the average ± standard deviation 

of a minimum of 3 independent experiments. For the 

description of the statistical significance of differences, 

the Multiple Comparisons of a one-way ANOVA using 

the GraphPad Prism V7.01 software calculated P-values. 

Values were considered significant if * 0.01 < P < 0.05; 

**0.001 < P < 0.01; *** 0.0001 < P < 0.001; ****P < 0.0001.

Results
Clinical phenotype of family A

In family A (Fig. 1a), genomic DNA was available of two 

affected siblings and their unaffected parents. �e index 

patient, P1 (II.2. Fig.  1a), developed clinical symptoms 

at age 42. Soon after, language problems occurred, par-

ticularly word finding difficulties, dominating the clini-

cal picture for several years. At the age of 47, a clinical 

neurological examination revealed non-fluent aphasia, 

extrapyramidal signs consisting of hypomania, bradyki-

nesia, gait disturbances, cogwheel rigidity and resting 

tremor (Additional file 1: Table S2). Frontal disinhibition 

signs such as glabella reflex, snout reflex and palmomen-

tal reflexes were also present. Later in the disease course, 

myoclonus was observed, and behavioral symptoms 

became more apparent i.e. social withdrawing, passiv-

ity and changed taste preferences. An early brain mag-

netic resonance imaging (MRI) scan showed moderate 

bilateral prefrontal atrophy, and later in the disease, also 

temporal and biparietal atrophy. Single-photon emission 

computed tomography (SPECT) imaging in the initial 

phase of the disease was compatible with AD diagnosis, 

however, AD pathology was not confirmed by cerebro-

spinal fluid (CSF) biomarker analysis (Additional file  1: 

Table S2). �e disease progressed rapidly, and the patient 

died at age 54. Brain autopsy of patient P1 neuropathol-

ogy confirmed diffuse LBD, neocortical type. Patient 2, 

the affected sibling of patient P1 (II.1, Fig. 1a), presented 

at age 41 with initial symptoms of anxiety and depres-

sion, combined with word finding difficulties. An epi-

sode of visual hallucinations and delusions was reported 

when the first symptoms appeared. Clinical neurologi-

cal examination at age 43 revealed frontal disinhibition 

signs, compromising a glabella reflex and a positive snout 

reflex, the occurrence of myoclonus, extrapyramidal 

signs of cog-wheel rigidity and dysarthria, persevera-

tion, semantic paraphasias and constructional apraxia. 

Later in the disease course, an ataxic finger-to-nose test 

was observed and symptoms of apathy, loss of initiative 

and episodic memory problems were reported. A brain 

MRI early in the disease showed frontal atrophy whereas 

a brain fluorodeoxyglucose positron emission tomog-

raphy (FDG-PET) scan showed hypometabolism of the 

left frontal cortex and both temporal and parietal lobes. 

Similar to patient P1, CSF biomarker levels were not sug-

gestive for AD pathology. Patient P2 received a clinical 
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diagnosis of unspecified dementia and died at the age 47. 

�ere were no other familial antecedents of early-onset 

neurodegenerative brain disease. Both parents were 

unaffected at advanced ages (> 80  years), showing that 

segregation of the disease in family A is consistent with 

autosomal recessive inheritance (Fig. 1a).

Identi�cation of compound heterozygous VPS13C variants 

in family A

We obtained WGS data of the two affected siblings of 

family A (Fig.  1a). Variant filtering resulted in 178 rare 

(MAF < 1%) coding variants with an impact on pro-

tein level and splice site variants, shared by the affected 

siblings. None of these coding variants were shared 

homozygous by the affected siblings. In four genes, Cel-

lular Communication Network Factor 6 gene (CCN6), 

Ring Finger Protein 6 gene (RNF6), Chronic Lymphocytic 

Leukemia Up-regulated 1 gene (CLLU1) and the Vacu-

olar Protein Sorting 13 homolog C gene (VPS13C), we 

observed compound heterozygous coding variants shared 

by the affected siblings, including 8 missense mutations 

and 1 PTC mutation (Additional file  1: Table  S3). Only 

in VPS13C, the compound heterozygous missense muta-

tions, p.Trp395Cys and p.Ala444Pro were present in the 

unaffected parents carrying each one the missense muta-

tion. �is observation confirms that the compound het-

erozygous missense mutations in VPS13C are located 

in trans in the affected siblings and were inherited in a 

recessive pattern (Fig. 1a). Also, the VPS13C p.Trp395Cys 

and p.Ala444Pro mutations were absent in the control 

cohort and belong to the 1% most deleterious amino 

acid substitutions in the human genome, indicated by a 

CADD_Phred score above 20 (Table 1) [21]. �e multiple 

heterozygous variants in CCN6, RNF6 and CLLU1 were 

all located in cis, present in one parent and absent in the 

other parent of family A.

Gene-based targeted resequencing of VPS13C 

in the Belgian LBD patient and control cohorts

In the 86 coding exons and splice sites of VPS13C, we 

identified 71 rare (MAF ≤ 1%) variants with a poten-

tial impact on the protein sequence in the LBD patient 

and control cohorts: 64 missense mutations, 1 nonsense 

mutation and 6 splice site variants (Additional file  1: 

Table  S4, Fig. S1). All VPS13C variants were present in 

isoform 2, the largest VPS13C transcript (NM_020821.2), 

containing exons 6 and 7, and the main splice variant 

in brain, suggesting brain-specific gene functions [42]. 

In the Belgian cohort, 86 LBD patients (86/844, 10.2%), 

including 22 DLB (22/233, 9.44%) and 64 PD (64/611, 

10.47%) patients, carried a rare variant in VPS13C, com-

pared to 86 control individuals (13.0%). We performed a 

SKAT-O analysis on the 71 rare variants and observed a 

significant association (p = 0.0233) between rare coding 

(impact on protein sequence) and splice site VPS13C var-

iants and LBD (Additional file 1: Table S4).

Investigation of a potential pathogenic role 

of the homozygous and compound heterozygous missense 

mutations

We focused on patients and controls carrying homozy-

gous or compound heterozygous, rare missense or splice 

site variants in VPS13C obtained in the targeted rese-

quencing data. Detailed results on phasing are available 

in the Supplementary Results. Besides patient P1 (Family 

A, Fig. 1a), we identified 3 additional patients with trans 

compound heterozygous missense mutations, 1 patient 

with homozygous missense mutations and 3 patients 

with compound heterozygous missense mutations of 

unknown phase in VPS13C (Table  1). �e frequency 

of patient carriers with (putative) autosomal recessive 

inherited VPS13C mutations, including the 4 non-phased 

patient carriers is 1.07% (9/844). All their compound 

mutated alleles are clustering in VPS13α domain involved 

in lipid transport, the putative WD40 domain involved 

in late endosomal/lysosomal localization or the pleck-

strin homology domain involved in lipid droplet binding 

(Fig. 1b) [22]. �e clinical characteristics of all 9 patient 

carriers are summarized in Additional file  1: Table  S2. 

All were negative for mutations in the major PD genes 

and other genes associated with neurodegenerative brain 

diseases (Additional file  1: Table  S5), except for the PD 

patient P9 who carried the LRRK2 p.Arg1441Cys patho-

genic mutation besides the VPS13C p.Ile2789�r/p.Ile-

3726Val un-phased alleles. Cis compound heterozygous 

missense or splice site variants in VPS13C were identified 

in 3 patients (Additional file 1: Table S6). Of the 7 com-

pound heterozygous carriers in the control group, 5 con-

trol individuals (C3, C4, C5, C6 and C7) have a confirmed 

cis configuration of their VPS13C missense or splice site 

variants while the 2 remaining controls had no confirmed 

phasing (2/664; 0.30%; Additional file  1: Table  S7). �e 

observation of 5 LBD carriers (5/844; 0.59%) versus zero 

control carriers (0/664; 0%) of homozygous and trans 

compound heterozygous mutations in line with recessive 

inheritance is suggestive of an enrichment in patients, 

though not significant (p = 0.071).

E�ect of homozygous and compound heterozygous 

mutations on VPS13C expression

Results of VPS13C splice site variants in compound 

heterozygous (unkown phase and cis) carriers (Table  1, 

Additional file  1: Table  S6, Table  S7) on mRNA splic-

ing are available in the Supplementary Results. Briefly, 

we did not observe exon skipping of c.4166-8C > A in 

lymphoblast cells, c.4056 + 3A > C was predicted to 
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affect the canonical splice donor site of exon 36 and 

the in silico results of c.448 + 7A > G were inconsistent 

between prediction programs. To determine the effect 

of the VPS13C missense mutations, p.Trp395Cys and 

p.Ala444Pro, identified in family A on transcript and pro-

tein expression, we used qPCR and Western blot analysis 

of lymphoblast cells of DLB patient P1 (Fig. 1a, II.2) and 

unaffected parents (Fig. 2a–c). No lymphoblast cells were 

available of the affected sibling of P1 (Fig.  1a, II.1). We 

did not observe significant difference in VPS13C tran-

script expression for patient P1 and parents, compared 

to controls negative for rare VPS13C variants (Fig.  2a). 

However, endogenous VPS13C protein expression was 

reduced ~ 40% in the parent carrying the p.Ala444Pro 

mutation (p = 0.0618) and ~ 70% in the parent carrying 

the p.Trp395Cys mutation (p = 0.0024). In the patient 

P1, carrying both VPS13C mutations p.Trp395Cys/p.

Ala444Pro, there is 90% reduction (p = 0.0002), com-

pared to the control individuals (Fig.  2b, c). We further 

investigated VPS13C protein expression in all patient and 

control carriers of homozygous or compound heterozy-

gous (trans, unknown phase and cis) VPS13C variants 

with lymphoblast cells available. In patient P2, homozy-

gous for the p.Ala444Pro mutation, the severe reduction 

in VPS13C protein expression was comparable to the 

expression level observed in patient P1, trans compound 

heterozygous for p.Trp395Cys/p.Ala444Pro (Fig.  2d). 

Moreover, we observed a reduced expression in patient 

P5, trans compound heterozygous for p.Ala1687Val/p.

Ser2904Leu and patient P7 un-phased compound het-

erozygous for p.�r766Ala/p.Leu1846Ser (Fig.  2d, e). 

None of the control carriers and the cis compound het-

erozygous carriers showed a reduction in VPS13C pro-

tein expression (Fig. 2d, e). Brain tissue was available of 

patients P1 and P3, both with trans compound heterozy-

gous VPS13C missense mutations, and two unrelated 

control individuals negative for rare VPS13C variants 

(MAF ≤ 1%). In all studied brain regions (prefrontal cor-

tex, temporal cortex, cerebellar cortex, hippocampus, 

substantia nigra and nucleus caudatus), VPS13C protein 

expression was abnormally reduced in patients P1 and P3 

compared to control individuals, with almost no VPS13C 

protein levels in patient P1 (Fig. 2f ) of Family A, the dis-

covery family we used for gene identification (Fig. 1a).

Subcellular localization of VPS13C

We transfected HeLa cells with wild type or mutant 

(p.Trp395Cys or p.Ala444Pro) VPS13C and investi-

gated the effect of the missense mutations on the sub-

cellular localization of the protein. Wild type VPS13C 

localized to small organelles, whereas mutant VPS13C 

alleles, p.Trp395Cys or p.Ala444Pro, localized at larger 

cytosolic structures in most cells (Fig.  3a-b). Triple 

immunostaining of V5 (VPS13C constructs with a 

C-terminal V5-6 × His tag), with markers for late 

endosomes (Rab7) and lysosomes (Lamp1), revealed 

a late endosomal/lysosomal localization of wild type 

VPS13C. However, the late endosomal/lysosomal 

localization of VPS13C was lost when the VPS13C 

mutant alleles were present (Fig. 3c), which was inde-

pendently confirmed with GFP-tagged VPS13C con-

structs and other markers (CD63, late endosomes; 

Lysotracker, lysosome; Additional file  1: Fig. S2, S3). 

Moreover, we could confirm this subcellular locali-

zation of wild type and mislocalization of mutant 

VPS13C at late endosomes and lysosomes in human 

neuroblastoma SH-SY5Y cells (Additional file  1: 

Fig. S4). Immunostaining in HeLa cells with markers 

for the ER (PDI; Additional file  1: Fig. S5), cis- and 

medial-Golgi (Giantin; Additional file  1: Fig. S6) and 

trans-Golgi (TGN46; Additional file  1: Fig. S7) dem-

onstrated no co-localization of wild type and mutant 

VPS13C with these organelles.

Pathological phenotype of compound heterozygous 

missense mutation carriers

Patient P1 died at age 54, and we obtained the autopsy 

brain with 12 h postmortem delay (PMD). We observed 

moderate frontotemporal atrophy with the superior 

temporal gyrus affected more than the medial temporal 

gyrus (Fig.  4a). In the midbrain, the zona compacta of 

the substantia nigra was very pale. �e substantia nigra 

showed severe neuronal loss, most explicit in the lateral 

part of the zona compacta. Using the rating scheme for 

cerebrovascular lesions of Deramecourt and colleagues, 

no more than grade 2 of vascular pathological altera-

tions could be scored [12]. �e lateral occipitotemporal 

gyrus of patient P1 showed microspongiotic changes 

in the cortex (Fig.  4c). �e hippocampus and parahip-

pocampal gyrus were affected with a moderate number 

of neurofibrillary tangles, neuritic threads and dystrophic 

neurites (Fig. 4d), whereas other brain structures did not 

present tau pathology. 4G8 staining to detect β-amyloid 

pathology and TDP-43 and FUS staining for frontotem-

poral dementia (FTD) pathology were all negative. �e 

α-synuclein staining showed an abundance (grade 3) of 

Lewy bodies and Lewy neurites in the frontal cortices, 

temporal neocortex, hippocampus, parahippocampal 

gyrus, amygdala, and in the pigmented nuclei of the mes-

encephalon, pons and medulla oblongata (Fig.  4e, i–k). 

Rare Lewy body pathology was found in the occipital cor-

tex, neostriatum, and hypothalamus. Based on our neu-

ropathological findings, the patient received a diagnosis 

of diffuse Lewy body disease, neocortical type [20, 28]. 

Patient P3 died at age 64 and autopsy brain was obtained 

8  h following death. We observed severe atrophy of the 
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temporal lobe while the parietal and occipital lobes 

were less severely affected (Fig. 4b). Ventricular dilation 

was severe and most explicit in the temporal horn. �e 

pars compacta of the substantia nigra was markedly thin 

and more rostrally, completely depigmented. �e locus 

caeruleus in the pons was also severely depigmented. 

Fig. 2 Reduced VPS13C protein expression in lymphoblast cells and brain lysates of mutation carriers. a Relative VPS13C mRNA expression levels of 

family A and unrelated control individuals (n = 3) in lymphoblast cells. b Representative immunoblots of endogenous VPS13C expression in family 

A and unrelated control individuals (n = 3) in lymphoblast cells. c Quantification of VPS13C protein expression, normalized with the expression 

of GAPDH in lymphoblast cells. Error bars represent standard deviation. d–e Representative immunoblots of endogenous VPS13C protein 

expression in lymphoblast cells of patient and control carriers with homozygous or compound heterozygous mutations in VPS13C, and unrelated 

control individuals (n = 4). f Representative immunoblots of endogenous VPS13C protein expression in brains of patient carrier P1 and P3 and 

two unrelated control individuals. Protein levels were measured in the prefrontal cortex (d), the temporal cortex (e), the cerebellar cortex (f), the 

hippocampus (g), the substantia nigra (h), the caudate nucleus (i) and the putamen (j); **0.001 < P < 0.01; *** 0.0001 < P < 0.001; ****P < 0.0001
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Histochemistry showed severe neuronal loss in the fron-

tal and temporal cortices, and to a lesser extent in the 

parietal cortex with spongiosis and astrocytic gliosis 

(Fig. 4f ). �ere was a severe atrophy of the hippocampus, 

amygdala and parahippocampal gyrus. �e superior 

temporal gyrus was severely gliotic, with a thinning of 

the cortex to 1.5 mm. �e dorsomedial formation of the 

thalamus was affected with neuronal cell loss and gliotic 

Fig. 3 Localization of VPS13C at the late endosomes and lysosomes disturbed by p.Trp395Cys and p.Ala444Pro. Triple immunofluorescence of V5 

(VPS13C constructs, green) with markers for late endosomes (Rab7) and lysosomes (Lamp1) in HeLa cells. a Cells expressing VPS13C WT showed 

a clear vesicular staining pattern while those expressing the missense mutations p.Trp395Cys or p.Ala444Pro mislocalized in larger cytosolic 

structures. b Quantification of cells that appeared either vesicular or mislocalized. c Staining with anti-V5 antibody in WT-overexpressing HeLa cells 

showed co-staining with markers against late endosomes and lysosomes. HeLa cells overexpressing either p.Trp395Cys or p.Ala444Pro showed no 

co-localization with endosomes and lysosomes. White lines indicate the position of the intensity profiles. Scale bars = 5 µm
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changes and severe neuronal loss was observed in the 

substantia nigra. Neurofibrillary tangles, neuropil threads 

and dystrophic neurites is found in every cortical sample 

examined, as well as the thalamus, neostriatum, corpus 

mamillare, medial geniculate body, substantia nigra, and 

reticular formation of mesencephalon, pons and medulla 

oblongata (Fig. 4g). �e lesion load was compatible with 

that of stage VI (Braak and Braak) [7], and with a stage B3 

of Montine et al. [20]. Classical and diffuse senile plaques 

were present in frontal, temporal, parietal and striatal 

cortices, as well as in the thalamus, putamen, medial 

geniculate body, corpus mamillare and in the molecular 

layer of the cerebellar cortex (Fig. 4h). Cerebral amyloid 

angiopathy was mild [25] and the β-amyloid pathology 

was compatible with Phase 5 of �al et al. [39], whereas 

the load of classical senile plaques was severe, compatible 

with CERAD stage 3 [30]. �ese findings are compatible 

with AD neuropathological changes A3B3C3 [20]. Both 

the TDP-43 and FUS stainings were negative. α-synuclein 

staining showed a moderate amount of Lewy bodies in 

the hippocampus and parahippocampal gyrus, and a 

severe amount in the amygdala. Sparse Lewy bodies were 

found in prefrontal cortex, the substantia nigra, the pons 

and the medulla oblongata (Fig.  4l–m). Based on these 

observations, patient P3 received a neuropathological 

diagnosis of LBD, amygdala predominant type, and of 

AD neuropathological changes A3B3C3 [20, 28].

Discussion
A risk variant in the VPS13C locus was genome-wide 

significant in a meta-analysis of genome-wide associa-

tion studies (GWAS) with an estimated odds ratio of 1.1 

[10, 31, 32]. Lesage and colleagues, identified homozy-

gous and compound heterozygous PTC mutations in 

VPS13C in patients with a distinct form of early-onset 

parkinsonism, characterized by rapid and severe disease 

progression and early cognitive decline (Fig. 1b) [24]. �e 

presence of Lewy bodies in the brainstem, limbic system 

and many cortical areas in one of the PD patients was 

reminiscent of diffuse LBD [24]. Later, diagnostic whole 

exome sequencing of 80 early-onset PD patients identi-

fied compound heterozygous variants affecting canonical 

splice sites, leading to PTCs, in VPS13C in one isolated 

early-onset PD patient (Fig.  1b) [37]. �is patient pre-

sented overall with milder motor symptoms and disease 

progression, but with a rapid deterioration of cognitive 

functioning [37]. Shortly after, a large homozygous dele-

tion of 50 exons of VPS13C, was identified by WGS in a 

sporadic patient with sensorimotor polyneuropathy and 

early-onset parkinsonism (Fig. 1b) [11]. �is patient pre-

sented with normal cognitive functioning and a milder 

disease severity. In a Chinese early-onset PD cohort of 

669 patients, 7 isolated patients (1.05%) were identified 

with rare compound heterozygous missense, nonsense 

and splice site variants in VPS13C, of which 4 patients 

with confirmed trans compound heterozygous variants 

[17]. Taken together, autosomal recessive LOF mutations 

in VPS13C are rare and associated with early-onset PD, 

with a high probability of cognitive deterioration and 

suggestive diffuse LBD pathology. However, the impact 

VPS13C missense mutations on protein expression and 

functioning, and the contribution of VPS13C missense 

mutations to disease etiology was not yet known. In our 

study, we identified trans compound heterozygous mis-

sense mutations, p.Trp395Cys and p.Ala444Pro, reduc-

ing VPS13C protein expression in family A affected 

with autosomal recessive early-onset and pathologically 

confirmed DLB (Fig.  1a). Our findings in family A trig-

gered our interest in the role of rare missense mutations 

in VPS13C and risk for LBD. Targeted resequencing of 

VPS13C in the Belgian LBD patient and control cohorts, 

identified a significant association (p = 0.0233) between 

rare (MAF ≤ 1%) coding variants with an impact on the 

protein sequence (n = 65) and splice site (n = 6) variants 

in VPS13C and LBD. A full burden test (rho = 1) was not 

significant (p = 0.175), indicating a complex architecture 

of pathogenic, protective and benign variants in VPS13C. 

Interestingly, targeted resequencing of VPS13C in 1567 

late-onset PD patients identified a haplotype, includ-

ing the common (MAF > 1%) coding VPS13C variants 

p.Arg153His-p.Ile398Ile-p.Ile1132Val-p.Gln2376Gln, 

contributing to reduced PD risk (p = 0.0052, odds 

ratio = 0.48, 95% confidence interval = 0.28–0.82) [36]. 

Another independent study, investigating 4476 sporadic 

PD patients (mean AAO 60  years) and 5140 healthy 

control individuals, reported a significant association 

Fig. 4 Neuropathology of patient carriers P1 and P3. a Right hemisphere of patient P1 shows moderate frontotemporal atrophy, with the superior 

temporal gyrus more affected than the medial temporal gyrus. b Right hemisphere of patient P3 shows severe cortical atrophy, more pronounced 

in the frontal and temporal lobes. The pre- and post-central gyrus are relatively spared. c–e The lateral occipitotemporal gyrus of patient P1 shows 

(c) microspongiotic changes in the cortex (Hematoxylin–Eosin stain), (d) a relatively mild load of neurofibrillary tangles (arrow) and neuritic threads 

(arrowhead) (AT8 stain), and (e) severe α-synuclein pathology with Lewy bodies (arrow) and Lewy neurites (arrow head). f–h The frontal cortex of 

patient P3 shows (f) severe microspongiosis and neuronal loss (Hematoxylin–Eosin stain), (g) the abundance of hyperphosphorylated tau pathology 

with many neurofibrillary tangles (arrow) and neuritic threads (arrowhead) (AT8 stain), and (h) severe β-amyloid pathology with many classic (arrow) 

and diffuse senile plaques (4G8 stain). i–k α-synuclein pathology of patient P1 in (i) the frontal cortex, (j) the hippocampus (severe) and (k) the 

amygdala (severe). l–n α-synuclein pathology of patient P3 in (l) the frontal cortex, (m) the hippocampus (moderate) and (n) the amygdala (severe). 

Lewy bodies are marked with arrows, Lewy neurites with arrowheads

(See figure on next page.)
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(p = 0.002296) of rare (MAF ≤ 1%) VPS13C variants in 

PD [19].

We identified in the Belgian LBD cohort, in addition 

to patient P1 (Family A, Fig. 1a), 3 patients (P3, P4 and 

P5) with recessive compound heterozygous missense 
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mutations, 1 patient (P2) with homozygous missense 

mutations and 4 patients (P6, P7, P8 and P9) with com-

pound heterozygous mutations of unknown phase in 

VPS13C (Table  1). �e frequency of LBD patient carri-

ers of proven recessive compound heterozygous mis-

sense mutations is 0.59% (5/844). In the control cohort, 

we observed two carriers of compound heterozygous rare 

coding and splice site variants in VPS13C of unknown 

phase (Additional file  1: Table  S7). �ese observations 

are suggestive for an enrichment of recessive inher-

ited VPS13C mutations in patients compared to control 

individuals. However, the statistical analysis was not 

significant (p = 0.071), most likely because of the small 

numbers in the Belgian cohorts and the inability to phase 

all mutations in patients and control individuals.

Limitations in cis/trans phasing of compound het-

erozygous mutations complicate the genetic evidence 

for autosomal recessive genes. One inherent limitation 

of short-read sequencing technologies is that the phase 

of long distance variants is lost in the sequencing reads. 

We used different methodologies to overcome this hur-

dle, including genotyping relatives, haplotype sharing 

analysis, allele-specific PCR for short distance mutations 

and Oxford Nanopore Technologies long-read cDNA 

sequencing for long-distance mutations, but limita-

tions remain. Due to the long genomic distance of many 

VPS13C mutations, long-read sequencing could only be 

performed on cDNA level. �erefore, without the avail-

ability of biomaterials for RNA isolation of the desired 

isoform, or DNA of relatives for genotyping, phasing of 

long distance VPS13C mutations was practically impos-

sible. Additionally, long-read sequencing technologies 

are less accurate in the detection of single nucleotide 

variants compared to short-read sequencing technolo-

gies. Consequenly, not all missense mutations in carriers 

could be called in long-read sequencing data (Additional 

file  1). Replication of rare PTC and missense mutations 

in VPS13C in independent and larger cohorts is neces-

sary, but optimized methods are also urgently needed to 

confirm trans configuration of compound heterozygous 

mutations. Only then we are able to estimate the contri-

bution of recessive inherited VPS13C mutations to LBD 

etiology.

DLB patients P1 with compound heterozygous muta-

tions p.Trp395Cys/p.Ala444Pro, P2 with homozygous 

p.Ala444Pro and P3 with p.�r1218Ala/p.Ile2789�r 

presented with a severe disease progression (Addi-

tional file 1: Table S2). Neuropathological examination 

of patient carriers P1 and P3 indicated Lewy bodies in 

multiple brain regions (Fig. 4i–n). Since there was also 

extensive AD pathology in patient P3, there is a small 

likelihood that the pathological findings are associated 

with a DLB clinical syndrome. Nevertheless, both our 

clinical and neuropathological data of VPS13C muta-

tion carriers supports the phenotype of most VPS13C 

patient carriers reported to date, including an early-

onset age, severe disease progression and the co-occur-

rence of parkinsonism and dementia (Additional file 1: 

Table  S2) [11, 24, 37]. �e variability in onset age and 

the presence of potential compound heterozygotes in 

the control group might be explained by variable pen-

etrance and variable loss of protein expression and 

functioning of the VPS13C mutant missense alleles. 

In the patients P1 (family A) and P2, with bi-allelic 

p.Trp395Cys and/or p.Ala444Pro, the reduction of 

VPS13C protein expression in lymphoblast cells was 

the most severe (Table 1, Fig. 2d). Both patients devel-

oped the disease at very early age (40–42 years) and had 

a marked severe disease progression (Additional file 1: 

Table S2). In brain tissue of the two patients, P1 and P3 

(family B), with confirmed trans compound heterozy-

gous VPS13C missense mutations, VPS13C protein 

expression was remarkably reduced compared to con-

trol individuals, with the strongest reduction observed 

for patient P1 (Fig.  2f ). �e VPS13C missense muta-

tions of DLB patient P3 were present in one younger 

sibling II.4 (Family B; Fig.  1a). �is sibling’s age 62 is 

close to the onset age of the index patient P3 indicating 

that this sibling is still at risk for disease.

Research showed that human VPS13C functions as a 

tether between the ER and late endosomes/lysosomes, 

and between the ER and lipid droplets, enabling transport 

of glycerolipids between membranes [22]. We confirmed 

the localization of wild type VPS13C at late endosomes 

and lysosomes (Fig.  3, Additional file  1: Fig. S2, Fig. S3, 

Fig. S4). Overexpressing wild type or mutant VPS13C, 

containing p.Trp395Cys or p.Ala444Pro, in HeLa and SH-

SY5Y cells demonstrated that the late endosomal/lysoso-

mal localization of VPS13C is completely lost in mutants 

(Fig. 3, Additional file 1: Fig. S2, Fig. S3, Fig. S4). Surpris-

ingly, both mutations are in the VPS13α domain and not 

in the putative WD40 modules responsible for endoso-

mal/lysosomal localization (Fig. 1b). Because these muta-

tions are nearby the FFAT-motif required for interaction 

with the ER, they may directly affect the localization to 

ER-contact sites as well. Overall, the different domains 

might be required for the protein’s structural stability, 

needed for its localization to ER-late endosome/lysosome 

and ER-lipid droplet contact sites. Mutations within the 

VPS13α domain may overall negatively affect the stability 

of the protein thereby affecting its localization. Besides 

p.Trp395Cys or p.Ala444Pro, we identified 12 alleles in 

patient carriers of (putative) recessive inherited VPS13C 

mutations, including 11 missense and one splice site 

mutations (Fig.  1b; Table  1), awaiting further functional 

investigation to estimate their pathogenicity.
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Conclusions
Overall, our results suggest that rare homozygous 

and compound heterozygous missense mutations in 

VPS13C contribute to both PD and DLB risk. We iden-

tified trans compound heterozygous missense muta-

tions p.Trp395Cys and p.Ala444Pro in VPS13C with loss 

of functional protein, confirming their pathogenicity. 

Understanding the contribution of the different mutated 

VPS13C alleles to the genetic etiology of LBD needs addi-

tional research.
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