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Nonlinear dendritic integration is thought to increase the computational ability of neurons.

Most studies focus on how supralinear summation of excitatory synaptic responses

arising from clustered inputs within single dendrites result in the enhancement of neuronal

firing, enabling simple computations such as feature detection. Recent reports have

shown that sublinear summation is also a prominent dendritic operation, extending

the range of subthreshold input-output (sI/O) transformations conferred by dendrites.

Like supralinear operations, sublinear dendritic operations also increase the repertoire

of neuronal computations, but feature extraction requires different synaptic connectivity

strategies for each of these operations. In this article we will review the experimental

and theoretical findings describing the biophysical determinants of the three primary

classes of dendritic operations: linear, sublinear, and supralinear. We then review a

Boolean algebra-based analysis of simplified neuron models, which provides insight

into how dendritic operations influence neuronal computations. We highlight how

neuronal computations are critically dependent on the interplay of dendritic properties

(morphology and voltage-gated channel expression), spiking threshold and distribution

of synaptic inputs carrying particular sensory features. Finally, we describe how global

(scattered) and local (clustered) integration strategies permit the implementation of similar

classes of computations, one example being the object feature binding problem.

Keywords: dendrites, neural computation, nonlinear transformations, Boolean analysis, binary neruons, uncaging,

input-output transformation, votlage activated channels

Introduction

In order to control behavior, the brain relies on the ability of its neuronal networks to process

information arising from external and internal sources. How single neurons decode combinations

of sensory features and transform them into a spiking output is still unknown, and represents a

subject of intense study. The complexity of the single neuronal coding problem can be illustrated

by the paradoxical finding that neurons exhibiting narrowly tuned receptive fields often appear

to be driven by synaptic inputs that themselves are broadly tuned (Chadderton et al., 2014). One

hypothesis is that nonlinear dendritic transformations are critical for such neuronal computations.
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Decades of experimental and modeling studies on dendrites

have led to the consensus that active properties of dendrites

are primarily responsible for nonlinear integration, in particular

supralinear operations (Mel, 1994; Spruston and Kath, 2004;

Johnston and Narayanan, 2008). Nonetheless other findings

indicate that sublinear integration of synaptic inputs is possible

in multiple neuron types, and results from either active (Cash

and Yuste, 1998; Hu et al., 2010) or passive dendritic properties

(Abrahamsson et al., 2012; Vervaeke et al., 2012).

What is the evidence that nonlinear dendritic properties

contribute to neuronal computations? Numerical simulations

suggest that supralinear dendritic operations are essential

for translation-invariant orientation tuning (Mel et al., 1998)

and binocular disparity tuning (Archie and Mel, 2000),

while sublinear dendritic operations contribute to coincidence

detection of auditory stimuli (Agmon-Snir et al., 1998). Recently,

state-of-the-art in vivo recordings have shown that dendritic

supralinearities are associated with various other neuronal

computations: formation of hippocampal place fields (Lee et al.,

2012), detection of multi-modal sensory stimuli (Xu et al., 2012),

angular tuning of barrel cortex pyramidal neurons (Lavzin et al.,

2012), and enhancement of orientation tuning (Smith et al.,

2013). Sublinear operations have also been shown to underlie

orientation selectivity of binocular neurons in visual cortex in

vivo (Longordo et al., 2013).

Nevertheless, a direct link between the dendritic

transformations and the associated neuronal computations

is still lacking. Analytical methods implementing mathematical

approximations of measured dendritic operations can be used

to make estimates of the possible number and type of neuronal

computations. For example, binary neuron models were used

to quantify what was previously shown with biophysical

models (Mel, 1994), namely that nonlinear dendrites support

a larger number of neuronal computations (Poirazi and Mel,

2001; Cazé et al., 2013). Such simplifications can provide

analytical insight and make testable predictions as to which

computations are made possible by dendritic operations.

Moreover, analytical methods show under which conditions the

expanded computational capacities are generic, i.e., not tied to

the specific example parameters of the biophysical model.

Here we review the biophysical determinants of different

classes of dendritic operations (linear, sublinear and supralinear),

how they are measured experimentally, and finally, using a

recently published Boolean-based analysis of equivalent dendritic

trees (Cazé et al., 2012, 2013, 2014), we review how these

operations combine with other cellular properties to determine

neuronal computations.

Dendritic Integration

Neurons integrate synaptic inputs arriving primarily on dendritic

trees carrying information from presynaptic neurons, by

transforming them into synaptic potentials using a variety

of cell-specific synaptic and cellular mechanisms. During

synaptic transmission, the activation of neurotransmitter-gated

conductances results in either a transient depolarization or

hyperpolarization of the postsynaptic membrane potential.

When the net depolarization resulting from synaptic integration

of multiple synaptic inputs is greater than the spike threshold

potential, the neuron generates an action potential (AP), or

spike. Synaptic integration is a critical determinant of neuronal

computations, the process by which a postsynaptic neuron

transforms presynaptic information (coded in input activation

patterns) into an output signal (encoded in a firing pattern)

(Häusser and Mel, 2003; London and Häusser, 2005; Silver,

2010; Larkum, 2013; Chadderton et al., 2014). This review will

focus primarily on the integration of excitatory post-synaptic

potentials (EPSPs) mediated by ionotropic glutamate receptors.

Dendritic integration can be quantified by comparing

the observed depolarization resulting from the simultaneous

activation of the same synaptic inputs (Figure 1B), also called

a compound EPSP, and the arithmetic sum of individual EPSPs

(expectedmembrane depolarization) (Figure 1C). The dendritic

subthreshold input-output (sI/O) relationship is easily described

by plotting observed vs. expected depolarizations for different

numbers of co-activated synapses (Figure 1). Mathematical

functions can be used to describe the operation performed.

The sI/O relationships fall into three categories of dendritic

operations: (1) linear, where the observed depolarization

equals the expected depolarization; (2) supralinear, where the

observed depolarization exceeds the expected depolarization

(above the linear line; Figure 1D, left); and (3) sublinear,

where the observed depolarization is less than the expected

depolarization (below the linear line; Figure 1D, right). Much

of the experimental evidence of nonlinear integration suggests

dendrites perform supralinear operations, resulting from the

contribution of active dendritic conductances (Mel, 1994;

Johnston and Narayanan, 2008; Spruston, 2008). Recent studies

suggest that sublinear operations could be mediated solely

by passive properties (Abrahamsson et al., 2012; Vervaeke

et al., 2012), while other studies have shown that activation of

potassium channels can produce sublinear summation (Cash

and Yuste, 1999; Hu et al., 2010). The detailed biophysical

mechanisms determining specific dendritic operations are

discussed in depth below.

The type of dendritic operation strongly contributes to the

nature of the resultant neuronal computation. For example, co-

activation of synapses within a single electrical compartment that

exhibits supralinear integration will produce dendritic voltage

signals that are larger than expected due to amplification by

activation of voltage-sensitive channels. This large depolarization

is thereby more likely to drive the neuron to spike threshold. The

resulting sI/O will reflect a neuronal computation that is cluster

sensitive (Figures 1E,F, left, θ1). For a neuron with sublinear

dendrites, clustered synaptic activity will be less efficient at

triggering a spike than if the same inputs were distributed in

different compartments, thus promoting computations that are

scatter sensitive (Figures 1E,F, right, θ1; Cazé et al., 2013). Such

neuronal computations enable the discrimination of patterns of

synaptic activation with different levels of spatial and temporal

correlations, which could not be otherwise performed by linear

dendrites (Mel, 1992). Nevertheless, it should be noted that the

dendritic operation is insufficient to define the computation,

synaptic placement and spike threshold also influence the final
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FIGURE 1 | Dendritic operations and their influence on neuronal firing.

(A) Schematic diagram of a subthreshold synaptic input-output experiment in a

neuron with supralinear dendritic compartments (left, supralinear compartments

in green, linear compartments in black) or in a neuron with sublinear dendritic

compartments (right, sublinear compartments in blue). The red spots are sites

of synaptic activation or sites of glutamate uncaging. (B) Somatic voltage

responses evoked by simultaneous synaptic activation or uncaging. Green

curves are responses evoked with increasing number of synapses activated

within a supralinear dendrites. Blue traces are similarly obtained within a

sublinear dendrite. (C) Arithmetic sum of individual responses to synaptic

activation or uncaging. (D) Subthreshold input/output relationships (sI/O) used

to quantify dendritic operations. The dashed line represents a linear

releationship. Two horizontal dotted lines indicate two example somatic spike

thresholds (θ1 and θ2). (E,F) Example of synaptic integration of three synaptic

inputs distributed across the dendritic tree (E) or clustered on a single dendritic

branch (F) of a neuron with supralinear dendritic compartments (left) or

sublinear compartments (right). The output spike train, and hence neuronal

computation, differs depending on the threshold. The more depolarized

threshold value (θ1) allows the neuron with supralinear dendrites to exhibit a

cluster-sensitive neuronal computation (fires only when three inputs are

activated in the same compartment). The θ1 threshold also allows a neuron with

sublinear dendrites to exhibit scatter-sensitive neuronal computations. The

lower threshold (θ2) imparts a different neuronal computation based on simple

linear summation and is not sensitive to activated synapse location.
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neuronal computation. In Figures 1D–F we show that lowering

the spike threshold (θ2) would restrict the access to only the linear

regime of the subthreshold dendritic operation. Finally, ongoing

synaptic activity can occur in the presence of AP firing, and thus

constitutes supra-threshold synaptic integration (Silver, 2010),

which we will not address in this review.

Biophysical Mechanisms Influencing
Synaptic Integration

Effect of Passive Membrane Properties on
EPSPs Summation
Because neurons communicate with each other using electrical

signals, the analysis of their signaling properties is generally

performed using principles of electrical circuits. A single

compartment equivalent circuit describes well the electrical

behavior of a cell without any dendrite or active properties.

Four parameters determine the amplitude and time course

of the EPSP: a transient synaptic conductance (Gsyn), the

electromotive force of its ion flux (driving force), the membrane

resistance (specific membrane resistance; Rm), and the specific

membrane capacitance (Cm). The difference between the

membrane potential and the reversal potential for Gsyn sets the

driving force (Vm − Erev; Figure 2A), thus as Gsyn increases,

Isyn increases, and Vm becomes more depolarized. For large

conductances, Vm approaches Erev and the driving force is

reduced, resulting in decreased current flow for the same Gsyn

(Figure 2A). This results in a sublinear relationship between

Gsyn and EPSP size. Since quantal synaptic conductances are

generally small, it is when multiple synapses are activated

simultaneously that the driving force decreases sufficiently

to produce sublinear integration (Figure 2C). Therefore, for

passive single compartment model cells, synaptic summation is

already essentially sublinear, which was first demonstrated at the

neuromuscular junction (Martin, 1955).

More complex, but also more realistic, equivalent circuit

models take into account neuronal morphology, such as

dendritic arborizations. Wilfrid Rall pioneered the use of such

multi-compartmental equivalent circuit models in order to

study synaptic integration in neurons with passive dendrites.

His primary advance was to consider dendrites as electrical

cables (Rall, 1967) that contained an additional parameter,

the axial resistance (ra), which electrically couples multiple

elementary single compartment models (Figure 2B). Because

each elementary compartment will allow current to leak across

the membrane, the current injected in the next compartment

(across ra) decreases progressively as it travels along the cable

or dendrite, which results in an attenuation of the local EPSP

amplitude and a slowing of its time course. Such dendritic

filtering accounts for why local EPSPs in dendrites tend to be

larger and faster than those recorded in the soma. It therefore

follows that more distal synaptic inputs (for a given Gsyn) would

result in a progressively smaller somatic depolarization and thus

a smaller influence on the firing output of a neuron (Rinzel

and Rall, 1974; Magee and Cook, 2000; Spruston, 2008). Also

in dendrites the local input resistance (RD) or impedance (ZD;

to account for the effect of capacitance on fast time-varying

inputs) increases with increasing distance from the soma due to

a diminished shunt effect of the soma and the high resistance

of the sealed cable (Rinzel and Rall, 1974). We will henceforth

refer to ZD, since it is the more general form that accounts for

the capacitive current dependance on synaptic conductance time

course. It should be noted that at steady state ZD = RD. This

distance-dependent increase in ZD results progressively larger

local EPSPs, which in some morphologies, can combine with

an efficient passive propagation of EPSPs to the soma (transfer

impedance), thereby counteracting the distance-dependance

reduction in the somatic EPSP amplitude due to cable filtering

(Jaffe and Carnevale, 1999; Nevian et al., 2007; Schmidt-Hieber

et al., 2007). This location independence of EPSP amplitude is

also referred to as passive normalization (Jaffe and Carnevale,

1999). Distance-dependent increases in ZD are also thought to be

important to increase the probability of evoking a local dendritic

spike at distal inputs of basal dendrites of pyramidal neurons,

which can then propagate to the soma (Rudolph and Destexhe,

2003).

Rall provided a simple parameter that describes cable filtering:

the space constant (λ), derived from the steady state (λDC)

or frequency-dependent (λAC) solution to the cable equations.

It represents the distance along a cable where the membrane

potential is 63% of the maximal at the site of current injection.

Therefore if the dendrite length is longer than λ, significant cable

filtering can be expected; similarly, if the dendritic length is much

shorter than λ then EPSPs propagating to the soma are filtered

very little. A critical morphological parameter determining λ is

the dendritic diameter, to which λ is proportional (Figure 2B);

meaning a larger diameter produces a longer λ (Figure 3A,

left). For fast synaptic conductances (rise and decay <2 ms), the

capacitive current acts as a frequency-dependent shunt and can

dramatically alter λ. In cerebellar molecular layer interneurons,

for example, the frequency-dependent length constant (λAC) can

be over a factor of 5 shorter than λDC. Their thin (∼0.4 µm

diameter), 100 µm long dendrites are electrically compact for

steady-state depolarizations (with total length 3 times shorter

than λDC, 300 µm). But for rapid synaptic conductances λAC

is 50 µm (half the dendritic length), resulting in significant

dendritic filtering of EPSPs for distances greater than 20 µm

(Abrahamsson et al., 2012). Dendritic branching tends to

shorten the space constant, since it effectively decreases the

membrane resistance (acting like a shunt for current flow

(Figure 3A; right; Abrahamsson et al., 2012). It is also worth

noting that λ also serves as a rough indicator of the size of

effective dendritic compartments. Synapses located within a

distance of λ are more likely to interact than non-neighboring

synapses (Figure 2C; Abrahamsson et al., 2012).

The Influence of Passive Dendrites on sI/Os
As described above, sublinear summation of simultaneously

occurring EPSPs within an electrical compartment is a natural

consequence of the loss of driving force for synaptic currents.

Dendritic compartments with narrow diameters are particularly

sensitive to this due to a high ZD. Therefore when multiple

dendritic synapses are activated simultaneously within a close

proximity (<λ), the local depolarization resulting from the
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activation of a given synaptic input will be large, thus decreasing

the local driving force, resulting in a sublinear sI/O (Figures 1D,

2B). As the diameter of the passive dendrite decreases, ZD will

increase and the local EPSPs will be even larger (Abrahamsson

et al., 2012). One can use the equation for input resistance

of an infinite cable to appreciate the influence of dendritic

diameter (Figure 2B, equation 3). The larger ZD causes a larger

depolarization, thus the sublinear summation of synaptic inputs

will be more prominent with fewer active inputs (Figure 3A, left;

see also Rinzel and Rall, 1974). If the distance of the synapse

from the soma increases, the current sink of the soma, the end

effect of the dendrite and/or dendritic tapering will contribute

to a distance-dependent increase in ZD, together resulting in

more pronounced sublinear sI/O curves particularly for more

distal dendritic compartments (Figure 3A, middle). Finally, the

number of dendritic branch points, despite increasing dendritic

filtering, tends to decrease the local ZD by adding a current

sink, thus favoring a more linear sI/O (Figure 3A, right). Gap

junctions have also been shown to reduce sublinear summation

by providing a current sink (Vervaeke et al., 2012).

Although passive membrane properties are sufficient to

produce sublinear dendritic operations, experimental evidence

of such a mechanism has only recently been described

(Abrahamsson et al., 2012; Vervaeke et al., 2012). The

authors concluded that the combination of thin dendrites

and low levels of expression of voltage-gated channels favors

sublinear dendritic operations. In these neurons, sublinear

summation is apparent even for as few as two active synapses

FIGURE 2 | Theoretical basis for sublinear summation within passive

dendrites. (A) Equation (1) describes the different current components

underlying an EPSP in a single electrical compartment. Integration of this

equation describes the variation of the membrane voltage over time. The

transient change in driving force (∆V = Vm − Esyn) is determined by the

amplitude and time course of the local dendritic EPSP (black trace). At the peak

of the EPSP (solid blue arrow) the driving force is maximally reduced, and then

recovers back to that at resting membrane potentials during the EPSP decay

(dotted blue arrow). The reduced driving force decreases the synaptic current,

and hence the net depolarization, creating a sublinear relationship between

EPSP and its underlying conductance. (B) Equivalent circuit for dendritic cables,

where gm and cm are the membrane conductance and capacitance,

respectively, and ra is the axial resistance of a unit of cable. A synapse is

represented in the circuit (by the synaptic conductance Gsyn and the synaptic

reversal potential Esyn). For an infinite cable, the spatio-temporal distribution of

voltage is described by the relation (2), where τm is the membrane time

constant, and λ is the length constant. The length constant relationships are

derived from solving the cable equation (2) for step changes in membrane

voltage (λDC) or for a sinusoidal membrane potential change (λAC). The latter is

helpful to understand the dendritic filtering of transient EPSPs. Equation (3) is

the relation for the input resistance RD for an infinite cable. (C) Top,

ball-and-stick model of a neuron with colored arrows indicating the location of

three synapses (Syn 1--3). The graph above the diagram represents the peak

amplitude of a dendritic EPSP as a function of distance. Bottom, the two

graphs describe respectively the dendritic and somatic depolarizations in

response to individual (colored lines) or combined synaptic inputs (black lines).

Concomitant activation of two neighboring synaptic inputs (within ∼ λAC) will

therefore mutually reduce their driving force and sum sublinearly (for example

synapses 1 and 2, solid black trace for the EPSP observed in response to their

simultaneous activation, dashed black trace for the arithmetic sum of the

individual EPSPs). More separated synapses will, however, sum more linearly

(synapses 1 and 3, gray trace).
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FIGURE 3 | Contribution of dendritic and synaptic properties to EPSP

summation. (A) Influence of morphological parameters dendritic: diameter

(left), increasing distance to soma (middle) and increasing dendritic branching

(right) on the dendritic sI/O. The inserts illustrate the effect of morphology on

somatic EPSPs under the different conditions. Synapse location and traces

are color coded. Dashed line shows a linear I/O for reference. (B) The role of

ion channels on the shape of the sI/O, for a given morphology. Either K+

channels, (orange), Na+ channels (green), VGCC (pink), or NMDA receptors

(sky blue) are added to a passive dendrite (blue). (C) Example of sI/O in three

realistic combinations: thick (>2 µm) dendrites with active conductances (blue

curve, as in Branco and Häusser, 2011), thinner dendrites with active

conductances (brown curve, <1 µm, Losonczy and Magee, 2006), or thin

dendrites with only passive properties (blue curve, Abrahamsson et al., 2012).

(D) Influence of synaptic properties on the sI/O for a given morphology and ion

channel combination. An increase in synaptic strength makes the sI/O diverge

from linearity both in the sublinear and the supralinear regime, whereas

increasing the interval or the distance between synaptic inputs tends to

linearize the curve (right).

(Abrahamsson et al., 2012). Synapses activated on separate

dendrites summed linearly, supporting a scatter sensitive

neuronal computation (Abrahamsson et al., 2012), that was

confirmed in a realistic active model (Cazé et al., 2013).

The Influence of Active Dendrites on sI/Os
The large local synaptic depolarizations produced in dendrites

can also recruit the activation of voltage-dependent channels

(NMDARs, Na+, Ca2+, K+ and HCN channels, see Johnston and

Narayanan, 2008; Figure 3B). The number of activated synaptic

inputs needed to engage active conductances is determined, in

part, by the passive properties of the dendrite, the amplitude

and kinetics of the synaptic conductance, the voltage-dependance

of channel gating, and the channel density and distribution

along the somato-dendritic axis. Active conductances can either

enhance (Williams and Stuart, 2000; Migliore and Shepherd,

2002) or dampen (Cash and Yuste, 1999; Hu et al., 2010) local

dendritic depolarizations, depending on whether the channels

mediate inward (depolarizing) or outward (hyperpolarizing)

currents, respectively. Distance-dependent increases in Ih
currents have been shown to compensate for the temporal

slowing caused by dendritic filtering (Magee and Cook, 2000;

Williams and Stuart, 2002). Differential expression of HCN

channels across mitral cells has also been shown to increase the

membrane noise and lower the rheobase, thus facilitating AP

generation (Angelo and Margrie, 2011). Because of the presence

of NMDARs at many glutamatergic synapses, most studies

find that NMDARs activate other voltage-dependent channels

by boosting local synaptic depolarization (Schiller et al., 2000;

Losonczy and Magee, 2006; Nevian et al., 2007; Makara et al.,

2009; Branco and Häusser, 2011; Katona et al., 2011; Krueppel

et al., 2011). The resulting dendritic operation is determined by

the concurrence of a passively determined sublinear (Losonczy

and Magee, 2006; Krueppel et al., 2011; Chiovini et al., 2014) or

linear operation (Branco and Häusser, 2011), and a supralinear

operation.

In some cases, the voltage activation of conductances results

not only in EPSP boosting, but in a threshold-dependent, all-or-

none regenerative response, often called a dendritic spike. This

regenerative behavior is characterized by a steep change in the

sI/O followed by a plateau (Figures 1D, 3B; Polsky et al., 2004;

Losonczy and Magee, 2006; Larkum, 2013). Locally-generated

dendritic spikes can be mediated by either Na+ channels,

Ca2+ channels or NMDA receptors (NMDARs). Na+-spikes are

triggered by high-amplitude local depolarization, are relatively

brief, and can be accompanied by entry of Ca2+ through VGCC

or NMDARs. In pyramidal cells, these dendritic Na+ spikes can

be generated in most regions of the dendritic tree, propagate

throughout the dendritic tree, albeit with some attenuation,

but can still trigger somatic spiking (Golding and Spruston,

1998; Rudolph and Destexhe, 2003; Nevian et al., 2007). Recent

findings have also shown Na+-channel dependent spikes in

dendrites of dentate gyrus granule cells (Chiovini et al., 2014). On

the other hand, Ca2+ and NMDA spikes are longer, plateau-like

events, that are thought to be generated in particular regions

of the dendritic tree, and require the synchronous activation

of many clustered synapses. The biophysical mechanisms of

the NMDA spikes and their functional consequences have been

described in detail in a recent review (Major et al., 2013). In

cortical pyramidal neurons, the Ca2+ spike is likely to propagate

actively from the primary apical dendrite to the soma, thereby

representing a more global dendritic operation, whereas NMDA

spikes are locally restricted to dendritic compartments such as

tufts or basal dendrites (Larkum, 2013). In contrast, simulations

of in vivo spontaneous synaptic activity allow glutamate-bound

NMDARs to act as global nonlinearities providing an entirely

different computation than those initiated in single dendrites

(Farinella et al., 2014). Nevertheless, several recent in vivo

studies have reported the involvement of local NMDA spikes

during sensory processing, across all layers of the cortex (Lavzin
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et al., 2012; Xu et al., 2012; Smith et al., 2013; Gambino

et al., 2014; Palmer et al., 2014). It should also be noted that

Polsky et al. (Polsky et al., 2004) pointed out that a Ca2+-

spike exhibits saturation of the voltage response and thus

can also be considered sublinear for very high stimulation

strengths.

In summary, the modus operandi of supralinear dendritic

compartments is comprised of a continuum of voltage-

dependent operations from simple boosting of synaptic

depolarization to regenerative spikes. Considering the

biophysical underpinnings of this range of operations, it follows

that the interplay of the active and passive properties of dendrites

ultimately determines the shape of the sI/O (Figure 3C). For

example, sI/Os of thick dendrites, which have a low ZD, do

not suffer from driving force losses, thus sum linearly for low

numbers of activated synapses, then transition into supralinear

summation (Makara and Magee, 2013). Thin dendrites on the

other hand may exhibit sublinear sI/O relationships for only a

few inputs, but then easily engage NMDAR and Ca2+ channels

(Losonczy and Magee, 2006; Chiovini et al., 2014) with fewer

synaptic inputs than in larger dendrites (Figure 3C). Due to

tapering of dendritic width, which increases the ZD along the

dendrite with increasing distance to the soma, the dendritic

operations can be altered as a function of distance from the soma

(Branco and Häusser, 2010, 2011).

The Influence of the Size, Time Course and
Location of the Synaptic Conductance on sI/Os
The strength of synaptic conductance varies from synapse to

synapse across neuron types, but also within neurons. The

synaptic strength not only serves to bias the output of a

neuron to particular inputs (Ko et al., 2011), but it can

also be tuned to compensate for dendritic attenuation by

passive dendritic properties (Magee, 2000). Synaptic strength

influences dendritic operations by modulating the gain (slope)

and shape of the sI/O, which is achieved by engaging sub- and

supralinear transformations with different numbers of synaptic

inputs (Figure 3D). Larger synaptic conductances will lead to

larger dendritic depolarizations, and in turn either a larger

reduction in driving force or increased activation of voltage-

gated conductances. Depending on the intrinsic membrane

properties and synaptic conductance amplitude the ‘‘linear

regime’’ may be more or less prominent in the sI/O relationship.

The temporal window for synaptic interactions depends

ultimately on the time course of local EPSPs, which is itself

shaped by the local passive dendritic properties and the time

course of the synaptic conductance (Jonas, 2000). Although

the local dendritic EPSPs are larger than those at the soma,

it is important to note that their time course is generally

much faster, due to charge redistribution down the dendrite

(Schmidt-Hieber et al., 2007). The degree to which nonlinear

mechanisms are engaged during EPSP summation also depends

on the temporal summation of local EPSPs (Losonczy andMagee,

2006; Abrahamsson et al., 2012; Makara and Magee, 2013).

Simultaneous synaptic activation enables the largest degree of

nonlinear summation, which will progressively decrease as the

time difference between synaptic events increases (Figures 2A,

3D). Thus, combined with the synaptic strength, the temporal

coincidence between co-activated synapses within a single

dendritic compartment will determine gain of the dendritic

operations (Gómez González et al., 2011; Abrahamsson et al.,

2012; Makara and Magee, 2013).

The location of synapses carrying similar information (e.g., a

single sensory feature) determines which dendritic mechanism

is recruited. For example, if features of an object are always

clustered on a single dendritic compartment, then nonlinear

summation will be the prominent operation influencing

integration. Below we will use a mathematical formalism to

provide insight into how synaptic placement and dendritic

operations influence neuronal computations.

Experimental Strategies for Studying
Dendritic Integration

How do researchers study the biophysical properties of

dendrites and their influence on excitatory synaptic integration?

Classical electrophysiology methods such as sharp electrode- or

patch-clamp-based recordings of somatic membrane potential

provided insight into the intrinsic passive electrical properties

of neurons by measuring the input resistance and the

membrane time constant (τ = Rm
∗Cm) (Spruston and Johnston,

1992). When combined with multi-compartmental dendritic

models, with either simplified morphologies (equivalent cylinder

approximation) or full anatomical reconstructions (Clements

and Redman, 1989; Major et al., 1994), the passive electrotonic

properties of dendrites can be estimated from model parameters

that predict the membrane potential decay from somatic current

injections (Rall et al., 1992). These constrained models are then

used to examine dendritic transformations of EPSPs as they

propagate to the soma.

Unfortunately, single electrode recordings at the soma do

not provide sufficient information about dendritic properties

to constrain complex morphological models. With the advent

of dendritic patch recordings (Stuart et al., 1993), at least for

large diameter dendrites (≥1µm), cable model predictions could

be directly verified. This powerful recording method allows

estimations of the critical parameters influencing dendritic

filtering, such as internal resistivity (Ri; Stuart et al., 1993;

Stuart and Spruston, 1998; Roth and Häusser, 2001; Nevian et al.,

2007; Schmidt-Hieber et al., 2007; Hu et al., 2010), Rm and

voltage-gated channel properties and density along the somato-

dendritic axis (Magee and Johnston, 1995; Stuart and Spruston,

1998; Hu et al., 2010). Dendritic recordings also enabled the

measurement of local EPSPs and EPSCs, which allowed the

authors to conclude that dendritic filtering can be compensated

by a distance-dependent increase in synaptic conductance in

certain neuron types (Magee and Cook, 2000).

More recently, fluorescence imaging techniques have

greatly increased the toolkit for studying dendritic integration,

particularly in those dendrites with narrow diameters

(<1 µm). Ca2+ indicators are one of the most popular class of

fluorescence probes, which are used to indirectly study dendritic

nonlinearities resulting from activation of voltage-dependent

ion channels, provided at least one type of Ca2+ conductance
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was activated (Markram et al., 1995; Schiller et al., 1995, 1997,

2000). Ca2+ indicators have also been used to monitor synaptic

activity because of the prevalence of NMDAR activation in

single spines and Ca2+-permeable AMPARs at synapses in

interneurons (Soler-Llavina and Sabatini, 2006). In vivo two-

photon Ca2+ imaging experiments provided the first insights

into the spatial and temporal distribution of sensory-evoked

synaptic signaling within dendrites (Varga et al., 2011; Lavzin

et al., 2012; Smith et al., 2013; Jia et al., 2014; Palmer et al.,

2014). The contribution of in vivo Ca2+ imaging studies to

understanding dendritic function has been recently reviewed

by Grienberger et al (Grienberger et al., 2015). However, a

limitation of using Ca2+ imaging to study synaptic integration

is that it does not report the true dendritic voltage, a parameter

critically influencing dendritic operations. Also, the slow

nature of the whole-cell averaged [Ca2+] and the use of high

affinity Ca2+ indicators limits the temporal resolution of this

method (Farinella et al., 2014; Fernández-Alfonso et al., 2014).

Voltage-sensitive dyes are, in principle, an ideal alternative

for direct measurement of dendritic integration. Whereas

voltage-sensitive dye recordings have provided unprecedented

optical reports of the spatial and temporal distribution of

APs in axons (Foust et al., 2010; Popovic et al., 2011) and

dendrites (Acker and Antic, 2009; Casale and McCormick,

2011), their use to monitor EPSPs in dendrites has been less

successful due to poor signal-to-noise ratio, typically requiring

hundreds of trials of averaging (Palmer and Stuart, 2009).

However, inhibitory post-synaptic potentials (IPSPs) have been

detected (Canepari et al., 2008) and a recent study reports

good signal-to-noise ratios sufficient to detect spine EPSPs

(Popovic et al., 2014). The advances in genetically-encoded

voltage indicators are also rapidly maturing (Hochbaum et al.,

2014; St-Pierre et al., 2014; Zou et al., 2014), and could eventually

provide a powerful tool for studying dendritic integration in

vivo.

Another widely-used in vitro technique to characterize

the integration properties of dendrites is to directly

activate postsynaptic receptors using photolysis of caged-

neurotransmitter (i.e., caged-glutamate) within the diffraction-

limited focal volume of the microscope (Gasparini and Magee,

2006; Losonczy and Magee, 2006). Using galvanometer-driven

mirrors, the type regularly used in scanning confocal microscopy,

the focal illumination volume can be rapidly moved (within

0.1--1 ms) and positioned at multiple locations. The uncaging

light pulse is then rapidly gated at each location to focally release

glutamate. This allows for the near simultaneous activation of

many postsynaptic sites. The somatic depolarization is then

recorded using standard whole-cell patch-clamp methods. The

observed response to uncaging at multiple synaptic locations

(typically within 1 ms) is compared to the arithmetic sum of the

uncaging-evoked responses at individual sites. The resulting plot

is identical to the sI/O plots described in Figures 1, 3, provided

that the uncaging responses are similar to synaptic activation.

Using light, rather than presynaptic vesicular release, to activate

neurotransmitter receptors provides a more flexible strategy to

systematically vary the number, pattern, and timing of synapse

activation. Electrical stimulation does not permit a precise

identification of the synapses being activated, nor precise control

of the number of synapses activated. Holographic illumination

provides an alternative strategy for true simultaneous glutamate

uncaging at multiple sites within the dendrites and is more

amenable to multibranch activation (Lutz et al., 2008; Yang

et al., 2014, 2011). The only potential drawback of uncaging

is the difficulty in some preparations to accurately reproduce

very fast synaptic conductances due to the large volume of

diffraction-limited focal spots relative to the point source nature

of neurotransmitter release from synaptic vesicles (DiGregorio

et al., 2007), as well as a tendency to partially block GABARs

(Fino et al., 2009). Nevertheless, neurotransmitter uncaging

is an essential tool for quantifying the biophysical properties

underlying dendritic operations.

Linking Dendritic Operations to Neuronal
Computations Using Mathematical Models

Because experimental evidence of a direct link between the

dendritic operations and the associated neuronal computations

is still lacking, a parallel strategy is to use analytical models to

make testable predictions (Poirazi andMel, 2001; Legenstein and

Maass, 2011; Cazé et al., 2013). These methods take advantage of

mathematical approximations of measured dendritic operations

to make estimates of the possible number and type of neuronal

computations. Biophysical models, in contrast, although explicit,

do not easily provide insight into the classes of possible

computations because of the large parameter space. There

is no doubt that such models have provided deep insights

into neuronal computations that involve nonlinear dendritic

operations. They have been used to show that neurons with

supralinear dendrites are cluster-sensitive (Mel, 1993) and

neurons with sublinear dendrites are scatter-sensitive (Koch

et al., 1983; Cazé et al., 2013). Yet it was not clear whether either

type of nonlinearity provides similar computational advantages.

To examine the difference between supralinear and sublinear

operations of binary neuron models Cazé et al. (2013) used

a Boolean-based analysis. Here we review how this Boolean

framework can be used to argue that either supralinear or

sublinear summation is sufficient to endow neurons with a new

class of computations.

Within this analytical framework, neurons are modeled as

having binary inputs (xi), which can be weighted and integrated,

resulting in binary outputs (y). In this context the input-output

relation is described by a unique truth table, corresponding to a

Boolean function. In Figure 4A, the truth table describes three

simple Boolean functions: OR, AND and XOR. This well-known

mathematical framework (Wegener, 1987; Crama and Hammer,

2011), which deals with binary classifications of binary words,

allows us to analytically determine what type of classifications

are possible with nonlinear dendrites and which are otherwise

impossible.

The simplest binary neuron model is called the threshold

linear unit, also known as the point neuron model as described

first by McCulloch and Pitts (Figure 4B; McCulloch and Pitts,

1943). Synapses are assigned a binary value of 0 or 1, for inactive

or active states, which is then multiplied by a positive synaptic
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FIGURE 4 | Using Boolean algebra to analyze binary neuron models

with dendritic nonlinearities. (A) Truth tables for the Boolean functions

AND, OR and XOR for two synaptic inputs (x1 and x2). The two colored

horizontal lines illustrate how the AND and OR functions are linearly separable,

(Continued)

FIGURE 4 | Continued

i.e., a single line divides all inputs between two groups, one group having an

output of 0 and the other group having an output of 1. Neuron output binary

value is denoted as y. (B) Threshold linear unit model neuron with two inputs.

The weight of each input is represented by the area of the black disc drawn

between the input and the model neuron. Here all weights are equal to 1. A

spiking threshold (θ) of 2 allows the model neuron to compute the AND

function (left), whereas if θ =1 the neuron computes the OR function (right).

(C) Top, Simplified representations of a supralinear sI/O (left) and its

mathematical approximation by a Heaviside function (right) with a height h and

a threshold θ. Bottom, simplified representation of a sublinear sI/O and its

mathematical approximation by a piecewise linear, then saturating function.

(D) Generalized diagram representing a two-layer integration model neuron

with several compartments and n inputs. Each branch represents a dendritic

compartment, and the integration operation performed by this compartment is

represented by the box on the branch. The threshold θ and the output value h

of the nonlinearity are indicated within the box. The result from the integration

from each branch is then linearly summed and compared to the somatic spike

threshold Θ. (E) Implementation of the (partial) feature binding problem (pFBP)

by binary neurons with two dendritic compartments D1 and D2, either

supralinear or sublinear. Top, truth table describing various input feature

combinations, the response of each dendritic compartment, D

(0:inactive/1:active), and the final neuronal output, y. Columns with green

shading are the outputs of dendrites exhibiting supralinear operations, while

columns shaded in blue contain outputs of dendrites that exhibit sublinear

operations. Bottom, Model neuron with equivalent dendrite representation that

can implement the pFBP using supralinear (left) or sublinear dendritic

compartments (right), with θ and h values indicated in the box. If dendritic

integration is supralinear, two groups of inputs are needed to activate a

compartment, and a single compartment can trigger a spike. If dendritic

integration is sublinear, a single input can activate the dendritic compartment

and the two compartments must be active to trigger a spike.

weight for excitatory synapses. The sum of the active weighted

inputs is then compared to a somatic spike threshold Θ. If

this weighted sum is greater than the threshold, the output is

assigned a value of 1, and otherwise zero. If one considers a

neuron with linearly summing excitatory inputs, adjustment of

the threshold allows it to either perform a Boolean AND or

OR (Figure 4B). However, it is not possible to find a threshold

value and positive synaptic weight that allows the computation

of the XOR, the function corresponding to a binary neuron that

would fire only when one synapse is active, but not otherwise.

This illustrates well the fact that the threshold linear unit can

only perform functions that are linearly separable, i.e., there

is a set of weights and a spike threshold that categorizes the

inputs into two distinct groups, which differ by their output

values (Figure 4A). The XOR does not meet this criterion and

is therefore a part of the class of functions that are linearly

non-separable. To solve this problem we must either invoke

a non-monotone function to combine synaptic values (Zador

et al., 1992) or consider synaptic inhibition by using negative

weights (Mel, 1994; Cazé et al., 2014). Because the former

has not been described experimentally, and the latter requires

specific wiring within the network, we will focus here on linearly

non-separable functions that can be implemented with only

excitatory synapses and monotone dendritic operations. These

functions are known as positive Boolean functions (Cazé et al.,

2013).

Linearly--separable functions represent only a small fraction

of all the possible computations (Cazé et al., 2013). However, a

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 March 2015 | Volume 9 | Article 67

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Tran-Van-Minh et al. Dendritic operations and neuronal computations

neuron with nonlinear dendritic compartments can implement

the set of linearly non-separable functions, which encompasses a

much larger fraction of all computations (Cazé et al., 2013). Thus

both supralinear and sublinear compartments unlock the access

to all the possible computations (Mel and Koch, 1990;Mel, 1991).

This formal result is true for an infinite number of dendritic

compartments (Poirazi and Mel, 2001). This is clearly impossible

in practice. So what can a neuron compute with a finite number

of dendritic compartments?

To address this question we can construct a two-layer

binary model with nonlinear dendritic compartments. We first

approximated the dendritic sI/O with functions each having

a characteristic dendritic threshold θ, which represents the

threshold of the dendritic nonlinearity, and h, which represents

the maximal value of the dendritic nonlinearity. To approximate

supralinear compartments we used a Heaviside function, and

for sublinear functions we used a piecewise linear saturating

function (Figure 4C). The output of the dendritic compartments

is then linearly summed and compared with spike threshold

(Figure 4D). If we vary synaptic weights, the thresholds, and

the nonlinear dendritic operations, we can use Boolean analysis

to examine the different functions this model can implement. A

functionally salient neuronal computation that requires dendritic

nonlinearities is the association (or binding) of two features

of an object (for example, their shape and color). This is

known as the feature binding problem (FBP). If we suppose

that that different features of objects are encoded by different

groups of pre synaptic neurons impinging on the same post

synaptic neuron, then it is obvious that by allowing the features

of an object to target the same supralinear dendrite, the

coincidence of those features can be easily detected when co-

active (i.e., ‘‘red’’ + ‘‘apple shape’’; Figure 4E). It can also

be shown that a sublinear operation can bind features if the

inputs that encode object features are distributed onto different

dendritic subunits (and the spiking threshold increased). From

these simple binary models it is again clear that supralinear

operations favor cluster sensitivity and sublinear operations

favor scatter sensitivity. However, a keen eye may notice that

the sublinear model will also produce a spike if the apple

shape and banana shape are both activated. This therefore

constitutes a partial FBP. Below we will describe a neuron model

with equivalent dendrites that can implement the complete

FBP.

Because neurons are known to have both linear and nonlinear

compartments, we considered how more realistic dendritic trees

could be represented using our simple binary model, by creating

a neuron model with equivalent dendrites (Figures 5A,B). All

linear regions of the dendritic tree (typically, the perisomatic

compartment or the large diameter primary dendrites) were

collapsed to a single equivalent ‘‘linear’’ compartment (black

regions of schematic neuron and left branch of the model

neuron). The nonlinear dendritic compartments receiving more

than one synaptic input were represented as a second equivalent

dendritic branch. This then generalizes to an equivalent dendritic

branch for each nonlinear electrical compartment (Figure 4D).

The presence of a linear compartment is important, since

inputs contacting two separate nonlinear dendrites will sum

linearly (Figure 5A). Also, even inputs contacting the same

nonlinear dendrite, provided they are not in the same electrical

compartment, will sum linearly.

Legenstein et al. demonstrated that a model neuron with

supralinear dendritic integration is capable of learning and

computing the FBP (Legenstein and Maass, 2011). This function

detects any correct combination of features for an object, but not

incorrect combinations. In the Boolean framework this would

be the truth table corresponding to (‘‘red’’ + ‘‘apple shape’’)

or (‘‘yellow’’ + ‘‘banana shape’’). In Figure 4 we showed that

two supralinear dendrites are sufficient to solve the FBP for

two objects made of two features each. In Figure 5, a neuron

displaying at least one supralinear compartment and a linear

compartment can also solve the FBP for four inputs. In this

case, inputs encoding the features of one object are assigned to

the supralinear compartment, and the features corresponding

to the other object are assigned to the linear compartment

(Figure 5C). Because the features of the object must ‘‘cluster’’

on the same compartment we refer to this model as using a

local strategy of computation. Interestingly, it is also possible

to implement the same computation using a global strategy,

meaning that the features corresponding to one object need to be

‘‘scattered’’ onto both the nonlinear and the linear compartment

(Figure 5D), provided that appropriate changes in the synaptic

weights and threshold values are also implemented. As shown

by Cazé et al. (2013), a model with a linear and sublinear

compartment requires the global strategy to perform the FBP

(Figure 5E). The synaptic weights and threshold will also be

different than in the case of a model neuron with a supralinear

compartment. The fact that the FBP can be implemented using

a global strategy contrasts with the notion that recognition

of an object required the clustering of the inputs carrying

its features onto a same dendritic branch (Legenstein and

Maass, 2011), and the assumption that two-layer integration

models require independent branch-specific operations

(Behabadi and Mel, 2014). Using a biophysical model with

a model stellate cell morphology, Cazé et al. showed the

predictions are robust, since only passive thin dendrites

were necessary to convey a scatter sensitivity of output

firing, even in the presence of synaptic noise (Cazé et al.,

2013).

How might simplified Boolean models be modified for

more features and/or more objects? For objects represented

by more than two features, clustered strategies would simply

require more synaptic inputs, such that the number of the

number of inputs per subunit (dendritic compartment) equals

the number features. A change in threshold would also be

required. The requirements for neuronal computations using

sublinear dendrites, however, depend on the type of computation

and are less straightforward to determine explicitly. The

necessary number of nonlinear subunits also varies given the

implementation strategy, the number of objects, the type of

nonlinear subunits and the number of features. To solve the

FBP with more objects using supralinear operations, each

object will require at least one subunit (Cazé et al., 2012). For

computations with sublinear operations, Cazé et al. showed

that using binary weights, the FBP requires a maximum of 2n
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FIGURE 5 | Computing a linearly non-separable function (full FBP)

with supralinear and sublinear dendrites and using local vs. global

synaptic wiring strategies. (A) Left, model neuron with equivalent

dendrite representation of two compartments, linear (black) and

supralinear (green), and a clustered distribution of object features (object

1 : ×1, ×2 and object 2 : ×3, x4) (local strategy). Right, schematic

representations of synaptic placements equivalent to the model on the

left. (B) Left, model neuron with equivalent dendrite representation of

two compartments, linear (black) and sublinear (blue), and a distributed

placement of inputs carrying object features. (C–E) Implementation of the

full FBP (y = 1; “apple shape and red” or “banana shape and yellow”).

(C), implementation of the full FBP using a model with a supralinear

compartment and a local wiring strategy. Inactive inputs are represented

in light gray and the corresponding feature in lighter color. (D)

Implementation of the full FBP using a model with a supralinear

compartment and a global wiring strategy. The area of the disc adjacent

to a compartment next to each object feature represents the relative

weight of this feature. Here the relative weights used are of 1 and 2.

(E) Implementation of the full FBP using a model with sublinear

compartment and a global wiring strategy.

subunits (Cazé et al., 2012). Considering non-binary weights

then reduces the number of subunits needed, but this number

is still higher than the number of necessary supralinear subunits

(nsubunits = nobjects).

In summary, neurons with sublinear dendrites are capable

of solving linearly non-separable functions, but require using a

distributed strategy of synaptic placement (Figure 5E). These

neurons will be scatter sensitive. On the other hand, neurons

with supralinear dendrites can also access the same class

of computations either by using this strategy (Figure 5C)

or by clustering functionally relevant inputs onto the same

compartment (Figure 5C). Hence they can be either scatter or

cluster sensitive. Thus, the final neuronal computations depend

not only on the type of dendritic operation and the dendritic

and axosomatic thresholds, but also the global mapping of input

features throughout the dendritic tree.

Open Questions

To understand how a neuron integrates its synaptic inputs

we need precise knowledge of the morphology, ion channel

distribution along the tree, strength and time course of
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synaptic conductances carrying particular information features,

the output spike threshold, and the spatio-temporal pattern of

activation of the synapses carrying these features. Although we

can determine most of these parameters, as we reviewed above,

the most challenging experiments are those designed to estimate

the spatio-temporal distribution of all synapses carrying relevant

sensory features (i.e., a functional connectivity map). Strategies

using injection of viral-based retrograde tracers (Marshel

et al., 2010) are powerful for the identification of connected

presynaptic cells, but these methods lack information about

features conveyed by the inputs. Using in vivo Ca2+ imaging,

researchers have begun the herculean task of estimating how

sensory features are mapped onto dendritic trees by examining

how single synapses and dendrites respond to behavioral stimuli.

It is not clear whether such feature mapping can be performed

on the entire dendritic tree, but initial results provide hints as

to whether there may be general mapping rules. Some studies

argue that features are clustered in single dendrites within the

somato-sensory cortex (Takahashi et al., 2012), consistent with

a local computation strategy, while other studies have shown

that neighboring synapses onto layer 2/3 pyramidal neurons of

the visual and auditory cortex respond maximally for activation

of inputs carrying different sensory features (Jia et al., 2010;

Chen et al., 2011), consistent with a global strategy. In light of

the conclusions described here, both computation strategies are

capable of performing linearly non-separable functions.

Why might neurons use different dendritic operations and

wiring strategies? It is conceivable that differences in timing

of sensory development or optimal local circuit wiring may

constrain wiring strategies for particular neurons. Thus to

perform the same computation, different wiring and dendritic

strategies are needed. Global wiring strategies are more amenable

to ‘‘random wiring,’’ in contrast to the specific connectivity

required for engaging local strategies. We speculate that different

dendritic operations may be implemented by neurons given

certain biological constraints, such as limitations in the number

and location of synapses carrying a particular feature, or

spike threshold. For example when both principal neurons and

interneurons receive a common set of input features along

relatively fixed axonal projections, but are required to perform

different computations, they may engage different dendritic

operations. In the cerebellum interneurons have been shown

to exhibit sublinear dendritic operations (Abrahamsson et al.,

2012; Vervaeke et al., 2012) on their parallel fiber inputs,

while Purkinje cells are thought to receive the same or similar

features from the same set of input fibers, yet display supralinear

dendritic operations (Rancz and Häusser, 2006). One could

speculate that the different nonlinearities and synaptic placement

strategies of Purkinje neurons and interneuronsmay enable them

to implement complementary computations, which ultimately

could result in a microcircuit that is highly selective for specific

input patterns.

What are the wiring rules? Three possible wiring strategies

are (1) predetermined connectivity (genetically encoded); (2)

random connectivity; and (3) activity-dependent pruning and

stabilization of connections. Although the exact contribution of

each mechanism is yet to be determined, synaptic plasticity has

been shown to modify and ultimately determine the functional

connectivity. For example computational modeling showed that

a local wiring strategy, in which synapses carrying features of

objects are clustered, can be learned using simple plasticity rules

(Legenstein and Maass, 2011). Experimental evidence supports

this theoretical work, suggesting that activity-dependent, branch-

specific plasticity strengthens clustered synaptic inputs and

their compartmentalization (Makara et al., 2009; Makino and

Malinow, 2011; Takahashi et al., 2012). On the other hand,

synaptic plasticity could also reinforce global computational

strategies. In cerebellar stellate cells, high-frequency firing

of clustered inputs has been described to induce profound

presynaptic short- and long-term synaptic depression (Beierlein

and Regehr, 2006; Soler-Llavina and Sabatini, 2006). Such

plasticity mechanisms would reinforce the neuron’s scatter

sensitivity, and thus tend to optimize the output firing for

specific spatially and temporally sparse synaptic activity patterns

(Abrahamsson et al., 2012; Cazé et al., 2013).

Synchronized neuronal activity is known to cause oscillations

of the dendritic voltage, which would inevitably reinforce

electrical interactions between dendrites and thus alter the

effective number of isolated dendritic subunits that contribute

to the neuronal computation. For example, Remme et al. (2009)

showed theoretically that input-dependent synchronization of

intrinsic dendritic voltage oscillations can facilitate global voltage

propagation, even throughout highly distributed dendritic trees.

It will be important to examine how local and global dendritic

integration strategies might be influenced by brain oscillations,

thus ultimately altering neuronal and even circuit computations.

Since many types of interneurons are known to contact

specific locations within the dendritic tree, inhibition will

undoubtedly influence integration properties and information

processing by neuronal circuits (as reviewed by Palmer et al.,

2012). Nevertheless, the experimental challenge is to determine

not only the timing and location of inhibition within the

dendrite, in order to determine their alteration of dendritic

operations, but also whether particular features are conveyed

similarly or differently by excitatory and inhibitory inputs.

Although complex, the problem is critical to understanding

brain function as the balance of excitation and inhibition

is well known to be tightly regulated, with alterations being

implicated in disease (Yizhar et al., 2011). Using the Boolean

analysis of equivalent dendrites, one can deduce that negative

weight associated with inhibition is capable of performing

the Boolean NOT function. Such a function would enable

a simple implementation of XOR computations, further

expanding the number of computable linearly non-separable

functions.

Summary

In this review we described categories of biophysical and

cellular mechanisms that influence dendritic operations: passive

and active membrane properties of the dendritic tree, the

time course and amplitude of synaptic activation, the output

spike threshold, and finally the location and pattern of the

activation of synaptic inputs. We discussed how each of these
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parameters shapes and tunes the sI/O. We briefly discussed

techniques for the characterization of dendritic operations,

including electrode-based methods to stimulate and/or record

from dendrites, optical techniques to image dendritic activity

or uncage neurotransmitter, and biophysical modeling. In

order to understand how the major classes of dendritic

operations (linear, sublinear and supralinear) link to neuronal

computations, we reviewed the use of binary models associated

with Boolean analysis. This analysis provides insight into the

types of computable neuronal functions, such as the object

feature binding problem. We also reviewed how such functions

can be implemented with either supralinear or sublinear

dendrites depending on the spatial mapping of those features

within the dendritic tree. Because the synaptic activity pattern

ultimately determines the neuronal computations, we propose

that the elemental computational unit is the neuron rather

than the dendrite (Cazé et al., 2014). Although there are cases

(local strategies) where dendritic operations can dictate the

neuronal computation, dendritic operations must be studied and

understood in the context of the knowledge of the wiring of

specific features onto the dendritic tree.
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