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CONTRIBUTION TO METHODS FOR CALCULATING THE FLOW 

ABOUT THIN LIFTING WINGS AT TRANSONIC SPEEDS -
ANALYTIC EXPRESSIONS FOR THE FAR FIELD 

By E. B. Klunker 

Langley Research Center 


SUMMARY 

The problem of determining the small-disturbance flow about two-dimensional air­
foils at transonic speeds has been successfully treated by Murman and Cole by the 
process of matching a numerical solution of the near field to analytic expressions for the 
far field. The three-dimensional problem, i t  would appear, can be treated in a similar 
way with the aid of algorithms adapted to high-speed and high-capacity computers. The 
far-field potential for both lifting and nonlifting three-dimensional wings a t  transonic 
speeds is developed herein for a subsonic f ree  stream. This potential could be used for  
a three-dimensional-wing computation similar to the computation made by Murman and 
Cole for  the two-dimensional wing. 

INTRODUCTION 

The problem of calculating the flow about two-dimensional airfoils a t  transonic 
speeds with a subsonic f ree-s t ream Mach number has been successfully treated by 
several  authors using both time-dependent and steady-flow calculation techniques. The 
elliptic nature of the problem, which requires that the disturbances vanish a t  infinity, 
leads to the use of a large computational network together with large demands on computer 
storage unless special provision is made for satisfying the boundary condition a t  infinity. 
The numerical solution of a three-dimensional problem is even more demanding on 
computer storage and time requirements, and i t  is essential to res t r ic t  the computational 
network insofar as possible in order to obtain solutions with present-generation computers 
in a reasonable time. 

Several techniques have been developed for  satisfying the far-field boundary condi­
tions in the finite-difference computations of the flow about two-dimensional airfoils. 
Sills (ref. 1) has taken the simplest approach by simply extending the computational net­
work sufficiently far from the airfoil to satisfy effectively the boundary conditions in the 
far field. A large computational network is required with this approach, particularly for  



-- 

lifting airfoils at  transonic speeds, since the disturbances created by the body decay 
slowly in the lateral  direction. Magnus and Gallaher (ref. 2) limited the computational 
grid by transforming the far-field region into a finite region by an inversion. Matching 
the computational mesh of the near field with that of the far field presents a difficulty with 
this method. The transformation of the airfoil into a circle and a subsequent inversion 
has been used by Sells (ref. 3) and others to res t r ic t  the computational network to the 
interior of a circle. This technique leads to a nearly ideal computational system for two-
dimensional flows, but the extension to three-dimensional flows is not evident. The 
method developed by Murman and Cole (ref. 4) provides a means for limiting the compu­
tational network and satisfying the far-field boundary conditions. Their approach is to 
match the numerical solution of the near field to an analytic representation of the far field 
to satisfy, in effect, the far-field boundary conditions. This technique can be extended 
to three-dimensional wings, for  which an economy of grid points is a prime concern. 

The Murman and Cole technique requires an analytic expression f o r  the asymptotic 
form of the potential at  infinity. A rigorous development of the asymptotic form of sub-
subsonic two-dimensional flow solutions has been given by Ludford (ref. 5) as a ser ies .  
The leading terms for the far-field behavior for the two-dimensional airfoil a t  transonic 
speeds a r e  given by an integral representation for the nonlifting case in reference 4 
and for the lifting case in reference 6. The purpose of the present paper is to develop 
the leading terms of the far-field representation for  both lifting and nonlifting three-
dimensional wings appropriate to a transonic flow with a subsonic f ree  stream. The 
development is in the form of an integral representation similar to that of reference 4 .  
The two-dimensional results a r e  presented as a special case. 

SYMBOLS 

b wing span 

F(5 7r7) wing thickness distribution 

ij,i unit vectors along X-, Y-, and Z-axes 

L Laplac ian operator 

Ma3 free-stream Mach number 

n inward normal direction 

0 order symbol 
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R magnitude of difference vector defined by equation (6) or  (14) 

I S surface 

u,v,w disturbance velocity component in x-, y-, and z-direction, respectively 

" I ,  ,,/ 
V volume 

x,y,z Cartesian axes 

X,Y,Z Cartesian coordinates 

x,r, P cylindric a1 coordinate s 

p = J X 

r circulation 

Y ratio of specific heats 

A denotes difference between value on upper and lower surface of wing 

5 , 7 7 9 5  dummy variables 

cp disturbance velocity potential 

* 	 solution to Laplace equation 


81,82,83 angles between shock norma3 and coordinate axes 


[I denotes jump values across  shock 


Subscripts: 


D shock discontinuity 


I interior region 


P singular point (x',y',z') 
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V trailing vortex sheet 

W wing 

122 upstream and downstream side of shock, respectively 

A prime indicates a transformed space in which the coordinates transverse to the 
s t ream direction are stretched by the factor p. Single and double subscripts on Q, 
and Q denote first and second derivatives with respect to  the indicated variables. 

ANALYSIS 

In the following development the transonic small-disturbance differential equation 
is put in the form of an integral equation (with the use of Green's theorem) which is 
suitable for representing the flow about three-dimensional wings a t  transonic speeds with 
a subsonic f ree  stream. The leading te rms  of the asymptotic form of the equation at 
infinity a r e  taken as the far-field representation. 

Transonic Differential Equation 

Let x ,  y, and z be Cartesian coordinates and le t  Q, be the disturbance velocity 
potential that is the perturbation about the uniform f ree  s t ream. The f ree  stream is 
taken in the x-direction and the wing is in the XY-plane. The small-disturbance potential-
flow equation applicable to transonic flows is 

P2Q,m+ Q,yy+ Q,zz = y+la (Q,x2)
2 a x  

where p2 = 1 - M, 2. The disturbance velocity components a r e  u = GX, v = Q,y, 

and w = Q,z. The left-hand side of equation (1)becomes the Laplacian operator 
for p2 > 0 with the transformation x' = x, y' = py, and z' = pz. In te rms  of x', y', 

and z', 

L(Q,) = Q,x'x' + Q,y'y' + Q,z'z' = --a+2p2 ax' (qx?) 

In the next section an integral equation for the velocity potential 4 is developed from 
equation (2) and subsequently transformed back to the unprimed coordinates. 

Integral Equation 

The symmetric form of Green's theorem for  the two functions Q, and IC/ which 
a r e  twice continuously differentiable in the volume V bounded by the surface S is 

4 




where n is the inward normal direction to S and where L is the Laplacian operator. 
Let 

L(*) = + *yty? + *z'z' = 0 (4) 

The fundamental solution of equation (4) is 

+ = - 1 
47rR (5) 

where 

This choice of $J leads to source and doublet distributions in the integrals over the wing 
surface. The boundary surface S (fig. 1)includes (1) the surface at  infinity, (2) the 

5 - ' -A -

I C - , , 

n I IJ 

Figure 1.-Geometric surface comprising boundary surface S. 
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surface SP surrounding the singular point (x',y',z'), (3) the surface % around any 
shock discontinuity, (4) the wing surface Sw, and (5) the trailing vortex sheet SV. The 
integral over the 'surface a t  infinity, with rl/ given by equation (5), vanishes under the 
condition Cp R-', for E > 0, everywhere at infinity except in a region surrounding the 
trailing vortex sheet where Cp is required to be bounded and antisymmetric only in z. 

The far-field expression for Cp will be shown to have these properties and hence the 
integration over the surface at infinity vanishes and need not be considered further. 

In the following development the potential at the field point (x',y',z'), which is 
obtained by integration over the surface Sp, is related to the remaining surface and 
volume integrals with the use of equation (3). The integrals over any shock discontinuity 
combine, so the integrand vanishes and thus the combined integral makes no contribution 
to Cp. The integration over the trailing vortex sheet is transformed through an integra­
tion by par ts  so that the potential at the field point is given in te rms  of only surface inte­
grals  over the wing, which represent source and vortex distributions, and a volume inte­
gration throughout the field. 

Integral over volume V.- Since L(+) 0, the only contribution to the left-hand 
side of equation (3) comes from the term +L(@). The reduction is made with the use of 
the right-hand side of equation (2) for  L(@) together with an integration by par ts  in the 
x'-direction. The integration by parts leads to integrals over the bounding surface of the 
volume V, all of which vanish except those over any shock discontinuity. Thus, 

F >lv+L(@)dV'= +[u2] cos B1' dS' -$, u2dV' 

where the jump across  a shock surface is 

[uq = u22 - u12 

with the subscripts 1 and 2 referring to the upstream and downstream values, respec­

tively, at  the shock-discontinuity surface %. The upstream unit vector normal to the 
shock has been taken as 

and in equation (7) 
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Integral over surface surrounding singular point Sp.- The field point (x',y',z') is a 
singularity of the equations for  R = 0 and must be excluded from the region of integra­
tion. The surface surrounding the field point is taken as the sphere R = Ro. Then 

a* - 1- _ - -
4nRO2an 

and the element of area is dS' = Ro2dw, where w is the solid angle. Integration over 
the surface Sp gives 

Integral over surface of discontinuity SD.- The quantities +, g,and @ are 
continuous across  any shock surface and the normal velocity %! is discontinuous there.an 
Thus, these surfaces must be taken as boundaries of the region of integration in order to 
satisfy the requirements of Green's theorem The integral over SD becomes 

awhere [g]denotes the jump in !?& across  the shock and an is in the direction of the an 
upstream normal to SD. Equation (9) will be used with expressed in the form 

a aIntegral over wing surface Sw.- For  a thin wing an= f e on the wing surface. 
- -_ .. .. . 

a @It is convenient to employ the notation A@ and A 7 to  designate the value on thea <  
upper surface minus the value on the lower surface. Thus, A @  is the jump in potential 
across  the wing surface and A * is related to the wing thickness distribution. The

a<'integral over the wing surface then becomes 

Integral over trailing vortex sheet Sv.- For  lifting wings there is a trailing vortex 
sheet S i  which extends downstr'eam f rom the wing trailing edge and lies in the 
X'Y'-plane in the small-disturbance approximation. The quantities *, $,and an 
are continuous on Sv whereas @ is discontinuous there. Thus, 
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Integral equation fo r  velocity potential.- Equations (7) to (12) provide the relations 
required to relate the potential a t  the field point to the surface integrals over the wing, 
the trailing vortex sheet, and any shock discontinuities as well as to a volume integral 
throughout the space. Substitution into equation (3), together with a transformation to 
the unprimed variables, gives 

where 

IC/=- 1 

4rR 

with R now defined as 

and where the velocity components a r e  u = q E ,  v = @?,and w = @c *  The relations 

COS 81' dS' = p2c0, 81 dS 

COS 82' dS' = p COS 82 dS 

COS 83'dS' = j3 COS 83 dS 

have been used in the transformation of the surface integrals from the primed to unprimed 
coordinates. 

The direct  expansion of the shock polar equation for  weak jumps gives the equation 
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which may be regarded as a small-disturbance approximation to the shock jump condi­
tions. Applying the divergence theorem to the irrotationality conditions gives 

fv-Jcos 91 - [U-JCOS 92 = 0 

[W]COS 91 - [UJCOS 93 = 0 

[W]COS 92 - [VJCOS 93 = 0 

and these relations combined with equation (15) give 

{P2 [uJ - q [ u q }  COS 91 + [vJcos a2 + EwJcos 93= 0 

as a second form of the shock jump conditions for  weak jumps. The left-hand side of 
equation (16) is a factor in the integrand of the integral over SD in equation (13) and, 
consequently, that integral does not contribute to the potential e. The two forms of the 
shock jump conditions a r e  equivalent to those given in reference 4. 

The terms in equation (13) with integrands ?!kA @  correspond to doublets, and the 
region of integration is over both the wing and the trailing vortex sheet. These integrals 
can be transformed to one extending only over the wing surface through integration by 
parts in the 5-direction and by making use of the fact that A$ is a function only of r] 

on Sv. The potential becomes 

The f i rs t  term on the right-hand side of equation (17) corresponds to a vortex distribution 
and represents the lifting effects; the second term corresponds to a source distribution 
whose strength is related to the wing thickness distribution; and the third term, which 
a r i ses  from the nonlinearity of the flow equations, has the form of a doublet with i t s  axis 
in the s t ream direction and with a strength given by the local value of u2 and influences 
the results for both lifting and nonlifting wings. 

The corresponding relation for two-dimensional flow is found from equation (17) by 
regarding Au, u, and Aw to be functions only of the argument 5 and integrating 
on 7 from -03 to soo. Thus, for a two-dimensional flow, 
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where C designates the airfoil section and S is the two-dimensional region exterior 
to the airfoil. The te rm sgn(z) in the first integral is required to account for the jump 
in potential downstream of the trailing edge on z = 0 with the principal value taken for  
the a rc  tangent. Equations (17) and (18) provide the basis for  obtaining the asymptotic 
form of the potential in the far field for  the three-dimensional and two-dimensional wings, 
respectively . 

Far -Field Representation 

In the far field the distance from the wing is large compared with the dimensions 
of the wing. Each integral in the expression for the potential given by equation (17) or (18) 
can be approximated and simplified at large distances f rom the wing on this basis. 

.Lift integral.- There a r e  two regions of the far field to consider for the approxima­
tion of the integral associated with the lift: (1) the region where the distance from the 
wing (x2 + y2 + ~ 2 ) ~ ’ ~is large with both y and z exterior to a region Ob) 
surrounding the trailing vortex sheet and (2) the region where only x is large and y 
and z lie in a neighborhood of the trailing vortex sheet. 

For  the f i r s t  region, where (x2 + y2 + ~ 2 ) ~ ’ ~is large compared with the wing 
dimension , 

x - 5 - x  

Y - 7 7 - Y  

and the contribution from the integral associated with the lift in equation (17) becomes 

For  the second region (in the far field in the neighborhood of the trailing vortex 
sheet), x >> b and both y and z a r e  O(b). The term in parentheses in the f i rs t  
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integral in equation (17) approaches a value of 2 as x - 00, and the contribution of the 
integral associated with the lift is 

where the circulation r is 

r(rl)= J Au(t,r/)dt
C 

and the integration is over the chord. On the trailing vortex sheet, the only contribution 
from equation (20) comes when the denominator approaches zero. This limiting form is 
readily evaluated as 

The two approximations given by equations (19) and (20) a r e  in agreement outside a region 
where y is O(b) and z is O(b) .  

Thickness integral.- In equation (17) the integral with the integrand $' Aw is 
related to the wing thickness distribution through the surface boundary condition 

where F(5,q) is the wing thickness distribution. Integrating by parts and letting f 
and q approach zero gives the leading term of the far-field representation for the non­
lifting part of the potential as 

which is of higher order  than equation (19). 

Volume integral.- The contribution to the far-field potential from the volume inte­
gral  is shown to be of higher order  than that associated with the lift. The volume integral 
in equation (17) extends over an infinite region; however, this integral can be limited to a 
finite interior region VI with little e r r o r  since u decays rapidly far from the wing.

1Differentiation of equation (17) shows that u -7 f o r  large R. Then the contribution to
R 

the potential from the region exterior to VI is 
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and the contribution from the neighborhood of the field point is of even higher order.  

The order  of magnitude of the far-field potential due to the integral over the 
interior region VI can be estimated with the use of the Schwarz inequality 

e
(LIu2qE d V r  S &I u4dV & qt2dV 
I 

The integral of q5 can be obtained in clcsed form in cylindrical coordinates and the 

result can then be expanded in powers of f where F is related to the region of inte-
R 

gration as shown in figure 2. The region of integration is the annular sector defined by 


Figure 2.- Polas coordinates in YZ-plane.  

12 




where r = pi- and 1-1 is the polar angle (fig. 2). The Schwarz inequality gives 

where 

u4 = $ &I u4dV 

and the volume of the interior region is 

Equation (23) yields 

Thus the dominant contribution to the far-field potential from the volume integral is 

which is O ( 3 ) .  

Velocity..._ potential for the far field.- The leading terms of the potential for the far 
field a r e  

where the various forms of the contribution due to lift @lift a r e  given by equations (19) 
to (21). The te rms  associated with the lift largely dominate the far-field potential. 
These te rms  provide the proper jump across  the trailing vortex sheet and they decay like 
the reciprocal of the distance in  the regions above and below the wing as well  as far down­
stream, whereas the contributions from the thickness and the volume integrals are 
O ( 5 ) .  It should be noted that @, as required by Green's theorem, has the proper form 

far from the wing (@ - R-�,  for  E > 0, and @ is bounded and antisymmetric in z near 
the trailing vortex sheet) to ensure that the integral over the surface at  infinity vanishes. 
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The far-field representation for  the two-dimensional airfoil is found from equa­
tion (18) to be 

where C designates the airfoil section and SI is the two-dimensional equivalent of 
region VI. The two-dimensional potential is singular for  M, = 1; the free-stream 
Mach number can approach 1 only as the thickness ratio T simultaneously approaches 0 
so that the transonic similarity parameter p2/~2/3 remains of order  1. 

Application of the.far-field- - - -.- . ...- _ _  equation. - The far-field representation developed herein 
would be used for a three-dimensional-wing computation in the same manner as the 
corresponding two-dimensional far-field representation was used in the numerical calcu­
lations of Murman and Cole (ref. 4) and Krupp and Murman (ref. 7). A numerical solu­
tion of equation (1) would be made within a limited region surrounding the wing and the 
values of the potential would be matched to the far-field values on the outer boundary of 
the computational grid to satisfy, in effect, the boundary conditions at infinity. Only that 
part  of the potential which is associated with the lift would be used for  the far-field 
representation fo r  lifting wings since the other te rms  a r e  of higher order  and may be 
neglected. The far-field value of the potential associated with the lift as given by equa­
tion (19) would be used everywhere except in some neighborhood of the trailing vortex 
sheet far downstream of the wing where equation (20) would be used. The region where 
the different forms of the equation for  Olift (see eqs. (19) to (21)) merge would have to 
be established by trial. The integrands in the far-field representation contain the 
unknown velocity component u and consequently have to be evaluated during the finite-
difference computation. Thus an iterative procedure is required in the numerical 
process. 

CONCLUDING REMARKS 

A far-field representation for the transonic flow about lifting wings is developed 
for  the case where the free-stream Mach number is subsonic. The term associated with 
the lift is shown to dominate the far-field solution. This representation provides a means 
for  both limiting the computational network for a finite-difference computation (thereby 
limiting the computer storage requirements) and satisfying the requirement of vanishing 
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disturbances at infinity. A finite-difference computation would be made within a limited 
region surrounding the wing and the values of the potential would be matched on the outer 
boundary of the computational grid to satisfy, in effect, the boundary conditions at infinity. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., September 24, 1971. 
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