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In this paper we discuss the Hall coefficient of heavily doped semiconductors at very
low temperatures by making use of the general method developed in previous two papers
(Matsubara-Toyozawa and the first part of this series). The effect of weak magnetic field on
the impurity band conduction is taken into account on the basis of the Kubo formalism
and the diagram method. An expression for the Hall coefficient is obtained in terms of the
Green’s function and it is proved that this expression is reduced in a special case to the usual
one derived from the Boltzmann equation method. Some discussion of the general feature
of Hall effect in a random system is given.

§ 1. Introduction

The concept of the impurity band conduction was originally introduced to
interpret the low temperature anomaly of the Hall effect in heavily doped semi-

conductors:” the Hall coefficient R has a maximum at a certain temperature and

tends to a constant value

Roy=-—~ (11)
nec
at very low temperatures. IHere n is regarded as the number density of the
carriers in the “impurity band”. Although there are few experiments in which
the Hall coefficient at very low temperature is measured as a function of donor
concentration, such experiments so far carried out seem to show that the rela-
tion (1-1) does hold. Figure 1 is one example of the experimental curve® for
n-type Ge doped with Sb, In and As, which clearly shows that in the so-called
metallic region (INp>10"cem™®) R, is proportional to Njp as is expected from
(1-1). . B
One might think this is quite a natural result. From a purely theoretical
point of view, however, (1-1) is by no means a straightforward conclusion. For
an electron moving in random lattice such as the electron in “impurity band”,
many of the conventional concepts used in the nearly free electron model lose
their meaning: thus wave vector, effective mass, the Fermi surface and even the

*) Present address: Department of Physics, Nagoya University, Nagoya.
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1258 T. Matsubara and T. Kaneyoshi

Ry concept of positive hole cannot be de-
fined distinctly. Equation (1-1) is derived
essentially on the basis of the nearly free

electron model and the Boltzmann trans-
port equation. Just as many authors have

discussed recently,” when the mean free
E/Q # path of electron becomes comparable with

or shorter than lattice spacing, there
is no reason to believe that the length of
the mean free path or the relaxation
time does not appear in the final expres-
sion for the Hall coefficient as in (1-1).
It is also not clear that what factor de-

16 7

0]

o | -0 Sb-doped
-9~ ShkIn-doped
* As-doped

termines the sign of the Hall coefficient
for the electrons in the impurity band
where the concepts of effective mass and

ol ' positive hole are somewhat obscured.
16 17 18

10 lo) 10 The main purpose of the present

ND(C”’fs) paper is to apply the general method of

Fig. 1. Relation between the Hall density the impurity band conduction developed
1/e|R|c at 4.2°K and the donor concentra- in previous two - papers (Which are re-
tion Np for n-type Ge. ferred to as M-T*® and M-K®) to the Hall

effect in order to clarily some points

of the Hall conduction in random systems which are not yet explored theoretically.

In §2 the formulation given in M-T and M-K is extended to the case where a
weak magnetic field is applied. In the scheme of the extended formulation, a
diagram expansion method is developed and the effect of the magnetic field on
the Green’s function is carefully examined in §3. A closed expression for the
Hall conductivity is given in terms of the averaged Green’s function. In §4 the
results obtained are checked by considering a limiting case of a regular lattice
and it is shown that the new expression for the Hall coefficient is reduced to

the conventional one derived on the basis of the Boltzmann equation in a limiting -

case.- In the last two sections some analysis of the Hall coefficient for the im-
purity band electron is given.

§2. Formulation

In dealing with the impurity band conduction, we have adopted in the previ-
ous papers (M-T and M-K) a simplified Hamiltonian of the following form:

H= Z Z anam*an » (2 ) 1)

{m} {n}

vmnsg bo(r— R) V(r— Ry o (r — R,) dr . (2-2)
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In theseA expressions, ¢,(r— R,) represents the Hydrogen-like 1s wave function
of an electron trapped by impurity potential V(r—R,) at R,. a,* and a, are
respectively the creation and destruction operators for the electron localized at
R,, and ), means that we are to take sum over the lattice points occupied by
impurity atoms. The Hamiltonian (2-1) tells us that the integrals V., cause
electron transfer from one impurity site to another, and owing to a random dis-
tribution of the impurities the set of random variables {V,.} gives rise to the
formation of both broad impurity energy band and decaying random electron
wave.

Now we try to extend (2-1) to the case where a weak magnetic field H
is applied to the z direction. For an electron trapped by the potential V(r) at
the origin, Schrédinger equation, in the presence of the magnetic field, becomes

Zm[ ieH< 0 @) cH ]
Zml g oy teH (0 0 eH —0. (23
Agbf pr (r) 2 x@y yo )t C2(x +3") ¢ (2-3)

We assume that we know all the solutions of (2-3) and let $,(r) be the wave
function of the ground state. Then, as Peierls has proved,” the solution for a
similar problem in which an impurity atom is located at R in place of the origin
is given by

I (®) :exptmiZkCH- (RXr)ngo.(r—R). (2.4)

Therefore one method to include the effect of a magnetic field into the Hamil-
tonian (2-1) is to replace ¢o(r—R) in (2-2) by ¢r(r) given above, that is, to
use instead of Vi, the following integral:

Vo= [t~ R VG~ R por R exp["ié%gﬂ X (Ry~Ro) v |dr
(2-5)

Since hereafter we are mainly interested in the weak-field Hall éffect, it is enough
to consider the quantities up to the term linear in H. In this approximation
we may ignore the H-dependence of the function ¢,(r—R) because it depends
on H quadratically for a weak field. Thus V,, can be simplified as

V/mn = mn €XP ( - Z:fmn) > (2 . 7)
where V,., is given by (2-2) and f,, by
Fon=--H-[Ry, %X Ru], (2-8)
2fic

and we have a model Hamiltonian to describe the weak-field Hall effect

78 D (2-9)

{m} {n}

According to the general theory of the transport phenomena, the Hall coefficient
in a weak field is given by '
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_ Oay
o2, H

(2-10)

0z 1s the longitudinal component of the electrical conductivity in zero magnetic
field, which has already been computed in M-T. ¢,, designates the transverse
- component of the electrical conductivity. To be more precise we need the anti-
symmetric part of 0., which is proportional to H:

Ggy:%(o-wy_o‘yuQ . ‘ (2 11)

- A general expression for 7,, based on the Kubo formalism” is

© )

4= lim ﬂ dt S Al excp (— s52) (o (— id) Iy () . (2-12)

§—>-+0 )
0

J.(2) is the Heisenberg representation of the current operator

ie '*' ' ‘
J - [c% L Rm am am - ? { ;¢{L} Rmn 71L7Ldm Ay - (2 ' 13)
m| n

As in the case of M-T, it is convenient to introduce the bases such as diagonalize
(2-9): |
ﬁ: Z E#Aﬂ*Aﬂ’ d"'b* = 2_1 (/:II’UIA * ady == 2.: CnvAv . (2 ) 14)
” ' v

In this representation the current operator is expressed as
sz:Z Z JﬂaVA*/l’Av > (CK:.RZ', 3’, z)
“ 14

J&— 1S5 pe FCx O (2-15)

i W
The procedure of reduction of 0., on the basis of this representation is quite
similar to that in M-T, and we are easily led to the result
Goy=lim 3131 T g L (B0 = () th 2-16)
so40 4 E E (EV—EIL) +ihs
With the Fermi distribution function f(E) = [exp B(E—Ez) +1]"'. This can be
further transcribed into a more compact form in terms of the Green’s function

which is defined by

G on(E) = Zi [GG) (E) — G5 (BT,
T

(2-17)
v 1 1
G7(nin) E Cm Cl’j‘ﬂ "*‘: 0 moT LT T A~ n* 0.
(B) =32 Co, Gl gt = Ol 2al10)
The final expression is summarized in the following form: »
@ E) —f (&)
= (€) tim ([ amam sy B S
T =) 2 AbndBaB™ (B )(El E)' + (sh) @-18)
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r-va,y (E1E2) - (' Z) Z Z Z Z Rmn Vm’nénk (EZ) R;cll ‘Afklébm (E1> - (2 * 19)

R ECIETRT:

Hence our problem is reduced to the following three steps; evaluating (2-19),
taking the average over the random distributions of impurity atoms and determin-
ing 0% from (2-18). The Hall coefficient R is obtained from (2-9) by substi-
tuting 04 thus calculated together with ¢,, which has been calculated in M-T.
In the next section we present a method to obtain the average of E®(E.L,).

§ 3. Effect of magnetic field on the Green’s function and E™ (EE,)

Within the same approximation as in M-T, we examine the effect of magnetic
field on the Green’s function and E*Y(E,E,) up to the term linear in H. In the
first place we expand Gon by iteration as

Ly ZZ vmhvlllz"'vlyny (3'1)

Z =1 20 O O

Zé mn T 677&7} +

where complex variable Z is used in place of E4is. ‘Each term in the above
expansion can be represented by diagrams exactly the same way as in M-T, only

difference being the appearance of V..m instead of V.. Thus we have the diago-

nal and non-diagonal component of the Green’s functions
51”"’ - Zé'n”b 92 ' (3 * 2)
£=2Gnn o (3-3)

as the sums of diagrams as shown in Fig. 2. It is readily proved that we can

discard H-dependence of &, in the linear approximation. To see this it is

enough to write down the first few terms in the expansion for &,:

Em — 1 + Z le /_lm"]_ e 2_| Z VmLVZnVnm "l_ (3 : 4)

{& {n}

In the second term the phase factor obviously cancels and hence F-dependence
does not appear. The summand of the third term is given by

.99, 989,

~
m->-n = Vamn

Fig. 2. Diagram representation of Em ‘ Fig. 3. Geometry of the phase factor
and ¢,,- H- (B,xR,+R,XxR,+R, xR,).
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VmL Vl.n ‘]nm exp [ - ’2% H (RL X Rm + Rn X RL + —Rm X Rn):l
. c
whose phase factor may be put in a form

exp[« O (R R+ Ry X Ryt Ry X R J _ exp[ie—-H- smm] . 3-5)
2Hc fic

where S,;, is a vector representing an area of the triangle formed by closed
three transfers m—[—n—>m (see Fig. 3). Therefore H-S,,; takes either sign
according to the sense of the transfer m—>[-->n—>m. This means that the linear
term in H should vanish on average in the third term. The same argument can
be applied to terms of any order in (3-4) and thus all the loop diagrams are
shown to have no term linear in H. We can push further this argument to show
that G (Z) is approx1mated as

é’l”ﬂ (Z) :eXP ( “‘ ifum) Gnm (Z) . ‘ (3 - 6)
On making use of (3-6), E”Y(F,E,) is expressed as

Exy (EIEZ) = ( — Z) {;ﬂL: ?%_}4‘ %;;;I % R‘;m anGnlt; (Ez) R%l VIGLGI,m (El)

><exp[—i(fmvb'lrfnlc%"f‘lcl—i“flm)]' <37)

What we need is the term linear in /I and hence upon expanding the exponent
and retaining only the linear term, we finally arrive at the result

gy (ElEz) — 2_‘ L 2 2 - *H {(Rk( X RLm) -+ (Rmnx Rnk)}

@ 0 W 2 ,
X AR ViunG e (Ey) R VG (En) } - (3-8)
To express more explicitly, we take
H= (0,0, H), Ru= X Yun Lmn)-
Then (3-8) becomes‘

Eﬂ:y (E1E2) - < >HZ_4 2_4 Z 2__4 I:XananYnchnL (EZ) YkLVkl.GLm (E1>
2hc m o W W

- X’mnYmn anancGnlc (EZ) chL VchGLm (El)
+ an V’mnGnk (EZ) XIGZ.YIGZ ‘/VkLYLmGLm (El)
— anVmanIa (E2> YI?L VchXLmGLm (El) ] . (3 ' 9) ‘

V=V (R, is always éxpanded in the Féurier series:
V(R.un) :le 2’; exp (k- R,.) Vi . (3-10)

Similarly we define the “Fourier component” of the Green’s function
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G (2) —7\} > 1> exp(—ik- Rm) exp (k' - R,) Gun (Z). (3-11)

{m} {n}

In terms of these Fourier components, (3-9) is written as

HW(EE2>~#ZZ [agkvf %", G (ke 1><@k @/fyf>G’f’"(EZ)
_0%2 %‘2 Guen () (5 507 G () (3-12)
IR

%Zk aak‘,,f"; wre (£) <6/€’ 0Z$>G""‘(El)]'

At this stage it is necessary to take average of .Gkk, G over the random dis-
tributions of impurity sites.” In the first paper referred to as M-T this average
was simplified by making use of the approximation

(CrrGr)={GCrr){CGrr) (3-13)

which is not always justified. A more accurate method of averaging was presented
in M-K. In this paper, however, we content ourselves with the approximation
(3-13) as was used in M-T, because we are going to utilize the numerical result
for 0, given in M-T in the course of computing the Hall coefficient R. It is
hoped that this simplification is enough to keep the essential feature of Hall
effect in random system. Within the approximation (3-13) {(Gyx (E))> becomes
diagonal with respect to k and k’, and hence (3-12) is further simplified to

o 0V OV, 'V OV
B (E.E,) = [ I3 G, (E, G E E
(k) = h Z Ok, OF, G )ky w () = Ok,Ok, Ok,
0Vi 0V o 0V 0°V, 9 ‘ ]
+ 9%V OVe G (E)-2 Gu(E) -2V O VeG, (E)-2 G (E) |.
on, Okk, K ( )@ky k(D) ok, Ok 5 ( Z)akx x (Ey)
- (314)

So far explicit forms for Vi or G, (E) are not necessary. For further re-
duction, however, we need to take a definite model and to give explicit forms
for Vi and G (E). As in M-T we shall adopt the hydrogenic model of impurity
levels under the effective mass and continuum approximation. Then V, is a
function of only |k| and G, (E) has a form

) )
G (E —ﬁ[ @ & ] 3.15
"( ) 1— CK(+)Vk 1—C¥(—)V7q ( )
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1264 T. Matsubara and T. Kaneyoshi

where a*) depends only on Ezis and the concentration of impurities. A de-
tailed discussion of the method of determining « has been given in M-K (see

as. (8-2) and (3-12) in M-K). By making use of V,=V(k|) and (3- 15),
the differentiation of Vj and G, with respect to %, can readily be performed as

Qy_’“ :de few
Ok, dk k°
= + =, 3-16
0k, drt ) B dk <k k3> ' (3-16)
Vi _ {dzvk}laxky B {dv,c}‘ bk,
0k,0k, dr ) B dk ) B
2 Guiy = {2
2 Gw(E *Ge(E)GL(E), 3-17
where
G’ (E) =[G (E) + G (E) 1. (3-18)

Inserting all these results into (3-14), and ‘noting that z- and yd]rectlons are
equivalent on average, we have

eH

B (E,E,) =TI E) (3-19)

with

Y 7_1A dV]g _ 0 | . )
I (BE) =3 { dk} S GE) G (G (B) ~GP (B} (3:20)

and from (2-17), (3-19) the expression for the Hall conductivity 0., is written
as '

: a;‘:?,—ihf ngEldEQI’”’(EE)f <f:1> 1]; (;f‘z) . (3-21)

This is the basic formula from which we shall start for the discussion in the
following sections. )

§4. Reduction to the conventional formula

In order to check the validity of the result obtained in the previous section,.
let us examine in detail a limiting case where impurity atoms are distributed in

a regular lattice.

For this purpose it will be in due order to review briefly the conventional
way to derive the Hall coefficient on the basis of the Boltzmann equation. For
simplicity we confine ourselves to an isotropic system. Longitudinal conductivity

045 and the Hall conductivity 0z=0,,/H are respectively given in terms of the -
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distribution function f for the electron with wave vector k as®

G o= G = —i(ﬂgv,:f ) M gy, 4-1)
3 Oey,
Ox=0g,/H= —legg Vg 2T (k) af" 4-2)
3 my¥c Oek

In these expressions, ¢, is the energy of the electron with wave vector k, vi=
(1/%) (0er/0k) is the velocity of the electron, m;* effective mass and (k) the
relaxation time of the electron. When both (k) and m,* are constants inde-
pendent of k, it follows from (4-1) and (4-2) that

OCu=—""0 | (4-3)

_fﬁ__fw 44

o=251, @5
m
R becomes
1
R=—""=R, : (4-6)
nec

which is the same as (1 1).
Now we turn to the case of impurity band conduction. In the notation of
this paper, 0., is written as

gy S e [P e

As has been proved in M-K, in the limit of a regular 1att1ce the Green’s func-
tion becomes

G =" o : : (4-8)

E:':ZS— Vk

This is the Green’s function of an electron with energy Vi. Therefore, to make
the correspondence more obvious, we take

Vi=c¢x
and add a small damping term /" in the denominator of (4-8). Then

I

Gk(E) __(E—-Ek)“*]ﬂ

(4-9)
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By noting that

lz‘ dk hﬁ Ok

(Ge (E)}215(E—ek)nlr : | (4-10)

we may rewrite (4-7) as

e T (0 sip_ oy L Of(E)
e SSdEgdkh<6’k>O(E % oR
— 2 7 af(elc) i
— gdle(v) 201 4-11)

This is nothing but the formula (4-2) if #/I'=t;. In the next place we consider

Cg=0.4/H which is given by (3:20) and (3-21):

- @;SS dEdE; Y {ffi%} G () Gu(E (G2 () — G (B}

SE) —f(E) (4-12)
(E,— E,)’

The real part of the Green’s function, in the limit of a regular lattice, is

E—c¢
E e — 4-13
G (£) = (E—¢ep)*+ 17 ( )
and hence
Glco<El) “Gzco(Ez> :@1_E2> {]ﬂ* (El—elc) (EZ_u]g)_} . (4.14)

{(E1—%~>2+F2}{(Ez_ak)2+r2}
By substituting (4-9), (4-10), (4-14) into (4 12) and taking a limit of a very
small 7", we have

A (250 (00 ) fu(?o J;<>E>

— (£ — EL) (Ez - 57c)

{(Elﬁek)”‘r}’{(Ezﬁ‘?k)“rfz}

() o

If we identify

[ ~ (4-16)
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Contribution to the Theor& of Impurity Band Conduction. II 1267

then (4-15) is precisely the same as (4-2). In this way we can recover all
the conventional formulae for the Hall effect as a limiting case of the general
expressions expressed in terms of the Green’s functions.

The formal correspondence between two different approaches to the Hall
effect becomes more complete when we consider an anisotropic system. For in-
stance, from (3-15) we note

0 oV,
G.(E) = k
%k” Ok,

Gu(E)G(E) (4-17)

and using this relation we can rewrite (3-14) as

eH Hazvk<av,c> _0Va Vi 0V

B (EEy) =2
2hc Ok, \ Ok, Ok.Ok, Ok, Ok,

{azv,c Ve 0V azv,c<av,c
Ok,0k, Oks Ok, Ok} \ Ok,

}wmwmww

) } Go(E) Go () G (E) ] (4-18)

Assuming equivalence of x- and y-directions, we introduce anisotropic effective
mass through the well-known relations ‘

16V 1 _10%V,
n ok} M,, # ok}’

1 0V, _ 1

W OkOk, My,

(4-19)

Then (4-18) becomes

3

X Gy () G (E) {G' () — G’ (B}, (4-20)

and from (2-18) the Hall conductivity is given by

ﬁ fﬁ%%wmmm&wwwmn
2 2y

o S —f(Ey) (4-21)
(Ei—Ey)

Hereafter we can follow the same step to the limiting process as for an isotropic

()'H~~2—SSdE1dE2 5 {

system, and it is a straightforward task to derive

2 1, 1
Ou= —ig dk {M - 0, — i vm,} o {ng Sk)} (422

This is exactly the generalized version of (4-2) obtained by Jones and Zener

for an anisotropic system.”

Tn the course of the above reduction to the conventional formula, we notice
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1268 . T. Matsubara and T. Kaneyoshi

in the Hall effect an important difference between the nearly free electron case
and the impurity band conduction. The longitudinal conductivity is mainly con-
tributed from the integral over the Fermi surface. This is also the case for
the Hall conductivity of the nearly free electron as seen from (4-2). In the
case of impurity band conduction, however, the general expression (4-12) shows
~ that 0g is not determined by the contribution from the Fermi surface alone, but
rather by electrons with the whole range of energies. The manner of contri-
bution to ¢z from each electron is not simple, depending on the energy shift
and damping due to the randommess and also on the k-dependence of impurity
potential.

§ 5. Weakly disordered case

We would gain more deep insight into the characteristic feature of the Hall
effect in a random system by extending the discussion of the previous section to
a case where the randomness in the distribution of impurity atoms is not large.
We start as before with two expressions

dk oL

and

_ dvil'1 GO — G (B L ED —S ()
GH—%SSdEIdEQ; ! dk} 3 G (B Gu(B) (G () — G )y 0 CE,

(5-2)

According to the previous paper M-K, the Green’s function is approximately

given by the solution of the following set of self-consistent equations:

G (B) = &7 (5-3)
# T 1l—a®V ,
e = ° 5-4
E+is—V.,* ' G-
1 Vi

V:i:*:— 2

. (5-5)
N % 1‘C¥(i)V]¢

¢ is the concentration of impurity atoms. From (5-4) and (5-5) V.* is generally
a complex number dependent on only E. Therefore we may put

V. =4+ > (5-6)
Then, after substituting (5-4) and (5-6) into (5-3), we have.

2 (E) = ¢ R 5.7
G ) = e ves i (T +) -7

from which the imaginary part and real part are separated (see the definitions
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(8-15) and (3-18)) as

Gl:,(E):i — cl” 2 P
T (E—=cVy—d4)+T

c{E—¢cV,— 4} ,
(E—cV—AP+T7

(5-8)

G (E) = (5-9)

4 and [" are the functions of E; in order to know the FE-dependence of these

quantities we have to carry out somewhat laborious numerical calculations to -

solve Egs. (5-4) and (5-5). This task is undertaken in the next paper, but
before going into the details of the numerical results we content ourselves in
this section with a qualitative discussion assuming the smallness of I

As a function of E, G,(E) has generally a maximum at the energy E;, which
is a root of an equation: '

Ey=cVi+d(Ey). (5-10)

By expanding the denominator of (5-8) in a Taylor series around E,

E—&Vi—A4(E) = E— Ex— (‘Q’A*L,F (E—B) -

oOE
(04 Vgmy .
W o), Jo o
and by putting

11— (04/0E)p x5,

Gy (E) can be approximated through a Lorentzian curve:

Gu(E)=— € LONN D S (5-13)

In the same approximation

Go(Ey=_ ¢ B i . (5-14)
(1= (04/0E)p-n,y (E—Ep)*+1T7%
Therefore, within this approximation, except for a multiplication constant c{l—
- (04/0E) 5_x} ', the behaviour of the Green’s function as a function of energy
L is similar to the case discussed in §4 in the limit of small 7%, and hence the
evaluation of ¢ and 04 can be carried out in almost the same manner as in the
previous section. Thus we have finally

__ ¢ o 0f(E) ¢’ .
R S LT 0 08)0Eyry O
O n= a-,eigdk_(}f@)j n 0f(Ew) G (5-16)
3¢ mp* (B! OE, {1— (04/0E)pr)
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where use has been made of the following notation:

L aVE g, Ve L 5.17
i dkR F fil  mg* ( )
It turns out from these results that the Hall coefficient is given by
R:RO{ ¢ } (5-18)
- 11— (04/0 E)g,_z, , ‘

where R, is the Hall coefficient which would be derived from the Boltzmann
equation for quasi-particles with energy E; velocity v, effective mass m* and
relaxation time t,=#/1"(E;). On the other hand, if we calculate the state den-
sity by making use of the Green’s function, we would have

B X ¢
D(E) —% Gr(E) *; q- (@A/@E)E:Ek}a(E_Ek)' (5-19)
Let us define
Dy(E) =30 (E—Ey) | (5-20)
aﬁd
g=— D(ED _ c__ (5-21)

" Dy(Ey) {1— (04/0E)s,
Then from (5-18), it follows that
R/R,=1/9 . ‘ (5-22)

This is the form similar to-a relation conjectured by Mott in connection with

10)

the Hall coefficient of liquid metals.
We have not clearly indicated the condition to justify the above argument.

In the hydrogenic model in Ge or Si discussed in the next paper, we shall find

that the assumption of “weakly disordered case” is completely broken down.

§6. Sign of the Hall coefficient

In this section we briefly discuss some qualitative aspect of the results ob-
tained for the case of hydrogenic model. More detailed account of numerical
calculation and of comparison with experiments will be shortly reported in a
forthcoming paper. ‘ ‘

Taking the simplest model for the impurity state in semiconductors, we as-
sume hydrogen-like ls-state wave function

¢o(r~R)—(%3)1/2exp(~—a|r—R|). (6-1)

The transfer energy is given by
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an _ VO (1 + ClRmn) CXP ( - aR’nm) . (6 . 2)
with |
9 .
V=29 —2¢, 6-3)
Ko

where ¢, is the ionization energy of the Ils-state, £, dielectric constant and a '
the radius of the ls-orbit. Hereafter we adopt the continuum approximation and
ignore the Brillouin zone effect, replacing the sum over wave vector k by an
integral over whole k-space. Then from (3-21) ox=04,/H is written as

Ou= — he;c Sg dEdE,S E) — () 4T Sdk A <lefk,> i

(E,—E)* 3 dk
X G (E) Gy (E) {GH (Ey) — G (Ey) (6-4)
where Vj is the Fourier transform of (6-2) given by '
c 3
Vk:_v_ 32na (6-5)

@Ry

When this Vj is inserted in (6-4), and
the numerical results for the Green’s
function computed with the approxima-
tion same as in M-T are used, it turns
out that ¢z has definitely negative sign
irrespective of the number of eletrons
filling the impurity band. To see this
we first notice that, for given £k, the

imaginary part of the Green’s function 258 20 \l‘\ -0 \\ l w=E
Gr(E) is positive definite in a certain k=O\\\ \\ Vo
energy range, say I,E<EF, and vani- \“~~.‘\\__
shes otherwise. On the other hand, ac- !
cording to the numerical calculation, the — Gk(E) \\‘
real part G,°(£) is given as a monoto- 0 \
""" Gk(E) )

nously varying function of E within the
same energy range. Figure 4 shows an
example of the graphs for G,(E) and
G (E) calculated on the basis of the

. . . Fig. 4. G,.(E) ¢ Go e -
hydrogenic model.®  Since the Fermi —® 4 Gy(E) and G (E) are Sho.wn as func
. . . . ) tions of w=E/V, for two particular values
distribution function (&) is also a mo- of £; =0 and k=oo. The concentration of

notonously decreasing function of E, the impurity atoms is taken as 32zN,/a®=0.5.

integrand of (6-4)

*) These figures are the results of our new calculation carried out by making use of the M-T
. approximation.
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(L) D S E) (G D) =G (D) G, (1, G, (1)
dk . (B, — Ey)’ k

is always positive, and hence
‘ 07=0. (6-6)

This means that the sign of the Hall coefficient in the impurity band conduction

for n-type semiconductors is always negative as has been predicted by Mott."?

This conclusion is in remarkable contrast to the case of the usual band electrons,
where the sign of the Hall coefficient is either negative or positive according
as the Fermi surface is either electron-like or hole-like.
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