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In this paper we discuss the Hall coefficient of heavily doped semiconductors at very 
low temperatures by making use of the general method developed in previous two papers 
(Matsubara-Toyozawa and the first part of this series). The effect of weak magnetic field on 
the impurity band conduction is taken into account on the basis of the Kubo formalism 
and the diagram method. An expression for the Hall coefficient is obtained in terms of the 
Green's function and it is proved that this expression is reduced in a special case to the usual 
one derived from the Boltzmann equation method. Some discussion of the general feature 
of Hall effect in a random system is given. 

§ 1. Introduction 

The concept of the impurity band conduction. was originally introduced to 

interpret the low temperature anomaly of the Hall effect in heavily doped semi
conductors :1) the Hall coefficient R has a maximum at a certain temperature and' 

tends to a constant value 

1 Ro=-· 
nec 

(1·1) 

at very low temperatures. Here n is regarded as the number density of the 

carriers in the" impurity band". Although there are few experiments in which 

the Hall coefficient at very low temperature is measured as a function of donor 

concentration, such experiments so far carried out seem to show that the rela
tion (1.1) does hold. Figure 1 is one example of the experimental curve2

) for 

n-type Ge doped with Sb, In and As, which clearly shows that in the so-called 

metallic region (ND> 1017 cm- 3
) R O-

1 is proportional to ND as is expected from 

(1·1) . 
One might think this is quite a natural result. From a purely theoretical 

point of view, however, (1·1) is by no means a straightforward conclusion. For 

an electron moving in random lattice such as the electron in "impurity band", 
many of the conventional concepts used in the nearly free electron model lose 

their meaning: thus wave vector, effective mass, the Fermi surface and even the 
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Fig. 1. Relation between the Hall density 
l/elRJc at 4.2°K and the donor concentra
tion Nfl for n-type Ge. 

concept of positive hole cannot be de

fined distinctly. Equation (1·1) is derived 

essentially on the basis of the nearly free 

electron model and the Boltzmann trans

port equation. Just as many authors have 

discussed recently,S) when the mean free 

path of electron becomes comparable with 

or short~r than lattice spacing, there 

is no reason to believe that the length of 

the mean free path or the relaxation 

time does not appear in the final expres

sion for the Hall coefficient as in (1·1). 
It is also not clear that what factor de

termines the sign of the Hall coefficient 

for the electrons in the impurity band 

where the concepts of effective mass and 

positive hole are somewhat obscured. 

The main purpose of the present 

pa per is to apply the general method of 

the impurity band conduction developed 

in previous two papers (which are re
ferred to as M-T 4

) and M_K5» to the Hall 

effect in order to clarify some points 
of the Hall conduction in random systems which are not yet explored theoretically. 

In § 2 the formulation given in M-T and M-K is extended to the case where a 

weak magnetic field is applied. In the scheme of the extended formulation, a 
diagram expansion method is developed and the effect of the magnetic field on 
the Green's function is carefully examined in § 3. A closed expression for the 
Hall conductivity is given in terms of the averaged Green's function. In § 4 the 

results obtained are checked by considering a limiting case of a regular lattice 
and it is shown that the new expression for the Hall coefficient is reduced to 

the conventional one derived on the basis of the Boltzmann equation in a limiting 

case.· In the la,st two sections some· analysis of the Hall coefficient for the im

purity band electron is given. 

§ 2. Formulation 

In dealing with the impurity band conduction, we have adopted in the preVI

ous papers (M-T and M-K) a simplified Hamiltonian of the following form: 

(2 ·1) 

(2· 2) 
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In these' expressions, ¢o (r - R"n) represents the Hydrogen-like Is wave function 

of an electron trapped by impurity potential VCr - R'rn) at Rm. am * and am are 

respectively the creation and destruction operators for the electron localized at 

R m , and ~{'!n} means that we are to take sum over the lattice points occupied by 

impurity atoms. The Hamiltonian (2·1) tells us that the integrals Vmn cause 

electron transfer from one impurity site to another, and owing to a random dis

tribution of the impurities the set of random variables {Vmn} gives rise to the 

formation of both broad impurity . energy band .. and decaying random electron 

wave. 
Now we try to extend (2 ·1) to the case where a weak magnetic field H 

is applied to the z direction. For an electron trapped by the potential VCr) at 

the origin, Schrodinger equation, in the presence of the magnetic field, becomes 

J¢ + 2m [E - V (r) - ie H (x ~ _ yJL) + e
2 
H2 (x2 + y2) ] ¢ = 0 . 

1t2 2mc ay ax 8mc2 
(2·3) 

We assume that we know all the solutions of (2·3) and let cpo (r) be the wave 

function of the ground state. Then, as Peierls has proved,6) the solution for a 

similar problem 111 which an impurity atom is located at R in place of the origin 

is given by 

ie ___ H· (RXr)]¢o(r-R). 
2lic 

(2 ·4) 

Therefore one method to include the effect of a magnetic field into the Hamil

tonian (2 ·1) is to replace ¢o (r - R) in (2·2) by <PR (r) given above, that is, to 

use instead of Vmn the following integral: 

V mn = )¢o(r-Rm) V(r-Rm)¢o(r-Rn)exp[-i2~C Hx (Rn-RuJ·r Jdr. 

(2· 5) 

Since hereafter we are mainly interested in the weak-field Hall effect, it is enough 

to consider the quantities up to the term linear in H. In this approximation 

we may ignore the H-dependence of the function ¢o (r - R) because it depends 

on H quadratically for a weak field. Thus Vmn can be simplified as 

(2·7) 

where Vmn IS gIven by (2·2) and fmn by 

(2· 8) 

and we ha~e a model Hamiltonian to describe the weak-field Hall effect 

(2·9) 

According to the general theory of the transpo~t phenomena, the Hall coefficient 

in a weak field is given by 
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(2·10) 

o xx IS the longitudinal component of the electrical conductivity in zero magnetic 

field, which has already been computed in M-T. o;JJy designates the transverse 
- component of the electrical conductivity. To be more precise we need the anti

symmetric part of o;JJy which is proportional to H: 

(2 ·11) 

,A general expreSSIOn for 0 xy based Oli the Kubo formalism 7
) is 

ro ~ I 

OXy= }~~~ dt ~ dAexp(-st)<J;JJ(-ihA)Jy(t). (2 ·12) 
o 0 

J a (t) IS the Heisenberg representation of the current operator 

(2 ·13) 

As in the case of M-T, it is convenient to introduce the bases such as diagonalize 
(2· 9): 

iT! = ". E A * A 
cJ1, ~ '" '" "" 

* - ,-' C* A * all~ - ~ -ntll '" ' an= ~ CnvAv . 
/j II v 

In this representation the current operator is expressed as 

J a = L: L: JIi~A* ",A~, (a=x, y, z) 
Ii v 

(2 ·14) 

(2 ·15) 

The procedure of reduction ofo xy on the basis of this representation is quite 
similar to that in M-T, and we are easily led to the result 

wIth the Fermi distribution function feE) = [exp (3(E-EF) + IJ-1. This can be 

further transcribed into a more compact form in terms of the Green's function 

which is defined by 

G~ (E) - l [G~(+) (E) - G~(-) (E) ] Tnn' -~ mn TltlL ---" , 

2n 
(2 ·17) 

G~(±) (E) - ,-' C C* 1 - <01 1 * [0) 1n1t .J - ~ m", nil- - - am ----------r:::an • 

Il E±is-E", E±is-S£ 

The final expression is summarized in the follqwing form: 

(2 ·18) 
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Hence our problem is reduced to the followihg three steps; evaluating (2 ·19), 
taking the average over the random distributions of impurity atoms and determin
ing (J;Y from (2 ·18) . The Hall coefficient R is obtained from (2·9) by substi

tuting (j;:/:y thus calculated together with (jxx which has been calculated in M-T. 
In the next section we present' a' method to obtain the average of EXY (E1E 2) • 

§ 3. Effect of magnetic field on the Green's function and EXY (E1E 2) 

Within the same approximation as in M-T, we examine the effect of magnetic 
field on the Green:s function and EXY (E1E2) up to the term linear in H. In the 

first place we expand Gmn by iteration as 

~ 1~',~1 ~~ ~ 
ZGmn=omn+ Z V mn + ~ zV+1 ~ ... ~ Vm~LV~1~2'" V~vn' 

. v=l {~l} ... {lv} 
(3 ·1) 

where complex variable Z is used in place of E± is. Each term 111 the above 

expansioN can be represented by diagrams exactly the same way as in M-T, only 

difference being the appearance of Vrnn instead of V mn. Thus we have the diago

nal and non-diagonal component of the Green's functions 

(3·2) 

(3 ·3) 

as the sums of diagrams as shown in Fig. 2. It is readily proved that we can 

discard H-dependence of ~m in the linear approximation. To see this it is 
enough to write down the first few terms in the' expansion for ~m: 

~' 1 ~~ 1;' ~~~ 
~rn= 1 +2 ~ Vm~ V~rn + -3 ~ ~ Vrn~ V~nVnm + .... 

Z . {~} Z {l} {n} 
(3 ·4) 

In the second term the phase factor obviously cancels and hence H-dependence 
does not appear. The summand of the third term is gIVen by 

~m = aID = + <:D + % + ...... , 

<;"mn = U + W + ..... . 

m -i>'- n Vmn 

Fig. 2. Diagram representation of ~m 

and (mn' 

11I1I.11I111I1I[~n 

o 
Fig. 3. Geometry of the phase factor 

H· (RlXRm+RnxRl+RmxRn). 
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whose phase factor, may be put in a form 

exp [-~H. (RL X Rm + Rn X RL + Rm X Rn) J = exp[i~-H. SmLnJ ' 
2he he 

(3·5) 

where SmLn is a vector representing an area of the triangle formed by closed 

three transfers m-'?[-'?Jl-'?m (see Fig. 3). Therefore H· SmLn takes either sign 

according to the sense of the transfer m-'?[-'?Jl-'?17l. This means that the linear 

term in H sho'uld vanish on average in the third term. The same argument can 

be applied to terms of any order in (3·4) and thus all the loop diagrams are 

shown to have no term linear in H. We can push further this argument to show 

that Gmn(Z) is approximated as 

Gnrn (Z) ~exp ( - ifnrn) G mn (Z) . (3·6) 

On making use of (3·6), :E'vy (E l E 2) is expressed as 

E:xJY (ElE2) ~ (-i) ~ ~ ~ ~ R:::nn VmnGnk(E2)R~LVkLGLm(El) 
{m} {n} {k} {L} 

X ex p [ - i (fmn + f nk -+- fkL + f Lm) ] . (3·7) 

What we need is the term linear in H and hence upon expanding the exponent 

and retaining only the linear term, we finally arrive at the res;ult' . 

X {R:m VmnGnk (E2) R~L VkLG lm (El)}. 

To express more explicitly, we take 

Then (3·8) becomes 

E:xJY (ElE 2) = (~) H ~ 2=: ~ 2.:: [X;m VrnnYnkGnk(E2) Y kL VkLG Lm (El) 2he {rn} {n} {k} {q 

- XmnYmn VrnnXnkGnk (E2) Y kL VkLG Lm (El) 

+ Xrnn VmnGnk (E2) XkLYkL Vkl,YlmGLrn (El) 

-:- Xmn VrnnGnk (E2) Y~L VklX/,rnGLm (El) ] . 

V mn = V(Rmn) IS always expanded in the Fourier series: 

Similarly we define the "Fourier coi11ponent" of the Green's function 

(3·8) 

(3·9) 

(3 ·10) 
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G kk' (Z) = 1_ ~ ~ exp ( - ik· Rm) exp (ik' . Rn) Gmn (Z). (3 ·11) 
N {m} {n} . 

In terms of these Fourier components, (3· 9) is written as 

E XY(E1E2) = eH ~.~ [-~~Vi- UV-~;Gk'k(El) (~+~)Gkk'(E2) 
2hc k k' ukx 8ky uky uky 

- --§~-~"'--- 8Vk, Gk'k (E l ) (~+ _U_) Gkk, (E2) 
ukxuky uky' ukx ukx' (3 ·12) 

+ uVk . U2V~'--Gkfk(E2)(-U-+~)Gk'k(El)' 
ukx ukx'uky' uky ' uky 

- uVk U2V~fGkkf(E2){ __ !!_ +~)Gk'k(El)J. 
ukx Uky'2 ukx' ukx 

At this stage it is necessary to take average of Gkkf Gk'k. over the random dis

tributions of impurity sites. In the first paper referred to as M-T this average 

was simplified by making use of the approximation 

(3 ·13) 

which is not always justified. A more accurate method of averaging was presented 

in M-K. In this paper, however, we content ourselves with the approximation 
(3 ·13) as was used in M-T, because _we are going to utilize the numerical result 

for (Jxx given in M-T in the cours~ of computing the Hall coefficient R. It is 

hoped that this simplification is enough to keep the essential feature of Hall 
effect inrandom system. Within the approximation (3 ·13) <Gkk, (E) > becomes 

diagonal with respect to k and k', and hence (3·12) is further simplified to 

EXY(ElE2) = e~ ~ [u
2
V",- UVkGk(El)~Gk(E2) _ U

2
Vk uVk 

. 2hc k ukx2 uky uky uk.1Juky uky 
8 . 

X G k (E l ) -G k (E2) 

ukx 

+ uVk .~--2Y"-_--Gk(E2)-C!-Gk(El) _ uVk U2VkGk(E2)~Gk(El)J. 
8kx 8kx8ky 8ky 8kx 8ky

2 8kx 
(3·14) 

So far explicit forms for V k or G k (E) are not necessary. For further re

duction, however, we need to take a definite model and to give explicit forms 

for V k and G k (E). As in M-T we shall adopt the hydrogenic model of impurity 
levels under the effective mass and continuum approximation. Then V k is a 
function of only Ikl and G k (E) has a form 

(3 ·15) 
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where a(±) depends only on E±is and the concentration of impurities. A de

tailed discussion of the method of determining a has been given in M-K (see 
Eqs. (3·2) and (3.12) in M-K). By making use of V 7c =V(lkj) and (3·15), 
the differentiation of V7c and G7c with respect to ka can readily be performed as 

where 

8V7c _ dV7c k:c 
8k: '- dk -k ' 

8
2

V7c = {cJ2V7c} k:c
2 

+ {dV7c} (~_~) 
8k;c2 dP k2 dk k p' 

(3 ·16) 

(3 ·17) 

(3 ·18) 

Inserting all these results into (3 ·14), and noting that x- and y-directions are 
equivalent on average, we have 

,....:c~" (E E ) - eHI:cy (E E ) Jj 12-'-- 12 

ftc 
(3·19) 

with 

(3·20) 

and from (2·17), (3 ·19) the expression for the Hall conductivity, (j:c~ is written 

as 

(j~?I=~~ (( dEldE2I:CY(ElE2)_LCfllC f(fil. 
ft c )) (El - E 2) 

(3·21) 

This is the basic formula from which we shall start for the discussion in the 
following sections. 

§ 4. Reduction to the conventional formula 

In order to check the validity of the result obtained in the previous section" 
let us examine in detail a limiting case where impurity atoms are distributed in 
a regular lattice. 

For this purpose it will be in due order to review briefly the conventional 
way to derive the Hall coefficient on the basis of the Boltzmann equation. For 

simplicity we confine ourselves to an isotropic system. Longitudinal conductivity 

(j,'llJl arid the Hall conductivity (j JI= (j :c~/ H are respectively given in terms of the 
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distribution function fk for the electron with wave vector k as8
) 

_ _ 1 2 ~ 2 (k) fJ f k dk u.'lJX-U - --e Vk r - , 
3 fJsj. 

(4·1) 

U H= u.~YI H = - ~e2 ( Vk2((~L fJL~dk . 
3 J mk c fJsk 

(4· 2) 

In these expressions, Sk is the energy of the electron with wave vector k, Vk = 
(lilt) (fJsklfJk) is the velocity of the electron, mk * effective mass and r (k) the 
relaxation time of the electron. When both r (k) and mk * are constants inde

pendent of k, it follows from (4 ·1) and (4·2) that 

r 
UH=--U 

m*c 

and the Hall coefficient R IS given by 

R - UH _ r - -- - --_._--, 

u2 m*cu 

On substituting into (4·4) the usual expression for U 

R becomes 

which is the same as (1·1). 

ne2 

u=-r 
m* 

R=~--=Ro 
nec 

(4·3) 

(4·4) 

(4·5) 

(4· 6) 

Now we turn to· the case of impurity band conduction. In the notation of 
this paper, uxx is written as 

(4· 7) 

As has been proved in M-K, in the limit of a regular lattice the Green's func
tion becomes 

G (±)- 1 Ic - --~--- ~--------- • 

E±is-Vic 

This is the Green's function of an electron with energy Vic' 
the correspondence more obvious, we take 

Vk=cJ.; 

(4·8) 

Therefore, to make 

and add a small damping term r in the denominator of (4·8). Then 
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By noting that 

T. Matsubara and T. Kaneyoshi 

1 dVk _ 1 ask _ ------ ------ -Vic, 
Ii dk Ii ok 

{Ck(E)}2~0(E-slc)_I- , 
nT 

we may rewrite (4·7) as 

(J = -~~- ( dE ( dk ~7! (aSIc) 20 (E _ Sic) _1 _ _ ~f(l!-) 
3 J j Ii ak nT aE 

= _ e
2 
~dk (Vlc)2 -h, af(Sk) . 

3 . 1 aSk 

(4 ·10) 

(4·11) 

This is nothing but the formula (4·2) if -hI T-rk' In the next place we consider 
(J H= (J x~1 H which is given by (3·20) and (3·21): 

(j H= ~~ (( dEld E2 I: {!iVIc} 3 lCk (El) C k (E2) {Clc° (E2) - C ko (El)} 
3-h2c JJ k dk k 

X fJli~~(E2) . 
(E l - E2)2 

(4·12) 

The real part of the Green's function, in the limit of a regular lattice, is 

(4 ·13) 

and hence 

(4·14) 

By substituting (4·9), (4·10), (4 ·14) into (4 ·12) and taking a limit of a very 
small T, we have 

(J H= ~ (( dEldE2 (~k (_!t~'£) 30 (El - Sic) 0 (E2 - Sk)I(E-l) ___ t(E2l 
3-h2c JJ J k ak (El -E2) 

T 2 -(EI -sJ(E2 -sJ . X -- ------ -------- --- -----------------
{(EI - SkY + T2} {(E2 - Sk)2 + T2} 

= -~~) dk(vlcy(-l- a;~_) a~~:~2_ )2 
If we identify 

1 aSk _ Vic _ 1 
h2k- ak - -hk - m-*- , 

(4 ·15) 

(4·16) 
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then (4· 15) is precisely the same as (4·2). In this way we can recover all 

the conventional formulae for the Hall effect as a limiting case of the general 
expressions expressed in terms of the Green's functions. 

The formal correspondence between two different approaches to the Hall 
effect becomes more complete when we consider an anisotropic system. For in

stance, from (3 ·15) we note 

(4 ·17) 

and using this relation we can rewrite (3·14) as 

SXY (E1E2) =~H ~ [{82V~(~k)2 __ ~V~_1J~k_ -~Y~}Gk(El)Glc(E2)GkO(E2) 
2hc k 8k/. 8ky 8kx8ky 8ky 8kx 

+ { 8
2
Vk 1Vk_ 8Vk ~ 8

2
Vk (8Vk r} Gk(E1) Gk(E2) GkO(El)]. (4.18) 

8kx8ky 8kx 8ky 8ky2 8kx 

Assuming equivalence of x- and y-directions, we introduce anisotropic effective 
mass through the well-known relations 

Then (4· 18) becomes 

1 82 V k ~ 1 _ 1 82 V k 

fl 8k.1J2 
- M.1J.1J - h2 8k/ ' 

1 82 Vk ~ 1 
------~-

h2 8kx8ky Mxy 

SXY (E1E2) = eH}L~ ~ {---.~ .. ___ Vy2-_~_V'1JV1/} 
2c k M.1:J: M.1Jy 

and from (2 ·18) the Hall conductivity is given by 

(4 ·19) 

(4·20) 

(4·21) 

Hereafter we can follow the same step to the limiting process as for an isotropic 

system, and it is a straightforward task to derive 

(4·22) 

This is exactly the generalized version of (4·2) obtained by Jones and Zener 
for an anisotropic system. g

) 

In the course of the above reduction to the conventional formula, we notice 
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in the Hall effect an important difference between the nearly free electron case 

and the impurity band conduction. The longitudinal cOl1ductivity is mainly con

tributed from the integral over the Fermi surface. This is also the case for 

the Hall conductivity of the nearly free electron as seen from (4·2). In the 
case of impurity band conduction, however, the general expression (4 ·12) shows 

that (J H is not determined by the contribution from the Fermi surface alone, but 

rather by.electrons with the 'whole range of energies. The manner of contri

bution to (J II from each electron is not simple, depending on the energy shift 
and damping due to the randomness and also on the k-dependence of impurity 

potential. 

§ 5. Weakly disordered case 

We would gain more deep insight into the characteristic feature of the Hall 

effect in a random system by extending the discussion of the prevIOUS section. to 

a case where the randomness in the distribution of impurity atoms is not large. 

We start as before with two expreSSIOns 

(5 ·1) 

and 

(J H= ~ (( dE
l
dE

2 
~ {!lVk} 3}_Gk (E l ) Gk (E2

) {Gko (E2) - Gle° (El
) } [_(Ij1cL(E2) • 

3h2c JJ Ii; dk k . (El -E2Y 
(5· 2) 

According to the previous paper M-K, the Green's function is approximately 

given by the solution of the following set of self-consistent equations: 

(5·3) 

(5· 4) 

V±*=~ ~ Vk 

N Ii; l-a(±)V
k 

(5.5) 

c is the concentration of impurity atoms. From (5·4) and (5·5) V± * is generally 
a cornplex number dependent on only E. Therefore we may put 

V± *=iJ±iT. 

Then, after substituting (5·4) and (5·6) into (5·3), we have 

G ,/ ± ) (E) =-------~-.~-___:_ .. -. ..
(E-CVk-iJ) ±z(T+s) 

(5·6) 

(5·7) 

from which the imaginary part ilnd real part are separated (see the definitions 
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(3·15) and (3·18)) as 

G(E)=~ ·cT 
k. IT (E-cVk-l1Y+T 2

' 

(5 ·8) 

G.o (E) = c{E-cVk-l1} 
k (E-cVk -l1Y+T 2 

(5·9) 

11 and T are the functions of E; in order to know the E-dependence o~ these 

quantities we have to carry out somewhat laborious numerical calculations to 

solve Eqs. (5·4) and (5·5). This task is undertaken in the next paper, but 

before going into the details of the numerical results we content ourselves in 

this section with a qualitative discussion assuming the smallness of T. 
As a function of E, Gk (E) has generally a maximum at the energy Ek which 

is a root of an eq ua tion : 

E k= cVk+ 11 (Ek). (5 ·10) 

By expanding the denominator of (5·8) in a Taylor senesaround Ek 

(5 ·11) 

and by putting 

(5 ·12) 

Gk(E) can be approximated through a Lorentzian curve: 

(5 ·13) 

In the same a pproxima tion 

(5 ·14) 

Therefore, within this approximation, except for a multiplication constant c {1-

(al1/aE) E=EJ -I, the behaviour of the Green's function as a function of energy 

E is similar to the case discussed in § 4 in the limit of small T k , and hence the 
evaluation of (J and (J II can be carried .out in almost the same manner as in the 
prevIOUS section. Thus we have finally 

(J= -~~)dk(Vk)2_~ {?fi!i~ c
2 

3 . T(Ek) aEk {1- (al1/aE)E=Ek} 
(5 ·15) 

_ e3 
( (VkY h2 af(Ek ) c3 

(JII- -3c)dk~;;~*-- reEkY aErc {1- (aLl/aE)E=E
k

} , 
(5 ·16) 
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Therefore, within this approximation, except for a multiplication constant c {1-

(al1/aE) E=EJ -I, the behaviour of the Green's function as a function of energy 

E is similar to the case discussed in § 4 in the limit of small T k , and hence the 
evaluation of (J and (J II can be carried .out in almost the same manner as in the 
prevIOUS section. Thus we have finally 

(J= -~~)dk(Vk)2_~ {?fi!i~ c
2 

3 . T(Ek) aEk {1- (al1/aE)E=Ek} 
(5 ·15) 

_ e3 
( (VkY h2 af(Ek ) c3 

(JII- -3c)dk~;;~*-- reEkY aErc {1- (aLl/aE)E=E
k

} , 
(5 ·16) 
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where use has been made of the following notation: 

1 dVTt: _ VTt: _ 1 
-- --- - - Vk, --- - .--

h dl?- hk mk* 
(5 ·17) 

It turns out from these· results that the Hall coefficient IS gIven by 

R=Ro{ c_ }, 
. 1- (fJ JlfJ E)Ek=Ep 

(5 ·18) 

where Ro is the Hall coefficient which would be derived from the Boltzmann 

equation for quasi-particles with energy Ek , velocity Vb effective mass JJZTt: * and 

relaxation time fk=nIT(Ek). On the other hand, if we calculate the state den

sity by making use of the Green's function, we would have 

(5 ·19) 

Let us define 

(5·20) 

and 

g = _P (l!:!'t =. . __ f! _____ _ 
Do (Ep) {1- (fJ J IfJ E)Ek=Ep} 

(5.21) 

Then from (5 ·18), it follows that 

RIRo= Ilg· (5·22) 

This is the form similar to- a relation conjectured by Mott in connection with 

the Hall coefficient of liquid metals. IO
) 

We have not clearly indicated the condition to justify the above argument. 

In the hydrogenic model in Ge or Si discussed in the next paper, we shall find 

that the assumption of "weakly disordered case" is completely broken down. 

§ 6. Sign of the Hall coefficient 

In this section we briefly discuss some qualitative aspect of the results ob

tained for the case of hydrogenic model. More detailed account of numerical 
calculation and of comparison with experiments will be shortly reported in a 

forthcoming paper. 
Taking the simplest model for the impurity state in semiconductors, we as

sume hydrogen-like Is-sfa te wave function 

(
a 3)1/2 

¢o(r-R) = - exp( -alr-RI)· 
7r . 

(6 ·1) 

The transfer energy is given by 
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with 
_ e2a 
Vo=~- = 280 

fCo 
(6·3) 

where 80 is the ionization energy of the Is-state, 11,o dielectric constant and a-I 

the radius of the Is-orbit. Hereafter we adopt the continuum approximation and 

ignore the Brillouin zone effect, replacing the sum over wave vector Ii by an 
integral over whole k-space. Then from (3·21) (j H= (j ;y/ 1-1 is written as 

(j u= - __ <J( dEldE2l~El) - f(~~2 4n( dkk (c!Vk)3 
ft 2c)) (E1 -E2Y . 3) dk 

X Gk (El),Gk (E2) {Gko (El) - Gko (E2)}, 

where Vk IS the Fourier transform of (6·2) given by 

V - - V, 32na
3 

k- ° (a2+ k2y 

When this Vk is inserted in (6·4), and 

the numerical results for the Green's 

function computed with the approxima-

k=O 

(6·4) 

(6·5) 

k=co 

Et 

tion same as in M-T are used, it turns 

out that (j H has definitely negative sign 

irrespective of the number of eletrons 

filling the impurity band. To see this 

we first notice that, for given k, the 

imaginary part of the Green's function 

Gk (E) is positive definite in a certain 

energy range, say Eb <E<Et , and vani-

'-"-"... -1.0 \ E 
k =0"'-"" \ W= Yo 

shes otherwise. On the other hand, ac-

cording to the numerical calculation, the 

real part Gko (E) is given as a monoto-

nously varying function of E within the 

same energy range. Figure 4 shows an 

example of the graphs for G k (E) and 

G k o (E) calculated on the basis of the 

hydrogenic model. *) Since the Fermi 

distribution function feE) is also a mo

notonously decreasing function of E, the 

integrand of (6·4) 

......... \ 

.......... -.... -~--
\ 
\ 
I 
\ 
\ , 
I 
I 
1 , 
\ , 
I 

k=co ~ 
I , 

Fig. 4. Gk(E) and GkO(E) are shown as func
tions of w=E/Vo for two particular values 
of k; k=O and k==. The concentration of 
impurity atoms is taken as 327CNda3 =O.5. 

*) These figures are the results of our new calculation carried out by making use of the M-T 
approximation.4) 
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IS always positive, and hence 

(JH<O. (6· 6) 

This means that the sign of the Hall coefficient in the impurity band conduction 

for n-type semiconductors is always negative as has been predicted by Mott. l1
) 

This conclusion is in remarkable contrast to the case of the usual band electrons, 

where the sign of the Hall coefficient is either negative or positive according 

as the Fermi surface is either electron-like or hole-like. 
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