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Abstract. Using two-nucleon force alone is usually inadequate to interpret nuclear sys-

tems’ experimental data. We adopt a chiral N3LO two-nucleon potential V2N with the

inclusion of an in-medium three-nucleon (NNN) force V̄3N to calculate binding energies

of closed-shell nuclei. The matrix elements of low momentum nucleon-nucleon poten-

tial Vlow−k obtained from integrating the high momentum part of a realistic potentials is

inputted in the particle-particle hole-hole ring diagram calculation to study nuclear prop-

erties. Nuclear binding energies are accurately reproduced. Without this three-nucleon

force, the nuclear binding energy is too weak, as already known. The correction from

ring diagrams of order higher than 1 can not be ignored.

The main purpose of this work is to investigate the contributions of a chiral N3LO two-nucleon

potential V2N and an in-medium three-nucleon (3N) force V3N[1] to binding energies of closed shell

nuclei, such as 16O, and 40Ca. To achive this aim, we perform the calculation in the framework of

a ring diagram expansion[2, 3], as shown in Fig. 1. The particle-particle hole-hole ring diagrams

are summed to all orders in this expansion. This method has been applied to several calculations on

nuclear matter and neutron star as well as on cold neutron matter at the unitary limit. Applications

to finite nuclei[3] have been quite limited. Such ring-diagram calculations for closed-shell nuclei

using realistic V2N and V3N have not been carried out. The low momentum Vlow−k effective interaction

matrix elements[4] of V2N and V3N are calculated for the uses in the ring diagram formulism. This

Vlow−k interaction has been successfully applied to finite nuclei in shell model calculations and studies

in neutron matter.

The leading contribution to V3N occurs at N2LO in the chiral power counting and is composed

of a long-range two-pion exchange component V
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. The low-energy constants

c1 = −0.76 GeV−1, c3 = −4.78 GeV−1, and c4 = 3.96 GeV−1 appear already in the N2LO two-nucleon
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Figure 1. Some lowest order ring diagrams.

potential and are therefore constrained by low-energy NN phase shifts. The low-energy constants cD

and cE are typically fit to reproduce the properties of light nuclei[5].

We then calculate effective low momentum Vlow−k matrix elements from V2N and V3N for the

use in the ring diagram calculations. Similar to the half-on-shell T-matrix in the usual Lippmann-

Schwinger equation T (k′, k, k2) = V2N(k′, k) + P
∫ ∞

0
q2dqV2N(k′, q) 1

k2−q2 × T (q, k, k2), the effective

Vlow−k interaction is calculated from a T-matrix equivalence requirement.

Tlow−k(p′, p, p2) = Vlow−k(p′, p) + P

∫ Λ

0

q2dqVlow−k(p′, q)
1

p2 − q2
× Tlow−k(q, p, p2),

with T (p′, p, p2) = Tlow−k(p′, p, p2); (p′, p) ≤ Λ,for V2N and V3N . In the above equations Λ denotes a

momentum space cut-off (such as Λ ≃ 2.0 f m−1), and the symbol P
∫

the principal-value integration.

It was found that under this process, using different realistic potentials would lead to almost the same

results in fitting NN phase shifts and deuteron properties. The Lee-Suzuki iteration method [6] has

been employed in the calulation of Vlow−k.

With these ring diagram summed to all orders, the ground-state energy shift from V is given as [2]

∆E0 =
∫ 1

0
dλ
∑

m

∑

i jkl∈P Ym(i j, λ)Y∗m(kl, λ) × 〈i j|V |kl〉, where (i,j,k,l) are each a shell-model s.p.

wave function, and P denotes a chosen shell-model space composed of a set of hole (h) and particle

(p) orbits. For example, for 16O we take P as composed of the three h orbits (0s1/2, 0p3/2, 0p1/2) and

the seven p ones (0d5/2, ...1p1/2). The amplitudes Y above are calculated from an RPA-type equation,

∑

e f

[(ǫi + ǫ j)δi j,e f + λ(1 − ni − n j)〈i j|V |e f 〉] × Ym(e f , λ) = ωm(λ)Ym(i j, λ);

where (i, j, e, f ) ∈ P,and λ a strength parameter, to be integrated from 0 to 1.

The occupation factors are na = 1 for a = h, and = 0 otherwise. Thus the amplitudes Ym(i j) has

only either hh (i=h, j=h’) or pp (i=p, j=p’) components. The transition amplitudes Y in the equation

can be classified into two types, one dominated by hh and the other by pp components. We include

only the former, denoted by Ym, for the calculation of the all-order sum of the pphh ring diagrams.

We use HF s.p. spectrum ǫ j in the above RPA equation, ǫ j = 〈 j|Ksp| j〉 +
∑

h〈 jh|V | jh〉where Ksp

denotes the s.p. kinetic energy operator. Note that j and h are each oscillator s.p. wave function.

The parameters cD and cE in the one-pion exchange and contact terms of V3N are taken from

[5] where binding energies of A = 3 nuclei were fitted. To calculate the Vlow−k matrix for V2N and

V3N , we have used the Bertsch formula �ω = 45.0A−1/3 − 25.0A−2/3 for the nuclear wave functions.

The nucleon densities arising from the contact term of V3N for the nuclei considered are chosen as

those approximately at the RMS radii from the experimental charge density profiles[7] of the nuclei.

The RMS radii for 16O, and 40Ca are 2.7013, and 3.4764 fm[8] respectively. In this way, we set
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the densities around the RMS radii to be 0.6ρ0 for both 16O and 40Ca, with ρ0 the nucleon density

in nuclear matter. We have also performed theoretical calculations using harmonic oscillator wave

functions and obtained similar results.

Figure 2. Dependence of −BE/A of 16O on the parameter cD of V3N .

Figure 3. Dependence of −BE/A of 40Ca on the parameter cD of V3N .

Shown in Figs. 2-3 are the dependence of ground state energies per nucleon (or -BE/A) for 16O

and 40Ca on the 3N force constant cD appearing in V3N . In these figures, results from the first order

ring diagram (denoted as "HF"), up to the second order one(denoted as "Up to 2nd"), and all order

ring diagrams (denoted as "Ring(all)") are all calculated with V3N included. Experimental data[9] are

displayed for comparison. We can see from the figures, although the contribution from diagrams up

to the second order one improves quite significantly comparing to that from the first order one alone,
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contribution from higher order diagrams is needed to fill the discrepancy so that the experimental

binding energy can be obtained. Another feature worth of mentioning is that for both nuclei, the ring

diagram results all meet the experimental data at cD=8.5 and its corresponding cE from [5].

Also shown in Table 1, our results from V2N + V3N with parameter cD= 8.5 and its corresponding

cE from [5] at densities ρ/ρ0= 0.6 for both 16O and 40Ca fit the experimental data [9] quite well. In the

Table we also examine the importance of V3N to the nuclear binding energies for both nuclei that we

considered. As expected, the binding energies obtained from V2N alone are too weak. The deviation

between results with and without V3N gets wider when all ring diagrams are included.

Table 1. -BE/A (in MeV) of 16O and 40Ca, with the same notations as those in Figs.2-3, and cD = 8.5 for both

nuclei.

ρ/ρ0 HF up to 2nd Ring(all) Expt
16O V2N – -3.76 -5.17 -5.28

V2N+V3N 0.6 -4.30 -7.09 -8.09 -7.976
40Ca V2N – -4.19 -5.89 -6.24

V2N+V3N 0.6 -5.37 -7.48 -8.14 -8.551

In summary, we have applied the ring diagram method to calculate binding energy of 16O and
40Ca by adding an in-medium three-nucleon potential V3N to the chiral N3LO two-nucleon potential

V2N . The ground state energy per nucleon so obtained fits the experimental data quite well for each

nucleus considered when V3N is added in and all orders of ring diagrams are included. Contributions

from ring diagrams with orders higher than 2 can not be ignored. As expected, binding energies

obtained with V2N alone are too weak. Our study demonstrates the importance of three-body force in

filling in the discrepancy of nuclear binding energies calculated by including only two-body force as

compared to the experimental measurements. We believe that the three-nucleon force is also important

in other properties of nuclear systems. We are working on this line and will report the results in other

publications in the near future.
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