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Abstract 

Extending previous research that has examined the relationship between long-term memory 

and second language (L2) development with a primary focus on accuracy on L2 outcomes, 

the current study explores the relationship between declarative and procedural memory and 

accuracy and automatization during L2 practice. Adult English native speakers had learned 

an artificial language over two weeks (Morgan-Short, Faretta-Stutenberg, Brill-Schuetz, 

Carpenter, & Wong, 2014), producing four sessions of practice data that had not been 

analyzed previously. Mixed-effects models analyses revealed that declarative memory was 

positively related to accuracy during comprehension practice. No other relationships were 

evidenced for accuracy. For automatization, measured by the coefficient of variation 

(Segalowitz, 2010), the model revealed a positive relationship with procedural memory that 

became stronger over practice for learners with higher declarative memory but weaker for 

learners with lower declarative memory. These results provide further insight into the role 

that long-term memory plays during L2 development. 
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Introduction 

 Cognitive and psycholinguistic approaches to second language (L2) acquisition in the 

last twenty years have looked to individual differences as a means to understand the 

mechanisms that support L2 development and have examined several domain-general factors 

including, for example, executive function, short-term memory, working memory and, more 

recently, long-term memory. According to bipartite models of the architecture of long-term 

memory, DECLARATIVE MEMORY is a system capable of fast learning and retention of 

information relative to events, facts and arbitrary associations, whereas NONDECLARATIVE 

MEMORY is a system comprised of several subsystems, one of which is PROCEDURAL 

MEMORY, which consolidates information more gradually and is largely responsible for 

implicit sequence learning, probabilistic learning and motor skill learning (e.g., Cabeza & 

Moscovitch, 2013; Eichenbaum, 2008; 2011; Squire, 2004; Squire & Dede, 2015; Squire & 

Wixted, 2011).  

 A number of recent correlational studies in second language acquisition (SLA; e.g., 

Antoniou, Ettlinger, & Wong, 2016; Brill-Schuetz & Morgan-Short, 2014; Ettlinger, 

Bradlow, & Wong, 2014; Hamrick, 2015; Morgan-Short, Faretta-Stutenberg, Brill-Schuetz, 

Carpenter, & Wong, 2014; Morgan-Short, Finger, Grey, Ullman, 2012; Pili-Moss, 2018; 

Suzuki, 2017; see also Hamrick, Lum & Ullman, 2018 for a recent meta-analysis) have 

investigated the relationship between L2 learning outcomes and specific memory-dependent 

declarative and procedural learning abilities, assessed by means of behavioral tasks that have 

been independently linked to declarative and procedural memory in the neuropsychological 

literature. Generally, these studies have evidenced a positive relationship between learning 

outcomes and long-term memory measures, although this may be modulated by a range of 

factors (e.g., type and amount of input, level of proficiency, linguistic structure, type of 

instruction).   



Declarative	  and	  procedural	  memory	  in	  L2	  practice	   4	  

 In addition to understanding the role of declarative and procedural memory on L2 

learning outcomes, it is undoubtedly of interest to SLA researchers to gain a more complete 

picture of how memory modulates L2 learning during practice. However, only two studies to 

date (Pili-Moss, 2018; Suzuki, 2017) have examined this issue. Extending the analysis of data 

collected but not discussed in Morgan-Short et al. (2014) and Morgan-Short, Deng, Brill-

Schuetz, Faretta-Stutenberg, Wong, & Wong (2015), the aim of this paper is to address this 

gap in the literature and elucidate the role that declarative and procedural learning ability play 

in modulating accuracy and automatized language processing during practice. 

Cognitive Models of L2 Learning	  

 Recent approaches to the organization of memory have informed our theoretical 

understanding of L2 acquisition. In particular, three cognitive models of late-learned L2 have 

posited the relevance of declarative and procedural memory (or knowledge) for L2 learning 

(DeKeyser, 2015; Paradis, 2009; Ullman, 2004, 2015, 2016). According to Ullman's (2004, 

2015, 2016) declarative/procedural model (DP model), declarative and procedural memory 

are largely independent neural memory systems and their activity is modulated by a range of 

external and internal factors including hormonal and genetic factors, age, and sex. Under 

certain circumstances, declarative and procedural memory can also interact cooperatively or 

competitively, for example in case of functional impairment or attenuation of one of the 

systems.  

 In Ullman's model (Hamrick et al., 2018; Ullman, 2004, 2015, 2016) the two systems 

generally underlie the learning of different types of linguistic knowledge. More specifically 

for first language (L1), Ullman's model posits that declarative memory primarily supports the 

learning and use of all aspects related to lexis as well as idiosyncratic forms (e.g., irregular 

morphology) and 'chunks'. Procedural memory supports the learning and use of (hierarchical) 

sequences and rules across different linguistic domains (including syntax, morphology and 
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possibly phonology). With regard to L2 acquisition, Ullman's model predicts that declarative 

memory will support the learning of lexis at all stages of exposure and levels of proficiency. 

Declarative memory is also expected to support the learning of L2 grammar at early stages of 

exposure/proficiency. Procedural memory, however, is expected to play an increasingly 

stronger role for L2 grammar at later stages of exposure, when learners have had more 

practice with the L2. 

 Paradis' (2009) model makes similar claims as Ullman's model, but differs from it in 

at least three respects. First, concerning lexis, Paradis posits that declarative memory is only 

responsible for the learning of form-meaning relationships (vocabulary), whilst learning of 

word subcategorization patterns (lexicon) depends on procedural memory. Secondly, Paradis' 

model assumes that language processing in declarative memory leads to explicit (conscious) 

representations, whilst, according to Ullman (2015), declarative processing does not 

necessarily imply consciousness (Henke, 2010). Finally, Paradis (2009) largely limits the role 

of procedural memory to the L1 and, although it is not excluded, L2 procedural processing is 

considered to be "very rare in practice" (p.16).  

 From a slightly different perspective focused on L2 knowledge, DeKeyser (2015) has 

proposed the Skill Acquisition model with roles for declarative and procedural knowledge in 

L2 development and automatization. The model distinguishes three phases in the 

automatization process. In the declarative stage, the learner relies exclusively on declarative 

knowledge (in the form of explicitly taught or induced linguistic rules). The second stage 

(proceduralization) is a relatively early phase in practice in which declarative knowledge is 

"acted on" (DeKeyser, 2015, p. 95), resulting in the creation of increasingly 

procedural/behavioral representations of the initial knowledge. At this stage, learners 

increasingly draw on both types of knowledge as language rules are practiced, and they no 

longer need “to retrieve bits and pieces of information from memory to assemble them” 
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(DeKeyser, 2015, p. 95). Although there is no transfer of information or transformation of 

knowledge from declarative to procedural, a strong declarative knowledge is argued to 

support the onset of proceduralization (DeKeyser, 2015). In the last stage (automaticity), 

language knowledge is fully proceduralized in that its use is both rapid and accurate, although 

declarative knowledge representations may be maintained.  

Because it is specified in regard to type of linguistic knowledge (the product of 

learning), DeKeyser's model is largely independent from assumptions about the structure of 

neural memory systems. However, transposing the relationship between declarative and 

procedural knowledge to the memory systems that encode them, DeKeyser's model would be 

compatible with the prediction of a substantial involvement of declarative memory in the 

initial stages of practice, followed by an increasingly stronger reliance on procedural memory 

as language processing becomes proceduralized and then automatized. Thus, notwithstanding 

the highlighted differences between Ullman's and Paradis' approaches, as well as the slightly 

different focus on memory versus knowledge in the different models, perspectives based on 

the characteristics of neural memory systems and type of L2 knowledge make generally 

consistent predictions for the role of declarative and procedural memory and knowledge in 

L2 development and automatization.  

Declarative and Procedural Learning Ability as Individual Differences in L2 

Development 

 In a recent meta-analysis Hamrick et al. (2018) found that, for L2 adults, lexical 

abilities were consistently related to declarative memory, whilst grammatical abilities were 

related to declarative memory at early stages of exposure (see also Faretta-Stutenberg & 

Morgan-Short, 2018; Hamrick, 2015; Morgan-Short et al., 2014, Pili-Moss, 2018, Study 2) 

and to procedural memory at later stages of exposure (see also Brill-Schuetz & Morgan-



Declarative	  and	  procedural	  memory	  in	  L2	  practice	   7	  

Short, 2014; Faretta-Stutenberg & Morgan-Short, 2018; Hamrick, 2015; Morgan-Short et al., 

2014; Pili-Moss, 2018, Study 1, for a different pattern of results in children). 

 In one of the studies included in the meta-analysis, Morgan-Short et al. (2014) 

exposed 14 university students to BROCANTO2, a miniature language based on Spanish, under 

an implicit training condition in which participants were told that they would be learning an 

artificial language but were not provided with metalinguistic information or direction to 

search for rules (DeKeyser, 1995; Norris & Ortega, 2000, p. 437). It is important to note that 

no assumption was made about the type of knowledge acquired by the learners (implicit or 

explicit). After initial passive, meaningful aural exposure, the participants practiced language 

comprehension and production in the context of a computer board game (4 sessions over 2 

weeks, for a total of 72 game blocks; see Methods section for further details). Two versions 

of an aural grammaticality judgment test (GJT) were administered respectively at the end of 

the first session and at the end of practice as the L2 outcome measure. Results on these GJTs 

showed that declarative learning ability significantly predicted language development after 

the first session, whilst procedural learning ability was a significant predictor of development 

at the end of the experiment.  

 Beside stage of exposure, other studies have provided evidence for additional factors 

that may modulate the role of long-term memory abilities (for reviews see Buffington & 

Morgan-Short, in press; Hamrick, Lum, & Ullman, 2018). Some of these include order of 

presentation in the input (Antoniou, Ettlinger, & Wong, 2016), type of rule (Antoniou, 

Ettlinger, & Wong, 2016; Ettlinger, Bradlow, & Wong, 2014; Pili-Moss, 2018), type of 

training condition and learning context (Brill-Schuetz & Morgan-Short, 2014; Carpenter, 

2008; Faretta-Stutenberg & Morgan-Short, 2018), processing speed-up (Suzuki, 2017), and 

age (Pili-Moss, 2018). A further modulating factor that has been recognized in the literature 

(e.g., Hamrick et al., 2018; Morgan-Short et al., 2014), but has not been directly investigated 
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to date, is the role of type of task. It could be argued that, due to their specific characteristics, 

tasks may differ in the way they engage declarative or procedural processing. More generally, 

type of task could also refer to whether the task is an assessment task (e.g., a GJT) or a 

learning task involving more extended language practice.  

To our knowledge, only one study has examined the role of long-term memory during 

L2 practice. Pili-Moss (2018, Study 2) trained 36 L1 Italian university students in a version 

of Brocanto2 based on Japanese (BROCANTOJ), using the same board game context and 

training condition as Morgan-Short et al. (2014). However, in this case the training was 

shorter (6 blocks over 3 consecutive days, corresponding to the very initial stages of L2 

learning), included only comprehension practice, and tracked the effects of declarative and 

procedural learning ability during practice in addition to administering a GJT at the end of 

practice. Given the comparatively more limited exposure to the language, the GJT results 

were consistent with Morgan-Short et al. (2014), indicating that declarative learning ability, 

but not procedural learning ability, significantly predicted L2 accuracy at early stages of 

learning. The study also found that declarative learning ability significantly predicted 

accurate performance during practice, although for a subset of stimuli (sentences for which 

the comprehension of links between word order and meaning was crucial), a significant 

positive interaction between declarative and procedural learning ability was also evidenced.  

Overall, with the exception of Pili-Moss (2018), studies that investigated the 

relationship between L2 development and long-term memory have provided insight into how 

these individual differences may support L2 learning as assessed by outcome measures taken 

at one or two discrete points in the learning process. For this reason, it could be argued that 

they provide only partial insight into the role cognitive variables play in the learning process. 

Studies offering a more fine-grained measure of the relationship between long-term memory 

individual differences and L2 development during practice have the potential to provide more 
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direct insight into how this relationship develops over time. Such research may be all the 

more informative if it considers indices of L2 development beyond accuracy, for example 

neurocognitive processing of L2 (Faretta-Stutenberg & Morgan-Short, 2018) or 

automatization (Suzuki, 2017).  

L2 Automatization in L2 Learning 

 An important aspect of L2 assessment in SLA research is the study of language 

automatization, i.e., the extent to which L2 processing in comprehension and production can 

reach levels of fluency approaching those of L1 speakers in nonnative language users 

(DeKeyser, 2007; Segalowitz, 2010). Automaticity in language comprehension and 

production is characterized by processing that is stable, fast, ballistic (i.e., unstoppable once 

triggered), not controlled and not limited by working memory capacity, and is qualitatively 

defined in opposition to similar processing that does not present automatic characteristics, 

i.e., is unstable, slow, controlled, stoppable, possible only within the limits of working 

memory capacity, etc. (Segalowitz, 2003; 2013).  

 Measures of reaction time (RT) decrease over time have been used as one of the main 

indices in the operationalization of automatization (including in L2 linguistic processes). For 

example, following approaches to skill acquisition developed in the ACT-R framework (e.g., 

Anderson 1993, 2007), some L2 studies (e.g., DeKeyser, 1997, Ferman, Olshtain, 

Schechtman & Karni, 2009) have measured the automatized status of L2 processing during 

practice by assessing the extent to which the reduction of RTs over time can be fitted to a 

power function.  

 Other authors (e.g., Segalowitz, 2010; Segalowitz & Segalowitz, 1993) have argued 

that a measure of automatization should reflect the fact that automatized language processing 

becomes NOT ONLY FASTER BUT ALSO LESS VARIABLE as a function of practice. As an 

alternative automatization measure they proposed the coefficient of variation (CV), an index 
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that equals the ratio between the intraindividual standard deviation and the mean RT. When 

RTs are decreasing, a simultaneous CV decrease is the result of a more than proportional 

reduction in the standard deviation, indicative of a qualitative restructuring of the process. 

According to Segalowitz (2010), two minimal conditions should be simultaneously observed 

for the index to constitute reliable evidence of automatization: (a) a significant decrease of 

both the CV and the RT over the course of practice (or at different points of testing or in 

group comparisons), and (b) a significant positive correlation between CV and RT.  

 SLA studies that have used the CV index have investigated L1/L2 differences in 

lexical access (e.g., Akamatsu, 2008; Phillips, Segalowitz, O'Brien & Yamasaki, 2004; 

Segalowitz & Segalowitz, 1993; Segalowitz, Segalowitz & Wood, 1998; Segalowitz, 

Trofimovich, Gatbonton, & Sokolovskaya, 2008) and, more recently, L2 grammar learning 

(e.g., Hulstijn, Van Gelderen, & Schoonen, 2009; Lim & Godfroid, 2015; Ma, Yu, & Zhang, 

2017; Suzuki, 2017; Suzuki & Sunada, 2018). In general, CV studies on lexical access have 

found consistent evidence of automatization, whilst the evidence for L2 grammar learning 

has been mixed.  

 For example, Hulstijn et al. (2009, Experiment 1) investigated the development of 

automatization in 397 L1 Dutch high-school learners of English. The longitudinal study 

analyzed RT data from four computerized tasks administered to the students in the L1 and the 

L2 once a year, in Grade 8 (13-14 years of age), 9, and 10. The tasks administered were a 

word/nonword discrimination task, a lexical retrieval task, a sentence verification task (based 

on semantic acceptability) and a sentence completion task (probing grammaticality). Overall, 

the study found only partial evidence of automatization in terms of significant CV decrease 

and CV/RT correlations, and mainly in the lexical-based tasks. Based on their results the 

authors questioned the use of the CV as an index of automatization, suggesting that it may be 

too restrictive. However, as noted in Lim and Godfroid (2015), the length of training per se 
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does not ensure that automaticity will be attained. Arguably, this may be especially the case if 

practice and testing take place in different environments requiring a TRANSFER of 

automatized skilled behavior across different conditions/tasks (on this point see also 

DeKeyser, 2007; Suzuki & Sunada, 2018).  

 Lim and Godfroid (2015) conceptually replicated Hulstijn et al. (2009) assessing 

automatization in 40 Korean L2 learners of English (20 intermediate and 20 advanced) and 

20 L1 English speakers. The testing included a lexical discrimination task (based on 

animacy), in addition to a sentence completion task and a sentence plausibility task similar to 

those deployed in Hulstijn et al.'s original experiment. For the sentence completion task, a 

cross-sectional comparison of the three groups found significant CV decreases as a function 

of language proficiency together with significant CV/RT correlations for both intermediate 

and advanced L2 learners. In a similar study, Ma, Yu, & Zhang (2017) compared low and 

high proficiency Chinese learners of English in a sentence plausibility task and also found a 

significantly lower CV in high proficiency learners. Overall, the results of cross-sectional 

studies seem to suggest significant decreases in the CV index (i.e., an increase in 

automatization) as a function of proficiency at least for some of the tasks tapping the 

development of L2 grammar. 

 To date only Suzuki (2017) investigated the extent to which L2 automatization is 

modulated by long-term memory (procedural learning ability). Sixty L1 Japanese university 

students in two experimental groups (short and long spacing) were exposed in explicit 

instruction conditions to verbs with present progressive morphology in a miniature language 

across four sessions, 3.3 days or 7 days apart. CV decreases relative to two oral production 

tests administered at the beginning and at the end of each session did not provide evidence of 

automatization. 
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 Further, procedural learning ability (measured by the Tower of London task - TOL) 

was found to significantly correlate with RT decrease in the short-spacing condition, but no 

significant relationships were found between procedural learning ability and CV. Overall, 

Suzuki (2017) extended previous research on the relationship between long-term memory 

abilities and accuracy to speed-up. However, the extent to which these abilities may 

contribute to automatization remains an open question. 

Motivation for the Study and Research Questions 

 Based on an analysis of practice data that were not reported or analyzed in Morgan-

Short et al. (2014) or Morgan-Short et al. (2015), the aim of the present study was to explore 

the role of declarative and procedural learning ability in the L2 development during practice 

over time in regard to accuracy (in comprehension and production) and automatization (in 

comprehension). For the current analysis, participant responses on comprehension and 

production practice trials are used to examine accuracy during practice and CV is calculated 

based on the reaction times in the comprehension blocks as an index of automatization. As 

RTs were not available for production blocks, automatization in production is not 

investigated in the present study. The research questions were formulated as follows: 

RQ1: To what extent do declarative and procedural learning ability predict accuracy in 

 comprehension and production during L2 practice? Do these effects differ across 

 various stages of practice? 

RQ2:  To what extent do declarative and procedural learning ability predict automatization 

 in comprehension during L2 practice? Do these effects differ across various stages of 

 practice? 

 For RQ1, based on Morgan-Short et al. (2014) and Pili-Moss (2018, Study 2), we 

hypothesize a significant role of declarative learning ability in supporting L2 accuracy early 

in practice. Further, if the pattern of effects in the practice data is comparable to the one 
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found in the GJT (Morgan-Short et al., 2014), we also expect an attenuation of the effect of 

declarative learning ability at late stages of training, possibly accompanied by an increasingly 

stronger effect of procedural learning ability. For automatization, based on theoretical 

assumptions in DeKeyser (2015) and Ullman (2015; 2016), we hypothesize (a) that 

declarative learning ability will have a significant role early in practice, followed by an 

increase in the effect of procedural learning ability as practice progresses, and (b) that 

declarative learning ability will act as a facilitating factor in the automatization process 

supporting the transition from the declarative to the proceduralization stage.  

Methods 

The current study is an analysis of data collected but not reported or examined by 

Morgan-Short et al. (2014) and Morgan-Short et al. (2015). In regard to the relationship 

between long-term memory individual differences data (collected during a cognitive test 

session) and L2 development, these previous studies examined results based on the L2 

outcome measure (the GJT) administered during two L2 assessment sessions. In contrast, the 

current study examines L2 data collected during the four language training and practice 

sessions. Below we provide an overview of the participants and of the materials and 

procedures related to the cognitive test session and the language training and practice 

sessions. We do not describe the assessment sessions, as these data were not relevant to the 

current study (for full reports see Morgan-Short et al., 2014; Morgan-Short et al., 2015).  

Participants 

Data from 14 participants (6 female) were analyzed in the current study. The 

participants were right-handed, healthy young adults (mean age = 22.21, SD = 2.72) who 

were native speakers of English, spoke 1.21 non-native languages (SD = 0.58), and had 

limited exposure to Romance languages. Six additional participants began the study but were 
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excluded from analysis for various reasons. See Morgan-Short et al. (2014) for more details 

about the participants, participant attrition, exclusion and compensation. 

General procedure 

Seven experimental sessions had been scheduled over a two-week period, one to three 

nights apart. The cognitive tests, including an IQ assessment (Kaufman & Kaufman, 2004), 

were administered with counterbalanced order across participants in Session 1 

(approximately 3 hours). The remaining sessions were devoted to language training and 

practice (Sessions 2, 4, 5, and 6) and assessment (Sessions 3 and 7) and lasted on average 2.6 

hours and 1 hour respectively.  

Materials and Procedures 

Cognitive tests 

Participants completed two measures of declarative and two measures of procedural 

learning ability and composite scores for each were obtained. Part V of the Modern Language 

Aptitude Test (MLAT-V; Carroll & Sapon, 1959) was administered as a verbal measure of 

declarative learning ability. For this task, participants learned 24 pseudo-Kurdish and English 

word association pairs and subsequently completed a four minute, 24-item, multiple-choice 

test where they chose the English equivalent for each pseudo-Kurdish word. MLAT-V scores 

reflect the total number of correct responses. The Continuous Visual Memory Task (CVMT; 

Trahan & Larrabee, 1988) was administered as a nonverbal measure of declarative learning 

ability. For this task, participants viewed a series of abstract designs presented on a computer 

screen for 2 seconds, and indicated whether each design was novel (63 items presented once 

each) or had appeared previously (7 items presented 7 times interspersed throughout the 

novel items). Participants' responses were used to calculate a CVMT d’ score. 

The measures of procedural learning ability were a computerized version of the 

Tower of London task (TOL; Kaller, Unterrainer, & Stahl, 2011; Kaller, Rahm, Köstering, & 
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Unterrainer,	  2011; Unterrainer, Rahm, Leonhart, Ruff, & Halsband, 2003) and a dual-task 

version of the Weather Prediction Task (WPT; Foerde, Knowlton, & Poldrack, 2006). In the 

TOL, participants were asked to click and drag ball-like shapes on pegs, from an initial 

configuration to a goal configuration, in a specified number of moves (ranging from 3 to 6). 

Comparing the initial and the final trials for each set, the decrease in the reaction time 

between the presentation of the initial configuration and the first move (initial think time) 

was used as the measure of procedural learning ability. In the WPT, participants select a 

weather prediction ("sunshine" or "rain") based on patterns of four different "tarot cards" 

presented on the computer (320 trials in 8 pseudorandomized blocks).  Each combination of 

cards, displayed for 3 seconds, represents a different probability for "sunshine" or "rain." 

After each response, the correct answer is displayed on the screen. The distractor task 

required participants to count high tones (1000 Hz) presented along with low tones (500 Hz) 

throughout each block. After excluding trials for which the probability was 50%, accuracy on 

the final dual-task block was used as the WPT score.  

Artificial language  

The artificial language, Brocanto2 (Morgan-Short, 2007; Morgan-Short et al., 2010; 

Morgan-Short, Finger, Grey, & Ullman, 2012; Morgan-Short, Steinhauer et al., 2012), was 

modeled after Brocanto (Friederici, Steinhauer, & Pfeifer, 2002). Brocanto2 has 13 lexical 

items: 4 nouns (pleck, neep, blom, vode), 2 adjectives (troise/o, neime/o), 1 article (li/u), 4 

verbs (klin, nim, yab, praz) and 2 adverbs (noyka, zayma). Nouns have gender (masculine or 

feminine) and agree with adjectives and articles. Brocanto2 has a productive structure 

consistent with natural languages, can be spoken and understood within a meaningful context 

and displays the SOV word order as shown in (1).  

 

(1) (Noun-Adjective-Article) - (Noun-Adjective-Article) – Adverb – Verb 
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Each Brocanto2 sentence describes a move on a computer board game whose rules 

are completely independent from the rules of the language. In Brocanto2, the nouns represent 

the four game tokens of the game, and the adjectives describe the tokens' shape (round or 

square). The four Brocanto2 verbs indicate the game moves: move, swap, capture, and 

release. The two adverbs indicate whether moves are in the horizontal or vertical direction.  

Vocabulary training 

At the start of each of the four training and practice sessions, computer-based 

vocabulary training was administered. The program individually presented Brocanto2 lexical 

items auditorily, with the matched visual symbols that represented their meanings. 

Participants trained at their own pace and were tested when they believed that they had 

learned all the lexical items. During the vocabulary test, each symbol was presented twice at 

maximally distant points in the test, and participants were asked to state out loud the lexical 

item that corresponded to it. If participants did not achieve a score of 100% accuracy on this 

test, they repeated vocabulary training and took the test again until they reached criterion. 

Language training  

 In each training and practice session, after vocabulary testing, learners were auditorily 

exposed to 129 Brocanto2 phrases and sentences in association with the visual representation 

of the corresponding game token or move on the computer game board. The timing of the 

training was pre-determined (approximately 13.5 minutes), and learners were asked to pay 

attention as they would take a short quiz about what they saw after the training.  

Language practice  

Language practice, administered after language training, occurred in the context of the 

computer-based game. It consisted of 72 alternating comprehension and production modules 

(36 modules each; 20 novel sentence stimuli per module). During comprehension modules, 
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participants heard sentences in the language and were instructed to "make the move on the 

game board that corresponds to the statement you heard." For each comprehension trial, 

accuracy and RTs (measured in milliseconds from the end of the playback of the aural 

stimulus to the move completion) were recorded by the computer. During production 

modules, participants saw a move and were instructed to "state the move out loud" by using a 

Brocanto2 sentence. For each production trial, accuracy was entered into the computer by the 

researcher. For all comprehension and production trials, the computer provided immediate 

feedback on whether their response was correct or incorrect. No additional information or 

opportunity to modify the response was provided. Participants completed 12 practice 

modules during Session 2 and 20 practice modules in each of the three subsequent training 

and practice sessions.  

Analyses and Results 

RQ1 

Descriptive statistics 

 For descriptive statistics purposes, mean block accuracy was calculated for 

comprehension and production practice across participants (Table 1) for each of the four 

training and practice sessions. The data show that accuracy was relatively high for 

comprehension as early as the second session (on average 16.6 accurate responses per block 

out of 20). By the end of training it had increased on average to 18.6 accurate responses per 

block out of 20, with a small standard deviation. For production, accuracy developed more 

slowly over time reaching a maximum average of 17.9 accurate responses per block out of 20 

with higher variability among participants.  
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Table 1. Mean accuracy per block across sessions in language  

comprehension and production (N = 14). 

 S1 S2 S3 S4 

 M (SD) M (SD) M (SD) M (SD) 

Comprehension 11.4(4.0) 16.6(3.3) 18.4(1.6) 18.6(0.5) 

Production 3.5(6.1) 11.2(8.2) 15.0(6.6) 17.9(3.2) 

Note.
 
Maximum score per block = 20 

 

 

 For preliminary insights into any relationship between declarative and procedural 

learning ability and accuracy during practice, correlations were run between mean block 

accuracy for comprehension and production and declarative and procedural learning ability 

(Table 2). Declarative learning ability showed medium to large relationships (Plonsky & 

Oswald, 2014) with accuracy in comprehension throughout training, as well as an overall 

statistically significant correlation. By contrast, the relationship between procedural learning 

ability and accuracy in comprehension was weak throughout the training. For accuracy in 

production, small to large relationships were evidenced for declarative learning ability with a 

statistically significant correlation in Session 1. Only small relationships were evidenced for 

procedural learning ability and accuracy in production. Thus, a comparatively stronger role of 

declarative learning ability in supporting accuracy was found for both comprehension and 

production. A Pearson's correlation was also run between the declarative and procedural 

memory scores and showed that the relationship between the two variables was positive but 

not significant (r = .209; p = .474, bootstrapped). 
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Table 2. Correlations between accuracy and declarative and procedural  

learning abilities across sessions for comprehension and production 

 practice (N = 14). 

 S1 S2 S3 S4 Overall 

 Comprehension practice 

Declarative .585 .623∧ .556 .429 .714* 

Procedural .163 .078 .151 .162 -.037 

 Production practice  

Declarative .653* .410 .332 .364 .512 

Procedural .377 .160 .304 .277 .323 
Note.

 
∧p < .10; 

*
p < .05. Bonferroni corrected 

 

 

Data modeling 

 In order to directly address RQ1, two separate analyses were conducted for 

comprehension and production accuracy. Data modeling was performed using binomial 

generalized mixed-effects models (Faraway, 2016) with the glmer function (lme4 package, 

Bates, Maechler & Bolker, 2011) in the R environment (R Development Core Team, 2018). 

In both accuracy models, the outcome variable was a measure of the log-likelihood that 

individual comprehension/production trials were correct given a one-unit increase in the 

predictor variables. The main effects included Session (treated as a continuous and centered 

variable) and the two main predictors of interest, declarative and procedural learning ability 

(which were already available as standardized measures in Morgan-Short et al. 2014 and are 

abbreviated as Decl and Proc, respectively). Interactions were added if they statistically 

significantly improved the fixed-effects model's fit (as determined by the likelihood ratio 

test). To determine the structure of random effects, we first ascertained that both random 

effects of participants and trial items on intercepts improved the fixed-effects model. We fit 

the maximal random effect structure (Barr, Levy, Scheepers & Tily, 2013) to the extent 

justified by the data. A random slope was included in the final model if the model converged 

and the random slope significantly improved the model's fit compared to the next simpler 

nested model (as determined by the likelihood ratio test). In both models, a positive β 
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coefficient indicated a positive correlation between the predictor and the log-likelihood of a 

trial being correct, whilst a negative β value indicated a negative correlation between the 

predictor and the log-likelihood of a trial being correct. The syntax of all final models is 

reported in the supplementary materials S1. The interpretation of the models' effect size (R
2
) 

follows the field-specific recommendations in Plonsky and Ghanbar (2018). 

Accuracy in comprehension 

 The model for comprehension (Table 3) was derived after ensuring that the risk of 

multicollinearity between the predictors was low (condition number = 1.24). Overall, the 

model accounted for 56% of the variance compared to 26% in the corresponding model 

where random effects were not included (all effects computed using R
2
). 

 

Table 3. Mixed-effects model of the effects of session, declarative learning ability and 

procedural learning ability on accuracy in comprehension.  

    95% CI  

Fixed effects β SE z lower upper p 

(Intercept) 2.68 0.18 14.42 2.31 3.04 .000
***

 

Decl 0.82 0.22 3.63 0.38 1.26 .000
***

 

Proc 0.07 0.18 0.41 -0.29 0.44 .684 

Session 1.14 0.11 10.01 0.92 1.37 .000
***

 

Decl:Session -0.03 0.11 -0.28 -0.25 0.19 .780 
Note.

 ***
p < .001 

 

 The model yielded a positive, statistically significant effect of Session on accuracy (p < 

.001), indicating that the log-likelihood that items were produced correctly increased 

significantly as training progressed (a medium effect; R
2
 = .47). Turning to the predictors of 

interest, the model outcome was that, overall, declarative learning ability was a statistically 

significant positive predictor of accuracy (p < .001) with a medium effect size (R
2
 = .30). By 

contrast, procedural learning ability had a positive but nonsignificant relationship with 

accuracy with a negligible effect size (R
2
 = .01). The β coefficient of the Decl by Session 
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interaction indicated that the effect of declarative learning ability decreased, although 

nonsignificantly, across practice. The plot in Figure 1 illustrates the fairly consistent effect of 

declarative learning ability at three subsequent stages corresponding to intervals representing 

early, middle, and later stages of practice. 

 

 

Figure 1. Effect of declarative learning ability on accuracy in comprehension. Values on the 

x-axis represent standard deviations of the composite declarative learning ability score. The 

rugs along the x-axis of each panel represent the distribution of declarative learning ability 

values in the sample. Values on the y-axis represent the log odds of a correct response on a 

comprehension trial. The left, center, and right panels represent early, middle, and later stages 

of practice, respectively, and do not correspond directly to particular training blocks. 

 

Accuracy in production 

 After testing multicollinearity (condition number = 1.24), the model of the production 

data was derived. Overall, the final model (Table 4) explained about 88% of the variance, 

compared to 43% in the corresponding model where random effects were not specified. Note 

that this implies that random effects are likely to have had a substantial influence on the 

initial correlation results (cf., descriptive statistics; Table 2), a fact that would account for the 

lack of alignment between the results of the initial correlation and the final model's results.  
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Table 4. Mixed-effects model of the effects of session, declarative learning ability and 

procedural learning ability on accuracy in production.  

    95% CI  

Fixed effects β SE z lower upper p 

(Intercept) 0.59 0.66 0.89 -0.70 1.89 .370 

Decl 0.98 0.75 1.30 -0.50 2.46 .193 

Proc 1.48 0.80 1.85 -0.09 3.06 .064^ 

Session 2.71 0.32 8.47 2.09 3.34 .000
***

 

Proc:Session -1.16 0.27 -4.27 -1.69 -0.63 .000
***

 
Note.

 
∧p < .10; 

***
p < .001 

 

 The model returned a positive statistically significant, large effect of Session on 

accuracy (R
2
 = .84, p < .001), indicating that the log-likelihood that items were produced 

correctly increased significantly as training progressed. Both declarative and procedural 

learning ability had positive, though nonsignificant, medium-sized effects (R
2
 = .36 and R

2
 = 

.45, respectively). The Proc by Session interaction was found to be statistically significant (p 

< .001), and its negative β coefficient indicated a significant decrease in the ability of 

procedural learning ability to predict accurate responses in later stages of practice compared 

to earlier stages. The plot in Figure 2 illustrates the effect of procedural learning ability at 

three subsequent stages corresponding to intervals representing early, middle, and later stages 

of practice. 
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Figure 2. Effect of procedural learning ability on accuracy in production. Values on the x-

axis represent standard deviations of the composite procedural learning ability score. The 

rugs along the x-axis of each panel represent the distribution of procedural learning ability 

values in the sample. Values on the y-axis represent the log odds of a correct response on a 

production trial. The left, center, and right panels represent early, middle, and later stages of 

practice, respectively, and do not correspond directly to particular training blocks.  

 

RQ2 

Descriptive statistics 

 The 20 comprehension practice trials from Block 1 (Session 1) were considered 

warm-up practice and excluded from analysis. The analyzed RT data included correct trials in 

the remaining comprehension blocks that were within ± 2SDs of the mean RT calculated for 

each of the four sessions. Overall, 6.2% of the correct responses in the comprehension data 

were outside of the ± 2SDs criterion and were not included in the analysis. 

 According to Segalowitz (2010) the CV is a reliable index of automatization if (a) 

both CV (the ratio between the individual standard deviation in RT responses at block level 

and the RT mean at block level) and RT significantly decrease across practice, and (b) CV 

and RT are significantly correlated. Table 5 presents a summary of mean CV and RT values 

averaged across participants for each session (plots of these values across all blocks are 

available as supplementary materials S2). In regard to the first criterion, we find that both CV 
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and RT decreased statistically significantly between Session 1 and Session 4 (for CV: t (13) = 

5.23, p = .005, d = 1.7; for RT: t (13) = 6.83, p = .006, d = 2.7; bootstrapped). In regard to the 

second criterion, we calculated the CV and RT for each of the comprehension blocks 

included in the analysis, averaging across participants, and found that the correlation between 

CV and RT (r (33) = .746, p = .003; bootstrapped) was positive and statistically significant 

(see S2 for a plot). Thus, our data meet the criteria for CV to be interpreted as an index of 

automatization. 

 

Table 5. Mean CV and RT (in milliseconds) across sessions (N = 14). 

 S1 S2 S3 S4 Overall 

 M (SD) M (SD) M (SD) M (SD) M(SD) 

CV 1.33(0.3) 1.13(0.3) 0.93(0.2) 0.82(0.2) 1.05(0.2) 

RT 5207(1875) 2872(1054) 1774(597) 1465(354) 2829(722) 

 

 Next, we take a preliminary look at the relationship between CV and learning ability 

(Table 6). It is important to note that, as lower CV values indicate higher automatization, 

negative correlations between learning ability and CV indicate positive relationships of these 

variables with automatization. Over the sessions, we see a weak to medium relationship 

between CV and declarative learning ability and a medium to strong relationship between CV 

and procedural learning ability. The correlations relative to the overall CV mean scores 

reflect this pattern in that procedural learning ability, but not declarative learning ability, was 

found to significantly correlate with the coefficient of variation.  

 

Table 6. Correlations between CV and learning ability across sessions  

(N = 14). 

 S1 S2 S3 S4 Overall 

Declarative -.145 -.531 -.439 -.329 -472 

Procedural -.504 -.629∧ -.563 -.582 -671* 

Note.
 
∧p < .10; 

*
p < .05. Bonferroni corrected 
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Data modeling 

 In order to directly address RQ2, we conducted separate analyses for the 

comprehension and the production accuracy data. Data modeling was performed using 

mixed-effects models with the lmer function (lme4 package, Bates, Maechler & Bolker, 

2011) in the R environment (R Development Core Team, 2018), after a low risk of 

multicollinearity was ascertained (condition number = 1.45). The log-transformed CV (log10) 

was the dependent variable. The predictors were Decl and Proc (both standardized) and 

Session (continuous and centered). The derivation of the model followed the criteria 

illustrated earlier (cf. S1 for the model's syntax).  

 In the model output (Table 7), a negative β coefficient indicates a negative correlation 

between the predictor and the CV measure, hence a POSITIVE relationship between the 

predictor and automatization, as lower CV values indicate more automatization. Conversely, 

a positive β value indicates a NEGATIVE relationship between the predictor variable and 

automatization, as higher CV values indicate less automatization. Overall, the mixed-effects 

model explained 37% of the variance, compared to 11% in the corresponding model with no 

random effects. 
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Table 7. Mixed-effects model of the effects of session, declarative learning ability and 

procedural learning ability on automatization.  

 

    95% CI  

Fixed effects β SE t lower upper p 

(Intercept) -0.11 0.01 -7.31 -0.14 -0.08 .000
***

 

Decl -0.02 0.02 -0.98 -0.07 0.02 .377 

Proc -0.08 0.02 -4.31 -0.12 -0.04 .003
**

 

Session -0.04 0.01 -3.13 -0.06 -0.01 .007
**

 

Decl:Proc -0.04 0.02 -1.79 -0.08 0.00 .147 

Decl:Session 0.02 0.02 1.13 -0.01 0.06 .282 

Proc:Session -0.02 0.01 -1.65 -0.04 0.00 .177 

Decl:Proc:Session -0.04 0.01 -2.55 -0.07 -0.01 .029
*
 

Note.
 
∧p < .10; 

*
p < .05;

 **
p < .01; 

***
p < .001 

 

 A statistically significant, but small, effect of Session (R
2 
= .11, p < .01) was observed 

indicating that session-dependent factors beyond learning ability contributed to increased 

automatization over time. Turning to the long-term memory predictors, the model showed 

that, overall, procedural learning ability had a statistically significant positive effect on 

automatization (p < .01) and accounted for about 30% of the variance (a medium effect), 

whilst declarative learning ability exerted a positive, small-sized effect (5% of the variance) 

but was not statistically significant.  

 The model also returned a statistically significant (p < .05) Decl by Proc by Session 

interaction. In discussing this result it is important to remember that the interaction, per se, 

does not imply any specific directionality or causality. As one of the possible illustrations of 

the interaction, we plot the effect of procedural learning ability from the model for different 

levels of declarative learning ability across practice (Figure 3).  
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Figure 3. Effect of the DECL by PROC by SESSION interaction on automatization. Values 

on the x-axis represent standard deviations of the composite procedural learning ability score. 

The rugs along the x-axis of each panel represent the distribution of procedural learning 

ability values in the sample. Values on the y-axis represent the log of the CV index. Panels 

from left to right represent the effect of procedural learning ability for early, middle and later 

stages of practice for a constant level of declarative learning ability. Panels from bottom to 

top represent the effect of procedural learning ability for increasing levels of declarative 

learning ability at a given stage of practice. 

 

 Reading the plot from left to right (and keeping the stage in practice constant), we note 

that in the early stages of practice (‘early stage’) declarative and procedural learning ability 

do not appear to interact, that is, the slope of procedural learning ability is virtually the same 

regardless of the level of declarative learning ability. The effect of the interaction emerges in 

the middle stage of training (‘middle stage’), and, even more clearly, later in training (‘later 

stage’). At those stages, declarative and procedural learning ability do appear to interact in 

that the slope of procedural learning ability becomes steeper and more negative for higher 
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levels of declarative learning ability. Thus, later in practice, better procedural learning ability 

is associated with more automatization for learners with higher declarative learning ability. 

 The same interaction can also be viewed in another manner: Reading the plot from top 

to bottom (and keeping the DECL level constant), we note that, for average and above-

average values of declarative learning ability (‘average DECL’ and ‘high DECL’), higher 

procedural learning ability is associated with steeper, more negative slopes representing 

better automatization over the course of practice. For below-average levels of declarative 

learning ability (‘low DECL’), the procedural memory effect seems to flatten out over 

practice, suggesting that automatization becomes markedly worse over the course of practice 

as procedural learning ability increases.  

 Overall, the plot of the three-way interaction seems to indicate at least two facts: (a) 

that the interaction between long-term memory abilities does not emerge immediately and (b) 

that the effect of procedural learning ability on automatization varies differently over time for 

learners with different levels of declarative learning ability. As illustrated in Figure 3, higher 

declarative learning ability increasingly supports the effect of procedural learning ability on 

automatization. However, lower declarative learning ability is detrimental for the effect of 

procedural learning ability on automatization later in practice.  

Discussion 

 The first research question asked TO WHAT EXTENT DECLARATIVE AND PROCEDURAL 

LEARNING ABILITY PREDICTED ACCURACY IN COMPREHENSION AND PRODUCTION IN L2 

PRACTICE, AND WHETHER THESE EFFECTS VARIED ACROSS PRACTICE. For comprehension 

practice, the mixed-effects model analysis revealed a positive, medium, statistically 

significant relationship between declarative learning ability and accuracy, whereas for 

procedural learning ability, no statistically significant relationship with accuracy was 

detected. We also found that comprehension accuracy improved over the sessions, but this 
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effect did not interact with either declarative or procedural learning ability, indicating that 

their relationships with accuracy did not vary significantly across practice. A strong role for 

declarative learning ability in predicting accuracy during practice is consistent with the 

previously discussed findings in Pili-Moss (2018, Study 2), where learners engaged in a total 

of six blocks of 20 comprehension practice trials.  

 Our finding that declarative learning ability was related to comprehension accuracy 

early in practice is consistent with the results of the meta-analysis in Hamrick et al. (2018), 

and in particular with the results in Morgan-Short et al. (2014), the study from which our data 

were obtained. However, discrepancies with Morgan-Short et al. (2014), and more generally 

with the results reported in Hamrick et al.'s meta-analysis, emerge with regard to the findings 

at later stages of practice in at least two respects. First, the GJT findings in Morgan-Short et 

al. indicated that the effect of declarative learning ability became nonsignificant after the end 

of practice, whilst in our study it slightly decreased across practice, but not significantly. 

Second, Morgan-Short et al. found that procedural learning ability predicted accuracy on the 

GJT after the end of practice, whilst no significant effect of procedural learning ability 

emerged in comprehension practice in the present study.  

 Since the present study analyzes a different measure of accuracy taken from the same 

participants in the same experiment, this leads to the question of why, contrary to the GJT, 

the declarative learning ability effect did not subside and the procedural learning ability effect 

did not emerge when accuracy was measured during practice. One possibility is that the type 

of task used to measure accuracy had an effect on the engagement of declarative and 

procedural learning ability during practice, a possibility already envisaged in Morgan-Short 

et al. (2014, p. 69). For example, even though participants did not receive instructions to 

search for rules, they were likely to apply hypothesis testing to work out strategies to improve 

their score, which reflected the accuracy of their responses during practice. Evidence that 
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rule-based tasks, which can be learned via explicit hypothesis testing, activate neural areas 

that implicate declarative memory has been discussed in studies of human category learning 

(e.g., Ashby & Crossley, 2012, for a review). Also, it is possible that declarative memory was 

more engaged during practice due to the fact that participants had to process/retrieve arbitrary 

aural-visual associations (Henke, 2010). It is known that the integration of multiple cues in a 

task, particularly if the cues are visual-spatial, specifically engages declarative memory 

(Packard & Goodman, 2013; Ullman, 2016).  

 By contrast, the GJT in Morgan-Short et al. (2014) only required learners to evaluate 

aural stimuli in a situation where, due to lack of visual-spatial associations in the stimuli, 

declarative processing was arguably less compelling, with consequent greater reliance on 

procedural processing. Overall, we conclude that the asymmetry between L2 practice and 

GJT in the relationship with long-term memory abilities may point towards an enhanced role 

of declarative learning ability that may be due to the processing requirements of the gaming 

task. 

 Now turning to production practice, the mixed-effects model analysis did not detect a 

statistically significant relationship between production accuracy and either declarative or 

procedural learning ability. However, an effect of procedural learning ability was stronger at 

early stages of practice and significantly decreased as practice progressed. These results do 

not seem fully consistent with the results from Morgan-Short et al. (2014), where a 

relationship between procedural learning ability and accuracy on a GJT was detected at the 

end of practice, but not after the first session of practice. We can speculate that the difference 

in this pattern of results, again, might emerge because of the type of task that learners were 

engaged in during practice as opposed to during the GJT, although exactly why this should be 

the case remains unclear.  
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 A related question is why the effect of procedural learning ability declined as training 

progressed. We offer two speculative reasons for this finding.  One possibility is that, unlike 

participants with low procedural learning ability, participants with high levels of procedural 

learning ability may have been able to benefit from lower amounts of input early on in 

practice. With increasing amounts of input, differences in attainment between low and high 

levels of procedural learning ability might have leveled off. A second possibility that might 

also be considered involves the relationship between comprehension and production in L2 

development, and specifically the hypothesis that input processing in comprehension may 

feed into processing in production, in particular when the process involves declarative 

knowledge (c.f., De Jong, 2005; DeKeyser & Sokalski, 2001; Izumi, 2003; Ellis, 2005). 

Assuming that the initial effect of procedural learning ability reflects a very early stage in L2 

processing at which comprehension (strongly driven by declarative memory) does not yet 

feed into production, the relationship between comprehension and production could 

strengthen later in practice, and processing during production become less reliant on 

procedural learning ability as a consequence. 

 The second research question asked TO WHAT EXTENT DECLARATIVE AND 

PROCEDURAL LEARNING ABILITY PREDICTED AUTOMATIZATION IN LANGUAGE COMPREHENSION 

ACROSS PRACTICE, i.e., to what extent they predicted negative values of the coefficient of 

variation. First of all, the analysis showed that the pattern of CV scores across practice was 

compatible with L2 automatization in comprehension, i.e., both CV and RT significantly 

decreased across practice, and there was a significant correlation between them. This 

supports findings of previous studies using the CV to investigate automatization of L2 syntax 

(e.g., Lim and Godfroid, 2015; Ma et al., 2017).  

With regard to the cognitive variables of interest, the analysis showed that procedural 

learning ability had a positive, medium, significant effect on automatization, whereas 
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declarative learning ability had a positive, small effect that was not statistically significant. 

However, these effects were conditional to a significant three-way interaction with session 

that indicated that automatization in comprehension benefitted from an interaction between 

declarative and procedural learning ability during processing, and increasingly so later in 

practice. Inspection of the plot in Figure 3 showed that the interaction did not emerge 

immediately, but only after the participants had had some initial practice with the language. 

Additionally, the interaction indicated an association between higher procedural learning 

ability and greater automatization that became stronger with practice for learners with higher 

declarative learning ability. For learners with lower levels of declarative learning ability, the 

interaction indicated that higher procedural learning ability was detrimental for 

automatization at later stages of practice.  

 Overall, these findings support the close link between behavioral measures of 

procedural memory and L2 automatization, a relationship that has been often implied in the 

literature but for which behavioral evidence has only recently started to emerge.	  Recently, 

Suzuki (2017) found that procedural memory correlated with RT reduction (an element of 

automatization), although no relationship between procedural memory and automatization 

was evidenced. By contrast, the present study found a significant relationship between the 

CV and procedural learning ability as well as a significant interaction between declarative 

and procedural learning ability that varied across practice. It is possible that the discrepancy 

in results depends on methodological differences between the two studies, such as the fact 

that unlike ours, Suzuki's study administered explicit L2 instruction, deployed a single task 

(the TOL) to measure procedural memory, and analyzed production instead of 

comprehension.  

 The results of the present study are also compatible with the predictions that some 

current cognitive approaches to L2 learning would make for the engagement of declarative 
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and procedural resources in L2 learning and processing (e.g., DeKeyser, 2015; Paradis, 2009; 

Ullman, 2015). In terms of the effects of declarative and procedural memory for L2 learning, 

the results relative to the analysis of accuracy in comprehension are in line with 

neurocognitive models that predict a significant engagement of declarative memory in the 

initial stages of L2 learning (Paradis, 2009; Ullman, 2005, 2015, 2016). This effect is due to 

the specific capability of the declarative memory system to learn efficiently in conditions of 

limited input. We have argued that the fact that the strength of this effect appears to diminish 

to a lesser extent during practice, compared to when L2 proficiency is measured with a GJT, 

may indicate that an additional effect of task is at play that further biases processing towards 

the declarative modality. 

 With regard to the automatization analysis, Ullman’s DP model would also be 

compatible with the significant role of procedural learning ability found in the present study. 

This is because Ullman's DP model, unlike Paradis (2009), would not exclude a role for 

procedural memory in conditions of relatively limited exposure to a second language such as 

the ones provided in our experiment. Both declarative and procedural memory may be 

contributing to language development at any stage with the relative strength of their effect 

varying over time.  

A further aspect that is very generally compatible with Ullman’s model is the finding 

of a significant interaction between declarative and procedural learning ability during 

processing. Ullman discusses that declarative and procedural memory may cooperate or 

compete with each other, based on evidence from human and animal studies that has 

accumulated in neuropsychology and neuroscience in the last fifty years (Packard & 

Goodman, 2013). The finding of an interaction in our results (Figure 3) suggests that the 

relationship between the two memory systems may depend, among other possible factors, on 

individual strengths within the systems. We see cooperation when individuals have high 
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declarative learning ability, but competition when individuals' declarative learning ability is 

below average. Compatible with a cooperative interaction interpretation, Morgan-Short et al. 

(2015) also found that engagement of procedural memory neural substrates in individuals 

with high declarative memory enhanced L2 proficiency at initial stages of practice. 

 Further, these results are largely compatible with other theoretical models that posit a 

supporting role of declarative knowledge in the establishment of proceduralized L2 

knowledge (e.g., DeKeyser, 2015; Ellis, 2005). Specifically, in line with the predictions of 

DeKeyser (2007, 2015), automatization in comprehension is significantly related to 

procedural processing, and increasingly so as practice progresses, whereas the effect of 

declarative learning ability declines across practice. Furthermore, the overall positive effect 

for automatization of the interaction between declarative and procedural learning ability 

indicates that (high levels of) declarative learning ability reinforce the capacity of procedural 

learning ability to predict automatization (and vice versa). Although the interaction per se 

does not indicate the direction of the effect, the results are compatible with the interpretation 

that, in the early stages of automatization, declarative learning ability may perform a 

supporting/ancillary function with respect to procedural learning ability, which remains the 

main engine of the process. 

 Overall, the results from the present analysis of L2 practice are largely compatible 

with the predictions recent cognitive models have made with regard to the engagement of 

declarative and procedural memory/knowledge in L2 learning and processing and their 

interaction. This is particularly the case for the analysis of L2 accuracy in comprehension and 

for automatization in comprehension. 

Limitations of the study and further research 

 The study has a number of limitations that should be addressed by further research. 

First, in the analysis of both accuracy and automatization, the effects of comprehension on 
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production (and vice-versa) were not controlled. Specifically, participants were administered 

comprehension as well as production practice blocks, and it is possible that L2 processing in 

one modality may have affected L2 processing and attainment in the other. Future research 

could seek to control these effects, for example by adopting experimental designs where type 

of practice is a between-group variable. 

 Secondly, although the large number of trial items ensured the viability of the 

inferential analysis using mixed-effects models, it is of paramount importance that the effects 

of long-term memory abilities during practice are investigated more extensively in studies 

with a larger number of participants. 

 Further, the analysis of automatization in the present study was partial because it only 

examined comprehension practice. Further research could investigate how the development 

of automatization varies in comprehension and production overall, as well as specifically 

look at the effects of declarative and procedural learning ability in the two modalities. A 

further important aim in this line of research should be to design studies that elucidate 

whether and how a wide set of factors, including for example input complexity and the extent 

to which L2 knowledge is explicit, modulate the effect of long-term memory in 

automatization. Additionally, the analysis of automatization in the present study deployed the 

CV index as the outcome measure. It remains to be shown whether results would be 

confirmed if alternative measures of automatization were used, for example a measure based 

on the fit of individual latency data to a power function. Similarly, it will be important for 

researchers to show that the patterns of results are robust over different measures that are 

valid measures of declarative and procedural memory (for preliminary work on this issue, see 

Buffington & Morgan-Short, in press). 

 A further development of interest would be to include additional cognitive variables 

in the study of both L2 accuracy and automatization. For instance, alongside declarative and 
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procedural learning ability, one could investigate the role of working memory as a main 

effect, as well as a potential moderating effect in an interaction. Specifically, since working 

memory is known to support declarative processing, and a significant role of declarative 

learning ability has been found for both L2 accuracy and L2 automatization, a study with a 

design similar to the present one could explore to what extent working memory modulates 

declarative learning ability. Finally, future studies could investigate the role of long-term 

memory individual differences for L2 accuracy and automatization across a wider range of 

linguistic structures and, possibly, different age groups. 

Conclusions 

 This study offered an exploratory analysis of the effects of declarative and procedural 

learning ability on L2 accuracy and automatization during language practice over the course 

of two weeks. The study found distinct patterns in the effects of the two learning abilities in 

comprehension accuracy, production accuracy, and comprehension automatization. 

Declarative learning ability emerged as the main predictor of accuracy in comprehension, an 

effect that did not significantly change across practice. However, neither learning ability was 

a significant predictor of accuracy in production, although we found that procedural learning 

ability predicted production accuracy more at early stages and significantly less later in 

practice. This pattern of results differs from what had been found in the same set of learners 

for performance on GJTs administered after one session of practice and after the end of 

practice. We have suggested that, at least for comprehension accuracy, the discrepancy in the 

findings may be largely due to the type of task.  

 By contrast, procedural learning ability was a main predictor of automatization in 

comprehension, a finding that, to the best of our knowledge, had not yet been reported in a 

behavioral experiment. A further predictor that on average supported automatization was an 

interaction between declarative and procedural learning ability. Overall, these results support 
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predictions of the DP model with regard to the prominence of declarative processing early in 

practice, as well as with regard to the possibility of cooperative interactions between 

declarative and procedural memory in L2 development (Ullman, 2005, 2015, 2016). 

Likewise, the study supports key predictions Skill Acquisition Theory makes for the 

proceduralization of L2 skills during practice (DeKeyser, 2007, 2015), including the finding 

that procedural learning ability was a significant predictor of automatization and that 

declarative learning ability appeared to support automatization in its early stages.  

Overall, extending previous research, the present study found that long-term memory 

plays a pivotal role in accounting for the development of L2 accuracy and automatization 

during practice. By examining the effect of learning abilities during L2 practice we may have 

further insight into the role the declarative and procedural memory systems play in the 

learning process. 

Supplementary materials: 

Appendix S1 

Appendix S2 
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Supplementary	  materials	  1:	  Model	  formulas	  

This	  file	  contains	  the	  formulas	  of	  the	  final	  mixed-‐effects	  models	  deployed	  to	  compute	  

effects	  on	  accuracy	  in	  comprehension,	  accuracy	  in	  production	  and	  automatization	  in	  

comprehension	  in	  R	  (file	  type:	  docx;	  size:	  64	  KB).	  

	  

Accuracy in comprehension: 

glmer (ACC ~ (SESSION + 1 | PART) + (DECL + PROC + SESSION + 1 | ITEMNAME) + PROC + DECL * 

SESSION, data = comprehension, family = binomial, glmerControl (optimize = "bobiqua")) 

Total valid cases: 9880 

 

Accuracy in production: 

glmer (ACC ~ (DECL + PROC + SESSION + 1 | PART) + (DECL + PROC + SESSION + 1 | ITEMNAME) + 

DECL + PROC * SESSION, data = production, family = binomial, glmerControl (optimize = "bobiqua")) 

Total valid cases: 9786 

 

Automatization: 

lmer (logCV ~ (DECL + PROC + SESSION + 1 | PART) + (DECL + PROC +  

SESSION + 1 | ITEMNAME) + DECL * PROC * SESSION, data = automdata, REML = TRUE)) 

Total	  valid	  cases:	  7773	  
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Supplementary	  materials	  2	  

This	  file	  contains	  three	  figures	  illustrating	  the	  plot	  of	  the	  CV	  and	  RT	  variables	  across	  

blocks	  and	  the	  graph	  of	  the	  correlation	  between	  CV	  and	  RT	  (file	  type:	  docx;	  size:	  205	  

KB).	  

	  

Figure	  S2.1.	  CV	  Distribution	  Across	  Block	  and	  Sessions	  (S1-‐S4).	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  



Declarative	  and	  procedural	  memory	  in	  L2	  practice	   48	  

	  

Figure	  S2.2.	  RT	  Distribution	  Across	  Blocks	  and	  Sessions	  (S1-‐S4).	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  

	  

Figure	  S2.3.	  CV/RT	  Correlation	  (Block	  Scores).	  

 


