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Diabetes causes metabolic and physiologic abnormalities in the retina, and these changes suggest a role for inflammation in the
development of diabetic retinopathy. These changes include upregulation of iNOS, COX-2, ICAM-1, caspase 1, VEGF, and NF-κB,
increased production of nitric oxide, prostaglandin E2, IL-1β, and cytokines, as well as increased permeability and leukostasis.
Using selective pharmacologic inhibitors or genetically modified animals, an increasing number of therapeutic approaches have
been identified that significantly inhibit development of at least the early stages of diabetic retinopathy, especially occlusion and
degeneration of retinal capillaries. A common feature of a number of these therapies is that they inhibit production of inflam-
matory mediators. The concept that localized inflammatory processes play a role in the development of diabetic retinopathy is
relatively new, but evidence that supports the hypothesis is accumulating rapidly. This new hypothesis offers new insight into the
pathogenesis of diabetic retinopathy, and offers novel targets to inhibit the ocular disease.

Copyright © 2007 Timothy S. Kern. This is an open access article distributed under the Creative Commons Attribution License,
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1. INTRODUCTION

Diabetic retinopathy classically has been regarded as a dis-
ease of the retinal microvasculature, and the natural history
of the disease has been divided into an early, nonprolifera-
tive (or background) stage, and a later, proliferative stage. It
is becoming appreciated also that cells of the neuroretina also
are affected in diabetes. A number of metabolic or molecu-
lar abnormalities that are characteristic of inflammation have
been detected in retinas of diabetic animals or patients, or in
retinal cells exposed to elevated concentrations of glucose. In
the following sections, we will review studies implicating in-
flammation in the pathogenesis of the early stages of diabetic
retinopathy. This review will focus primarily on in vivo stud-
ies.

2. HISTOPATHOLOGY OF EARLY STAGES OF
DIABETIC RETINOPATHY

Histologically, vascular lesions in the early stages of dia-
betic retinopathy in man and animals are characterized by
the presence of saccular capillary microaneurysms, pericyte-
deficient capillaries, and obliterated and degenerate capillar-
ies. These degenerate capillaries are not perfused, and so in-
creases in their frequency represent reductions in retinal per-
fusion.

Capillary occlusion and degeneration initially occurs in
single, isolated capillaries, and has no clinical importance
when only few capillaries have become nonperfused. As more
and more capillaries become occluded, however, retinal per-
fusion likely decreases, at least locally. Mechanisms believed
to contribute to the degeneration of retinal capillaries in di-
abetes include (1) occlusion of the vascular lumen by white
blood cells or platelets, (2) death of capillary cells secondary
to biochemical abnormalities within the vascular cells them-
selves, or (3) capillary cell death secondary to products gen-
erated by other nearby cells (such as neurons or glia). All
species studied to date have been found to show degenera-
tion of retinal capillaries (Figure 1) as well as death of peri-
cytes and endothelial cells, but microaneurysms are not com-
monly found in rodent models of diabetic retinopathy.

Diabetes also results in damage to nonvascular cells of the
retina. Loss of ganglion cells has been detected in diabetic rats
[1–13] and humans [4], but results are controversial in mice
[8, 11, 14, 15]. The neurodegeneration in diabetic rats has
been detected as early as one month of diabetes [4], thus pre-
ceding (and possibly contributing to) the development of the
vascular cell changes [4]. The possible role of neurodegener-
ation in diabetes-induced capillary degeneration has yet to
be conclusively demonstrated, but a report that Nepafenac (a
COX inhibitor) inhibited diabetes-induced degeneration of
retinal capillaries while having no effect on the loss of retinal
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Figure 1: Capillary degeneration in a rat diabetic for 10 months.
Large arrow: acellular (degenerate) capillary; small arrow: pericyte
ghost.

ganglion cells suggests that the two degenerative events need
not be causally linked (16).

Glia and other retinal cells also undergo changes in di-
abetes in some species. In diabetic rats and humans (but
apparently not mice [8]), these cells changed from a quies-
cent to an injury-associated phenotype with high levels of
expressed glial fibrillary acidic protein (GFAP)—a hallmark
of glial cell activation [3, 5, 8, 14, 16–20]. Müller glial cells in
diabetic rats showed evidence of cell death in some [3, 10],
but not all [19], studies. Horizontal cells, amacrine cells, and
photoreceptors also have been reported to undergo degener-
ation in diabetic rats [7, 9], but these changes are not known
to be characteristics of retinal changes seen in diabetic pa-
tients so their significance remains to be learned. Diabetes-
induced changes in retinal function [21–26] are consistent
with diabetes causing metabolic alterations in the neural
retina.

3. INFLAMMATION

Inflammation is a nonspecific response to injury that in-
cludes a variety of functional and molecular mediators, in-
cluding recruitment and activation of leukocytes. Inflamma-
tion typically has beneficial effects on an acute basis, but
can have undesirable effects if persisting chronically. The in-
creased expression of many inflammatory proteins is regu-
lated at the level of gene transcription through the activation
of proinflammatory transcription factors, including NF-κB.
These proinflammatory transcription factors are activated
and play a critical role in amplifying and perpetuating the
inflammatory process. Transcription factors associated with
production of proinflammatory mediators include nuclear
factor kappa B (NF-κB), activator protein 1 (AP-1), speci-
ficity protein 1 (Sp1), peroxisome proliferator-activated re-
ceptors (PPARs) and other members of the nuclear receptor
superfamily [27–30]. Proinflammatory proteins (including
COX-2, interleukin-1, tumor necrosis factor alpha) can con-
tribute to cell damage and death in tissues including brain
and retina [31–34], at least in part via activation of NF-κB
[32].

4. ROLE OF INFLAMMATION IN THE EARLY STAGES OF
DIABETIC RETINOPATHY: ANIMAL STUDIES

Many of the molecular and functional changes that are char-
acteristics of inflammation (summarized below) have been
detected in retinas from diabetic animals or humans, and in
retinal cells cultured in elevated concentrations of glucose.
Although many animal species have been studied as possi-
ble models of diabetic retinopathy, most of the studies link-
ing inflammatory processes to the development of diabetic
retinopathy have been conducted to date in rats and mice,
and have focused on insulin-deficient models (type 1 dia-
betes).

4.1. 1 Leukostasis and platelet activation

Attraction and adhesion of leukocytes to the vascular wall
are important components of inflammatory processes. This
leukostasis has been found to be significantly increased in
retinas of diabetic animals [35–47], and might contribute to
the capillary nonperfusion in diabetic retinopathy. Leukocyte
stiffness has been reported to be increased in diabetes (de-
creased filterability) and to contribute to the development of
capillary nonperfusion in retinal vessels [36, 48]. A second
line of evidence shows that abnormal leukocyte adherence
to retinal vessels in diabetes occurs via adhesion molecules.
Diabetes increases expression of ICAM-1 in retinas of an-
imals and humans [38, 49] and interaction of this adhe-
sion molecule on retinal endothelia with the CD18 adhesion
molecule on monocytes and neutrophils contributes to the
diabetes-induced increase in leukostasis within retinal ves-
sels [38]. Leukostasis has been postulated to be a factor in
death of retinal endothelial cells in diabetes [40]. Using in
situ perfusion methods, evidence consistent with capillary
occlusion secondary to leukostasis has been observed in oc-
casional retinal vessels (Figure 2), but it is unclear whether
this occurred in vivo or was an artifact caused by the in
vitro perfusion. Retinas from diabetic mice lacking ICAM-1
and CD18 are protected from the development of diabetes-
induced increase in leukostasis, vascular permeability, and
degeneration of retinal capillaries [46], showing these pro-
teins to be important in the development of early stages of
diabetic retinopathy. Whether their role in the development
of the retinal disease results from capillary occlusion or some
other mechanism, however, has not been explored.

A third postulated cause of capillary nonperfusion in di-
abetes involves platelets. Platelet microthrombi are present in
the retinas of diabetic rats and humans, and have been spa-
tially associated with apoptotic endothelial cells [50]. The se-
lective antiplatelet drug (clopidogrel), however, did not pre-
vent neuronal apoptosis, glial reactivity, capillary cell apop-
tosis, or acellular capillaries in retinas of diabetic rats (51),
suggesting that platelets do not initiate the pathology of early
diabetic retinopathy.

4.2. 2 Increased vascular permeability

Breakdown of the blood-retinal barrier, another early
event in the development of diabetic retinopathy, has been
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Figure 2: Adherence of white blood cells to the wall of retinal blood
vessels (leukostasis). The vasculature of anesthetized animals was
perfused with fluorescein-coupled concanavalin A lectin, resulting
in stain of all vessel walls and more intense stain of the white blood
cells. Occasionally, staining of a capillary was arrested where white
blood cells were trapped in the vessel (arrow), suggesting that the
blood cell might have occluded the vessel.

attributed to increases in leukostasis, cytokines, and growth
factors [40, 51–54]. Increased permeability of the blood reti-
nal barrier is known to occur in patients with diabetes, and
this defect contributes to retinal edema and visual impair-
ment in diabetic patients. Controversy remains as to how
fast the permeability defect develops in retinas of diabetic
animals, with reports ranging from 8 days to more than 6
months after onset of diabetes [41, 55–59]. There has been
considerable effort directed towards developing means to as-
sess increased vascular permeability within retinas of animal
models, and to identify therapies to inhibit this defect. Ther-
apies that have been found to inhibit the diabetes-induced
increase in vascular permeability within the retina include
aldose reductase inhibitors, protein kinase C inhibitors, ty-
rosine kinase inhibitors, aspirin, a COX-2 inhibitor, steroids,
VEGF antagonist, TNFα receptor antagonists, and PPAR
gamma ligands [41, 47, 56, 57, 60–70].

4.3. 3 NF-κB

NF-κB is a widely expressed inducible transcription factor
that is an important regulator of many genes involved in
mammalian inflammatory and immune responses, prolifera-
tion and apoptosis. NF-κB is composed of homodimers and
heterodimers, the most abundant and best-studied form in
mammalian cells consisting of the p65 and p50 subunits. Ac-
tivation of NF-κB typically involves the phosphorylation of
cytoplasmic IκB by the IκB kinase (IKK) complex, resulting
in IκB degradation via the proteosomal system. The degra-
dation of IκB releases the NF-κB heterodimers to translocate
to the nucleus where they bind to nuclear DNA, leading to
activation of specific subsets of genes. DNA-binding experi-
ments (EMSA) have demonstrated NF-κB to be activated in
retinal endothelial cells or pericytes exposed to elevated glu-
cose concentration and in retinas of diabetic rats [71, 72].
Diabetes has been found to cause migration of the p65 sub-

unit into the nucleus of retinal pericytes [73], and of the p50
subunit into nuclei of retinal endothelial cells, pericytes, gan-
glion cells, and cells of the inner nuclear layer [74].

Evidence in support of an important role of NF-κB in
the pathogenesis of early stages of diabetic retinopathy is
twofold. First, inhibition of proteins whose expression is reg-
ulated by NF-κB (such as iNOS and ICAM) inhibit diabetes-
induced degeneration of retinal capillaries (described be-
low). Second, compounds known to inhibit NF-κB likewise
inhibit the development of the retinopathy. For example, sev-
eral different antioxidants which inhibit the development of
capillary degeneration and pericyte loss in retinas of dia-
betic rats [75] also inhibit the diabetes-induced activation of
retinal NF-κB (72). Likewise, low-intermediate doses of sali-
cylates (aspirin, sodium salicylate, and sulfasalazine) which
inhibited NF-κB activation in retinas of diabetic rats, also
inhibited expression of inflammatory mediators like iNOS
and ICAM-1, and capillary degeneration and pericyte loss
in those animals (75; 77). Aspirin is known to inhibit also
production of prostaglandins, but salicylate and sulfasalazine
have much less of this activity, suggesting that the common
action of these 3 salicylates to inhibit retinopathy in diabetes
was not primarily mediated by inhibition of prostaglandins.

4.4. 4 iNOS

iNOS expression is regulated at least in part by NF-κB. Inter-
estingly, experimental sympathectomy itself increases gene
and protein expression of iNOS in retinas of nondiabetic
rats (78), suggesting that loss of sympathetic activity, such
as which occurs in diabetes, might contribute to the upregu-
lation of this inflammatory protein in the retina.

In retinas of diabetic animals, increased levels of nitric
oxide products (nitrotyrosine, nitrite, nitrate) have been re-
ported [76–78]. Upregulation of iNOS has been found in
retinas of experimental diabetic rodents and patients in most
studies [33, 55, 76, 78–82]. Diabetes-induced alterations in
expression of other isoforms of nitric oxide synthase also
have been reported [83, 84]. A possible role of iNOS in the
pathogenesis of diabetic retinopathy is suggested by the stud-
ies of aminoguanidine. Aminoguanidine is a relatively selec-
tive inhibitor of iNOS [85–88], and has been found to in-
hibit the diabetes-induced increase nitric oxide production
and iNOS expression in retina [78].

Aminoguanidine also has been found to inhibit the de-
velopment of the microvascular lesions of diabetic retinopa-
thy in diabetic dogs [89], rats [90–92], and mice (Kern,
unpublished data). Nevertheless, aminoguanidine also has
other effects [93–100], so this therapy does not absolutely
prove a role of iNOS in the pathogenesis of the retinopathy.

The role of iNOS in the development of the early stages
of diabetic retinopathy recently has been investigated directly
using mice genetically deficient in iNOS [101]. In that study,
wildtype diabetic mice developed the expected degeneration
of retinal capillaries, as well as increase in leukostasis and su-
peroxide generation. In contrast, diabetic mice deficient in
iNOS did not develop these structural or functional abnor-
malities.
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eNOS expression also has been reported to be elevated
in the retinas in the diabetic rats, and it has been suggested
that eNOS might play a role in the development of diabetes-
induced leukostasis and/or retinopathy [41, 56, 83]. This
possibility has not been experimentally addressed due, in
part, to the hypertension that results in the absence of eNOS,
as well as a lack of specific inhibitors of the enzyme.

4.5. 5 Cyclooxygenases

COX-2 expression is regulated at least in part by NF-κB. In
retinas of diabetic animals, induction of COX-2 as well as
increased production of prostaglandins has been reported
[33, 67, 102–104]. Ayalasomayajula and coworkers [104]
have shown that PGE2 production by retinas from diabetic
rats was significantly inhibited by celecoxib (a selective COX2
inhibitor), but not by a COX-1 inhibitor, suggesting that
COX-2 is primarily responsible for the diabetes-induced in-
crease in retinal production of PGE2 in diabetic rats. Inhi-
bition of COX-2 has been reported to inhibit the diabetes-
induced upregulation of retinal prostaglandins and VEGF
[67], the increase in retinal vessel permeability and leukosta-
sis [41], and the death of retinal endothelial cells cultured in
diabetic-like concentrations of glucose [33]. The COX-2 in-
hibitor, Meloxicam, also reduced eNOS levels, inhibited NF-
κB activation in the diabetic retina, and modestly, but signif-
icantly, reduced TNFα levels in the retina [41]. Its effect on
histologic lesions of diabetic retinopathy was not studied.

Less selective COX inhibitors have inhibited the develop-
ment of the retinopathy in diabetic dogs and rodents [74, 89],
as well as the increase in vascular permeability in diabetic ro-
dents [41]. Nepafenac is an inhibitor of cyclooxygenases that
can be applied in eye drops. It was found to inhibit diabetes-
induced prostaglandin production and leukocyte adhesion in
retinal vessels of diabetic rats, and the diabetes-induced in-
crease in the number of TUNEL-positive capillary cells, acel-
lular capillaries, and pericyte ghosts in the retina [21].

4.6. 6 ICAM-1

White blood cells bind to ICAM-1 on the surface of endothe-
lial cells as a component of a multistep process leading to ad-
herence of the white blood cell to the endothelial wall [38].
This leukostasis is known to be increased in retinal blood ves-
sels in diabetes [21, 38, 40–42, 44, 46, 56, 105, 106], and this
process is mediated via ICAM-1 [38]. ICAM-1 is upregulated
by several stimuli, including VEGF, PARP activation, oxida-
tive stress, and dylipidemia [72, 107–109], at least in part by
NF-κB.

Genetically modified C57B1/6J mice recently have been
used to explore the roles of ICAM-1 and its ligand on white
blood cells (CD18) in the pathogenesis of diabetes-induced
retinal vascular disease [46]. Mice deficient in the genes for
these proteins and their wildtype controls were made dia-
betic or experimentally galactosemic. After durations of up
to 11 months (diabetes) or 22 months (galactosemia), wild-
type diabetic or galactosemic animals developed capillary de-
generation and pericyte loss as well as associated abnormal-
ities including leukostasis, increased capillary permeability

and capillary basement membrane thickening. In contrast,
CD18−/−and ICAM-1−/−mice developed significantly fewer
of each of these abnormalities, thus providing evidence that
these inflammatory proteins play an important role in the
pathogenesis of the retinopathy.

4.7. 7 VEGF

VEGF is a proinflammatory molecule that plays a well-
recognized role in neovascularizaton and in increased per-
meability. VEGF expression is regulated largely by hypoxia,
but it also accumulates in the retina early in diabetes, before
any retinal hypoxia is yet apparent [110–112]. It is produced
by multiple cell types in the retina in diabetes, including gan-
glion cells, Mueller cells, and pericytes. Repeated injections
of high concentrations of VEGF in the eyes of nondiabetic
monkeys result in retinal changes which in some ways resem-
ble those in the early stages of diabetic retinopathy, including
vascular tortuosity and microaneurysms [113, 114]. Clinical
trials using anti-VEGF therapies are showing promising re-
sults against advanced stages of diabetic retinopathy [115–
121].

4.8. 8 IL-1β and caspase-1

Levels of the proinflammatory cytokine, IL-1β, are known to
be increased in retinas from diabetic rats [34, 122, 123]. In-
travitreal injection of IL-1β or exposure of retinal endothe-
lial cells to the cytokine in vitro was shown to be capable
of causing degeneration of retinal capillary endothelial cells
[32], but the relevance of these findings to capillary degener-
ation in vivo is not clear because the levels of IL-1β likely were
pharmacologically high. The role of IL-1β in the pathogen-
esis of diabetic retinopathy recently has been more directly
studied using diabetic mice in whom the enzyme responsi-
ble for IL-1β production was inhibited or in whom the IL-
1β receptor was deleted. IL-1β is the predominant product
of caspase-1, and the biological activity of IL-1β is mediated
by binding to the cell surface receptor, IL-1R1. Activity of
caspase-1 is increased in retinas of diabetic mice, galactose-
fed mice, and diabetic humans, and in retinal Müller cells
incubated in elevated glucose concentration [124]. Inhibi-
tion of caspase-1 using minocycline inhibited the diabetes-
induced increase in IL-1β and decreased degeneration of reti-
nal capillaries in those animals [34]. Likewise, inhibition of
IL-1β signaling using IL-1β receptor knock-out mice pro-
tected the animals from diabetes-induced retinal pathology
at 7 months duration of diabetes [34]. The results indicate
that activation of caspase-1 and subsequent production of
IL-1β play an important role in the development of diabetes-
induced retinal pathology. One known action of IL-1β is to
activate NF-κB.

4.9. 9 TNFα and other cytokines

Retinal levels of TNFα are significantly greater than normal
in diabetic rats [41, 125]. Eternacept is a soluble TNFα recep-
tor that acts as competitive inhibitor to block effects of TNFα
binding to cells. Eternacept reduced leukocyte adherence in
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retinal blood vessels of rats diabetic for 1 week compared to
control [41]. Eternacept did not reduce retinal VEGF levels,
but it inhibited blood-retinal barrier breakdown and NF-κB
activation in the diabetic retina. No effects of the therapy on
histologic lesions of the retinopathy were evaluated in dia-
betic animals, but mice genetically deficient in TNF were re-
ported in an abstract to be protected from galactose-induced
retinopathy [126]. Epiretinal membranes obtained by vitrec-
tomy, as well as cultured Muller glial cells stimulated with
glycated albumin or high glucose, showed increased expres-
sion of monocyte chemotactic protein-1 mRNA and protein
[127]. These studies suggested that monocyte chemotactic
protein-1, under the regulation of NF-κB, is a component of
the diabetes-induced inflammation in the retina.

4.10. 10 Fas

Fas levels are increased in retinas of diabetic rats [41, 126,
128]. Blocking FasL in vivo has been shown to prevent en-
dothelial cell damage, vascular leakage, and platelet accumu-
lation in diabetes, suggesting that the Fas/FasL system might
contribute to the diabetes-induced damage that contributes
to the development of the retinopathy [128], but its role in
the development of retinal histopathology has not been as-
sessed.

4.11. 11 Complement

Deposition of C5b-9, the terminal product of complement
activation, has been observed within retinal blood vessels of
diabetic rats and humans [129]. Endogenous inhibitors of
complement activation, including CD55, CD59, and DAF,
have been observed to have subnormal expression or im-
paired function as a result of nonenzymatic glycation [130–
132]. Whether or not inhibition of the complement system
can inhibit the development of lesions characteristic of the
retinopathy remains to be learned.

4.12. 12 Angiopoietin-1

Angiopoietin-1 has been found to have anti-inflammatory
actions, including inhibition of vascular permeability and
adhesionprotein expression [133]. When administered in-
travitreally to diabetic rats, angiopoietin-1 normalized
blood-retinalbarrier function, leukostasis and endothelial in-
jury, and inhibited upregulation of retinal VEGF and ICAM-
1 mRNA and protein [56].

5. SEVERAL THERAPIES THAT INHIBIT RETINOPATHY
ARE KNOWN TO INHIBIT NF-κB

5.1. 1 PARP

Administration of a potent PARP inhibitor (PJ34) for nine
months to diabetic rats significantly inhibited the diabetes-
induced death of retinal microvascular cells and the de-
velopment of early lesions of diabetic retinopathy, includ-
ing capillary degeneration [72] (Figure 3). Evidence sug-
gests that the inhibitor exerts this beneficial effect at least in

part by regulating activation of the transcription factor, NF-
κB, and in particular, the p50 subunit of NF-κB. In bovine
retinal endothelial cells, PARP interacts directly with sub-
units of NF-κB, and inhibition of PARP activity blocked the
hyperglycemia-induced increase in NF-κB and proinflam-
matory gene products [72].

5.2. 2 Antioxidants

Antioxidants have been found to inhibit the development of
inflammatory changes in retinas of diabetic animals, includ-
ing activation of NF-κB, leukostasis, and increased expres-
sion of iNOS [71, 134]. Consistent with this, antioxidants
have been found to partially, but significantly, inhibit the de-
velopment of acellular capillaries and pericyte ghosts in di-
abetic rats. Mixtures of α-tocopherol and ascorbate [75], of
α-tocopherol, ascorbate, Trolox, acetylcysteine and selenium
[75], α-tocopherol alone (Kern, unpublished), and lipoic
acid [135] have been found to significantly inhibit the devel-
opment of acellular capillaries in retinas of diabetic rodents.
The antioxidant and lipid-lowering agent, nicanartine, sig-
nificantly inhibited diabetes-induced alterations in the num-
ber of retinal capillary endothelial cells and pericytes in rats,
but had no effect on the formation of acellular capillaries
[136].

5.3. 3 Benfotiamine

Benfotiamine is a lipid-soluble thiamine derivative that is
known to activate transketolase, and is believed to divert
sugar metabolites away from glycolysis [137]. Benfotiamine
significantly inhibited several hyperglycemia-induced abnor-
malities, including activation of NF-κB [137]. In addition,
administration of benfotiamine significantly inhibited the
development of acellular capillaries in retinas of diabetic rats
[137]. Whether or not this beneficial effect of the drug on
histopathology of the retina was secondary to regulation of
NF-κB has not been investigated.

5.4. 4 Advanced glycation endproducts (AGEs) and
their receptors

Binding of AGEs or other related molecules to their extracel-
lular receptors such as RAGE (receptor for advanced glyca-
tion endproducts) have a variety of intracellular effects, in-
cluding activation of the proinflammatory NF-κB and stim-
ulation of leukostasis [138–143]. Pharmacological interven-
tions interrupting RAGE-ligand interaction inhibit diabetes-
induced degeneration of retinal capillaries in diabetes [25],
but whether or not this is mediated by inhibition of NF-κB
has not been explored.

5.5. 5 Aldose reductase

Inhibition of the polyol pathway enzyme aldose reductase
has been reported to inhibit expression of ICAM-1, VCAM-
1, COX-2 expression and leukostasis via inhibition of NF-
κB activity and nuclear translocation, and phosphorylation
and degradation of Iκ-Bα [144–146]. The role of NF-κB



6 Experimental Diabetes Research

N
n = 28

D
n = 19

D+PJ34
n = 19

T
U

N
E

L
-p

o
si

ti
ve

ca
p

il
la

ry
ce

ll
s

(p
er

ce
n

t
o

f
n

o
n

d
ia

b
et

ic
(%

))

0

100

200

300

400
∗

∗∗

(a)

N
n = 28

D
n = 19

D+PJ34
n = 19

A
ce

ll
u

la
r

ca
p

il
la

ri
es

p
er

m
m

2
o

f
re

ti
n

a

0

5

10

15

20

25 ∗

∗∗

(b)

N
n = 8

D
n = 8

D+PJ34
n = 8

P
er

ic
y

te
gh

o
st

s

(p
er

1
,0

0
0

ca
p

il
la

ry
ce

ll
s

)

0

2

4

6

8

10

12
∗

∗ ∗∗

(c)

Figure 3: PARP inhibitor inhibits retinal capillary cell death and development of lesions of diabetic retinopathy ((a) TUNEL-positive cells,
(b) acellular capillaries, and (c) pericyte ghosts). (N: nondiabetic rats; D: diabetic rats; D+PJ-34: diabetic rats treated with PJ-34. ∗P < .005
compared to nondiabetic control, ∗∗P < .0001 compared to diabetic control, and ∗∗∗P < .02 compared to diabetic control.) Reprinted by
permission from Diabetes Vol. 53; pp. 2960—2967; 2004 c©The American Diabetes Association.

regulation in reported effects of aldose reductase inhibitors
on the development of retinopathy is unclear.

5.6. 6 Corticosteroids

Corticosteroids are known to exert major anti-inflammatory
effects. Intravitreal injection of such steroids has been found
to inhibit diabetes-induced alterations in permeability of
the retinal vasculature and retinal edema in patients [15–
133, 135–156].

6. THERAPIES INHIBITING INFLAMMATION AND
RETINOPATHY IN MULTIPLE WAYS

6.1. 1 Minocycline

Minocycline is a second-generation, chemically modified
tetracycline [157] that exerts pleiotropic actions including
anti-inflammatory effects distinct from its antimicrobial ac-
tion [158, 159]. Minocycline has neuroprotective qualities in
models of cerebral ischemia, traumatic brain injuries, ALS,
Huntington’s, and Parkinson’s disease in mice [160–169]. It
has been speculated that its neuroprotective action is medi-
ated by the inhibition of activation of caspase-1 and caspase-
3, inhibition of generation of IL-1β, and iNOS [170, 171].
Minocycline also inhibits activation of retinal microglia in-
duced either by lipopolysaccharide or by diabetes, and pre-
vents early caspase-3 activity and neuronal apoptosis in the
retina of diabetic rats [123, 172]. Long-term administration
of minocycline also significantly inhibited the degeneration
of retinal capillaries in diabetic mice and galactose-fed mice
[34].

6.2. 2 Aspirin and salicylates

Aspirin is known to inhibit production of prostaglandins as
a result of cyclo-oxygenase inhibition. Sodium salicylate and
sulphasalazine have less of this activity, however, but all of
these salicylates were able to inhibit capillary degeneration in
retinas of diabetic rats [74], suggesting that their common
action to inhibit retinopathy was via inhibition of the NF-κB

pathway. Whether this occurs via direct or indirect actions
remains to be learned.

6.3. 3 Aldose reductase inhibitors

Aldose reductase inhibitors have long been studied for their
ability to inhibit aldose reductase under hyperglycemic con-
ditions. The ability of this class of drugs to inhibit diabetic
retinopathy has been mixed in animals [8, 173, 174], and
unsuccessful in diabetic patients [175, 176]. Recently, al-
dose reductase inhibitors have been found to have potent
anti-inflammatory actions, even in normoglycemia [144–
146, 177]. The possibility that reported beneficial effects of
aldose reductase inhibitors on diabetic retinopathy were due,
instead, to anti-inflammatory actions has not yet been stud-
ied.

7. ARE DIABETES-INDUCED INFLAMMATORY
CHANGES IN THE RETINA INDEPENDENT
OF EACH OTHER, OR ARE THEY INTERRELATED?

Many of the inflammatory proteins shown above to be in-
volved in the diabetes-induced degeneration of retinal capil-
laries are known to be regulated by NF-κB. It is conceivable
that each of these proteins independently cause the capillary
degeneration, but several pieces of evidence suggest that they
act in a sequential, hierarchical pathway like that summa-
rized in Figure 4. Evidence using retinal tissue from diabetic
animals or incubated in high glucose indicates that (a) PARP
regulates activity of NF-κB as well as expression of ICAM-
1 [72], (b) inhibition of NF-κB with sulfasalazine inhibits
expression of iNOS, ICAM-1, VCAM, COX-2 [74, 148], (c)
inhibition of iNOS inhibits the hyperglycemia-induced gen-
eration of prostaglandin [33], whereas the opposite reaction
(regulation of nitric oxide production by COX-2) was not
detected, and (d) inhibition of COX inhibits expression of
ICAM-1 and leukostasis [21]. This pathway undoubtedly will
become more complicated and interactive as more informa-
tion becomes available about the role of proinflammatory
proteins and transcription factors in the development of dia-
betic retinopathy. Many cytokines are known to activate NF-
κB and other proinflammatory mediators, thus, even now



Timothy S. Kern 7

Hyperglycemia

Sequelae of hyperglycemia

(PARP, oxidative stress, AGEs, aldose reductase)

Activation of NF-κB and
other transcription factors

iNOS

NO

+

+

PGs

COX-2

ICAM-1
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Figure 4: Working hypothesis of the contribution of inflammatory
processes in the pathogenesis of capillary degeneration and other
lesions of early diabetic retinopathy. The capillary degeneration can
be inhibited in diabetic animals at any of several different points
along this pathway.

suggesting considerable complexity in the initiation and reg-
ulation of this pro-inflammatory “pathway.”

8. IS NF-κB THE ONLY REGULATOR OF
INFLAMMATORY GENE TRANSCRIPTION IN
DIABETIC RETINOPATHY?

Multiple transcription factors have been shown to regu-
late inflammation, so it seems unlikely that NF-κB is the
only regulator of diabetes-induced inflammation in diabetic
retinopathy. Retinas from diabetic rats have been reported
to have increased expression of another transcription factor,
CCAAT/enhancer-binding protein-beta [147], but this was
not confirmed [148]. HIF-1α expression in retinas of diabetic
NOD mice increased with duration of diabetes, increased im-
munostaining for HIF-1α being demonstrated in the inner
(but not outer) retina [178]. To date, other transcription fac-
tors involved in regulation of inflammation seem not to have
been studied in vivo in relation to diabetic retinopathy.

9. INFLAMMATION IN HUMAN DIABETIC
RETINOPATHY

Evidence that inflammatory processes play an important role
in the degeneration of retinal capillaries in diabetic patients is

less complete than that in animals, but is in many ways con-
sistent with the animal studies. Increases in levels of TNFα, IL
-1β , and other inflammatory mediators have been shown in
vitreous of diabetic patients [179–184]. Activity of caspase-1,
the enzyme responsible for production of IL-1β , is increased
in retinas of diabetic humans, and correlates with the dis-
tribution of lesions in the retina [185]. Deposition of C5b-9,
the terminal product of complement activation, has been ob-
served within retinal blood vessels of diabetic humans [129].

Prospective clinical trials to assess the possible effect of
aspirin on diabetic retinopathy in patients have yielded con-
tradictory results. Aspirin treatment resulted in a statistically
significant (although weak) inhibition of the mean yearly in-
crease in the number of microaneurysms in the DAMAD trial
[186], whereas no beneficial effect was observed on any as-
pect of retinopathy in the ETDRS trial [187]. The lack of ef-
fect of aspirin in the ETDRS is likely attributable, in part, to
the greater severity of retinopathy at the onset than in the
DAMAD trial or animal studies, and the lower doses of as-
pirin used. In light of the different conclusions reached in
these clinical trials, and positive results achieved in animal
studies, it seems prudent to reserve judgement at this time
about whether or not aspirin might inhibit diabetic retinopa-
thy in humans.

10. CONCLUSIONS

In composite, numerous defects that develop in retinas as
a result of diabetes are consistent with a diabetes-induced
inflammatory response in that tissue. These inflammatory
changes apparently are important in the pathogenesis of di-
abetic retinopathy, since inhibition of this inflammatory cas-
cade at any of multiple steps can inhibit the early stages of
diabetic retinopathy (notably, degeneration of retinal capil-
laries) in animals. Findings of diabetes-induced inflamma-
tory changes, generally, in the human eye also, are consistent
with the postulate that inflammatory processes contribute to
the development of diabetic retinopathy. The evidence in di-
abetic animals is sufficient to warrant further investigations
of the role of inflammation in the development of diabetic
retinopathy in patients.
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