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ABSTRACT

Tubes containing monoclonal antibodies with anti-neural cell adhesion 

molecule (N-CAM)-like activity were applied to transected sciatic nerves to 

attempt to perturb the recovery of muscle function. Physiological recordings 

were used to estimate the return of function. The decline of implanted antibody 

over 28 days was estimated. No significant immune responses were detected in 

response to the implanted material.

Electron microscopic and immunohistological analyses evaluated particular 

cellular disruptions in nerves due to the presence of these antibodies with anti-N- 

CAM like activity. Histological sections of fixed experimental nerves 

consistently revealed abnormal gaps between Schwann cells of regenerating 

nerves. This specific Schwann cell abnormality was not present in nerves of 

control animals and was no longer observed in experimental nerves after 60 days 

of survival. This time course was associated with antibody clearance and 

restoration of muscle function. We proposed that perturbed Schwann cell 

adhesive interactions disrupted the advance of neurites across nerve gaps and 

resulted in delayed regeneration. The data implicated N-CAM as a potential 

contributor to nerve regeneration.



INTROD UCTIO N

To regenerate an injured axon, a neuron must undergo a series of 

physiological rearrangements. It must reorganize its terminal membrane and 

cytoplasm to generate a motile structure called the growth cone, that will move 

in a directed manner to appropriate target cells and eventually form a synaptic 

terminal. The neuron must also produce the membrane, cytoplasm and 

cytoskeleton required by the elongating and expanding sprout.

In the peripheral nervous system of adult mammals, damaged axons can 

regenerate for many centimeters from the site of injury (Ramon y Cajal, 

1928a,b). These regenerating axons are typically found within conduits of 

basement membrane and are often in contact with Schwann cells (Hillarp and 

Olivecrona, 1946). The basement membrane in the peripheral nervous system, 

like many other basement membranes, is comprised of laminin, fibronectin and 

other extracellular matrix materials. Purified fibronectin, collagen and laminin 

have been shown to stimulate neural outgrowth and to guide nerve processes 

under in vitro conditions (Woolley et al., 1990). This growth requires binding 

of cell-surface receptors to extracellular matrix adhesive proteins and requires 

binding of regenerating axonal sprouts to Schwann cells (Hillarp and Olivecrona, 

1946). In the regenerating neurite, there are multiple adhesive systems for both 

cell-cell and cell-matrix receptors that are present on neurons, Schwann cells and 

fibroblasts (Dellon, 1990).



The neural cell adhesion molecule (N-CAM) is a membrane glycoprotein 

that serves as a homophilic ligand in the formation of adhesions between cells 

(Hoffman and Edelman, 1933). It is expressed by several types of cells during 

embryogenesis including nerve, muscle and glial cells of the developing nervous 

system (Edelman, 1984). N-CAM-mediated adhesion is involved in many 

developmental events including axon guidance, segregation of cells into discreet 

layers, and the formation and innervation of muscles. Molecular interactions at 

the axon-Schwann cell interface that initiate the formation of myelin sheaths 

involve N-CAM and LI adhesion molecule. Both N-CAM and LI are present 

on the membrane of axons and Schwann cells before the onset of myelination, 

but are reduced and weakly detectable after myelination commences (Seilheimer 

and Schachner, 1988).

N-CAM is on Schwann cells and their basal laminae and may mediate 

Schwann cell adhesion (Daniloff et al., 1986b). These cells adhere to one 

another during regeneration to form cords that guide regenerating nerves through 

an injured area. These proliferating Schwann cells align longitudinally within the 

confines of the basal lamina or endoneurial tube, creating a continuous column 

of cells called the bands of Biingner (Sunderland and Bradley, 1952; Thomas, 

1963; Komiyama et al., 1991). Schwann cells also adhere to the basal lamina 

as they grow toward the site of injury (Nathaniel and Pease, 1963; Ide et al.,

1983). N-CAM can be detected in the basement membrane of Schwann cells and
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collagen fibrils of the endoneurium (Daniloff et al., 1986a). It has been found 

that axon-Schwann cell interactions are characterized by the sequential appearance 

of cell adhesion molecules (CAMs) and myelin basic protein coordinated in time 

and space. It was deduced that N-CAM was involved in fasciculation, initial 

axon-Schwann cell interactions and the onset of myelination (Daniloff et al., 

1986b). Two to six days following transection, small diameter regenerating 

axons were found to be positive for N-CAM in regions where they made contact 

with one another or with Schwann cells. Large diameter axons showed negligible 

amounts of N-CAM. Fourteen days after transection, when regrowing axons 

were seen in the distal part of the transected nerve, N-CAM was observed where 

regrowing axons made contact with Schwann cells. Most Schwann cells that 

were associated with degenerating myelin also expressed N-CAM. During 

myelination, N-CAM expression is reduced and disappears in compacted myelin 

(Mirsky et al., 1986; Martini and Schachner, 1988). N-CAM is also involved 

in the initial stages of nerve-muscle contact (Rieger et al., 1985) but is not 

essential for the formation of electrophysiologically active synapses.

Overview of Nerve Structure

Peripheral nerve trunks are composed of bundles of neurons, axons and 

connective tissue elements. Most nerves contain motor and sensory fibers; the 

latter conduct electrical impulses at a faster rate than do motor fibers. The 

presence of myelin profoundly enhances the velocity of impulse transmission.



Each myelinated fiber has a compact myelin sheath, which is composed of a lipid 

and protein bilayer. This sheath is formed by a Schwann cell wrapping spirally 

around the axon. Individual Schwann cells meet at the nodes o f Ranvier, where 

small gaps in the myelin exist. At these nodes of Ranvier, the axon is 

surrounded only by the Schwann cell basal lamina. Small bundles of 

nonmyelinated axons can be encircled by a single Schwann cell, but no myelin 

is present (Kuczynski, 1980).

There are three layers of connective tissue in a nerve: endoneurium, 

perineurium, and epineurium. All individual axons are covered by endoneurium. 

This covering gives tensile strength to the nerve and promotes resistance to 

internal axonal pressure. Bundles of nerve fibers form fasciculi and are encircled 

by perineurium. The perineurium can be sutured in order to anastomose severed 

nerves (Kline and Kahn, 1982). Thick, outer connective tissue, called 

epineurium, covers the nerve trunk; epineurium has extensions that separate 

fasciculi and blend with the perineurium (Kucynski, 1980). This epineurium can 

be used to manipulate the nerve during repair and is a frequent site of suture 

placement in anastomosis of transected nerves (Sunderland, 1980; Braun, 1982). 

Injuries to Nerves

Mammalian peripheral nerve fibers are capable of repair by regeneration 

after injury. Conditions for successful regeneration will be best after nerve 

crush; the Schwann cell basement membrane tubes (endoneurial tubes) remain



intact and this gives the injured axons a measure of protection from extracellular 

fluid and products of tissue damage at the injury site. The tubes also serve to 

contain the Schwann cells needed to support the regenerating axon sprouts and 

to guide them into the distal stump and then on to reinnervate peripheral targets 

(Horch, 1979; Horch and Lisney, 1981).

Recovery is more likely to occur if axons are simply crushed (Nicholson 

and Seddon, 1957) or have a very short (less than 5 mm) interstump gap to cross 

(McQuarrie, 1986). This regeneration distal to the cell body is more likely to 

fail if the interstump gap is greater than 1 cm and associated with soft tissue 

damage. Even though reactive axonal sprouting is an intrinsic neuronal response 

to injury, the subsequent reorganization of these axonal sprouts does not occur 

unless Schwann cells are present (Aguayo and Bray, 1980; Lisney, 1989). In 

normal, young adult rats sustaining experimental nerve gaps of 10mm, there are 

significant attempts to regenerate and some recovery occurs (Gibson and 

Daniloff, 1989b; Madison et al., 1987).

Transection of peripheral nerves causes a breakdown of myelin in the 

distal stump. This results in macrophage recruitment to remove myelin debris 

from this area. It has been suggested that these macrophages interact with 

Schwann cells and may be a source of Schwann cell mitogens (Scheidt and 

Friede, 1987).



During the injury response, Schwann cells proliferate. If the distal stump 

is separated from the proximal stump, Schwann cells co-migrate with regrowing 

axons. Schwann cells also respond to axonal cues by transient upregulation or 

re-expression of molecules which provide a favorable environment for axonal 

extension. They also attract bundles of regrowing axons and their associated 

Schwann cells across interstump gaps up to 1 cm in length (Ramon y Cajal, 

1928b).

Schwann cell basal lamina is similar to basal laminae elsewhere, in that 

it contains molecules such as laminin and fibronectin, which are potent promoters 

of neurite growth in culture (Rogers et al., 1983; Bozyczko and Horwitz, 1986). 

The behavior of Schwann cells inside the basal lamina depends on the presence 

of an axon. The initial breakdown products of axons after axotomy stimulate 

Schwann cell multiplication in preparation for phagocytosis o f debris (Aguayo et 

al., 1976). Subsequently, a regenerating axon is required for differentiation of 

the Schwann cell and production of myelin for the remyelination of the axon by 

the Schwann cell. The degree of remyelination is determined by the type of axon 

regenerating into the basal lamina (Hillarp and Olivecrona, 1946; Weinberg and 

Spencer, 1975).

The environment through which axons regenerate in the peripheral nervous 

system consists of Schwann cells and their basal laminae, fibroblasts, and 

collagen (Seckel, 1990). Early in regeneration, axonal debris, degenerating



myelin, and phagocytic cells are present (Fawcett and Keynes, 1990; Komiyama 

e ta l., 1991). Other factors involved in regeneration include laminin, fibronectin, 

collagen, growth and trophic factors, cell-substrate adhesion molecules and cell

cell adhesion molecules (Fawcett and Keynes, 1990). External factors which 

influence regeneration include effects of a conditioning lesion and the affects of 

applied pulsed-electromagnetic fields (Aebischer, et al., 1987). In principle, 

functional restorations following peripheral nerve regeneration and target 

reinnervation could be accomplished by either random outgrowth and secondary 

central adjustments of synaptic connections, or directed outgrowth towards the 

‘original’ target areas as well as appropriate target structure reinnervation 

(McQuarrie, 1986). There are indications that specific factors are present in the 

distal stump of transected nerves. These factors are thought to attract axons of 

the corresponding proximal stump into the distal nerve stump (Ramon y Cajal, 

1928a,b).

Nerve Degeneration

Nerve degeneration is a prerequisite for normal motor and sensory axon 

regeneration following an injury to a nerve (Bisby and Chen, 1990; Ramon y 

Cajal, 1928b). It leads to the removal and recycling of axonal and myelin- 

derived material and prepares the environment through which regenerating axons 

regrow. It is influenced by the peripheral connection of the injured nerve and by 

the distance the injured section is from the cell body (Gibson et al., 1989a;



Delgado-Lezama and Munoz-Martinez, 1990). Following axotomy, most 

surviving cell bodies undergo a variety of anatomical changes and modifications 

in gene expression and cellular metabolism.

The most obvious main morphological event is chromatolysis. 

Chromatolysis reflects a change in metabolic priority from that geared for the 

production of neurotransmitters needed for continuous synaptic activity, to the 

production of materials for axonal repair and growth. The cell must synthesize 

new messenger RNA, lipids and cytoskeletal proteins (Grafstein and McQuarrie, 

1978). This process is characterized by a swelling of the cell soma, formation 

of a pyknotic nucleus and the dispersal of Nissl substance (Ramon y Cajal, 

1928a,b). The latter is due to the disintegration of large granular condensations 

of rough endoplasmic reticulum (Grafstein and McQuarrie, 1978).

Distal to the site of injury, the severed axon and myelin sheath undergo 

Wallerian degeneration (Dyck et al., 1984). The axon, without the continuity of 

supporting structures and trophic substances from the cell soma, begins to 

degenerate within 12 hours (Stoll et al., 1989). The axon degenerates before the 

Schwann cell sheath and becomes irregularly swollen and beaded. The myelin 

sheath draws away from the axon and breaks apart. Both the axon and the 

myelin degenerate. Trophic factors accumulate and stimulate Schwann cells to 

replicate and move along the endoneurium (Ramon y Cajal, 1928a). Recently 

one of these trophic factors is reported to have been isolated (Ratner et al.,



1988). When they reach the site of the initial injury, the Schwann cells fuse with 

one another to form columns or bands, classically referred to as the bands of 

Biingner (Ramon y Cajal, 1928b). Some Schwann cells also become phagocytic 

in response to injury; ingesting fragments of the axon as well as myelin (Bunge, 

1980a).

This degeneration continues distally toward the synapse where there is a 

progressive loss of synaptic vesicles; the nerve terminal is phagocytized away 

from the post-synaptic membrane by Schwann cells and phagocytes. A similar 

process occurs in unmyelinated nerve fibers (Lisney, 1989).

Nerve Repair

The two most common methods of surgical repair for injured motor nerves 

include direct suturing of nerve stumps for minor injuries and the transplantation 

of sensory nerve allografts when large gaps appear. Epineurium can be used to 

manipulate the nerve during repair and is the most frequent site of suture 

placement for repair of simple nerve transections when no gaps exist between 

nerve stumps (Sunderland, 1980; Braun, 1982). Allografts of sensory nerve 

autografts are often used to bridge gaps in severely injured nerves (Gibson et al., 

1989b). Overall results include variable recovery of function and the irrevocable 

loss of sensation associated with the removal of a sensory nerve (Kline and Kahn, 

1982). The above procedures are attempted to maximize the number of axons 

that regenerate through the site of injury and grow back to the correct targets
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(Millesi, 1990). Failure of axons to regenerate leads to poor sensory recovery 

and the innervation of incorrect targets leads to poor motor control as well as 

poor sensory recovery. It has been shown that implants of pure Schwann cells 

induce greater numbers o f regenerating axons across nerve gaps than do 

autografts (Daniloff et al., 1991).

Excessive tension on the nerve repair is believed to result in decreased 

regeneration and reduced overall function. Tension stretches the endoneurial 

tubes and results in physical disruption of nerve fibers, impairment of electrical 

conduction and compromise of the blood supply to the proximal and distal stumps 

(Miyamoto, 1979).

Sutureless methods of nerve transection repair have been investigated. 

These include the use of adhesives to join nerve ends; plasma clots to appose 

nerve stumps (Becker et al., 1985), fibrin glue (Kuderna et al., 1979) and carbon 

dioxide lasers to weld nerve stumps together (Tupper, 1980).

Entubulization, the implantation of nerve cuffs or guide tubes, has been 

shown to be an alternative to direct suture techniques (Molander et al., 1983). 

The use of these nerve guide conduits is appropriate for injuries with significant 

nerve gaps (daSilva et al., 1985). It is also pertinent for situations where direct 

realignment of nerve fascicles is impossible. Collagen-based nerve guide 

conduits are capable of supporting and maintaining axonal outgrowth, extension 

and maturation in vivo (Archibald, et al., 1991).



11

Regeneration

Contributions of Schwann Cells

The proliferation of Schwann cells during Wallerian degeneration and 

subsequent regeneration has been well documented (Abercrombie and Johnson, 

1946; Bradley and Ashbury, 1970; Pellegrino and Spencer, 1985; Ramon y 

Cajal, 1928b). The first wave of Schwann cell proliferation during Wallerian 

degeneration occurs 3-4 days after transection followed by an axonal regrowth 

stage occurring at 2-3 weeks (Pelligrino et al., 1986). The role of Schwann cells 

and hematogenous macrophages in myelin degradation during Wallerian 

degeneration of the rodent sciatic nerve has been examined. It was found that 

before the appearance of adherent macrophages, the myelin sheath fragments into 

ovoids, small whorls of myelin debris appear within Schwann cell cytoplasm and 

the Schwann cell displays numerous lipid droplets (Stoll et al., 1989). Myelin 

basic protein processed by macrophages was suggested to promote the 

proliferation of Schwann cells during Wallerian degeneration (Baichwal and 

DeVries, 1989). One Schwann cell mitogen has been isolated from regenerating 

nerves; this factor is an axonal surface proteoglycan-growth factor complex 

(Ratner et al., 1988; Ratner, 1990). The adhesion and proliferation of Schwann 

cells is rapidly and transiently induced during Wallerian degeneration and this 

capacity is maintained longer in the presence of regenerating axons (Komiyama 

et al., 1991).
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This loss of axonal contact occurring with Wallerian degeneration is 

associated with an increased proliferation of Schwann cells (Clemence et al.,

1989). The proliferation of Schwann cells can also be stimulated by contact with 

newly regenerating axons or even with fractions of axonal membranes after 

Wallerian degeneration is complete (Salzer et a l., 1980; Wood and Bunge, 1975). 

If regeneration is prevented, Schwann cells in the distal stump initially bind to 

one another to form Schwann cell bands.

Contributions of Conditioning Lesions

An experimental conditioning lesion is a mild injury, usually involving a 

nerve compression, that is applied to a nerve prior to a second lesion. Many 

studies have shown that conditioning lesions increase the rate o f regeneration 

(McQuarrie, 1986; Bisby and Pollock, 1983; Bisby, 1985; Oblinger and Lasek,

1984). This regeneration is associated with expression of genes and proteins 

from the cell body. In general, the proteins produced during regeneration are the 

same as those associated with axonal growth in embryos. These substances 

include tubulin, actin and growth associated proteins.

There are two main hypotheses regarding peripheral nerve regeneration 

after a conditioning lesion (Sjoberg and Kanje, 1990). The first is that the local 

environment surrounding the growth cone controls the rate of axonal elongation. 

The conditioning lesion causes Wallerian degeneration in the distal nerve, so that 

when the test lesion is made the axons are supposed to grow more rapidly along
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pathways vacated by the previously degenerated axons. It is thought that changes 

in non-neuronal cells, Schwann cells in particular, and trophic factor production 

are responsible for neurite outgrowth (Bray et al., 1978; Salzer et al., 1980). 

The outgrowth of neurites starts within 3 hours after a crush injury (Sjoberg and 

Kanje, 1990). Therefore, this initial early outgrowth of axons; i.e ., growth cone 

formation occurs without support from the cell body. This suggestion is 

supported by the observation that the distal segment of severed axons forms 

growth cones in vitro (Bray et al., 1978; Shaw and Bray, 1977; Wessells et al., 

1978).

The second hypothesis is that outgrowth of axonal sprouts is enhanced in 

conditioned nerves because they are already activated when the second injury 

occurs. It is assumed that the nerve cell bodies have made necessary adjustments 

and axons have already synthesized materials necessary for regeneration 

(McQuarrie, 1986; Ducker et al., 1969). It is not clear what signals between cell 

body and axon tip regulate the transition to regenerative growth, nor whether 

events at the axon tip are controlled in the same way as those at the cell body. 

The duration of the effect of the conditioning lesion is also not clear. An 

accepted model for the induction of the regenerative response is that the cell body 

invokes changes in a trophic factor normally derived from the target and is 

retrogradely transported to the cell body. However, the earliest regenerative 

sprouting at the axon tip can occur within a few hours of axotomy.
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Theoretically, this is too rapid for the cell body to have been informed (Sjoberg 

and Kanje, 1990).

Investigators have determined at least two physical mechanisms which alter 

regeneration rate: cell body changes and the environment of the injured axons. 

Each may act in an additive fashion to produce a maximal conditioning lesion 

response (Bisby and Pollock, 1983). The nature of the control exerted by the 

axonal environment might be either the provision of providing vacant channels 

for axonal growth in the previously degenerated axons, or perhaps provision of 

a channel for a diffusible product of degeneration which stimulates the growth of 

axons (Bisby and Pollock, 1983).

Superimposition of the conditioning and test lesions on the sciatic nerve 

cause a positive reparative effect on motor neurons. When axons grew into 

predegenerated nerves their elongation rate was further increased above that 

obtained when the conditioning lesion was distal to the test lesion (Bisby, 1985). 

Recovery was accelerated by conditioning, with the entire recovery curve shifted 

to earlier time intervals in conditioned nerves, and the initial rate of recovery was 

greater. This observation was consistent with a more rapid elongation of axons 

along the peripheral nerve trunks and a more rapid invasion of the denervated 

muscles. This increased regeneration rate was associated with an earlier recovery 

of function (Bisby, 1985).
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Axons also regenerate in vitro much more vigorously from explants taken 

during the period of embryonic axonal growth, or from older explants whose 

axons have previously been induced to regenerate (Collins and Lee, 1982). The 

enhanced regenerative response following a conditioning lesion may be due to the 

early availability in the axon of molecules associated with regeneration.

Contributions of Electromagnetic Fields

The influence of electric and electromagnetic fields on growth and 

differentiation of nerve tissue in vitro has been reported (Orgel et al., 1984; 

Cooper and Schliwa, 1985). The effects of pulsed electromagnetic fields (PEMF) 

on nerve regeneration in neurite outgrowth and in animal nerve injury models 

have been the subject of many investigations (Orgel et al., 1984; Aebischer et 

al., 1987). In in vitro experiments, cultures treated with PEM F showed 

significant increases in neurite outgrowth relative to controls (Sisken et al.,

1990). In vivo exposure to PEMF before lesion production in rat sciatic nerve 

produced an increase in axonal sprouting after lesion production (Sisken et al., 

1989a,b). In studies on a nerve crush model, rats placed immediately after injury 

in a pulsed magnetic field showed a 22% increase in the rate of axonal sprouting 

relative to controls (Wilson and Jagadesch, 1976). This increase was found to 

be approximately equal to that obtained with collagen or growth hormone and 

was not dependent upon primarily invasive delivery systems. A comparable 

enhancement of regeneration was obtained when the animals were exposed daily
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for seven days before lesioning. This response resembles the response described 

for a "conditioning" lesion (McQuarrie, 1986; Bisby and Pollock, 1983). The 

same effect was found in one transection model of rat sciatic nerve in which gait 

analysis was performed 4-6 months following transection. In that study PEMF 

signals were found to significantly improve performance relative to untreated 

controls.

Electromagnetic fields were also found to influence the synthesis of new 

polypeptides in a rat sciatic nerve transection model. PEMF altered the 

distribution pattern of polypeptides in the injured nerve. Transection injury alone 

changed the pattern indicating a "stress" response. Transection combined with 

PEMF reduced the stress response changes, altering the quantitative distribution 

of new polypeptides in the sciatic nerve (Welch et al., 1983).

Contributions of Cell-Substrate Adhesion Molecules 

Laminin and Fibronectin

The adhesion of growing neurite processes to collagen or laminin (Bunge 

et al., 1980b) is an important determinant of neurite elongation, because growing 

fibers orient toward substrates that permit the greatest adhesiveness, and 

preferentially move upon them. Investigators have shown that both fibronectin 

and laminin increase the survival of sensory neurons in vitro, and when used in 

combination significantly enhanced neurite outgrowth (Baron-Van Evercooren et 

al., 1982).
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Laminin is a high molecular weight glycoprotein of MW 850,000 or 

greater and is composed of disulfide-bonded subunit chains o f 400 and 200 

kilodaltons. In vivo, laminin has been found in basement membrane throughout 

the body, including the glomerular basement membrane, vascular endothelial 

basement membrane and the layer underlying the epithelium of the skin (Foidart 

et al., 1980). It promotes the attachment of epithelial cells to Type IV collagen 

(Terranova et al., 1980) and can bind to glycosaminoglycans (Del Rosso et al., 

1981). Laminin promotes axon extension by interacting with axonal 

glycoproteins that are members of the integrin family of receptors. Antibodies 

against integrins inhibit the extension of central and peripheral axons on laminin 

or extracellular matrix substrates (Tomaselli et al., 1988).

Fibronectin is a high molecular weight glycoprotein of 440 kilodaltons 

with two apparently similar disulfide-bonded chains of approximately 220 

kilodaltons. It is found in plasma and is a major component of basal lamina, 

connective tissue and the extracellular matrix produced by fibroblasts. It is 

involved in adhesion of cells including fibroblasts and platelets to collagen in 

vitro (Ruoslahti et al., 1981). In development, fibronectin may play a role in 

muscle morphogenesis and in the spatial organization of cells in the developing 

chick wing (Ruoslahti et al., 1981). Surfaces coated with laminin or fibronectin 

stimulate a more rapid extension of neuronal processes than do serum or 

collagen-coated plastic (Pierce et al., 1988).
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Results from an in vitro study of Schwann cell adhesion and proliferation 

showed that Schwann cells from injured nerves possess binding sites for laminin 

and fibronectin, which may be partly responsible for the enhanced adhesion of 

Schwann cells in vitro (Komiyama et al., 1991). Another in vitro study showed 

that neurons induced the laminin mRNA levels of Schwann cells by releasing a 

diffusible signal into culture medium (Bunge et al., 1989). It is thought that 

regenerating axons induce the expression of laminin and possibly fibronectin 

receptors on Schwann cells (Carey et al., 1983). These receptors are responsible 

for the enhanced adhesiveness of Schwann cells in vitro. Laminin and fibronectin 

appear to be similar in their ability to promote the adhesion of Schwann cells 

from injured nerves at different times after crush or transection injury.

The presence of laminin with little fibronectin in the endoneurium of 

mouse sciatic nerve indicates that laminin occurs in vivo in a position where it 

may play a role in the regeneration and myelinization of injured axons (Foidart 

et al., 1980). Laminin is also present along pathways of axonal growth during 

development (Rogers et al., 1983) and regeneration (Hopkins et al., 1985).

The presence of fibronectin in the perineurium (Foidart et al., 1980) 

indicates that fibronectin may play a role in the Schwann cell-neuron connective 

interactions (Chiu et al., 1991; Martin and Timpl, 1987). It is also found at 

nodes of Ranvier (Terranova et al., 1980).
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A previous study reported that 1) both fibronectin and laminin are 

components of the mature peripheral nerve and are localized in distinct patterns; 

2) antibodies to each protein differentially recognize Schwann cells (laminin) and 

fibroblasts (fibronectin) in tissue culture preparations; and 3) laminin is 

expressed by the Schwann cell prior to the development of a morphologically 

recognizable basal lamina (Cornbrooks et al., 1983). They also provided 

evidence that Schwann cells in culture were capable of synthesizing laminin but 

not fibronectin. Cultures of Schwann cell tumors synthesize extracellular matrix 

components including fibronectin and laminin (Palm and Furcht, 1983), and it 

has been found that added laminin enhances Schwann cell attachment and cell 

growth and causes the cells to elongate (McGarvey et al., 1984). The Schwann 

cell basal lamina is similar to other basal laminae, in that it contains molecules 

such as laminin and fibronectin, which are potent promoters of neurite outgrowth 

in culture (Bozyczko and Horwitz, 1986; Rogers et al., 1983). Another study 

showed that an in vivo combination of fibronectin and laminin significantly 

enhances the regeneration of myelinated axons across a long nerve gap in the rat 

sciatic nerve (Woolley et al., 1990).

N-Cadherin

Cadherins are transmembrane proteins and their cytoplasmic domain is 

highly conserved among different members of this molecular family. They are 

a molecular family that is essential for the calcium-dependent process of cell-cell



adhesion (Takeichi, 1988). Their mature form consists of 723 to 748 amino 

acids and has a single transmembrane domain that divides the molecules into the 

amino-terminal extracellular and the carboxy-terminal cytoplasmic domain 

(Shimoyama et al., 1989). It was observed that cells expressing one type of 

cadherin, when mixed with cells expressing another type of cadherin and cultured 

in suspension, tended to aggregate separately (Takeichi et al., 1985). It is a 

reasonable conclusion that cadherins interact with cadherins only in a homophilic 

manner (Takeichi, 1990). Cadherin-mediated adhesion is temperature dependent 

(Takeichi, 1990), whereas Ig superfamily-mediated adhesion is not (Hoffman and 

Edelman, 1983).

N-cadherin mediates the attachment of neurites to cells on the substratum. 

In cell cultures of N-cadherin-transfected cells, a vigorous extension of optic 

nerves took place. The growth cones of the axons attached only to the surface 

of transfected cells, and not to a culture dish (Tomaselli et al., 1988).

N-cadherin has a major role in the initial contacts o f nerve growth cones 

with Schwann cells (Takeichi, 1988). Sensory neuronal growth cones on a 

laminin substratum were inhibited from migrating onto the upper surfaces of 

Schwann cells by soluble antibodies to N-cadherin. This behavior was blocked 

reversibly when N-cadherin was inactivated by lowering the calcium 

concentration of the culture medium from 1 to 0.1 mM (Volk and Geiger, 1986).
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Retinal growth cones were also blocked from crawling onto Schwann cells 

by lowered calcium levels. Electron microscope immunocytochemistry indicated 

that N-cadherin is abundant on growth cones, on Schwann cells and at points of 

growth cone-Schwann cell contact (Letourneau et al., 1990). The above results 

indicate that N-cadherin has a significant role in growth cone migration onto 

Schwann cells, since lowered calcium and anti-N-cadherin antibodies reduced 

growth cone migration onto Schwann cells. It functions during the initial 

migration of growth cones onto the surfaces of Schwann cells.

Contributions of Cell-Cell Adhesion Molecules

Cell adhesion is one of five primary processes of development that include 

cell division, migration, differentiation, adhesion and death (Edelman, 1982a). 

Cell adhesion is also a critical component of nerve regeneration (Bunge, 1980a; 

Cornbrooks et al., 1983).

Neural Cell Adhesion Molecule (N-CAM1

N-CAM is a high molecular weight cell surface glycoprotein that has been 

characterized extensively (Brackenbury et al., 1977; Edelman and Chuong, 

1982b; Edelman, 1984; Hoffman et al., 1982; Rutishauser 1983,1984; 

Rutishauser and Goridis, 1986; Edelman, 1983). The basic protein backbone of 

rat N-CAM includes three major moieties that migrate at molecular weights of 

115, 135, and 190 kilodaltons on sodium dodecyl sulfate - polyacrylamide (SDS- 

PAGE) gels (Edelman and Chuong, 1982; Hirn et al., 1981). The molecule has
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two forms; the adult (A) form and the embryonic (E) form. N-CAM undergoes 

conversion from the E form, with high sialic acid content, to the A form, with 

lesser amounts of this sugar, as development progresses. The A form of N-CAM 

contains significantly less sialic acid (Edelman and Chuong, 1982) and increases 

the rate of N-CAM binding (Hoffman and Edelman, 1983). This suggests that 

this binding may regulate pattern formation and connectivity in the adult nervous 

system (Edelman, 1983).

N-CAM is produced from a single gene and is a member o f the 

immunoglobulin superfamily (Hemperly et al., 1986b). This group of proteins 

shares a homology sequence o f 100 amino acids connected by a disulfide bridge. 

The three polypeptide segments that make up the N-CAM molecule are encoded 

by different messengers and are produced by alternative splicing of a single gene. 

They differ mainly in their carboxyterminal part (Hemperly et al., 1986a).

Approximately 98-99% of all brain N-CAM is membrane-associated. In 

muscle, however, a soluble form of N-CAM is synthesized as a primary 

translation product; its mRNA sequence distinguishes it from the membrane 

associated isoforms of N-CAM (Walsh, 1988). At present, little is known about 

this soluble N-CAM isoform.

Neurons adhere to other neurons by binding homophilically to the N-CAM 

on their respective surfaces (Hoffman and Edelman, 1983). In the embryo, N- 

CAM binding contributes to these processes; neural induction (Chuong, 1990),
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neurite outgrowth (Rutishauser e ta l., 1978; Rutishauser and Jessell, 1988; Chang 

et al., 1987), formation of retinal layers (Buskirk et al., 1980), nerve-muscle 

interactions (Grumet and Edelman, 1984), the ensheathment o f axons (Rieger et 

al., 1988) and the formation of synapses (Sanes, 1989). N-CAM is present from 

the blastoderm stage in chicken (Crossin et al., 1985) and is present on most 

cells in the brain with a relatively uniform distribution (Persohn and Schachner, 

1987). N-CAM is present on all neurons examined in both the central and 

peripheral nervous system (Thiery et a l., 1982; Mirsky et a l., 1986). In the 

peripheral nervous system, N-CAM is present on non-myelinating Schwann cells, 

nodes o f Ranvier (Rieger et al., 1986), and on satellite cells o f sensory and 

sympathetic ganglia (Mirsky et al., 1986).

Cell-cell binding occurs through a series of cell surface modulatory events 

that alter N-CAM affinity, prevalence, mobility and distribution on the surface 

(Cunningham et al., 1987). These signals appear to be triggered by local signals 

produced by developing cells (Crossin et al., 1985). Local signals between 

neurons and glia may regulate CAM expression in the spinal cord and nerve 

during regeneration, and that activity may regulate N-CAM expression in muscle 

(Daniloff et al., 1986b).

In the brain, N-CAM has been shown to mediate calcium-independent 

neuron-neuron, astrocyte-neuron and astrocyte-astrocyte adhesion (Keilhauer et 

al., 1985). Outside the nervous system, N-CAM mediates interactions between
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several cell types, including nerve-muscle cell interactions (Rutishauser et al.,

1983). The adhesive activity has been demonstrated primarily through N-CAM 

antibody perturbation assays.

In mature tissues, N-CAM may be a local signal for reformation of nerve- 

muscle contacts following peripheral nerve injury (Daniloff et al., 1986b; Rieger 

et al., 1988; Doherty et al., 1991). Local production of the embryonic (E) form 

of N-CAM, which is rich in polysialic acid, may modulate axon regeneration in 

an injured nerve (Edelman and Chuong, 1982; Daniloff et al., 1986a; Friedlander 

et al., 1985; Landmesser et a l., 1990).

The expression of N-CAM has been found to increase in response to nerve 

compression and transection, especially near an injury. Specifically it has been 

found to increase more in the proximal than the distal stump, where only the E 

form has been isolated. Immunohistological localization indicated that both 

Schwann cells and axons contain it (Daniloff et al., 1986b).

One study found that non-myelinating Schwann cells formed slender 

processes which were N-CAM positive in the regenerating adult mouse sciatic 

nerve during and after degeneration of axons (the first 2-6 days) (Martini and 

Schachner, 1988). Only a few myelinating Schwann cells expressed N-CAM. 

Growth cones and regrowing axons expressed N-CAM at contact sites with 

fibroblast-like cells on the cut ends of nerve stumps. Regrowing small diameter 

axons were N-CAM positive where they contacted each other or contacted
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Schwann cells. Schwann cells associated with degenerating myelin also 

expressed N-CAM (Martini and Schachner, 1988).

The presence of extracellular N-CAM near an injury suggests that its 

secretion could be an attractant for neurites or migrating Schwann cells. The 

localization of N-CAM on Schwann cells indicates that N-CAM could affect 

Schwann cell proliferation, a component o f the peripheral nervous system’s 

response to injury (Kruse et a l. , 1984). N-CAM is also a component of the basal 

lamina (Rieger et al., 1988) and shares a common epitope with myelin-associated 

glycoprotein (Madison et al., 1987); this indicates that N-CAM may indirectly 

be involved in myelin formation.

Contributions of Trophic Factors

Trophic factors and their receptors are extracellular signals involved in the 

regulation of normal and injury-induced neurite outgrowth. It has been implied 

that peripheral effector organs produce limiting amounts of specific neurotrophic 

factors to ensure proper innervation of targets by appropriate neurites (Korsching 

and Thoenen, 1983). These factors are necessary to maintain the normal 

metabolic, functional and neurochemical state of the functional axon.

Nerve Growth Factor (NGF)

Nerve growth factor is the only defined molecule for which a chemotropic 

role has been postulated. In vitro, the growth cones o f sensory neurons orient 

toward a source of NGF (Gundersen and Barrett, 1979). There are changes in
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the quantities of NGF and its receptor in regenerating nerves (Heumann et al., 

1987). Very little NGF or NGF receptor is found in a normal peripheral nerve. 

However, if the nerve is cut or crushed, the level of both molecules and their 

respective mRNAs in the region distal to the injury increases enormously. The 

expression of NGF receptor by Schwann cells is probably controlled by axonal 

contact, and decreases when axonal contact is restored (Taniuchi et al., 1986).

In one study: (1) the NGF receptor molecules were localized to the cell 

surface of Schwann cells forming bands of Bungner, (2) axonal regeneration in 

the distal portion of the sciatic nerve coincided temporally and spatially with a 

decrease in Schwann cell production of NGF receptor, (3) Schwann cell NGF 

receptors could be induced by axotomy of NGF-independent neurons, such as 

motoneurons and parasympathetic neurons, and (4) the presence of axon-Schwann 

cell contact was inversely related to expression of NGF receptors by Schwann 

cells (Taniuchi et al., 1988). When Schwann cells are released from axonal 

contact, they express NGF receptors on their surface and also secrete NGF. This 

NGF receptor expression and NGF secretion by Schwann cells also occurs 

extensively in nerves undergoing active degeneration, and subsides again when 

nerve regeneration is completed. NGF is actually a potent modulator for 

increasing neurite sprouting from adult rat dorsal root ganglia (DRG) in culture 

(Taniuchi et al., 1986).
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Beta-nerve growth factor (B-NGF) supports the differentiation, maturation 

and survival of sympathetic and primary sensory neurons (Thoenen and Barde, 

1980; Raivich et al., 1989). It is bound by NGF receptors, synthesized on the 

surface of neurites, internalized and then transported to the neural perikarya 

where it exerts its neurotrophic effects. Injury to a peripheral nerve results in a 

biphasic increase in the endoneural mRNA coding for B-NGF, leading to an 

increase in the local synthesis of B-NGF protein (Heumann et a l., 1987).

Peripheral axotomy also leads to a highly reproducible disappearance of 

neuronal B-NGF receptors (Taniuchi et al., 1986). Following transection or 

crush of the sciatic nerve, B-NGF receptors disappear from the chromatolytic 

neuronal perikarya in the axotomized DRG by 6 days post-injury (Raivich and 

Kreutzberg, 1987). This decrease is greater after nerve transection than after a 

nerve crush. There is a concomitant decrease in retrograde axonal transport of 

endogenous NGF during sciatic nerve regeneration but the decrease stabilizes at 

a level 33% of normal control values (Raivich et al., 1989). This decrease in 

retrograde transport corresponds to a decrease in B-NGF in the proximal part of 

the regenerating sciatic nerve. With peripheral reinnervation there is a gradual 

increase in the axonal expression of B-NGF receptors and B-NGF retrograde 

transport. Both these values reach normal levels 30-40 days after the injury 

(Korsching and Thoenen, 1983).
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Insulin-like Growth Factor-1 (IGF-1)

Insulin-like growth factor-1 has growth-stimulating activity and is believed 

to mediate some of the actions of growth hormone (Froesch et al., 1985). IG F’s 

promote neurite outgrowth in cultured sensory and sympathetic neurons (Recio- 

Pinto, 1986), spinal cord (Ishii et al., 1989) and cloned human neuroblastoma 

cells (Recio-Pinto and Ishii, 1984, 1988). IGF-1 also stimulates proliferation and 

growth associated with nerve regeneration (Froesch et al., 1985; Kanje et al., 

1989; Sjoberg and Kanje 1989; Hansson et al., 1986).

Physiological concentrations o f IGF-II can also support the long-term 

survival of peripheral neurons in culture (Recio-Pinto, 1986; Recio-Pinto and 

Ishii, 1988). One hypothesis is that IGF-1 produced by Schwann cells in the 

distal nerve segment is taken up by the regenerating nerve fibers. Internalized 

IGF-1 is then transferred to the nerve cell body by retrograde axonal transport. 

In the cell body, IGF-1 initiates or enhances the regenerative process, possibly 

by stimulating lipid and protein synthesis (Kanje et al., 1990).

Growth Associated Protein (GAP 43)

B-50/GAP-43 is one of a small subset of cellular proteins selectively 

transported by a neuron to its terminals (Skene and W illard, 1981). Its 

enrichment in growth cones and its increased levels in developing or regenerating 

neurons suggest that it contributes to neurite growth (Verhaagen et al., 1988). 

In adult rat DRG, crush lesions of the sciatic nerve result in a rapid expression
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of B-50/GAP-43 mRNA followed by synthesis of B-50/GAP-43 protein and 

transport into the newly formed sprouts (Gispen et a l., 1990a). Normal 

neuromuscular junctions of the soleus muscle, one of the target muscles of the 

sciatic nerve, rarely contain GAP-43. During reinnervation following damage, 

neuromuscular junctions contain abundant amounts of GAP-43; these levels 

return to normal after completion of reinnervation (Gispen 1990a).

The precise function or mechanism of action of B-50/GAP-43 in 

developing, regenerating and adult peripheral and central nervous system neurons 

is still not clear. The recognition that the protein is a substrate for protein kinase 

C and that phosphorylation reduces its ability to bind calmodulin suggests that 

this protein is involved in a transmembrane signal transduction mechanism 

(Gispen et al., 1990b). In the regenerating neuron, the axonal growth cone is 

enriched in B-50/GAP-43 and may need this protein either as a buffer of 

calmodulin or as a regulator in the polyphosphoinositide response to external 

signals that guide motility (Gispen et al., 1990a).

Ciliary Neurotrophic Factor (CNTF)

The large quantities of ciliary neurotrophic factor present in the sciatic 

nerve of adult rats suggest the possibility of its function as a ’lesion’ factor 

preventing motoneuron degeneration after nerve lesion (Manthorpe et al., 1986; 

Stockli et al., 1989). This suggestion is supported by the following observations: 

1) transection of the facial nerve in adult rats, which contain almost exclusively
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axons of motoneurons, results in chromatolysis in the motoneuron cell bodies; 

however, no degeneration of facial motoneurons occurs within 1 week (Tetzlaff 

et a l., 1988), 2) transection of the facial nerve in newborn animals results in 

a degeneration of all neurons (Sendtner et al., 1990). The extent of degeneration 

decreases rapidly in the postnatal period and parallels the increase in levels of 

CNTF in the peripheral nerves (Stockli et al., 1989). The fact that the local 

administration of CNTF in newborn animals can almost completely prevent the 

degeneration of the corresponding motoneuron cell bodies supports the validity 

o f a causal relationship between the extent of degeneration and the levels of 

CNTF in lesioned nerves (Sendtner et al., 1990).



OBJECTIVES OF THIS STUDY

Recent studies suggest cell interactions mediated by N-CAM may 

contribute to the regeneration of injured nerves and the reinnervation of target 

muscles (Daniloff et al., 1986b; Rieger et al., 1985; Rieger et al., 1988). For 

example, anti-N-CAM antibodies have been used in vivo to perturb the formation 

of the retinotectal pathway in Xenopus (Fraser et al., 1984) and to perturb retinal 

lamina formation in chick embryos (Buskirk et al., 1980). The terminal 

Schwann cell was not found in the area of nerve-muscle contact when N-CAM 

antibodies were present (Grumet et al., 1982). N-CAM antibodies also perturbed 

nerve-muscle interactions (Rieger et al., 1985). The present study was 

undertaken to discover any underlying cell adhesion mechanisms that were 

blocked by attaching implants containing antibodies with anti-N-CAM like 

activity to injured nerves.

My primary goal was to describe any disruptions in the time course of in 

vivo muscle reinnervation that resulted when binding was blocked by monoclonal 

antibodies with anti-N-CAM like activity. These I will refer to henceforth as our 

antibodies. Tubes containing our antibodies were microsurgically attached to 

both stumps of transected sciatic (ischiatic) nerves. The entubulization model 

was based upon previously published observations of enhanced nerve regeneration 

with the implantation of inert tubes (Fields and Ellisman, 1986; Madison et al.,
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1987; LeBeau et al., 1988; Gibson et al., 1989a,b), collagen (Bunge, 1980a), 

laminin (Madison et al., 1987) or gangliosides (Mengs et al., 1984).

Non-invasive muscle-evoked potentials were recorded to assess return of 

nerve function (Kline and Kahn, 1982). Enzyme-linked immunosorbent assays 

(ELISAs) were used to test sera for systemic immune responses to the implants 

and to estimate the amount o f our antibody that remained in them.

Inert, plastic tubes containing our antibodies were microsurgically attached 

to the stumps of transected sciatic (ischiatic) nerves to span a gap of 4 mm. 

Control implants contained Thy-1 antibodies. In adult rodent brain Thy-1 occurs 

on almost every neuronal surface, and immunohistochemical labeling stains 

virtually all nervous tissue; peripheral nervous system axons have nearly twice 

the surface density of Thy-1 as central nervous system axons (Morris and 

Grosveld, 1989). Thy-1 antigen represents a model system for analyzing the 

properties of cell membrane structures shared between brain and lymphoid cell 

lineages (Naquet et al., 1989). Both light and electron microscopic analyses 

were used to examine cellular interactions that occurred during sciatic nerve 

regrowth across the 4 mm nerve gaps.



METHODS

A ntibody Production

Immunization

A monoclonal antibody against rat N-CAM was prepared using young 

adult female, Balb/C mice. The Louisiana State University centralized Tissue 

and Organ Culture Facility was utilized for these procedures. Initially mice were 

immunized intraperitoneally with 500 pi of saline containing 20 pg of purified 

rat N-CAM (obtained as a generous gift from the Edelman Laboratories, 

Rockefeller University, New York, NY) and 2 x 109 killed Bordetella pertussis 

organisms (Wako Chemicals, Dallas, TX). Subcutaneous booster immunizations 

for each mouse contained 10 pg live, dissociated embryonic rat brain cells (Hirn 

et al., 1981) which were given on three occasions at 14 day intervals. The mice 

were killed three days after the final booster immunization and their spleens were 

recovered for the production of monoclonal antibodies (Oi and Herzenberg, 

1980).

Isolation

The spleens from the immunized mice were aseptically harvested, placed 

in a petri dish containing complete Dulbecco’s Modified Eagle’s medium. This 

medium was injected into the spleen, causing it to swell and cells to be released. 

The tissue was teased apart with dissecting needles to release as many cells as 

possible. These cells were then centrifuged for 5 minutes at 200 x g. The
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supernatant was removed from the pellet and the pellet was resuspended in Geys 

hemolytic medium. This mixture was allowed to stand at room temperature for 

exactly 5 minutes, then centrifuged for 5 minutes at 200 g. The cells were 

resuspended in 10 ml complete medium at room temperature. Hybridoma cells 

were selectively grown using standard techniques (Kohler and Milstein, 1975, 

1976; Kohler et al., 1976). The myeloma cell line (SP2/0-M14) was expanded. 

Spleen cells and partner cells were washed, harvested, and mixed.

Fusion

Cell fusion was performed at 37°C in the presence of polyethylene glycol 

(PEG). Cell count and viability of the myeloma cell were determined and a 

volume containing 2 x 107 cells was centrifuged at 200 x g for 5 minutes. Cell 

count and viability was also determined on the spleen cells. A volume of 

myeloma cell suspension was added to the spleen cell suspension (the spleen 

cell/myeloma cell ratio was 10:1). This cell mixture was centrifuged for 5 

minutes at 200 g. The resulting pellet was harvested and plated into tissue 

culture plates. After incubation with hypoxanthine, aminopterin, and thymidine 

(HAT) medium and feeding over 2 weeks, the hybridomas were screened.

Two hundred sixty-four clones were isolated. By screening these clones, 

we determined that five had the capacity to recognize N-CAM as described by 

Edelman and Chuong (1982b) and by Chuong and Edelman (1985). An enzyme- 

linked immunosorbent assay (ELISA) procedure developed for the detection of
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N-CAM antibodies (Chuong and Edelman, 1985) was one method used to screen 

the clones. The clones were also tested on Western blots against embryonic rat 

brain membrane extract (Appendix G).

Antibody Screening

N-CAM Enzvme-Linked Immunosorbent Assay Procedure 

For each 96 well polyvinyl plate, 50 /x 1 of N-CAM solution was applied 

to each well. This solution contained 1 mg rat N-CAM in 4.8 ml ELISA buffer 

(EPBS, Appendix B). Plates were incubated at 37°C until dry, and were fixed 

for 5 minutes with 100% methanol. After drying, plates were incubated at room 

temperature in EPBS plus 10% NGS for 1 hour to block non-specific binding. 

Then 1 /d of culture supernate from each clone was applied to each well in 50 

H1 EPBS (supplemented with 10 mg/ml bovine serum albumin). Plates were 

incubated overnight at 4°C. After washing three times in EPBS, plates were 

incubated in goat anti-mouse IgG (Sigma Chemical Co., St. Louis, MO) and 

horse anti-goat IgG conjugated to horseradish peroxidase (HRP) (Sigma Chemical 

Co.). Diaminobenzidine (Vector Laboratories, Inc., Burlingame, CA) was added 

to visualize the HRP. To estimate the affinity of each antibody to N-CAM, each 

plate was scanned colorimetrically in an ELISA reader (Dynatech Laboratories). 

Antibodies from four clones showed high positive affinity for the N-CAM antigen 

on their particular well (Appendix G). These were considered potential 

antibodies that recognize N-CAM and N-CAM-like proteins.
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Determination of Recognized Protein Molecular Weights

Brains were dissected from 19 day rat fetuses and homogenized in 

calcium/magnesium-free (CMF) medium containing Aprotinin (200 units/ml; 

Sigma Chemical Co.). Plasma membranes were enriched by a one-step sucrose- 

gradient. Material from the surface interface was extracted with PBS containing 

0.5% Nonidet P-40 and 1 mM EDTA. Aliquots (50 /xl) of material in solution 

(containing 100 /xg protein as determined by the BCA* protein assay) were 

resolved on 8.5% SDS polyacrylamide gels (Laemmli, 1970). Gel lanes were 

transferred to nitrocellulose membranes (Towbin et al., 1979) and cut into 

individual vertical strips. Individual nitrocellulose strips were then incubated for 

4 hours with the radiolabelled antibodies (3 jug/ml PBS-BSA) and washed three 

times. After the Kodak SB-5 X-Ray film that had been aligned with the gel at - 

70° for 1 month was developed and fixed, radiolabelled proteins were visualized 

(Friedlander et al., 1985).

Antibody Isotvping

The clones were isotyped using a commercial kit (Sangstat Co., ISOSTAT 

Ab Kit, Palo Alto, CA). Instructions included with the kit were followed 

exactly.
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Antibody Purification

Anion Exchange Chromatography Purification

Anion Exchange Chromatography Purification (Fahey and Terry, 1979; 

Sober and Peterson, 1958). Pre-swollen anion exchange DE52 cellulose 

(Whatman Specialty Products Inc., Fairfield, NJ) was used to purify the cell 

culture supernatant. About 15-30 ml of buffer are used for every dry gram of 

cellulose initially taken, or about 6 ml/g of wet ion exchanger. Two hundred 

grams of preswollen DE52 cellulose was stirred in 500 mis of 10X 0.175 M 

N aP 04 for 13 minutes. The buffer was decanted off and replaced with IX

0.175 M N aP04, stirred and allowed to settle. The slurry was allowed to settle 

and the supernatant was decanted. This step was repeated 3 times and the slurry 

was allowed to settle. The pH of the buffer/ion exchanger slurry was adjusted 

to 8.6 with IN NaOH while stirring. This stirred slurry was then swirled and 

poured into a C26/40 column (Pharmacia, LKB; Catalog No. 19-5201-01) and 

was allowed to pack and fill the column.

The cell culture supernatant was dialyzed for 24 hours against the 0.175 

M N aP04 buffer, pH 8.6 for 48 hours with changes 4 times daily. This mixture 

was then loaded onto the column at a flow rate of 1.0 ml/min. The elution of 

the sample was performed immediately using IX 0.175 M N aP04 pH 8.6 

followed by IX 0.175 M NaPG4 with 0.05 M NaCl added. Absorbance at 280 

nm was measured and total protein was determined by the Pierce bicinchoninic
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acid (BCA*) protein assay (Pierce, Rockford, IL; catalog #23220/23225, batch 

900403081) (Redinbaugh and Turley, 1986); the presence of IgG was confirmed 

by gel electrophoresis.

Protein-A Purification

Protein-A Purification (Ey et al., 1978; Lindmark et al., 1983, Richman 

et al., 1982) - To attempt Protein-A purification of our monoclonal antibody, a 

HiTrap™ Protein A Sepharose High Performance affinity column from 

Pharmacia LKB was used. This was a prepacked, ready-to-use, disposable 

column for purification and isolation of monoclonal and polyclonal IgG from 

ascites, serum and cell culture supernatants. The cell culture supernatant was 

centrifuged at 10,000 x g for 10 minutes and filtered (0.22 /im), then dialyzed 

against the start buffer (50 mM Tris buffer, pH 8.6) for 24 hours with 4 changes 

of buffer. The column was washed with 5 volumes of start buffer; the sample 

was applied to the column and allowed to flow through. The column was washed 

with 10 volumes of start buffer before elution with 0.1 M citric acid, pH 3.0. 

Aliquots (1 ml) were collected into tubes containing 1/10 volume of 1.0 M Tris- 

HCL neutralization buffer, pH 9.0. Absorbance at 280 nm was measured and 

total protein was determined by the Pierce bicinchoninic acid (BCA515) protein 

assay (Pierce, Rockford, IL; catalog #23220/23225, batch 900403081) 

(Redinbaugh and Turley, 1986); and the presence of IgG was confirmed by gel 

electrophoresis.
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Protein-G Purification

Protein-G Purification (Akerstrom et al., 1985; Bjorck and Kronvall,

1984) - MAb-Trap™ G from Pharmacia LKB Biotechnology, Inc., Piscataway, 

NJ was used to attempt protein-G purification of IgG. This column was designed 

for quick and effective purification of monoclonal and polyclonal IgG from 

ascites fluid, serum and cell culture supernatants. The cell culture supernatant 

was centrifuged at 10,000 x g for 10 minutes and filtered (0.22 /xm). The 

column was equilibrated with 0.2 M sodium phosphate (pH 7.0) (binding buffer); 

the prepared sample was applied to the top frit and absorbed onto the gel. 

Unbound proteins were washed away with the same binding buffer. The bound 

IgG was eluted with a pH 2.7 elution buffer (1.0 M glycine-HCl) and collected 

into tubes containing 1/10th volume of a pH 9.0 neutralization buffer (1.0 M 

Tris-HCL). Absorbance at 280 nm was measured and total protein was 

confirmed by the Pierce bicinchoninic acid (BCA*) protein assay (Pierce, 

Rockford, IL; catalog #23220/23225, batch 900403081) (Redinbaugh and Turley, 

1986); and the presence of IgG was confirmed by gel electrophoresis.

Avid AL™ Purification

Avid AL™ Purification (Khatter et al., 1991; Fuglistaller, 1989; 

Gassmann et al., 1990) - Avid AL mini-columns from BioProbe International, 

Inc., (The Nest Group, Southborough, MA) were used to attempt the purification 

of the IgG from cell culture supernatant. Avid AL is a novel affinity gel
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specifically designed to bind immunoglobulins from mammalian and avian 

species. It will also purify mouse monoclonal antibodies from hybridoma cell 

supernatant or ascites fluid (Khatter et al., 1991; Fiiglistaller, 1989). All these 

immunoglobulins will bind to Avid AL under physiological saline conditions. 

The column was prepared by washing with 15 ml of a regeneration buffer (20 

parts methanol, 80 parts 1% acetic acid) followed by equilibration by washing 

with 10 ml of a 0.01 M sodium phosphate buffer, pH 7.4 (PBS). The cell 

culture supernatant was centrifuged and filtered through a 0.22 fxm filter. The 

pH of the hybridoma supernatant was then adjusted to a pH of 7.3. Three ml 

were applied to the column and allowed to flow through. The column was then 

washed with the PBS buffer until all the Phenol Red dye was removed. The 

sample was eluted with a pH 2.8, 0.05 M sodium acetate buffer containing 20% 

glycerol into tubes containing a 1/10 volume of 1 M Tris base buffer, pH 11.0. 

Absorbance at 280 nm was measured and total protein was confirmed by the 

Pierce bicinchoninic acid (BCA*) protein assay (Pierce, Rockford, IL; catalog 

#23220/23225, batch 900403081) (Redinbaugh and Turley, 1986); and the 

presence of IgG was confirmed by gel electrophoresis.

Antibody Characterization

Western Blot Procedure

1. Preparation of Rat Embryo Brain Membrane Extracts for Transfer 

to Nitrocellulose - Brains were removed from 19-day rat embryos and washed
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with cold calcium-magnesium free (CMF) media. The tissue was homogenized 

in a Dounce homogenizer containing CMF supplemented with 200 units/ml of 

aprotinin (a protease inhibitor, Sigma Chemical Co.). The homogenate was 

centrifuged for 20 minutes at 15,000 rpm in a Beckman centrifuge (JA20 rotor) 

at 5°C. This step was repeated. The pellets were resuspended with 2.25 M 

sucrose in PBS buffer, 18 mis were placed in centrifuge tubes and each aliquot 

was overlaid with 8 mis of 0.8 M sucrose in PBS. These tubes were centrifuged 

for 1 hour at 100,000 rpm, 4°C in a Sorvall centrifuge (TD-65 rotor). The 

material at the interface between the two sucrose concentrations was collected and 

washed twice with PBS. The above membranes were suspended in an extraction 

buffer [10 mM Tris, 5 mM EDTA (pH 8.2) plus Nonidet P-40] and centrifuged 

for 40 minutes at 100,000 rpm, 4°C.

2. Sodium Dodecyl Sulfate - polyacrylamide gel electrophoresis 

(SDS-PAGE) was carried out as previously described (Laemmli, 1970). Gels 

were 7.5% acrylamide and samples of rat brain membrane extract were prepared 

by boiling for 3 minutes with mercaptoethanol. Gels were calibrated with the 

following protein standards: Rabbit skeletal muscle myosin (Mr =  200,000), E. 

coli 6-galactosidase (Mr = 130,000), Rabbit muscle phosphorylase b (Mr = 

94,000), Bovine serum albumin (Mr = 68,000), and Hen egg white ovalbumin 

(M,. = 43,000) (Bio-Rad SDS-PAGE Molecular Weight Standards, High and 

Low Range, Richmond, CA).
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3. Sample Transfer to Nitrocellulose - The electrophoretic 

transfer of proteins from polyacrylamide gels to nitrocellulose sheets was 

performed according to the method of Towbin et al., 1979 (Appendix B).

4. Autoradiographic Visualization of Proteins Recognized by 

Monoclonal Antibodies to rodent N-CAM - Nitrocellulose sheets were incubated 

for three hours in monoclonal antibody solution (0.4 mg antibody in saline) for 

three hours. This antibody with anti-N-CAM like activity was semi-purified 

from cell culture supernatant as described (Greenberg and Edelman, 1983). 

Proteins recognized by the antibody were visualized after lanes were incubated 

with goat anti-mouse IgG (0.4 mg/ml in saline; Sigma Chemical Co.) and horse 

anti-goat IgG conjugated to [3H]-thymidine (Dupont Co., NEN Research 

Products, Boston, MA). Gels were treated with sodium salicylate (Chamberlain, 

1979) for autoradiography. Gel blots were dried and exposed at -70°C (one 

month) to Kodak SB-5 x-ray film. Developed films indicated the molecular 

weights of proteins recognized specifically by this antibody. Control lanes, not 

incubated in any primary monoclonal antibodies were negative.

Retinal Perturbation Assay

For this assay, retinal fragments from 6 day old chick embryos were 

dissected from the region surrounding the choroid fissure; these were positioned 

with their vitreous side down on 1/4 of a 2 cm Millipore filter, 1.2 fxm pore size, 

that had been wetted with medium and placed on a stainless steel grid in a tissue
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culture dish. The medium was Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 10% volume of heat-inactivated fetal calf serum (LSU School 

of Veterinary Medicine Tissue Culture Facility). The purified IgG from cell 

culture supernatants of the clones 3D12A, 3B1A and a commercial antibody (Rat 

anti-Neural Cell Adhesion Molecule Monoclonal Antibody, Chemicon 

International, Inc., Temecula, CA; catalog it MAB310, Rat IgG2a) were 

dissolved in tissue culture medium to a concentration of 1 mg/ml. All cultures 

were carried out for 3 days at 37°C in an atmosphere of 5% C 0 2, and the retinae 

were then fixed in 2.5% formaldehyde/0.2 % glutaraldehyde in PBS for paraffin 

embedding.

Implant Preparation

Sterile tubes, 6 mm in length, were prepared of inert silastic (inner 

diameter 0.78 mm, outer diameter 1.25 mm; Dow Corning). For experimental 

animals, each tube contained 2.5 /zg monoclonal antibody (3B1A) mixed with 20 

jx 1 of bovine collagen gel (Collagen Corp, Palo Alto, CA). Control animals 

received tubes containing 20 /x\ of collagen gel with 2.5 fxg of monoclonal 

antibody to Thy-1 protein (Miles Corp), a neuronal surface protein (Campbell et 

al., 1981; Letarte, 1984).

Surgery and Survival Times

Young adult female Sprague-Dawley rats weighing approximately 200 gm 

were anesthetized by intraperitoneal injection of chloral hydrate (8%; 0.33 ml/kg
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body weight). One sciatic nerve was exposed from the sciatic notch to the tibial- 

peroneal bifurcation and transected at mid-thigh level. The proximal and distal 

stumps were attached to the ends of the 6 mm silastic implant with 9.0 silk suture 

(Ethicon Inc., Somerville, N.J.). Implants spanned a gap of 4 mm between the 

two stumps. The sciatic compartment was closed with 3.0 gut suture (Ethicon 

Inc.) and the skin was closed with 3.0 nylon (Ethicon Inc.). The contralateral 

limb was not manipulated, it served as the normal control for each animal.

Tubes were implanted into 34 rats. Twenty-five animals were used for 

physiological assessment and necropsy at 10 (n =  7), 20 (n =  6), 30 (n =  6), or 60 

(n =  6) days of survival. These same animals from 10, 30 and 60 days were used 

for the morphology part of this study. The survival period of 10 days was 

chosen because it was found that chromatolysis, a product of Wallerian 

degeneration, was complete at this time (Ramon y Cajal, 1928b). Thirty days 

was chosen because one would be able to quantitate regeneration by histology to 

determine advance of neurites across a gap (Ramon y Cajal, 1928b); sixty days 

was chosen because the reformation of myelin should be well established 

(Seilheimer et al., 1989; Wood et al., 1990).

Nine were used to assess the levels of antibody (3D12A) available in the 

implants at 7 (n = 3), 14 (n=3) or 28 (n=3) days of survival. The antibody 

diminution was evaluated at 7 days because it has been found that at 10 days after 

nerve transection, N-CAM levels were increased relative to control nerves
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(Daniloff et al., 1986b); at 14 days because in chickens, a large increase in N- 

CAM was observed after 10 days in extracellular connective tissues (Daniloff et 

al., 1986a); and at 28 days because it was found that at 20 days after nerve 

transection, Schwann cells along the bands of Bungner expressed only low levels 

of N-CAM (Daniloff et al., 1986b).

Recovery of Function

Physiologic assessment of recovery of nerve function was performed with 

a computer-based electrodiagnostic system (Compact Four, Nicolet Biomedical 

Instruments Co., Madison, WI). Electromyographic (EMG) recordings were 

made of gastrocnemius muscle contractions in response to transcutaneous 

stimulation of the sciatic nerve (Kline and Kahn, 1982). Sciatic nerves were 

activated when a bipolar stimulator was applied with conductive electrode gel to 

the skin over the nerve near the dorsoinedial aspect of the femur proximal to the 

nerve lesion. Supramaximal stimuli (4-12 mA) of 100 /usee duration were 

applied at a rate of 2.1/sec. Muscle responses were recorded within a 10msec 

time window using a band width of 5-1,500 Hz. A concentric bipolar EMG 

electrode was placed in the belly of the gastrocnemius muscle and a ground 

electrode was placed subcutaneously between the stimulating and recording 

electrodes. Responses to trains of 50 stimuli were averaged twice to ensure 

repeatability; the two averages were then combined. Thus, each data point
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represents a computer average of 100 responses. Measurements consisted of the 

latency to the initiation of the responses after the stimulus was applied. 

Estimation of Antibody Remaining

A Non-Competitive ELISA (Weir, 1949) (Figure 1) was performed to 

estimate the amounts of the original murine IgG (3D12A) that remained in the 

implanted tubes 7, 14, and 28 days after surgery. A standard curve of antibody 

concentration was established by coating the bottom of each well of a microtiter 

plate with 50 fx\ of 1 mg/ml solution of affinity-purified rat IgG (Sigma Chemical 

Co.). One of twelve concentrations of mouse anti-rat IgG (Sigma Chemical 

Co.), which ranged equally from 0.1 through 1.2 mg protein, was added to 

individual microtiter wells and dried. Bound anti-rat IgG was visualized with 

orthophenaline diamine (OPD) after incubation with goat anti-mouse IgG 

conjugated with horseradish peroxidase (Vector, Inc). The optical density of 

each well was read in an ELISA reader (Dynatech MR700). Each concentration 

point was run six times, averaged, and plotted to produce a linear standard curve.

Contents of the implanted tubes in three animals per group were removed 

and microhomogenized immediately in 90 /il of sodium phosphate buffer in 

Dounce glass microhomogenizers. Triplicate samples (30 n 1) of each homogenate 

were added to IgG-coated microtiter plates and incubated for 4 hours at 4°C. 

After incubation in peroxidase-conjugated antibodies, each well was visualized
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incubate with sample

incubate with antibody-enzyme conjugate D D

C C

B B

A A

add substrate and observe color change D isF)

C C
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Figure 1: ELISA for estimation of antibody remaining. Antibody-sandwich ELISA
(non-competitive assay) to detect murine IgG remaining in the implanted tubes. 
A = rat IgG, B =  mouse a  rat IgG (our antibody), C =  goat a mouse IgG, 
D = HRP.
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colorimetrically as described for the standards. To estimate the amount of mouse 

anti-rat N-CAM in a given animal, optical densities of triplicate samples were 

averaged.

Systemic Immune Responses to the Implants

Non-competitive ELISAs for antibody detection (Maggio, 1981; Kurstak, 

1986) were performed on sera to determine whether systemic responses were 

mounted against either of the two components of the implants: bovine collagen 

and murine IgG (Figure 2). For these assays either 2.5 fxg mouse IgG (Sigma 

Chemical Co.) or 20 y\ of collagen gel (Collagen Corp., Palo Alto, CA) was 

added to microtiter plates. Serum was collected by caudal tail venipuncture from 

all rats on the following days after surgery: pre-treatment (0) and 3, 7, 10, 14, 

21, and 28. Thirty microliters of each serum sample were tested in each well. 

Bound rat anti-mouse or rat anti-bovine IgG was visualized with orthophenaline 

diamine (OPD) after incubation with goat anti-rat IgG conjugated with 

horseradish peroxidase (Vector, Inc). The optical density of each well was read 

in an ELISA reader (Dynatech MR700). Each concentration point was run six 

times, averaged, and plotted to produce a linear standard curve. The limits of 

detection of this assay are 1 to 10 ng of protein.
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Figure 2: ELISA for systemic imm une response. Antibody-sandwich ELISA (non
competitive assay) to detect serum immune response in operated animals. A 
=  mouse IgG or bovine collagen gel, B =  serum (rat a mouse IgG/rat a 
bovine IgG), C =  goat a  rat IgG, D =  HRP.
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Morphological Analyses

H & E Staining

At the three survival times, animals were deeply anesthetized and 

transcardially perfused for 15 minutes with a fixative (2.5% formaldehyde/0.2 % 

glutaraldehyde in phosphate buffered saline (PBS)) for light microscopy as 

described previously (Daniloff et al., 1986a). The portion of each sciatic nerve 

containing the implant was excised, removed from the tube and post-fixed for one 

hour in the same fixative. Fixed nerves were then incubated for 2 hours in 0.1 

M glycine/PBS followed by an overnight incubation in 30% sucrose in PBS. 

Samples were immersed in embedding compound (OCT, Miles Scientific, IL) and 

quick-frozen in preparation for sectioning. Frozen sections (10 /im) of the distal 

half of the nerve implant were taken on a cryostat (Riechert-Jung, 2800 

Frigocut), applied to glass slides, dried and stored in a dessicator at 4°C in 

preparation for antibody labeling. Several slides from the day 10 survival period 

were stained with hematoxylin and eosin (Preece, 1972) to identify any cell- 

mediated immune response generated by either the implant or our antibodies to 

N-CAM.

Immunohistochemistry

For immunofluorescent double-labeling, sections were incubated in 10% 

normal goat serum (NGS) in PBS for 2 hours to eliminate non-specific binding. 

Sections were then incubated overnight at 22°C with polyclonal S100 antibodies
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cells (Holton and Weston, 1982a,b; Politis et al., 1982) and monoclonal 

neurofilament antibodies (1:5 in 10% NGS, Dako Corp., Carpenteria, CA) to 

label axons (Hofler et al., 1985). Polyclonal antibodies were visualized with 

rhodamine-conjugated goat anti-rabbit IgG (1:100 in 10% NGS, Cappel 

Laboratories; Cochranville, PA). Monoclonal antibodies were visualized by 

sequential incubation in biotinylated horse anti-mouse IgG and avidin-fluorescein- 

conjugated goat anti-horse IgG (1:100 in 10% NGS, Cappel Laboratories). 

Sections were viewed and photographed with an upright Olympus (Vanox) 

photomicroscope equipped with epifluorescent capabilities and appropriate filters 

for fluorescein and rhodamine optics.

Electron Microscopy

For ultrastructural analyses, animals were deeply anesthetized and 

transcardially perfused with fixative (2% formaldehyde/1 % glutaraldehyde in 

0.1M sodium cacodylate buffer containing 0.01M calcium chloride). After 

washing with buffer (0.1M PBS), nerves were immersed in 1% osmium 

tetroxide/PBS for 1 hour at room temperature then washed. Osmicated tissues 

were dehydrated in serial dilutions of ethanol before embedding in Epon/Araldite 

resin. Thick (1 fxm) and ultrathin (70 nm) sections were placed on grids and 

stained with uranyl acetate and lead citrate for contrast. Schwann cells were 

identified and photographed through a Zeiss 10 transmission electron microscope.
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Antibody Purification

The results of attempts to purify the IgG2b with affinity chromatography 

using Protein G, Protein A and Avid A/L are shown in Table 1:

Table 1

Summary of Antibody Purification by Affinity Chromatography.

Protein G Protein A Avid A/L

Initial Volume** 
(*absorbance units)

7.329 6.750 7.467

first wash*** 
(*absorbance units)

2.723 3.360 3.230

% recovery**** 37.2 49.8 43.3

% bound to column 62.8 50.2 56.7

elution buffer glycine-HCL 
pH 2.7, 1.0M

citric acid 
pH 3.5, 0.1M

sodium acetate 
pH 2.8, 0.05M

elution*** (absorbance 
units)

0.078 0.062 0.008

% recovery***** 1.1 0.9 0.1

% remaining on column 61.0 48.4 56.6

*absorbance unit =  (absorbance @ 280 nm)*(volume)
**volume =  3 mi
***voiume = 1.5ml
****% recovery = (first wash) +  (initial volume)
*****% recovery = (elution)h- ( initial volume)

52
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These results indicate that using Protein G for purification allowed 62.8% 

binding of the cell culture supernatant protein to the Protein G. The remainder 

of the prepared mixture flowed through the column without any binding. Of the 

bound IgG eluted under the manufacturer’s recommended condition (1.0 M 

glycine-HCl, pH 2.7), 1.1% was eluted.

Of the applied culture supernatant proteins, 50.2% bound to the Protein 

A column; again, essentially none (0.9%) of the bound IgG was eluted under the 

manufacturer’s recommended condition (0.1 M citric acid, pH 3.5). In retrospect 

it may be that IgG bound to the column was not eluted under the mild conditions 

prescribed by the manufacturer.

A similar finding was noted with the Avid A/L fast flow column. Of the 

applied cell culture supernatant protein, 56.7% bound to the beads while only 

0.1% was eluted under the conditions 0.05M sodium acetate, pH 2.8. In all 

cases the eluted material (based on absorbance at 280 nm) was found to be IgG 

by gel electrophoresis. The proteins after denaturation with mercaptoethanol 

migrated on 7.5% SDS-PAGE as a discreet band at 66,000 indicating the 

presence of IgG (data not shown).

Anion Exchange Chromatography

IgG was ultimately purified by anion exchange chromatography using 

DE52 cellulose. Fractions eluted were assayed first by absorbance at 280 nm 

and then by gel electrophoresis. The protein after denaturation with
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mercaptoethanol migrated on 7.5% SDS-PAGE at 66,000 indicating the presence 

of IgG (Hardy, 1986) (data not shown).

Antibody Characterization

Antibody Isotvping

Three clones were isotyped using the ISOSTAT Ab Kit and the following 

results were found: 3B1A was found to be IgG2a, 3B1 was found to be IgM, and 

3D12a was determined to be IgG2b. The clone 3B1 proved to be very difficult 

to grow with viability around 20% in spite of environmental manipulation; 

therefore it was not used in this study. Purified supernatant from the 3B1A clone 

was used for the morphology and physiology portion of this 

experiment. As a result of accidental loss, we were not able to use this clone in 

additional portions of this study. The clone 3D12A was a very viable, healthy 

clone which was used for the measurement of systemic immune response and for 

the measurement of antibody remaining in the tubes.

Immunoblot Procedures

The 3D12A anti-N-CAM like antibody did not blot well on a Western blot 

against embryonic or adult brain membrane extract. The 3B1A clone did not blot 

at all. This has been reported previously (Chuong et al., 1982; Chuong et al., 

1985; Hoffman and Edelman, 1983) for N-CAM monoclonal antibodies. This 

might be due to the fact that in vivo, N-CAM is membrane bound and in vitro
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(with denaturation), the conformation change in the molecule that occurs may 

result in a decrease in the amount of binding sites available to the antibody.

Determination of the Molecular Weights Recognized bv the Antibodies

Radiographic analyses were performed on brain membrane proteins 

resolved by

8.5% SDS-PAGE. Results showed that the radiolabelled antibodies indirectly 

identified a series of proteins very similar or identical to the embryonic form of 

N-CAM. The basic protein backbone of N-CAM proteins migrates at 180,000, 

140,000 and 120,000 Mr on SDS-PAGE; the difference between the embryonic 

and adult forms is that the embryonic form contains approximately 10 times more 

polysialic acid than does the adult form (Edelman and Chuong, 1982b). The 

results of this analysis with our antibody are shown in Figure 3. It is possible 

that there were other proteins present which migrate with a pattern similar to N- 

CAM present, however, this was not determined.

Retinal Perturbation Assay

Tissues cultured in the presence of antibody (3D12A) showed disorder in 

the pattern of histological layers (Figure 4). In the control tissues, retinae 

developed in a normal manner. The commercial antibody also disrupted the 

pattern of development of the chicken retinae. Paraffin sections of retinae 

cultured in the presence of antibody revealed that the organization was clearly 

disrupted. The ganglion cells, normally arranged in an even layer along the
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vitreous edge of the retina were much less organized and were found scattered 

throughout the inner plexiform layer. Also, the layers consisting of the bipolar 

and horizontal cells as well as the amacrine cells were not clearly distinguishable, 

suggesting that the distribution of specific cell types had been altered. This is the 

most widely accepted assay for demonstrating very specific immunologic 

perturbation by N-CAM antibodies (Buskirk et al., 1980).
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Figure 3: Determination of Molecular Weights Recognized by Antibodies. A. Lanes from 
8.5% SDS polyacrylamide gel containing 100/ig resolved cell membrane proteins. Proteins are 
labeled with MAb 3B1A (a), 3D12A (b), and visualized radiographically with iodinated second 
antibodies and x-ray film. This is very similar to that described for the embryonic from of N- 
CAM (Chuong et al., 1982; Chuong and Edelman, 1985). B. Lanes from a Western blot of 
(c) standards, (d) embryonic brain membrane extract, and (e) embryonic brain membrane 
extract labeled with MAb 3D12A.
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Figure 4: Retinal Perturbation  Assay. A. Control day 9 retina. B. Day 9 retina cultured 
in the presence of the monoclonal antibody. The organization is clearly disrupted. The 
ganglion cells are much less organized and are found scattered throughout the inner plexiform 
layer. The layers consisting of the bipolar and horizontal cells are not clearly distinguishable.
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Muscle-Evoked Potentials

The results of muscle-evoked potential recordings are presented in Table 

2. In the experimental animals, muscle responses were absent at the 20 day 

survival point. The only tested time in which experimental responses differed 

significantly from controls was at 20 days. At this time there were no responses 

in the experimental animals; there were responses in the animals treated with 

antibodies to Thy-1. It has been previously shown that nerve regeneration in rats 

sustaining a sciatic nerve transection, is normally underway by 10 days (Daniloff 

et al., 1986b). This was confirmed in the present study by the observation of 

muscle contractions in all of the control animals after 20 days. After 30 days, 

difference scores of experimental and control animals were similar.

Antibody Remaining in Implants

The average concentration of antibody remaining within the tubes 

dissipated over a 28 day period. Approximately 45% of the total remained after 

7 days, 5% remained after 14 days, and after 28 days only trace amounts were 

detected. The percentage of antibody remaining in the tubes correlated 

negatively and significantly ( r=0.95, p < .0 1 )  with the EMG response latency 

differences of the gastrocnemius muscles (Table 3). There was a response in this 

group of animals before the 20 day time point observed in the physiology portion 

of this study. Because Thy-1 had no apparent effect on the return of muscle 

function, its diminution over time was not examined.
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Table 2

Latency (ms) between Stimulation and Initiation of Gastrocnemius Muscle 
Response (Clone 3B1A, IgG2b).

Survival
(days) Group

Treated leg Normal
leg

Difference
scores

Group 
mean (SD) 
scores

Experi No response 2.56 Not calculated
mental

No response 2.24 Not calculated Not
No response 2.04 Not calculated calculated

1 20 No response 2.60 Not calculated

Control 2.72 1.86 0.86 1.11 (0.25)

3.20 2.08 1.12

2.84 1.48 1.36

Experi 2.52 1.40 1.12 1.26 (0.34)
mental

2.68 1.80 0.88

II 30
6.24 1.88 1.36

2.92 1.24 1.68

Control 1.88 0.24 1.64 1.24 (0.57)

2.16 1.32 0.84

Experi 1.32 0.28 1.04 1.26 (0.52)
mental

3.92 3.28 0.64

III 60
1.96 0.36 1.61

3.52 1.76 1.76

Control 1.80 0.36 1.44 1.18 (0.37)

3.72 2.80 0.92

Note: Latency to muscle contractions (in milliseconds) for animals 20,30, and 60 days
postsurgery. At 20 days the treated legs of all experimental animals failed to respond to 
stimulation, whereas all animals were significantly slower than controls after 20 days.



Table 3

Correlation between (B) Percentage of Normal Electromyographic Response 
Latencies and (C) Percentage of Original Antibody Remaining in the Implants 

(Clone 3D12A, IgG2b).

(A)
Survival time

(C)
% Antibody remaining Survival time

(B)
% Normal EMG

7 34 10 0

7 56 10 0

14 6 20 83

14 4 20 83

28 0 30 98

28 0 30 99

Note: Corresponding survival times (A) are presented in the left-handed column. 
Pearson product moment correlation coefficient, r =  -0.95 (P <  0.003, r  =  0.91).

Systemic Immune Response

Serum was tested 6 times from animals that were tail-bled from post- 

surgery day 3 to 28. There were no significant changes found in the levels of 

systemic rat antibody produced in reaction to the implanted murine IgG compared 

with pre-surgical serum levels (Table 4). A non-competitive ELISA was also run 

at the same time periods to test for the presence of systemic rat antibodies to 

bovine collagen. No significant alterations from pre-surgical levels were detected 

(Table 4). These data suggest that no systemic immune responses were mounted 

against either the murine IgG or the collagen component of the implants.
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Measurement of systemic response to anti-Thy-1 was not done because these 

antibodies had no apparent effect on the return of muscle function.

Table 4

Immune Responses (in Optical Density Units) in Serum of Experimental Implant 
Recipients after Eight Survival Points: 0 (prebleed), 3,7,10,14,20, and 28 days.

Survival day

Units 0 3 7 10 14 20 28

(A) Mean 1162 839 897 1230 863 865 801

(SD) (289) (453) (264) (263) (230) (230) (234)

(B) Mean 151 240 220 180 170 150 260

(SD) (141) (190) (200) (180) (170) (180) (150)

Note: Responses: (A) to anti-mouse IgG and (B) to bovine collagen. 
Values are means and (standard deviation) of seven animals.

H & E Staining

As shown in Figure 5, there was no obvious cell-mediated immunity as a 

result of the implant or the antibodies to N-CAM. There is not more than the 

occasional granulocyte or macrophage found in the following 10 day sections. 

Immunohistochemistrv

Cross-sections of fixed distal nerves were taken after 10, 30 and 60 

days post-surgery and stained with antibodies to visualize Schwann cells and 

axons. Abnormal and frequent gaps were observed in nerves receiving antibodies 

with anti-N-CAM like activity (Figure 6A). Few Schwann cells (Figure 6A’) 

were observed and axons (Figure 6A") were not identified. In control nerves at



Figure 5: H & E staining of cross-sections of 10-day distal nerve in the tube. There was 
no obvious cell-mediated immunity as a result of the implant or the antibodies to N-CAM. 
Only the occasional macrophage is seen. (A) Control nerve. (B) Experimental nerve.
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10 days of survival, as expected for severely injured nerves, gaps were present 

(Figure 6B). Schwann cells were sparse (Figure 6B’), and axons were not 

observed (Figure 6B"). These findings indicate a lack of reorganization for all 

groups at this time.

Nerves treated with antibodies with anti-N-CAM like activity maintained 

their lack of organization at the 30 day survival point (Figure 7A). Smaller and 

less frequent gaps were present when compared to the 10 day experimental 

nerves. Morphology of control nerves, as shown in the phase contrast 

photomicrograph (Figure 7B), reflected more advanced reorganization than that 

shown in experimental nerves. The lack of expected reorganization 30 days after 

nerve transection (Daniloff et al., 1986b; Ramon y Cajal, 1928a,b) was a 

consistent finding noted only in experimental nerves.

Electron Microscopy

At this same time point, as depicted in the electron micrograph, abnormal 

gaps were frequently observed between apposing Schwann cells (Figure 8). 

Interactions between Schwann cells and axons were not noticeably perturbed.

After 60 days, nerves in both control and experimental nerve groups were 

more reorganized (Figure 9A,B) when compared with earlier survival points. 

The arrangement of Schwann cells (Figure 9A’,B’) and axons (Figure 9A",B") 

was more regular and compact than that in earlier surviving nerves. The 

appearance of the connective tissues surrounding the distal axons (Figure 10) 

suggested that myelin has been reformed around the reorganized fibers (Tanaka
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and Webster, 1991). This reformation occurred after the time of antibody 

clearance from the implants.



Figure 6: Cross-section of distal nerves 10 days after  surgery. Phase contrast
photomicrographs depict nerve morphology (A =  experimental, B =  control). Sections were 
double-labeled with polyclonal S100 (A’,B’) and monoclonal neurofilament antibodies (A",B"). 
In animals treated with experimental antibodies, gaps (g) in tissue were prevalend (A), some 
S 100-positive Schwann cells (A’) were identified although no identifiable neurofilament-stained 
nerves (A") were observed. Control nerve morphology (B) depicts disarray typical of 
transected nerves. S 100-positive Schwann cells (B’) were present in the absence of 
neurofilament-Iabeled regenerating axons (B"). Size bar =  50/xm.



Figure 7: Cross-section of distal nerves 30 days after  surgery. Phase contrast
photomicrographs depict nerve morphology (A =  experimental, B =  control). Sections were 
double-labeled with polyclonal S100 (A’,B’) and monoclonal neurofilament antibodies (A",B"). 
Gaps (g) were still present in the experimental nerves (A), but were no longer present in control 
nerves (B). Axons (white arrows), labeled by neurofilament antibodies were identified in both 
control and experimental nerves at this time (A",B"). Size bar =  50/xm.



Figure 8: U ltrastructural photom icrograph of distal experimental nerve 30 days after 
surgery. Electron micrograph, transverse thin section (70 nm) of experimental distal nerve. 
Obvious gaps (g) between Schwann cells (s) were observed at this time point, however no 
apparent abnormalities between Schwann cells and axons (a) were noted.



Figure 9: Cross-section of distal nerves 60 days after  surgery. Phase contrast
photomicrographs depict nerve morphology (A =  experimental, B =  control). Sections were 
double-labeled with polyclonal S100 (A’,B’) and monoclonal neurofilament antibodies (A",B"). 
Clusterina axons (arrows) occurred in both control and experimental nerves. Schwann cells 
(A’,B’) and neurofilament-labeled axons (A",B") were also present. Size bar =  50 ^m.



Figure 10: Detailed analysis of nerve morphology at 60 days survival. Photomicrographs 
of plastic embedded nerves (1 /xm thick sections) depict morphological reorganization in 
experimental (A) and control (B) nerves at higher magnification.



DISCUSSION

Antibody Production - Use o f  Bordatella pertussis as an Adjuvant

Adjuvants are nonspecific stimulators of the immune response necessary 

to induce a strong antibody response to soluble antigens. Most adjuvants 

incorporate two components. One is a substance designed to form a deposit 

protecting the antigen from rapid catabolism. The two traditional methods of 

forming a deposit are to use mineral oils or aluminum hydroxide precipitates 

(Glenny et al., 1926). The second component needed for an effective adjuvant 

is a substance that will stimulate the immune response nonspecifically. These 

substances act by raising the level of a large set of soluble peptide growth factors 

known as lymphokines. Lymphokines stimulate the activity of antigen-processing 

cells directly and cause a local inflammatory reaction at the site of injection. 

Heat-killed bacteria such as Bordatella pertussis or Mycobacterium tuberculosis 

are the most commonly used adjuvants. The immunomodulatory mediators of B. 

pertussis include a lipopolysaccharide component and the pertussis toxin (Dienes, 

1936; Ellouz et al., 1974).

Antibody Purification

Anion Exchange Chromatography

The major contaminant protein in ascites fluid, serum or ammonium 

sulfate precipitates, and tissue culture supernatant derived from antibody- 

containing fluids is albumin, which binds DE52 tightly under conditions of low-
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to-moderate ionic strength. Antibody either fails to bind to DE52, in which case 

it elutes in the void volume as the column is loaded, or it binds loosely, and can 

be eluted with a gentle salt or pH gradient. Fractions eluted were assayed first 

by absorbance at 280 nm and then by SDS-PAGE (data not shown).

Protein A Purification

Protein A is produced by a selected strain of Staphylococcus aureus, is a 

functionally bivalent single polypeptide and has a molecular weight of 42,000. 

It has been proven to be useful in a variety of immunoassays because of its high 

affinity for immunoglobulins, its low level of nonspecific binding, and its ability 

to react with immunoglobulins of many different species (Kessler, 1975). The 

classical Fc-binding capacity of Protein A is restricted to IgG subclasses 

(Lindmark, et al., 1983), except for other human classes of Ig which have been 

variably shown to bind to Protein A mediated by Fab structures (Bjorck and 

Kronvall, 1984). This alternative Fab-mediated Ig binding is of low avidity, and 

will show up when Protein A is present in excess in relation to IgG-Fc structures 

(Inganas, 1981).

Protein A consists of six different regions, five of which show strong, 

specific binding for the Fc-part of IgG of many mammalian IgG subclasses, 

leaving the antigen-binding sites free (Kessler, 1976). Immobilized Protein A 

can bind at least two molecules of IgG per molecule. When Protein A sites were 

provided in excess over IgG sites, virtually all IgG antibody molecules purified
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from a hyperimmune rabbit antiserum against BSA bound firmly to the adsorbent 

(Kessler, 1976). Some monoclonal antibodies have a low affinity for Protein A, 

such as some mouse IgG, and human IgG3 monoclonal antibodies (Larsson and 

Holmdahl, 1990).

Affinity chromatography on Protein A columns is widely used for the 

purification of monoclonal antibodies (Larsson and Holmdahl, 1990). The 

antibodies are normally applied to the column at neutral pH or at pH 8-9 and 

eluted at a lower pH. Application at a higher pH will increase the binding of 

some mouse antibodies to the column (Ey et al., 1978). Mouse IgG is eluted 

from Protein A columns between pH 7.0 and 3.5 (Lindmark et al., 1983), 

however a low pH will inactivate some monoclonal antibodies. In this project, 

only 50.2% of the IgG present in the ascites did indeed bind strongly to the 

Protein A. The capacity of this column was not exceeded, therefore the 

conditions for binding should have been optimized.

Individual monoclonal antibodies are found which do not conform to the 

general rules. Some hybrids which secrete antibodies give rise to partially active 

or inactive forms of the general form AA, AB, BB, where A and B are the two 

different (active and inactive) heavy chains which will be present in the ratio 

1:2:1. Since different subclasses or microheterogeneity may be represented by 

the individual heavy chains, it follows that they may be resolved into three peaks 

or a broad Protein peak. The primary Protein A binding site on IgG is probably
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present in the intact CH2-CH3 region of the heavy chains. If either chain of the 

pair is damaged or missing, then affinity will be reduced (Jack, 1990).

Conversely, if aggregates or polymers are present, then affinity may be 

increased. These situations are manifest by minor peaks eluting earlier or later 

than the main peak. Other binding sites in the IgG molecules are occasionally 

seen, though these are weaker and more variable in occurrence (Zola, 1990).

In retrospect, it appears that while our antibody bound to the column, it 

did not elute (% recovery = 1 .1 )  with a 0.1 M citric acid buffer, pH 3.5. It has 

been shown in a study where PBS, pH 8.0 was used to wash the column 

following application of serum, no IgG2 was found in the effluent even after 

prolonged washing. Elution of bound IgG with 0.58% acetic acid confirmed that 

the IgG2 had been retained on the column (Ey et al., 1978). These results 

indicated that binding of IgG2 to Protein A could occur and that the association 

constant for this binding was extremely pH-dependent. In this referenced study, 

IgG, was eluted at pH 6.0, IgG2a eluted at pH 5.0 while IgG2b was not eluted 

until the buffer was at pH 3.0 - 4.0 (Ey et al., 1978).

The reason for the low apparent recovery of IgG2b in the present study is 

not known. We did not have evidence of non-binding of IgG to the column. 

Fractions were collected directly into tubes containing 1 M Tris-HCL buffer (pH 

9.0) to immediately neutralize the eluate. Therefore, acid denaturation was 

probably not a factor. It is possible that some IgG2b was lost through digestion
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by contaminating protease(s), as mouse IgG2b has been shown to be more 

sensitive than IgG, to proteolytic cleavage (Dessanayake and Hay, 1975).

Protein G Purification

Protein G-Sepharose chromatography offers a rapid method of purifying 

most subclasses of IgG. Protein G (Pharmacia, LKB) is a cell-surface protein of 

group G Streptococci and can be used to purify human, rat and mouse IgG. It 

is similar to Protein A in that it binds the Fc portion of the immunoglobulin. 

The capacity of Protein G is higher than that of Protein A. The absorbance at 

280nm of 2.224 of the initial 3 ml sample indicated a protein concentration of 1.6 

mg/ml. The capacity of the Pharmacia MAbTrap™ Fast Flow column was 6-7 

mg/ml of gel. Since approximately 4.8 mg protein was applied to a 1 ml bed 

volume, the capacity of the column was not exceeded (80%). It was noted that 

approximately 62.8% of the applied protein bound to the column, however, after 

elution with 1.0M glycine-HCl, pH 2.7, 61.1% of the original material bound 

remained on the column.

Avid AL™ Purification

The binding capacity for IgG2h from mouse for Avid AL is 5-7 mg IgG/ml 

of gel. Three mis of concentrated cell culture supernatant with an IgG 

concentration of 1.4 mg/ml (as determined by absorbance at 280 nm) were 

applied to this column; therefore approximately 4.2 mg of IgG was applied to a 

1 ml column. The capacity of the column was at 70% which should have
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allowed for maximum Fc binding. Approximately 56.7% of the IgG bound to 

the column, however, it did not elute under the conditions of 0.05 M sodium 

acetate buffer, pH 2.8 as recommended by the manufacturer of the kit. The 

elution fraction was collected at 280 nm and was determined to be IgG by gel 

electrophoresis. It is possible that the same variables as discussed in the previous 

two sections occurred and further studies as to possible elution methods are 

warranted.

Antibody Characterization

Determination of Molecular Weights

Gels have been widely used as the medium for immunoblot procedures. 

In this study, the radiolabeled anti-N-CAM like antibody recognized a broad band 

at MW 140,000 and minor bands at MW 180,000 and 120,000 when incubated 

with rat brain membrane extract on nitrocellulose. This pattern is similar to that 

of chicken N-CAM (Daniloff et al., 1986b); this lead to the assumption that the 

antibody in question did have anti-N-CAM like activity.

Retinal Perturbation Assay

Anti-N-CAM antibodies alter the appearance of histotypic patterns in 

retinal cell aggregates maintained in culture for several days (Rutishauser et al., 

1978). It has also been found that the antibodies can disrupt histogenesis of the 

developing retina in organ culture (Buskirk et al., 1980). In the chick, cell and 

plexiform layers of the central portion of the retina are formed between the sixth
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and ninth days of embryonic life (Kahn, 1974). Retinae dissected from chicken 

embryos on day 6 and placed in organ culture for 3 days undergo histogenesis 

similar to that which occurs in vivo. Our results demonstrate that our 

monoclonal antibodies have anti-N-CAM like activity and disrupted the internal 

development of a tissue never subjected to mechanical dissociation. Because 

individual cells in the anti-N-CAM-treated retinae were morphologically similar 

to those in the control tisssues, it seems that the effects are not simply a 

consequence of changes in the developmental pathway of individual cells (Buskirk 

et al., 1980). This conclusion was supported by the ability of the anti-N-CAM 

treated retinae to form some histological layers which, although altered, could be 

directly identified with layers in the normal retina (Buskirk et al., 1980). Since 

the application of the monoclonal antibody used in this study disrupted the 

organization of the retina as shown in Figure 4, it can be assumed that our 

antibody had anti-N-CAM like activity, however, the possibility exists that our 

antibodies recognized other cell adhesion molecules and simply cross-reacted with 

N-CAM.

Use of Thv-1 Antibodies as Control

Thy-1 has been identified on almost every type of neuron and axon in the 

peripheral nervous system of the rat: sympathetic and parasympathetic ganglion 

cells, interneurons in sympathetic ganglia, preganglionic sympathetic axons, 

sensory ganglion cells and motor axons (Morris et al., 1985). Thy-1 is a major
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glycoprotein of the neuronal surface; it has been estimated that Thy-1 constitutes 

2.5-7.5% of the surface protein of the following axons: myelinated CNS axons 

of the optic nerve, large myelinated motor axons of the hyposlossal nerve and the 

small, unmyelinated axons of the preganglionic sympathetic chain (Beech et al., 

1983). Thy-1 has not been found on glial cells in normal adult nervous tissue 

(Mirsky and Thompson, 1975). It has also been found that Thy-1 antibodies 

coated as a substrate on a culture dish promoted neurite outgrowth by Thy-1- 

positive neurons [retinal ganglion cells (Leiffer et al., 1984) and Purkinje cells 

(Messer et al., 1984)]. In the present study, antibodies to Thy-1 protein, which 

have affinity for the surface of cells derived from the brain in addition to the 

thymus (Campbell et al, 1981), were used in control tubes. Antibodies to Thy-1 

were used as controls: (1) for steric hindrance and (2) because the protein has no 

known contribution to the growth or adhesion of nerves in vivo (Letarte, 1984). 

Muscle Evoked Potentials

Electromyographic latencies were used as a non-invasive estimate of nerve 

patency. Our non-invasive recordings only approximated nerve conduction 

velocity, which can be correlated directly with the number of rapidly conducting 

nerve fibers and the degree of myelination of the nerve (Gibson et al., 1989a). 

However, recordings of conduction velocity by direct exposure and stimulation 

of the nerves would have precluded the planned ultrastructural and morphological
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examination of the tissues. The reproducibility of the latency recordings was the 

primary rationale for its use in these experiments.

The latency data (Table 2) showed that regeneration was significantly 

perturbed at 20 days after implantation. No muscle contractions were evoked in 

experimental animals but responses were evoked in all controls. This is a 

particularly relevant observation because it has previously been shown that active 

regeneration is present in rodents by 10 days (Daniloff et al., 1986b). This lack 

of response in experimental nerves was no longer present at 30 days post

surgery. Although the average response for experimental animals was slower 

than that of controls at 30 days, the differences were not statistically significant. 

The validity of this analysis is enhanced because normal responses of 

contralateral (unoperated) legs were used as internal controls. There was no 

evidence of any experimental perturbation after 60 days.

Antibody Remaining in Implants

Perhaps a unique aspect of this investigation was the quantitation of N- 

CAM antibody levels remaining in the tubes during various stages of survival. 

Results indicated a progressive disappearance of the N-CAM antibody from seven 

days post-surgery, when approximately 45% remained, to twenty-eight days, 

when only trace amounts were detected. It is unclear why there were muscle 

responses in this group before 30 days. It is conceivable that this was due to 

individual animal variability. Another explanation may be that there was a
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difference in antibody activity between clones 3B1A used in the physiology 

experiment and 3D12A used in this experiment. The non-competitive 

immunoassay (Maggio, 1981; Kurstak, 1986) was used because of its high 

sensitivity in detecting small quantities of immunoglobulin. The limits of 

detection of this assay are 1 to 10 ng of protein.

Systemic Immune Response

This non-competitive assay was also used to determine that no systemic 

immune responses were mounted against the contents of the tubes. There was 

no evidence that antibodies to bovine collagen or murine IgG were present in the 

serum of the experimental animals, suggesting that the steady decline of antibody 

in the implants was not linked to immunologic clearance by reactive cells. N- 

CAM does not circulate in peripheral blood because it is a cell surface adhesion 

molecule specific for neurons and glia; therefore the presence of any systemic 

antibody would have been due to the presence of antibodies used in our implants. 

It is possible that the contents of the tubes were mechanically displaced by 

migrating Schwann cells or advancing nerve fibers.

Immunohistochemistrv and Electron Microscopy

In cross-sections of the 10 day experimental nerves, abnormal nerve gaps 

predominated. These gaps were larger and more frequent than gaps in control 

nerves. In the present study, control nerve morphology did not differ from that 

described by others (Daniloff et al., 1986b; Gibson et al., 1989b; Ramon y
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Cajal; 1928b). The appearance of gaps in nerve tissues severely injured by 

transection has been described as an expected component of the initial stages of 

regeneration (Ramon y Cajal, 1928b). This led us to conclude that the 

application of our antibody with anti-N-CAM like activity interfered with the 

normal abilities of injured nerves to regenerate by blocking cell binding mediated 

by N-CAM.

At 30 days post-surgery, morphology of control nerves reflected 

anticipated reorganization. This was depicted by the absence of gaps and the 

presence of axons in the distal stump. In experimental nerves, gaps, specifically 

between apposing Schwann cells, continued to be observed. No disruptions were 

observed between Schwann cells and axons. In the companion physiologic study, 

we found that the disruption of functional recovery was temporary and that by 

30 days after surgery, somatic muscle control approached that of control nerves.

The present data offer a rationalization for the observed perturbation of 

function seen in early stages with muscle-evoked potentials. Furthermore, since 

antibodies disrupted only Schwann cell-Schwann cell interactions, the 

contributions of N-CAM to the process of regeneration may be through selective 

control of Schwann cell-Schwann cell adhesion. Morphological analyses of the 

thick sections taken at 60 days post-surgery suggest that myelin may be present 

in control nerves and to a lesser extent in experimental nerves. It remains to be
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proven whether N-CAM is involved with the reformation of myelin, in addition 

to the growth of nerves and their responses to injury.

The availability of the N-CAM has been shown to be an essential 

component of the complex process of nerve regeneration. Since antibodies with 

anti-N-CAM like activity perturb regeneration, N-CAM potentially contributes 

to this process. The effect shown here can only be applied to the initial stages 

of regeneration and the contribution of N-CAM to later stages of regeneration 

remains to be shown.



CONCLUSIONS

Many studies have been done to determine substances available to aid in 

peripheral nerve regeneration. These include studies of the following 

compounds: laminin, fibronectin and collagen, growth factors, and cell adhesion 

molecules. All of these compounds are known to be involved at some stage of 

peripheral nervous system or central nervous system development; as such they 

have been implicated in regeneration.

Laminin is an integral basal lamina protein while fibronectin is a major 

component of basal lamina, connective tissue and extracellular matrix produced 

by fibroblasts. Growth factors support differentiation, maturation and survival 

of sympathetic and primary sensory neurons. NGF is involved in regulation of 

adhesion molecule expression (Thoenen and Barde, 1980).

External factors found to play a role in peripheral nervous system 

regeneration are the effect of a conditioning lesion or the application of a pulsed 

electromagnetic field to an animal. The conditioning lesion increases the rate of 

regeneration (Oblinger and Lasek, 1984; Sjoberg and Kanje, 1980); (1) by 

changes in non-neuronal cells, and trophic factor production due to Wallerian 

degeneration in the distal nerve and (2) the nerve cell body has already made 

necessary adjustments and axons have synthesized materials necessary for 

regeneration. The application of a PEMF was found to influence the synthesis 

of new polypeptides in rat sciatic nerve (Sisken et al., 1989a).

83
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In this study implants containing anti-N-CAM-like antibodies disrupted 

nerve regeneration between 10 and 30 days post-surgery. This affect appears to 

no longer be present in long-term (60 day) survivors. Muscle-evoked potentials 

appear to be a reliable way to estimate the extent of nerve regrowth. They are 

a non-invasive method of determining return of muscle function. We found that 

at 20 days, there was no return of muscle function as determined by comparing 

MEPs of control vs experimental nerves.

No significant changes were found in the levels of systemic rat antibody 

produced in reaction to the implanted murine IgG compared to pre-surgical 

levels. The presence of systemic rat antibodies to bovine collagen was not noted. 

These data suggest that no systemic immune responses were mounted against 

either the murine IgG or the collagen component of the implants.

No cell-mediated immunity was noted in the H & E stained distal nerve 

sections at the 10 day time periods indicating that macrophage clearance of 

antibody from the implant was not a major factor in the return of function seen 

at 30 days.

Immunohistochemistry at 10 days indicated that no neurofilaments were 

regrowing through the implant at this time. At 30 days, coinciding with the 

return of somatic muscle function, neurofilaments were beginning to be seen in 

the distal nerve. Electron micrographs confirm that gaps were present between 

Schwann cells and not between Schwann cells and axons. This implied that N-
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CAM mediated Schwann cell-Schwann cell interactions in regenerating peripheral 

nerves and not Schwann cell-axon interactions. Since anti-N-CAM like 

antibodies perturbed regeneration temporarily, and Schwann cells are necessary 

for nerve regeneration, anti-N-CAM like antibodies disrupted this regeneration 

possibly by interacting directly with Schwann cell adhesiveness to each other. 

By blocking the N-CAM protein to perturb regeneration, we established its 

potential contribution to the general process.

The implantation of the antibody in this study around transected adult 

sciatic nerves delayed the reinnervation of target muscles for a period of between 

twenty and thirty days. No systemic immune responses to the implants were 

detected, however, electrophysiological recordings of the normal nerve indicate 

that there was a systemic effect at 20 days. It is possible that minute quantities 

of circulating antibodies disrupted Schwann cell-Schwann cell or Schwann cell- 

axon interactions in normal nerves. Since N-CAM is localized to nodes of 

Ranvier and the neuromuscular junction, and possibly related to maintenance of 

mature function, systemic antibody may have affected transmission at a distance 

as suggested by the latency data. This effect was no longer present at 30 days. 

These data implicate cellular interactions mediated by N-CAM, at least during 

the early stages of regeneration, as potential components of the regeneration 

process.
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These results are strengthened by three observations from studies of 

surgical repair of nerve damage. Entublization of transected nerves with inert 

plastic has been shown to be an excellent method of intervention (Gibson and 

Daniloff, 1989a). It has also been shown that silastic tubes are more effective 

enhancers of early mammalian nerve regeneration than three other commonly 

used surgical methods (Gibson, et al., 1989b). Furthermore, it has been shown 

that substrates such as laminin and collagen enhance rodent nerve regeneration 

(Gibson, et al., 1989b). Therefore, the conditions of our entubulization 

procedure should have enhanced the potential for nerve regeneration in every 

animal, except for one factor: the antibody with anti-N-CAM like activity.
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A P P E N D IX  A

Reagents and Gel Preparation for SDS-PAGE Slab Gels 

Reference: Laemmli, 1970

A. Acrylamide/Bis (30% T, 2.67% C)(AMRESCO, Solon, OH)

146 g acrylamide (29.2 g/100 ml)
4 g N ’N ’-Bis-methylene-acrylamide (0.8 g/100 ml)

Make to 500 ml with distilled water. Filter and store at 4°C in the dark 
(30 days maximum).

Or substitute Bio-Rad Preweighed Acrylamide/Bis 37.5:1 mixture (Catalog 
No. 161-0112 30g)(Catalog No. 161-0106 200g).

B. 1.5M Tris-HCL, pH  8.8 - separating gel buffer

for 100 ml:

18.15 g Tris base (TRIZMA)
90 ml millipore distilled water

Adjust to pH 8.8 with concentrated HCL. Make to 100 ml with distilled 
water and store at 4°C.

C. 0.5M  Tris-HCL, pH  6.8 - stacking gel buffer

for 100 ml:

6.0 g Tris base (TRIZMA)
80 ml millipore distilled water

Adjust to pH 6.8 with concentrated HCL. Make to 100 ml with distilled 
water and store at 4°C.
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D. Ammonium Persulfate, 10%, (Bethesda Research Laboratories, 
Gaithersburg, MD)(Catalog No. 5523UA, Lot No. ACD209).

Make immediately prior to using:

0.1 g ammonium persulfate
0.9 ml distilled water

E. Sodium Dodecyl Sulfate - 10%

F. TEM ED (AMRESCO, Solon, OH; Catalog No. P0076156, Lot No. 
188011)

use at room temperature, add just before ammonium persulfate

G. 10X Electrode Buffer - for running electrophoresis in tank

5 g SDS; make to 50 ml with distilled water.

Tris (TRIZMA, trisbase) 
Glycine

90 gm 
432 gm 

30 gmSDS

Make to 3 liters with distilled water. Dilute 100 ml to 1 liter for one run.



A PPE N D IX  B

Western Blot on Nitrocellulose Paper 

Reference: Towbin et al., 1979

Reagents:

Solutions:

a.

Biotinylated Goat anti-mouse

Cappel #8711-3731 Organon Teknika Corp. 
1230 Wilson Drive 
West Chester, PA 19380

Streptavidin-horseradish peroxidase

KPL #143000 Kirkegaard & Perry, Inc. 
2 Cessna Court 
Gaithersburg, MD 20878

EPBS (ELISA phosphate buffered saline)

solution A 4 liters solution B 1 liter

NaCl 8.0 g KCL 0.2 g
kh , po 4 1-3 g NaCl 32.0 g
k c L 0.8 g Na2H P 04 5.4 g

Make up solution A and solution B in distilled water. Add solution 
B to solution A until pH reaches 7.4 (approximately 125 ml of 
solution B to 500 ml of solution A). Filter sterilize.

b. Substrate

1. Add 22.5 ml distilled water to 2.5 ml 0.5 M Tris-HCl (pH
6 . 8).

2. Add 15 mg 4-chloro-l-napthol in 5 ml methanol.
3. Add 10 ul 30% hydrogen peroxide.
4. Test substrate in streptavidin and add 2-4 ul peroxide if too

weak.
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c. Alternate Substrate TMB Membrane Peroxidase Substrate System

(3,3 ,5,5 -tetramethylbenzidine)
Kirkegaard & Perry, Inc., Gaithersburg, MD 
catalog # 50-77-00

Procedure:

a. Block strips with 2 ml per lane of EPBS with 10% NGS for 1 hour on rocker 
platform.

b. Wash twice with EPBS (no additives) on rocker platform, 2 ml per lane.

c. Put 2 ml per lane of monoclonal supernatants on and incubate on rocker 
platform overnight. Do not dilute supernatants.

d. Wash 5 times with 2 ml per lane EPBS, 5 minutes for each wash.

e. Put on 1 ml per lane Cappel goat anti-mouse biotinylated 2nd antibody made 
in EPBS plus 10% goat serum (1:500 dilution) and incubate for 3 hours on 
rocker platform.

f. Wash 5 times with 2 ml per lane EPBS, 5 minutes for each wash.

g. Put on 1 ml per lane Streptavidin-Horseradishperoxidase made in EPBS plus 
10% goat serum (1:750 dilution) and incubate for 1.5 to 2 hours on rocker 
platform.

h. Wash 5 times with 2 ml per lane EPBS, 5 minutes for each wash.

i. Add 1 ml per lane substrate and wait until color is of desired intensity.

j. Wash with distilled water and let dry.



A PPEN D IX  C

Recipes for HiTrap™  Protein A Affinity Column

Source: Pharmacia LKB Biotechnology, Inc.
Piscataway, NJ 08855 
Code No. 17-0402-01 
Lot No. RC 13916

Reference: Kessler, S.W. 1975,1976; Richman et al., 1982.

Buffer A: wash buffer
50 mM Tris, pH 8.6

Dissolve 3.03 gm Tris into 500 ml distilled H-,0. Adjust pH 
with IN HCL to pH 8.6.

Buffer B: elution buffer
0.1 M citric acid, pH 3-6

Dissolve 2.94 gm citric acid into 100 ml distilled H20 . 
Adjust pH with concentrated (6N) HCL to 3.1.

Buffer C: neutralization buffer
1.0 M Tris, pH 9.0

Dissolve 12.11 gm Tris into 100 ml distilled H ,0 . Adjust pH 
with IN HCL to 9.0.

All buffers should be filter sterilized (0.45 jum) before application to the 
column.
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A PPEN D IX  D

Recipes for M AbTrap™  G Affinity Chrom atography

Source: Pharmacia LKB Biotechnology, Inc.
Piscataway, NJ 08855 
Code No. 17-0701-01 
Lot No. TOA003

Reference: Bjorck and Kronvall, 1984

Buffer A: binding buffer
0.2 M sodium phosphate, pH 7.0

Dissolve 2.4 gm NaH2P 0 4 into 100 ml distilled H20 . Adjust 
pH with IN HCL to 7.0.

Buffer B: elution buffer
1.0 M glycine-HCL, pH 2.7

Dissolve 75 mg glycine into 100 ml distilled H ,0. Adjust pH 
with IN HCL to 2.7.

Buffer C: neutralizing buffer
1.0 M Tris-HCL, pH 9

Dissolve 12.11 gm Tris into 100 ml distilled H20 . Adjust pH 
with 1.ON HCL to 9.0.

All buffers should be filter sterilized (0.45 jam) before application to the 
column.

113



A PPEN D IX  E

Recipes for Avid AL M ini-Column

Source: BioProbe International, Inc.
The Nest Group 
43 Valley Road 
Southboro, MA 01772 
800-347-6378
Catalog No. 5325-003, Lot No. 1-071-2 

References: Khatter et al., 1991; Fiiglistaller, 1989; Gassmann et al., 1990.

Buffer A: wash buffer
0.01 M sodium phosphate, 0.15 M sodium chloride, 0.02% 
sodium azide, pH 7.4

Dissolve 0.23 gm NaH2P 0 4 (1.9 mM) and 1.15 gin Na2H P04 
(8.1 mM) and 9.0 gm NaCl (154 mM) into 1 liter of distilled 
H20 .  Adjust pH to 7.4 with IN HCL.

Buffer B: elution buffer
0.05 M sodium acetate, pH 2.8

Dissolve 0.68 gm sodium acetate into 75 ml of distilled H20  
water. Add 25 ml glycerol. Adjust pH to 2.8 with 
concentrated (6N) HCL.

Buffer C: regeneration buffer
20 parts methanol, 80 parts 1% acetic acid

Add 5 nils of glatial acetic acid to 495 mis of distilled H20 . 
Take 400 mis of this mixture and add 100 mis of methanol.

Buffer D: neutralizing buffer
1.0 M Tris Base, pH 9.0

Dissolve 12.11 gm of Tris into 100 mis of distilled H20 . 
Adjust pH to 9.0.

All buffers should be filter sterilized (0.45 jum) before putting on the column.
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A PPE N D IX  F

DEAE-Cellulose Anion Exchange Chromatography

Source: Whatman Specialty Products Division
P O Box 1359 
Hillsboro, OR 97123-9981 
Catalog No. 4057P050 
Batch No. 1152012

Reference: Fahey and Terry, 1979; Miller et al., 1991.

Buffer 1) 10X 0.175 M NaP04, pH 6.3

a) Dissolve 26.8 gm NaoHP04 in 500 mis of distilled H20 .

b) Dissolve 55.2 gm NaHoP 0 4 in 2000 mis of distilled
H20.

c) Take 440 mis of A, add 1560 mis of B and add 280 mis
of distilled H20 .

d) Adjust pH to 6.3 with IN HCL.

Buffer 2) 0.175 M NaP04 plus 0.05 M NaCl, pH 6.3

a) Make PBS as above buffer 1.

b) Add 2.92 gm NaCl/liter of buffer.

c) ADjust pH to 6.3 with IN HCL.

* All buffers should be filtered (0.45 ^tm) before application to a column.
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1 2 3 4 5 6 7 8 9 10 11 12

A 1H4 1E6 1A7 1C10 I A ll 1D11 1FI2 2CI 2A2 2B2 2C3 2G5

.119 .150 .224 -.005 -.048 -.048 -.087 -.097 0.100 -.019 .026 0.025

B 2F8 2F10 2E11 2F11 2G1I 2F12 3A1 3B1 3G1 3B4 07c 3C4
viability

.597 .103 .033 0.021 .002 .025 -.002 .286 -.022 -.022 -.072

C 3B5 3F5 3A6 3B6 3A7 3B7 3B8 3F8 3C10 3F10 3F 11 4A2

-.062 .653 .069 .065 -.001 .015 -.023 -.049 -.035 -.021 -.072 .118

D 4F3 4C4 4D4 4B6 4E6 4B8 4G7 4E9 4F9 4G9 4G6 4B10

-.086 -.027 .030 .089 -.021 -.037 -.006 -.054 -.050 -.033 -.049 .215

E 4E10 4H10 4E12 15G8 THY THY THY THY THY THY THY THY
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

.082 .021 -.048 > 1.29 .121 .005 -.014 -.001 -.032 .001 .015 -.037

F 07c 0% 3D12A 3B1A 3D12A 3D12A 3B1A 3B1A 0% 0% 0 % 0%
viability viability 1 2 t i: 2 2 viability viability viability viability

.450 .579 > 1 ,607 > 1.634 >1.79. > 1  227

G Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank

.005 -.009 .058 -.040 .067 -.056 .019 -.015 -.051 -.092 -.052 -.002

H Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank Blank

.034 -.036 -.023 .044 .144 -.027 -.069 -.040 -.035 -.040 -.025 .064
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Blanks are 10% NGS in PBS. 15G8 =  ( +  ) control. Thy-1 =  (-) control. 
Each box contains clone identification and antigen/antibody reaction.
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