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Abstract

Background: Transforming growth factor-βs (TGF-βs) are a group of multifunctional proteins that have

neuroprotective roles in various experimental models. We previously reported that intrathecal (i.t.) injections of

TGF-β1 significantly inhibit neuropathy-induced thermal hyperalgesia, spinal microglia and astrocyte activation, as

well as upregulation of tumor necrosis factor-α. However, additional cellular mechanisms for the antinociceptive

effects of TGF-β1, such as the mitogen-activated protein kinase (MAPK) pathway, have not been elucidated. During

persistent pain, activation of MAPKs, especially p38 and extracellular signal-regulated kinase (ERK), have crucial roles in

the induction and maintenance of pain hypersensitivity, via both nontranscriptional and transcriptional regulation. In

the present study, we used a chronic constriction injury (CCI) rat model to explore the role of spinal p38 and ERK in the

analgesic effects of TGF-β1.

Methods: We investigated the cellular mechanisms of the antinociceptive effects of i.t. injections of TGF-β1 in CCI

induced neuropathic rats by spinal immunohistofluorescence analyses.

Results: The results demonstrated that the antinociceptive effects of TGF-β1 (5 ng) were maintained at greater than

50 % of the maximum possible effect in rats with CCI for at least 6 h after a single i.t. administration. Thus, we further

examined these alterations in spinal p38 and ERK from 0.5 to 6 h after i.t. administration of TGF-β1. TGF-β1 significantly

attenuated CCI-induced upregulation of phosphorylated p38 (phospho-p38) and phosphorylated ERK (phospho-ERK)

expression in the dorsal horn of the lumbar spinal cord. Double immunofluorescence staining illustrated that

upregulation of spinal phospho-p38 was localized to neurons, activated microglial cells, and activated astrocytes in rats

with CCI. Additionally, increased phospho-ERK occurred in activated microglial cells and activated astrocytes.

Furthermore, i.t. administration of TGF-β1 markedly inhibited phospho-p38 upregulation in neurons, microglial cells,

and astrocytes. However, i.t. injection of TGF-β1 also reduced phospho-ERK upregulation in microglial cells and

astrocytes.

Conclusions: The present results demonstrate that suppressing p38 and ERK activity affects TGF-β1-induced analgesia

during neuropathy.
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Background

Globally, 1.5 billion people experience pain [1]. Chronic

pain occurs in approximately 20 % of the general popu-

lation [2, 3], and the prevalence of neuropathic pain has

been reported at 6.9 % [3]. Furthermore, drug treatments

are not capable of relieving all neuropathic pain condi-

tions [4, 5]. The cellular mechanisms of neuropathic

pain are complex and have not been fully elucidated. In

2009, Echeverry et al. reported that intrathecal (i.t.) infu-

sion of transforming growth factor-β1 (TGF-β1) signifi-

cantly attenuated nerve injury-induced neuropathic pain

in rats [6], which suggests two primary research direc-

tions. First, the antinociceptive properties of TGF-β1 [7]

and its mechanisms [8, 9] must be elucidated. Second,

research is required in order to investigate direct in-

volvement of TGF-β1 in the antinociceptive mechanisms

of drug compounds [10] or cell-based therapies [9].

However, only a few subsequent studies have investi-

gated the cellular mechanisms of the antinociceptive ef-

fects of TGF-β1.

During neuropathy, spinal cord neuroinflammation

may promote central sensitization, thereby contributing

to the development and maintenance of pain [11, 12].

Spinal neuroinflammation in peripheral neuropathy is

characterized by activation of microglia and astrocytes,

as well as upregulation of the proinflammatory mediator,

tumor necrosis factor-α (TNF-α) [8, 13, 14]. Microglia

and astrocytes synthesize TNF-α [15], and TNF-α con-

tributes to neuropathic pain [16, 17]. Additionally, inhi-

biting activation of microglia and astrocytes [18–20], as

well as spinal TNF-α [21] have analgesic effects. Activa-

tion of p38 or extracellular signal-regulated kinase

(ERK), subgroups of mitogen activated protein kinases

(MAPKs), stimulate TNF-α gene expression in primary

microglia and astrocytes [15]. Furthermore, peripheral

nerve injury and spinal cord injury activate spinal p38

and ERK [22–24]. Several previous studies have sug-

gested that inhibiting p38 [22, 23, 25] and ERK [24] ac-

tivity are potential therapeutic strategies for neuropathic

pain. However, information is limited regarding the roles

of p38 and ERK in the antinociceptive effects of TGF-β1

in rat models of neuropathy. In the present study, we ex-

amined the effects of i.t. TGF-β1 on p38 and ERK activa-

tion in the spinal cord of rats with chronic constriction

injury (CCI), a commonly used model of neuropathic

pain [26]. We also assessed alterations in the time

courses for the antinociceptive effects of TGF-β1 and for

activation of p38 and ERK in rats with CCI, in order to

further investigate the roles of p38 and ERK in both the

development and maintenance of the antinociceptive ef-

fects of TGF-β1 during neuropathic pain. We then stud-

ied cellular specificity of the effects on p38 and ERK

activation in neuropathic rats, including in neurons,

microglia, and astrocytes.

Methods

Animals

Male Wistar rats (260–285 g) were housed in a

temperature- (22 ± 1 °C) and light-cycle-controlled (12 h

light/12 h dark) experimental animal house, with free ac-

cess to food and water. We complied with the Guiding

Principles in the Care and Use of Animals of the American

Physiology Society and all experiments were approved by

the National Sun Yat-sen University and Use Committee.

Rats were anesthetized by isoflurane inhalation (2 %) for

surgery and drug injections, and all rats received postoper-

ative administration of intramuscular veterin (cefazolin;

0.17 g/kg) in order to prevent infection. The experimental

design and procedures aimed to minimize the number of

rats used and any distress that they would experience.

Induction of peripheral mononeuropathy

CCI surgeries were performed on the right sciatic nerve

of rats, using the method described by Bennett and Xie

[26] and in our previous studies [13, 18]. In brief, we ex-

posed the right sciatic nerve at mid-thigh level, dissected

a 5 mm length of nerve, applied four loose ligatures

around the sciatic nerve (4-0 chromic gut at 1 mm inter-

vals), and then sutured both the muscle and the skin in-

cision. For the sham-operated group, we exposed the

right sciatic nerve but did not perform ligation.

Implantation of i.t. catheters

We implanted i.t. catheters (PE5 tubes: 9 cm long, 0.008

in. inner diameter, 0.014 in. outer diameter; Spectranetics,

Colorado Springs, CO, USA) to the lumbar enlargement

of the spinal cord, via the atlanto-occipital membrane at

the base of the skull, as previously described by Yaksh and

Rudy [27] and our previous studies [13, 18]. For spinal

administration, we externalized and fixed an end of the

catheter to the cranial side of the rat’s head. The dead vol-

ume of the catheters were 3.5 μL. Therefore, an artificial

cerebrospinal fluid (CSF) flush (10 μL) followed all i.t. in-

jections, in order to ensure complete delivery of recom-

binant human TGF-β1 (cat. 100-21; PeproTech, Rocky

Hill, NJ, USA) or vehicle. The composition of artificial

CSF was (in mM): 122.7 Cl−, 151.1 Na+, 2.6 K+, 1.3 Ca2+,

0.9 Mg2+, 21.0 HCO3
−, 2.5 HPO4

2−, and 3.5 dextrose, with

5 % CO2 in 95 % O2 to achieve a final pH of 7.3. Rats were

excluded from the study if they exhibited gross neuro-

logical injury or had fresh blood in the CSF 5 d after cath-

eter implantation. We also assessed locomotor functioning

using the Basso, Beattie, and Bresnahan (BBB) locomotor

scale [28], as described previously [13, 18].

Behavioral testing

We assessed thermal hyperalgesia according to the

method described by Hargreaves et al. [29] and our previ-

ous studies [30, 31]. In brief, rats were placed in
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compartmentalized plastic chambers on an elevated glass

platform, and hyperalgesia was assessed using an IITC

analgesiometer (IITC Inc., Woodland Hills, CA, USA).

We used a radiant heat source to target the middle of the

plantar surface with low-intensity heat (active intensity =

25) and a cut-off time of 30 s. Paw withdrawal latencies

(PWL) were recorded by observing behavioral indications

of nociception (withdrawal or licking). We transformed

PWL data into a percentage of the maximum possible ef-

fect (%MPE) using the following formula: % MPE = ((post-

drug latency − baseline)/(cut-off − baseline)) × 100 %. Post-

drug latency represents PWL measured after i.t. injection of

TGF-β1 or vehicle, and baseline represents PWL measured

immediately before i.t. injection.

Spinal immunohistofluorescence analyses

We mounted the rat lumbar spinal samples from multiple

groups into the same OCT block and simultaneously sec-

tioned them with a cryostat at −30 °C (HM550; Microm,

Waldorf, Germany) in order to decrease variation in the

immunohistochemical processes. Spinal immunohisto-

fluorescence analyses were conducted using a modifica-

tion of the method described by Sung et al. [32] and our

previous studies [18, 31]. For double immunofluorescence

staining of phosphorylated p38 (phospho-p38) and either

microglia or astrocyte markers, spinal sections (10 μm)

were incubated with a mixture of primary antibodies for

anti-phospho-p38 (1:100, Thr180/Tyr182, cat. 4511; Cell

Signaling Technology Inc., Beverly, MA, USA; monoclonal

rabbit antibody) and anti-OX-42 (CD11b, microglia

marker, 1:200, cat. CBL1512; EMD Millipore, Temecula,

CA, USA; monoclonal mouse antibody) or anti-glial fibril-

lary acidic protein (GFAP; astrocyte marker, 1:200, cat.

MAB3402; EMD Millipore; monoclonal mouse antibody)

antibodies, overnight at 4 °C. Spinal section were then in-

cubated with a mixture of Alexa Fluor 488-labeled chicken

anti-mouse IgG antibody (1:400, cat. A-21200; Molecular

Probes, Eugene, OR, USA; green fluorescence) and

DyLight 549-conjugated donkey anti-rabbit IgG antibody

(1:400, cat. 711-506-152; Jackson ImmunoResearch La-

boratories Inc., West Grove, PA, USA; red fluorescence)

for 40 min at room temperature. For double immuno-

fluorescence staining of phosphorylated ERK (phospho-

ERK) and microglia or astrocyte markers, spinal sections

(10 μm) were incubated with a mixture of primary anti-

bodies, anti-phospho-ERK antibodies (1:100, Thr202/

Tyr204, cat. 9101; Cell Signaling Technology Inc.; poly-

clonal rabbit antibody) and anti-OX-42 (1:200) or anti-

GFAP (1:200) antibodies, overnight at 4 °C. Spinal sections

were then incubated with a mixture of Alexa Fluor 488-

labeled chicken anti-mouse IgG antibody (1:400) and

DyLight 549-conjugated donkey anti-rabbit IgG antibody

(1:400) for 40 min at room temperature. We used a Leica

DM-6000 CS fluorescence microscope (Leica Instruments

Inc., Wetzlar, Germany) to visualize the stained spinal

sections, recorded images using a SPOT Xplorer Digital

camera (Diagnostic Instruments, Inc., Sterling Heights,

MI, USA), and then measured the pixel values of the

immunoreactive-positive areas using Image J software

(National Institutes of Health, Bethesda, MD, USA) with

three sections per rat. Spinal neurons distributed over the

superficial laminae (laminae I-III) respond to nociceptive

stimuli, and these neurons directly contribute to the trans-

mission of nociception [33]. Therefore, the superficial

laminae have more crucial roles in neuropathic pain com-

pared to the deep laminae. Thus, we quantified immuno-

reactivity for the targeted proteins in the superficial

laminae, as described by previous studies in rodents with

neuropathy [10, 33–35]. Immunofluorescence data is pre-

sented as a percentage change compared to the sham op-

eration plus vehicle group, which were regarded as 100 %.

Finally, for double immunofluorescence staining for neu-

rons and phospho-p38 or anti-phospho-ERK, spinal sec-

tions were incubated with a mixture of anti-neuronal

nuclei (NeuN; neuron-specific nuclear protein, 1:500,

Alexa Fluor 488 conjugated antibody, cat. MAB377X,

EMD Millipore, Temecula, CA, USA; monoclonal mouse

antibody) and anti-phospho-p38 (1:100) or anti-phospho-

ERK (1:100) antibodies overnight at 4 °C. Spinal sections

were then incubated with DyLight 549-conjugated

anti-rabbit IgG antibody (1:400) for 40 min at room

temperature.

Data and statistical analyses

All data are represented as means ± standard errors on the

mean (SEMs). Between groups differences were calculated

using one-way analyses of variance (ANOVAs). Effects

were further investigated using Student-Newman-Keuls

post hoc tests, with statistical significance set at P < 0.05.

Results

Effects of i.t. TGF-β1 on CCI-induced nociceptive behavior

Based on our previous findings [8], we selected a 5 ng

dose of TGF-β1 for the present study. At 14 d post-

surgery, i.t. injections of vehicle did not significantly

affect thermal hyperalgesia in rats with CCI (Fig. 1).

Compared to the vehicle group, the anti-hyperalgesic

effect of TGF-β1 reached the maximum %MPE at 0.5 h

after the i.t. injection, and then decreased gradually over

time. The effect persisted at > 50 % MPE for at least 6 h

after TGF-β1 administration. In addition, the vehicle-

and TGF-β1-treated CCI groups exhibited normal

behaviors (including locomotor function). We then fo-

cused on three time points (0.5, 3, and 6 h) after i.t. ad-

ministration of TGF-β1, in order to determine whether

modulation of spinal phospho-p38 and phospho-ERK

are involved in the antinociceptive effects of TGF-β1 in

neuropathic rats.
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Effects of i.t. TGF-β1 on CCI-induced upregulation of

spinal phospho-p38 expression

Minimal and diffuse phospho-p38 immunoreactivity

occurred in the ipsilateral dorsal horn of the lumbar

spinal cord of the sham operated plus i.t. vehicle group

(Fig. 2a). Phospho-p38 immunoreactivity increased in

the ipsilateral spinal dorsal horn 14 d after CCI (Fig. 2b).

At 0.5 h after TGF-β1 treatment, there was no

significant inhibition of CCI-induced upregulation of

phospho-p38 immunoreactivity (Fig. 2c). Quantification

of the phospho-p38 immunoreactivity indicated that

TGF-β1 significantly reversed CCI-induced upregulation

of phospho-p38 immunoreactivity in the ipsilateral lum-

bar dorsal horn at 3 and 6 h after i.t. injections (Fig. 2f ).

We next examined the effects of i.t. injections of

TGF-β1 on the cellular specificity of phospho-p38

expression in neuropathic rats, using double immuno-

fluorescent staining. Neurons were labeled using anti-

NeuN antibody (a neuron-specific nuclear marker) [24].

Microglia were visualized with anti-OX-42 antibody,

which targets the microglial surface marker CD11b [24],

and astrocytes were identified with anti-GFAP antibody,

which labels the astrocytic intermediate filaments in the

cytoplasm [24]. In the sham operated plus i.t. vehicle

group, phospho-p38 was mainly localized to neurons

Time after i.t. injection (h)

0 1 2 3 4 5 6

%
M

P
E

-10

0

10

20

30

40

50

60

70

80

90

100
CCI + vehicle

CCI + TGF 5 ng *

* * * * *
* *

*

Fig. 1 Time course of anti-hyperalgesic effects of transforming

growth factor-β1 (TGF-β1) in rats with chronic constriction injury
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for anti-hyperalgesia. TGF-β1 significantly attenuated CCI-induced
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the mean ± standard error of the mean (SEM) from six rats per

group. *P < 0.05 compared to the CCI plus vehicle group at the
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Fig. 2 The effects of intrathecal (i.t.) transforming growth factor-β1 (TGF-β1) on chronic constriction injury (CCI)-induced upregulation of spinal

phosphorylated (phospho)-p38 at 14 d post-surgery. Images represent cells labeled with phospho-p38 (red) in the spinal cord, obtained from the

sham operated plus i.t. vehicle group (a), CCI plus i.t. vehicle group (b), and CCI plus i.t. TGF-β1 (5 ng) groups at 0.5 h (c), 3 h (d), and 6 h (e) after

TGF-β1 injections. Quantification of the phospho-p38 immunoreactivity (f) demonstrates that TGF-β1 significantly inhibits CCI-induced

upregulation of spinal phospho-p38. Each bar in (f) shows the mean ± standard error of the mean (SEM) from six rats per group. Scale bars:

100 μm for all images (a–e). *P < 0.05 compared to the sham operated plus vehicle group; #P < 0.05 compared to the CCI plus vehicle group
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(Fig. 3a). Upregulation of spinal phospho-p38 expression

was observed in neurons (Fig. 3b), microglia (Fig. 3e),

and astrocytes (Fig. 3h) at 14 d post-surgery in the CCI

plus vehicle group, which was attenuated by TGF-β1 3 h

after i.t. injections. In addition, CCI surgery activated

microglia at 14 d post-surgery, as indicated by upregu-

lation of OX-42 immunoreactivity and enlarged hyper-

trophic cell bodies with retraction of the cytoplasmic

processes (Fig. 3e) [36] Fig. 3e). Furthermore, we

observed activated astrocytes in rats with CCI at 14 d

post-surgery, as indicated by upregulation of GFAP im-

munoreactivity and hypertrophied cell bodies with

thickened processes (Fig. 3h) [37]. TGF-β1 markedly

attenuated these effects in microglia and astrocytes.

Effects of i.t. TGF-β1 on CCI-induced upregulation of

spinal phospho-ERK expression

In the sham operated plus i.t. vehicle group, there was

minimal and diffuse phospho-ERK immunoreactivity in

the ipsilateral dorsal horn of the lumbar spinal cord

(Fig. 4a). Phospho-ERK immunoreactivity significantly

increased in the ipsilateral spinal cord of rats with CCI

at 14 d post-surgery (Fig. 4b). At 0.5 h after i.t. injec-

tion, TGF-β1 treatment did not inhibit CCI-induced

upregulation of phospho-ERK immunoreactivity (Fig. 4c).

Quantification of phospho-ERK immunoreactivity demon-

strated that i.t. TGF-β1 significantly inhibited CCI-

induced upregulation of phospho-ERK immunoreactivity

at 3 and 6 h after injection (Fig. 4f ). We next studied

the effects of i.t. TGF-β1 on the cellular specificity of

phospho-ERK expression in neuropathic rats using

double immunofluorescent staining. In the sham

operated plus i.t. vehicle group, phospho-ERK was not

localized to neurons (Fig. 5a), microglia (Fig. 5d), or

astrocytes (Fig. 5g). In contrast, at 14 d post-surgery,

upregulation of spinal phospho-ERK expression was

observed in microglia (Fig. 5e) and astrocytes (Fig. 5h)

of rats with CCI, which was markedly inhibited by

TGF-β1 at 3 h after i.t. injection. In addition, at 14 d

post-surgery, CCI resulted in both activated microglia

(Fig. 5e) and astrocytes (Fig. 5h); these effects were

also attenuated by i.t. TGF-β1.

Discussion

Summary of findings

In the present study, we found that i.t. TGF-β1 (5 ng)

attenuated CCI-induced thermal hyperesthesia for as long

as 6 h. Expression of phospho-p38 and phospho-ERK were

upregulated in the spinal dorsal horn following CCI, and i.t.

TGF-β1 reversed these effects. In addition, we found that

CCI + TGF- 1 CCISham
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Fig. 3 The effects of intrathecal (i.t.) transforming growth factor-β1 (TGF-β1) on chronic constriction injury (CCI)-induced upregulation of

phosphorylated (phospho)-p38 in spinal neurons, microglia, and astrocytes at 14 d post-surgery. Merged images of double-immunofluorescence

staining for phospho-p38 (red; a–i) with NeuN (neuronal-specific marker, green; a–c), OX-42 (microglial specific marker, green; d–f), and GFAP

(astrocyte specific marker, green; g–i) in the lumbar spinal cord dorsal horn of the sham operated plus vehicle group (a, d, and g), CCI plus vehicle

group (b, e, and h), and CCI plus TGF-β1 group (c, f, and i) at 3 h after i.t. injections. The results demonstrate that spinal phospho-p38 expression

is localized to neurons, microglia, and astrocytes in the CCI plus vehicle group (yellow; white arrow), and was attenuated by i.t. TGF-β1. Scale bars:

50 μm for all images
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both p38 and ERK are upregulated in activated microglia

and astrocytes in the spinal dorsal horn following CCI.

However, expression of phospho-p38 and phospho-ERK

are more prominent in astrocytes. In addition, p38 occurs

to a greater extent than ERK upregulation in neurons after

CCI, and the expression of phospho-p38 in neurons is also

downregulated after i.t. TGF-β1.

The roles of spinal p38 and ERK in neuropathy

Clinical neuropathic pain syndromes are characterized by

evoked pain, including hyperalgesia [38], which is repre-

sented as thermal hyperalgesia in the rat CCI model.

Central sensitization in the spinal dorsal horn contributes

to the hypersensitive pain behaviors associated with neur-

opathy [39]. Activation of microglia and astrocytes

contribute to spinal neuroinflammation [40, 41] and accel-

erate central sensitization, as well as development and

maintenance of neuropathic pain [11, 12]. Activated

microglia and astrocytes in the spinal dorsal horn indicate

elevated nociceptive states [18–20, 42–47], and CCI also

resulted in activated microglia and astrocytes in the spinal

cord at 14 d post-surgery. Phosphorylation of Tyr-182 and

Thr-180 result in p38 activation [48]. Spinal phospho-p38

expression was only observed in neurons in the sham op-

erated plus i.t. vehicle group. At 14 d post-surgery, upreg-

ulation of spinal phospho-p38 expression was observed in

neurons, microglia, and astrocytes in rats with CCI. Moon

et al. found that phospho-p38 staining was localized to

neurons and astrocytes in the spinal cord of mice with

CCI [49], and Gu et al. reported phospho-p38 in spinal

microglia of rats with CCI [50]. The activated form of

ERK is phosphorylated on both Thr-202 and Tyr-204 [51].

In the sham operated group, spinal phospho-ERK was not

localized to neurons, microglia, or astrocytes. Upregula-

tion of spinal phospho-ERK expression was observed in

microglia and astrocytes of CCI rats, but not in neurons.

However, the possibility that spinal neurons may also be a

source of phospho-ERK expression cannot be excluded.

Our double-immunostaining images further confirmed

that spinal astrocytes are a major source of phospho-p38

and phospho-ERK upregulation in rats with CCI, com-

pared to microglia. Our findings are consistent with a

previous report that phospho-ERK is predominantly lo-

calized to astrocytes and minimally localized to micro-

glia, but not localized to neurons in the spinal cord 21

d after spinal nerve ligation [24]. Our findings also
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Fig. 4 Effects of intrathecal (i.t.) transforming growth factor-β1 (TGF-β1) on chronic constriction injury (CCI)-induced upregulation of spinal

phosphorylated extracellular signal-regulated kinase (phospho-ERK) at 14 d post-surgery. Images represent cells labeled with phospho-ERK (red) in

the spinal cord, obtained from the sham operated plus i.t. vehicle group (a), CCI plus i.t. vehicle group (b), and CCI plus i.t. TGF-β1 (5 ng) groups

at 0.5 h (c), 3 h (d), and 6 h (e) after TGF-β1 injections. Quantification of phospho-ERK immunoreactivity (f) demonstrates that TGF-β1 significantly

inhibits CCI-induced upregulation of spinal phospho-ERK. Each bar in (f) shows the mean ± standard error of the mean (SEM) from six rats per

group. Scale bars: 100 μm for all images (a–e). *P < 0.05 compared to the sham operated plus vehicle group; #P < 0.05 compared to the CCI plus

vehicle group
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support the hypothesis that spinal astrocytes contribute

to maintaining neuropathic pain [13, 14, 24, 52].

Contributions of p38 and ERK to the antinociceptive

effects of TGF-β1

CCI evokes significant downregulation of spinal TGF-

β1 protein in rats [8, 10, 53]. Similarly to previous

results [8], we found that i.t. TGF-β1 attenuated CCI-

induced thermal hyperesthesia in rats. Le et al. re-

ported that TGF-β1 inhibits lipopolysaccharide (LPS)-

induced phosphorylation of both p38 and ERK in a

murine microglial cell line [54]. Similarly to this previ-

ous study, we found that TGF-β1 administration to

rats reduced peripheral CCI-induced upregulation of

phospho-p38 and phospho-ERK in activated spinal

microglia. We also discovered that TGF-β1 reduced

peripheral CCI-induced upregulation of phospho-p38

and phospho-ERK in activated rat spinal astrocytes.

I.t. administration of a p38 inhibitor (SB203580) re-

duces neuropathic pain in animal models [22, 23, 25],

and spinal nerve ligation-induced mechanical allody-

nia is attenuated by i.t. administration of the MAPK

and ERK kinase (MEK; ERK kinase) inhibitor PD98059

[24]. At 0.5 h after i.t. injections, TGF-β1 did not inhibit

CCI-induced upregulation of phospho-p38 or phospho-

ERK immunoreactivity. However, the anti-hyperalgesic ef-

fects of TGF-β1 in rats with CCI reached the maximum

%MPE at 0.5 h after administration. At 3 and 6 h after ad-

ministration, TGF-β1 significantly suppressed CCI-

induced upregulation of phospho-p38 and phospho-ERK

immunoreactivity for the duration of time that the anti-

hyperalgesic effects of TGF-β1 remained at > 50 % MPE.

We previously reported that i.t. TGF-β1 (5 ng) reduced

CCI-induced upregulation of spinal TNF-α [8] for the

same duration of time that TGF-β1 inhibited CCI-induced

phospho-p38 and phospho-ERK upregulation in the

present study. These results are consistent with the find-

ing that inhibiting activation of p38 and ERK block TNF-α

gene expression in endotoxin-activated primary microglia

and astrocytes [15]. Therefore, we suggest that inhibition

of spinal phospho-p38 and phospho-ERK are primarily

associated with the maintenance phase, but not with

the development phase, of the antinociceptive effects of

TGF-β1 during neuropathic pain.

Conclusions

Based on the present results and the findings of previous

studies, we hypothesize that the antinociceptive effects of

TGF-β1 are mediated by two different mechanisms (Fig. 6).

First, TGF-β1 itself possesses antinociceptive effects, as

CCI + TGF- 1 CCISham

phospho-ERK

+                         

NeuN

phospho-ERK

+                         

OX-42

phospho-ERK

+                         

GFAP

a b c

g h i

d e f

Fig. 5 Effects of intrathecal (i.t.) transforming growth factor-β1 (TGF-β1) on chronic constriction injury (CCI)-induced upregulation of

phosphorylated extracellular signal-regulated kinase (phospho-ERK) in spinal neurons, microglia, and astrocytes at 14 d post-surgery.

Merged images of double-immunofluorescence staining for phospho-ERK (red; a–i) with NeuN (neuronal-specific marker, green; a–c),

OX-42 (microglial specific marker, green; d–f), and GFAP (astrocyte specific marker, green; g–i) in the lumbar spinal cord dorsal horn,

obtained from the sham operated plus vehicle group (a, d, and g), CCI plus vehicle group (b, e, and h), and CCI plus TGF-β1 group

(c, f, and i) at 3 h after i.t. injections. The results demonstrate that spinal phospho-ERK expression is primarily localized to microglia

and astrocytes in the CCI plus vehicle group (yellow; white arrow), and is attenuated by i.t. TGF-β1. Scale bars: 50 μm for all images
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demonstrated by the present study and our previous study

[8]. Second, nerve injury may upregulate expression of

phospho-p38 and phospho-ERK in spinal microglia and

astrocytes, which may induce neuropathic pain behaviors.

TGF-β1 may directly inhibit expression of phospho-p38

and phospho-ERK in microglia and astrocytes, which may

reduce neuroinflammation, thereby attenuating neuro-

pathic pain behavior in rats. Therefore, TGF-β1 is a prom-

ising therapeutic strategy for neuropathic pain.
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