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Abstract

Industrial units cannot operate without failure forever. When the operation of a unit deviates

from industrial standards, it is considered to have failed. The time from the moment a unit enters

service until it fails is its lifetime. Within reliability and often in life data analysis in general,

lifetime is the event of interest. For highly reliable units, accelerated life testing is required to

obtain lifetime data quickly. Accelerated tests where failure is not instantaneous, but the end

point of an underlying degradation process are considered. Failure during testing occurs when

the performance of the unit falls to some specified threshold value such that the unit fails to meet

industrial specifications though it has some residual functionality (degraded failure) or decreases

to a critical failure level so that the unit cannot perform its function to any degree (critical fail-

ure). This problem formulation satisfies the random signs property, a notable competing risks

formulation originally developed in maintenance studies but extended to accelerated testing here.

Since degraded and critical failures are linked through the degradation process, the open prob-

lem of modeling dependent competing risks is discussed. A copula model is assumed and expert

opinion is used to estimate the copula. Observed occurrences of degraded and critical failure

times are interpreted as times when the degradation process first crosses failure thresholds and

are therefore postulated to be distributed as inverse Gaussian. Based on the estimated copula,

a use-level unit lifetime distribution is extrapolated from test data. Reliability metrics from the

extrapolated use-level unit lifetime distribution are found to differ slightly with respect to differ-

ent degrees of stochastic dependence between the risks. Consequently, a degree of dependence

between the risks that is believed to be realistic to admit is considered an important factor when

estimating the use-level unit lifetime distribution from test data.
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Chapter 1

Introduction

Industrial units cannot be in service forever or at least they cannot remain in the same condition

while in service forever. When the operation of the unit breaks down or a predefined change

occurs in its mode of operation (deviation from industrial standards), the unit is generally consid-

ered to have failed. The time from the moment a unit enters service until it fails is its lifetime. To

continuously improve the quality and reliability of a unit, an important aspect is that of assessing

reliability information such as mean lifetime of the unit. This explains why lifetime is often the

subject of interest in reliability and in all life data analysis in general.

Traditional sources of lifetime data in reliability include field tracking studies and warranty

databases. The collected lifetime data are utilised to quantify the lifetime distribution of the

unit. It is from this distribution that unit lifetime information regarding warranty periods, unit

safety and the reliability specification of the unit are derived. Needless to say that bad estimation,

particularly of lower percentiles of the unit’s lifetime distribution may potentially result in huge

losses to industry due to excessive warranty returns.

For industrial units with longer lifetimes, accelerated life testing (ALT) is required to expedite

unit failure by stressing these highly reliable units beyond what they would normally experience

when in actual use. The goal is to obtain lifetime data in a timely and cost effective manner.

However, ALT poses the following problems. Firstly, a decision must be made on how to accel-

erate failure. For some units, failure modes are known in advance from physical/ chemical theory
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or experience with similar tests. To be valid however, ALT must only lead to those failure modes

which may occur under normal use conditions and should not generate other new failure modes.

If a new failure mode occurs, it must be identified and accounted for in the subsequent lifetime

data analysis.

Secondly, a decision must also be made on how much to accelerate. Obviously, excessive stress

will cause the unit to fail in an extremely short time span, but such failure time data may not

provide useful information about the lifetime of the unit. Usually, the norm is to choose test stress

levels that fall outside the product’s specification limits but within its design limits as shown in

Figure 1.1.

Figure 1.1: General guide on how to choose test stress levels.

Test stress levels that fall outside the unit’s design limits but within its destruction limits will

likely introduce new failure modes. Consider an example where temperature is the acceleration

variable. Testing a unit at excessively high temperatures may result in the unit failing by melting.

2



1.1 Statement of the research problem

By design, ALT forces units to fail more quickly than they normally would. In this sense, it is

generally considered to be a destructive practice. However, an important problem in reliability,

see for example Padgett and Tomlinson (2004) is that of modeling degradation together with

failure data in an accelerated testing setup. Research in this direction include Zhao and Elsayed

(2004) who investigate the competing risks problem involving catastrophic and degradation fail-

ures in an accelerated life test. In their study, they assume catastrophic and degradation failure

modes occur independently of each other. More recently, Pan, Zhou and Zhao (2010) consider

the competing risks problem of accelerated failure that combines degradation failure mode with

multiple independent traumatic failure modes where the latter depends on the degradation level.

Focus in this thesis is on accelerated tests where failure is not instantaneous, but the end point of

an underlying degradation process. As a direct consequence of the general definition of failure, a

failed unit does not necessarily imply it has reached the end of its time of potential use. Consider

a light emitting diode (LED) for example. If it cannot perform its function to any degree during

testing (complete loss of function), this definition of failure implies the end of its useful life. But

if a LED is considered to have failed because its luminosity falls below an acceptable industrial

standard during testing, then failure does not mean the end of its time of potential use.

Consequently the following situation is considered in this thesis: A unit is assumed to continu-

ously degrade during testing so that the degradation path is the sample path of some stochastic

process {X(t), t ≥ 0}. Because ALT deals with new units, then {X(t), t ≥ 0} has initial con-

dition X(0) = 0 and monotonically increases with time. It is also assumed that a dominant

measurable performance parameter of the unit exists and that its deterioration over time can be

associated with unit reliability. A unit is thus removed from observation during testing if its

performance upon inspection:

(1) decreases to a specified threshold value such that the unit fails to meet specifications even

though it still has some residual functionality. Such a unit is said to have experienced a

degraded failure and consequently its lifetime is right censored. According to the Offshore

Reliability Data (OREDA) database, degraded failures prevent the unit from performing

3



its functions according to the manufacturer’s specifications and could develop to critical

failures with time.

(2) decreases to a critical failure level so that the unit cannot perform its function to any degree.

Such a unit is said to have experienced a critical failure due to critical degradation of its

state and has reached the end of its lifetime. According to the OREDA database, critical

failures mean immediate and complete loss of a major function such as the capability of a

unit to provide its output.

Hence removal from observation in a life test may be from a mode other than the end of the

unit’s useful life. In particular, life tests where the lifetime of a unit is subject to right censorship

are considered in this thesis. It is therefore assumed throughout that two failure modes namely

critical failure and degraded failure are distinguished at each stress level. Examples of units that

exhibit these failure modes in reliability testing include semiconductors, mechanical systems and

microelectronic units where soft or non-catastrophic failures occur in life tests.

A degraded failure is thus a signal that a critical failure is likely to follow soon if the unit is kept

on test. The object of interest in this thesis and often in life testing studies is the lifetime of the

unit, and hence the occurrence of a critical failure. When detected first, a degraded failure leads

to removal from observation during testing since by definition the unit no longer meets specified

industrial standards and is therefore considered failed. In this sense, a degraded failure has the

interpretation of a censoring variable since it has the effect of censoring a critical failure, the

outcome of interest. Consequently the lifetime of a test unit is subject to right censorship with

censoring occurring whenever a degraded failure removes the unit from observation in a life test.

1.1.1 Competing risk application to accelerated reliability testing

Denote by q ∈ [0, 1], the probability of detecting a degraded failure when the performance param-

eter of the unit decreases to a threshold s1. But detection or non-detection thereof depends only

on the alertness of the crew running the life testing experiment assuming there is no automatic

monitoring. It is therefore plausible to assume detection of a degraded failure during testing is

4



independent of the degradation process. If a degraded failure is not detected, the unit is kept on

test until the performance parameter decreases to a critical level s2 > s1 and the unit experiences

a critical failure. This happens with probability 1 − q. Lindqvist and Skogsrud (2009) give a

related application but in maintenance studies where a potential unit failure may be avoided by a

preventive maintenance.

Most studies in degradation modeling consider unit degradation an observable process and use

measured degradation data to assess the lifetime of the unit. This modeling viewpoint appears in

the work on degradation modeling by Doksum (1991), Lu and Meeker (1993), Lu, Meeker and

Escober (1996) and the numerous citations therein. In this thesis however, it is assumed, and is

often the case in practice that degradation paths of test units cannot be monitored continuously

during testing. Accordingly, the degradation process leading to unit failure is not fully observ-

able. But by definition, a unit fails the first time the degradation process crosses a failure level.

Consequently, unit lifetime is estimated by obtaining the first crossing time of the degradation

process over a failure threshold in a life test.

Thus given unit lifetime is censored, the time at which this materialises is the first passage time

with regards to level s1 of the degradation process, denoted byX1. Otherwise the unit experiences

a critical failure at X2, the first passage time with regards to level s2 > s1 of the degradation

process. Consequently X1 depends on the degradation process and may also depend on unit

lifetime X2. The random time at which a unit is removed from observation at each test stress

level is therefore the minimum of the censoring variable X1 (the time unit lifetime would be

censored if it were not ended first) and the lifetime variable X2 (the lifetime of the unit if it were

not censored). It is denoted by Z = min(X1, X2).

This problem formulation satisfies the random signs property due to Cooke (1996) which is cap-

tured in the definition that follow:

Definition 1.1.1: Let X1 and X2 be the censoring and lifetime variables respectively with

X1 = X2 − ξ where ξ ≤ X2 is a random variable whose sign does not depend on X2 and

satisfies P (ξ = 0) = 0. Then the observed variable Z = min(X1, X2) and identification of the

variable which achieves the minimum is referred to as the random signs censoring of X2 by X1.
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The relationship X1 = X2 − ξ implies that if ξ > 0, then X1 < X2 and unit lifetime is censored.

But if a degraded failure is not detected and the unit is kept on test until it experiences a critical

failure at X2, then X1 is not observed. Thus the unobserved X1 may in theory be assigned any

time greater than X2 which is however never observed. This corresponds to the case where ξ < 0

such that X2 < X1 and hence, the unit reaches the end of its useful life during testing. Thus the

random sign of ξ determines whether unit lifetime is censored or not. Hence the name random

signs censoring.

Random signs censoring applies to situations where unit lifetime is subject to right censorship,

which could either be dependent or independent. It is a well established competing risks model

developed originally in maintenance studies (see also Cooke and Bedford, 2002; Bunea and

Bedford, 2002; Lindqvist and Skogsrud, 2009) but extended to reliability testing in this thesis. In

the sense of the random signs censoring model due to Cooke (1996), degraded and critical failures

are competing to remove the unit from observation in a life test. As a result, the observable

competing risks data at each stress level are Z = min(X1, X2) along with the identity of the

mode J = j ∈ (1, 2) which succeeded in removing the unit from observation in a life test.

Assuming nk units from the same population are tested at the kth test stress level, then Zi, i =

1, 2, ... are independent copies of Z. In practice however, only a few and often prototype units

are available for testing due to cost constraints. In order to obtain sufficient failure time data, the

failed unit is repaired and tested continuously. Since ALT deals with new units, any repair action

following a degraded or a critical failure must leave the unit in a state as good as new (AGAN) as

depicted in Figure 1.2. That is, the effective age of the unit must be reduced to zero after a repair,

called perfect repair. For more details on the scope of repair actions, see for example Barlow and

Proschan (1975). Obviously, repairing a degraded failure implies that a censoring occurs with

respect to the corresponding lifetime variable.

Perfect repair is a plausible assumption in the case of complex, highly reliable repairable units

such as in nuclear industry, space, undersea and in electronics where failure costs are prohibitive.

Under this perfect repair assumption, Zi, i = 1, 2, ... are regeneration points. That is the sequence

of nonnegative, independent and identically distributed (iid) random variables {Zi; i = 1, 2, ...}
defines an ordinary renewal process. Thus whether nk units from the same population are tested
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Figure 1.2: Degraded and critical failures in a life test under perfect repair

at the kth test stress level or sufficient failure time data are obtained by repairing the failed unit

and testing continuously, Zi, i = 1, 2, ... are iid random variables.

1.2 Statistical approaches to analysing competing risks data

When mode and failure time information are available, competing risks theory provides the ap-

propriate model for analysing failure time data. The following are typical statistical problems

that arise when analysing competing risks data (see for example Prentice et al., 1978).

(1) Inference on the effects of covariates on specific failure modes.

(2) Studying interrelations among failure modes and the effect of removing a specific failure

modes on remaining failure modes.

Different approaches to analysing competing risk data exist but none addresses all problems.

Theoretical approaches assign latent or hypothetical failure times X1, ..., Xd; 0 ≤ Xj < ∞ rep-

resenting unit failure times from the corresponding d competing failure modes. Hence the name

latent failure time approach. The observable data are the pair (Z, J) where Z = min(X1, ..., Xd)

is formally lifetime of a series system. Interrelations among failure modes and the effects of

removing a failure mode on the remaining mode(s) are formulated in terms of the X ′
js and the

absolutely continuous joint survival function
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S(t1, ..., td) = P

[
d⋂

j=1

(Xj > tj)

]
(1.1)

satisfying S(0, ..., 0) = 1 and S(∞, ...,∞) = 0 where each tj ≥ 0. Study questions in reliability

are often formulated with regards to the marginal survival (or distribution) functions of the mul-

tiple decrement function in Equation 1.1 since they best reflect the underlying failure process. A

typical example of a study question is:

What would be the effect of eliminating a failure mode on the reliability specification of the unit?

Other approaches base all statistical analysis on estimable quantities from the observable com-

peting risks data only. These quantities of statistical interest include the cause-specific hazard

functions and cumulative incidence functions (Lawless, 2003). The cause-specific hazard func-

tion of the jth failure mode, defined as the probability that mode j is responsible for removing a

unit from observation in a life test in the small interval (t, t+∆t) given that the unit survived all

failure modes until time t is

λj(t) = lim
∆t→0

P (t < Xj ≤ t+∆t, J = j|T > t)

∆t
=
f ∗
j (t)

S(t)
(1.2)

if the density exists. Thus λj(t) represents the hazard of failing from mode j when all other

failure modes are acting. The overall survival function, denoted by S(t) = P (T > t) is the

probability that a unit has not failed from any mode at time t.

The cumulative incidence function of the jth failure mode, denoted Ij(t) is the probability of a

unit failing from the jth mode when all other failure modes are present. Assuming independent

right censorship, it is easily expressed as

Ij(t) = P (T ≤ t, J = j) =

∫ t

0

λj(t)exp

(
−

d∑

j=1

∫ u

0

λj(v)dv

)
du. (1.3)

where λj(t) is the cause-specific hazard function.

8



Under dependent right censorship however, the expression for the cumulative incidence function

of the jth failure mode is less straightforward. Obviously, the function in Equation 1.3 is not

a proper distribution function in the sense that Ij(∞) = P (J = j), and not one as expected.

Hence it is often called the subdistribution or crude cumulative incidence function. Accordingly,

the function f ∗
j (t) is also called the subdensity function. Cause-specific hazard and cumulative

incidence functions are useful when study questions are on the effects of covariates on specific

failure modes.

In this thesis and often in accelerated reliability testing, the variable of interest is unit lifetime.

Consequently, the object of estimation is the lifetime distribution of the unit. When unit lifetime

is subject to right censorship as is the case here, this problem is clearly formulated with regards

to the marginal distribution of unit lifetime X2 from the observable competing risks data (Z, J).

The problem is therefore best answered by adopting the latent failure time approach because it

suggests a simple way to answer study questions on failure mode removal.

1.2.1 Latent failure time model and right censorship

Consider a unit that fails from mode j in a life test. When all modes are operative, this leads to

observing Z = min(X1, ..., Xd) and J = {j|Xj < Xk, k = 1, ..., d}. This latent failure time

interpretation is followed in Gail (1975). Obviously the random variable Xj has a clear physical

meaning. It is the observed time to failure of the unit from mode j. The Xk
′s on the one hand are

unobserved and generally do not have physical meaning attached to them. Thus the latent failure

time approach does seem to present problems of data interpretation and this is at the core of its

criticism particularly in the Biostatistical literature for example (see e.g. Prentice et al., 1978).

But for the competing risks problem envisaged in this thesis (unit lifetime subject to right cen-

sorship), latent failure times following the first do have physical meaning as follows. A unit is

removed from observation during life testing when it experiences either a degraded or a critical

failure and hence d = 2. Assume the unit experiences a critical failure in a life test when both

degraded and critical failure modes are operative. Then the random variable X2 is the observed

lifetime of the unit being tested. The unobserved timeX1 is the time the lifetime of the unit would
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have been censored had the unit not experienced a critical failure (complete loss of function) first.

Because a clear physical meaning is attached to latent failure times following the first, the latent

failure time model is applicable to the dependent competing risks formulation considered in this

thesis.

Obviously, a unit that is at risk of experiencing a critical failure in a life test is systematically at

high (low) risk of experiencing a degraded failure since the two failure modes are linked through

the degradation process. Consequently, all study questions associated with interrelations between

these two failure modes are identified with interrelations between their corresponding failure

times. Specifically, such questions are posed in terms of the observed Xj
′s and the joint survival

function

S(t1, t2) = P (X1 > t1, X2 > t2) . (1.4)

Recall that unit lifetime is the variable of interest in life testing studies. Hence the main object

of estimation in this thesis is the lifetime distribution of the unit with the censoring variable re-

moved. In general, measures that remove a specific failure mode may well alter the failure modes

remaining in the study. But random censorship (competing risk) arises from a mechanism exter-

nal to the underlying failure process since it depends on the alertness of the persons conducting

the life test. Accordingly, the competing risks situation considered in this thesis guarantees a

failure mechanism that is not influenced by censorship. Hence unit lifetime is unaffected by the

removal of the censoring variable and the lifetime distribution is the marginal distribution of X2

from the joint survival function in Equation 1.4.

1.2.2 Identifiability problems of the latent failure time model

A well documented problem with adopting the latent failure time model (Tsiatis, 1975) is that

both the joint and the marginal survival (or distribution) functions of the competing risks vari-

ables are in general non-identifiable. This difficulty arises because competing risks cannot be

observed directly. Rather, only the pair (Z, J) is observable and such data only allow estimation

of subsurvival functions S∗
j (t) = P (Xj > t,Xj < Xk) for j 6= k and not the survival functions

Sj(t) = P (Xj > t); j ∈ (1, 2). If however there is no (physical) reason to suggest stochastic
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dependence the risk variables, then there are often no distribution identifiability issues. This is

because subsurvival and the survival functions will coincide and the analysis is just as difficulty

as analysing a single failure mode. Consequently the marginal survival (or distribution) functions

can be consistently estimated from observations on the pair (Z, J) and are therefore identifiable.

But degraded and critical failures are linked through the underlying failure causing degradation

process. Specifically, a degraded failure is reasonably assumed to occur close to a critical failure.

For example if a LED is considered failed because the luminosity falls below an acceptable

industrial standard in a life test, then its lifetime is likely to end soon if it is kept on test. As

a result, there is a physical reason to suggest that unit lifetime is subject to dependent right

censorship. In this case, the set of subsurvival functions S∗
j (t) is consistent with a number of

joint survival functions S(t1, t2) and is therefore generally not identifiable as follows:

A key result in Tsiatis (1975) is suggestive of the following. If the set S∗
j (t) is given for some joint

model where unit lifetime is subject to dependent right censorship, then there also exists a joint

model where unit lifetime is subject to independent right censorship yielding the same set S∗
j (t).

As a direct consequence of this result, the correct model remains unknown from observations

of (Z, J) alone since both the independent and dependent risks models may fit the data equally

well. Thus over and above the uncertainty that is a result of sampling error, there is also an added

problem of model uncertainty, called the identifiability problem of competing risks.

Assuming unit lifetime is subject to independent right censorship, the lifetime distribution is i-

dentifiable. This explains why this simplifying assumption is often made in practice. In the

present application however, unit lifetime is subject to dependent right censorship and the prob-

lem is to estimate the lifetime distribution of the unit from test data. Accordingly, the analysis

of data of the form (Z, J) inevitably has to rely on unverifiable parametric restrictions about the

probability structure of the joint survival function S(t1, t2). Otherwise at best, only some bounds

on the lifetime distribution of the unit at all stress levels will be obtained (Crowder, 2001).
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1.3 Novelty of the thesis

Literature on ALT and competing risks is vast. Needless to say ALT often generates multiple

failure modes, but a considerable research gap still remains for problems involving both. The

predominant assumption made by the few studies on competing risks in ALT is that the risks act

independently to simplify the analysis. But the competing risks problem which is yet to be fully

resolved and is therefore an open problem is to resolve issues of distribution identifiability and

failure dependence. This thesis seeks to contribute to the debate in the context of accelerated

reliability testing as follows:

(i) The question of assessing reliability information of an industrial unit is formulated in terms

of the marginal probability distribution of the unit’s lifetime. For a highly reliable unit, ALT

is required to obtain lifetime information in a timely manner. When unit lifetime is subject

to dependent right censorship during testing, the lifetime distribution is in general uniden-

tifiable at all stress levels. The theoretical latent failure time model has been postulated as

the natural modeling framework for identifying the lifetime distribution of the unit at all

stress levels with the censoring variable (a competing risk) removed.

(ii) The difficult and non trivial problem of modeling dependence between unit lifetime and

the censoring variable in a competing risks framework is discussed. The thesis utilises

parametrisation of families of copula by rank correlation (Kendall’s tau) to estimate the

copula dependence parameter using expert opinion by means of a simulation study. Cop-

ula model estimation is important because it enables the lifetime distribution of the unit to

be uniquely determined from observations of the competing risks data at all stress levels

(Zheng and Klein, 1995). Assuming true acceleration (scale transformation only), stochas-

tic dependence between the competing risks at all stress levels is captured by the estimated

copula model.

(iii) Functional forms of the observed occurrences of unit lifetime and the censoring variable

are derived from a stochastic process point of view. Because this investigation assumes

that the degradation path of a unit cannot be monitored continuously during testing, the
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underlying failure causing process is therefore not fully observable. What is observed

during testing is the performance degradation process acting as a marker (or surrogate)

process. This motivates the adoption of the framework of hidden Markov processes (HMP)

when assessing unit lifetime during testing. Under this HMP modeling framework, the

lifetime of a test unit is estimated by the first passage time of the underlying failure causing

process over a deterministic threshold. This modeling approach differs from the common

degradation modeling viewpoint which considers unit degradation an observable process

and uses measured degradation data to assess the lifetime of a test unit.

(iv) For accelerated reliability tests yielding unit lifetimes only (single failure mode) or if unit

lifetime is subject to independent right censoring, the derived functional forms are esti-

mates of the lifetime distribution of the unit at all test stress levels. Consequently, the

lifetime distribution of the unit at normal operating conditions can be extrapolated from

test data. When unit lifetime is subject to dependent right censoring, the derived func-

tional forms are subsurvival (or subdistribution) functions. Their derivatives (subdensity

functions) together with the estimated copula model and test data identify the marginal dis-

tribution functions at each test stress level. Accordingly, the lifetime distribution of the unit

at normal operating conditions can be extrapolated from test data under dependent random

censorship.

1.4 Format of the thesis

The remainder of the thesis is organised as follows. Chapter 2 focuses on modeling the stochas-

tic dependence between unit lifetime and the censoring variable during testing. The derivation of

functional forms of the observed occurrences of unit lifetime and the censoring variable in a com-

peting risks framework is the subject of Chapter 3. Chapter 4 discusses the statistical methodolo-

gy for extrapolating the use-level lifetime distribution of the unit from test data while the results

of the investigation are presented and discussed in Chapter 5. Finally, Chapter 6 concludes the

study and identifies areas for further research.
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Chapter 2

Dependence model for unit lifetime and

random censorship in life testing

2.1 Introduction

This chapter discusses statistical models that capture the stochastic dependence between unit

lifetime and the censoring variable in a life test. Dependence arises because degraded and critical

failures are linked through the degradation process of the unit. Thus a basic dependence structure

is assumed between the censoring variable X1 and unit lifetime X2 at each stress level. In terms

of Cooke’s random signs censoring model, these two failure modes are competing for the removal

of a unit from observation in a life test. Consequently, the problem under consideration here is

that of modeling dependent competing risks.

An obvious approach to studying interrelation between competing risks is to place parametric

restrictions on the joint survival function S(x1, x2) in order to study interrelations more gener-

ally. Within such parametric models, parameters that describe possible dependencies between

the censoring variable X1 and unit lifetime X2 may be estimated. Crucially however, there must

be external evidence to justify the assumed parametric model since dependence arises from a

model assumption that cannot be tested by the competing risk data alone. Otherwise a non-zero

value of the estimated dependence parameter within such parametric models is not necessarily an
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indication of the stochastic dependence between the competing risk variables (Hove, 2013).

A well known difficulty with placing parametric restrictions on S(x1, x2) is that the observable

competing risks data (Z, J) do not allow one to distinguish between the assumed model and

one with independent risks. Hence in addition to the uncertainty due to sampling error, there

is also the extra problem of model uncertainty (Hove, 2013). Besides, utilising classical fami-

lies of multivariate life distributions to describe stochastic dependencies among competing risks

variables is in general restrictive. This is because the same parametric family of univariate dis-

tributions must characterise the marginal behavior of the variables. By not allowing for different

marginal distributions, well known multivariate life distributions cannot describe different depen-

dence structures.

Other approaches (see e.g. David and Moeschberger, 1978; Meeker, Escobar and Hong, 2009)

collapse several related failure modes into fewer groups which are presumably approximately

independent and hence identifiable. Alternative approaches include mixtures, specifications of

conditional distributions and copulas. Admittedly however, stochastic models are often used for

specific purposes and clearly no single concept addresses all problems of stochastic dependence.

Hence the choice of a particular approach must be guided by a clear definition of the notion of

dependence structure being modeled.

Dependence between the censoring variable X1 and unit lifetime X2 is assumed since they are

linked through the degradation process of the unit during testing. Recall that a degraded failure

occurs when the dominant measurable performance parameter falls below an acceptable level in

a life test. When detected, a degraded failure is a signal that the useful life of the unit is likely

to end soon if it is kept on test. In this context, stochastic dependence between the censoring

variable X1 and unit lifetime X2 is the degree to which the occurrence of high (low) values of

the one risk variable impacts on the probability of occurrence of values of the other risk variable.

This notion of the dependence structure is a matter of relative ranks and is thus completely based

on copulas. For other extensively studied notions of multivariate dependence, see Renyi (1959)

and Zografos (2000) for example.
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2.2 Copulas and stochastic dependence modeling

The copula argument stems from the cumulative distribution function (CDF) transformation or

the probability integral transformation (PIT) as follows: Given any arbitrary continuous random

variables Xj with invertible CDFs Fj for j = 1, 2, the relation

Xj = F−1
j (Uj) ⇔ Uj = Fj(Xj) (2.1)

holds. The resulting random variables Uj are uniformly distributed on the interval [0, 1] and

correspond to the respective ranks of the distribution. The relation in Equation 2.1 is the basis for

the sampling of random variables in Monte Carlo simulation studies.

A remark is however required here. The transformation of the the marginal CDFs of a joint CDF

to a standard uniform distribution is not motivated by any mathematical reason. It is often useful

in statistical modeling, especially when the resulting distribution has a simpler and easily accessi-

ble representation when calculating probabilistic quantities. In multivariate extreme value theory

for example, transforming to a standard distribution is standard practice. In general however,

several transformations are possible and deciding on which transformation to use often depends

on the context. The copula representation (Qu, Zhou and Shen, 2010) standardises to a uniform

distribution function on [0, 1].

In the bivariate case (higher order extension is straightforward), the copula representation of a

joint distribution function H(., .) with marginal distribution functions Fj is given by

H(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) = P (U1 ≤ F1(x1), U2 ≤ F2(x2)) = C(F1(x1), F2(x2)).

where the 2−dimensional df C(., .) is the copula of the vector (X1, X2). Its univariate marginal

distributions are uniformly distributed on [0, 1] and hence the distribution function C(., .) has

support [0, 1]2. Consequently, a bivariate copula is a bivariate distribution function C(., .) defined

on the unit square with univariate marginal distributions transformed to uniform. The basis of the

copula approach in statistical modeling (Genest and Favre, 2007) is established firmly in Sklar

(1973)’s representation theorem. A version of the theorem is:
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Theorem 2.1 : Sklar′s Theorem. Given a joint distribution function H(x1, x2) for random

variables X1 and X2 with marginal distribution functions F1(x1) and F2(x2), then there exists a

copula C(., .) for X1 and X2 such that

H(x1, x2) = C(F1(x1), F2(x2)). (2.2)

If F1 and F2 are continuous, then C(., .) is unique; otherwise C(., .) is uniquely determined in

RanF1 ×RanF2, where RanFj is the range of Fj .

Thus by Sklar’s theorem, there exists a copula C(., .) for any joint distribution function H(., .)

that completely captures the stochastic dependence of the random variables. Because one can

express any joint distribution in copula form, the theorem is therefore completely general. If the

marginal distribution functions Fj are continuous and strictly increasing, then they have unique

ordinary inverse functions F−1
j and Theorem 2.1 implies the following corollary.

Corollary 2.1: LetH(., .) be a 2−dimensional distribution function with continuous univari-

ate distribution functions Fj , j = 1, 2 and copula C(., .) satisfying equation 2.2. Then for any

(u1, u2)
T ∈ [0, 1]2, there holds the relationship

C(u1, u2) = H(F−1
1 (u1), F

−1
2 (u2)).

Assume the marginal distribution functions Fj are not strictly increasing and are constant on

some interval [xj1, xj2]. Then any t such that xj1 ≤ t ≤ xj2 satisfies Fj(t) = uj . To ensure that

F−1
j is single valued,

F−1
j (uj) = inf{t : Fj(t) ≥ uj}; 0 ≤ uj ≤ 1

defines the quasi (or pseudo) inverse of distribution functions Fj . Thus copulas transform the

random vector (X1, X2) into another random vector (U1, U2) = (F1(X1), F2(X2)) with marginal

distribution functions uniform on [0, 1] but maintains the dependence structure of the original

variables. It follows from Equation 2.2 that multivariate distributions with different dependence

structures are obtained by combining any copula with flexible univariate distribution functions.

This is the main advantage of the copula modeling approach over classical families of multivariate

distribution when studying dependence properties of random variables.
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If the marginal distributions Fj and the copula C(., .) are continuous and differentiable, then by

Sklar’s theorem the canonical representation

h(x1, x2) = c(F1(x1), F2(x2))
2∏

j

fj(xj) (2.3)

exists where c(u1, u2) =
∂2C(u1,u2)
∂u1∂u2

is the copula density reflecting the strength of stochastic de-

pendence of the two random variables and
∏2

j fj(xj) is the joint density under the independence

assumption. It follows from Equation 2.3 that it is the copula that captures the stochastic de-

pendence of the random variables X1 and X2. This explains why the copula is also called the

dependence function.

To better comprehend the copula approach to stochastic dependence modeling, consider the fit-

ting of a multivariate distribution in classical statistics. Typically, this entails using maximum

likelihood to extract information out of the data about the chosen multivariate parametric family

of distributions. But by choosing a multivariate parametric family of distributions, one deter-

mines a specific dependence structure. If for example a multivariate Gaussian distribution is

chosen, its dependence structure is completely characterised by the covariance matrix.

The copula method transforms the random variables to a common uniform [0, 1] domain and

dependence modeling occurs in this common domain. Obviously the dependence structure of

two uniformly distributed random variables is clearly unidentifiable since there are infinitely

many such dependencies. Just as in classical statistics however, copula based methods ensure a

unique dependence structure as follows. The copula, and hence the chosen dependence structure

is determined by simply choosing the marginal distributions.

2.3 Families of commonly used multivariate copulas

Different families of copulas exist in the literature and within each are a number of copulas

which may be useful when constructing stochastic models with different dependence structures.

For families of copulas to be considered useful in statistical applications (see e.g. Durante and

Sempi 2010), they need to possess some probabilistic interpretation which suggests situations
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where the family could be naturally applicable. Within a given family, there must also exist a

variety of copulas that describe a wide range of dependence. Above all, members of a parametric

family need to have closed form expressions for easy simulation and hence goodness-of-fit tests.

This section discusses copula families with extensive applications in the literature.

2.3.1 Copulas of elliptical distributions

Elliptical copulas are obtained from elliptical distributions by a direct application of Sklar’s theo-

rem. Examples of commonly used elliptical distributions are the multivariate normal and the mul-

tivariate Student-t distributions. A d−dimensional random vector X = (X1, X2, ..., Xd) possess-

es an elliptical distribution with a deterministic mean vector µ ∈ R
d, a positive definite covari-

ance matrix Σ ∈ R
d×d and a characteristic generator of the distribution g : [0,∞) → (−∞,∞),

denoted X ∼ Ed(µ,Σ, g) if it can be expressed as

X
d
= µ+RAU (2.4)

assuming the matrix A exists where
d
= stands for equality in distribution. The remaining com-

ponents of Equation 2.4 are defined as follows. If it exists, the matrix A ∈ R
d×k is such that

ATA = Σ is the rank factorisation of Σ, the d-dimensional random vector U is uniformly dis-

tributed on the sphere

S
d−1 =

{
u ∈ R

d : u21 + ...+ u2d = 1
}

and R is a non-negative random variable having density

fg(r) =
2πd/2

Γ(d/2)
rd−1g(r2), r > 0.

It is stochastically independent of U. For more details on elliptical distributions, see for ex-

ample Durante and Sempi (2010) and the numerous references therein. When the characteristic

generator of the distribution is

g(s) = (2π)−
d
2 exp

(
−s
2

)
,
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then the d−dimensional random vector X = (X1, X2, ..., Xd) is distributed as multivariate Gaus-

sian. In the same way, when it is

g(s) = m

(
v + s

v

)− d+v
2

where the constant m is carefully chosen, then X has a multivariate Student’s-t distribution with

v degrees of freedom. Elliptical copulas are obtained from their respective multivariate dfs by a

simple application of Sklar’s Theorem. Thus the multivariate Gaussian copula is represented as

Cθ(u1, ..., ud) = Φθ

(
Φ−1(u1), ...,Φ

−1(ud)
)

where θ ∈ [−1, 1] is the copula dependence parameter and Φ−1 is the inverse of the univariate

Gaussian distribution function. In the same way, denote by θ =
{
(v,Σ) : v ∈ (1,∞),Σ ∈ R

d×d
}

the dependence parameter for the multivariate Student’s-t copula. Also let tv denote the univariate

t distribution with v degrees of freedom. Then by Sklar’s Theorem, the multivariate Student’s-t

copula is expressed as

Cθ(u1, ..., ud) = tv,Σ
(
t−1
v (u1), ..., t

−1
v (ud)

)

where tv,Σ is the multivariate Student’s t distribution with v degrees of freedom and correlation

matrix Σ. In general, the multivariate Gaussian distribution arises through the multivariate Cen-

tral Limit Theorem and is thus natural. The multivariate Student’s-t distribution is also known

(see e.g. Fang, Kotz and Ng, 1990) to fall into the multivariate normal variance mixtures class

with representation

X
d
= µ+

√
WZ

where Z ∼ Nd(0,Σ), µ ∈ R
d and the random variable W is independent of Z. Consequently, the

multivariate Student’s-t distribution is also natural. But since elliptical copulas are derived from

their respective multivariate dfs by simply applying Sklar’s Theorem, then the multivariate t and

Gaussian copulas do not necessarily suggest natural situations where they could be applicable.

2.3.2 Extreme value and Marshall - Olkin copulas

Denote by Xi = (Xi,1, ..., Xi,d) independent copies of the random vector X = (X1, ..., Xd) with

joint df H(x1, ..., xd). The case considered in this thesis is when d = 2 where the censoring
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variable X1 and unit lifetime X2 are in competition to remove the unit from observation in a

life test. Accordingly, Xi = (Xi,1, Xi,2), i = 1, ..., n is a bivariate sample at each stress level.

Assume the pairs (Xi,1, Xi,2), i = 1, ..., n are i.i.d. at each stress level. Then they have a common

bivariate df H(x1, x2) with univariate margins F1(x1) and F2(x2). Denote by

Mn,1 = max (X1,1, ..., Xn,1)

Mn,2 = max (X1,2, ..., Xn,2)

the component-wise maxima for the censoring variableX1 and unit lifetimeX2 respectively. Also

denote by Mn = (Mn,1,Mn,2) the vector of these component-wise block maxima. Therefore

M1 = (max(X11),max(X12)) = (X11, X12); M2 = (max(X11, X21),max(X12, X22)) and so

on. Clearly, the sequence {Mn} is non-decreasing in n and interest is in the multivariate limiting

distribution for Mn as n → ∞ when appropriately normalised (Embrechts, Kluppelberg and

Mikosch 1997). In particular, interest is in weak convergence results for centred and normalised

maxima.

Assume sequences of normalising constants anj = (an1, ..., and) and bnj = (bn1, ..., bnd) such

that anj > 0 and bnj ∈ (−∞,∞) exist. For the bivariate case, j ∈ (1, 2). If component-wise

maxima over n are properly rescaled, then

lim
n→∞

P

(
Mn,1 − bn1

an1
≤ x1,

Mn,2 − bn2
an2

≤ x2

)
= lim

n→∞
Hn (an1x1 + bn1, an2x2 + bn2) (2.5)

converges in distribution to a proper bivariate extreme value distribution. In the same way,

lim
n→∞

P (Mn,1 ≤ an1x1 + bn1) = F n
1 (an1x1 + bn1)

and

lim
n→∞

P (Mn,2 ≤ an2x2 + bn2) = F n
2 (an2x2 + bn2)

also converge in distribution to marginal limiting distributions ofMn,1 andMn,2 as n→ ∞. Often

these limiting marginal distributions are continuous univariate extreme value distributions of the

Fréchet, Gumbel or Weibull type (McNeil, Frey and Embrechts 2005). By Sklar’s Theorem, the

multivariate limiting distribution functionHn (an1x1 + bn1, an2x2 + bn2) admits a copula, sayCn
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such that

Hn(an1x1 + bn1, an2x2 + bn2) = Cn
{
[F n

1 (an1x1 + bn1)]
1/n , [F n

2 (an2x2 + bn2)]
1/n
}
.

Following Equation 2.5, let

lim
n→∞

Hn (an1x1 + bn1, an2x2 + bn2) → W (x1, x2); n→ ∞

where W (x1, x2) is a proper bivariate extreme value distribution. Assume W (x1, x2) has an

associated copula Cn(u1, u2). Then

Cn
(
u
1/n
1 , u

1/n
2

)
→ Cn(u1, u2); n→ ∞ (2.6)

where Cn is the copula of the limiting distribution W (x1, x2), called the extreme value copu-

la. Equation 2.6 justifies (asymptotically) the use of an extreme value copula when modeling

component-wise maxima. Hence extreme value copulas are a natural choice when describing

multivariate extremes in the data.

Within the reliability context, extremal dependence tends to be induced by random extremal

events. Typically, these are random fatal shocks causing common cause failures. An extreme

value copula that can capture this extremal dependence is the Marshall-Olkin copula which comes

from the fatal shock model of Marshal and Olkin (1967) as follows.

Consider a unit with two components which experiences three independent fatal shocks. A type

k ∈ (1, 2) shock occurs at a random time Tk with probability P (Tk > t) = e−λkt and destroys

component Ck. A shock causing a common cause failure at random time T12 with probability

P (T12 > t) = e−λ12t destroys both components simultaneously. Assuming no other failure caus-

es, then the lifetimes of the components areX1 = min(T1, T12) andX2 = min(T2, T12) with uni-

variate survival functions S1(x1) = exp (− (λ1 + λ12) x1) and S2(x2) = exp (− (λ2 + λ12) x2).

But a common cause failure induces statistical dependence between component lifetimes. Hence

their joint survival probability is given by

S(x1, x2) = P (X1 > x1, X2 > x2) = P (T1 > x1)P (T2 > x2)P (T12 > max(x1, x2))

= exp {− (λ1 + λ12) x1 − (λ2 + λ12) x2 + λ12min(x1, x2)}

= S1(x1)S2(x2)min [exp (λ12x1) , exp (λ12x2)] .
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Letting αk = λ12

λk+λ12
for k ∈ (1, 2), then exp (λ12xk) = Sk(xk)

−αk and consequently the

Marshall-Olkin (or survival) copula of (X1, X2)
T

is given by

C̄α1,α2(u1, u2) = u1u2min
(
u−α1
1 , u−α2

2

)
.

Thus the Marshall-Olkin copula is motivated by reliability considerations and hence, provides

physical justification for natural situations where it can be applied.

2.3.3 The Archimedean family of copulas

Archimedean copulas are easily constructed and they possess nice properties. Following Ling

(1965), a copula is called Archimedean if it admits the simple algebraic representation

C(u1, ..., ud) = ψ[−1](ψ(u1) + ...+ ψ(ud)), (u1, ..., ud) ∈ [0, 1]d (2.7)

for some univariate Archimedean generator functionψ and its pseudo-inverseψ[−1]. The Archimedean

generator function ψ satisfies

(i) ψ : [0, 1] → [0,∞) with ψ(1) = 0.

(ii) ψ is a continuous and strictly decreasing function and its pseudo-inverse ψ[−1] with domain

[0,∞) and range [0, 1] is given by

ψ[−1](x) =





ψ−1(x) if 0 ≤ x ≤ ψ(0)

0 if ψ(0) ≤ x ≤ ∞

(iii) ψ[−1] = ψ−1 if ψ(0) = ∞.

The necessary and sufficient condition for the generator function ψ to generate an Archimedean

copula in dimension d is that it must possess an analytical property called d - monotonicity in

(a, b) ∈ [0, 1]. That is

(i) ψ is differentiable in [0, 1] up to order d− 2.
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(ii) The continuous derivatives satisfy (−1)kψ(k)(x) ≥ 0 for any k ∈ {1, ..., d− 2} and for any

x ∈ [0, 1].

(iii) (−1)d−2ψ(d−2) is non-negative, nonincreasing and convex in (a, b) ∈ [0, 1].

For more details on the d - monotonicity of the Archimedean generator function ψ, see for ex-

ample McNeil and Neslehova (2009) and the numerous references therein. For the bivariate case

however, ψ induces a bivariate Archimedean copula if and only if it is convex, that is, if its second

derivative ψ(2) ≥ 0 (Ling, 1965; Schweizer and Sklar, 1983).

Assuming a bivariate Archimedean copula is a suitable dependence model for the bivariate com-

peting risks test data, then the dependence structure of the vector (X1, X2) is completely char-

acterised by the univariate generator function ψ. This is because Archimedean copulas arise

through special stochastic modeling and their dependence properties reduce to certain techni-

cal conditions (analytical properties) of single-valued Archimedean copula generators being met.

Consequently, inference for Archimedean copulas is considerably simple when compared to oth-

er copula families.

Different Archimedean generators also provide different dependence structures and a number

of different Archimedean copulas already exist in the literature. Accordingly, the Archimedean

family of copulas flexibly describes a wide range of dependence structures. The connection of

Archimedean copulas with frailty models (see for example Marshall and Olkin, 1988; Oakes,

1989) provides a probabilistic interpretation of Archimedean dependence structures. Common-

ly used Archimedean copulas are available in closed form and examples of some important

Archimedean generators and their respective Archimedean copulas are listed in Table 2.1.
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Name Copula Cθ(u1, u2) Generator ψ(x)

AMH u1u2

(1−θ(1−u1)(1−u2))
ln1−θ(1−t)

t

Clayton max
(
(u−θ

1 + u−θ
2 − 1)−

1
θ , 0
)

1
θ
(t−θ − 1)

Frank −1
θ
ln
(
1 + (e−θu1−1)(e−θu2−1)

e−θ−1

)
−ln

(
e−θt−1
e−θ−1

)

Gumbel exp
(
(−ln(u1))θ + (−ln(u2))θ

) 1
θ (−ln(t))θ

Joe 1−
(
(1− u1)

θ + (1− u2)
θ + (1− u1)

θ(1− u2)
θ
) 1

θ −ln(1− (1− t)θ)

Table 2.1: Prominent Archimedean families of copulas. AHM denotes Ali - Mikhail - Haq.

2.4 Copula model for dependent competing risks

Multivariate models aside, which model to use is in general a very difficult problem with no

obvious answer even in the univariate case. In the words of McCullagh and Nelder (1983), ”all

models are wrong but some are more useful than others”. Model selection strategies tend to be

based on model properties, predictive accuracy, diagnostic tools etc. Other important consider-

ations in statistical modeling (Genest and Remillard 2006) include mathematical simplicity and

convenience, interpretability and fitness for purpose.

It is however not always enough to use any statistical technique simply because it is mathemat-

ically convenient. Rather, the theoretical ideas on which the technique in question is based and

the situation being modeled crucially have to be understood. When unit lifetime X2 can be right

censored by a dependent variable X1 in a life test, then the random variables min(X1, X2) and

max(X1, X2) are order statistics for X1 and X2. Denote by F1 and F2 the distributions of X1

and X2 respectively. Then the random time at which a unit is removed from observation at each

stress level is Z = min(X1, X2) and its distribution function is given by

P (min(X1, X2) ≤ z) = F1(z) + F2(z)− C (F1(z), F2(z))

where P (min(X1, X2) ≤ z) is the distribution function of Z and C(., .) is the associated copula
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of the vector (X1, X2). For more details, see Nelsen (1999), p. 25. Since unit lifetime X2 and

the censoring variable X1 are competing for the removal of a unit from observation in a life test,

only the minimum of the competing risks variables is observable. Assuming absolute continuity

of the risk variables, a characteristic feature of the observable data is that one variable must be

smaller than the other. Consequently, the joint distribution (and hence the copula model) should

be reflective of this feature. In this sense, it seems natural to model dependence between unit

lifetime X2 and the censoring variable X1 by the order statistics copula.

But obtaining a copula representation of the joint distribution of order statistics corresponding

to X1 and X2 presents problems. For example, the representation by Anjos, Kolev and Tanaka

(2005) requires the associated copula of the vector (X1, X2) or both of F1 and F2 to be completely

known. In this study however, only the observable competing risks data are available at each

stress level. Accordingly, neither the associated copula of the vector (X1, X2) nor the marginal

distributions of the risk variables are estimable from competing risks data alone.

The work of Zheng and Klein (1995) suggest that a reasonable estimate of the copula depen-

dence parameter θ, not the functional form of the copula is the important factor when modeling

dependence between competing risks variables. This is the modeling approach adopted in for

example Bunea and Mazzuchi (2007), Escarela and Carriere (2003), Kaishev, Dimitrova and

Haberman (2007) and will also be followed in this thesis. The difficulty with this approach is

that the copula dependence parameter cannot be estimated from the competing risks data alone.

Consequently, among the important criteria for selecting a family of parametric copulas is that

the dependence structure must be summarised by a dependence measure that can be assessed

using expert opinion. Within the chosen family, different copulas must exist to model different

dependence structures and the copulas must also be available in closed form for easy simulation.

The common dependence measure within the class of elliptical distributions is linear correlation.

However, it has no simple direct interpretation in terms of probabilities and is thus not easily

assessed by experts in a defensible way. Besides, linear correlation is not invariant under general

transformations that are not necessarily linear. Further, copulas of elliptical distributions are

typically not available in closed form and are therefore difficult to work with. Regarding extreme

value copulas, there is no obvious reason to suggest existence of multivariate extremes in data
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on unit lifetime and the censoring variable. The Marshall-Olkin type distributions on the other

hand have a singularity along x1 = x2. This is a major drawback in that in a competing risks

framework, the risk variables are assumed to be absolutely continuous.

The dependence structure within the class of Archimedean copulas can be summarised by rank

correlation. As a dependence measure, rank correlation (Kendall’s τ henceforth) has a simple and

direct interpretation in terms of probabilities of observing concordance and discordance pairs

(Hove, 2013). Accordingly, it is easily assessed by experts in a defensible way. A number of

Archimedean generators exist and these provide different dependence structures. As a direct

consequence, the Archimedean class of copulas describes a wide range of dependence structures.

Above all, copulas within the Archimedean family are generally available in closed form. Hence

they provide for mathematical simplicity and convenience. On the basis of the discussed copula

classes and their properties, the Archimedean class of copulas is preferred in this thesis.

2.4.1 Which Archimedean copula

Assume the stochastic dependence between unit lifetime X2 and the censoring variable X1 at

each test stress level is captured by a copula from within the Archimedean family. However, the

exact Archimedean copula is never known in advance and an important problem (see e.g. Nelsen

2005) is:

Assuming an Archimedean copula is the appropriate dependence model for test data, what are

the statistical procedures for choosing the right family?

But dependence between unit lifetime X2 and the censoring variable X1 can potentially vary

from extreme negative through independence to extreme positive dependence. Accordingly, the

chosen Archimedean copula must attain its Frechet lower and upper bound as well as coinciding

with the product copula as θ → 0. Thus, the important criteria used in this thesis when selecting

the appropriate Archimedean copula is that it must capture the full range of dependence. Such

copulas are called comprehensive copulas and the only examples in the Archimedean class are

the Clayton and the Frank families (Nelsen, 1999).
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The Clayton copula is asymmetric, exhibiting lesser dependence in the positive tail and greater

dependence in the negative tail. On the other hand, the Frank copula is a symmetric Archimedean

copula. There is however no physical justification to suggest asymmetries between unit lifetime

X2 and the censoring variable X1. As a result, the symmetric Frank copula is preferred ahead of

the asymmetric Clayton copula in this thesis.

Assume the dependence between unit lifetimeX2 and the censoring variableX1 at each test stress

level is adequately described by Frank’s copula introduced by Genest (1987). It is given by

CF
θ (u1, u2) = −1

θ
ln

[
1 +

(e−θu1 − 1)(e−θu2 − 1)

(e−θ − 1)

]
(2.8)

where θ ∈ (−∞,+∞)\{0} is the copula dependence parameter. The relationship between K-

endall’s τ and the Frank copula dependence parameter θ, see e.g. Escarela and Carriere (2003),

is given by

[1−D1(θ)]

θ
=

1− τ

4

where

D1(θ) =
1

θ

∫ θ

0

t

et − 1
dt

is a Debye function of the the first kind for θ > 0. That is

τ = 1− 4

θ

(
1− 1

θ

∫ θ

0

t

et − 1
dt

)
. (2.9)

But Debye functions, even of the first kind, do not have explicit integral-free expressions. Hence

for an estimated τ from expert opinion, the Frank copula dependence parameter θ is obtained by

solving Equation 2.9 for θ using numerical methods.
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2.5 Estimation of the Frank copula dependence parameter

The Frank copula parameter θ measures the strength of functional dependence between unit

lifetime X2 and the censoring variable X1 at each stress level. To compute its estimate θ̂, a

random sample (x11, x21), (x12, x22), ..., (x1n, x2n) from (X1, X2) is in general required. But

since unit lifetime is subject to dependent random censorship in a life test, it is the random sam-

ple (min(x11, x21)) , (min(x12, x22)) , ..., (min(x1n, x2n)) from min (X1, X2) that is observable.

Obviously, such data alone contain not sufficient information to estimate θ. Hence, the analysis

inevitably has to rely on subjective judgements by subject matter experts (Hove, 2013). This is

common practice in engineering reliability and science in general where uncertainties in knowl-

edge often exist and individual expertise are increasingly recognised as just another type of data

(see e.g. van Noortwijk, Dekker, Cooke and Mazzuchi, 1992; Kurowicka and Cooke, 2006) and

the numerous references therein.

2.5.1 Aspects of the problem to elicit

A unique copula associated with the pair (X1, X2) is invariant under strictly increasing transfor-

mations of the marginal distribution functions F1(x1) and F2(x2). Since the dependence between

X1 and X2 is characterised by this copula, it follows that an appropriate measure of dependence

must also exhibit the same scale-invariance property. One such dependence measure is the rank

correlation which measures the degree of monotone relationships between variables.

The best known rank based distribution-free measures of dependence are Spearman’s ρ and K-

endall’s τ . They are both calculated on the ranks of the data and not on the actual data values

themselves. It is therefore not surprising that a relationship exists between these rank based de-

pendence measures and copula functions. In terms of the copula function (see e.g. Carriere,

1994; Nelsen, 1999), Spearman’s ρ and Kendall’s τ are correspondingly given by

ρX1X2 = 12

∫ ∫

I2
CF (u1, u2)du1du2 − 3

and

τX1X2 = 4

∫ ∫

I2
CF (u1, u2)dC

F (u1, u2)− 1.
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Parameterisations of families of copulas by the rank correlation implies that knowledge of these

rank based dependence measures identifies the copula. Hence, the rank correlation can be taken

as the uncertain quantity to be elicited when fitting the Frank copula model to dependent com-

peting risk data. When planning an elicitation for a single uncertain quantity (rank correlation in

this case), good guidance exists in the literature on the aspects of the problem to elicit. Cooke

(1991), Cooke and Goossens (2000) and Bedford and Cooke (2001) all stress the need to elicit

on observable quantities only.

The practical reason for eliciting on observable quantities only is that experts are more comfort-

able with answering questions on such quantities. In particular, experts must be asked to give

subjective judgements on quantities that in principle can be measured by a physical though not

necessarily practical procedure they are familiar with. Whenever possible, assessment questions

must be asked in frequency terms instead of directly to minimize cognitive biases (Gigerenzer

1991, Gigerenzer, Hoffrage and Kleinbolting, 1991).

Admittedly, the rank correlation is clearly not an observable quantity. To indirectly infer the

appropriate rank correlation number, other derived elicitation or query variables which can be

regarded as observable and are related to rank correlation have to be identified. Because expert-

s will assess these query variables, it is important that the query variables are also familiar to

experts. Spearman’s rho is a widely used measure of rank correlation largely because its compu-

tation is very simple. That is, it is Pearson’s product moment correlation computed on the ranks

rather than the actual data values themselves.

The major disadvantage of Spearman’s ρ is that it has no simple direct interpretation in terms

of probabilities and is thus difficult to quantify. Though usually considered more difficult to

compute than Spearman’s rho, Kendall’s τ , an alternative rank correlation does have a simple

and direct interpretation in terms of probabilities of observing concordance and discordance pairs

(Conover, 1999). Its distribution also rapidly converges to the normal distribution and thus, has

a better normal approximation. Hence Kendall’s τ (rank correlation henceforth) is the uncertain

quantity to be elicited and concordance probability is the query variable to be assessed by experts

in this thesis.
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2.5.2 The elicitation process

Elicitation is a part of the general process of statistical modeling (Garthwaite, Kadane and O’Hagan,

2005) in that the usual principles of statistical modeling apply. It involves the following:

(1) The expert makes a finite (usually small) number of specific judgements about the uncertain

quantity, rank correlation in this case. These judgements are summaries of his or her distri-

bution and examples include the mean, minimum, maximum or some specified percentiles.

The basic assumption for the elicited distribution to be considered useful is that judgements

about these distributional summaries capture the important features of the expert’s beliefs.

(2) The analyst constructs a fully specified (joint) probability distribution from the elicited

summaries. The goal is to express in probabilistic form, the expert’s current knowledge

since an elicited distribution rather than a single point estimate for the unknown quantity

best describes the uncertainty about the quantity of interest. This however remains an im-

portant but ill-posed problem because many other possible distributions may fit the expert’s

judgements equally well.

(3) The next stage is to check that the fitted distribution matches the expert’s beliefs. Hence

there is always the option of returning to check if the fitted distribution accurately repre-

sents the expert’s knowledge. This makes elicitation almost invariably an iterative process.

Elicitation is thus defined as the process of formulating the beliefs of an expert about an uncertain

quantity into a probability distribution for that quantity. The term expert is in general often

associated with special knowledge regarding the subject matter under consideration. As used

here however, an expert refers to one whose knowledge is to be elicited. As a result, elicitation is

considered a success if the fitted distribution represents the expert’s knowledge accurately, with

no regard to how good the expert’s knowledge is.

Various approaches for eliciting expert knowledge regarding dependence are suggested in Clemen

and Reilly (1999). A thorough investigation is reported in Clemen, Fischer and Winkler (2000)

where a discussion of some desirable characteristics for dependence assessment methods is given.

To be practically useful, a dependence assessment method should:
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(1) Have a sound and defensible probabilistic foundation for modeling.

(2) Be general enough to allow dependence modeling in a number of situations.

(3) Be directly linked to the modeling procedure and have a clear and natural interpretation for

easy of assessment..

Eliciting probability distributions from experts is a complex process. Typically, it entails select-

ing and training experts regarding the identified summaries to be elicited for the problem at hand.

Instead of choosing real experts and obtaining their distributional summaries, the elicitation pro-

cess is demonstrated by means of a simulation study in this thesis. Crucially however, all stages

of the elicitation process are followed in the simulation study.

2.5.3 Expert elicitation: A simulation study

Denote by
(
X

(1)
1 , X

(1)
2

)
and

(
X

(2)
1 , X

(2)
2

)
two independent random draws from a population of

test units (X1, X2). Label them units 1 and 2 respectively where X
(1)
1 and X

(2)
1 are the random

censoring times and X
(1)
2 and X

(2)
2 are the lifetimes for the two test units. The expert could be

asked the assessment question:

Suppose it turns out in a life test that unit 2 has a longer lifetime than unit 1, that is X
(1)
2 < X

(2)
2 ,

what is your probability that a degraded failure for unit 1 would also occur before the degraded

failure for unit 2 in an ALT experiment?

This assessment question is asking directly for a concordance probability

P
[(
X

(1)
1 −X

(2)
1

)(
X

(1)
2 −X

(2)
2

)
> 0
]

and denote this probability be pc. Conversely, the probability that a degraded failure for unit

2 would occur before the degraded failure for unit 1 given that X
(1)
2 < X

(2)
2 is a discordance

probability. In terms pc, it is given by

P
[(
X

(1)
1 −X

(2)
1

)(
X

(1)
2 −X

(2)
2

)
< 0
]
= 1− pc.
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If experts can assess concordance probability, then Kendall’s τ (uncertain quantity) is obtained

from the assessed concordance probability by

τ = 2pc − 1. (2.10)

The concordance probability pc can be considered an observable quantity because it is a physical-

ly realisable quantity and its assessment has a natural interpretation in frequency terms. Specifi-

cally, pc is the relative frequency for
{
X

(1)
1 < X

(2)
1 |X(1)

2 < X
(2)
2

}
when a large sample of pairs of

independent draws from a population of test units is observed (Bunea & Bedford 2002). Clearly,

pc = P
(
X

(1)
1 < X

(2)
1 |X(1)

2 < X
(2)
2

)

is a probability statement on a single variableX1 and is therefore easier to communicate to experts

than say a joint probability. Since any two independent draws from the population of test units

would resolve into one of two states (either concordant or discordant), then a single subjective

probability from the expert is the required response.

Recall that often in industrial ALT, very few units (usually prototype) are available for life testing

due to cost constraints. To obtain sufficient failure data quickly and in a more cost effective

manner, the few test units are repaired after failure and tested continuously. In this sense, the two

independent draws
(
X

(1)
1 , X

(1)
2

)
and

(
X

(2)
1 , X

(2)
2

)
will have the interpretation of repairable test

units from the population (X1, X2) of test units. When a degraded or critical failure is detected

during testing, the failed unit will have to be repaired to a state as good as new since ALT deals

with new units.

To yield the right data structure for the present setup, failure times are simulated from models tai-

lored for situations where the variable of interest (unit lifetime) is subject to random censorship.

Few such models have been proposed in the reliability literature. The one that is well established

is the random signs censoring model due to Cooke (1996). Different refinements of this model

have also been introduced in the reliability literature. They include the delay-time (DT) model

(Christer, 2002) and the repair-alert (RA) model (Lindqvist, Stove, and Langseth, 2006). The

later has since been modified further by Bedford and Alkali (2009). In this thesis however, unit

failure times are simulated from the alert-delay (AD) model of Dijoux and Gaudoin (2009), a

dependent competing risk model that is midway between the DT and RA models.
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Though originally developed in maintenance studies, the AD model is extended to an ALT setting

in this thesis as follows: Consider a unit which should experience a critical failure in a life test

at some random time X2. Assume the system exhibits inferior performance during testing at

some random time pX2 before X2 where p ∈ [0, 1]. Inferior performance acts as a signal (an

alert) to the life testing team that a critical failure is approaching. But a critical failure is not

expected to occur immediately after the alert. Hence an additional time ξ after pX2 is introduced

and corresponds to the delay allowed before the performance of the unit falls below industrial

standards (degraded failure) assuming the signal is detected. Otherwise the system is kept on test

until it experiences a complete loss of function (critical failure).

This yields the AD model

X1 = pX2 + ξ (2.11)

where X2 and ξ are two independent lifetime variables since there is no particular reason to

link the two life variables. Particular cases of the AD model for special choices of the model

parameters are:

(1) If p = 0, then X1 = ξ. This implies that X1 and X2 are statistically independent. But since

degraded and critical failure are assumed to be linked through the degradation process of

the unit, p 6= 0.

(2) If p = 1, then X1 = X2 + ξ and hence Z = min(X1, X2) = X2 always. This implies

that a unit is removed from observation in a life test only if it reaches the end of its useful

life. In the present application however, unit lifetime X2 is subject to random censorship.

Accordingly, a unit can also be removed from observation in a life test whenever a degraded

failure is detected during testing even if it has not reached the end of its useful life. This

happens with probability q 6= 0 and consequently p 6= 1.

(3) X1 = pX2 implies that a degraded failure is always responsible for removing the unit

from observation during testing. In the present formulation however, the signal may not be

detected with probability 1− q 6= 0. In this case, the unit is kept on test until it experiences

a complete loss of function (critical failure).
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Observed sequences of the failure times Z = min(X1, X2) along with the identity of which

mode removed the unit from observation in a life test are generated as follows:

(1) Any life distribution is in theory possible for unit lifetime X2 and the life variable ξ. To

account for system degradation, lifetimes for the two units
(
X

(1)
1 , X

(1)
2

)
and

(
X

(2)
1 , X

(2)
2

)
,

that is X
(1)
2 and X

(2)
2 respectively are simulated from the Weibull distribution. For simplic-

ity, the life variable ξ is simulated from the exponential distribution.

(2) For a specified value of p, the corresponding times to a degraded failure for the two units

namely X
(1)
1 and X

(2)
1 are obtained from the AD model. To fully exploit the residual life of

the unit, the signal must not be delivered too early. This corresponds to choosing a value

of p close enough to one.

(3) Only consider cases when it turns out that X
(1)
2 < X

(2)
2 . In practice, this can be easily de-

termined in ALT by testing the two systems at higher test stresses and retaining cases when

unit 1 has a shorter lifetime than unit 2. Assume the count of such cases from the simulation

is m2 for example. Out of these m2 cases count how many are such that {X(1)
1 < X

(2)
1 },

say m1. Estimate the concordance probability pc by m1

m2
and obtain the rank correlation

from τ = 2pc − 1 which is the target of estimation.

(4) Repeat the simulations several times, say k to obtain τ1, ..., τk. Use these k simulated rank

correlation values to obtain an estimate of the expert’s distribution using nonparametric

methods such as the histogram plot or a kernel density estimate.

A remark is however necessary here. The expert’s distribution is not pre-formed and waiting to

be extracted. Rather, the expert only responds when prompted. This implies that the way the

elicitation question is phrased is an important aspect of the elicitation process. Accordingly, the

given simulation design will likely yield a reasonable and hence practically useful estimate of

the expert’s distribution for the assessment question under consideration. In a typical elicitation

however, the expert is asked to only give summaries (usually few) of his or her distribution. Ac-

cordingly, few summaries of the estimated expert’s distribution are obtained from the k simulated

rank correlation values. The choice of what summaries to elicit largely depends on the choice of
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the distributional form one intends to fit to those summaries.

A subjective distribution that uses the same assumption about the mean (some functional for-

m for the unknown distribution) as Project Evaluation and Review Technique (PERT) networks

used for project planning is the PERT distribution. It is frequently used in applications to mod-

el expert opinion and requires as input the minimum, maximum and most likely values for the

uncertain quantity. The PERT function then finds a distributional shape that fits these restric-

tions. The syntax in ModelRisk software is VosePERT(min,mode,max). A version of the

PERT distribution which offers some degree of control of peakedness and hence uncertainty of

the elicited distribution is the modified PERT distribution. In ModelRisk software, the syntax

is VosePERT(min,mode,max,$\gamma$) where an increase (decrease) in the value of γ

assigns more (less) peakedness to the the elicited distribution. When γ = 4, the modified PERT

becomes the standard PERT distribution.

Thus the few summaries that would be obtained from the estimated expert’s distribution are the

minimum, maximum and most likely values. Uncertainty about Kendall’s τ is then modeled

in ModelRisk software by fitting a fully specified distribution to these summaries. If the fitted

distribution adequately matches the nonparametric expert’s distribution estimated from the k sim-

ulated rank correlation values, then elicitation is considered to have been a success. A specified

percentile or summary of the fitted distribution is then used to obtain an estimated value of K-

endall’s τ , the uncertain quantity. Given the estimated Kendall’s τ value, Equation 2.9 is then

solved for the Frank copula dependence parameter θ. Consequently, the copula model that cap-

tures the stochastic dependence between the censoring variable X1 and unit lifetime X2 in a life

test is estimated.

2.5.4 Numerical results

The concordance probability is assessed by means of a simulation study using the R code in

Appendix A. The AD model is preferred for simulating failure times because it is tailored for

cases where unit lifetime is subject to random censorship in a competing risk context as is the

case in this study. Equation 2.10 is used to generate an estimated value of Kendall’s τ from the
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assessed concordance probability. The simulation is repeated for k = 1000 times yielding the

same number of estimated values for Kendall’s τ .

The expert’s distribution of Kendall’s τ (the uncertain quantity) is estimated nonparametrically

from the k generated rank correlation values. Specifically, the R command plot(density(x))

where x is the vector of the generated rank correlation values is used to get a kernel estimate of

the expert’s density. Figure 2.1 shows the estimated expert’s distribution.

Figure 2.1: Kernel density estimate of the expert’s distribution from simulated data.

Instead of giving his or her distribution for the uncertain quantity, the expert is asked to give a few
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summaries of the distribution. Accordingly, only the minimum, mode and maximum values of K-

endall’s τ are obtained from the simulated data. These values are summaries of the expert’s distri-

bution in Figure 2.1. From the vector x of generated values of Kendall’s τ , the sample minimum,

mode and maximum are obtained in R using min(x), names(sort(-table(x)))[1] and

max(x) respectively. In this simulation study, the resulting summaries of the expert’s distribu-

tion are minimum=-0.1466667; mode=0.1733333 and maximum=0.5733333.

The negative values of Kendall’s τ corresponds to cases where there is a disagreement between

the rankings of X1 and X2. That is, the ranking of one risk variable is mostly in the reverse of

the other risk variable and corresponds to cases where X
(1)
1 > X

(2)
1 is observed in a life test even

though it has been observed that X
(1)
2 < X

(2)
2 . However, most of the simulated cases (see Figure

2.1) yield rankings that are mostly in agreement. This makes sense because in practice, random

censorship is expected to occur close to the end of the unit’s useful life.

Uncertainty about Kendall’s τ is then modeled by fitting a fully specified distribution to the

sample minimum, mode and maximum values of the uncertain quantity. The motivation is that a

real expert would have been asked to give only these summaries in a typical elicitation process.

Elicitation will be a success if the fitted distribution closely approximates the expert’s distribution

in Figure 2.1. There are two interfaces for fitting a fully specified distribution to distribution

summaries of the uncertain quantity in ModelRisk. In one, ModelRisk selects the distribution

while in the other interface, the analyst (or expert) draws own distribution.

Using the given minimum, mode and maximum values of Kendall’s τ , the parameters of the

elicited PERT (modified PERT with γ = 4) distribution in Figure 2.2
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Figure 2.2: Elicited PERT distribution.

are given in Table 2.2.

Parameter PERT

Mean 0.18667

Standard deviation 0.13569

50th percentile 0.18352

Table 2.2: Parameters of the elicited PERT distribution.

In terms of the general shape, the elicited distribution in Figure 2.2 to some extent resembles

the expert’s distribution in Figure 2.1. However, it is flatter and hence more uncertain than the
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expert’s distribution. Recall that the standard PERT distribution is the modified PERT with γ = 4.

Thus to better match the expert’s distribution, γ must be increased to assign more peakedness to

the elicited distribution while retaining the same distributional summaries. The resulting modified

PERT distribution with γ = 6 is given in Figure 2.3

Figure 2.3: Elicited modified PERT distribution with γ = 6.

and its parameters are given in Table 2.3.
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Parameter Modified PERT

Mean 0.18333

Standard deviation 0.11958

50th percentile 0.18071

Table 2.3: Parameters of the elicited modified PERT distribution.

Still, the elicited distribution in Figure 2.3 is flatter than the expert’s distribution though minor

improvement is apparent in the distributional shape. Model risk also allows the analyst (or expert)

to draw own distribution within the defined range of values of the uncertain quantity. This offers

greater flexibility in terms of distributional shapes to match expert opinion. Figure 2.4

Figure 2.4: Elicited distribution by plotting.
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gives the plotted distribution defined by the parameters in Table 2.4.

Parameter Plotted distribution

Mean 0.27816

Standard deviation 0.13823

50th percentile 0.29317

Table 2.4: Parameters of the elicited distribution by plotting.

By nature subjective distribution estimates are never precise. For estimates of an uncertain quan-

tity to be useful in a model, the elicited distribution ought to be realistic. The plotted distribution

closely matches the expert’s distribution and is thus preferred to the PERT and modified PERT

distributions. Consequently, the 50th percentile of the plotted distribution is taken as the estimate

of Kendall’s τ , the uncertain quantity. Thus the assessed rank correlation is τ̂ = 0.29317. It

represents the difference between the probability that times to degraded and critical failures of

test units are in the same order and the probability that they are not in the same order.

Though positive, the assessed rank correlation is less than one which implies that the agreement

between the rankings of X1 and X2 is not perfect. This makes sense in practice because the fact

that X
(1)
2 < X

(2)
2 does not guarantee that X

(1)
1 < X

(2)
1 will always hold in a life test. Substituting

τ̂ = 0.29317 into Equation 2.9 yields

4

θ

(
1− 1

θ

∫ θ

0

t

et − 1
dt

)
= 0.70683. (2.12)

Numerical methods are required to solve Equation 2.12 for θ. Figure 2.5 is a plot of the left hand

side of Equation 2.12 in Mathematica.
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Figure 2.5: Estimation of the Frank copula parameter.

Using the Table function in Mathematica yields the estimate θ̂ = 2.8405 of the Frank copula

parameter. If the estimate is required to a large number of decimal places, small step sizes will

be used. Thus based on the simulation study, there is positive dependence between the risk

variables. Recall that degraded and critical failures are linked through the degradation process

and that detection of the former is a signal that the latter will likely follow if the unit is kept on

test. Accordingly, degraded failures will likely occur close to critical failures thereby justifying

positive dependence between the risk variables. Hence the Frank copula model that captures the

stochastic dependence between the censoring variable X1 and unit lifetime X2 at all stress levels

is estimated from expert opinion. If there are reasons to suggest increased test stresses not only

alter the scale but also the dependence structure of the competing risk variables, the expert can

easily factor this extra information when assessing concordance probability.
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Chapter 3

Lifetime models based on degradation

phenomenon

3.1 Introduction

This chapter discusses the derivation of functional forms (or models) for the observed occur-

rences of degraded and critical failures in a life test. These risk variables are presumed to be

competing with each other for the removal of a unit from observation in a life test. Thus the first

N observations of the censoring variable X1 and unit lifetime X2 after rearranging if necessary

are (z1, ..., zN) = (x11, ..., x1n; x21, ..., x2m); n+m = N . These observable competing risks data

only allow one to estimate subdistribution functions





F ∗
1 (x1) = P (X1 ≤ x1, X1 < X2) = S∗

1(0)− S∗
1(x1)

F ∗
2 (x2) = P (X2 ≤ x2, X2 < X1) = S∗

2(0)− S∗
2(x2)

(3.1)

such that the non-negative and non-increasing real functions S∗
1 and S∗

2 with support R+ = [0,∞)

are continuous at zero and satisfy S∗
1(0) + S∗

2(0) = 1. Functional forms of the subdistribution

functions in Equation 3.1 are the main object of estimation in this chapter. But failure (degraded

or critical) in a life test is defined as the end point of some underlying degradation process. Hence

suitable functional forms for F ∗
j (xj) at all stress levels may as well be derived based on the failure
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mechanism and an understanding of the underlying degradation process. As used in this thesis,

unit degradation is the irreversible accumulation of damage in a life test that leads to unit failure.

Degradation processes have the characteristic feature that they are governed by some random

mechanism that is conveniently represented by a stochastic process {X(t), t ∈ T}. The index t

is a time parameter and the index set T contains all possible time points. Hence unit degradation

in a life test is assumed to be adequately described by the stochastic process {X(t), t ∈ T}.

For degradation models that are best described by point processes and their respective counting

processes, see Kahle and Wendt (2004) for example.

The modeling approach followed in this thesis assumes that the degradation path of a unit cannot

be monitored continuously during testing. Consequently, the underlying failure causing process

is not fully observable. Functional forms of observed occurrences of degraded and critical fail-

ures are therefore obtained by investigating the first passage time distributions of the underlying

failure causing process with regard to failure thresholds, called the first passage time problem.

Accordingly, the variable of interest in this investigation is unit lifetime and the target of estima-

tion is its lifetime distribution.

As a result, stochastic processes are discussed from sample paths and other related properties as

well as lifetime estimation points of view. If the values of {X(t), t ∈ T} are observed over the

entire index set T , then the function x = x(t) over the domain T is called a sample path (equiv-

alently, a trajectory or a realisation) of the stochastic process. Candidate stochastic processes for

{X(t), t ∈ T} are the simple Wiener process (Brownian motion) and the Wiener process with

drift.

But since unit degradation is defined as the irreversible accumulation of damage leading to u-

nit failure, candidate stochastic processes for {X(t), t ∈ T} are extended to strictly monotone

stochastic processes. These include among others the maximum of the Wiener process and the

gamma process. The problem is now to choose from among these stochastic processes the one

that best describes unit degradation in a life test and the first passage time distributions.
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3.2 The Wiener process model for unit degradation

The basis of the Wiener process (or Brownian motion) {B(t), t ∈ R
+} as a degradation model is

that the degradation increment in an immeasurably small time interval can be regarded as the sum

of a large number of small, independent random stress effects (additive superposition). Denote

this sum byBn such thatBn = R1+R2+ ...+Rn where the random variablesRi are independent

but not necessarily identically distributed, having finite means µi = E(Ri) and finite variances

σ2
i = V ar(Ri). Assume also that none of these n independent random variables dominates the

rest. Then by the simplest variation of the central limit theorem, the standardization of the sum

Bn, denoted by

Zn =
Bn − E(Bn)√
V ar(Bn)

=
Bn −

∑n
i=1 µi√∑n

i=1 σ
2
i

converges under the Lindeberg condition (see Beichelt, 2006) to a normal distribution. That is,

lim
n→∞

P (Zn ≤ x) = Φ(x) =
1√
2π

∫ x

−∞
exp

(
−u

2

2

)
du (3.2)

where Φ(x) is the standard form of the normal distribution function. It is therefore reasonable

to assert that the degradation increment B(t + h) − B(t) over the time interval (t, t + h) of

a Wiener process is a random variable that is normally distributed. Under the assumption of

additive accumulation of degradation, the increment B(t+ h)−B(t) is dependent on the length

h of the time interval only and not on the time one begins observation in a life test. This assertion

implies that the Wiener process {B(t), t ∈ R
+} is a homogeneous increment stochastic process

with the following properties (Beichelt, 2006):

(1) For all 0 ≤ s < t, the degradation increment B(s, t) = B(t) − B(s) is a normally dis-

tributed random variable with mean 0 and variance σ2(t− s), that is, B ∼ N(0, σ2(t− s)).

Hence the process has homogeneous increments

(2) Let [t1, t2], [t3, t4], ... ,[tn−1, tn] be disjoint time intervals for arbitrary n ∈ Z
+. Then the

increments B(tn)−B(tn−1), ... ,B(t4)−B(t3) and B(t2)−B(t1) are independent random

variables distributed as described in property 1.
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(3) B(0) = 0 with probability 1.

For being real-valued and having independent, homogeneous increments, the Wiener process is

a Levy process.

3.2.1 Markov and sample paths properties

Given the present state of the Wiener process B(t0) = b0, the probability law governing the

degradation increment B(t + t0) − B(t0) is independent of any additional knowledge of values

of past states B(s) for s < t0, called the Markov property of the process. Mathematically, the

Markov property states that if t0 < t1 < ... < tn < t, then

P (B(t) ≤ b|B(tn) = bn, ..., B(t1) = b1, B(t0) = b0) = P (B(t) ≤ b|B(tn) = bn)

In many applications, the Markov property is a reasonable assumption. As used here, unit degra-

dation in a life test is an accumulation of damage over time that leads to failure. In this sense, it is

reasonable to assume that unit degradation is continuous in time. Consequently, sample paths of

the stochastic process describing unit degradation ought to be restricted to continuous functions.

Continuity is a convergence property and different kinds of convergence for random variables

exist. It therefore follows that a stochastic process {X(t), t ∈ R
+} can be considered continuous

in various ways.

Definition 5.3.2: A stochastic process {X(t), t ∈ R
+} is continuous

(1) in mean square at t0 if

lim
t→t0

E (X(t)−X(t0))
2 → 0.

(2) in probability at t0 if

lim
t→t0

P [|X(t)−X(t0)| > ǫ] → 0.

(3) in the almost sure sense at t0 if

P

{
lim
t→t0

X(t) = X(t0)

}
= 1.
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Any one of these definitions of continuity of a stochastic process can be applied when describing

sample path properties of a Wiener process.

Theorem 3.1: A real-valued Wiener process {B(t), t ∈ R
+} has continuous sample paths

almost surely.

Proof : Let t ∈ R
+ and h > 0. Without loss of generality, assume the degradation increment

B(t+h)−B(t) to be distributed asN(0, h). It follows from Equation 3.2 that the random variable

Z = B(t+h)−B(t)√
h

∼ N(0, 1). Symmetry of the probability density function of the standard normal

implies that all its odd moments are zero. By definition,

E(Zr) =

∫ ∞

−∞
zr
(

1√
2π
e−z2/2

)
dz =

1√
2π

∫ ∞

−∞
zr−1

(
ze−z2/2

)
dz

Letting u = zr−1, dv = ze−x2/2 and using integration by parts, the expression forE(Zr) becomes

E(Zr) =
1√
2π

(
−zr−1e−z2/2 |+∞

−∞ +(r − 1)

∫ ∞

−∞
zr−2e−z2/2dz

)

= (r − 1)

{
1√
2π

∫ ∞

−∞
zr−2e−z2/2dz

}

= (r − 1)E(Zr−2)

Using the fact that E(Z0) = 1, the recursive expression for the rth moment in terms of r is given

by

E(Zr) = (r − 1)(r − 3)...(r − (r − 3)(r − (r − 1)) =
r!

∏r/2
i=1 2i

> 0.

It follows therefore that there must exist an r > 2 such that E (|Z|r) > 0 and consequent-

ly E (|B(t+ h)− B(t)|r) = hr/2E (|Z|r). Let r = 2(1 + ǫ) where ǫ is a positive constan-

t. Then E (|B(t+ h)− B(t)|r) = Kh1+ǫ with K = E (|Z|r). By Kolmogorov’s continuity

theorem, there exists a modification and hence a version of {B(t), t ∈ R
+}, say {B̃(t), t ∈

R
+} whose paths are continuous. That is, for every t ∈ R

+, B(t) = B̃(t) and consequently

P{limt→t0 X(t) = X(t0)} = 1. This completes the proof.

The general assumption that is often valid in many applications is that the physical degradation

process is a continuous process. Because trajectories of a Wiener process are continuous func-

tions, it is therefore not surprising that the Wiener process is the basic model for a degradation
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process. In this thesis however, the accumulation of damage throughout life testing is assumed to

be irreversible. In particular, unit degradation in a life test is considered to be gradual and mono-

tonically accumulating over time in a sequence of tiny positive increments. The development

of failure is therefore described as follows. The degradation process gradually increases during

testing until it reaches a failure threshold at which point the test unit fails. Hence only stochastic

processes with strictly monotone sample paths can adequately describe such unit degradation in

a life test.

3.3 Wiener maximum process for monotone degradation

One way of partially mitigating the tooths in the sample paths of a Wiener process is to describe

the irreversible accumulation of damage in a life test by its supremum process. Observe that con-

tinuity of sample paths of the Wiener process implies that the maximum and minimum random

variables are well defined on compact intervals. Let

B+(t) = sup
0≤u≤t

{B(u), u ≥ 0} (3.3)

and

B−(t) = inf
0≤u≤t

{B(u), u ≥ 0} (3.4)

denote the Wiener maximum process and the Wiener minimum process respectively. Replace

the path B(u) by its reflection −B(u) which is also a Wiener process. Then the maximum and

minimum are interchanged and consequently

B+(t)
d
= B−(t)

where
d
= denotes equality in distribution. Hence it suffices to only determine the distribution of

the random variable B+(t) = sup0≤u≤t {B(u), u ≥ 0}. In order to determine the probability of

the event
{
sup0≤u≤tB(u) ≥ s

}
on the closed interval [0, t], the approach adopted here is to use

the first passage time.
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3.3.1 First passage time distributions

Denote by Ts the time when the event {B(t) ≥ s} occurs. Put differently, it is the time when

the stochastic process {B(t), t ∈ R
+} hits the failure threshold s for the first time. Continuity

of sample paths of the process {B(t), t ∈ R
+} and the assumption that B(0) = 0 guarantees

that the occurrence of the event {B(t) > s} at time t implies that the event {Ts ≤ t} has already

occurred. Written more formally,

{Ts ≤ t and B(t) > s} = {B(t) > s} .

But the occurrence of the event {Ts ≤ t} or its non-occurrence is known simply by observing

the evolution of the process {B(t), t ∈ R
+} prior to time t. Hence Ts has the interpretation of a

stopping time with respect to the process {B(t), t ∈ R
+}.

Now, for the event of interest
{
sup0≤u≤tB(u) ≥ s

}
to occur, the process {B(t), t ∈ R

+} must

have crossed the failure threshold s once or more in the closed interval [0, t] given that B(0) = 0

. It follows therefore that

{
sup
0≤u≤t

B(u) ≥ s|B(0) = 0

}
= {Ts ≤ t} (3.5)

since the process
{
sup0≤u≤tB(u), u ≥ 0

}
is non-decreasing. Using these observations and not-

ing that the event {Ts ≤ t} can be written as a sum of disjoint events {Ts ≤ t and B(t) > s}
and {Ts ≤ t and B(t) < s}, then

P {Ts ≤ t} = P {Ts ≤ t, B(t) < s}+ P {Ts ≤ t, B(t) > s} (3.6)

= P {B(t) < s|Ts ≤ t}P {Ts ≤ t}+ P {B(t) > s} .

Under the condition B(0) = 0, the increment B(t) − B(0) is a normally distributed random

variable and continuity of sample paths ensures that B(Ts) = s. Given that Ts ≤ t, the

Wiener process {B(t), t ∈ R
+} is equally likely to remain above or to fall below s at time t.
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This is a consequence of the Wiener process being symmetric about the x-axis and that its fu-

ture is independent of its past prior to Ts. Accordingly, P {B(t) < s|Ts ≤ t} = 1
2

and hence

P {Ts ≤ t} = 2P {B(t) > s} from Equation 3.6 and the first passage time distribution is re-

quired.

Thus for the Wiener process {B(t), t ∈ R
+} and any s 6= 0,

P (Ts ≤ t) = 2P (B(t) ≥ s) =
2√
2π

∫ ∞

s/σ
√
t

e−
u2

2 du (3.7)

= 2

[
1− Φ

(
s

σ
√
t

)]
.

where Φ is the standard normal distribution function. Now for the first passage time of the

maximum of a Wiener process, observe that

{
sup
0≤u≤t

B(u) ≥ s|B(0) = 0

}

if and only if Ts ≤ t. Consequently,

P

{
sup
0≤u≤t

B(u) ≥ s|B(0) = 0

}
= P (Ts ≤ t)

and the formula for the distribution of the maximum of a Wiener process is as given in Equation

3.7.

3.4 Wiener process with drift model for unit degradation

But unit degradation generally has a non-zero mean. Hence an obvious improvement of the

Wiener process as a degradation model is to include a mean or drift measure ν > 0. This yields

a one dimensional Wiener process with a fixed positive drift parameter ν and fixed variance

parameter σ2, denoted by {W (t), t ∈ R
+}. It can be represented as

W (t) = νt+ σB(t) (3.8)

where B(t) is the standard Wiener process on [0,∞) capturing the stochastic movements of

the degradation process. It therefore follows that E [W (t)] = νt and V ar[W (t)] = σ2t such
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that W (t) ∼ N(νt, σ2t). For any n, the realisations of the random process {B(t), t ∈ R
+}

at t1, t2, ..., tn are jointly Gaussian. Hence {B(t), t ∈ R
+} is a Gaussian process. Following

Equation 3.8, {W (t), t ∈ R
+} is also a Gaussian process. When the drift parameter ν is zero,

there is no degradation. Unless indicated otherwise, all test units having the same design are

assumed to have common drift and variance parameters which admittedly is a strong assumption.

Degradation phenomena such as unit wear in a life test have the interpretation of accumulation

of additive deterioration caused by higher than usual test stresses. Based on this additive accu-

mulation of degradation assumption, a large number of authors use the Wiener process with drift

{W (t), t ∈ R
+} to describe unit degradation. Statistical methods of estimating the parameters of

the Wiener process with drift when analysing reliability of technical units are described in Kahle

(1994), Kahle and Lehmann (1998) and Kahle and Lehmann (2010). Other examples include

Aalen and Gjessing (2001) and the numerous references therein. Application of the Wiener pro-

cess as a degradation model in accelerated testing include Whitmore and Schenkelberg (1997).

By the CLT, the degradation increment W (t+h)−W (t) can also be reasonably assumed to have

the same distribution as W (h) −W (0) for any h > 0 if the stress applied in a life test is time

independent. Written formally,

{W (t+ h)−W (t)} d
= {W (h)−W (0)}

for all h ∈ R
+ where

d
= stands for equality in distribution. But for time-varying stress tests

such as step-stress tests, the increased stresses will likely produce time inhomogeneity in the

degradation process. Accordingly, the Wiener process with drift may not adequately describe

unit degradation for such tests.

3.4.1 First passage time distributions

The Wiener process with drift enjoys wide applications as a model for degradation phenomena

mainly because of its mathematical advantages. The one of interest in this study is that it gives

rise to mathematically tractable first passage time distributions. Observed occurrences of times

to a critical failure X2 in a life test have the interpretation of the first passage time to s2 for the
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degradation process {W (t), t ≥ 0} regardless of whether or not unit lifetime is censored. That

is, X2 = Ts2 = min{t ∈ R
+ : W (t) = s2}. On the other hand observed occurrences of times to

a degraded failure X1 only have the interpretation of first passage times conditionally given unit

lifetime is censored, that is, X1 < X2. This is because in theory, X1 may potentially assume a

value greater thatX2 when observation during testing is not stopped after the degradation process

reached the failure threshold s1.

But degraded and critical failures are competing as it were to terminate observation during life

testing. It is therefore the first occurring failure mode that is observed while the other is only

known to occur latter. That is, X1 is observed provided X1 < X2 and similarly X2 is observed if

it is the smaller of the two. In this competing risks manner, observed occurrences of both X1 and

X2 have the interpretation of first passage times of the degradation process {W (t), t ≥ 0} from

zero to failure thresholds. Hence if the Wiener process with drift {W (t), t ∈ R
+} adequately

describes system degradation leading to failure in a life test, then the observed occurrences of the

competing risks variables are first passage times to failure thresholds for {W (t), t ≥ 0}.

Assume the degradation process for a test unit satisfies Equation 3.8. Then the lifetime of the test

unit is defined as the first time the process {W (t), t ∈ R
+} exceeds the failure threshold s > 0.

Let Ts denote the random time the process {W (t), t ∈ R
+} exceeds the failure threshold s. Then

Ts = inf {t ∈ R
+ : W (t) > s}. It is well established (see e.g. Chhikara and Folks, 1989) that

the first passage time of a Wiener process with drift from zero to a deterministic failure threshold

is distributed as inverse Gaussian with density function

f(t) =
s

σ
√
2πt3

exp

{
− 1

2σ2

(s− νt)2

t

}
, t > 0, ν > 0. (3.9)

Because Ts has the interpretation of a first passage time, it follows therefore that it has the po-

tential of being useful in lifetime studies. For fixed s, a useful parameterisation of the density

in Equation 3.9 in terms of the development of statistical properties analogous to those of the

normal distribution (Tweedie, 1957a) is obtained by setting µ = s
ν

and λ = s2

σ2 . Under this

parameterisation, the density function of the inverse Gaussian random variable Ts is
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f(t, µ, λ) =

√
λ

2πt3
exp

{
− λ

2µ2

(t− µ)2

t

}
, t > 0 (3.10)

where it is assumed that µ ∈ R
+ and λ ∈ R

+. The corresponding cumulative distribution

function (CDF) is given by

F (t) = Φ

{√
λ

t

(
t

µ
− 1

)}
+ exp

(
2λ

µ

)
Φ

{
−
√
λ

t

(
t

µ
+ 1

)}
(3.11)

where Φ(t) is the CDF of the standard normal distribution.

The moment generating function of the inverse Gaussian distributed random variable Ts ∼
IG(µ, λ), denoted as MTs

(ω) = E
[
eωTs

]
is given by

M(ω) = exp

[
λ

µ

(
1−

√
1− 2ωµ2

λ

)]
, ω <

λ

2µ2
. (3.12)

It follows therefore that the rth moment of the positive-valued random variable Ts is the rth

derivative of the moment generating function of Ts ∼ IG(µ, λ) evaluated at ω = 0. By letting

α(ω) =
√
1− 2ωµ2

λ
, the first moment is

M
′

(ω) =
d

dω
exp

[
λ

µ
(1− α(ω))

]
= e

λ
µ

[
d

dα(ω)
e−

λ
µ
α(ω) × dα(ω)

dω

]

= e
λ
µ


−λ

µ
e
−λ

µ

(

1− 2ωµ2

λ

) 1
2

× 1

2

(
1− 2ωµ2

λ

)− 1
2

×
(
−2µ2

λ

)

∣∣∣∣∣∣
ω=0

= µ

Hence the parameter µ is the distribution mean while λ is the scaling parameter. Similarly, the

second moment

M
′′

(ω) =



d

dω


e

λ
µ



1−
(

1− 2ωµ2

λ

) 1
2





× µ

[
1− 2ωµ2

λ

]− 1
2







∣∣∣∣∣∣∣
ω=0

= µ2 +
µ3

λ

implies that µ3

λ
is the variance for the inverse Gaussian distribution. However, there are several

other forms of the inverse Gaussian distribution in the literature. Tweedie (1957a) for example
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gave three forms of 3.10 which he generated by replacing the parameters (µ, λ) by any of (η, λ),

(µ, φ) or (φ, λ) where 1
2
η2 = µ = λ

φ
. Each of these four forms was demonstrated by Tweedie to

be useful in some applications.

The parameters µ and λ have the same physical dimensions as the first passage time Ts since

a change of scale of Ts will result in both µ and λ being multiplied by the same factor as Ts.

Consequently, this results in a new member of the family. On the other hand, the parameter

φ = λ/µ which determines the shape of the distribution is invariant to any scale transformation

of Ts. This scale invariant property of the shape parameter φ may be useful when analysing

accelerated testing data. This is particularly so for cases where the failure causing mechanism

as represented by the distribution’s shape parameter is assumed to remain the same at all stress

levels.

3.4.2 Approximation for monotone degradation

The Wiener process with drift has been widely applied in accelerated life and degradation testing

of technical units since it adequately describes most physical phenomena. Often, it may however

be the case that the degradation process for a test unit be regarded as gradual and monotonically

accumulating over time. In this case, the test unit can be returned to its original state or at least

improved by external repair actions only, otherwise deterioration proceeds only in one direction.

Since the Wiener process with drift is not a monotone stochastic process, its application to degra-

dation processes that exhibit monotone behaviour presents practical problems (see e.g. Si, Wang,

Hu & Zhou, 2011).

In particular, application of the Wiener process with drift to describe the degradation process for

test units would imply that the quality characteristic, defined as measured unit performance can

increase or decrease during testing. Clearly such behaviour has no physical justification. Thus

the matter of why the Wiener process with drift remains popular with practitioners as a model for

degradation despite this bi-directional characteristic feature requires a little elaboration.

In a number of applications, the degradation process of interest is only required to be a continuous

process and can therefore be described by any stochastic process with continuous sample paths.
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When it is important to assume that the degradation process of a test unit is monotonic (see

e.g. Whitmore and Schenkelberg, 1997 and the references therein), the Wiener process with

drift is proposed only as an approximation. The approximation is good especially when the

diffusion parameter is small relative to the drift (mean) parameter. In this case, the tooths in

the evolving paths of the Wiener process are significantly smoothed out and the sample paths

become approximately monotone. Besides, the wide application of the Wiener process with drift

as a degradation model is also due to mathematical convenience. Given its close relation to the

normal distribution, the Wiener process facilitates easy computations.

Alternatively, the irreversible accumulation of damage in a life test may be described by the

maximum of the Wiener process with drift. The Wiener maximum process

W+(u) =

{
sup
0≤u≤t

W (u), u ≥ 0

}

is non-decreasing in its argument and has initial condition W+(0) = 0. A test unit experiencing

the Wiener maximum process
{
sup0≤u≤tW (u), u ≥ 0

}
in a life test fails the first time sample

paths of the degradation process hits a failure threshold s. The first passage time Ts is thus defined

as

Ts = min

{
u ∈ R

+ : sup
0≤u≤t

W (u) = s

}
(3.13)

and this coincide with the first passage time of the process {W (t), t ∈ R
+} to the same failure

threshold s. Hence the observed occurrences of degraded and critical failure in a life test assum-

ing the maximum of a Wiener degradation process are also distributed as inverse Gaussian with

density as in Equation 3.10.

3.5 Gamma process model for monotone degradation

A natural way of describing a stochastic degradation process that proceeds in one direction is

often to consider it as a gamma process (see e.g. Abdel-Hameed, 1975). Mathematically, the

gamma process is defined from a gamma distributed random variable G as follows: Assume the
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random variable G has a gamma distribution with density

Ga(g|β, α) = αβ

Γ(β)
gβ−1e−αg, g ≥ 0,

where Γ(β) =
∫∞
y=0

yβ−1e−ydy is the gamma function, α > 0 is the scale parameter and β > 0 is

the shape parameter. Henceforth, the notation G ∼ Ga(β, α) implies that the random variable G

is distributed as gamma with shape and scale parameters β and α respectively. There is however

no loss in generality if only gamma processes with scale parameter 1 are considered.

Let β(t), t ≥ 0 be a strictly increasing, right continuous real-valued shape function with initial

condition β(0) ≡ 0. Then the gamma process with scale parameter α > 0 and shape function

β(t) > 0 is a continuous time stochastic process {G(t), t ≥ 0} satisfying the following proper-

ties:

(1) G(0) = 0 with probability one,

(2) For all 0 ≤ s < t < ∞, the degradation increment G(t) − G(s) is a gamma distributed

random variable with shape parameter (β(t) − β(s)) and scale parameter α. Hence the

quantity G(t)−G(s) is non-negative.

(3) For any choices 0 ≤ s < t < u <∞, the random variables G(t)−G(s), G(u)−G(t) are

independent.

In summary, a gamma process is a continuous time stochastic process whose increments are non-

negative, independent and distributed as gamma. Property 2 is a direct consequence of the infinite

divisibility of the gamma distribution. That is if G is distributed as gamma, then for every n ∈ N,

there exists i.i.d. random variables Y1, Y2, ..., Yn such that G
d
= Y1 + ... + Yn where

d
= stands

for equality in distribution (Sato, 1999). Consequently, the degradation increments of a gamma

process and their cumulative sum are distributed as gamma. Property 3 implies that the gamma

process is Markovian: given the current state G(s), the process proceeds to a future state G(t)

where t > t independently of all states before s.
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3.5.1 Sample paths properties of a gamma process

If the shape function β(t) > 0 is linear, then the gamma process {G(t), t ≥ 0} has homogeneous

increments. Regarding sample paths properties, recall from the properties of the gamma process

that for all 0 ≤ s < t < ∞, the degradation increment G(t) − G(s) is a random variable

distributed as gamma. Because the increment is gamma distributed, it is therefore never negative

with probability 1 and consequently G(t) > G(s) almost surely. Hence the trend function is

increasing and sample paths of a gamma process are continuous. It is therefore an appropriate

stochastic process model for gradual damage that accumulate over time in a sequence of tiny

positive increments. Simulation methods for a gamma process are presented in van Noortwijk

(2009).

3.5.2 First passage time distributions

Assume the gamma process is the appropriate model for the stochastic deterioration of units in

a life test. Then the degradation of a test unit at time t can be modeled by a gamma process

G(t) with positive shape parameter β and scaling parameter α. Assume also that the the gamma

process has a starting valueG(0) = g(0) > 0. Then the level of degradation (cumulative damage)

of the test unit at time t is given by

G(t)−G(0) = D(t)

such that D(0) = 0 with probability one. Consequently, the stochastic process {D(t), t ≥ 0} is

a shifted gamma process with shape parameter β > 0 and scale α on account of G(t) being a

stationary gamma process. The test unit fails when its degradation process G(t) reaches a certain

known failure threshold s and its failure time T is defined as the first passage time of G(t) to

s. Because G(t) has non-decreasing sample paths, the events {T > t} and {G(t) < s} are

equivalent and consequently

P (T > t) = P [G(t) < s] = P [{G(t)− g(0)} < {s− g(0)}]

58



where the incrementG(t)−g(0) is distributed as gamma with shape coefficient βt if β(t) is linear

and scale α. Accordingly,

P (T > t) =

∫ s−g(0)

0

αβt

Γ(βt)
gβt−1exp(−αg)dg

=
1

Γ(βt)

∫ sα

0

ξβt−1e−ξdξ

where ξ = αg and sα = α(s − g(0)). The cumulative distribution function of the first passage

time T (unit lifetime) is thus given by

FT (t; g(0), s) =
γ(βt, sα)

Γ(βt)
(3.14)

where γ(b, w) denotes the upper incomplete gamma function γ(b, w) =
∫∞
w
ub−1e−udu. The

exact pdf of the first passage time T of the gamma process G(t) to some deterministic failure

threshold s has already been derived from Equation 3.14 (see e.g. Park and Padgett, 2005).

However, the derived distribution is not feasible for applications.

Observe that continuous time processes with homogeneous increments are often regarded as con-

tinuous time versions of partial sum processes. In this sense, the first passage time to s of the

gamma process can be regarded as a discrete time version of T . Let N denote this discrete first

passage time. Then by the central limit theorem, the exact distribution of T may be approximated

by a continuous version ofN . This idea can be traced back to the work of Birnbaum and Saunders

(1969) and was also adopted by Park and Padgett (2005). It is summarised here as follows:

Let Yi = G(i + 1) − G(i) denote the increments of a gamma process. Then Y1, Y2, ... are

independent gamma random variables and the partial sum process {Gn; n ∈ N} such that

Gn =
n∑

i=1

Yi, n ∈ N; G0 ≡ 0 (3.15)

has the interpretation of the magnitude of accumulated degradation up to n. As a direct conse-

quence of Equation 3.15, the process {Gn; n ∈ N} has the following properties.

(1) For 0 < n0 < n1 < ...; Gn0 , Gn1 −Gn0 , ... are independent.
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(3) For any choices m,n ∈ N; Gm+n −Gm
d
= Gn.

Thus {Gn; n ∈ N} is a discrete time process with homogeneous increments. On account

of Yi being increments of a pure positive jump process, it follows that the partial sum process

{Gn; n ∈ N} is non-decreasing. As a result the events {N > n} and {Gn < s} are equivalent

and consequently

P (N > n) = P (Gn < s) = P

[
n∑

i=1

Yi < s

]
. (3.16)

The degradation increments Yi = G(i + 1) − G(i) may be made sufficiently small (presumably

microscopic) and further assumed to be independent and identically distributed random variables

having the same finite mean µ and finite variance σ2. Then the magnitude of accumulated degra-

dation Gn =
∑n

i=1 Yi has mean value

E (Gn) = E

[
n∑

i=1

Yi

]
=

n∑

i=1

[E(Yi)] = nµ

and variance

V ar (Gn) = V ar

[
n∑

i=1

Yi

]
=

n∑

i=1

[V ar(Yi)] = nσ2.

Denote by Zn the standardisation of Gn such that

Zn =
Gn − nµ

σ
√
n

.

Then,

lim
n→∞

P (Zn ≤ y) = Φ(y) =
1√
2π

∫ y

−∞
e−

w2

2 du.

These conditions imply that by the central limit theorem, the magnitude of accumulated degra-

dation Gn =
∑n

i=1 Yi is approximately normally distributed with mean nµ and variance nσ2 as

n→ ∞. Thus the distribution of the discrete first passage time N of Gn to s from Equation 3.16

assuming the partial sum process {Gn; n ∈ N} has starting value g0 is
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P (N ≤ n) ∼= 1− P ({Gn − g0} < {s− g0}) = 1− Φ

(
s− g0 − nµ

σ
√
n

)
(3.17)

= Φ

(
µ
√
n

σ
− s− g0

σ
√
n

)
.

Denote by T the continuous approximation of the discrete first passage time N in Equation 3.17.

Birnbaum and Saunders (1969) prove that the continuous random variable T has the Birnbaum-

Saunders type distribution

FT (t; g(0), s) = Φ

[
1

β∗

(√
t

α∗ −
√
α∗

t

)]
(3.18)

with support (0,∞) where α∗ = sα/β, β∗ = 1/
√
sα and sα = α(s − g0). But this derivation

of the continuous version of the distribution of N suggests that the accumulated degradation

Gn ∼ N(nµ, nσ2) for large n. Consequently, it must therefore assume negative values with

non-zero probability. A remark is however in order here. Degradation of test units in a life

test is ideally a non-negative random variable and so are the degradation increments. In this

sense, it is therefore reasonable to assert that the accumulated degradation Gn assumes negative

values with zero probability even though it is approximately normally distributed. In line with

this observation, Birnbaum and Saunders (1969) assumed that T is a continuous non-negative

random variable in their original derivation.

The relation between the Birnbaum-Saunders distribution and the inverse Gaussian distribution

is discussed in Bhattacharyya and Fries (1982). The derivation of the latter involves approxima-

tions while the former is an exact first passage time distribution to a failure threshold of a Wiener

process with drift. If the normally distributed random variable Gn is assumed to take on neg-

ative values with zero probability (non-negative degradation increments), then the distribution

functions of the Birnbaum-Saunders and inverse Gaussian distributions are identical. For more

details on why the Birnbaum-Saunders distribution is an approximation to the inverse Gaussian

distribution with mean µ = α∗ > 0 and positive scale parameter λ = s2α/β, see Bhattacharyya

and Fries (1982). In particular, the approximation is good for large values of the drift (mean) pa-

rameter relative to the diffusion parameter of the Wiener process with drift. Consequently, both
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lifetime distributions may fit test data equally well and are both flexible since they admit different

shapes.

3.6 Marker processes and degradation phenomena

To this end, reliability assessments of industrial units when failure in a life test is defined in terms

of the observed level of unit degradation has been discussed. Specifically, removal of a unit from

observation in a life test is considered to occur the first time the level of unit degradation exceed

a failure threshold during testing. Stochastic process models namely the Wiener process with

drift, the Wiener maximum process and the gamma process have been discussed as models for

describing the accumulation of damage in a life test that leads to unit failure. The lifetime of

test units assuming these stochastic process models is of first passage type and accordingly, the

inverse Gaussian and the Birnbaum-Saunders distributions are motivated as lifetime models.

Recall that the discussed Wiener and gamma process models for degradation both satisfy the

Markov property and are therefore Markov processes. Since the failure causing process is as-

sumed to be not directly observable, a more general statistical and structural approach is to adopt

the framework of hidden Markov process (HMP) for modeling the irreversible accumulation of

damage in a life test. Being a class of Markov processes, the definition of the HMP requires the

Markov process to be introduced first.

A stochastic process {X(t), t ∈ T} taking values in Σ ⊂ R = (−∞,+∞) is a Markov process

with state space Σ if for all ordered (n+1)-tuples t1 < t2 < ... < tn+1, with ti ∈ T and for any

Ai ≤ Σ; i = 1, ..., n+ 1;

P [X(tn+1) ∈ An+1|X(tn) ∈ An, ..., X(t1) ∈ A1] = P [X(tn+1) ∈ An+1|X(tn) ∈ An] . (3.19)

This implies that the future development of the Markov process depends only on its present value.

A HMP is a doubly stochastic process having an underlying stochastic process whose states

are not observable (hence hidden) but can only be observed through another stochastic process

called an observation process. Both the underlying and the observation processes are assumed

to be Markov processes. This thesis could give a thorough treatment of HMP and the associated
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problems but to do that would however obscure the study’s main focus. Rather the consequences

of adopting the HMP modeling framework and hence a bivariate stochastic process as a degrada-

tion model are discussed within the context of accelerated life testing. Specifically, emphasis is

placed on selecting a suitable probability structure for the doubly stochastic process model.

The implication of adopting this modeling framework is that the irreversible accumulation of

damage in a life test is regarded as a latent variable (an unobservable construct) describing the

process leading to unit failure. What is observed during testing are manifestations of damage

(surrogates) caused by the underlying failure causing process. General observable surrogates

when assessing lifetimes of technical units include measured wear, crack growth, corrosion etc.

In the present application, the observable surrogate is the performance degradation process which

is assumed to decrease with time during testing.

More formally, the idea is to consider the degradation process as an interplay between the la-

tent failure causing process and the performance degradation process acting as a marker. The

latent failure causing process is governed by some random mechanism and is thus described by

a stochastic process {M(t), t ∈ R
+}. The marker process on the other hand can be reasonably

assumed to be a function of time since measured performance decreases with time during test-

ing. Accordingly, it is also governed by some random mechanism and is thus best described by

a stochastic process {R(t), t ∈ R
+}, called the performance degradation process. Under this

modeling viewpoint, the degradation process in a life test is specified as a bivariate stochastic

process {M(t), R(t), t ∈ R
+} and a test unit fails when {M(t), t ∈ R

+} first reaches a failure

threshold s.

The specification of the degradation process {M(t), R(t), t ∈ R
+} implies that stochastic pro-

cesses {M(t), t ∈ R
+} and {R(t), t ∈ R

+} must be related in some way. In particular, the

marker process {R(t), t ∈ R
+} must be a useful predictor of the latent failure causing process

{M(t), t ∈ R
+}. Why {M(t), t ∈ R

+} is assumed not to be a fully observable process follows

from the observation that {R(t), t ∈ R
+} may not be monitored continuously during testing.

Rather, observations on {R(t), t ∈ R
+} may only be at discrete times so that data on the process

{M(t), t ∈ R
+} are impossible to collect. Both {M(t), t ∈ R

+} and {R(t), t ∈ R
+} are howev-

er restricted to stochastic processes with continuous sample paths. But because {M(t), t ∈ R
+}
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is the phenomenon of degradation, it is further required to be non-decreasing in t while no such

requirement is necessarily imposed on the observation (or marker) process {R(t), t ∈ R
+}.

3.6.1 Probabilistic structure of the bivariate process model

The question of how observations on the observable process {R(t), t ∈ R
+} may be used to make

inferences about the unobservable process of interest {M(t), t ∈ R
+} has attracted attention in

different application areas. In particular, the problem of selecting a probabilistic structure for

the bivariate process {M(t), R(t), t ∈ R
+} from among the many possible choices is at the

core of most studies. Intuitively, considering the degradation process as a bivariate structure

{M(t), R(t), t ∈ R
+} makes the Markov additive process (MAP) a natural choice. A bivariate

stochastic process {M(t), R(t), t ∈ R
+} is a MAP with continuous time parameter t if

(1) {M(t), t ∈ R
+} and {R(t), t ∈ R

+} are mean-square continuous at t0. That is,

lim
t→t0

E (M(t)−M(t0))
2 → 0

and

lim
t→t0

E (R(t)−R(t0))
2 → 0.

(2) {M(t), t ∈ R
+} is non-negative and is non-decreasing in t,

(3) {R(t), t ∈ R
+} takes values in the state space Σ which is ether countable or Σ ∈ R.

The importance of a MAP is captured in Theorem 2.22 of Cinlar (1972) which states that if the

bivariate stochastic process {M(t), R(t), t ∈ R
+} is a MAP, then

(1) {R(t), t ∈ R
+} is a Markov process with state space Σ, and

(2) The probability law of {M(t), t ∈ R
+} given {R(t), t ∈ R

+} is that of a process that can

be represented as a sum of non-negative independent increments.

Property 1 of a MAP implies that {R(t), t ∈ R
+} may be any Markov process while Property

2 restricts {M(t), t ∈ R
+} to increasing Levy processes only. The implication in the present
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application is that the underlying failure causing process {M(t), t ∈ R
+} in a life test may be

considered an increasing Levy process while measured performance (observable surrogate) can

be represented by a Markov process. But the consequences of regarding {M(t), R(t), t ∈ R
+} as

a MAP and using observations on the Markov process {R(t), t ∈ R
+} to make inferences about

the failure causing process {M(t), t ∈ R
+} have no developed statistical theory and is thus an

open problem.

Whitmore, Crowder and Lawless (1998) represented {M(t), R(t), t ∈ R
+} by a bivariate Wiener

process. One Wiener process is taken to represent the marker process while the other represents

the unobservable failure causing process. Assuming the bivariate Wiener process model implies

that a test unit fails when the hidden process crosses a failure threshold. Its main advantage is that

statistical inference can be done using data on both the marker process and the times to failure.

However, the drawback of adopting this probability structure is that the latent failure causing

process {M(t), t ∈ R
+} is no longer non-decreasing in t when it is assumed to be a Wiener

process. As a result, this construction is not adequate when describing monotone degradation

as is the case here. In addition, the link between the marker and the failure causing processes

is not obvious. Hence the usefulness of the marker process in terms of tracking progress of the

underlying failure causing process {M(t), t ∈ R
+} is subject to debate.

A minor modification of the bivariate process model proposed by Whitmore et al. (1998), see

for example Singpurwalla (2006b) is to describe the marker process {R(t), t ∈ R
+} by a Wiener

process with drift {W (t), t ∈ R
+} and the latent failure causing process {M(t), t ∈ R

+} by

its maximum process W+(t) =
{
sup0≤u≤tW (u), u ≥ 0

}
. This probability structure has the

following advantages. First, the link between the marker and the underlying failure causing

processes is obvious from

W+(t) =

{
sup
0≤u≤t

W (u), u ≥ 0

}
.

Second, both {W (t), t ∈ R
+} and

{
sup0≤u≤tW (u), u ≥ 0

}
have continuous sample paths and

in addition, the latter is non-decreasing in t as required.
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3.7 Degradation model and first passage time distributions

The more general degradation modeling viewpoint which treats the degradation process as an

interplay between the unobservable failure causing process and the marker process is adopted

in this thesis. In particular, system degradation in a life test is considered to be described by

a bivariate process {W+(t),W (t), t ∈ R
+} where {W+(t), t ≥ 0} is the Wiener maximum

failure causing process and {W (t), t ≥ 0} is the Wiener process with drift acting as a marker.

Singpurwalla (2006, 2006b) also proposed this probability structure. In his construction however,

the latent failure causing process is the cumulative hazard process, a continuously increasing

process. Unit failure occurs when the cumulative hazard process first hits a failure threshold,

assumed to be random. The uncertainty about this random threshold is further assumed to be

described by an exponential distribution.

While assuming a random threshold may be reasonable in theory, it is usually not the case in prac-

tice and at least it is assumed so in the present application as follows. Adequate performance of a

unit is often specified by industrial standards and a unit fails during testing when performance no

longer conforms to the set standard. Hence it is reasonable to assume that the failure threshold is

deterministic, otherwise failure during testing will not be well defined. Thus test units experience

the Wiener maximum process

W+(t) =

{
sup
0≤u≤t

W (u), u ≥ 0

}
(3.20)

during testing and will fail if this underlying failure causing process first crosses a fixed failure

threshold s. The lifetime of the unit is estimated by obtaining the first passage time of the Wiener

maximum process {W+(t), t ≥ 0} over the deterministic threshold. Since unit lifetime is of the

first passage, no additional degradation data may necessarily be required in order to assess the

reliability of the industrial unit. That is, the lifetime of the unit in a life test denoted by Ts is

defined as

Ts = inf

{
u ∈ R

+ : sup
0≤u≤t

W (u) ≥ s

}
.
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As a direct consequence of Equation 3.20, the first passage time of W+(t) to s coincides with

the first crossing time of W (t) to the same failure threshold s. Hence observed occurrences of

degraded and critical failures in a life test assuming unit degradation is adequately described by

the Wiener maximum process W+(t) are distributed as inverse Gaussian with density

fj(xj;µ, λ) =





√
λ

2πx3
j

exp
(
−λ(xj−µ)2

2µ2xj

)
; xj > 0, j ∈ (1, 2)

0 otherwise.

since they both have the interpretation of stopping times. Consequently, the subdistribution func-

tions of the competing risks variables are inverse Gaussian.

It must be highlighted however that the failure rate of the inverse Gaussian distribution is not

monotonic. It initially increases to a maximum, and then decreases to a nonzero asymptotic val-

ue as the testing time goes to infinity. Early unit failures tend to dominate the lifetime distribution

in ALT. As a result, the failure rate is expected to initially increase and latter decrease with test-

ing time thereby exhibiting a non-monotonic behaviour. In applications where there is apparent

skewness in the data, the inverse Gaussian distribution is a possible choice as a lifetime model.

The failure rate of the log normal distribution qualitatively exhibits the same behaviour. But

unlike the log normal distribution, the inverse Gaussian distribution has physical justification as

first passage time distribution. It also represents a wider class of lifetime distributions ranging

from highly skewed to almost increasing failure rate (symmetrical) distributions as the shape

parameter φ varies from 0 to ∞. The observations explain why as a lifetime model, the inverse

Gaussian distribution is generally preferred in practice to the log normal distribution.

3.8 Statistical inference when barrier is assumed known

Based on the first passage time to a deterministic barrier of the failure causing process, observed

occurrences of degraded and critical failures at all stress levels in a life test have been postulated

to be distributed as inverse Gaussian with the bivariate parameter θ = (µ, λ)T . Test data col-

lected at each test stress level are utelised to estimate θ. Because of its well-known asymptotic
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distributional optimality properties, maximum likelihood (ML) remains the standard approach to

statistical inference. The idea behind ML is to choose estimators θ̂ = (µ̂, λ̂)T from among all

possible values for θ that most likely produced the collected test data.

In general, if t1, t2, ..., tn is a random sample from an inverse Gaussian population with mean µ

and scaling parameter λ, the loglikelihood function is given by

Ln(θ|t1, ..., tn) =
n

2
lnλ− n

2
ln(2λ)− 3

2

n∑

i=1

ln(ti)−
λ

2µ2

n∑

i=1

.
(ti − µ)2

ti
(3.21)

Maximum likelihood estimates of µ and λ are obtained by maximising the likelihood function in

Equation 3.21. Traced back to Schrodinger (1915), these estimators are well-known to be given

by

µ̂ = T =
1

n

n∑

i=1

Ti

and

λ̂ =
n

∑n
i=1

(
1
Ti
− 1

T

) . (3.22)

In life testing however, the testing period often ends while some units are still to fail. As a result,

test data are often right censored and the loglikelihood takes the form

L (µ, λ) =
n∑

i=1

δiln(f(ti;µ, λ)) + (1− δi)ln [1− F (ti;µ, λ)]

where

δi =





1 if unit is uncensored

0 if unit is censored.

Consequently, the loglikelihood function assuming a sample from the inverse Gaussian popula-

tion becomes
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Ln(µ, λ) =
n∑

i=1

(1− δi)ln

{
Φ(Ai) + exp

(
2λ

µ

)
Φ(Bi)

}
+

n∑

i=1

δi

{
1

2
lnλ− 1

2
ln(2π)− 3

2
ln(ti)− λ

(ti − µ)2

sµti

} (3.23)

where Ai =
√

λ
ts

(
ts
µ
− 1
)

and Bi = −
√

λ
ts

(
ts
µ
+ 1
)

The derivatives of ℓn(µ, λ) with respect to

µ and λ are messy but can be evaluated in a straightforward way (see e.g. Lemeshko, Lemeshko,

Akushkina, Nikulin and Saaidia, 2010). But in the present competing risks situation, the contri-

bution to the likelihood function when unit lifetime is censored during testing is the subdensity

function of X1. It is given by

f ∗
1 (x1;µ, λ) = q

√
λ

2πx31
exp

(
−λ(x1 − µ)2

2µ2x1

)
.

Similarly, the contribution to the likelihood function when unit lifetime is observed during testing

is the subdensity function of X2 given by

f ∗
2 (x2;µ, λ) = (1− q)

√
λ

2πx32
exp

(
−λ(x2 − µ)2

2µ2x2

)
.

Contributions to the likelihood function for a different parameterisation of the inverse Gaussian

distribution is found in Lindqvist and Skogsrud (2009) for example. Assuming the observed

competing risks data at each test stress level are (z1, ..., zN) = (x11, ..., x1n; x21, ..., x2m), then

the likelihood function is given by

L =
n∏

i=1

f ∗
1 (x1i)

m∏

j=1

f ∗
2 (x2j)

= qn(1− q)m
(
λ

2π

)n+m
2

(
n∏

i=1

x1i

)−3/2( m∏

j=1

x2j

)−3/2

× exp

(
−

n∑

i=1

λ(x1i − µ)2

2µ2x1i
−

n∑

i=1

λ(x2j − µ)2

2µ2x2j

)
.
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Thus ML estimates of model parameters are obtained by calculating the loglikelihood function,

taking partial derivatives with respect to the parameter and solving the resulting likelihood equa-

tions. For example, the likelihood equation for the probability q of observing a degraded failure

in a life test before the unit reaches the end of its useful life is

n(1− q)−mq = 0.

Hence the ML estimate q̂ of q is given by

q̂ =
n

n+m

while in practice, readily available optimisation software are used to obtain maximum likelihood

estimates of the remaining inverse Gaussian distribution parameters. Consequently, this yields

functional forms of the observed occurrences of the competing risks variables at each test stress

level.
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Chapter 4

Statistical modeling of life data from

accelerated tests

4.1 Introduction

This chapter discusses the statistical modeling of life data from accelerated life tests. By de-

sign, accelerated life testing always requires extrapolation since test data are utilised to draw

inferences about the lifetime distribution of the unit under normal use conditions. The basic idea

behind accelerated life testing is the hypothesis that the mechanisms of failure under the right test

stress levels remain the same as at normal operating conditions to justify extrapolation. Other-

wise model errors will potentially dominate other sources of uncertainty. Under this assumption,

accelerated life testing is thus a transformation of the time scale such that the lifetime distribu-

tion under a range of test stress levels is the same as under use conditions but evaluated at a

compressed time scale.

At the core of the accuracy of the extrapolation is a physically motivated model for life data from

accelerated life tests. Typically, the model for life data collected from accelerated life tests is a

combination of a lifetime distribution and the life-stress relationship, called the accelerated life

test model (ALT model). A diagrammatic representation of the ALT model is given in Figure 4.1.
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Figure 4.1: Accelerated life test model.

For a review of ALT models, see Escober and Meeker (2006). Accordingly, two assumptions are

made when analysing test data on unit lifetime from accelerated life testing experiments. First,

an appropriate lifetime distribution is chosen to describe the scatter in unit life at each test stress

level. Often, the underlying lifetime distribution is assumed to come from a specified parametric

family. The next step is to choose a model that describes how a quantifiable life measure of

the assumed lifetime distribution varies with stress. In practice, model choice is guided by an

understanding of the physics of failure or experience with similar tests. Lifetime distribution and

model choice are discussed in turn.

4.2 Probability models for life data from accelerated tests

Typically, life data from accelerated tests are positively skewed because of more early unit fail-

ures. Consequently lifetime distributions which can have positively skewed frequency curves

may provide a good fit to such test data. Two such distributions which are very popular in reli-

ability and life testing studies are the Weibull and the lognormal distributions. The former can
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also have negatively skewed frequency curves and reduces to the exponential distribution when

the shape parameter β = 1. Where early failures dominate unit lifetime distribution, the Weibull

and the lognormal distributions may provide a similar fit to test data. In reliability analysis how-

ever, which model to use also depends on an understanding of the physics of failure. The PhD

thesis by Liu (1997) gives a thorough discussion of the use of these two lifetime distributions

when analysing reliability data.

4.2.1 Justification for the Weibull and lognormal distributions

A physical motivation for using the Weibull distribution to describe life data stems form its in-

terpretation as a limiting distribution of minima. Specifically, the Weibull distribution has been

shown (see for example Gumbel, 1958) to be identical to the type III smallest extreme value dis-

tribution for minimum values. Accordingly, it is an acceptable model of the first occurring failure

mode for a unit where different failure modes are competing to remove the unit from observation

in a life test. Thus whenever test data satisfy the chain model, they can be adequately described

by the Weibull distribution.

The use of the lognormal distribution as a time-to-failure distribution can be justified as follows.

Assume unit degradation during testing is directly observable such that Y1 < ... < Yn is a

sequence of random variables describing the state of unit degradation at stages i = 1, ..., n. By

the proportional growth model (see e.g. Mann, Schafer and Singpurwalla, 1974), the change in

the state of unit degradation at stage i, denoted ∆Yi = Yi − Yi−1 is randomly proportional to the

state of degradation at stage i− 1. That is

Ii =
Yi − Yi−1

Yi−1

, i = 1, ..., n

where Ii are independent random variables, interpreted as small proportional degradation incre-

ments. The unit fails during testing when its degradation state reaches Yn. As the change in the

state of unit degradation at stage i becomes small, that is ∆Yi → 0 and n → ∞, then the sum of

a large number of small proportional degradation increments

n∑

i=1

Ii ≈
∫ Yn

Y0

1

Y
dY = lnYn − lnY0 (4.1)
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where Y0 is the initial degradation state of the unit. Accordingly, Y0 = 0 if the unit is new.

Rearranging Equation 4.1 yields

lnYn =
n∑

i=1

Ii + lnY0

and by the central limit theorem
∑n

i=1 Ii
d→ N(µ, σ2) where

d→ stands for converges in distribu-

tion. Consequently, lnYn follows a normal distribution and hence Yn is distributed as lognormal.

But how well the assumed lifetime distribution fits test data depends on the behaviour of its failure

rate or hazard function. It is given by

λ(t) =
f(t)

S(t)

and it is a measure of how prone units are to failure as a function of testing period (unit age).

The bathtub curve in Figure 4.2 shows typical failure patterns over testing time. The exponential

Figure 4.2: Bathtub curve.

distribution purely has a constant failure rate. As a result, it is an appropriate model for units

that experience random failures during testing, possibly due to external shocks. Accordingly, the

exponential distribution adequately describes failure patterns over testing time in the flat portion

of the bathtub curve.
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The Weibull hazard function is a power function of testing time given by

λ(t) =

(
β

α

)(
t

α

)β−1

; t > 0, α > 0, β > 0

where the shape parameter β is such that when β > 1 (β < 1), λ(t) increases (decreases) with

testing time. When β = 1, the Weibull distribution reduces to the exponential distribution and

λ(t) is constant over time. Hence the Weibull distribution adequately describes failure patterns

over testing time in both early failure and wearout regions of the bathtub curve. This flexibility

of the Weibull distribution in describing both increasing and decreasing failure rates makes it a

preferred choice as the underlying lifetime distribution.

The lognormal failure rate has this property: it is zero at time zero, increases to a maximum

and decreases to zero with increasing testing time. But interest in accelerated life testing is in

obtaining failure data quickly. Hence good estimation of the lower percentiles of the assumed

lifetime distribution is very important. Accordingly, the lognormal distribution flexibly fits test

data particularly over its lower tail.

4.3 Life-stress relationship

The ultimate goal in accelerated life testing is to extrapolate a use-level lifetime distribution

of the unit from test data. This can only be accomplished if there is a way to relate life at

elevated test stresses to life at normal operating conditions. Hence it is also assumed that a time

transformation or acceleration function exists that describes how a quantifiable life measure of

the assumed lifetime distribution changes with stress. The quantifiable life measure can be any

life measure such as the mean, median or some specified percentile. Typical quantifiable life

measures for the exponential, Weibull and lognormal distributions are given in Table 4.1.
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Distribution Parameters Quantifiable life measure

Exponential 1
α

Mean life, α

Weibull β∗, α Scale parameter, α

Lognormal µ′, σ′∗ Median life, κ0.5 = eµ
′

Table 4.1: Quantifiable life measures for the exponential, Weibull and lognormal distributions. Parameters

with ∗ are assumed to be constant.

Lognormal distribution parameters have ′ to differentiate them from those of the normal distribu-

tion. The scale parameter µ′ and the shape parameter σ′ are the mean and standard deviation of

the natural logarithm of the times to unit failure respectively.

Commonly used time transformation functions are the Arrhenius, the Eyring and the inverse

power law (IPL) relationships or their generalisations. The physics based Arrhenius relationship

applies when temperature is the accelerating variable. Its basis is the Arrhenius law which s-

tates that the reaction rate r depends on temperature through r = Ae−E/kV where the constant

A is characteristic of unit failure mechanism and test conditions, E is the activation energy in

electron-volts, k is the Boltzmann’s constant (8.6171× 10−5 electron-volts per ◦C) and V is the

accelerating stress. In particular, V is the absolute Kelvin temperature for the Arrhenius relation-

ship. The Arrhenius life-stress relationship expresses nominal life κ as inversely proportional to

the rate constant. That is

κ =
1

A
e

E
kV (4.2)

and linearising by taking base 10 logarithm yields

log(κ) = γ0 +
γ1
V

where γ0 = log (A−1) and γ1 = (E/k) log(e). Accordingly, the Arrhenius life-stress relationship

combines the lifetime distribution with the Arrhenius dependence of life on temperature.

The Eyring relationship is an alternative to the Arrhenius relationship in that it is also used when

temperature is the accelerating variable. It expresses nominal life κ as a function of stress (tem-
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perature) through

κ =
A

V
e

B
kV

where the constants A and B are characteristic of unit failure mechanism and test conditions.

On the other hand, the IPL is used when the accelerating variable is non-thermal. The IPL

relationship between nominal life κ and the accelerating stress V is given by κ(V ) = AV −ω1

where A and ω1 are model parameters to be determined. Taking natural logarithms yields the

linearised relationship

ln [κ(V )] = ω0 + ω1 [−ln(V )]

which expresses the log of nominal life as a linear function of transformed stress. Consequently,

if the lifetime distribution at higher test stresses and an appropriate time transformation function

can be reasonably hypothesised, then the lifetime distribution at actual use conditions can be

calculated mathematically. Clearly, at least two test stress levels are required to extrapolate a

use-level lifetime distribution and the more the test stress levels, the better the fit. Estimates of

the parameters for the lifetime distribution and life-stress relationship are obtained from test data.

4.4 ALT model and stress loading schemes

The ALT model is to a large extent determined by the type of stress loads applied in an ALT

experiment. Stress loads are classified according to how the applied stress relates to time. In

very broad terms, commonly applied stress loading methods can be classified into two schemes

namely constant (in time) stress and time-varying stresses. Only a brief summary of these stress

loading schemes is given here assuming units are tested at m different levels of stress, denoted

by v1, ..., vm. Their merits and demerits are also briefly discussed. For a detailed discussion, see

Nelson (2004) for example.

Constant stress loading is a time-independent test setting. Typically, n1, ..., nm units are corre-

spondingly tested at constant levels of accelerated stress v1, ..., vm until failure or a censoring

time. In general, n1 = ... = nm but for optimal test plans, n1 > ... > nm for v1 < ... < vm.

Constant stress loads have several practical advantages. In particular,
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(1) When in actual use, most units operate at constant use-level conditions. As a result, con-

stant stress loads tend to mimic reality.

(2) Constant stress loads are simple and considerably easier to run. Specifically, maintaining

the temperature at the same level in a thermal accelerated test is easier than having to

change it with time.

(3) For some units, inference procedures for constant stress loads are well developed, empiri-

cally tested and computerised.

(4) If well-run, extrapolation from constant stress loads is more accurate than when stress is

time dependent.

A disadvantage of constant stress tests is that they may need to run for a long time to yield enough

failures, particularly at lower test stress levels.

In contrast, time-varying stress loads allow for a change in stress at different intermediate stages

of the test. Commonly used time-varying stress loading schemes are step-stress and progressive

stress loads. For v1 < ... < vm, step-stress loads take the form

V =





v1 for 0 ≤ t < t1

v2 for t1 ≤ t < t2

... , ...

vm for tm−1 ≤ t < tm

(4.3)

where n units are placed on test at an initial lower level of stress v1 until time t1. Assume only

n1 < n units fail during the test period 0 ≤ t < t1. Unfailed units are then subsequently tested

at increased stress levels for a period of time as in Equation 4.3 until all units fail. If n2 units fail

during the time interval t1 ≤ t < t2 at a level of stress v2 and so on until the remaining nm units

fail while being tested at vm for the period tm−1 ≤ t < tm, then n = n1 + ...+ nm.

In progressive stress tests on the other hand, test units are subjected to continuously increasing

stress with time. A special case of progressive stress tests is a ramp test where stress is linearly

increasing with time. The advantage of time-varying stress loads is that by design, they yield fail-

ures faster than constant stress loads assuming similar stress levels. Accordingly, the asymptotic
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theory of time-varying stress tests will consequently be a better estimation because of the many

failures.

In terms of reliability estimation however, the standard error of estimates from test data is in

general inversely proportional to the total time on test. Hence, estimates from time-varying stress

tests are less accurate than from constant stress loads due to shorter test time. Further disadvan-

tages of time-varying stress loads are linked to the design of the tests. Specifically

(1) Time-varying stress loads are difficult to maintain in practice and this may lead to additional

experimental errors.

(2) Inference from time-varying stress loads require more complicated model assumptions.

The model must properly account for the cumulative damage at successive stresses and

at the same time, provide an estimate of unit lifetime under constant normal operating

conditions.

(3) Time-varying stress loads induce failures at test stress levels far above the design stress

level. Accordingly, the magnitude of the inevitable extrapolation error in these tests is

higher than in constant stress loads.

In general, statistical methods for analysing censored data are readily available and computer

packaged. As a result, it is not really necessary to force all test units to run to failure during

life testing. For some tests, measured degradation data may also be collected during testing and

utilised together with failure data to infer unit lifetime at use conditions. Besides, interest is often

in lower percentiles of the lifetime distribution. Hence running all test units to failure adds very

little information to lower distributional percentiles.

4.5 Mathematical description of the AFT model

The simplest ALT model particularly for units which degrade during testing is the accelerated

failure time model (AFT model). Denote by v0, the usual design stress experienced by a unit

under normal operating conditions. Then the probability that a unit testing under test stress v
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would survive till the moment t is the same as the probability that a unit operating under the use

level stress v0 would survive till the moment gv(t), called the transfer functional. That is, the

transformed time gv(t) under v0 is equivalent to t under the test stress v.

Now, let Tv be a non-negative absolutely continuous random variable corresponding to the failure

time of the unit under test stress v. Obviously, the distribution of Tv depends on v. Thus, for any

test stress v and t ≥ 0,

Sv(t) = P (Tv ≥ t) = P (Tv0 ≥ gv(t)) = Sv0 (gv(t)) (4.4)

where Sv0 is the baseline survival function. The AFT model, sometimes called additive accumu-

lative damages model is defined on the basis of the properties of the functional gv(t) as follows.

In the context of resource usage, the functional gv(t) may be taken as the amount of resource

used until time t under stress v. Assuming stress is time-dependent, the rate of resource usage

at the moment t is a function of the value v(t) of the stress v at that moment and is given by the

differential equation

d

dt
gv(t) = r[v(t)] (4.5)

with the initial condition gv(0) = 0. The unknown function r has the general interpretation of the

popular failure rate model and can be estimated from test data. Thus, the AFT model is verified

on the set of all admissible stresses E provided there exists a positive functional r : E → R
+

such that for any test stress v ∈ E (Bagdonavicius, 1978), the relational function gv(t) satisfies

4.5. Integrating 4.5 with respect to t yields gv(t) =
∫
r[v(t)]dt. Thus from 4.4 and in terms of

survival functions, the AFT model takes the form

Sv(t) = Sv0

(∫ t

0

r[v(s)]ds

)
. (4.6)

If the test stress is constant in time, then equation 4.6 reduces to

Sv(t) = Sv0 (r(v)t) (4.7)

such that more severe test conditions shrink the time scale t by a factor r(v) in the baseline

survival distribution. Consequently for any two test stresses v1 and v2, the survival functions

Sv1(t) and Sv2(t) will only differ in scale.
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The baseline survival distribution Sv0 is often taken from a specified parametric family and if

the functional r() is also parameterised, then the corresponding AFT model is fully parametric.

It becomes semi-parametric when either the functional r() is parameterised and the baseline

survival function Sv0 is completely unknown or vice versa. If both the functional r() and the

baseline survival function Sv0 are completely unknown, then the AFT model is nonparametric.

In general however, parametric AFT models are used in practice though model choice is often

guided by the assumed knowledge about the data.

4.6 Modeling under dependent random censorship

In this thesis however, the censoring variable X1 and unit lifetime X2 are competing to remove

the unit from observation in a life test. As a result, test data comprise the time to removal of the

unit from observation in a life test and the identity of the mode that actually removed the unit

from observation in a life test. Clearly, subsurvival functions

S∗
X1
(t) = P (X1 > t,X1 < X2)

S∗
X2
(t) = P (X2 > t,X2 < X1)

and not true marginal survival functions SXj
(t) = P (Xj > t), j ∈ (1, 2) are estimable from

such observable competing risks data at each stress level unless the risks are independent. But

since stochastic dependence is assumed between the censoring variable X1 and unit lifetime X2

on the premise of them being linked through the degradation process of the unit, the problem

under consideration is that of dependent competing risks.

Given the event that the failure mode of interest removed the unit from observation in a life test

and assuming continuity of S∗
X1
(t) and S∗

X2
(t) at t = 0,the conditional subsurvival functions

CS∗
X1
(t) = P (X1 > t,X1 < X2|X1 < X2) =

S∗

X1
(t)

S∗

X1
(0)

CS∗
X2
(t) = P (X2 > t,X2 < X1|X2 < X1) =

S∗

X2
(t)

S∗

X2
(0)

can be empirically obtained from the competing risks data at a stress level. Consequently, they

may be important indicators when selecting the model that best fits competing risks data at a
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stress level.

Of interest in this investigation are the marginal survival functions SXj
(t) = P (Xj > t), j ∈

(1, 2). In particular, the estimation problem is to extrapolate a use-level lifetime distribution from

test data with the censoring variable removed. It is however well established, see for example

Tsiatis (1975) that the true marginal survival functions are generally not identifiable from the ob-

servable dependent competing risks data alone. Additional simplifying assumptions are required

and typically this entails restricting the joint survival function of the risk variables to a family of

functions.

Carriere (1994) and Zheng and Klein (1995) generalised the identifiability of the true marginal

survival functions to forms of dependency that are defined in terms of copulas. This obviously

include the well-known result that the true marginal survival functions are identifiable when the

risk variables are stochastically independent and corresponds to the independent copula. Car-

riere’s model accommodates j > 2 competing risks whereas that of Zheng and Klein applies to

j = 2 competing risks only. Lo and Wilke (2010) generalised the latter to j > 2 competing risks

by pooling all other k 6= j risks into a new risk variable.

The approach adopted in this investigation is as follows. Let C(u1, u2) be a fixed copula that

captures the stochastic dependence between unit lifetime and random censorship. Since unit

lifetime and the censoring variable are competing to remove the unit from observation in a life

test (competing risks scenario), C(u1, u2) can not be estimated from test data since the data are

incomplete. Accordingly, expert opinion is required to estimate C(u1, u2). Assume that the

estimated copula has continuous second-order partial derivatives with respect to uj ∈ (0, 1) and

that the marginal dfs of unit lifetime and random censorship also exist at each test stress level.

Further assume that f ∗
Xj
(t) = − d

dt
S∗
Xj
(t) are continuous and denote by h(x1, x2) the joint pdf

of the competing risk variables X1 and X2. A straightforward calculation (see e.g. Bunea &

Bedford, 2002) yields
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F ∗
X1
(t) ≡ P (X1 ≤ t,X1 < X2) =

∫ t

0

(∫ ∞

x1

h(x1, x2)dx2

)
dx1 (4.8)

= FX1(t)−
∫ t

0

cu1 (FX1(x1), FX2(x1)) fX1(x1)dx1

where

cu1 =
∂C(u1, u2)

∂u1

is the first order partial derivative calculated in (FX1(t), FX2(t)). In the same way,

F ∗
X2
(t) = FX2(t)−

∫ t

0

cu2 (FX1(x2), FX2(x2)) fX2(x2)dx2 (4.9)

where

cu2 =
∂C(u1, u2)

∂u2

is also calculated in (FX1(t), FX2(t)). For any u1 ∈ I = [0, 1], ∂
∂u2
C(u1, u2) exists for almost all

u2 ∈ [0, 1] such that

0 ≤ ∂

∂u2
C(u1, u2) ≤ 1. (4.10)

Equation 4.10 is also true for ∂
∂u1
C(u1, u2) with u1 and u2 interchanging roles and the functions

u1 → cu2(u1) ≡
∂

∂u2
C(u1, u2) and u2 → cu1(u2) ≡

∂

∂u1
C(u1, u2)

are well-defined and almost everywhere non-decreasing on [0, 1]. Hence partial derivatives of a

copula with respect to its arguments exists.

Put together and after rearranging, Equations 4.8 and 4.9 yield the non-linear system of differen-

tial equations





[1− cu1(FX1(t), FX2(t))]F
′
X1
(t) = F ∗′

X1
(t)

[1− cu2(FX1(t), FX2(t))]F
′
X2
(t) = F ∗′

X2
(t)

(4.11)

with initial conditions FX1(0) = FX2(0) = 0. Given the estimated copula C(u1, u2) and suitable

functional forms for F ∗
X1
(t), j ∈ (1, 2), the differential system in Equation 4.11 can be numeri-

cally solved for FX1(t) and FX2(t) at each test stress level. Consequently life data samples from
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these marginal distribution functions are easily generated at each test stress level. The problem

of fitting a chosen lifetime distribution to life data is discussed next.

Several methods are available for fitting life data samples to a chosen lifetime distribution. In

this thesis however, two parameter estimation methods namely maximum likelihood estimation

(MLE) and median rank regression (MRR) are considered. Barring some exceptions, the former

is the most robust and is thus the preferred parameter estimation method from a statistical point

of view. On the other hand MRR is the preferred method in industry, specifically in reliability

analysis. This is mainly because with MRR, data can be graphically displayed and parameters

estimated by easily understood ordinary least squares method. Further, graphical representation

of data also provides a basis for goodness-of-fit tests. Life data from accelerated tests are inher-

ently censored. Hence MLE and MRR are discussed for censored test data assuming either the

Weibull or the log normal distribution adequately describes test data.

4.7 Maximum likelihood estimation method

The method of MLE obtains the most likely values of the parameters for a chosen lifetime distri-

bution that best describes test data. It has excellent asymptotic properties that make its use very

attractive namely

(1) MLE parameter estimates converge to the right parameter values as sample size increases.

Hence the method is asymptotically consistent.

(2) On average, MLE parameter estimates yield the correct parameter values for large samples

and are therefore asymptotically unbiased.

(3) MLE parameter estimates are asymptotically normally distributed and this is the basis for

the construction of confidence bounds to quantify parameter uncertainty.

(4) For large samples, MLE method produces minimum variance estimates and are therefore

the most precise.
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In addition, the method of MLE can also handle all kinds of test data including heavily censored

test data where not even a single unit failure is observed in a life test. But when sample sizes for

test data are very small, finite sample properties of the MLE parameter estimates would be less

than optimal. Consequently the parameter estimates would also be biased.

4.7.1 Weibull distribution

Assume test data are adequately described by a 2−parameter Weibull distribution. Denote by

θ = (α, β) the unknown Weibull distribution parameters where α > 0 is the scale parameter

representing the characteristic life of the units and β > 0 is the shape parameter that determines

the appearance of the Weibull pdf. The problem of estimating Weibull parameters has attracted

significant attention in life testing and reliability theory in general (see e.g. Genschel and Meeker,

2010; Olteanu and Freeman, 2010 and the numerous references therein). The method of MLE

obtains the Weibull parameter estimator θ̂ = (α̂, β̂) which is the highest ranked of all possible θ

values given the observed test data at each test stress level by maximising the likelihood function

L(θ) =
r∏

i=1

[
β

α

(
ti
α

)β−1

exp

(
−
(
ti
α

)β
)]

n∏

i=r+1

[
exp

(
−
(
ti
α

)β
)]

or equivalently the log of the likelihood L (θ) = ln(L(θ)) where r is the number of failures and

n− r is the number of right censored observations. Thus the likelihood function of the censored

sample is the joint density of the n random variables and is a function of the unknown parameters.

The ML estimates α̂ and β̂ for α and β are solutions of

∑n
i=1 t

β̂
i ln(ti)

∑n
i=1 t

β̂
i

− 1

r

r∑

i=1

ln(ti)−
1

β̂
= 0 (4.12)

and

α̂ =

(
1

r

n∑

i=1

tβ̂i

) 1

β̂

(4.13)

respectively. For more details, see for example Nelson (1982). In practice however, ML estimates

of Weibull distribution parameters are obtained by numerical methods.
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4.7.2 Lognormal distribution

Alternatively, assume the lognormal distribution with scale parameter µ′ and shape parameter

σ′ provides a good description of test data. Then the log of test data, denoted by T = lnX

are normally distributed. That is T ∼ N(µ, σ2) where µ is the location parameter and σ is the

scale parameter. The parameters of the normal and lognormal models are related through simple

transformations µ′ = eµ and σ′ = σ−1. Consequently MLE of the lognormal distribution can be

recovered from the MLE of the normal distribution.

For a test sample of n units with r failures and n − r censors, the likelihood function for the

2−parameter normal distribution is

L =
r∏

i=1

[
1

σ
φ

(
ti − µ

σ

)] n∏

i=r+1

[
1− Φ

(
ti − µ

σ

)]
(4.14)

where φ() and Φ() are the probability density and the cumulative distribution of the standard

normal respectively. The parameter values µ and σ that maximise the likelihood function in

Equation 4.14 or equivalently the log likelihood are the ML estimates µ̂ and σ̂. Hence ML

estimates µ̂′ and σ̂′ for the lognormal distribution parameters µ′ and σ′ are obtained from ML

estimates of the normal distribution parameters. Again, numerical methods are used in practice.

Denote by µ̃ and σ̃, the mean and the standard deviation values of unit failure times. These values

are not used as lognormal distribution parameters and are obtained through

µ̃ = exp

(
µ′ +

1

2
σ′2
)

and

σ̃ =
√(

e2µ′+σ′2
) (
eσ′2 − 1

)

respectively. The life characteristic for the lognormal distribution is the median life and is given

by κ0.5 = eµ
′

.
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4.8 Median rank regression method

4.8.1 Introduction

The analytical motivation of MRR is the linearisation of the cdf of the lifetime distribution. This

enables least squares regression analysis to be performed on the transformed test data. Con-

sequently, distribution parameters are estimated through simple transformations of the estimat-

ed regression coefficients. Its implementation requires a nonparametric estimator of the failure

probability F (ti). Typically, F̂ (ti) is obtained by marking the median rank for each failure time

at each stress level and hence the general name MRR. Different formulas for F̂ (ti) have been

proposed in the literature (see e.g. Skinner, Keats and Zimmer, 2001). The most popular approx-

imation is Bernard’s median rank estimator

F̂ (ti) =
i− 0.3

n+ 0.4
(4.15)

where i is the failure order number (FON), defined as the sequence number of that failure by age.

The drawback of Bernard’s median rank estimator is that FON is not defined at failure points

after a suspension as follows.

Let t1 < t2 < ... < ts < ... < tk < ... < tn be a censored sample at a stress level. Assume for

simplicity that the sample has a single suspension at time ts. All unit failure times less than the

suspension ts have clearly defined failure order numbers. Thus t1 is assigned a FON 1 since is the

earliest failure by age, t2 has a FON 2 and so on. For the suspension ts however, if the unit was

kept on test long enough, it could fail at any later time tl > ts before or after the later failure time

tk. That is, either tl < tk or tl > tk and hence the FON at a failure point tk becomes uncertain.

To ensure that the median rank is defined at all failure times for right censored test samples, the

mean order number (MON) is used instead of the exact FON. See Wang (2004) for more details.

The MON for the failure time tk that is greater than age of suspension ts is defined as the expected

total number of failures before tk assuming all units were kept on test and run to failure. That is

F̂ (tk) =
E(FONk)− 0.3

n+ 0.4
=
MONk − 0.3

n+ 0.4
. (4.16)
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The modification of median rank in Equation 4.16 is based on a statistical fundamental that unit

failure times and suspensions have identical statistical properties since test units are a random

sample from the same population. Denote by {ti, δi; i = 1, ..., n}, the ordered censored sample

t1 < t2 < ... < ts < ... < tk < ... < tn where the censoring indicator

δi =





1 if ti is a failure time

0 if ti is a censor time.

The total number of failures before age tk is

FONk = D1 +D2 + ...+Dn

where

Di =





1 if unit i fails before tk

0 if unit i fails after tk.

But for a suspension at ts before age tk,Di is random because the suspended unit could potentially

fail before tk (Di = 1) with probability

P (Di = 1) =

∫ tk
ts
f(t)dt

1− F (ts)
=
F (tk)− F (ts)

1− F (ts)

or after tk (Di = 0) with probability

P (Di = 0) =

∫∞
tk
f(t)dt

1− F (ts)
=

1− F (tk)

1− F (ts)
.

Consequently, FONk is a random variable and by definition

MONk = E [FONk] = E (D1) + E (D2) + ...+ E (Dn) . (4.17)

It follows from Equation 4.17 that when δi = 0, then E(Di) =
F (tk)−F (ts)

1−F (ts)
for i = 1, ..., k. On the

other hand, when δi = 1, then E(Di) = 1 for i = 1, ..., k and for i = k + 1, ..., n, E(Di) = 0.

Accordingly, the MON and hence the median rank estimator is completely defined for every unit

failure time. Thus the MRR method for censored test data involves the following steps:

(1) Rank unit failure data from the smallest to the largest.

(2) For times-to-failure data only, use Equation 4.16 to assign median ranks

(3) Estimate distribution parameters using least squares analysis.
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4.8.2 Weibull distribution

The cdf of the 2−parameter Weibull distribution is linearised by taking the logarithm of the

Weibull failure probability F (ti) twice. The resulting linear form is given by

ln [−ln (1− Fw(ti))] = −βln(α) + βln(ti) (4.18)

where the Weibull failure probability Fw(ti) is estimated from the median ranks. Equation 4.18

is in the standard linear form yi = a + bxi where yi = ln [−ln (1− Fw(ti))]; xi = ln(ti);

a = −βln(α) and b = β. Two kinds of regressions, namely regressing Y on X and regressing

X on Y can be performed on the linear form in Equation 4.18. Correspondingly, these two

regressions minimise the vertical and horizontal error sum of squares.

The scale with greater variability (see for example Berkson, 1950) is generally treated as the

dependent variable. Unit failure times almost always exhibit larger error than median ranks.

Hence unit failure times are treated here as the dependent variable. Consequently, the regression

of X on Y is preferred. For more details, see Abernethy (1994). The best fitting equation for the

regression of X on Y is the the straight line

x = â+ b̂y. (4.19)

Correspondingly, the equations for the regression coefficients are

â = x̄− b̂ȳ (4.20)

and

b̂ =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi

n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2 . (4.21)

The Weibull parameters are recovered by writing Equation 4.19 in the form of Equation 4.18.

This yields simple transformations α̂ = exp
(

â

b̂
× 1

β̂

)
and β̂ = 1

b̂
for obtaining the parameters of

the Weibull model.
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4.8.3 Lognormal distribution

The CDF of the lognormal distribution can be written as

F (t′) = Φ

(
t′ − µ′

σ′

)
(4.22)

where t′ = ln(t) and t are the times-to-failure of the unit at a stress level. The parameters µ′ and

σ′ as well as Φ() are as defined under MLE for the lognormal distribution. Rearranging Equation

4.22 yields an equivalent version

Φ−1 [F (t′)] = −µ
′

σ′ +
1

σ′ t
′ (4.23)

where Φ−1 is the inverse of the standard normal cdf. Comparing Equation 4.23 with the linear

form yi = a+ bxi yields transformed probability axes yi = Φ−1 [F (t′i)] where F (t′i) is estimated

from the median ranks and xi = ln(ti).

Again, unit failure times are treated as the dependent variable because they exhibit larger error

compared to median ranks. As a result, regressingX on Y is preferred. The best fitting regression

equation remains exactly the same as in Equation 4.19 and the same applies to the equations for

the regression coefficients. Simple transformations µ′ = â

b̂
σ′ and σ′ = b̂ give the lognormal

distribution parameters.

4.9 Discriminating between competing lifetime distributions

Deciding if a test sample is a realisation from a population with a particular lifetime distribution is

an old but important problem in statistics. The problem is made even more difficult in accelerated

reliability testing because test samples are generally small and test data are often right censored.

Given test data at each test stress level, how will one discriminate between the Weibull and the

lognormal distribution? From a purely statistical viewpoint, goodness-of-fit tests are used to

discriminate between these two lifetime distributions.

Dumonceaux and Antle (1973) for example used the ratio of maximised likelihoods to formulate

the hypothesis setting

H0 : T ∼ Weibull(α, β) against H1 : T ∼ Lognormal(µ′, σ′) (4.24)
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for discriminating between the Weibull and the lognormal distributions. This setting considers

model choice as a test of hypothesis where the distribution assigned to the null hypothesis is the

preferred model to use. The test statistic for the test of hypothesis in Equation 4.24 is given by

TSMLR =
1(√

2πσ′2e
)

n
√∏n

i=1 tifw(ti)
(4.25)

where e is the exponent, n is the size of the test sample, ti is the time to unit failure and fw() is

the Weibull probability density function (pdf). The Weibull distribution is rejected in favour of

the lognormal distribution if TSMLR is greater than or equal to the tabulated critical value at a

specified level of significance.

Alternatively, the lognormal distribution could be the preferred model. To allow this model

choice, Dumonceaux and Antle (1973) also proposed the reverse hypothesis

H0 : T ∼ Lognormal(µ′, σ′) against H1 : T ∼ Weibull(α, β). (4.26)

Accordingly, the test statistic takes the form

TSMLR =
(√

2πσ′2e
)

n

√√√√
n∏

i=1

tifw(ti). (4.27)

The lognormal distribution is rejected in favour of the Weibull distribution if TSMLR is greater

than or equal to the tabulated critical value at a specified level of significance.

Other methods that can be used to measure goodness-of-fit include the most powerful invariant

(MPI) test due to Kent (1979). These methods are however very complex and hence less attractive

than simpler statistical methods in practice. If the models were nested, that is, one model is a

special case of the other, then they can be compared using likelihood ratio tests. Asymptotically,

the test statistic takes the form

TLR = −2
(
Ls(θ̂)− Lg(θ̂)

)
∼ χ2

pg−ps

where Ls and Lg are log-likelihoods of the simpler and the general model respectively, ps and pg

are the corresponding number of parameters in the models. There however does not seem to be a
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way to convert either of the Weibull or lognormal distributions to the other by fixing parameter(s).

Consequently, these lifetime models are not nested.

Log likelihoods are also commonly used in statistical practice to compare models for the same

data set provided the models being compared have the same number of parameters. If the number

of parameters differ for the models in question, information-based criteria which extend log like-

lihood comparisons would be used instead. There are several information-theoretic approaches.

But because of inherent small sample sizes in ALT, the corrected Akaike information criterion

(AICc), defined as

AICc = −2L (θ̂) + 2K +
2K(K + 1)

n−K − 1

whereK is the number of estimated model parameters and n is the number of test units at a stress

level. The model with minimum AICc value is better.

4.10 Comparison of the parameter estimation methods

An important question in terms of parameter estimation centers on the choice of the estima-

tion method for the chosen lifetime distribution. A number of studies compare MLE and MRR

methods for estimating Weibull parameters. Few studies include the lognormal distribution. Re-

sults from these studies are generally mixed because of study differences in terms of censoring

schemes (data types), different censoring percentages and different evaluation criteria. Obvious-

ly, these factors lead to important differences when evaluating estimation methods. Emphasis

here is on performance of MLE and MRR procedures in small samples under Type I censoring

because few units are often available for testing and not all units are generally run to failure in

life tests.

In cases where test samples are small and a high degree of censoring is apparent (Abernety, 2004),

MLE estimates are known to be biased. On the other hand, let t1, ..., tn be a test sample of size n.

The MRR method uses corresponding order statistics t(1) ≤ ... ≤ t(n). Accordingly, ti = t(i) is

the value assumed by the order statistic T(i). Hence xi = ln(ti) is interpreted as the value assumed

by the log order statistic X(i). Similarly, the transformed value of the independent variable yi is
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also considered as the value assumed by the (reduced) order statistic Y(i). As a result, the best

fitting equation for the regression of X on Y in Equation 4.19 has the representation

X(i) = a+ bY(i).

Least squares regression of X on Y is justified as an estimation technique provided Xi are in-

dependent observations with constant variance. In this case however, Xi = X(i) is the log order

statistic such that

V ar (Xi) = b2V ar
(
Y(i)
)
; Cov (Xi, Xj) = b2Cov

(
Y(i), Y(j)

)
, i 6= j.

Though essentially a least squares estimation method, MRR violates assumptions upon which

the least squares estimation method is based. Accordingly, MRR is not statistically optimum as

an estimation technique. Hence the estimates of the regression coefficients in Equations 4.20 and

4.21 are also biased.

In general however, the overall accuracy of an estimator cannot be properly evaluated unless both

bias and precision as measured by the standard error of the estimator are considered. The MRR

estimates â and b̂ in Equations 4.20 and 4.21 respectively do not have minimum error variance

since the assumptions of independent observations and constant variance are violated. On the

other hand, ML estimates are often the most precise even in small test samples with few failures.

Hence when these estimators are evaluated in terms of their overall accuracy, MLE almost always

generally perform better than MRR in almost all practical situations.

Test data are almost always right censored. For such data, the MRR method only uses the location

of the censored observation and not the exact time-to-censoring. As a result, it gives exactly the

same results for cases with differing failure and suspension times as long as the order of unit

states (failed or suspended) and hence failure order numbers are identical. MLE on the one

hand would give different results for different cases because it uses the actual times-to-failure or

suspension, not ranks. For highly reliable systems, few failures are often observed even under

accelerated conditions. Consequently, the information contained in the suspended observations

becomes very important. Hence MLE is attractive because it uses all information in the data.
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4.11 Statistical methodology

The problem of identifying marginal distribution functions from dependent competing risks data

has been studied in different contexts. Carriere (1994) for example transformed the differential

system in Equation 4.11 into a system of difference equations and solving the problem recursive-

ly. The drawback of this approach for the study under consideration here is that the resulting

marginal distribution functions FX1(t) and FX2(t) take only integer values. On the contrary, the

censoring variableX1 and unit lifetimeX2 are both supported on [0,∞). Zheng and Klein (1995)

proposed an asymptotic copula graphic estimator that employs a bisection root-finding method

to construct estimates F̂X1(t) and F̂X2(t) for the marginal distribution functions.

Studies of Kaishev, Dimitrova and Haberman (2007) and Dimitrova, Haberman and Kaishev

(2013) directly solve the differential system in Equation 4.11 for FXj
(t), j = 1, 2 and any t >

0 in an actuarial context using NDSolve, a built-in function in Mathematica. Numerical

integration methods implemented in NDSolve include Euler’s method, the midpoint method and

Runge-Kutta methods. The accuracy of numerical integration methods is measured by matching

high terms with the Taylor expansion of the solution. Euler’s method is the simplest but it has

a local error of O(h2) and is thus first-order accurate. The midpoint method is second-order

accurate and is also available through the more accurate Runge-Kutta methods.

Kaishev et al. (2007) and Dimitrova et al. (2013) assume a known copula and uses the data aver-

aging spline interpolation method of De Boor (2001) to obtain functional forms of the observed

occurrences of the competing risks variables. Bunea and Mazzuchi (2007) applied a life-stress

relationship to conditional subsurvival functions at each test stress level and extrapolated the

conditional subsurvival function at use-level conditions.

This investigation adopts an approach similar to that of Kaishev et al. (2007) and Dimitrova et al.

(2013) but in an accelerated life testing setup. In addition, expert opinion is used to estimate the

chosen copula model as opposed to just carrying-out a sensitivity analysis. Moreover, functional

forms of the subdistribution functions are derived from the theory of stochastic processes. In

Kaishev et al. (2007) and Dimitrova et al. (2013), cubic spline survival functions were fitted

instead.
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In particular, the methodology uses key results from chapters 2 and 3 as follows. The Frank

copula is postulated in chapter 2 to adequately describe stochastic dependence between the cen-

soring variable X1 and unit lifetime X2 and expert judgement is used to estimate its dependence

parameter θ. The partial derivative with respect to u1 of the chosen Frank copula in Equation 2.8

is given by

cFu1
(u1, u2) =

∂

∂u1
CF (u1, u2) =

e−θu1
(
e−θu2 − 1

)

e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1)
. (4.28)

Clearly, cFu1
(u1, u2) is defined for all u2 ∈ [0, 1]. In particular, it is a strictly increasing function

of u2 for u1 ∈ [0, 1]. Hence the partial derivative in Equation 4.28 is a conditional distribution

function. Since the Frank copula is symmetric in u1 and u2, it follows that

cFu2
(u1, u2) =

∂

∂u2
CF (u1, u2) =

e−θu2
(
e−θu1 − 1

)

e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1)
(4.29)

is also a strictly increasing function of u1 given the same set of parameters.

Suitable functional forms of the subdistribution functions are derived from the theory of stochas-

tic processes in chapter 3. They are first passage time distributions of the Wiener maximum

process and are shown in chapter 3 to be inverse Gaussian. Given the partial derivatives of the

estimated Frank copula in Equations 4.28 and 4.29 and functional forms of f ∗
Xj

, j = 1, 2, the d-

ifferential system in Equation 4.11 is numerically solved for FX1(.) and FX2(.) at each test stress

level.

In practice however, there is no guarantee that both FX1(.) and FX2(.) will be non-defective for the

chosen Frank copula and inverse Gaussian subdistribution functions. That is P (Xj <∞) = 1

is not guaranteed for both risk variables. Unit lifetime X2 is the object of estimation in this

investigation. Saying that unit lifetime will be infinite with positive probability is obviously not

plausible in practice since units cannot remain in test for ever. For more details on the issue of

defective marginals in competing risks problems, see for example Bedford (2006).

But in this investigation, both X1 and X2 are assumed to be non-defective. Consequently, FX1(.)

and FX2(.) are proper marginal distribution functions and are solutions of the differential system
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in Equation 4.11. The main object of estimation is the use-level lifetime distribution of the unit

FX2(.). It is obtained from the ALT model as follows:

. Generate life data samples from numerical solutions of the unit lifetime distribution FX2(.)

at each test stress level. Use information criteria to choose a lifetime distribution that best

fits the generated life data samples.

. Based on an understanding of the physics of failure during testing or experience with simi-

lar life tests, choose an appropriate model that describes how a quantifiable measure of the

assumed lifetime distribution changes with stress.

. Use the chosen life-stress relationship to extrapolate distribution percentiles from elevated

test stresses to use-level conditions.

This identifies the use-level lifetime distribution of the unit from which reliability metrics such

as warranty period, mean life etc. can be derived.
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Chapter 5

Data analysis and results

5.1 Introduction

The analysis of test data on unit lifetime under random censorship is presented in this chapter. In

particular, the extrapolation of a use-level unit lifetime distribution from test data with the cen-

soring variable removed is illustrated. But accelerated test data where unit lifetime and random

censorship are competing to remove the unit from observation in a life test are not readily avail-

able. This is almost always the case with real data from accelerated tests collected in internal

research divisions of large companies. Test data are highly confidential (commercially sensitive)

and are therefore difficult to access in general. Accordingly, statistical methods of analysing life

test data are illustrated based on derived competing failure modes data that are analogous to unit

lifetime and random censorship. These data are derived from an accelerated life test that also

yielded competing failure modes.

5.1.1 Data description

The readily available and widely used ALT data when competing failure modes are acting is the

Class-H insulation data collected from a temperature-accelerated life test of motorettes insulation.

The test yielded three insulation failure modes namely Turn, Phase and Ground failures (Nelson,
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2004; pp 393), each occurring on a separate part of the motorette. Ten motorettes were tested at

high temperatures of 190◦C, 220◦C, 240◦C, 260◦C and inspected periodically for failure. The

recorded times (in hours) are midway between the failure time and the previous inspection time.

Inspections were conducted frequently so that the error of rounding to the midpoint is minimal.

The data are given in Table 5.1.

190◦C Turn Phase Ground 220◦C Turn Phase Ground

1 7228 10511 10511+ 11 1764 2436 2436

2 7228 11855 11855+ 12 2436 2436 2490

3 7228 11855 11855+ 13 2436 2436 2436

4 8448 11855 11855+ 14 2436 2772+ 2772

5 9167 12191+ 12191+ 15 2436 2436+ 2436

6 9167 12191+ 12191+ 16 2436 4116+ 4116+

7 9167 12191+ 12191+ 17 3108 4116+ 4116+

8 9167 12191+ 12191+ 18 3108 4116+ 4116+

9 10511 12191+ 12191+ 19 3108 3108 3108+

10 10511 12191+ 12191+ 20 3108 4116+ 4116+

240◦C Turn Phase Ground 260◦C Turn Phase Ground

21 1175 1175+ 1175 31 1632+ 1632+ 600

22 1881+ 1881+ 1175 32 1632+ 1632+ 744

23 1521 1881+ 1881+ 33 1632+ 1632+ 744

24 1569 1761 1761+ 34 1632+ 1632+ 744

25 1617 1881+ 1881+ 35 1632+ 1632+ 912

26 1665 1881+ 1881+ 36 1128 1128+ 1128

27 1665 1881+ 1881+ 37 1512 1512+ 1320

28 1713 1881+ 1881+ 38 1464 1632+ 1632+

29 1761 1881+ 1881+ 39 1608 1608+ 1608

30 1953 1953+ 1953+ 40 1896 1896 1896

Table 5.1: Class-H insulation failure mode data taken from Nelson (2004, pp. 393).

Observe that each motorette has a recorded time-to-failure from each of Turn, Phase and Ground

failure modes. This is because each failed part of the motorette was isolated electronically so

that it could not fail again while the unit was kept on test and run to a second or third failure.

But in a typical competing risks situation, the first occurring failure mode removes the unit from

observation in a life test. Hence Table 5.1 contains pseudo-competing risks data.

To derive competing risks that are analogous to unit lifetime and random censorship from test

data in Table 5.1, an understanding of the test purpose is required. The test purpose for the

Class-H insulation data was three fold:

(1) To estimate the median life of the insulation system in motorettes at its use-level tempera-
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ture of 1800C.

(2) To determine the earliest occurring failure mode at the use-level temperature of 1800C.

(3) To determine if redesign to remove the earliest failure mode would significantly improve

the reliability of the motorette.

In his analysis of the Class-H insulation data Nelson (2004) found Turn failure to be the earliest

failure mode at the design temperature of 180◦C. The reliability of the motorette was subsequent-

ly improved by eliminating Turn failure mode through a redesign of the motorette. Accordingly,

the useful life of the redesigned motorette can only be ended by Phase or Ground failures in a life

test. Hence the Class-H insulation data are reduced to two derived competing risks by classifying

Turn failure mode as Risk 1 and treating the time to first failure from Phase or Ground failure

modes as Risk 2. This translates to grouping Phase and Ground failure modes into a single mode

and labeling it Risk 2.

The derived competing risks, namely Risk 1 and Risk 2 are obviously not degraded and critical

failure modes respectively. However, Risk 2 is considered analoguous to critical failure mode

in this investigation because its occurrence in a life test ends the useful life of the redesigned

motorette. This makes Risk 2 the failure mode of interest. On the other hand, Risk 1 is considered

analoguous to degraded failure mode because its occurrence would censor the failure mode of

interest in a competing risk framework. Hence data on the derived censoring and unit lifetime

variables X1 and X2 respectively at each test stress level are given in Table 5.2.

190◦C X1 X2 220◦C X1 X2 240◦C X1 X2 260◦C X1 X2

1 7228 10511 11 1764 2436 21 1175 1175 31 1632+ 600

2 7228 11855 12 2436 2436 22 1881+ 1175 32 1632+ 744

3 7228 11855 13 2436 2436 23 1521 1881+ 33 1632+ 744

4 8448 11855 14 2436 2772 24 1569 1761 34 1632+ 744

5 9167 12191+ 15 2436 2436 25 1617 1881+ 35 1632+ 912

6 9167 12191+ 16 2436 4116+ 26 1665 1881+ 36 1128 1128

7 9167 12191+ 17 3108 4116+ 27 1665 1881+ 37 1512 1320

8 9167 12191+ 18 3108 4116+ 28 1713 1881+ 38 1464 1632+

9 10511 12191+ 19 3108 3108 29 1761 1881+ 39 1608 1608

10 10511 12191+ 20 3108 4116+ 30 1953 1953+ 40 1896 1896

Table 5.2: Derived competing failure modes from the Class-H insulation failure mode data.
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The data on X2 are obtained by taking the minimum of times to Phase and Ground failures.

A remark is necessary here. Treating times-to-failure from other modes as if they were times-to-

failure from modes of interest is not new in the reliability literature. Bunea and Mazzuchi (2007)

also reduced the same Class-H insulation failure mode data to two competing risks by classifying

Turn failures as Risk 1 and grouping Phase and Ground failures into a single failure mode labeled

Risk 2. They however did not attach any physical meaning to the derived competing risks.

In a different application, Dijoux and Gaudoin (2009) analysed times to electrical and mechan-

ical component failure data of compressor units as corrective and preventive maintenance times

respectively. Electrical component failures were treated as corrective maintenance times in the

study because they are more expensive compared to cheaper mechanical component failures. For

risk pooling in the biostatistical literature, see Kaishev et al. ( 2007) for example.

Recall that each of Turn, Phase and Ground failure modes occurred on a separate part of the mo-

torette during testing. The part of the motorette that failed first (first occurring failure mode) was

isolated while the unit was kept on test and run until the second or third failure mode occurred.

This test design implies that the first occurring failure mode has no bearing on the occurrence

of the remaining failure modes. As a result, failure data in Table 5.2 are times-to-failure from a

specific mode as if the other failure modes were not acting. Nelson (2004), presumably the owner

of the Class-H insulation data also assumed an independent competing risks model. Accordingly,

probabilities of surviving a specific failure mode until the moment t (marginal survival functions)

are identifiable from the competing failure modes data in Table 5.2.

Data analysis is in two parts. The first part uses real data in Table 5.2 to extrapolate a use-level

unit lifetime distribution at the design temperature of 180◦C. However, these data are a special

type of competing failure modes data in that independence is a consequence of experimental

design, not the stochastic behaviour of the competing risks. It illustrates the well-known result

that marginal survival functions of independent competing risks are identifiable. Consequently,

it constitutes a simple case corresponding to knowing the independent copula. The second part

of the analysis considers the more practical case where unit lifetime and random censorship

are stochastically dependent. It uses simulated dependent competing risks data and combines
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numerical and theoretical results from Chapters 2, 3 and 4.

5.2 Test data analysis: Independent competing risks

The derived competing failure modes data in Table 5.2 are largely right censored. The only ex-

ceptions are degraded failures at test stresses of 190◦C and 220◦C which have complete samples.

In addition, sample sizes are small. As has already been alluded to, for small test samples under

Type I censoring, MLE has advantages over MRR method. Most importantly, test data in Table

5.2 have a number of unit failure and suspension times that are identical at each test stress level.

Consequently, MRR method would assign different rank values to identical unit failure times.

As a result, their corresponding failure probabilities as estimated by median ranks would also be

different. But MLE uses actual failure and suspension times and is therefore preferred to MRR

for these test data.

The scatter in unit life at each test stress level may in theory be described by any lifetime distri-

bution. Table 5.3

190◦C X1 X2 220◦C X1 X2

α̂ 9299.445 12610.309 α̂ 2817.588 4020.505

β̂ 8.502 19.670 β̂ 7.398 2.952

LK value −84.959 −36.715 LK value −74.565 −54.440

240◦C X1 X2 260◦C X1 X2

α̂ 1749.829 2585.271 α̂ 1782.517 1311.883

β̂ 9.234 3.228 β̂ 8.183 2.636

LK value −62.217 −27.427 LK value −38.098 −68.849

Table 5.3: ML estimates of Weibull parameters and log likelihood values for the derived competing failure

modes data.

contains ML estimates α̂ and β̂ of the Weibull parameters α and β assuming the scatter in the
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derived competing failure modes data in Table 5.2 is adequately described by the 2−parameter

Weibull distribution. The 95% confidence intervals (CI) for the Weibull parameters α and β at

each stress level and for each failure mode are given in Appendix B.

For the derived unit lifetime X2 (variable of interest), the quantifiable life measure as measured

by the Weibull scale parameter decreases with stress in Table 5.3. In theory, higher test stresses

lead to early failures and hence a compression of unit lifetime. Consequently, results in Table 5.3

are consistent with theory. More imprortantly, the Weibull shape parameter, β ≈ 3 for test data

at all but the 190◦C test stress. Hence the failure mechanism as represented by the Weibull shape

parameter is largely the same, justifying subsequent extrapolation. The large shape parameter

value at the 190◦C stress level may be attributed to faulty testing or mishandled test units. In life

testing studies, identifying causes of data peculiarities is more valuable than dropping suspicious

data points and remodeling for example.

If the lognormal distribution is assumed to provide a good description of test data, the lognor-

mal scale and shape parameters µ′ and σ′ are also estimated by the MLE method. Using the

Weibull++ software, the ML estimates µ̂′ and σ̂′ for the derived competing failure mode data

in Table 5.2 are given in Table 5.4. The 95% CIs for the lognormal scale and shape parameters µ′

190◦C X1 X2 220◦C X1 X2

µ′ 9.071 9.432 µ′ 7.863 8.141

σ′ 0.144 0.086 σ′ 0.182 0.372

LK value −85.016 −36.784 LK value −75.301 −53.292

240◦C X1 X2 260◦C X1 X2

µ′ 7.409 7.783 µ′ 7.444 6.981

σ′ 0.144 0.484 σ′ 0.198 0.417

LK value −62.846 −27.185 LK value −38.570 −68.178

Table 5.4: ML estimates of lognormal parameters and log likelihood values for the derived competing

failure modes data.
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and σ′ at each stress level and for each failure mode are given in Appendix C.

The quantifiable life measure assuming the lognormal distribution best fits test data is median life

κ0.5 = eµ
′

. Results in Table 5.4 show that median life for unit lifetime X2 decreases with stress

as suggested by theory. In addition, the failure mechanism as represented by the lognormal shape

parameter, σ′ ≈ 0.4 at all but the 190◦C test stress, justifying extrapolation.

Goodness-of-fit tests are used to choose between the the Weibull and lognormal distributions for

these data. Since they are not nested (neither is a special case of the other), they can not be

compared using likelihood ratio tests. Log likelihood values can be used since they both have

the same number of parameters. Instead of using raw log likelihood values, AICc is used to

discriminate between these two lifetime distributions. Table 5.5 gives AICc values calculated for

each model with the derived competing failure modes data at each test stress level. The model

with smaller AICc value is better.

190◦C X1 X2 220◦C X1 X2

Weibull 175.632 79.144 Weibull 154.844 114.595

Lognormal 175.747 79.282 Lognormal 156.317 112.298

240◦C X1 X2 260◦C X1 X2

Weibull 130.149 60.567 Weibull 81.911 143.412

Lognormal 131.406 60.084 Lognormal 82.853 142.069

Table 5.5: AICc values for the Weibull and lognormal models calculated with the derived competing

failure modes data.

Based on the calculated AICc values in Table 5.5, the Weibull and the lognormal distributions

largely fit the derived competing failure mode data in Table 5.2 equally well. This is consistent

with the simulation results of Dumonceaux and Antle (1973) where the choice of either distribu-

tion is the test of hypothesis. The simulation results show that the power to discriminate between

the Weibull and lognormal decreases with sample size. With sample sizes of 10 at each test stress

level, either model can be used based on goodness-of-fit tests. For unit lifetime X2, AICc val-
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ues for the lognormal distribution are slightly less than for the Weibull distribution at all but the

190◦C stress level. This suggests that the scatter in unit lifetime may be adequately described by

the lognormal distribution.

The choice of the lifetime distribution will however be based on the analysis method, MLE in

this case and the assumed life-stress relationship. Test data in Table 5.2 are from a temperature

accelerated test of motorettes insulation. Accordingly, a life-stress relationship derived for tem-

perature dependence is required. In particular, the Arrhenius relationship is preferred because it

is based on the law of physics (nature). In addition, it is well-known (Nelson, 2004) to be a valid

model in insulation work. Assuming the Arrhenius dependence of unit lifetime on temperature,

log likelihood and AICc values for the Weibull, exponential and lognormal lifetime distributions

are given in Table 5.6.

Weibull Exponential Lognormal

LK-value −192.9815 −205.9746 −190.663

AICc 391.667 414.449 387.040

Table 5.6: LK and AICc values for the Weibull, exponential and lognormal lifetime distributions assum-

ing the Arrhenius relationship for real test data.

From Table 5.6, the lognormal distribution statistically has the best fit because it has the minimum

AICc value. Hence the scatter in unit life at each test stress level is assumed to be described by the

lognormal distribution. Consequently, the AFT model is assumed to be the Arrhenius-lognormal

model where the quantifiable life measure is median life, κ0.05 = eµ
′

. By Equation 4.2,

κ0.05 = eµ
′

=
1

A
e

E
kV

such that µ′ = γ0 +
γ1
V

. Hence the pdf of the Arrhenius-lognormal model at stress V is given by

f(t, V ) =
1

tσ′
√
2π
exp

{
−1

2

(
t′ − γ0 − γ1

V

σ′

)2
}
. (5.1)
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5.3 Assessment of the Arrhenius-lognormal model

The best fitting Arrhenius-lognormal model assumes that the lognormal distribution adequately

describes the scatter in unit life at all test stress levels. It also follows from Equation 5.1 that

σ′ is independent of stress. Since σ′ has the interpretation of the lognormal shape parameter, the

Arrhenius-lognormal model further assumes that the shape of the lifetime distribution is invariant

to changes in stress.

The validity and accuracy of the reliability metrics derived from fitting the Arrhenius-lognormal

model to test data largely depends on the extent to which the above assumptions are satisfied.

In particular, lower percentile estimates at a stress are very sensitive to the assumed lifetime

distribution and a shape parameter that varies with stress. Different methods for checking the

assumptions of the Arrhenius-lognormal model are considered. These methods particularly check

how well the assumed lognormal distribution fits test data and whether the distribution’s shape

parameter is constant across all test stress levels. These include graphical and numerical methods.

5.3.1 Graphical methods

Residual plots are important visual analysis tools when assessing the assumptions of the fitted

model. They also help reveal any inadequacies in the assumed model as well as exposing outlying

observations if any. The residual plot tool in ALTA 9.0 gives plots for the standardised and Cox-

Snell residuals. At failure time Ti, the former are calculated by

ǫ̂i =
ln (Ti)− µ̂′

σ̂′
∼ N(0, 1) (5.2)

assuming the lognormal distribution adequately describes the scatter in unit life. Figure 5.1
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Figure 5.1: Normal probability plot of the standardised residuals.

gives a visual display of the standardised residuals on a normal probability plot. The lognormal

distribution is considered to adequately describe the scatter in unit life if the standardised resid-

uals roughly follow a straight line on a normal probability plot. It is clear from Figure 5.1 that

the standardised residuals appear to fairly follow a straight line for unit failure data at all but the

260◦C (533K) test stress level. In addition to faulty testing and mishandled units, the magnitude

of acceleration may also be a factor since 260◦C is double the use-level temperature.

Cox-Snell residuals on the other hand are calculated by

ǫ̂i = ln [R (Ti)] (5.3)

whereR (Ti) is the reliability value calculated at unit failure time Ti. Figure 5.2 is a visual display

of the Cox-Snell residuals on an exponential probability paper.
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Figure 5.2: Exponential probability plot of the Cox-Snell residuals.

As with the standardised residuals, the Cox-Snell residuals in Figure 5.2 also appear to fairly

follow a straight line for unit failure data at all but the 260◦C (533K) test stress level.

Another graphical display that is useful when visually assessing how well the assumed lifetime

distribution (lognormal in this case) fits test data is the probability plot. It is a plot of the cdf

(unreliability) on linearised lognormal probability paper. In particular, fairly straight lognormal

probability plots indicate that the scatter in unit life can be adequately described by a lognormal

distribution. The probability plot for unit lifetime at all four test stress levels is shown in Figure

5.3.

There is a noticeable outlying point below the 10% failure probability at the 260◦C (533K) test

stress level in Figure 5.3. Potential causes of such peculiarities include mishandled units during

testing. In practice, points in a probability plot are not necessarily expected to lie on the line for

the assumed lifetime distribution to fit test data well. Hahn and Shapiro (1967) highlighted this in
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Figure 5.3: CDF plot on linearised lognormal paper.

a simulation study. Points in their probability plots for samples of 20 and as high as 50 simulated

from a true distribution appear erratic.

Accordingly, points in a probability plot for real test data with small test samples will inevitably

be erratic and only features of the plot that are striking may be taken to be properties of the

population. Hence though erratic, points in the lognormal probability plot in Figure 5.3 are fairly

straight. This suggests that the lognormal distribution may adequately describe the scatter in unit

life at all test stress levels.

The probability plot is also useful when visually assessing the assumption of a common shape

parameter for the assumed lifetime distribution across the various test stress levels. On the lin-

earised lognormal probability paper, the shape parameter σ′ is the slope of the line. If the failure

mechanism as represented by the shape parameter σ′ is independent of stress, plots of the cdf on

linearised paper must be fairly parallel. The lines in Figure 5.3 are clearly parallel. They however

have a compromise common slope obtained by a refined method as follows:
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. Separately fit the lognormal distribution to test data at each of the j test stress levels. The

fitted distributions appear as straight lines, each with its own separate slope.

. Obtain the common slope by weighting these separate slopes proportional to the number

of units tested at a stress level.

Obviously data peculiarities at any test stress level will influence the value of the common slope.

5.3.2 Numerical methods

A more objective assessment of the assumption of a common lognormal shape parameter for test

data across test stress levels utilises numerical methods. The likelihood ratio (LR) test described

in Nelson (1990) is used in this investigation. Denote by TLR the LR test statistic given by

TLR = −2
(
L̂0 −

(
L̂1 + ...+ L̂j

))
(5.4)

where L̂1, ..., L̂j are the maximum log likelihood values obtained by separately fitting the cho-

sen lifetime distribution to test data at each of the j test stress levels. They are maximum log

likelihood values for the unrestricted model. On the other hand, the maximum log likelihood

value L̂0 is obtained by fitting a model with a common shape parameter and a different scale

parameter for each of the j test stress levels. Consequently, L̂0 is the maximum log likelihood

value for the restricted model.

If the true shape parameters of the assumed lifetime distribution do not differ at the j test stress

levels, TLR is asymptotically distributed as chi-square with j − 1 degrees of freedom (Wilks,

1938). Otherwise, TLR tends to assume larger values. Accordingly, the chi square test can be

used as an approximate test of the hypotheses

H0: The shape parameter is independent of stress level

H1: The shape parameter is dependent on stress level.

The decision criterion is such that
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. If TLR ≤ χ2(α; j−1), then the j shape parameter estimates are not statistically significantly

different at the α level of significance.

. If TLR > χ2(α; j − 1), then the j shape parameter estimates are statistically significantly

different at the α level of significance.

For the derived unit lifetime test data in Table 5.2, the maximum log likelihood values are ˆL463 =

−36.784, ˆL493 = −53.292, ˆL513 = −48.446, ˆL533 = −68.178 and L̂0 = −189.172. Thus the

value of the test statistic is

TLR = −2 (−189.172− (36.784 + 53.292 + 48.446 + 68.178))) = −35.056.

At the 10% level of significance and for the j = 4 test temperatures, χ2(0.1; 3) = 6.251. Since

the value of the likelihood ratio test statistic TLR = −35.056 < 6.251 = χ2(0.1; 3), H0 cannot

be rejected at the 10% level of significance. Consequently, the shape parameter estimates are not

statistically significantly different at the 10% level of significance.

5.4 Assessment of the assumed life-stress relationship

The Arrhenius-lognormal model assumes that the relationship between the (transformed) quan-

tifiable life measure, κ0.5 = eµ
′

and stress V is linear. If this linearity assumption does not hold,

extrapolation to low stresses (usually use-level conditions) will be difficult to justify. Consequent-

ly, the extrapolation will likely be inaccurate. The assumption of a linear life-stress relationship

is assessed by both graphical and numerical methods.

5.4.1 Graphical methods

Life-stress plots are important visual analysis tools when assessing the linearity assumption of

the life-stress relationship. They are obtained by plotting the quantifiable life measure against

stress. Figure 5.4 shows the Arrhenius life-temperature plot for unit lifetime data.
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Figure 5.4: Arrhenius life-temperature relationship plot for unit lifetime data.

The relationship plot in Figure 5.4 shows that a straight line describes the Arrhenius dependence

of life on temperature since the sample percentile line (middle line) is linear. This median line

represents a path for extrapolating the quantifiable life measure from test stresses to use-level

conditions. The linearity assumption seems to hold for these data since the dependence of unit

life on temperature is failrly linear. Because of the small sample sizes, it is important to quantify

uncertainty as much as possible. Accordingly, the Arrhenius life-temperature plot in Figure 5.4

also shows the upper and lower 90% confidence bounds on median life as represented by the top

and bottom lines respectively. The imposed pdfs represent the distribution of test data at each test

stress level.
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5.4.2 Numerical methods

The LR test is also utilised to check linearity of the relationship between the quantifiable life

measure, κ0.5 = eµ
′

and stress V . The LR test statistic is given by

TLR = −2
(
L̂0 − L̂

)
(5.5)

where L̂ is the maximum log likelihood value obtained by fitting the chosen lifetime distribution

to test data assuming the specified time transformation function. For the derived unit lifetime

test data, it is the maximum log likelihood value obtained by fitting the lognormal distribution

to test data assuming the Arrhenius relationship whereas L̂0 is defined as before. Accordingly,

L̂ and L̂0 are the maximum log likelihood values for the unrestricted and the restricted model

respectively.

If the life-stress relationship is linear, TLR is asymptotically distributed as chi-square with j − 1

degrees of freedom. Otherwise, TLR tends to assume larger values. As before, the chi square test

is used as an approximate test of the hypotheses

H0: Test data are consistent with a linear life-stress relationship

H1: Test data are not consistent with a linear life-stress relationship.

The decision criterion is such that

. If TLR ≤ χ2(α; j−1), then test data are not statistically significantly different from a linear

life-stress relationship at the α level of significance.

. If TLR > χ2(α; j − 1), then test data are statistically significantly different from a linear

life-stress relationship at the α level of significance.

For the derived unit lifetime data in Table 5.2, L̂ = −190.663 and L̂0 = −189.172. Hence

TLR = −2 (−189.172− (−190.663)) = −2.982. At the 10% level of significance and for the

j = 4 test temperatures, χ2(0.1; 3) = 6.251. Since TLR = −2.982 < 6.251 = χ2(0.1; 3), H0
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cannot be rejected at the 10% level of significance. Therefore there is insufficient evidence at the

10% level of significance to suggest that test data are statistically significantly different from a

linear life-stress relationship.

5.5 Additional plots

Other useful plots include the reliability plot, failure rate plot, standard deviation plot, accelera-

tion plot etc. Selected additional plots that are useful in accelerated life testing are presented in

Figure 5.5.

Reliability Plot Failure Rate Plot

Standard Deviation Plot Acceleration Factor Plot

Figure 5.5: Selected useful plots.
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The plot of the reliability against time, plotted here with confidence bounds is useful when one

seeks reliability values for a given unit age and vice-versa. The failure rate against time plot gives

the expected number of test units that would fail per unit time at a stress level. Both the reliability

and the failure rate plots are at normal use conditions. On the other hand, the standard deviation

plot shows how the data are spread at each stress level whereas the failure rate plot relates life at

normal operating conditions to life at accelerated stresses.

5.6 Extrapolating the use-level lifetime distribution

Based on results from the graphical and numerical assessment methods, the assumed Arrhenius-

lognormal model adequately describes test data on unit lifetime X2 in Table 5.2. Figure 5.6 is a

pdf plot of the extrapolated use-level lifetime distribution of the redesigned motorette.

Figure 5.6: The pdf plot of the extrapolated use-level lifetime distribution.
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It is obtained from the Arrhenius life-temperature plot in Figure 5.4 by extrapolating distribution

percentiles from test data to use-level conditions.

The characteristics of the extrapolated use-level lifetime distribution which include distribution

shape, skewness, mode etc. can be visualised from the pdf plot in Figure 5.6. But important

quantities are reliability measures of the unit at normal operating conditions. Examples of mea-

sures of reliability include the quantifiable life measure, mean life, warranty time, conditional

probability of failure etc.. These selected reliability measures depend on the estimated distribu-

tion parameters σ̂′
453K = 0.393536 and µ̂′

453K = 9.966209 and their values are given in Table

5.7.

Use-level distribution characteristic Estimate 90% Confidence Interval

Quantifiable Life Measure 212955 (16319, 27787)

Mean Life 23009 (17516, 30226)

Warranty Time 11147 (8501, 14616)

Conditional Probability of Failure 0.0873 (0.0454, 0.1644)

Table 5.7: Selected measures of reliability at use-level conditions.

The quantifiable life measure for the Arrhenius-lognormal model (B50% life) is the approximate

time by which 50% of the population of units will fail. It is the median life and typically rep-

resents the lifetime of the unit. Accordingly, the lifetime of the redesigned motorette at normal

operation conditions is 21295Hr. The test purpose was to achieve a median life of 20000Hr. The

mean life is the average time to unit failure while the warranty time of 11147Hr is the time for a

reliability of 0.95. It is also called the reliable life. Lastly, 0.0873 is the probability that the unit

will fail within an additional time of 1000Hr given that it has successfully operated for 20000Hr.

The uncertainty on these measures of reliability is quantified by the 90% confidence bounds.
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5.7 Test data analysis: Dependent competing risks

A dependence structure between the censoring variable X1 and unit lifetime X2 is assumed at

each stress level since degraded and critical failures are linked through the degradation process.

But test data in Table 5.2 are not samples from a typical dependent competing risks situation

because of the design of the life test. Accordingly, this part of the analysis uses test data from

a simulation study. The problem of identifying marginal behaviour from dependent competing

risks data is yet to be fully resolved. Typically, additional restrictions which cannot be tested

from the observable competing risks data are imposed on the joint survival function in order to

identify the marginals.

The approach adopted here is to assume that the dependence structure underlying the joint sur-

vival function of the competing risks is captured by a known copula model. Specifically, the

Frank copula model is assumed to adequately describe the stochastic dependence between the

censoring variable X1 and unit lifetime X2. To estimate the assumed Frank copula model, pair-

wise observations on (X1, X2) are generally required. In a competing risks situation however,

only Z = (X1, X2) along with the identity j ∈ (1, 2) of the risk that achieved the minimum are

observed at each test stress level. Hence test data are incomplete and expert opinion is required

to estimate the assumed Frank copula model.

5.7.1 Simulation design: Dependent competing risks data

The Frank copula model that captures stochastic dependence between the censoring variable X1

and unit lifetime X2 was estimated from expert opinion in chapter 2. It therefore suffices to

simulate observed occurrences (test samples) of X1 and X2 at each test stress level from the

estimated Frank copula and derived competing risks data in Table 5.2 in two steps as follows:

(1) Fit life distributions to the derived competing risks data in Table 5.2 at each of the test

stress levels.

(2) Generate bivariate outcomes (X1, X2) from the estimated Frank copula model using the

fitted life distributions from the first step when inverting. In a competing risks situation,
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only the minimum of X1 and X2 is observed. Hence obtain Z = min(X1, X2) together

with the identity j ∈ (1, 2) of the mode that achieves the minimum.

This simulation design guarantees dependent competing risks samples at each test stress level. It

does not simplify the analysis to any degree, neither does it significantly affect estimation results

as follows:

. The adopted approach assumes a known copula model. Assuming test data on unit lifetime

under dependent random censorship were available, expert opinion will still be required to

estimate the assumed copula model since competing risks data are incomplete.

. The key factor when describing marginal behaviour from dependent competing risks data

(Zheng and Klein, 1995) is a reasonable estimate of the stochastic dependence between

competing risks, not the functional form of the copula.

Potential misspecification of the marginal distributions in the first step of the simulation design

is a well-documented problem in copula modeling. On the basis of the calculated AICc values in

Table 5.5, the Weibull and the lognormal distributions fit the derived competing failure mode data

in Table 5.2 equally well. The Weibull distribution is preferred in this simulation study because

of its further physical justification as a weakest link model. The general idea of simulating the

full joint distribution first given by Genest (1987) and subsequently developed by Lee (1993) is

adopted in this investigation. Assuming Weibull marginals, the algorithm is:

Algorithm 5.1: Generating degraded and critical failure data using Frank’s copula

1. Generate independent uniform (0,1) random variables U1 and U2.

2. Set X1 = F−1
1 (U1) = α1

(
ln 1

1−U1

)1/β1

where α1 and β1 are the ML estimates of the

Weibull scale and shape parameters for the degraded failure mode at a stress level.

3. Calculate X2 as the solution to the equation

U2 = e−θU1

[
e−θF2(X2) − 1

e−θ − 1 + (e−θU1 − 1)(e−θF2(X2) − 1)

]
.
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That is calculateX2 = F−1
2 (U∗2) = α2

(
ln 1

1−U∗2

)1/β2

whereU∗2 = −1
θ
ln
[
U2e−θ+e−θU1 (1−U2)

U2+e−θU1 (1−U2)

]
.

The parameters α2 and β2 are the ML estimates of the Weibull scale and shape parameters

for the corresponding critical failure mode at a stress level. The parameter θ is the Frank

copula parameter estimated from expert opinion.

4. Obtain Z = min(X1, X2) and the identity of the cause that achieved the minimum.

This algorithm generates observed occurrences of degraded and critical failures in a dependent

competing risks framework at each stress level. A remark is however necessary here. True

acceleration alters the unit’s operating conditions such that the failure causing mechanism is

invariant to changes in stress but is accelerated at higher test stresses. Higher test stresses only

alter the scale but not the failure mechanism as represented by the distribution’s shape parameter.

Accordingly, the shape parameter of the assumed lifetime distribution ought to be the same at all

stress levels.

ML estimates of Weibull shape parameters in Table 5.3 slightly differ at all but the 190◦C test

stress level. These slight differences can be attributed to sampling error and varying degrees of

censoring at different stress levels. With small test sample and few failures, external information

is often required to supplement available data in practice. Typically, past experience or knowledge

of the physics of failure is used to fix the value of the Weibull shape parameter. For more details

on this approach, also called Weibayes, see Abernethy (2004) for example. In this thesis however,

the compromise common slope obtained by fitting the life-stress model to test data estimates the

Weibull shape parameter at all stress levels. Hence Weibull shape parameter values of 8 and 3 for

degraded failure mode and critical failure mode respectively are used in the simulation study at

all stress levels.

The R code in Appendix D generates degraded and critical failure times in a competing

risks setting by implementing Algorithm 5.1. The simulated competing risks data appear in

Appendix E where column j indicates the identity of the cause that removed the unit from

observation in a life test. That is, j = 1 if X1 < X2 and j = 2 if X2 < X1. Accordingly, the data

in Appendix E would arise from a typical life test where unit lifetime is subject to dependent

random censorship in a competing risks framework.
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Test data in Appendix E are incomplete since only the minimum of the risk variables is ob-

served. Hence only the subdistribution functions given by F ∗
X1
(t) = P (X1 < t,X1 < X2) and

F ∗
X2
(t) = P (X2 < t,X2 < X1) can be estimated from these data, but not the true distribution

functions FX1(t) = P (X1 < t) and FX2(t) = P (X2 < t). Functional forms of these estimable

subdistribution functions F ∗
Xj
(t), j ∈ (1, 2) are derived in Chapter 3. In particular, observed oc-

currences of degraded and critical failure times are assumed to be distributed as inverse Gaussian

sinceX1 andX2 have the interpretation of fist passage times of a degradation (stochastic) process

to respective deterministic thresholds s1 and s2.

5.8 Numerical estimation of marginal survival functions

The target of estimation are the marginal survival (or distribution) functions of the censoring

variable X1 and unit lifetime X2. They are solutions of the differential system in Equation 4.11.

Input factors into this differential system are the estimated Frank copula model (Chapter 2 and

derivatives of the subdistribution functions F ∗
Xj
(.) with respect to the time parameter t (chapter

3). The former are actually subdensity functions of the risk variables X1 and X2 and are denoted

by f ∗
Xj
(.), j ∈ (1, 2).

Suitable functional forms of f ∗
Xj
(.) are derived in Chapter 2. In particular, they are postulated to

be inverse Gaussian with mean µ and scale λ. Table 5.8 contains the estimated parameters of the

190
◦C X1 X2 220

◦C X1 X2

µ 8835.214 7578.5 µ 2694.417 2033

λ 589669.5 402153.6 λ 87582.48 17499.47

240
◦C X1 X2 260

◦C X1 X2

µ 1682.429 3061.833 µ NA 1187.421

λ 80450.86 2744.643 λ NA 4519.269

Table 5.8: Estimates of inverse Gaussian parameters for the simulated dependent competing risks data.
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inverse Gaussian distribution for the observed occurrences of the censoring variable X1 and unit

lifetime X2 (simulated test data in Appendix E) at each test stress level. For both risks (X1

and X2), the inverse Gaussian distribution parameters µ and λ generally decrease with stress as

expected. The are no parameter estimates for the censoring variable at 260◦C stress level because

the assumed distribution cannot be fitted to a single data point. That is, the censoring variable

achieved the minimum once at 260◦C. Accordingly, simulated test data at the 260◦C stress level

will not be used further in the analysis.

Numerical solutions of survival functions of unit lifetime X2 (variable of interest) at each stress

level are presented in Figure 5.7.

Survival function at 190◦C Survival function at 220◦C

Survival function at 240◦C Censorship and lifetime at 220◦C

Figure 5.7: Numerical solutions of survival functions of unit lifetime at different stress level. The bottom

right plot shows both the censoring variable and unit lifetime .

They are obtained by solving the non-linear differential system in Equation 4.11 using the Mathe-
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matica built-in function NDSolve. Mathematica gives numerical solutions of survival functions

in the form of interpolation functions. They are complex objects that provide a smooth represen-

tation of the numerical solution. In practice however, there is no guarantee that the competing

risks variables would both be non-defective for the estimated copula and subdistribution func-

tions. In particular, unit lifetime X2 may be defective as follows.

. The observable competing risks data are the pair {[Z = min(X1, X2)] , j}ni=1. If the last

observation(s) corresponds to the case(s) when X1 achieved the minimum, then there may

not be enough observed data to allow the tail of the marginal survival function of X2 to be

adequately estimated.

. A certain quantile of F ∗
X2
(.) may only be reached at larger values of the time parameter t

provided all quantiles of F ∗
X1
(.) have been reached.

For practical purposes however, interest in accelerated testing is on early failures and hence lower

percentiles of the lifetime distribution. Very high values of the time parameter may not have a

defensible physical meaning in life tests. If the units are tested long enough, there will be a t > 0

where all units would fail by then. Admittedly however, the value of the time parameter t that

will be considered too large for a specific investigation will obviously depend on that particular

investigation. For example, interpolated survival functions in Figure 5.7 seem to tail off nicely

for larger values of the time parameter t at all but the test temperature of of 190◦C. Real data on

unit lifetime in Table 5.2 do not exceed 12191Hr at the test temperature of 190◦C. Since these

data are used in the simulation, time parameter values in excess of 15000Hr may be deemed too

large for this particular investigation.

Survival functions of unit lifetime in Figure 5.7 are obtained at test temperatures of 190◦C, 220◦C

and 240◦C. The target of estimation is the survival function of unit lifetime at the use-level

temperature of 180◦C . Test data can be obtained from the numerical solutions in Figure 5.7 in

different ways. The approach followed here is to first transform the interpolation functions to

ordinary functions, find their corresponding inverses and substitute generated random uniform

variates into the inverse functions. Sampled test data, together with the dependence of life on

stress are utilised to extrapolate the use-level lifetime distribution of the unit.

121



5.9 Life-stress model for sampled test data on unit lifetime

Validity of the Arrhenius model is well established in insulation work (Nelson, 2004). Assuming

the Arrhenius model, Table 5.9 shows likelihood and AICc values for the Weibull, exponential

and lognormal lifetime distributions for sampled test data.

Weibull Exponential Lognormal

LK-value −252.5685 −280.297 −253.0792

AICc 508.851 563.094 511.873

Table 5.9: LK and AICc values for the Weibull, exponential and lognormal lifetime distributions assum-

ing the Arrhenius relationship for sampled unit lifetime data.

The Weibull distribution has minimum AICc and is thus chosen to describe the scatter in the

sampled unit lifetime data at each test stress level. Consequently, the ALT model for the sampled

test data is assumed to be the Arrhenius-Weibull model where the quantifiable life measure is the

Weibull scale parameter α. By Equation 4.2,

α =
1

A
e

E
kV = Ce

B
V

and the pdf of the Arrhenius-Weibull model at stress V is given by

f(t, V ) =
β

Ce
B
V

(
t

Ce
B
V

)β−1

exp

(
−
(

t

Ce
B
V

))
. (5.6)

5.10 Assessment of the Arrhenius-Weibull model

The chosen Arrhenius-Weibull model assumes that

. The Weibull distribution adequately describe the scatter in the sampled unit lifetime data

at each test stress level.

122



. The Weibull shape parameter β does not change with stress and the relationship between

the Weibull scale parameter α (quantifiable life measure) and temperature (stress) is linear..

These life-stress model assumptions are checked by both graphical and analytical methods.

5.10.1 Graphical methods

Standardised residuals when the assumed Weibull distribution is fitted to sampled unit lifetime

data are calculated from

ǫ̂i = β̂ [ln (Ti)− ln (α̂(V ))] (5.7)

where α̂ and β̂ are the estimated Weibull scale and shape parameters respectively. They are

a sample from the type III smallest extreme value distribution with zero mean. Accordingly,

Figure 5.8 is a plot of the standardised residuals on a smallest extreme value probability paper.

Figure 5.8: Normal probability plot of the standardised residuals for sampled unit lifetime data.
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The standardised residuals in Figure 5.8 appear to follow a straight line on a smallest extreme

value probability paper though they are some outlying data points. This suggests that the Weibull

distribution is an adequate model for the sampled unit lifetime data at all stress levels. On the

other hand, Figure 5.9 is a plot of the Cox-Snell residuals on an exponential probability paper.

Figure 5.9: Exponential probability plot of the Cox-Snell residuals for sampled unit lifetime data.

As with standardised residuals, Cox-Snell residuals in Figure 5.9 fairly follow a straight line for

sampled unit lifetime data at all test stress levels. Consequently, the scatter in sampled test data

at all test stresses may be described be described by the Weibull distribution.

The adequacy of the assumed Weibull distribution is visually assessed further by means of the

probability plot. Fairly straight Weibull probability plots indicate adequate model fit. The proba-

bility plot for sampled unit lifetime data is given in Figure 5.10.
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Figure 5.10: CDF plot on linearised lognormal paper for sampled unit lifetime data.

Though erratic, points in the Weibull probability plot in Figure 5.10 are fairly straight. This sug-

gests that the scatter in the sampled unit lifetime data can be described by the Weibull distribution.

In addition, the CDF plots on linearised Weibull paper in Figure 5.10 are fairly parallel, albeit

with a compromise common slope. This implies that the failure mechanism does not necessarily

change with stress as required under true acceleration.

In order to extrapolate a use-level unit lifetime distribution from the sampled unit lifetime data

at the different test stress levels, the Arrhenius-Weibull model assumes that the scale parameter

(quantifiable life measure) α linearly changes with temperature (stress). This linearity assumption

is visually assessed by life-stress plots of the sampled unit lifetime data in Figure 5.11.
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Figure 5.11: Arrhenius life-temperature relationship plot for sampled unit lifetime data.

The relationship between the quantifiable life measure, α and temperature in Figure 5.11 is clearly

linear based on the linear sample percentile (middle) line. Accordingly, the linearity assumption

seems to hold for these data. The linear life -stress relationship allows distribution percentiles to

be extrapolated from test stresses to use-level conditions. This yields the survival (or distribution)

function of the unit at design stress.

5.10.2 Numerical methods

The LR test is utilised to objectively assess the assumptions of a common Weibull shape parame-

ter across the sampled unit lifetime data at the different stress and a linear life-stress relationship.

The hypotheses when testing if the Weibull shape parameter depends on stress level are:
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H0: The shape parameter is independent of stress level

H1: The shape parameter is dependent on stress level.

For the sampled unit failure time data in Appendix F, the maximum log likelihood values are

ˆL463 = −86.370, ˆL493 = −79.750, ˆL513 = −77.435 and L̂0 = −245.223. Hence the value of

the test statistic is

TLR = −2 (−245.223− (−86.370− 79.750− 77.435)) = 3.336.

At the 10% level of significance and for the j = 3 test temperatures, χ2(0.1; 2) = 4.605. Since

the value of the likelihood ratio test statistic TLR = 3.336 < 4.605 = χ2(0.1; 2), H0 cannot be

rejected at the 10% level of significance. Hence the Weibull shape parameter estimates are not

statistically significantly different at the 10% level of significance.

When testing if the life-stress relationship is linear, the hypothesis are

H0: Sampled unit lifetime data are consistent with a linear life-stress relationship

H1: Sampled unit lifetime data are not consistent with a linear life-stress relationship

For the data in Appendix E, L̂ = −251.569 L̂0 = −245.223. Consequently, the value of the test

statistic is

TLR = −2 (−245.223− (−251.569)) = −12.692

whereas χ2(0.1; 2) = 4.605. Since TLR = −12.692 < 4.605 = χ2(0.1; 2), H0 cannot be rejected

at the 10% level of significance. Therefore there is insufficient evidence at the 10% level of

significance to suggest that the sampled unit lifetime data are statistically significantly different

from a linear life-stress relationship.

5.11 Extrapolating the use-level survival function

Following the graphical and numerical assessment results, the Arrhenius-Weibull model appears

to adequately describe the sampled unit lifetime data. The extrapolated survival function of the

unit at the use-level temperature of 180◦C is given in Figure 5.12.
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Figure 5.12: The survival function of the unit at the use-level temperature.

Estimated Weibull distribution parameters at the use-level temperature of 180◦C are α̂ = 13876Hr

and β̂ = 4.411 where the former estimates the lifetime of the redesigned unit. Consequently, im-

portant measures of reliability are derived. Selected important reliability measures calculated

from the extrapolated use-level survival function are given in Table 5.10

Reliability measure 90% Confidence limits

B50% Life 12770.354Hr (11177.662, 14589.988)

Mean life 12648.872Hr (11065.936, 14458.241)

Warranty time 7077.222Hr (5736.233, 8731.700)

Table 5.10: Selected reliability measures at use-level temperature.
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5.12 Sensitivity analysis

The adopted copula-based competing risks methodology largely depends on the elicited rank cor-

relation and hence, the estimated copula model parameter. This section presents the sensitivity of

the extrapolated survival function of the unit at the use-level temperature of 180◦C with respect

to different degrees of stochastic dependence between the risk variables. In particular, the differ-

ential system in Equation 4.11 is further solved for values of the copula dependence parameter θ

that correspond to values of Kendall’s τ equal to 0.25, 0.5, 0.75 and 0.9. The resulting survival

functions of the unit at the use-level temperature of 180◦C are given in Figure 5.13.

Survival function: τ = 0.25, θ = 2.371 Survival function: τ = 0.5, θ = 5.736

Survival function: τ = 0.75, θ = 14.138 Survival function: τ = 0.9, θ = 38.281

Figure 5.13: Use-level survival functions of the unit assuming different degrees of dependence.
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Results in Figure 5.13 show the difference that the elicited degree of dependence between the

censoring variable and unit lifetime makes when estimating the lifetime distribution of the unit

at use-level conditions. The extrapolated use-level survival functions in Figure 5.13 reveal an

apparent shift to the left as the strength of rank correlation and hence stochastic dependence

between the risks increases. Thus for strong positive rank correlation, removal of the censoring

variable leads to poorer survival with respect to unit lifetime. This is made more clearer by

looking at the estimated measures of reliability contained in Table 5.11.

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

B50% Life 12456Hr 12270Hr 12092Hr 11881Hr

Mean life 12704Hr 12190Hr 12011Hr 11745Hr

Table 5.11: Sensitivity of estimated reliability measures to different degrees of dependence.

Poor survival with respect to the remaining failure mode assuming strong positive rank correlation

makes sense as follows. Assuming strong stochastic dependence between the failure modes, the

remaining failure mode will continue to operate in the same way as the removed mode. As a

result, cause removal will not significantly improve survival with respect to the remaining modes.

Of interest in this investigation is quantifying reliability characteristics of the redesigned unit

from the extrapolated use-level lifetime distribution. Results in Table 5.11 show slight differences

in selected reliability measures for different rank correlation values. In particular, B50% Life is

approximately 12000Hr for the considered four rank correlation values.

This somewhat surprising result of slight differences in reliability measures for different degrees

of dependence was also obtained by Meeker, Escober and Hong (2009). In their analysis how-

ever, they assumed a bivariate lognormal model for the competing risks and estimated model

parameters by ML estimation. To the contrary, this investigation assumes a copula model. The

practical implication of this result is as follows: When estimating the survival function of the unit

at use conditions, one may use a degree of dependence between the censoring variable and unit

lifetime that is believed to be realistic to admit.
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Chapter 6

Summary, conclusions and suggestions for

future research

6.1 Research summary

Industrial units generally fail from different failure modes and these are often present in ALT.

When mode and lifetime information are available, competing risks theory provides the appro-

priate model for analysing failure data. In the case of life tests where unit lifetime is subject

to random censorship, two failure modes namely degraded failure and critical failure are distin-

guished at each stress level.

A simplifying assumption that is often made when analysing competing risks data is that the

risks act independently. This ensures identifiability of the marginal (and hence joint) survival

functions. But since degraded and critical failures are linked through the degradation process,

the investigated problem is that of modeling dependent competing risks. More general copula

methods are preferred to classical families of multivariate distributions and their parametrisation

by rank correlation is used to estimate the copula model using expert opinion. In particular, the

Frank copula dependence parameter θ̂ = 2.8405 corresponding to an assessed rank correlation

τ̂ = 0.29317 was obtained. This result makes sense for degrading units during testing since:
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. Degraded failures are expected to occur close to critical failures. Hence the agreement

between their rankings is largely expected to be positive.

. For any two independent draws from a population of test units, if it turns out in a life test

that the lifetime of one unit is longer than for the other, it does not necessarily follow that

its corresponding censoring time will also be higher. Hence the agreement between the

rankings of degraded and critical failures is not expected to be perfect.

Functional forms (or models) of the observed occurrences of degraded and critical failures (com-

peting risks data) are derived from a stochastic process point of view. Stochastic processes that

are commonly used in reliability and life testing studies as degradation models are the Wiener

and gamma processes. Both satisfy the Markov property and are therefore Markov processes. In

addition, the adopted degradation modeling viewpoint assumes that the underlying failure caus-

ing process is not fully observable. Together with Wiener and gamma processes being Markov

processes, this motivated the modeling framework of hidden Markov processes, a more general

statistical and structural approach.

Hidden Markov processes are bivariate stochastic processes with a hidden failure causing process

that can only be observed through another process called the observation (marker) process. Em-

phasis was placed on selecting a suitable probability structure for the doubly stochastic process

model satisfying the following:

. Both the underlying failure causing process and the marker process are Markov processes.

. Sample paths of the underlying failure causing process are restricted strictly monotone

increasing functions in order to account for the irreversible accumulation of damage that

leads to unit failure in a life test. On the other hand, sample paths of the marker process are

only restricted to continuous functions.

. The marker process must be useful in terms of tracking progress of the underlying failure

causing process. Hence the marker and the failure causing process must be linked in a

natural way.
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A bivariate stochastic process model with these properties (Whimore et al., 1998) is obtained

by describing the latent failure causing process by the Wiener maximum process and the mark-

er process by the Wiener process. Time to unit failure was estimated by first passage times of

the failure causing Wiener maximum process to deterministic failure thresholds and hence no

additional degradation data was necessarily required. The first passage time of the Wiener maxi-

mum process to a failure threshold coincides with that of the Wiener process to the same failure

threshold. It is well-known (Chhikara and Folks, 1989) to be distributed as inverse Gaussian.

Consequently the inverse Gaussian distribution is postulated as the probability model for the ob-

served occurrences of degraded and critical failures in a life test. Contributions of the observable

competing risks data to the likelihood function are derived and ML estimators are obtained.

Statistical modeling of life data from accelerated tests relied on the popular ALT model which

combines the lifetime distribution and the life-stress relationship. The former is assumed to

come from a specified parametric family while the choice of the latter was based on theory and

literature on similar tests. In particular, the Weibull and lognormal distributions are motivated

as appropriate models for life data from accelerated tests. Early unit failures in life tests imply

that test data are generally positively skewed. Thus the Weibull and lognormal distributions are

popular in life testing studies partly because they have positively skewed frequency curves.

In addition, a physical motivation for the Weibull distribution as a model for test data stems from

its interpretation as a limiting distribution for minima. This makes it an acceptable model for

the first occurring failure in situations where there are competing failure modes as is the case

in this investigation. On the other hand, physical motivation for the Lognormal distribution is

based on the central limit theorem. But more importantly, interest in accelerated testing is largely

in estimating lower percentiles of the lifetime distribution and both the Weibull and lognormal

distributions flexibly fit test data over their lower tails. Goodness-of-fit tests, in particular AICc

was used to discriminate between these two lifetime distributions where the model with minimum

AICc value is better

Maximum likelihood estimation and median rank regression are discussed as statistical methods

for fitting test data samples to the chosen lifetime distribution. Results from studies that compare

MLE and MRR methods for estimating Weibull and lognormal distributions are generally mixed
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because of study differences. Their performance in small samples under Type I censoring is

considered since few units are often tested and test data are right censored. Both estimation

procedures are shown to be biased for such data but MLE is preferred in terms of the overall

accuracy since ML estimators have minimum error variance.

Extrapolation of the use-level unit lifetime distribution is based on the life-stress relationship

which describes how a quantifiable life measure of the assumed lifetime distribution changes with

stress. Test data are from a temperature accelerated test of motorette insulation. The Arrhenius

relationship is chosen firstly because it is based on the laws of physics and secondly because of

its well established validity in insulation work (Nelson, 2004).

The analysis of test data on unit lifetime under dependent random censorship is complicated by

. Test data not being readily available. Hence the analysis relied on test data from a simula-

tion study.

. Marginal behaviour of the competing risks variables not generally identifiable. Conse-

quently, parametric restrictions had to be placed on the joint behaviour of the competing

risks.

In particular, stochastic dependence between unit life and the censoring variable is described by

the Frank copula model estimated using expert opinion at each stress level. Given the estimated

copula model, test data identify the marginal behaviour of the competing risks at each test stress

level. Emphasis is on the marginal behaviour of unit lifetime since it is the variable of interest.

Based on AICc and assuming the Arrhenius relationship, the scatter in simulated test data is

adequately described by the Weibull distribution. Consequently the Arrhenius-Weibull model is

the assumed life-stress relationship for these data. It is assessed for goodness-of-fit using both

graphical and numerical methods. The chosen Arrhenius dependence of life (as measured by the

Weibull scale parameter) on temperature (stress) is utilised to extrapolate a use-level unit lifetime

distribution from simulated test data.

Based on the extrapolated unit lifetime distribution, a number of reliability measures of the re-

designed motorette are derived. These include the lifetime of the unit as estimated by the Weibull
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scale parameter, B50% life, mean life, warranty time etc. But the adopted modeling approach

largely depends on the elicited rank correlation and hence the estimated copula model. Accord-

ingly, sensitivity of the derived measures of reliability to rank correlation values ranging from

τ = 0.25 to τ = 0.9 yielded the following results and conclusion:

. The stronger the agreement between the rankings of unit lifetime and the censoring variable

leads to poorer survival with respect to the failure mode of interest (unit lifetime in this

case) when the other mode is removed.

. Derived reliability measures from the extrapolated use-level unit lifetime distribution differ

slightly for a wide range of rank correlation values. This somewhat surprising result led to

the conclusion that a degree of dependence that is believed to be realistic to admit is the

important factor when estimating marginal survival functions from dependent competing

risks data. Consequently prior knowledge or experience with similar tests may be useful

factors in the analysis.

6.2 Suggestions for future reasearch

The modeling framework adopted in this investigation pertains to first passage times of the un-

derlying failure causing degradation process to failure thresholds. Consequently the measurable

variable is unit failure time and is estimated by obtaining crossing times of the degradation pro-

cess to these failure thresholds. Other problems worthy of further study are as follows:

. In addition to failure times, test samples may also include observations of increments of the

degradation process. That is, degradation increments are assumed to be observable during

testing provided the underlying failure causing process has not exceeded failure thresholds.

This modeling framework is useful particularly for highly reliable units where failure times

may not be observed even under accelerated conditions. Inference procedures for these and

other related models are described in Kahle and Lehmann (1998) for example, though not

necessarily in an accelerated testing context.
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. For some units, field operating conditions are often highly variable whereas accelerated

tests are carefully controlled. To construct a model that relates the two conditions, field

data from warranty returns for example may be required in addition to data from life tests.

Among the possible models that relate these two conditions is the use rate model. It applies

to cases where failure mode(s) depends on the use-rate, which intern, varies enormously

among units in the product population. Otherwise, the reliability-based methodology for

relating the two conditions is required and would typically involve the following steps. (1)

Develop ALTs that yield the same failure mode(s) as in field performance. The failure

mode(s) must also be driven by the same failure mechanism. This can be achieved through

physical failure mode analysis and if there are discrepancies between the two conditions

as field data become available, testing procedures may be modified so that failure modes

agree. (2) If ALT mimics field conditions, field performance would be directly estimated

by testing performance. Since field and testing performance generally differ, a bias cor-

rection factor may be incorporated into the reliability-based methodology. The shift factor,

possibly deterministic, may also be incorporated to account for the highly variable field

operation conditions and other unobservable variables. The latter implies that a random

model error term must also be incorporated.

. Given the small sample sizes in ALT, the Bayesian approach may be worthy considering in

future research.
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Appendix A

The R code for generating an estimated value of Kendall’s τ

from the assessed concordance probability.

simwei=function(n,a,b,p,e)\{

x2=rweibull(n,shape=a,scale=b)

y2=rep(0,n)

z1=rexp(n,e)

z2=rexp(n,e)

count=1

repeat\{

if(count==(n+1)) break

y=rweibull(1,shape=a,scale=b)

if(y>x2[count])\{

y2[count]=y

count=count+1

\}

\}

x1=p*x2+z1

y1=p*y2+z2

k=0
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for(i in 1:n)\{

if(y1[i]>x1[i]) k=k+1

\}

prob=k/n

tau=2*prob-1

list(x2=x2,y2=y2,z1=z1,z2=z2,x1=x1,y1=y1,n=n,k=k,prob=prob, tau=tau)

\}

sim1=simwei(n=75,a=3,b=1,p=0.85,e=1)

Repeating the simulation 1000 times

simN=1000

output=c(0,0,0)

for(s in 1:simN)\{

out=simwei(n=75,a=3,b=1,p=0.85,e=1)

output=rbind(output,c(out$n,out$k,out$prob,out$tau))

\}

output=output[-1,]

colnames(output)=c(”n”,”k”,”prob”,”tau”)

output=as.data.frame(output)

x=output$tau
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Appendix B

The 95% confidence intervals for Weibull parameter α and β at

each test stress level and for each failure mode.

X1 X2

190◦C Estimate 95% CI 190◦C Estimate 95% CI

α 9299.445 (8510.697; 10102.115) α 12610.309 (12081.471; 14471.543)

β 8.502 (4.898; 13.198) β 19.670 (6.453; 43.913)

220◦C Estimate 95% CI 220◦C Estimate 95% CI

α 2817.588 (2543.305; 3100.454) α 4020.505 (3106.157; 6360.134)

β 7.398 (4.198; 11.742) β 2.952 (1.307; 5.375)

240◦C Estimate 95% CI 240◦C Estimate 95% CI

α 1749.829 (1613.825; 1904.822) α 2585.271 (1916.236; 9853.710)

β 9.234 (5.035; 14.725) β 3.228 (0.853; 7.969)

260◦C Estimate 95% CI 260◦C Estimate 95% CI

α 1782.517 (1615.519; 2182.962) α 1311.883 (986.133; 1759.732)

β 8.183 (3.393; 14.903) β 2.636 (1.459; 4.207)
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Appendix C

The 95% confidence intervals for the lognormal scale and shape

parameters µ′ and σ′ at each test stress level and for each failure

mode.

X1 X2

190◦C Estimate 95% CI 190◦C Estimate 95% CI

µ′ 9.071 (8.977; 9.165) µ′ 9.432 (9.371; 9.579)

σ′ 0.144 (0.093; 0.229) σ′ 0.086 (0.046; 0.234)

220◦C Estimate 95% CI 220◦C Estimate 95% CI

µ′ 7.863 (7.744; 7.983) µ′ 8.141 (7.886; 8.530)

σ′ 0.182 (0.118; 0.290) σ′ 0.372 (0.218; 0.813)

240◦C Estimate 95% CI 240◦C Estimate 95% CI

µ′ 7.409 (7.311; 7.514) µ′ 7.783 (7.425; 9.073)

σ′ 0.144 (0.096; 0.251) σ′ 0.484 (0.228; 1.681)

260◦C Estimate 95% CI 260◦C Estimate 95% CI

µ′ 7.444 (7.305; 7.689) µ′ 6.981 (6.695; 7.283)

σ′ 0.198 (0.115; 0.450) σ′ 0.417 (0.277; 0.729)
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Appendix D

The R code for generating observed occurrences of degraded

and critical failure times in a competing risks setting.

u1=runif(20, min=0, max=1)

u2=runif(20, min=0, max=1)

v=(-1/2.8405)*log((u2*exp(-2.8405)+exp(-2.8405*u1)*

(1-u2))/(u2+exp(-2.8405*u1)*(1-u2)))

x1=alpha1*(log(1/(1-u1)))ˆ(1/8)

x2=alpha2*(log(1/(1-v)))ˆ(1/3)

y=cbind(x1,x2)

min=apply(cbind(x1,x2),1,min)

out=x1-x2

out[out > 0]=”x2”

out[out==0]=”same”

out[out < 0]=”x1”
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Appendix E

Simulated test data on unit lifetime under dependent random

censorship.

190◦C min(X1, X2) j 220◦C min(X1, X2) j 240◦C min(X1, X2) j 260◦C min(X1, X2) j

1 8322 1 21 2362 2 41 915 2 61 1399 2

2 9491 1 22 2663 1 42 11751 2 62 1264 2

3 6329 1 23 1728 1 43 1548 1 63 1274 2

4 10434 1 24 2681 1 44 1826 1 64 198 2

5 8341 1 25 2341 2 45 1855 2 65 1545 2

6 7686 2 26 3006 1 46 1419 1 66 1197 2

7 9482 1 27 3090 1 47 1688 1 67 1436 2

8 6085 2 28 3019 1 48 2058 1 68 1246 2

9 8853 1 29 1881 2 49 1357 1 69 1921 1

10 8003 1 30 2696 1 50 1799 1 70 1450 2

11 8862 1 31 1979 2 51 1504 1 71 1672 2

12 8008 2 32 2441 1 52 1422 2 72 1194 2

13 8724 2 33 847 2 53 1855 1 73 1239 2

14 9455 1 34 2019 2 54 1871 1 74 782 2

15 8542 2 35 3065 1 55 1226 1 75 928 2

16 7640 1 36 3100 1 56 1472 2 76 1495 2

17 6426 2 37 2043 1 57 956 2 77 1111 2

18 9284 1 38 2314 2 58 1929 1 78 1385 2

19 9383 1 39 2521 2 59 1808 1 79 811 2

20 9814 1 40 2801 1 60 1666 1 80 935 2
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Appendix F

Sampled data on unit lifetime from the numerical solutions at

test temperatures of 190◦C, 220◦C and 240◦C.

190◦C X2 220◦C X2 240◦C X2

1 8161 16 3866 31 3434

2 8460 17 2665 32 2760

3 8897 18 1498 33 4320

4 12072 19 3634 34 492

5 13623 20 2255 35 1704

6 8492 21 3815 36 1622

7 11738 22 4983 37 2279

8 12912 23 4397 38 2523

9 10032 24 2457 39 1957

10 9776 25 3752 40 2261

11 12249 26 2945 41 3036

12 10776 27 917 42 2166

13 8687 28 3604 43 5625

14 9649 29 1323 44 5749

15 13745 30 2772 45 627
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