
University of Wollongong

Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1997

Contributions to authentication logics and analysis
of authentication protocols
Anish Mathuria
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Mathuria, Anish, Contributions to authentication logics and analysis of authentication protocols, Doctor of Philosophy thesis, School
of Information Technology and Computer Science, University of Wollongong, 1997. http://ro.uow.edu.au/theses/2009

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/




T TNIVERSITY 
\ \ 70LLONGONG 

Contributions to authentication logics 
and analysis 01 autnentication protocols 

UNIVERSITY Of 

WOLLONGONG 

A thesis submitted in fulfillment of the 

requirements for the award of the degree 

Doctor of Philosophy 

from 

UNIVERSITY OF WOLLONGONG 

by 

Anish Mathuria, M S c (Hons) 

School of Information Technology &; Computer Science 
September 1997 



© Copyright 1997 

by 

Anish Mathuria, MSc (Hons) 

All Rights Reserved 

ii 



Dedicated to 

my sisters: Pooja and Bhavna; 

and my fiancee: Hemal 

iii 



Declaration 

This is to certify that the work reported in this thesis was done 

by the author, unless specified otherwise, and that no part of 

it has been submitted in a thesis to any other university or 

similar institution. 

Anish Mathuria, MSc (Hons) 

September 11, 1997 

iv 



Preface 

An authentication protocol essentially provides a mechanism for verifying the identities 

of nodes in an insecure network, and for the safe distribution of secrets. The subject of 

authentication protocols is enormously subtle. It is surprisingly easy to design incorrect 

protocols. A typical authentication protocol consists of an exchange of just a few 

messages, may appear intuitively correct, and still not work as intended. It is common 

to find examples of published protocols in the literature which have subsequently been 

found to contain flaws. As a result, methods for verifying the correctness of protocols 

have proliferated. A pioneering work in this area is a modal logic of Burrows, Abadi 

and Needham. Their work has led to the development of a substantial number of 

logics of a similar kind, often referred to as "authentication logics". If authentication 

logics are to be used to verify the correctness of protocols, then there is a need to 

verify the correctness of the logics themselves. The latter is the metalogical problem 

of obtaining assurance about the soundness of a logic. A meaningful solution to this 

problem requires the development of an independently motivated semantics for the 

logic. However, as compared to the formalisms in which authentication logics are 

couched, the development of semantics for such logics has generally lagged behind. 

Indeed, despite some notable previous work in the latter direction, it is rare to find a 

rigorous proof of soundness for an existing authentication logic. 

There are several other interesting areas in the study of protocols besides authen­

tication logics. These include alternative methods for analyzing protocols, and models 

for analyzing protocol efficiency. 

This thesis makes some contributions to the areas of authentication logics and 

protocol analysis; the contributions made are summarized below. 

1. Authentication logics 

(a) A critical appraisal of an authentication logic of Gong, Needham and Ya-

halom: 
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It is shown that the above logic exhibits several undesirable features, in­

cluding instances of unsoundness, incompleteness, and redundancy. These 

observations are used to highlight the need for a semantic basis for authen­

tication logics. 

(b) A modification to the logic of Gong, Needham and Yahalom for automatic 

analysis of protocols: 

The proposed modification lends to a simple technique for automating de­

ductions in the modified logic. Not only does the automation provided serve 

as an aid in analyzing protocols, but it also proves useful in confirming some 

of the difficulties in using the original logic. 

(c) A computational model for authentication logics: 

The proposed model decouples the syntax and semantics of notions that are 

central to existing authentication logics. The import of the resulting model 

is that it provides a solid foundation for devising such logics. 

(d) An authentication logic and its proof of soundness: 

The model developed above is used to devise a new authentication logic and 

to establish a soundness theorem for the logic in a rigorous manner. 

2. Protocol analysis 

A model for reasoning about lower bounds on rounds: 

The proposed model is primarily motivated by the need to verify the correct­

ness of some informal bounds found in the literature. It provides a precise 

definition of the metric number of rounds and a theorem which relates lower 

bounds on rounds with security requirements. 

The thesis is organized as follows. Chapter 1 is an introductory survey on authenti­

cation logics. The Chapters 2, 3, 4, and 5 cover parts (l)(a)-(d) above, respectively. 

Chapter 6 covers part 2. Chapter 7 contains our conclusions. 
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Mathematical preliminaries 

This section contains a concise summary of some standard mathematical notations, 

definitions, and results used in this thesis. 

Integers 

The notation Z denotes the set of all integers {..., —2 , — 1,0,1,2,...}. 

Sets 

If X is a finite set, the rank of X is the number of elements in X. Let X be some set 

(finite or infinite). The powerset of X, written 2X, is the set of all subsets of X. Let 

Y and Z be any two sets. The cartesian product of Y and Z, written Y x Z, is the set 

{(Uiz) I V £ ̂  an<i z £ ^ } - -̂  partition rr of X is a set of non-empty subsets of X such 

that: (1) the elements of n are pairwise disjoint, and (2) the union of all elements of -K 

is the set X. An element of a partition is called a block. 

Relations 

Let X be some set (finite or infinite). A binary relation on R is a subset of X x X. If R 

is a binary relation on X, we usually write xRy instead of (x,y) £ R, for x,y £ X. A 

relation Ron X is: reflexive if, for every x £ X, xRx; transitive if, for every x,y,z £ X, 

whenever xRy and yRz, then xRz; euclidean if, for every x,y,z £ X, whenever xRy 

and xRz, then yRz. A relation R on X is irreflexive if, for every a: £ X, (x,x) 0 X; 

anti-symmetric if, for every x,y £ X, whenever (x,y) £ R, then (y, x) $ R. The 

reflexive transitive closure of a binary relation R, written R*, is the smallest reflexive 

transitive relation that includes R as a subset. A partial order is a binary relation that 

is irreflexive, anti-symmetric, and transitive. Let R be a relation on X, and let X' be a 

subset of X. Define the relation R' on X' as R' = Rf] (X' x X'); if R is a partial order 

on X, then R' is a partial order on X'. W e normally use the symbol -< to denote an 

viii 



arbitrary partial order. If -< is a partial order on X, the ordered pair (X, -<) is called 

a partially ordered set, or a poset. A partial order R on X is a total order if, for every 

x,y £ X, xRy or yRx. W e normally use the symbol < to denote an arbitrary total 

order. If < is a total order on X, the ordered pair (X, <) is called a totally ordered 

set. If R is partial order on X, then an infinite descending chain with respect to R 

is an infinite sequence xx,X2,-.- of elements of X such that xn+xRxn for all n; R is 

well-founded if there are no infinite descending chains with respect to R. 

Strings 

An alphabet is a finite and non-empty set of symbols. If S is an alphabet, the set of 

all finite strings of symbols from £ is written as S*. W e write the empty sequence as 

(). If S is a finite sequence and s £ E, then S • s denotes the sequence obtained by 

extending S by s. If Sx, S2, • • • is a (finite or infinite) sequence of finite sequences with 

the property that Si is an initial segment of Si+X for each i = 1,2,..., then call the 

shortest sequence of which all the Si are initial segments the union of the Si. 

Graphs 

A digraph is an ordered pair G = (V, R) where V is a set and R is a binary relation on 

V. The elements of V are called the nodes of G; the elements of R are called the edges 

of G. An edge e = (a, b) is said to originate at node a and terminate at node b; the 

node a is called the initial node of e and the node b is called the terminal node of e. 

The number of edges which originate (respectively, terminate) at a node a is called the 

outdegree (respectively, indegree) of a. A finite or infinite sequence of edges is called a 

path if the terminal node of each edge in the sequence is the initial node of the next 

edge, if any, in the sequence. A path is said to originate in the initial node of the first 

edge and end in the terminal node of the last edge, if any, in the sequence. A path 

that originates from a node a and ends in a node b is called a path from a to b. A path 

that originates and ends at the same node is called a cycle. A digraph that does not 

contain any cycles is called acyclic. 

Trees 

A tree is a digraph with a nonempty set of nodes such that: (1) there is exactly one 

node, called the root of the tree, which has indegree 0; (2) every node other than the 

root has indegree 1; and (3) for every node a of the tree, there is a path from the root 
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to a. A tree is called finitely generated if each node of the tree has a finite outdegree. 

A tree is called finite if it has only finitely many nodes; otherwise the tree is called 

infinite. A branch of a tree is a path that originates at the root of the tree. 

Konig's lemma 

Every finitely generated tree with infinitely many nodes must contain at least one 

infinite branch. 
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Chapter 1 

A survey of BAN-like logics 

This chapter surveys some prominent logics for reasoning about authentication proto­

cols. The seminal work in this area is a modal logic of Burrows, Abadi and Needham [1], 

usually called, the B A N logic. This logic has been extremely influential in the authen­

tication protocol literature; it has stimulated widespread interest in the formal analysis 

of protocols. The logics we will survey are more or less classified in the literature as 

BAN-like logics. This nomenclature is somewhat loose, yet sufficiently descriptive to 

convey our intent, viz: The BAN-like logics share the following two traits. (1) They 

appear to be somehow related to the original B A N logic. (2) They were suggested by 

others subsequent to the B A N logic and were motivated as extensions or improvements 

over this logic. 

W e follow the usual convention of naming BAN-like logics after their authors. In 

addition to the B A N logic itself, we will survey the BAN-like logics proposed by: 

• Gong, Needham and Yahalom [2] (GNY); 

. Gong [3] (G); 

• Gaarder and Snekkenes [4] (GS); 

• Kailar and Gligor [5] (KG); 

• van Oorschot [6] (VO); 

• Mao and Boyd [7] (MB); 

• Abadi and Tuttle [8] (AT); 

• Syverson and van Oorschot [9] (SVO); 

• Wedel and Kessler [10] (WK). 

1 



1.1. Introduction 2 

W e will survey these logics in the order presented above, which is more or less chrono­

logical, with one exception. The logic of Abadi and Tuttle appeared prior to that of 

Kailar and Gligor; however, we make the above rearrangement for the sake of conve­

nience. 

1.1 Introduction 

We begin with some terminology which is commonly used to describe mechanisms 

referred to as: authentication protocols. Broadly speaking, an authentication protocol 

consists of a sequence of message exchanges designed to achieve some security objective 

using cryptographic functions. The design of authentication protocols usually makes 

the following two characteristic assumptions (cf. Needham and Schroeder [11]). (1) A 

protocol is subject to an adversarial environment: it is assumed that there is an enemy 

who can see and manipulate messages exchanged in the communication network at will, 

with the purpose of subverting the protocol objectives. (2) The cryptographic functions 

that underlie a protocol are assumed to be secure—for example, an encrypted message 

is considered to be impossible for anyone to decrypt without knowing the decryption 

key. The goals of authentication protocols can vary depending on application, but they 

broadly fall into the following two categories: entity authentication, in which the aim is 

to verify the identities of one or more communicating principals; and authenticated key 

exchange, in which the aim is to make available a shared key between some principals. 

Some of the earliest examples of authentication protocols can be found in the paper 

by Needham and Schroeder [11]. 

The terminology used to describe authentication protocols includes the following 

terms: principals, keys, and nonces. A principal is an entity which takes part in a 

protocol run. Typically, the keys used by a protocol are classified as: the long-term 

keys (also sometimes called terminal keys), which are cryptographic keys assumed to 

be available initially; the session keys, which are cryptographic keys to be securely 

obtained via the protocol itself. Usually, a session key obtained in one run of the 

protocol is deemed unsafe for use in subsequent runs of the protocol. In particular, a 

sound protocol should be robust against replay of session keys. In other words, if A 

and B are two principals wishing to establish a session key via a suitable protocol, then 

it should not be possible for an enemy to manipulate the protocol messages to make 

the principals believe that an old session key is a new one. A nonce is a quantity which 

is typically used for verifying the freshness of messages [11]. The simplest example 



1.2. BAN logic 3 

of a nonce is a random number: if A generates a random number r and sends a 

message containing r, then A can be assured that any message which cannot be feasibly 

constructed without the knowledge of r cannot possibly be made prior to the message 

in which A originally sends r. 

In the literature most protocols are schematically described by means of syntax 

representing a sequence of message exchanges between some principals. It is worth 

noting that a typical protocol description identifies the order in which the protocol 

messages are meant to be exchanged in a successful run of the protocol. Specifically, a 

message exchange of the form A -» B : M means that, at the point where this exchange 

appears in the associated protocol, (1) principal A is supposed to send a message M, 

and (2) that this message is supposed to be received by principal B. This exchange 

might be accompanied by additional checks which are performed by B upon receipt, 

if any, of the message claimed as M ; typically B does not proceed with the rest of the 

protocol if the stipulated check is unsuccessful. 

1.2 BAN logic 

The BAN logic [1] is a logic for reasoning about authentication protocols in terms 

of belief statements. It provides a useful formalism which reflects at a high level of 

abstraction how authentication protocols are intuitively understood to work. 

The syntax of the B A N logic distinguishes three types of primitive objects: princi­

pals, keys, and nonces. A protocol message is expressed as a formula of the logic. Let 

P, Q, R range over principals; let K range over keys; let X, Y, XX,X2,... range over 

formulas. The formulas of the logic along with their informal semantics can be given 

as follows. 

P believes X; P believes that X is true. 

P sees X; P has received a message from which it can read X. 

P once saidX; P has sent (or uttered) a message containing X. 

P has jurisdiction over X; P is trusted on the truth of X. 

X is fresh; X has not been sent previous to the current protocol run. 

P and Q share key K which is good in the sense that it remains 

confidential to P, Q and principals trusted by either P or Q. 

P has K as its public key. The corresponding private-key K~l remains 

confidential to P and principals trusted by P. 

P and Q share secret X in the sense that it remains 

P\=X 

P<X 

P ̂ x 

P^X 

»(*) 

P&Q 

4F 

P^Q 
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confidential to P, Q and principals trusted by either P or Q. 

{X}K X encrypted with key K. 

(X)Y X combined with Y; Y serves as a proof of origin of X. 

The notation used above is from the original presentation of the logic [1]. A latter 

presentation of the logic [12] uses a more verbose but mnemonic notation; for example, 

PbelievesX instead of P ^ X. However, we retain the original notation here. The logic 

also includes as formulas the following expressions: (1) {X}K from P, which means 

that the encrypted message identified originates from P; (2) (X,Y), which means 

the conjunction of X and Y (the B A N logic uses ',' as the propositional conjunction 

operator). The logic treats conjunction as an operator on sets of formulas, leaving 

properties such as associativity and commutativity implicit. 

Essentially, the inference rules of the logic reflect intuitive consequences of the 

semantics of the logical constructs. Typically, an inference rule is read, 'if formulas 

Xi,...,Xn hold then formula Y holds', written more concisely as: 

Xi,..., Xn 

Y 

The main inference rules of the logic are [1]: 

• Message-meaning rules: 

P^P&Q, P< {X}K 

P^QY^X 

This rule allows the identity of the sender of an encrypted message to be deduced 

from the encryption key used. It makes up one of the three message-meaning 

rules of the logic; the message-meaning rules for public-keys and shared secrets 

are given along similar lines. 

• Freshness rule: 

p N a m 

This rule allows the freshness of a message to be deduced from the freshness of a 

subpart of the message. 

• Nonce-verification rule: 

P^l(X), P^Q^X 

P\EEQ^EX 

This rule allows beliefs from freshly uttered messages to be derived. 
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• Jurisdiction rule: 

P^Q^X, P^Q^X 

P^X 

This rule allows beliefs based on jurisdiction to be derived. 

There are several other inference rules which reflect other properties of the various 

logical constructs; however, the ones given above are central to the logic. For the sake 

of convenience we list the original set of inference rules in appendix A. 

A protocol to be analyzed using the logic is first transformed into an idealized proto­

col, which is essentially the sequence of protocol message exchanges expressed in terms 

of a set of logical formulas. Roughly speaking, a protocol idealization reflects some 

intended interpretation of the protocol messages. An example helps convey the basic 

idea behind idealization. Consider the message exchange S —> A : {Na,B,Kab}Kas-> 

in which a trusted server S distributes a session key Kai to be shared between A and 

B. Here Kas is a key shared by A and S, and Na is A's nonce, which is used by A to 

verify that the message is not a replay. Suppose the above message exchange is part 

of some protocol, and that this message exchange implies that S asserts Kab to be a 

good session key for A and B. Then this assertion is typically reflected in the protocol 

idealization by the formula: (1) A < {Na, A *¥ B}i<as- To proceed with the analysis, 

some formulas which express initial assumptions about the protocol in question are also 

asserted, and the inference rules are then applied to determine whether the formulas 

expressing the goal of the protocol are derivable using the logic. For example, the above 

idealization can be accompanied by the following assumptions: (2) A ^ fj(iV0); and 

(3) A ^ S |=>- A *hb B. It is easy to see that we can derive the formula A ^ i ^ B 

from (1), (2) and (3) using the logic. The import of the logical analysis is that it forces 

us to make explicit the various assumptions needed to obtain the desired goals. If the 

desired goals do not follow from an application of the logic, the pre-conditions to the 

inference rules often provide a hint to further assumptions that might be needed. Intu­

itively, if an unreasonable assumption is found in the process, it suggests the presence 

of a protocol flaw. For example, the B A N logic has been used to verify a flaw in the 

Needham-Schroeder protocol pointed out by Denning and Sacco [13]. In analyzing the 

protocol using their logic, Burrows et al. [1] show that this flaw manifests as a dubious 

statement amounting to the assumption that one of the parties believes that the session 

key distributed via the protocol is fresh. 

The logic has also been used by Burrows et al. [1] to analyze several other well-

known protocols from the literature. As concerning their example protocol analyses 

using the logic it is worth rehashing an observation of van Oorschot [6]. Namely, that 



1.2. BAN logic 6 

the protocol analyses presented by them might give the impression that all assumptions 

needed in a protocol analysis are known a priori. However, it should be stressed that 

the assumptions included in their analyses are made beforehand only for the sake 

of appearance. The main idea in the using the logic is to detect various unobvious 

assumptions which might be needed in addition to those assumptions that are initially 

made at the outset. 

As noted by its authors [1], [14], the validity of the inference rules of the logic 

depends on a number of subtle assumptions that are made outside of the logic. For 

example, the validity of the message-meaning rule above requires the assumption that 

P has not sent the encrypted message {X}# himself. This is reflected simply by 

writing the encrypted message as '{AT}#- from i2' in the original rule together with 

the side condition that P ^ R. Another important assumption concerns the nonce-

verification rule above. There it is assumed that the message X does not contain 

any encrypted subparts (i.e., any subformula of the form {Y}x), since intuitively a 

principal may not necessarily believe in a message that it cannot read. If we suppose 

that this assumption is satisfied, the rule effectively implies that principals are honest, 

in the sense that all message parts which a principal can read from the messages it sends 

must be believed by that principal. However, Burrows et al. recommend a rather strong 

operational notion of honesty: they require that a principal believe every message he 

sends. This strong notion of honesty has drawn some criticism of the logic, despite 

the fact that the soundness of the nonce-verification rule does not strictly depend on 

this requirement. For example, Heintze and Tygar [15] note that such a requirement 

precludes a B A N logic analysis of the Needham-Schroeder protocol, since this protocol 

requires a principal to send an encrypted message he may not believe in (Message 3). 

However, it is fair to say that the strong version of honesty recommended by Burrows 

et al. appears to be an inadvertent slip; if we retain the weaker version of honesty, an 

analysis of the protocol using the logic still goes through as intended. Moreover, the 

original B A N logic analysis of the protocol does not conform to the notion of honesty in 

the strong sense. On the other hand, the weak notion of honesty appears to be a quite 

useful requirement to make in the logic. For example, Engberg [16] also enforces the 

same weak notion of honesty while applying the logic; he shows that absurd conclusions 

can be drawn using the logic otherwise. 

The B A N logic also makes two general assumptions concerning encrypted mes­

sages, (a) It assumes message integrity in the sense that encrypted messages cannot 

be spliced or aggregated without destroying the message structure—for example, that 
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an encrypted message {M, M'}K cannot be obtained from the sole knowledge of the 

two encrypted messages {M}K and {M'}K (and vice-versa). However, there may be 

protocols where the cryptographic mechanisms used do not provide such guarantees 

(cf. Boyd [17] and Gligor et al. [18]). (b) It assumes that encrypted messages are verifi­

able in the sense that the result of a decryption can be somehow verified to be genuine. 

To put (a) and (b) another way, the logic cannot be used to detect the lack of message 

integrity or message verifiability in protocols. 

Although the B A N logic is simple to use, proofs carried out in the logic require 

subtle interpretation. An early example of the underlying subtlety is provided by a 

protocol due to Nessett [19] (we omit Message 2 from the original protocol since it is 

not relevant to the present discussion): 

Message 1. A -> B : {Na, Kab}K-i 

Here B trusts A to generate a session key Ka\, to be shared between them. The 

nonce Na is used by A to convince B that Message 1 is fresh. K~
x is A's private key 

for use in a suitable public-key system. The corresponding public-key Ka is publicly 

known. Nessett [19] asserts some formulas meant to reflect the initial assumptions, 

which include amongst others the formula A ^ A «4b B, and shows that the B A N logic 

can be used to sanction the protocol in the sense that the formula B ^ A «4b B can be 

derived from Message 1. The protocol of course is insecure, nevertheless, since everyone 

knows Ka and can thus decrypt Message 1 using Ka to obtain Kab- Based on the above 

example protocol analysis, Nessett claims that the B A N logic is flawed. However, 

Burrows et al. [20] refute the grounds on which Nessett advances his claim. They 

object to the assumption A ^ A if B above as being unjustifiable since Message 1 

contradicts this assumption. The essence of the controversy surrounding Nessett's 

point and the counterpoint of Burrows et al. is not novel: a 'proof is only as good as 

the assumptions it makes. However, it does accurately point out a practical difficulty 

in appealing to proofs in the logic. 

1.3 GNY logic 

The logic of Gong, Needham and Yahalom [2] is one of the earliest BAN-like logics. 

Their logic largely modifies and adds to the B A N logic notation and rules in an attempt 

to provide more features than the logic on which it is framed. 

Unlike the B A N logic, the syntax of the G N Y logic distinguishes between mes­

sages and assertions about messages. The former are represented in the G N Y logic 
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as formulas (which do not assume truth-values), whereas the latter are represented 

as statements. Essentially, this distinction precludes messages from being treated as 

believable expressions in the logic. 

Let X, Y range over formulas, and let C range over statements. The formulas of 

the G N Y logic include the following: 

{X}K encryption of X with shared key K. 

{X}^1 decryption of X with shared key K. 

{X}+K encryption of X with public-key +K. 

{X}_x decryption of X with private-key — K. 

H(X) one-way hash of X. 

F(X, Y) a many-to-one function of X and Y which is one-to-one and invertible 

when either X or Y is fixed; for example, X © Y. 

X ~» C X with extension C; C reflects some interpretation of X. 

Let P, Q, R range over principals. Essentially, the new notions introduced in the 

G N Y logic are expressed by the following statements: 

P < *X P has received a message from which it can read X and 

X is not-originated-from P in the sense that X has not 

been previously sent by P in the current run. 

P ^ ®(P) P can identify that certain messages never-originated-from him 

in the sense that they have not been sent by P in any run. 

P 3 X P possesses X; P has received X or can compute X. 

P ^ <i>(X) P believes X is recognizable; P recognizes X in the sense that 

P can forecast part or whole of the contents of X without 

receiving X. 

P ^ $ = ^ Q N * P believes Q is honest and competent in the sense that 

Q has jurisdiction over all his beliefs. 

The remaining statements of the logic are made along similar lines to the BAN logic, 

except that they are formed within the scope of the belief construct; for example, the 

G N Y logic includes a statement of the form P ^ l(X), but not j(X). The term shared 

secrets is used to encompass both encryption keys as well as other types of secrets in 

the G N Y logic. Typically, the symbol S ranges over secrets. The logic uses a single 

construct in place of the two B A N logic constructs f* and #. However, the G N Y logic 

notation for sharing of secrets is rather loose: P ^ P O- Q. This notation is rather 
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restrictive since it does not admit of statements of the form R ^ P A Q when the 

principal denoted by R is distinct from the principals denoted by P and Q. However, 

such statements are often needed in practice, as is evident from the protocol analyses 

given in the G N Y logic paper; see, for example, the analysis of the Needham-Schroeder 

protocol there (p. 241). 

The G N Y logic has over forty inference rules, many of them quite complex in 

terms of the number of premises involved. For the sake of convenience we list them in 

appendix B. Some of these are rules which are absent from the B A N logic but which 

seem intuitively justifiable. For example, one part of the freshness rule F2, 

P N IIPO, P 9 K 
p |= »({*}*), PNiKTO*1)' 

essentially captures an inference which did not seem to be required for the protocol 

analyses carried out by Burrows et al. [1] using their logic. A large number of rules 

reason about new notions introduced in the logic, for instance, those of possession and 

recognizability. 

The rest of this section discusses the intended role of the following notions found 

in the logic: not-originated-from and never-originated-from, possession, recognizability, 

and honesty. 

Not-originated-from and Never-originated-from 

The idea behind the notions of not-originated-from and never-originated-from is to 

capture the side condition to the B A N logic message-meaning rules for shared keys. 

Recall that the side condition reflects the assumption that a principal can tell whether 

an encrypted message was sent by himself or not. The informal semantics of the notion 

of not-originated-from is that, if P receives X at some point and X is not-originated-

from P (written P < *X), then P has not sent X since the start of the current protocol 

run up to that point. The G N Y logic is accompanied by a parser algorithm which 

mechanically translates a protocol description into one with the not-originated-marker 

*. There are two distinct ways the G N Y logic attempts to capture the original B A N 

logic side condition. Firstly, it reformulates the B A N logic message-meaning rule for 

shared keys by including premises of the form P < *{X}K and P ^ §(X) in place 

of P < {X}K and the extra side condition; see the message interpretation rule II in 

appendix B.6. An alternative reformulation simply distinguishes the side condition 

by means of a premise of the form P ^ (8>(P); see the never-originated-rule II' in 

appendix B.8. Despite their intuitive appeal, the usefulness of the above two notational 
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devices is rather limited. Since the parser algorithm only controls the current run of 

the protocol, the G N Y logic reformulation involving the not-originated-from notion is 

of use only in the case of a protocol which requires a message X to be conveyed by 

some principal P and such that the same message X is to be later told to P. The rule 

II then produces the desirable effect of blocking the derivation of beliefs for P from X. 

The reformulation which makes use of the never-originated-from notion simply seems 

to be another way of writing the side condition. Since the G N Y logic does not include 

any rules with statement of the form P ^ <S>(-P) as conclusions, it is debatable whether 

this notion represents an improvement over the B A N logic side condition. 

Possession 

The notion of possession is a noteworthy addition introduced in the G N Y logic. This 

notion underlies many rules of the B A N logic; for example, in the B A N logic message 

seeing rule for shared keys: 

P ^ P & Q , P<{X}K 
P<X 

it is implicitly assumed that P possesses K. However, this assumption has the effect 

of conflating the two distinct notions of possession of a key K and that of belief about 

K. The G N Y logic make this distinction explicit; the above rule is reworked as: 

T q P<{X}K, P3K 
i6- P«X 

Recognizability 

As noted in previous section, the B A N logic makes the implicit assumption that en­

crypted messages are verifiable. The G N Y logic captures this assumption explicitly 

by reformulating the B A N logic message-meaning rules; for example, in the message 

interpretation rule II of the G N Y logic, 

P<*{X}K, PBK, P^P&Q, P^c^(X), P\=j{X,K) 

P\=Q^X, P^Q^ {X}K, P^QBK 

the premise P |= </>(X) essentially reflects the implicit B A N logic assumption that en­

crypted messages are verifiable. A n example protocol analysis which evidently demon­

strates the usefulness of the recognizability feature of the logic can be found in the 

G N Y logic paper, where the logic is shown to reveal the lack of message verifiability 

in the enhanced Needham-Schroeder protocol. Specifically, an analysis of the protocol 



1.4. G logic 11 

using the G N Y logic does not yield a certain desired protocol goal, in contrast to a 

B A N logic analysis. The difference is attributed to the fact that one of the message 

exchanges used by the protocol is: Q sends to P an encrypted message {N9}K, where 

Nq is a nonce generated by Q and K is a session key between P and Q. The lack of 

recognizability of this message relative to P produces the desirable effect of blocking 

the derivation of the following statement using the logic: P ^ Q ^ P <-> Q. 

The G N Y logic has several rules which allow derivation of statements of the form 

P ^ (f*(X); see the 'recognizability rules' in appendix B.5. While the notion of recog­

nizability appears to be a useful addition to the logic, certain recognizability rules of 

the G N Y logic are problematic; we will discuss some of the problems involved in the 

next chapter. 

Honesty 

Recall that the B A N logic makes the implicit assumption that principals are honest. 

However, not all principals may be equally honest; in other words, the notion of honesty 

can be specified relative to a trusting principal. The G N Y logic makes such a viewpoint 

explicit. Essentially, the B A N logic nonce-verification rule is reformulated in the logic 

as the jurisdiction rule J2, 

P )= Q h» Q N *, PWQ^(X<^C), FN KX) 
P^QWC 

where the premise P |s Q (=£> Q ^ * means that Q is trusted by P over his beliefs. 

The honesty requirement is enforced during a protocol analysis using the G N Y 

logic by means of a belief consistency check: to idealize a protocol message exchange 

P —> Q : X as Q < *X ~> C a precondition is that the statement P ^ C holds. 

Similarly, a possession consistency check is also carried out to enforce the intuitive 

requirement that a principal can only send possessed messages: another precondition 

to the above idealization step is that the statement P 3 X holds. 

1.4 G logic 

The original GNY logic has been revised by Gong [3] in his doctoral thesis. The revised 

logic mostly expands the G N Y logic set of rules concerning notions such as freshness 

and message interpretation. Essentially, the only new feature to be found in this logic 

is a notion called eligibility: 
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P oc X P is eligible to convey X; P holds the relevant possessions and beliefs 

to convey X. 

Here the requirement that P holds the 'relevant' possessions and beliefs for a formula 

X ~> C is roughly understood to mean that the statements P 9 X and P ^ C hold, 

among other things. In the revised logic, the consistency requirement given in the 

G N Y logic paper is reflected by the rule Tl [3], 

P -> Q : AT, P oc X 

Q<X 

which essentially excludes message exchanges not satisfying the belief or possession 

consistency checks. Additionally, the logic includes several rules, called 'eligibility 

rules', which allow statements of the form P oc X to be derived. In effect, these rules 

define the set of formulas which a principal is eligible to convey. For example, the rule 

El [3], 

P3 X 

ToTx' 
says that a principal is eligible to convey any formula he possesses. It is worth noting 
that in the revised logic P's eligibility to convey { X } K "^ C is not intended to mean 

the same thing as (1) P possession of X and K, and (2) P's belief in C. This is 

apparent from the eligibility rule E5 [3], 

P oc X, P3 K, P |EB P &Q, P^C 

P oc {X}K ~> C 

where the premise P ^ P & Q indicates a component of P's 'relevant' beliefs which is 

independent of P's belief in C. It is thus clear that the consistency requirement made 

in the revised logic is more stringent than that motivated in the G N Y logic paper. 

The significance of the belief and possession consistency requirements is further 

discussed by Gong [21]. He argues that their absence can lead to infeasible specifications 

in the sense that: (1) protocols which do not meet the possession consistency check 

cannot be realized, and (2) protocols which do not meet the belief consistency check 

may allow non-causal beliefs to be derived. Here non-causality of beliefs means that 

some statement of the form P |= Q ^ C holds, but that the statement Q ^ C does 

not hold. 

1.5 GS logic 

The logic of Gaarder and Snekkenes [4], [22] extends the BAN logic in two ways: (1) It 

reformulates the B A N logic notions and rules for public-key systems. (2) It introduces 
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new notions for reasoning about freshness mechanisms which lie outside the scope of 

the B A N logic. These two extensions are described below. 

Recall that the notions of binding of a public-key and that of the secrecy of the 

corresponding private-key are represented by means of a single construct in the B A N 

logic: H->. The GS logic distinguishes between these two notions using the following 

constructs: 

VK(K, P) K is P's authentic public-key. 

n(P) P's private-key is good in the sense that it is a secret known 

to P alone. 

The above distinction is further reflected in the GS logic by the rule R13 [4], 

P^VK(K,Q), P^I1(Q), P<a(X,Q) 

P^Q^X 

which is essentially obtained by reformulating the B A N logic message-meaning rule 

for public-keys; here a(X, Q) replaces {X}K-i used in the latter rule to represent X 

signed with Q's private-key. The GS logic also replaces the B A N logic message seeing 

rule for public-keys with the following rule [4]: 

P<a(X,Q) 
R 1 4- P<X 

Notice that the above rule makes the implicit assumption that a principal possesses 

every principal's public-key, including his own. 

Essentially, the B A N logic nonce-verification rule tells us that no beliefs can be 

derived from a message sent during a protocol run if that message is not fresh (i.e. if that 

message has been sent previous to the current protocol run). However, some protocols 

make use of mechanisms which do not rely on the notion of freshness in the above sense 

and, yet, for which it is intuitively reasonable to establish the level of belief supported 

by the nonce-verification rule. The basic idea underlying such mechanisms is the use of 

a duration-stamp to indicate a time interval for which a message is claimed to be good. 

The above observations essentially motivate the remaining GS logic extensions that 

incorporate time into the logical syntax. In particular, the logic includes the following 

constructs to reflect the associated notions of duration-stamp and good time interval. 

(Q(ti,t2),X) X tagged with duration-stamp @(ti,t2); X holds in the interval tx, t2. 

<\(ti,t2) h, t2 denotes a good time interval; the current time lies in the interval 

between ti and t^. 
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The logic includes the following rule to reason about duration-stamps [4]: 

R 1, P^QW A(t.,<2), PNQ h(6(tuh),x) 
R 5- FWoWx 

Here it is assumed that the validity of a time interval is ascertained by a principal 

relative to its own local clock. The rule R15 allows beliefs from uttered messages 

attested by duration-stamps to be derived; it is framed similar to the nonce-verification 

rule of the B A N logic. 

The import of the above extensions is demonstrated in the GS logic paper [4] by 

means of a concrete protocol which has been fielded for use: the CCITT X.509 protocol. 

An analysis of this protocol using the extended logic is shown to compare favorably 

with a B A N logic analysis of the same protocol. The main improvement concerns the 

idealization of the certificates used to distribute public-keys in the protocol. A protocol 

analysis using the B A N logic requires the dubious assumption that the certificates are 

fresh, despite the fact that the actual working of the protocol does not make this 

assumption. Stated another way, the timing mechanism used to guarantee the validity 

of the certificates in the protocol can be captured in the GS logic, whereas in the B A N 

logic it cannot. 

1.6 KG logic 

Kailar and Gligor [5] have devised a BAN-like logic to extend the applicability of the 

original B A N logic. They argue that the B A N logic suffers from the following two 

limitations: (1) The B A N notion of key jurisdiction is dependent on key generation; 

that is, a principal who is authorized to generate a key only has jurisdiction over that 

key. However, there may be protocols which do not satisfy key jurisdiction in the above 

sense. Gligor et al. [18] sketch an example to motivate the restrictive nature of the 

B A N logic notion of key jurisdiction. Suppose that (a) P trusts Q to read and forward 

a key K generated by R, and (b) P trusts Q to maintain the privacy of K. Although Q 

does not have jurisdiction over K in the above sense, P's trust in Q should allow P to 

infer K is a good key for use with Q. Nonetheless the B A N logic does not capture this 

line of reasoning. (2) The B A N logic allows derivation of non-causal beliefs in certain 

protocols. The K G logic is essentially aimed to address the above two concerns. 

The syntax of the K G logic makes the ordering of protocol message exchanges ex­

plicit using the notion of a message round (also called, message instance). Specifically, 

a message round corresponds to a transfer of a message contents X from a source prin­

cipal P to a destination principal Q, possibly via other principals, with the property 
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that either: (1) X is signed with P's private-key and encrypted with Q's public-key, 

or (2) X is encrypted with a key shared by P and Q. The idea of message ordering 

can be explained by means of an example. Suppose we have a protocol which transfers 

data values X and Y from S to A and B, respectively, as follows: 

Message 1. S ^ A : {X,{Y}KJKas 

Message 2. A -• B : {Y}Kbs 

Here Kas and Kbs are keys shared by A and B with S, respectively. The above protocol 

consists of two message rounds: one which transfers X from S to A and another one 

which transfers Y from S to B. The Messages 1 and 2 above are then explicitly 

represented in terms of message rounds using the following tuples, respectively: 

{Mi, S, A, (X, {M2, S, B, Y})} and {M2, S, B, Y}, 

where in general (1) a tuple of the form {Mi,P,Q,X} denotes that X is transferred 

from P to Q in message round i; and (2) the message rounds comprising the protocol 

are consecutively denoted as: Mi, M2, ..., Mi for a fixed positive integer I. 

The additional notions introduced in the logic along with their informal semantics 

can be given as: 

P > {Mi, P, Q,X} P sends a message with contents X in round i to Q. 

Q < {Mi, P, Q,X} Q sees a message with contents X in round i; 

Q reads X and knows X originated from P. 

KS(X, Mi) the knowledge set of X at round Mi; the set of all principals who 

know X when the message identified in Mi is seen. 

Trustx(P,Q) P trusts Q on the context X. 

Apart from the B A N logic notation, some additional notation from predicate logic and 

set theory is used in formulating the set of inference rules of the logic; for example, the 

symbol V is used to denote universal quantification and the symbol £ is used to denote 

set membership. Below we list some of the rules of the K G logic [5]. 

• Belief in the uniqueness of the message recipient: 

P>{Mt,P,Q,X], P^(R<{Mj,P,Q,X}) 

P^(R = Q) 

Notice that this rule is cast from the perspective of a message originator instead 

of the intended recipient of the message; it essentially replaces the B A N logic 

message-meaning rules. 
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• Set inclusion belief (1): 

P$KS(X,Mi), P«{Mi+uQ,P,X} 

P£KS(X,Mz+i) = {P,Q} 

This rule allows belief in the knowledge set of a message content to be derived 

based on messages that are seen. 

• Set inclusion belief (2): 

P^(Q^KS(X,Mj)), P>{Mi+i,P,Q,X} 

P |= KS(X, Mi+i) = KS(X, Mi) U {Q} 

This rule allows belief in the knowledge set of a message content to be derived 

based on messages that are sent; it reflects a notion of so-called 'eager' belief, not 

present in the B A N logic. 

• Belief in the freshness of message contents: 

P£$(X,Mk), P<{Mk,Q,P,(X,Y)} 

PWKY,Mk) 

Here the premise P ^ l(X, Mk) is taken to mean that P believes X is fresh in 

round k; and similarly for the rule's conclusion.1 

• Belief about another principal's knowledge set beliefs: 

P<{Mk,Q,P,X}, P\^$(X,Mk) 

P\=Q\B(KS(X,Mk) = {P,Q}) 

This rule essentially replaces the B A N logic nonce-verification rule. 

• First-level beliefs: 

P |= {P, Q} C KS(K, Mj), TrustK(P, R) VP £ KS(K, Mi) 

Here: (1) Mi is taken to mean the last round of the protocol being analyzed, and 

(2) the premise TrustK(P,R) V P £ KS(K,Mi) essentially says that P trusts all 

principals who know K to maintain its secrecy. In effect, the above rule allows 

beliefs about keys to be derived without the need for key jurisdiction in the sense 

of the B A N logic. 

intuitively, this rule appears to be questionable. From the the BAN logic notion of freshness it is 
apparent that we cannot infer that Y is fresh from the fact that (X, Y) is fresh, since this would imply 
that if Y was sent previous to the current protocol run then so are all messages of the form (X, Y). 
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• Second-level beliefs: 

P\EQ^{P,Q}C KS(K,Mi), P |= TrustK(Q,R) VP £ KS(K,Mi) 

P^Q\=P&Q 

Kailar and Gligor [5] give several examples of protocol analyses using their logic 

to demonstrate its potential advantages over the BAN logic. Here we sketch one of 

the example protocol analyses which they give to show that the BAN logic does not 

preserve belief ordering. Specifically, a ticket-forwarding protocol is analyzed using the 

BAN logic, based on the following idealization of the protocol [5, Subsection 5.3]: 

Message 2. TGS -> X 

Message 3. X ->• Y 

Message 4. Y -» S 

...,{xKxa-ss}Kx_ 

...,{XJ*'S}KX. 

...,{X <—> S}KX/Y_S 

TGS 

Y 

In the protocol analysis given, it is essentially shown that although Y ^ X ^ X i—> 

S is derived from Message 3, only S ^ X ^ X <—> S is derived from Message 4, 

instead of the desired S |= Y ^ X |EE X £^->S S. Notice that the latter is still 

possible to derive using the BAN logic if we appeal to the weak notion of honesty 

discussed in Section 1.2. Accordingly, we cannot include the formula X <—> S in 
A y / y g 

the idealization of Message 4 above, since in their analysis Y ^ X i—Y S does not 

hold. However, in accordance with the honesty requirement we can include the formula 

X |= X K ^ S S instead, since Y |= X |= X K ^ S S holds. The desired formula 

S ^ Y ^ X ^ X ¥-^S S is then easily derived. 

1.7 V O logic 

Van Oorschot [6] provides an extension of the BAN and GS logics to cater for key agree­

ment protocols. The notion of key agreement used in such protocols can be described as 

follows. Two principals wishing to establish a common secret key individually generate 

a pair of keys consisting of a public key-agreement key and a private key-agreement key. 

As these names suggest, each principal keeps its private key-agreement key secret, but 

reveals its public key-agreement key. The common key is then obtained by each prin­

cipal as some suitable function / of its own private key-agreement key and the other 

principal's public key-agreement key, where / is chosen in advance and made public. 

A characteristic feature of the above notion of key agreement is that the common key 

established is not obtained from any trusted principal and is exclusively obtained by 
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the two principals who derive the key jointly. However, the B A N logic notion of good 

keys cannot be used to distinguish this feature: recall that the B A N logic construct 

P & Q means that K is good for P and Q in the sense that if is known only to P or Q 

or principals trusted by either of them. The above observation essentially motivates the 

V O logic refinements of the broader B A N logic notion of good shared keys. Specifically, 

the refinements include the following two constructs: 

P1^ Q K is P's unconfirmed secret for use with Q; P possesses K and knows 

that no other principal except Q can possibly obtain K. 

P*& Q K is P's confirmed secret for use with Q; P receives evidence to the 

effect that its unconfirmed secret meant for use with Q is indeed 

possessed by Q. 

Here possession is treated as in the sense of the G N Y logic. The V O logic includes 

the construct P has K in place of the less verbose G N Y construct P 9 K. As in the 

GS logic, the notions of binding of a public-key and the secrecy of the corresponding 

private-key are treated distinctly. In the V O logic, further distinction is made between 

the asymmetric key pairs used for signature, encryption, and key agreement. However, 

since the notation for asymmetric encryption key pairs is not exploited in the logic, we 

omit it here. 

PKa(P, K) K is the public signature-verification key associated with P. 

PK~1(P) P's private signature key K~x is good in the sense that it is 

known only to P. 

PK5(P, K) K is the public key-agreement key associated with P. 

PK71(P) P's private key-agreement key K'1 is good in the sense that 

it is known only to P. 

{X}sP X signed with P's private signature key. 

{X}K X encrypted with shared key K. 

confirm(K) Current knowledge of K has been demonstrated in the sense that K 

has been used to perform some cryptographic action such as encrypting 

or hashing. 

Notice that the constructs PK?{P) and {X}sP essentially replace their GS logic coun­

terparts n(P) and o-(X,P), respectively. 

The logic introduces several rules for reasoning about key-agreement keys. For the 

sake of notational convenience, the following adjustments are made in presenting the 

rules there [6]: 
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• PKS(P) is written in place of PKS(P, K) when K is evident from the context or 
is not explicitly referred to, and 

• PKs(P) is used to denote the value of the public-key agreement key of P. 

The rules for key-agreement keys are given as follows [6]. 

• Unqualified key-agreement: 

R 3 0 PhasPK-6\P), PhasPKs(U) 

P has K 

Here K = f(PKj1(P), PKS(U)) is called an unqualified key for P, which is taken 

to mean that the identity of principal U is not verified. 

• Qualified key-agreement: 

R31 P N PKJ\P), P N PKs(Q\ P N PKJ\Q) 

P^P^Q 

Here K— denotes that K is a qualified key, which is taken to mean that P knows 

that K cannot be possessed by any other principal except Q. 

Key confirmation: 

P ^ P f4 Q, P sees *confirm(K) 
R32. 

P\=PK4Q 

Here K+ denotes that K is a confirmed key, which is taken to mean that P has 

obtained confirmation that Q actually possesses K. 

The VO logic paper contains analyses of three well-known key-agreement protocols us­

ing the extended logic: the STS protocol, the Goss protocol and the Giinther protocol. 

(An informal description of the working of some other notable key-agreement proto­

cols independent of any logical formalism can be found in a paper by Rueppel and van 

Oorschot [23].) The analyses are shown to reveal some subtle differences between the 

assumptions made and the goals reached by these protocols. The comparison are made 

on the basis of six generic goals captured using the logical syntax. For example, the two 

goals called secure key establishment (G3) and key confirmation (G4) are respectively 

expressed as follows [6]: A ^ A <h» B and A ^ Ait B (and similarly for B), where 

A and B denote the two principals wishing to establish a common key K via some 

suitable protocol. All the above three protocols are shown to attain G3, whereas only 

the STS protocol is shown to attain G4. 
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1.8 M B logic 

Mao and Boyd [7] have devised a BAN-like logic to address some of their objections 

to the B A N logic. Their main criticism concerns the lack of well-defined rules for 

protocol idealization in using the B A N logic. The point is that this difficulty can lead 

to incorrect idealizations. A simplified version of the Otway-Rees protocol is used as an 

example of a protocol which can be sanctioned using the B A N logic and yet for which 

an attack is possible (cf. Boyd and Mao [24]). Their other criticisms of the B A N logic 

include the lack of typing and the absence of a notion of confidentiality. The former 

criticism concerns an oddity noted as early as by Burrows et al. [1] themselves, namely 

that their logic does not make any distinction between messages and formulas (truth-

valued expressions); for example, the logical syntax allows as formulas expressions of 

the form P ^ N, where N is a nonce. The latter criticism is motivated by means of 

the flaw in Nessett's protocol: the flaw is traced to a failure of the protocol to maintain 

the confidentiality of the key distributed. 

The syntax of the M B logic makes a distinction between messages and formulas 

by means of a typing mechanism. The logical syntax is divided into three syntactic 

classes: V (for principals), M (for messages), and T (for formulas). Typically, 

• the letters P, Q, R, ... are used to denote elements of class V; 

• the letters K, M, N, ... are used to denote elements of class M; and 

• the letters X, Y, Z, ... are used to denote elements of class T. 

Additionally, the symbol S is used to denote a set of principals; Sc denotes the comple­

ment of the set of principals denoted by S. A set of formation rules defines the class M 

of messages and the class T of formulas of the logic. For example, the belief formulas 

are formed as follows: . ^ . ^ x f - ^ f . The B A N logic constructs ++, H- and \ 

are similarly reformulated. Further, 'A' replaces ',' used to represent the conjunction 

operator in the B A N logic. The additional notions introduced in the M B logic can be 

given as follows. 

P said M using the encryption key K. 

P sees M using the decryption key K. 

P is a super-principal. 

the principals in the set Sc cannot see M. 

K 

P\^M 

P<M 

sup(P) 

S° 4M 
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Of these the first two are essentially refinements of the B A N logic notions of said and 

seen messages. The idea here is to make the key used to convey a message or see a 

message explicit; the original B A N logic constructs (without superscripts) are taken to 

mean that the key used is not of particular significance. The notion of a super-principal 

is used to capture unconditional trust in some principal. Notice that this notion is far 

less expressive when compared to the B A N logic notion of jurisdiction. The notion 

cannot see provides a basis to express confidentiality requirements.2 

The terms challenge, replied challenge and response are used to capture the context-

dependent role played by message elements. Typically, a nonce issued by some principal 

is called a challenge in a message where it is originally sent; it is called a replied challenge 

in a message where it is received by the originator of the challenge. A response is 

taken to be a primitive message which is combined with a replied challenge by the 

originator of the message containing the replied challenge. The above terminology is 

used to formulate rules for protocol idealization using two constructs, called 'message 

combinators': | and 3ft. The first of these, '|', is used to associate challenges or responses; 

the second, '3£', is used to associate responses with challenges, typically as response 3ft 

challenge. 

Below we list the principal rules of the logic [7]. 

• Authentication rule (Al): 

P^P&QAP<M 

P^Q\^M 

• Confidentiality rule (C): 

P\=P&QAP^SC4MAP\^M 

P £ (S U {Q}f 4 M 

• Nonce-verification rule (N): 

P |= j(M) AP^Q^M 

P^Q^P^Q 

2We can formulate this notion more clearly, and without any loss of generality, as: 

5 <J| M the principals in the set S cannot see M. 

However, we retain the more cumbersome formulation in deference to the original presentation of the 

logic. 
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• Super-principal rule (S): 

P^Q^XAP^ sup(Q) 

P\EEX 

• Fresh rule (F): 

P |= l(M) A P < NMM 

P N IIW 
• Good-key rule (Gl): 

P^{P,Q}C4KAP^^(K) 

P^P&Q 

A backward reasoning technique is recommended in analyzing protocols using the logic. 

The aim of this technique is to derive the minimal sets of assumptions needed to infer 

a fixed set of desired protocol goals using the logic. The reasoning technique is applied 

to the Nessett protocol and it is shown that an application of the confidentiality rule 

is needed to meet a specific protocol goal, which in turn requires an unreasonable 

assumption. 

1.9 AT logic 

The BAN-like logics that we have discussed so far rely heavily on syntax, with little 

apparent effort being made to define the semantics of logical expressions independently 

of the syntax. The work of Abadi and Tuttle [8] marks a turning point in this regard: 

it is one of the earliest works to make an attempt at providing such a semantics for a 

BAN-like logic and to suggest a soundness theorem for the proposed logic. 

The AT logic can be thought of as a reformulated B AN logic with a revised se­

mantics. As discussed by Abadi and Tuttle, the motivations for their logic include the 

following semantic issues related to the original logic: 

• The meaning of good keys: They note that the secrecy property stipulated in the 

informal semantics of the BAN logic notion of good keys is not strictly necessary 

for the soundness of the message-meaning rules of the logic. This point is reflected 

in the formal semantics of the BAN logic, since there a good key K is defined 

in terms of who sends messages encrypted with K. However, according to them, 

this definition is also quite strong: if K is a good key between P and Q then 

anyone can send a message encrypted with K as long as P and Q are the only 

principals using K to encrypt messages. 
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• Possession v/s Belief: They argue that these two notions should be made distinct 

in the logic, for the sake of a proper semantics. This observation is motivated by 

the fact that the notion of possession is implicit in the B A N logic seeing rules, 

where it is assumed that belief in a key implies possession of that key. 

• Stability of beliefs: In the BAN logic, it is assumed that formulas are stable in 

the sense that a formula remains true once it becomes true. In particular, the 

stability of belief formulas is critical to the soundness of the nonce-verification 

rule of the logic. However, this requirement can be removed by expressing the 

conclusion of the rule slightly differently, viz: if P said X and X is fresh, then P 

has recently said X. To carry this idea further, they suggest defining the notion 

of jurisdiction in terms of the notion recently said in place of belief. The B A N 

logic essentially takes the latter course because of the way the nonce-verification 

rule is designed to work. 

The syntax of the A T logic is designed to exclude messages from being treated 

as formulas, unlike the B A N logic. Another difference concerns the fact that the 

A T logic relates more closely to traditional propositional modal logics of belief: it 

includes primitive propositions and the standard propositional connectives for negation, 

disjunction, conjunction, implication, and equivalence, respectively denoted as ->, V, A, 

D, and =. Typically, 

• the symbols P, Q, R, S range over principals, 

• the symbol K ranges over keys, 

• the symbol X ranges over messages, and 

• the symbols <p, ib range over formulas. 

The logic proper includes a set of axioms which essentially express the statements 

captured via inference rules in the B A N logic as formulas in the logic itself. Most of 

the logical axioms are formulated without the use of the belief operator. For example, 

one of the axioms for message-meaning is stated as: 

A5. P &QARsees{Xs}K D QsaidX 

with the side condition that P =£ S. The axioms for belief are formulated separately; 

for example, one of the axioms for belief is given as: 

Al. P believes d> A P believes (<b D if>) D P believes tp 
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The logic also includes two inference rules typically found in more traditional logics: 

modus ponens (Rl) and belief necessitation (R2). 

Rl. From h (b and h <b D vj infer h xb. 

R2. From h <£ infer h P believes <j>. 

Here h </> means that <£ is derivable in the logic. 

A model of computation is given to define a semantics for the logic. The main idea 

of the model is to assign truth-values to formulas with respect to a run r and a time 

t, where a run typically represents an execution of a given protocol. Each principal is 

assumed to be capable of performing the following actions: 

• send(m,Q): the action of sending of message m to principal Q. 

• receive(m): the action of receiving of message m. 

• newkey(K): the action of generating key K. 

Further, the two notions history and key set are associated with each principal. A 

principal's history in r is taken to be the sequence of all actions P performs in r; the 

key set is simply the set of keys the principal holds. The notion of a key set is essentially 

used to define two operations on messages: seen-submsgs^M) and said-submsgs^M). 

If K denotes the key set of some principal P, then roughly speaking: the first operation 

determines the messages seen by P as a result of receiving M; the second operation 

determines the messages said by P as a result of sending M. The notions sketched 

above suffice to give a flavor of the truth conditions defined in the A T logic paper. For 

example, the truth condition for P seesX is stated as, 

(r, k) [= P sees X 

iff, for some message M, at time k in r: 

1. receive(M) appears in P's local history, and 

2. X £ seen-submsgs^M), where K is P's key set. 

A notable aspect of the semantics of the A T logic is its treatment of the notion of 

belief. This notion is defined in terms of possible worlds, where a world is a pair (r, k) 

consisting of a run r and a time k: a principal P believes a formula <f> in (r, k) if <f> is 

true in all the worlds P considers possible in (r,k). This contrasts with the syntactic 

approach used in defining the notion of belief in the B A N logic. 
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The A T logic paper includes a theorem (cf. Theorem 1 of Abadi and Tuttle [8]) 

which states that the logical axiomatization is sound with respect to the semantics 

defined. However, no proof of this theorem has been published. 

1.10 SVO logic 

Syverson and van Oorschot [9] have devised a BAN-like logic to encompass selective 

features from the logics B A N , G N Y , V O and AT. The syntax and semantics of their 

logic mostly follows the line of the A T logic with additional extensions. To deal with 

the demands that their aimed expansion seemingly brings to the logical syntax, they 

employ some notational short cuts. For example, the notation {X}K is used to denote 

encrypted (using a public-key encryption or a shared key encryption function) as well 

as signed messages. Additionally, the notation F(XX,... ,Xk) subsumes the previous 

notation and also the notation (Xx,... ,Xk) used to denote concatenated messages. 

Notice that the authors of previous BAN-like logics have avoided such notational short 

cuts. The syntax of formulas of the SVO logic includes constructs to denote binding 

of public-keys for signature verification and public-keys for key agreement: PKC(P, K) 

and PKg(P,K), which are essentially from the V O logic. Unlike the latter, however, 

no explicit constructs are defined in the syntax to denote the V O logic concepts related 

to goodness of corresponding private keys. The construct P receives X essentially 

replaces the construct P seesX of the AT logic. The latter is reserved for the notion of 

possession: P sees X is used to denote that P possesses X. The notation K~l is used 

to denote the complement of key K. Most of the axioms and the inference rules found 

in the A T logic are included in a slightly different form in the SVO logic. For example, 

the message-meaning axiom (A5) of the A T logic is recast as: 

3. P & Q A R received {XQ}K D Q saidX 

The SVO logic includes several other axioms to reflect the intended extensions. For 

example, the following axiom is designed to reflect the V O logic notion of key agreement: 

5. PKS(P, Kv) A PK8(Q, Kq) DP&Q 

where Kpq = f(Kp,K~
x) — f(Kq, K~

x) for some key agreement function /. Similarly, 

the axiom given below is designed to capture the possession rules of the G N Y logic 

collectively, barring the rules PI and P3. (The latter two are reflected by means of 

individual axioms.) 

10. PseesXx A • • • A P seesXn D P seesF(XX,... ,Xn) 
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Perhaps the more interesting axioms are those that indirectly relate to the G N Y logic 

notion of recognizability. These are the two axioms called comprehending axioms: 

11. P believes (P sees F(X)) D P believes (P sees X) 

12. Preceived F(X) A P believes (P sees X) D P believes (P received F(X)) 

Here the expression P believes (P seesX) is taken to replace the G N Y logic statement 

P |= <f>(X). 

The model of computation of the SVO logic is similar to that of the A T logic. 

Essentially, the former is obtained by modifying the latter to include additional notions. 

For example, the action of generating a key K, denoted newkey(K) in the model of 

Abadi and Tuttle, is replaced by the more general action of generating a primitive 

message X, denoted generate(X). This modification is used in defining the notion of 

seen messages, with the aim of capturing the G N Y logic notion of possession: a set of 

seen messages is associated with a principal, which includes, amongst other things, the 

messages that are received or generated by that principal. 

The SVO logic paper contains a soundness theorem for the proposed logic. However, 

the sketch of the proof given there leaves the soundness of most of the logical axioms 

implicit. 

1.11 WK logic 

The logic of Wedel and Kessler [10] is one of the latest BAN-like logics along the 

lines of the logics A T and SVO. One of the motivations underlying their logic is to 

allow analysis of protocols relying on various cryptographic mechanisms that cannot 

be adequately captured in these two logics. The authors of the W K logic take a middle 

ground between the notations of BAN-like logics that predate the AT logic and the 

notational short cuts introduced in the SVO logic. For example, the syntax of the W K 

logic distinguishes between encrypted and hashed messages, unlike the SVO logic. The 

W K logic notations for encryption, hashing and signing functions are respectively given 

as enc, h, and a. However, the notation enc is variously used to cover symmetric or 

asymmetric encryption functions as well as signature functions with message recovery; 

the notation a is reserved for signature functions that do not provide message recovery. 

The notation F is used to denote either of enc, h, or a; the notation F(M) is taken 

to mean the structure of the message computed by F on M, not its value. A notion 

of message localized towards a principal is defined to capture what parts of a message 

structure can be verified by the principal. If M is a message, the notation Mp is read 
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M localized towards P; for example, if P possesses M then (h(M))p is defined to be 

equal to h(M); this definition reflects the property that P can verify the hash of any 

messages he possesses. A set of generalized messages M.j> is defined to consist of all 

messages that can be constructed from the basic message items and with the additional 

property that it is closed under localization. 

Unlike the logics AT and SVO, the syntax of formulas of the W K logic precludes 

formulas from being treated as messages. Most of the constructs found in the logics 

AT and S V O are also carried over to the W K logic with some adjustments. The 

notation — > is used to denote the propositional connective for implication. A primitive 

construct P recognizes M is used to denote the notion of recognizability; this contrasts 

with the S VO logic where recognizability is not defined as a primitive notion. The 

constructs e & P, a & P, and a & P replace their SVO logic counterparts PK^(P, K), 

PKa(P,K), and PKS(P,K), respectively. The W K logic includes axioms similar to 

those found in the logics on which it is framed. For example, the AT/SVO logic 

message-meaning axiom for shared keys is modified to capture the associated side 

condition in the logic itself: 

Al. R seesF(K,X) A P & Q A -P saidF(K,X) — • Q said(K,X) 

Here F(K, X) is taken to variously denote shared-key encryption as well as hashing of 

X using K. The jurisdiction axiom found in the AT/SVO logics is modified to bring 

it closer to the original B A N logic rule, as follows: 

J. P controls <f> A P believes <f> — > (j) 

The logic also includes several additional axioms; for example, an axiom for recogniz­

ability is given as: 

Rl. P recognizes Xi — > P recognizes (Xx,..., Xk) 

A noteworthy innovation of the authors of the W K logic concerns protocol idealiza­

tion. Unlike the logics A T and SVO, protocol analyses using the W K logic are carried 

out without having to treat formulas as messages. The semantics of the W K logic is 

developed along essentially similar lines to the logics A T and SVO. The authors of 

the W K logic use their semantics to suggest instances of unsoundness in some earlier 

logics; for example, the G N Y logic recognizability rule R6. (We will have occasion to 

return to this rule in the next chapter.) The proof of soundness of the W K logic follows 

the line of the SVO logic paper: it leaves the soundness of most of the logical axioms 

implicit. 



Chapter 2 

An informal proposal for rectifying some 
problematic features of the G N Y logic 

This chapter highlights some problematic features of the GNY logic. In particular, we 

will point out several classes of problems which arise in the G N Y logic: 

1. an unsound rule; 

2. the possibility of drawing unsound conclusions by pairing rules; 

3. the incompleteness of the set of rules; and 

4. rules with redundant premises. 

The notions of soundness and completeness of a logic are usually defined with respect 

to an independently motivated formal semantics for the logic. However, as we shall 

discuss in the following section, the G N Y logic does not appear to have such a seman­

tics. Our use of the terms "unsound" and "incomplete" in this chapter must therefore 

be understood informally. W e will give specific instances of the above problems and 

suggest some solutions to rectify these informally, at the syntactic level. A formal 

justification for the suggested solutions, however, rests ultimately on provision of an 

independently motivated semantics for the logic. Our purpose here is not to find a 

semantic solution to the problems, but our observations clearly point out the need for 

such a solution. In a later chapter, we will build an independently motivated semantic 

model for BAN-like logics, which provides a step in the former direction. 

(Parts of this chapter appeared in preliminary form elsewhere [25].) 

28 
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2.1 Soundness troubles: recognizability and fresh­

ness rules 

Informally, if a logic is sound then false conclusions cannot be inferred from true 

premises in the logic. A formal semantics for the logic provides a precise structure with 

respect to which soundness can be proved. However, in order to obtain any assurance 

about the soundness of the logic, the semantics itself must be sufficiently independent 

of the logical syntax. As emphasized by Syverson [26], [27], an independently moti­

vated semantics can provide adequate assurance about the validity and power of the 

logic, by means of soundness and completeness proofs, respectively. 

Gong, Needham and Yahalom [2], like Burrows, Abadi and Needham [1], provide 

an "operational" semantics for their logic, but as has been argued by others, most 

notably by Syverson [27] and by Tuttle [28], the original semantics of these logics is 

not independently motivated, as it takes its structure directly from the logical syntax. 

For example, the authors of the B A N logic define the semantics of the jj operator to 

correspond directly to the freshness inference rule of their logic. A set of fresh formulas 

T is defined for each run under consideration, as follows: T contains all formulas X 

such that \(X) holds as an initial assumption, and additionally J7 is taken to enjoy the 

closure property that, if X £ T and X is a subformula of Y then Y £ T. Then \(X) is 

defined to be true in the corresponding run if X £ T. (The G N Y logic semantics of the 

(I operator is also taken to be defined similarly.) The problem with such a semantics 

is that it does not provide us with any independent means to check the soundness of 

the inference rules themselves. Indeed, we give examples below of unsound conclusions 

derivable in the G N Y logic. 

2.1.1 Unsound rule 

The G N Y logic recognizability rule R6 states that if P possesses the hash of X, then P 

believes X is recognizable. Note that recognizability of X is intended to mean that P 

has prior expectations about the contents of X independent of the act of receiving it; 

this interpretation of recognizability is part of the informal semantics given by Gong, 

Needham and Yahalom [2, p. 236]. Surprisingly, the rule R6 enables the conclusion 

that P believes X is recognizable from the premise that P possesses X: from P B X 

it follows by rule P4 that P 3 H(X), and therefore, by R6, that P |= <j>(X). There is 

nothing wrong with P4; it just says that a principal is capable of computing the hash 

of a message he possesses. Seemingly, the problem lies with R6. The rule becomes 
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problematic when we take into account the fact that a principal P's possessions include 

the following: (1) the messages received by P, and (2) the messages that can possibly 

be computed from P's possessed messages. This fact is evident from the possession 

rules PI through P8 of the logic. Since, by rule Pi, every message P receives is also 

possessed by P, the rule R6 in effect tells us that every message received by P is also 

recognizable by P. However, this conclusion conflicts with a basic intuition underlying 

the notion of recognizability. For example, consider a protocol where P generates a 

random value Np, and sends it to Q. Here Np is not recognizable by Q, although Q 

possesses it. 

The problem with R6 can also be seen from another viewpoint. Recall that the 

notion of recognizability is meant to reflect the implicit B A N logic assumption that 

encrypted messages are verifiable. For instance, the rule 11, which is the G N Y logic 

counterpart of the B A N logic message-meaning rule for shared keys stipulates a recog­

nizability premise, P ^ (f>(X), to express the B A N logic assumption explicitly. This 

rule also has the following two premises: (a) P< *{X}K and (b) P 3 K. Given R6, it is 

easy to see that the recognizability premise itself is derivable from these two premises 

using the logic: From (a) and rule Tl, P < {X}K, and therefore, from (b) and T3, 

P < X. Hence, by PI, P 3 X, and so, by P4 and R6, P |EE (b(X). It is clear here that 

R6 really begs the recognizability feature of the logic. 

Ironically enough, the unsoundness of R6 is perhaps best illustrated by appealing 

to the analysis of the enhanced Needham-Schroeder protocol in the G N Y logic paper, 

which is used to promote the recognizability feature of the logic. As part of the protocol 

handshake, Q sends to P an encrypted message {N<J}K, where Nq is a nonce generated 

by Q and K is a session key known to P and Q. In the protocol analysis given in 

the paper (p. 242), it is argued that this message is unrecognizable to P, since Nq is 

unpredictable by P. Thus P can only gain possession of Nq (so that P 3 Nq), but 

not any beliefs from this message. The latter is essentially reflected in the logic by 

the recognizability premise in the rule II. To make the above message recognizable to 

P, it is suggested that the message be modified to include Q's identifier: {NQ,Q}K; 

the modified version is seen to allow the expected belief for P to be derived under 

the additional assumption that P ^ 4>(Q)- However, since we have P 3 Nq, R6 

allows us to infer that P ^ <f>(Nq), which does not require the extra assumption that 

P ^ d>(Q). It should be emphasized that we are not claiming that the protocol 

modification suggested in the G N Y logic paper is superfluous. The point of the above 

exercise is only to reinforce our claim that R6 is at odds with the original purpose of 
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adding recognizability to the logic. 

2.1.2 Unsound conclusions from pairs of rules 

W e first recall an observation made by Anderson [29], namely that the freshness rules 

F2 and F7 of the G N Y logic, when used together, imply a "strange result". Suppose 

that for principal P all of the following conditions hold: (1) P believes that formula 

X is recognizable; (2) P possesses a key K; (3) P believes that K is fresh. Then, by 

F7, P |= \({X}K), and therefore from F2 and the fact that {{X}^1 = X, it follows 

that P ̂  |(X). 

Curiously, although each of the rules F2 and F7 is plausible in itself, when used 

together as above these rules produce a suspect conclusion. For example, we can extend 

the analysis of the modified enhanced Needham-Schroeder protocol in the G N Y logic 

paper, to derive the nonsensical conclusion that P ^ $(Q), as follows. Observe that in 

the protocol analysis given there (p. 241), the following statements hold: (a) P ^ 4>(Q); 

and (b) P 3 K. (K is a session key known to P and Q.) The statement (a) holds 

by assumption, and the statement (b) holds from message 4 of the protocol in which 

S sends to P the following: {NP,Q, K,.. .}KPS- T O derive the nonsensical conclusion 

using F2 and F7, we need the statement P ^ l(K). This is a reasonable statement to 

obtain, since the session key K, which is generated by the server S in the protocol, is 

normally expected to be a fresh quantity. W e can capture this in the logic as follows. 

Firstly, we introduce two additional statements as assumptions: (c) S ^ l(K); and (d) 

P ^ S =$> §(K). Secondly, we modify the idealization of the above message to include 

the former statement in the extension attached to the message: 

P< *{...}Kp.^>(S\=P&Q,S£i{K)) 

We can now derive the statement P ^ S ^ $(K) in an essentially similar way to which 

the statement P ^ S ^ P & Q is derived from the original idealization in the G N Y 

logic paper. The required statement P ^ t(K) then immediately follows from (d) and 

the jurisdiction rule Jl. 

W e note that the problem pointed out by Anderson is not only confined to the 

freshness rules F2 and F7 used together. There are several other pairs of freshness and 

recognizability rules which lead to essentially the same problem: 

(i) R2 and F7; 

(ii) F8 and F4; 
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(iii) F9 and F3; 

(iv) R3 and F9; 

(v) R4 and F8. 

Note that with the pairs (iii) and (v) we assume public-key schemes where {{X}^K}+K = 

X; for example, R S A [30]. 

2.1.3 Side conditions 

To tackle the above problem, we suggest side conditions to several of the freshness and 

recognizability rules of the logic. W e begin by replacing each of the rules F2, F7, and 

R2 with two equivalent rules: 

P fcs ft(X), P3K 

P N «({*}*) 

P |= l(X), P3K 

P N H ( T O K ) 

P j= <b(X), P 1= j(K), P3K 

P N !{{x}K) 

P £ cb(X), P \= j{K), P3K 

P N l(W?) 
P jss <b(X), P3K 

P N 4>{{X}K) 

P |= #X), P 3 if 

P |== < K W K ) 

W e proceed to include the following side condition to the rule F2": X is not of the 

form {Y}K- The intuition used to arrive at this side condition is as follows. Let us 

assume that the statements P |EE %({Y}K) and P 3 K hold. In the absence of the side 

condition, by F2; we can obtain the conclusion P [EE \(Y). N O W , the only way we could 

have established P |= J({Y}K) is by a prior application of either of the rules F2' or F7'. 

Observe that: (1) If F2' were applied, then the statement P |= ${Y) holds a priori; (2) 

If F7' were applied, then the statements P |= <j>(Y) and P ^ Jt(A") hold a priori. In 

the former case, since the statement P ^ J|(Y) holds already, deriving it through F2" 

is of no use essentially. However, in the latter case, deriving the statement P ^ §(Y) 

F2' 

F2" 

F7' 

F7" 

R2' 

R2" 
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through F2" is unsound since this statement does not necessarily hold. Intuitively 

then, by the side condition on F2", we have only omitted the possibility of an unsound 

conclusion, without losing any useful derivations. 

W e can also argue for similar side conditions to each of the rules F3, F4, F7", F8, 

F9, R2", R3, and R4. W e list below these rules along with their corresponding side 

conditions. 

P t= tJ(X), P 3 +K 
F3 — , /r ., 7 — , X is not of the form {Y}-K 

P NttlW+A-) 

P E= ft(X) P 3 —K 
F 4 DL-Jlyl x > X is not of the form iY}+K 

Ppmxl-K) 

F7" u/rv-i-iN ' X 1S not of the form \YSK 
P F IKWjr ) 

F8 m-u/rvi \ ' X 1S not °f the form \Ys-K 
P F K W + K - ) 

F9 Di-^rv-i \ '
 X 1S not of the form VJ+* 

R2" Pn^(yrV^ ^^»
 X is not of the form W* 

P F <?({A-}*: ) 

R3 P^t:x2\S^XK> xisnotoftheformW-* 
R4 ^X^h^T^' X is not of the form {F}+/< 

P F-</>({AJ-_K) 

Similarly, we include the side condition: X is not of the form {Y}^1, to the rules F2', 

F7', and R2', for conventional cryptosystems in which {{A-}^1}^ = X; for example, 

DES [31]. Note that the side conditions to F3 and F8 are only needed for public-key 

schemes in which {{X}-K}+K = X. 

2.2 Completeness troubles: The Yahalom protocol 

In this section we give an example of a non-trivial rule which is not captured by the 

G N Y logic [2]. W e find this rule to be essential for verifying the working of the Yahalom 

file:///Ys-K
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protocol, which according to the G N Y logic paper, is apparently within the scope of 

the logic (p. 243). While it has been suggested that in such logics rules may be added 

when needed (cf. Gong [3, p. 18]), because of the variety of cryptographic techniques 

possible, an independently motivated semantics is essential if we are to be able to 

obtain assurance about the soundness of the added rules. 

Essentially, the message interpretation rules of the logic enable the derivation of 

beliefs from encrypted or hashed messages. As we shall see below, the G N Y logic 

lacks a message interpretation rule to reason about the use of a shared secret in the 

Yahalom protocol. In analyzing this protocol, we use the protocol parsing scheme given 

by Gong [3], instead of the scheme given in the G N Y logic paper. First, we clarify the 

reasons for not using the original parsing scheme. 

2.2.1 Protocol parsing 

The first step in analyzing a protocol described in the conventional notation is to 

generate a form suitable for manipulation in the logic. In the G N Y logic, this task is 

performed by a protocol parser. For each protocol message X received by a principal 

P (written P < X), the parser inserts symbolic information to distinguish those parts 

of X which are not included in any message sent by P up to the point of receiving X 

in the current protocol run. Specifically, for every statement of the form P < X, the 

parser inserts a not-originated-here marker, '*', in front of each complete subpart Y 

of X, if Y does not appear as a subpart of any message P has sent previously in the 

current run (p. 238). 

W e observe that the only message interpretation rules with a formula of the form 

P < *X appearing as a premise are the rules II, 12, and 13. In each of these rules, 

the not-originated-here marker is either prefixed to an encrypted formula (II and 12, 

respectively) or a hashed formula (13). For the purpose of using the logic to derive 

beliefs from encrypted or hashed messages, it makes no significant difference whether 

the insertion of the not-originated-here marker is carried out for non-encrypted and 

non-hashed message parts or not; we choose not to. Not only does this simplify the 

parsing process, it also avoids a peculiar problem with original parsing scheme. In 

particular, we note that the original scheme precludes some legitimate applications of 

the message interpretation rules. For example, in the analysis of a voting protocol in 
*S' 

the G N Y logic paper, the statement Q ^ Q ^4 Pi is clearly required to apply 13 to 

the second message of the protocol (p. 239). Presumably, we can derive this statement 

from the protocol assumption Q ^ Q «4 Pi, but there is nothing in the logic which 
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would enable us to do so. However, such a difficulty does not arise if we adopt the 

modified parsing scheme given by Gong [3]. 

2.2.2 The Yahalom protocol 

The goal of the Yahalom protocol [1] is to distribute an authenticated session key to 

two principals A and B via a trusted third party known as the authentication server 

S. The following sequence of messages describes a successful run of the protocol (p. 

30): 

1. A-+B:A,Na 

2. B^S:B,{A,Na,Nb}Kbs 

3. S -+ A : {B, Kab, Na, Nb}Kas, {A, Kab}Kbs 

4. A^B:{A,Kab}Kbs,{Nb}Kab 

As explained by Burrows et al. [1], this protocol makes use of an uncertified key: a key 

which is used before its validity is established. 

In the sequel, we refer to the protocol initiator A as 'Alice' and the other principal 

B as 'Bob', following standard practice. Initially, Alice and Bob share keys Kas and Kbs 

with the authentication server S respectively. Alice initiates the protocol by sending 

her identity and a nonce Na to Bob. In the second message, Bob sends to the server 

his own name and an encrypted part {A, Na, Nb}Kbs, where Nb is Bob's nonce. In the 

third message, the server sends to Alice: {B,Kab,Na,Nb}Kas, {A,Kab}Kbs. The first 

encrypted part tells Alice that Kab is a good session key for communicating with Bob, 

and also tells her Bob's nonce. The second encrypted part is intended for Bob. In 

the fourth message, Alice forwards this encrypted part to Bob, along with Bob's nonce 

encrypted with Kab. Bob decrypts the first encrypted part of this message to get Kab, 

and uses it to decrypt the second encrypted part. If the latter decryption yields Bob his 

nonce A7;,, then he obtains assurance that Kab is a good session key for communicating 

with Alice. 

2.2.3 Analyzing the Yahalom protocol using GNY logic 

W e begin the analysis by using the parsing scheme to produce a protocol description 

containing *'s in the appropriate places: 
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1. B< A,Na 
2. S< B,*{A,Na,Nb}Kbs 

3. A<*{B,Kab,Na,Nb}Kas^S£A
IhbB, 

*{A, Kab}Kbs ^S^A&B 

4. B < *{ A, Kab}Kbs ^S^A*hbB, 

*{Nb} ^A\=A*hbB 

In the above description, we have also added extensions which describe the beliefs held 

when the messages are sent. The following statements describe the initial protocol 

assumptions: 

A 3 Kas; A |= A *& S; A3Na; A^ j(Na); 

A £ <f>{B) 

B3Kbs; B^EBK& S; B3 Nb; B |= J(iV6); 

B f= <j>(Nb); B |EE A ft B 

S3Kas; S\EEA*hsS; S 3 Kbs; S $= B *&'S; 

S3Kab; S^A&B 

That is, Alice possesses a secret Kas and believes it is a secret between herself and 5". 

Similarly, Bob possesses a secret Kbs and believes it is a secret between himself and S. 

Each possesses a nonce and believes that it is fresh. Alice believes that the identifier B 

is recognizable to her. Bob believes that Nb is recognizable to him. Also, Bob believes 

that his nonce Nb is a suitable secret with Alice. The server S possesses valid keys 

Kas and Kbs with Alice and Bob, respectively. It also possesses a session key K and 

believes A' is a suitable secret between Alice and Bob. 

A\=S\^S^*; A\=S\*A&B 

B\=S\^S\=*; B^S^A&B; 

B\=A^A\^* 

Both Alice and Bob believe that S is honest and competent. They also trust S to invent 

a suitable secret key for them. Also, Bob believes that Alice is honest and competent. 

For a run of the protocol, we apply the inference rules to the messages, as follows: 

Message 1: From PI we obtain B 3 (A,Na). 
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Message 2: From T2 and PI we obtain S 3 B. From T2, Tl, T3, and PI we obtain 

S3(A,Na,Nb). 

Message 3: The extension S |EE A *& B attached to the two encrypted parts is valid 

because it holds by assumption. From Tl, T3, T2, PI and the first encrypted 

part, we obtain A 3 Kab and A 3 Nb. 

From Fl, Rl, II, J2, and J3 we obtain A |= S [= A K<$ B. Hence, by Jl, 

A ^ A «46 B. We can thus include this statement in the extension attached to 

the second encrypted part of message 4. 

Message 4: From Tl, T3, T2, PI and the first encrypted part we obtain B 3 Kab-

However, we cannot derive any beliefs from this part since the statement 

B ^ $({A,Kab}Kbs) does not hold. In the actual working of the protocol, Bob 

deduces that Kab is shared with Alice if the decryption of the second encrypted 

part yields his nonce. By appealing to the G N Y logic rules, we find that the only 

way we can proceed in the logic to reason in this manner is by first establishing 

that Bob believes the extension attached to the second encrypted part. However, 

none of the G N Y logic rules enable this to be derived; the only applicable rule is 

II which cannot be applied, since it requires the recipient of an encrypted mes­

sage to believe that the key used to encrypt the message is shared with another 

principal a priori. 

2.2.4 Adding a new rule 

The incompleteness revealed by the above analysis motivates us to propose the addi­

tion of the following new message interpretation rule to the logic: 

P<*{X,<S>}K, P3K,P^PAQ,P^ cb(X,S), P N t(X,S,K) 
P |= Q h (X,<S>), P N Q h {X,<S>}K,P \=Q3K 

That is, suppose that for principal P all of the following conditions hold: (1) P receives 

a formula consisting of X concatenated with S, encrypted with key K and marked with 

a not-originated here mark; (2) P possesses K; (3) P believes S is a suitable secret 

for himself and Q; (4) P believes that X concatenated with S is recognizable; (5) P 

believes that at least one of S, X, or K is fresh. Then P is entitled to believe that: 

(1) Q once conveyed the formula X concatenated with S; (2) Q once conveyed the 

formula X concatenated with S and encrypted with K; (3) Q possesses K. (A similar 

rule can be added along previous lines to the set of "never-originated-here" rules of the 
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G N Y logic.) The new rule 18 enables us to derive Bob's beliefs in the validity of Kab, 

as follows: 

Message 4 (continued): From 18 and the second encrypted part we obtain 

K, 
B |= A 3 Kab, and B |= A [~ {Nb}Kab ~*A^A&B. From F2, J2, and J3 we 

obtain B\=A^A*&B. W e can include the statement A |= S |= A ff B in 

the extension attached to the second encrypted part, since this statement holds 

from message 3. W e also need an additional assumption which reflects Bob's trust 

in Alice to pass on the session key from the server: B ^ A [=>> (S ̂  A <¥ B). 

This assumption is the logical embodiment of a curious feature of the protocol: 

Alice can make Bob believe in a replayed session key. Notice that the statement 

of the assumption essentially amounts to Bob believing that this does not take 

place. The fact that we are forced to make the odd assumption explicit during 

the analysis provides a good example of the virtue of the logic. (The above pro­

tocol feature also emerges from the B A N logic analysis of the Yahalom protocol, 

cf. [1, p. 33].) From 18, J2, J3, and Jl we finally obtain B |= A *& B. 

To conclude our analysis of the Yahalom protocol, we list the final position attained: 

A 3 Kab; A^A*h
b B 

B 3 Kah; P |EE A ff B; B^A3 Kab 

B^A^A*& B 

Both Alice and Bob possess the session key and believe in it. In addition, Bob believes 

that Alice possesses the session key and believes in it. 

The above analysis shows an interesting point: it hints at a possible redundancy in 

the last message of the protocol. The analysis tells us that no beliefs about Kab are 

derived for Bob from the encrypted part which Alice forwards him from the server in 

message 4: {A, Kab}Kbs- Also notice that Bob binds the identity claimed by Alice to his 

nonce, by concatenating them and encrypting with Kbs in message 2. Apparently then, 

in the last message of the protocol, Bob's nonce not only assures him of the freshness 

of the encrypted half sent by Alice, but also guarantees that Kab is shared with Alice. 

Since Bob decrypts the encrypted part forwarded by Alice only to gain possession of 

Kab, we can delete Alice's name from this part: 

3'. S -+ A : {B, Kab, Na, Nb}Kas, {Kab}Kbs 

A'. A^B:{Kab}Kbs,{Nb}Ka Lab 
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An analysis of the modified protocol using the logic confirms our above intuition: the 

same final position as the original protocol is achieved by the modified protocol. 

2.3 Redundancy in the logic 

In this section, we give an example of a rule which contains a redundant premise. 

Observe that the message interpretation rule 12 includes the following statements as 

premises: (1) P < *{X,< S >}+K; (2) P 3 -K; and (3) P 3 S. In the original rule, 

(2) and (3) are combined into one single premise using the conjunction operator ',': 

P 3 (-K, S). W e replace this premise by (2) and (3) only for the sake of convenience. 

It is easy to see that (3) follows from (1) and (2): From Tl and (1), P<{X, <S>}+K, 

and therefore, from (2) and T4, P < (X, < S >). Hence, by T2, P < S, and so, by PI, 

P 3 S. Thus, we see that the premise (3) of the above rule is redundant. (The message 

interpretation rule 12' exhibits a similar redundancy.) 



Chapter 3 

A modification of the G N Y logic for 
automatic analysis of protocols 

This chapter proposes a modified GNY logic, and describes the implementation of a 

protocol analysis tool based on that logic. The modifications are designed to allow the 

logical statements derivable from any protocol represented by a finite set of statements 

to be deduced in a finite number of steps, without losing any useful inferences. The 

tool can be used to automatically generate proofs of statements representing protocol 

goals. 

(Parts of this chapter appeared in preliminary form elsewhere [32].) 

3.1 Introduction 

The BAN and GNY logics can be used to effectively explain the working of proto­

cols. Very often a protocol analysis using the logics reveals missing assumptions or 

deficiencies in the protocol begin analyzed. This can lead to the assumptions or the 

original protocol being revised and the inference rules being reapplied to determine if 

the desired goal is then attainable. The process of applying and reapplying the infer­

ence rules, however, is in practice often tedious and error-prone to do by hand. Several 

tools which relieve the manual burden of carrying out this task for the B A N logic or 

modified versions of it can be found in the literature; see, for example, [16], [33], [34], 

[35]. The appeal of tools for mechanical validation is clear, but such tools can also 

assist in examining the role played by protocol messages and assumptions in attaining 

the desired goal. In addition, such tools can also be used to verify proofs of protocol 

goals which are obtained by manually applying the logic. Manual analysis of protocols 

using the G N Y logic is particularly unwieldy, as the logic has more than forty inference 

rules. Moreover, the G N Y logic operates at a finer level than its predecessor, so proofs 

of protocol goals in the logic typically work out to be much longer than their B A N 

logic counterparts. 

40 
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Our main aim in automating the logic is to be able to mechanically determine 

whether one or more statements describing the goal of a protocol are derivable using 

the logic from some initial assumptions. Furthermore, it is also desirable to obtain all 

statements that are derivable from the initial assumptions. This allows us to analyze 

the state of the principals after the execution of each protocol step. W e therefore use a 

forward-chaining strategy in automating the logic. This involves repeated application 

of the inference rules of the logic to the set of statements consisting of the idealized 

protocol, initial assumptions, and derived statements, until all statements derivable are 

obtained. However, many of the inference rules of the original G N Y logic are unsuitable 

for forward-chaining. The problem is clear just from the freshness rule Fl, 

P N Kx) 
p^i(x,Yy 

which essentially says that if A" is a fresh message and X is concatenated with any 

other message Y, then the resulting message is also fresh. (The rule has one more 

conclusion; however, the one shown suffices to illustrate the problem.) It is easy to see 

that this rule can be used to derive an infinite set of statements starting from a finite 

set of statements of the form P ^ U(AT). Although the inference expressed by this rule 

is intuitive and desirable, it is necessary to restrict the application of the rule for the 

purposes of forward-chaining. 

W e will show that the set of inference rules can be modified in such a way that the 

statements derivable from any protocol represented by a finite set of statements are 

also finite in number. Essentially, the point of our modifications is to convert the set 

of rules into a form which is directly amenable to forward-chaining. The modifications 

are designed to produce a restricted logic in the sense that the modified logic does not 

capture all inferences which are possible in the G N Y logic. However, we will argue that 

the inferences lost by the modified logic do not affect our central aim in using the logic: 

that is, to reason about a principal's possessions and his beliefs about the statements 

conveyed by other principals, based on the messages received by the principal. In other 

words, we can still use the modified logic to analyze protocols with the same intended 

effect as the original G N Y logic. 

3.2 Modifying the GNY rule set 

We now describe the modifications to the set of inference rules of the GNY logic, which 

we make in order to obtain finiteness of derivations. Additionally, we include several 
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new rules which are clearly required during protocol analyses using the logic, but which 

are nonetheless absent from the original G N Y logic [2]. The resulting set of rules is 

given in appendix C, and a proof of finiteness of derivations for this rule set is given 

in the next section. 

3.2.1 Adding new rules 

W e add three new rules all of which enable dropping of extensions attached to formulae: 

T7 

18 

19 

P\=Q y^x^c 
While the above rules capture rather trivial inferences, these rules are nevertheless 

required during protocol analyses. The first two rules, T7 and 18, are also present in 

an extended version of the G N Y logic found in Gong's thesis [3]; the role played by 

these rules should be intuitively clear. Surprisingly, the rule 19 is absent from both the 

original G N Y logic [2] and Gong's extension [3]. Essentially, 19 enables the splitting 

of message extensions which are conjunctions of two or more statements. The logical 

use of this rule's conclusion is made in the jurisdiction rule J2 where it appears as a 

premise (see appendix C.6). A handy example of the need for 19 can be seen from the 

analysis of the Yahalom protocol given in the previous chapter: there we tacitly made 

P<X^C 
P«X 

P^QY^X^ 

P^Q\-X 

P^Q^X^ 

c 

(C,C>) 

K, use of this rule in proceeding with the derivation of the statement B ^ A 44b B from 

the statement B |= A ^ {Nb}Kab ^ (A |= A *& B, A |= S |= A %? B). 

3.2.2 Modifying existing rules 

Like Fl, several other freshness and recognizability rules cause problems by repeated 

application. W e deal with this problem by modifying these rules into a form suitable for 

forward-chaining. Notice that every freshness and recognizability rule has a conclusion 

of the form P ^ l(X) and P ^ <t>(X), respectively. Our modification introduces an 

additional premise of the form P 3 X in each of these rules; the modified freshness 

and recognizability rules are listed in appendices C.3 and C.4, respectively. W e now 

discuss the rationale behind the modifications to the freshness rules; the modifications 

to the recognizability rules are explained similarly. 
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The idea behind the modifications to the freshness rules is to limit the original 

rules to allow only those inferences which contribute to our purpose of reasoning about 

a principal's possessions and beliefs about the statements conveyed by other princi­

pals. Evidently, from the possession rules of the G N Y logic we see that a principal 

P's possessions do not depend on P's beliefs. Therefore what we can conclude using 

a freshness rule for P is of no use for the above purpose if it does not affect P's be­

liefs about statements conveyed by others. Essentially, the rule which enables us to 

obtain such beliefs for P is the jurisdiction rule J2, which has a premise of the form 

P ^ Q |~ (X ~> C). This premise reflects the requirement that P can only obtain be­

liefs from messages sent by some well-known principal Q, and appears as a conclusion 

of the message interpretation rules II, 12, 13, 14, II', 12', and 13'. Hence the statement 

P ^ t(X) is of significance in deriving P's beliefs in statements conveyed by others 

only if it appears as a premise in one of these rules. Out of these rules, only II, 12, 

and 13 have a freshness premise. Further, each of these rules satisfies the following 

property: if P ^ §(XX,... ,Xm) is the freshness premise of the rule, then P 3 Xi 

for i — 1,... ,m. For example, take II; this rule has a freshness premise of the form 

P |= \(X,K). Since this premise is meant to denote P |= \(X) or P ^ j(K) ([2], p. 

245), we can replace II by the following two equivalent rules: 

T , P< *{X}K, P3K, P^P&Q, P^ <KX), P N ttffl 

P^Q^X, PNQh {X}K, P^Q^K 

n„ P<*{X}K, P3K, P^EP&Q, PN(4 fNP) 
P^Q^X, PNQh{x}K, P^QBK 

It is easy to see that in both II' and II", P possesses the formula appearing in the 

corresponding freshness premise: 

II': From the premise P < *{X}K and rule Tl, P <J {X}K, and therefore, from the 

premise P 3 K and rule T3, P < X. So, by PI, P 3 X, as required. 

II": Trivially, P 3 K holds as a premise. 

3.2.3 Deleting existing rules 

W e delete several possession rules of the logic: P2, P4, P6, P7 and P8. Each of these 

rules can be applied indefinitely to derive new possessions. For example, suppose the 

statements P 3 X and P 3 K hold. Then we can use the possession rule P6 for shared 
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keys, 
P3K, P3X 

P3{X}K, P3{X}~^ 

to derive the infinite set of statements: P 3 {X}K, P 3 {{X}K}K, .... The above 

rules are evidently useful in enforcing the possession consistency check, but their role 

during protocol analyses otherwise is not so clear. Furthermore, we do not include 

this check in automating the logic, since it is intended to be performed outside of the 

logic. For our purposes, we simply find it convenient to delete these rules. Similarly, 

we delete the G N Y logic rationality rule, which states that if ~ is a rule, then so is 
2 

, , for any principal P. 

3.3 Finiteness of derivations 

In this section, we prove that for the modified rule set given in appendix C: 

The statements derivable from a finite set of idealized protocol steps and 

initial assumptions are finite in number, and are therefore derivable in a 

finite number of steps. 

Essentially, we will follow a a technique used by Engberg [16] to prove a similar property 

for a modified version of the B A N logic. 

W e begin with a set-theoretic formulation of the statement which we wish to prove. 

To this end, it is convenient to introduce the notation (T>/E) to denote a generic 

inference rule, where V is the set consisting of the premises of the rule and E is 

the conclusion of the rule; here we assume that rules with multiple conclusions are 

decomposed in the obvious way into separate rules, each with a single conclusion. 

Denote by IZ the modified set of rules. W e define an operator p on sets of statements, 

as follows: for any set of statements S, 

p(S) =SU{E: there exists (V/E) £ 11 such that V C S}. 

Thus p returns <S together with the statements derivable from S by applying the infer­

ence rules in 1Z exactly once. The main idea of the proof is an argument showing that 

there exists an n such that 

P
n(S) = P~(S), 

where we use p°°(S) to denote the infinite union U™=0p
m(S). 
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Recall that any statement of the logic is a statement of the form P < X or P 3 X 

or P ^ C. The key step in the argument is to construct a well-founded and finitary 

relation over the set of statements of the forms P 3 X, P<X, and P ^ C. We construct 

the required relation, denoted by -<, in terms in terms of six subsidiary relations -<<„ 

-<3, -<3, -<t, -<% and -<£, as follows: 

(1) P«X-<P<Y ifX^Y 

(2) P3X <P<Y if X x| Y 

(3) P3X^P3Y iiXA^Y 

(A) P^C <P3 X if C -<| A 

(5) P ^ C ^ P < A : ifC^A 
(6) P^C-^P^P* ifC^NP> 

The definitions of the subsidiary relations are derived from suitably chosen classes of 

rules and are given below. 

The definition of -<4 is read off the being-told rules Tl, T2, T3, T4, T5, T6 and T7 

(see appendix C.l), where T2 and T5 are used in their two symmetrical forms, giving 

clauses as follows: 
(1) X -<* *A 

(2)(i) X^(X,Y) 

(ii) X^(Y,X) 

(3) X -«« {X}K 

(A) X ^ {X}+K 

(5)(i) X<<F(X,Y) 

(ii) X^F(Y,X) 

(6) X -<« {X}-K 

(7) X^X^C 

The definition of -<| consists of a single clause which is read off the possession rule PI 

(see appendix C.2): 

(1) X^%X 

The definition of -<9 is read off the possession rules P3 and P5 (see appendix C.2), 

where both the rules are used in their two symmetrical forms, giving clauses as follows: 

(l)(i) X<3(X,Y) 

(ii) X^(Y,X) 

(2)(i) X^F(X,Y) 

(ii) X^BF(Y,X) 
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The definition of -<L consists of two clauses. The first clause is read off each of the 

freshness rules Fl', Fl", F2', F2", F3', F4', F5', F6', F7', F7", F8', F9', F10', and Fll' 

(see appendix C.3). The second clause is read off each of the recognizability rules Rl', 

Rl", R2', R2", R3', R4', and R5' (see appendix C.4). 

(1) t{X)*%X 

(2) <b(X)^%X 

The definition of -<t is read off: (A) the message interpretation rules 11, 12, 13, 14 and 

15 (see appendix C.5), and (B) the rules for never-originated-here messages II', 12' and 

13' (see appendix C.7). Each rule contributes as many clauses to the definition as the 

number of conclusions in the rule, giving clauses as follows: 

(l)(i) 

(ii) 

(iii) 

(2)0) 

(ii) 
(iii) 

(3)(0 

(") 

(4)0) 

(") 

(5)(i) 

(ii) 

(6)(i) 

(ii) 

(7)0) 

(ii) 

(8)(i) 

(ii) 

Q\~X 

Q h {X}K ~> C 
Q3K 

Q\-X 

Q [~ {X}+K ^ C 
Q3+K 

Q^x 

Q ̂  H(X) ~> C 

Q^x 

Q ̂  {X}-K -> C 
Q3-K 

Q3X 

Q\-X 

Q h WK - C 
Q\-X 

Q h {X}+K -> C 

QY^x 

Q ^ H(X) ~* C 

-<i 
% 

-4 
•<i 

*i 
% 

% 

•<i 

- * 

"t 
-*>* 

^N 
-*>* 

^N 

•<i 

-<% 

• < % 

^ 

*{X}K^C 

*{X}K ~> c 

*{X}K ~> c 

*{X}+K o+ c 

*{X}+K -> c 

*{X}+K ~* c 

*H(X) ~> C 

*H(X) -> C 

{X}-K ̂  C 

{X}-K -> C 

{X}-K 

{X}-K 

{X}K -* C 

{X}K -> C 

{X}+K -> C 

{X}+K ^ C 

H(X)^C 

H(X) ~> C 

The definition of X ^ is read off: (A) the message interpretation rules 16, 17, 18 and 19 

(see appendix C.5), where 17 and 19 are used in their two symmetrical forms, and (B) 
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the jurisdiction rules Jl, J2 and J3 (see appendix C.6), giving clauses as follows: 

(1) Q3X -<£ Q\^X 

(2)(i) Q^X -<w Q\*{X,Y) 

(ii) Q K ^N QM*',*) 
(3) Q h ^ ^ N Q h ^ - ^ C 

(4)(i) QY-X^C -<w QY-X^(C,C) 

(ii) QY^X^C ^N ghx^(C",c) 
(5) a -<w Q^C 

(6) Q ^ C ^ N QY^(X^C) 

(7) QN^ ^ QNQNc 

This completes the definitions of the six subsidiary relations. Of the six relations, the 

most critical in the analysis are: -<<,, -<9, and -<^. It is easy to see that each of these 

three relations is well-founded. Consider the definition of the first of the three, -<<,: the 

formula on the left in each clause is syntactically shorter than the formula on the right, 

so there cannot be infinite descending chains with respect to -<«. Well-foundedness of 

-<9 and -<^ is equally easily proved. (Well-foundedness of the other three subsidiary 

relations -<|, -<^ and -<t is not required.) 

W e proceed to show that -< is also well-founded; that is, there are no infinite 

descending chains with respect to -<. If we show that: (*) any infinite descending 

chain with respect to -< must contain an infinite chain of statements of one of the three 

forms P3X,P<X,ovP ^ C, then the well-foundedness of -< follows from the 

well-foundedness of -<<,, -<3, and -<^. It remains to show that (*) holds. So assume 

there is an infinite descending chain • • • -< Cz -< C2 •< Cx, where each C% is a statement 

of one of the three forms P < X, P 3 X, or P ^ C. W e say that -<^ occurs at Ci if 

Ci+i is obtained from an application of clause (6) in the definition of -<; and similarly 

in the case of the relations -<jL, -<fL, -<9, -<|, and -<<. 

Case (A): Suppose that -<^ occurs at Cn for some n. It follows that -<^ also occurs at Cm 

for all m>n; that is, there is an infinite descending chain with respect to -<(|=. 

Case (B): Suppose that -<|= does not occur at d for all i. It follows that -<jL and -<^ do 

not occur at Ci for all i. 

Case (i): Suppose that -<9 occurs at Cn for some n. It follows that -<9 occurs at Cm 

for all m > n; that is, there is an infinite descending chain with respect to 



3.4. Implementing the tool 48 

PROTOCOL ANALYZER 

IDEALIZED 

MESSAGES 

ASSUMPTIONS 

INFERENCE 
RULES 

PROOF 
GENERATOR 

RESULTS 

DERIVED 
STATEMENTS 

Figure 3.1: Protocol analysis 

Case (ii): Suppose that -<9 does not occur at Ci for all i. It follows that -<* does not 

occur at Ci for all i. Therefore the only remaining case is that -<< occurs at 

Cn for some n. It follows that -<<, occurs at Cm for all m > n; that is, there 

is an infinite descending chain with respect to -<!<. 

A further property of all six subsidiary relations is that they are finitary; that is, 

given any statement C of the form P 3 X or P < X or P ^ C, the set of statements 

{D : D -< C} is finite. This is easy to see in the case of the relation -<<<, and is equally 

easily proved for the other five relations. It follows straightforwardly that -< is also 

finitary. Since -< is well-founded as well as finitary, it follows by Konig's lemma that 

for any C the set of statements {D : D -<* C}, where -<* denotes the transitive and 

reflexive closure of -<, is finite as well. 

Now the definitions of the subsidiary relations and of -< are constructed so as to 

give a straightforward guarantee that for each rule (TJ/E) £ 1Z, there exists C £ V 

such that E -< C; that is, in each rule the conclusion is smaller, with respect to -<, 

than at least one of the premises. Therefore, if <S is the set of idealized steps and initial 

assumptions of any protocol, then for every C £ p°°(S), there exists S £ S such that 

C ^* S. Hence 

p°°(S)C \J{C:C ^* S}. 
S£S 

Now the right-hand side above is a finite union, since by assumption the set <S is finite. 

By the finitary property we established earlier, the set {C : C -<* S}, for any S £ S, 

is finite as well. Therefore, we conclude that p°°(S) is finite, as required. 

3.4 Implementing the tool 

We now outline an implementation of a tool based on the modified set of rules given 

in appendix C. The tool is implemented along similar lines as in our previous work on 
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Formula 

(X,Y) 

WK 
m-Kl 

{X}+K 

W-K 
H(X) 

F(Xi,... ,Xn) 

*X 

X^C 
X 

Structure 

[X,Y] 
encrypt(X, shared(K)) 

decrypt(X, shared(K)) 

encrypt(X, public(K)) 

decrypt(X, private(K)) 

h(X) 

f(Xl, ..., Xn) 

star(X) 

ext(X, C) 

ext(X, nil) 

Table 3.1: Representing formulas 

automating the B A N logic [35]. It consists of (1) an inference engine which produces 

the complete set of logical statements derivable from an input specification consisting 

of the idealized protocol and the initial assumptions, and (2) a routine to extract 

proofs from the database of derived statements. Since the modification we make to the 

original tool only concerns the representation of the logical syntax, we will mostly skip 

the details of the remaining parts of the implementation. Figure 3.1 gives an overall 

block diagram of how the tool is used in analyzing protocols [35]. As in the original 

tool, we use Prolog as an implementation language and represent the logical syntax in 

terms of Prolog structures. 

3.4.1 Formulas and statements 

In the logic, protocol messages are represented as formulas. The building blocks of 

messages are constants like principal names, keys, nonces, etc. W e typically represent 

these constants by one or more lowercase letters. For example, a session key Kab 

for principals A and B is denoted by the Prolog atom kab. The remaining formulas 

like concatenation, encryption, functions, etc. are represented by Prolog structures 

chosen to represent their typographical counterparts wherever possible. W e also use 

the structure ext(X, nil) to represent a formula X without any extension. Table 3.1 

shows how we represent the logical formulas by means of Prolog structures. 

The statements of the logic are similarly represented by appropriately named Prolog 

structures as shown in Table 3.2. It is straightforward to translate any formula or 

statement in the logical syntax to its Prolog counterpart by looking up Tables 3.1 and 

3.2. 
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Statement 

P<X 

P3X 

PY-x 
P NIIPO 
p |= 4>{X) 
P\EQ&R 

PW&Q 
P\EEC 

P^QY^C 

PNQKQN* 
Cx, C2 

Structure 

told(P, X) 

possesses(P, X) 
conveyed(P, X) 

believes(P, fresh(X)) 

believes(P, recognizes(X)) 

believes(P, secret(Q,S,R)) 

believes(P, public(K,Q)) 
believes(P, C) 

believes(P, controls(Q,C)) 
believes(P, honest(Q)) 
[CI, C2] 

Table 3.2: Representing statements 

3.4.2 Derived statements 

Apart from representing the logical constructs in Prolog syntax, we also need to main­

tain derivation information about statements obtained by applying the inference rules. 

The predicate fact/3 which represents an inference step is used for this purpose. It 

takes the form: 

fact(Index, Stat, reason(PremIs, Rule)) 

Here the integer argument Index is used to index instances of fact/3. The second 

argument Stat is bound to a derived statement. In the last argument, Premls is a list 

containing the indices of premises used in deriving Stat by an application of rule Rule. 

3.4.3 Logical rules 

The representation of the inference rules is best explained by means of an example; the 

being-told rule Tl is defined by the following clause for told/2: 

told(told(P, X), reason([I], 'Tl')) :-

fact(I, told(P, star(X)), _ ) . 

3.5 Using the tool: an example 

We now demonstrate the use of the tool by means of one of the protocol analyzed in 

the G N Y logic paper [2]: the voting protocol. Our aim here is to illustrate how the 
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tool confirms a problem with the parsing scheme, which we discussed in the previous 

chapter. 

The idealized protocol is given as follows (p. 239): 

1. Pi < *Nq 

2. Q< *Ph *N{, Wi, *H(Nq, * <Si>, V]) 

3. P,< *R,*H(Ni,<Si>,R) 

Here Si is a secret between P; and Q, and Ni and Nq are nonces generated by Pt and 

Q, respectively. 

The following statements describe the protocol assumptions: 

Pi 3 Si; Pi3Ni; Pt £ Q & P* />• |= Jj(^) 

Q3Si; Q3Nq; Q £ Q & />•; Q £ l{Nq) 

It is straightforward to convert the above statements into the syntax of the tool using 

Tables 1 and 2. For example, the second idealized message is represented by the Prolog 

fact: 

fact(2, told(q, [star(pi), star(ni), star(vi), ext(star(h([nq, star(si), vi])), 

nil)]), reason([], 'Step')). 

The set of Prolog facts representing the idealized protocol and the initial assumptions 

is then loaded into the analyzer to obtain all the logical statements derivable: 

?- analyze(voting). 

Analyzed in 4 cycles 

The database of facts can now simply be queried to determine whether a particular goal 

statement is attained or not. For example, according to the G N Y paper, the statements 

Q ^ Pi Y-1 Vi and Pi ̂  Q (~ R hold for the protocol (p. 239). The following queries 

can be used to verify this: 

?- fact(I, believes(q,conveyed(pi,vi)), Rule). 

no 

?- fact(I, believes(pi,conveyed(q,r)), Rule). 

I = 37 

Rule = reason([33],17); 

yes 

The output of the above queries show that Q ^ Pi |~ V does not hold, whereas 

Pi ̂  Q (~ R holds. It is not difficult to explain the discrepancy behind this mis­

match. Looking at the analysis sketched in the G N Y paper, we see that the conclusion 
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Q ^ Pi |~ V is obtained from the message interpretation rule 13 and the second mes­

sage. It is easy to see that in the premises of the intended application of the rule, 

the secret Si appears prefixed with a *; for example, one of the premises works out 
*S' -̂

to be: Q ^ Q <4 Pi. Although we have the statement Q ^ Q <4 Pt as an initial 

assumption, we see that the statement Q ^ Q *4 Pi does not follow from the logic. As 

we discussed in the previous chapter, this difficulty is best dealt with by modifying the 

parsing scheme so that non-encrypted and non-hashed message parts are not marked 

with *'s. The desired statement Q ^ Pi |~ Vi is immediately derived once we alter the 

idealization of the second message to reflect this change: 

fact(2, told(q, [pi, ni, vi, ext(star(h([nq, si, vi])), nil)]), reason([], 

'Step')). 

| ?- fact(I, believes(q, conveyed(pi, vi)), Rule). 

I = 37 

Rule = reason([31],17); 

no 

The proof explanation routine can be further used to obtain explicit representations of 

proofs of derived statements. For example, we obtain the following machine-generated 

proof of Q ^=Pi\~Vi: 

?- explain_proof(believes(q, conveyed(pi,vi))). 

1. told(q,[pi,ni,vi,ext(star(h([nq,si,vi])), 

nil)]) {Step} 

2. told(q.vi) {1, T2} 

3. possesses(q,vi) {2, PI} 

4. possesses(q,si) {Assumption} 

5. possesses(q,nq) {Assumption} 

6. believes(q,fresh(nq)) {Assumption} 

7. believes(q,secret(q,si,pi)) {Assumption} 

8. told(q,ext(star(h([nq,si,vi])),nil)) {1, T2} 

9. believes(q,conveyed(pi,[nq.si.vi])) {8, 7, 

6, 5, 4, 3, 13} 

10. believes(q,conveyed(pi,vi)) {9, 17} 



Chapter 4 

Semantic foundations for authentication 
logics 

The motivation for this chapter is perhaps best described by the title of a note written 

by Tuttle [28]: "Flaming in Franconia: Build models, not logics.'''' Broadly speaking, 

the problem statement is as follows: To develop a model capable of providing a semantic 

basis for BAN-like logics, but which is essentially independent of any such logic itself. 

In constructing a model in this chapter, we will attempt to isolate and formalize 

the semantics of some of the notions found in existing logics, without appealing too 

closely to the logical formalisms themselves. In the next chapter, we will devise a logic 

based on the model constructed here. 

4.1 Informal groundwork 

We begin by reviewing some of the notions which form the mainstay of existing models 

for BAN-like logics, namely the models due to Abadi and Tuttle [8], Syverson and 

van Oorschot [9], and Wedel and Kessler [10]. Our intention is to highlight some of 

the problems that arise in defining such notions semantically and to lay down some 

groundwork for the model which we will construct in the next section. 

As in existing works, we are interested in modeling a system of communicating, 

message-passing principals. W e assume that principals can perform some actions; 

for convenience we divide the class of actions into two: communication actions, and 

message-construction actions. For example: (1) The actions of sending and receiving 

a message belong to the former class; (2) The action of constructing a constant term 

such as the name of a principal belongs to the latter class. 

The notions which are central to our model are those that associate various sets of 

messages with principals: possessed messages, seen messages, and said messages. 

53 
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4.1.1 Possessed messages 

The notion of possessed messages essentially reflects the following intuition: (1) if a 

principal P receives or constructs a message X, then X is possessed by P; (2) any 

message that can be possibly computed by P from P's possessed messages is also 

possessed by P. Motivated by the above intuition, we can proceed to construct a 

definition for the set of P's possessed messages as follows: we form the set of all the 

messages which P receives or constructs and close this set off under the operations 

that are available to P within the system. W e make the assumption that the available 

operations include: keyed encryption function E_(-), keyed hashing function H_(-), and 

concatenation function _ | • • • | _. To continue the previous definition we can require, for 

example, that if a message X and a key K are in the set of P's possessions, then so is 

the message EK(X); of course, this also implies that so are the messages EK(EK(X)), 

EK(FK(EK(X))), .... However, the unbounded nature of this definition makes the set 

of P's possessed messages infinite; this means potentially all messages are possessed 

by P. Furthermore, it introduces arbitrary messages, which does not seem necessary 

for reasoning about messages that are actually constructed within the system. As in 

existing approaches, we fix the set of P's possessed messages for each time t, but we 

do not allow this set to be infinite in our model. W e will employ a limited notion of 

possession, which works as follows. In defining the set of possessed messages for a given 

time t, we restrict the closure operation to admit only those messages which occur in 

the system at that time. Intuitively, a message occurs at time t, if it was constructed 

by any principal at a time earlier than t. A characteristic property of the resulting 

definition is that the set of possessed messages is finite. As we shall see in the next 

section, our definition also has many other interesting properties which appear quite 

natural. 

The notion of a message being constructed in the system also enables us to formulate 

the assumption that 'accidents' do not happen. That is, we treat what is highly 

improbable as impossible: we shall assume that a message can be constructed in the 

system in only one way. For example, if a message is constructed as an encryption 

then our assumption guarantees that the same message cannot be constructed as a 

concatenation. As another example, if a message is constructed as an encryption of X 

using K, then the same message cannot be constructed as an encryption of X' using 

K', unless X = X' and K = K'. The assumption which rules out chance equality 

between messages is crucial for our definitions to make sense. For example, one part 

of the closure operation that we will use in defining P's set of possessed messages at 



4.1. Informal groundwork 55 

time t roughly captures the following statement: 

(*) if a message Y is in this set and Y = EK(X) for some K, X such that AT"1 is 

also in this set, then so is X, provided that some principal has encrypted X using 

K, and thus constructed EK(X), at a time earlier than t. 

Essentially, it is by virtue of the assumption which says that messages can be con­

structed in only one way that we can fix X as intended in the above statement. Of 

course, this assumption cannot hold with certainty in the real world. However, it 

simply reflects an idealization and is not unrealistic to make for our purposes. 

The statement (*) above reflects an example of how we capture decryptions in the 

model. The role of deconcatenations is captured similarly; we will give an example of 

this below. 

4.1.2 Seen messages 

The notion of seen messages is somewhat more restrictive than that of possessed mes­

sages. It essentially reflects what messages can be extracted by a principal from the 

messages it receives: (1) if a principal P receives a message X, then X is seen by 

P; (2) any message that can be possibly extracted from P's seen messages, perhaps 

using keys possessed by P, is also seen by P. The idea behind (2) is expanded as 

follows: (2') if a message Y is seen by P and Y — EK(X) for some X, K such that 

K~l is possessed by P, then X is seen by P; and (2") if a message Y is seen by P and 

Y = Xi | • • • | Xk for some Xx,..., Xk, then P's seen messages include X{ for all i. As 

with the set of P's possessed messages, we fix the set of P's seen messages for each 

time t. The closure operation that we will use in defining the set of P's seen messages 

at time t has essentially the following two properties: 

(**) if a message Y is in this set and Y = EK(X) for some X, K such that K~x is 

in the set of P's possessed messages at time t, then X is in the set of P's seen 

messages at time t, provided that some principal has encrypted X using K, and 

thus constructed EK(X), at a time earlier than t, and 

(***) if a message Y is in this set and Y = Xi \ • • • \ Xk for some Xx,..., Xk, then so 

are Xx,..., Xk, provided that some principal has concatenated Xx,..., Xk, and 

thus constructed Xx \ • • • | Xk, at a time earlier than t. 

Again our assumption which says that messages can be constructed in only one way is 

crucial to the intended meaning of the statements (**) and (***) above. Notice that 

(**) shows an example of how we capture deconcatenations in the model. 
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4.1.3 Said messages 

The notion of said messages essentially reflects the following intuition: (1) if a principal 

P sends a message X, then X is said by P; (2) if X is said by P, then so are the 

messages from which X was immediately constructed, if those messages are possessed 

by P. Intuitively, if X is a message then the messages from which X was immediately 

constructed are those messages that allow X to be obtained as the output of a single 

message-construction action. For example, to construct an encrypted message EK(X) 

the immediate messages that are needed are X and K. W e emphasize that the notion 

of 'immediate messages' is not inductive in nature: in the previous example X could 

itself have been constructed as an encrypted message EK'(X'); however, X' and K' 

are not amongst the immediate messages from which EK(X) was constructed. In our 

model, we will fix the set of P's said messages for each time t. To define the set of said 

messages along the above lines, we need to capture the notion of immediate messages. 

This is done simply in terms of the notion of a message being constructed in the system. 

For example, one part of the closure operation that we will use in defining P's set of 

said messages at time t roughly captures the following statement: 

(f) if a message Y is in this set and Y = EK(X) for some X, K such that X and 

K are in the set of P's possessed messages at time t, then X and K are in the 

set of P's said messages at time t, provided that some principal has encrypted X 

using K, and thus constructed EK(X), at a time earlier than t. 

4.2 A computational model of communicating prin­

cipals 

Let E be a finite alphabet, and let M — E* be the set of all messages. For simplicity, 

we take E = {0,1}; the set M. then consists of all binary strings of finite length. Let a 

finite set of principal names V C M be fixed; henceforth we always refer to principal 

names simply as principals. Let a set of nonces J\f C Ai be fixed. Let the set of 

all possible keys K C M be fixed. For each key K £ K,, we assume a one-to-one 

function EK '• M —> M is fixed, which we call a keyed encryption function. Assume 

a set /C_1 C M is fixed along with a one-to-one onto function -1 : /C —> /C-1. For 

each K £ K, we assume a non-invertible function EK - M ->• M is fixed, which we 

call a keyed hash function. For each natural number m > 1, we use the symbol | to 

represent m-fold concatenation function over E*. If Xx,..., Xm £ M, we usually write 
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\m(Xx,.. .,Xm) as Xx | • • • | Xm. 

Informally, for each K £ K we use the value K~x to stand for the property that the 

inverse function of EK is accessible. The difficulty of decrypting a message encrypted 

under K without the knowledge of K'1 will be captured by the way we define certain 

sets of messages in the model later. The collision-free property of keyed hash functions 

will be captured as part of a restriction we will make on our model later. 

W e assume that there is a global notion of time which is linear and discrete; for 

convenience we think of time as ranging over the set of all integers Z. W e call our finite 

collection V of principals a system (of principals). The actions a principal can perform 

are defined by the following: 

1. generate(m): This corresponds to generating a primitive term m. 

2. send(m): This corresponds to sending a message m. 

3. receive(m): This corresponds to receiving a message rn. 

A. encrypt(m,k), and hash(m,k): These correspond to encrypting, and keyed hash­

ing, respectively, of a message m using key k. 

5. concatenate(mx,..., mk): This corresponds to concatenating messages mx,..., mk. 

W e assume that at a given time a principal can perform at most one of the above 

actions. W e also include a null action, denoted null, assumed to be performed precisely 

when none of the above actions is performed. 

Fix a system: V = {Pi,P2,..., Pn} for some positive integer n. Intuitively, the 

notion of a run of the system describes an execution of the system over time. W e shall 

characterize a run r of the system by means of the following components: (1) a time 

f̂irst(r)> calle(i the start time for r, at which execution is assumed to begin; (2) for 

each i, a sequence h(Pi,r), called the total history of Pi in r, which describes all the 

actions Pi performs in r. 

Definition 4.1 A runr of the system is a tuple (t^TS^(r),h(Px,r),... ,h(Pn,r)), where: 

L hTst(r) € Z> a n d 

2. for each i, h(Pi, r) is the union of the sequences h(Pi,r, ̂ first(
r))) h(P{, r, £first(

r) + 

1), ..., which are determined as follows: 

0 if * = *flrst(r) 

h(Pi, r, t — 1) • a if t > tfirst(
r) a nd a is the action 

performed by Pi at time t — 1. 

h(Pi,r,t) = 

\ 
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It is convenient to call the sequence h(Pi,r,t), for each i, the partial history of Pi at 

t in r. W e emphasize that h(Pi,r,t) includes all actions Pi has performed in r up to, 

but not including, time t. 

Let a principal P and a run r of the system be fixed. The key component of the 

model consists of the definition of several message sets. For convenience we define some 

auxiliary sets first. 

Definition 4.2 Let a denote the action P performs at time t in r. 

(a) Sgenr(P,r,t) = 

ifX\ if a = receive(X) 

0 otherwise 

{X} if a = generate(X) 

0 otherwise 

(c) Sposs(P,r,t) = < 

{X} if a = generate(X) or a = receive(X) 

{EK(X)} if a = encrypt(X, K) 

{HK(X)} \{a = hash(X,K) 

{(Ai | • • • | Xk)} if a = concatenate(Xx,... ,Xk) 

0 otherwise 

\X\ if a — send(X) 

(d) Ssaid(P,r,t) = { \ i . 
1 0 otherwise 

The following lemma is easily proved from Definition 4.2. 

Lemma 4.1 

(a) Sgenr(P,r,t) C Sposs(P>r,t); 

(b) Srecv(P,r,t) C Sposs(P,r,t). 

In preparation for the lengthy definition that will follow, we begin by discussing 

informally some of the sets to be defined there. For each time t, we will define the fol­

lowing message sets: Mgenr(P,r,t), Mrecv(P,r,t), Mposs(P,r,t), Mseen(P,r,t), and 

Msaid(P,r,t). Informally, the set Mgenr(P,r,t) (respectively, Mrecv(P,r,t)) consists 

of all the messages P produces by means of the generate^) (respectively, receive^)) 

action at any time in r up to, but not including, time t. In other words, for all X: 

(1) X £ Mgenr(P,r,t) iff generate(X) appears in h(P,r,t); (2) X £ Mrecv(P,r,t) iff 

receive(X) appears in h(P,r,t). The sets Mposs(P,r,t), Mseen(P,r,t), and Msaid(P,r,t) 

are meant to model the intuitive notions of possessed messages, seen messages, and said 
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messages, respectively. As discussed in the previous section, in defining these sets we 

shall use the idea of a message 'occurring in the system'. Certain sets of tuples are 

useful for capturing this idea: €(P,r,t), U(P,r,t), and C(P,r,t). The set £(P,r,t) 

(respectively, li(P,r,t)) consists of 2-tuples corresponding to message-key pairs; the 

set C(P,r,t) consists of m-tuples of messages for various natural numbers ra > 1. 

Informally, we use the set €(P,r,t) to record all the pairs (X, K) such that P has 

performed the action encrypt(X, K) at any time in r up to, but not including, time t; 

and similarly for the sets %(P,r,t) and C(P,r,t), respectively. Notice that the union 

of the sets £(Pj, r, t) for all i identifies all encryptions that are constructed by any prin­

cipal in r at any time earlier than t; and similarly for hashes and concatenations. For 

convenience we introduce the following additional sets to denote the respective unions: 

£ M ) = U?=iW,r,t), H(r,t) = [£=xH(Pi,r,t), and C(r,t) = {fl=xC(Pi,r,t). 

To formulate the assumption that messages can be constructed in only one way, we 

distinguish sets of messages occurring in the system according to the type of action 

which gave rise to them. For example, we will define the set M.genr(r,t) as the set 

containing all the messages constructed by means of the generateQ action by any 

principal at any time in r up to, but not including, time t; and similarly the sets 

Mencr(r,t), -A^hashkri^)-> a n d -M concO", t) for encrypted, hashed and concatenated 

messages, respectively. The desired assumption is then stated in two parts: one part 

which says that the above sets are pairwise disjoint; another part which says that 

P_(_) and H_(J) (respectively, _ | • • • | _) are one-to-one functions when restricted to 

those message-key pairs (respectively, message-tuples) which occur in the system. 

W e will make use of the sets S(r,t), %(r,t), and C(r,t) in defining the closure 

operation that determines the set Mposs(P, r, t). For example, suppose that a message 

X and a key K are in this set. Then our definition implies that so is the encrypted 

message EK(X), but only if (X, K) £ S(r,t), i.e. if the encrypted message already 

occurs in the system at time t in r. The sets MSeen(P,r,t), and Msaid(P,r,t) will 

also be defined along similar lines. 

The following definition brings together the above discussion and is central to our 

model. It proceeds in two parts: Each of the above sets is defined to be empty at 

t = ifirst(r)- Then assuming all sets are defined at all times up to and including t-1, 

we define them at t. In parallel with these definitions, we restrict the actions that can 

be performed at a given time. 
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Definition 4.3 

1. Let t = tfast(r). 

(i) Mgenr(P,r,t) = A4recu(P,r,i) = 0 

(ii) S(P, r, t) = U(P, r, t) = C(P, r, t) = 0 

(iii) S(r,t) = U(r,t) = C(r,t) = ® 

(iv) Mgenr(r,t) = Mencr(r,t) = -M/,05/,(r,t) = A4COnc(r,t) = 0 

(v) M p o 4 P , r , t ) = Mseen(P,r,t) = A4 s aid(^W) = 0 

REO. The only action permitted is the generate() action. 

2. Let t > tfirst(r). 

(i) Mgenr(P,r,t) = A45enr(P,r,t - 1) U Sgenr(P,r,t - 1) 

(ii) A4rect;(P,r,t) = Mrecv(P,r,t - 1) U Srecv(P,r,t - 1) 

(iii) £(P,r,t) = £(P,r,t-l)U5, where 

{(X, A")} if P performs encrypt(X, K) at time t - 1 
S= < 

0 otherwise 

(iv) ft(P,r,i) = ft(P,r,*-l)U5,where 

{(X, K)} if P performs hash(X, K) at time t - 1 

otherwise 

(v) C(P, r, t) = C(P, r, t - 1) U S, where 

{(Xx,..., Xk)} if P performs concatenate(Xx,..., Xk) at 

5 = time i — 1 

otherwise 
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(vi) S(r,t) = \JS(Pi,r,t) 
i-i 

(vii) rl(r,t) = \JU(Pi,r,t) 
i=i 

n 

(viii) C(r,t)= \JC(Pi,r,t) 
»=i 

RE1. (a) If (X,K),(X',K') £ S(r,t) and EK(X) = EK,(X'), then X = X' and 

K = K'. 

(b) If (X, K), (X', K') £ ri(r, t) and HK(X) = HK,(X'), then X = X' and 

K = K'. 

(c) If(Xx,...,Xk),(X'x,...,X'k,)£C(r,t)andXx\---\Xk = X'x\---\X'k,, 

then k = k' and Ai = X'i, ..., Xk = X'k>. 

(ix) Mgenr(r,t) = |J A4^enr(Pi,r,t) 
i=l 

(x) AWr(M) = {£*(X) | (X, #) € £(r,i)} 

(xi) Mhash(r,t) = {HK(X) | (X, tf) e tt(r,i)} 

(xii) A4«mc(r,t) = {(Xx \ • • • \ Xk) \ (Xx, ...,Xk)£ C(r,t)} 

RE2. The sets Mgenr(r,t), Mencr(r,t), Mhash(r,t), and Mconc(r,t) are pair-

wise disjoint. 

(xiii) Mposs(P, r, t) is the smallest set of messages such that: 

I. (Basis) 

Mposs(P, r, t - 1) U SpoSs(P, r, t - 1) C A4poSS(P, r, t) 
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II. (Induction) 

(a) 

(b) 

(c) 

(d) 

(e) 

EK(X) £ Mposs(P,r 

HK(X) £ Mp0SS(P,r 

,0 

• . * ) 

Xi \---\Xk£Mposs(P,r,t) 

X £ Mp0ss(P,r,t) 

Xi £ Mposs(P,r,t) 

if X,K £MPoss(P,r,t) and 

(X,K)£S(r,t) 

if X, K £ MpOSS(P, r, t) and 

(X,K)£U(r,t) 

if Xx,...,Xk£MPoss(P,r,t) 

and(Xi,...,Xfc)GC(r,t) 

if^(X),A'-1€^oss(P,r,t) 

and (X, AT) e £(r, <) 

ifXi |---|Xfc€Mpo5S(P,r,*) 

and(Xi,...,Xfc)GC(r,t) 

(xiv) M. seen(P\*\t) is the smallest set of messages such that: 

I. (Basis) 

Mseen(P, r, t - 1) U <SreCt;(P, r, t - 1) C A4seen(P, r, t) 

II. (Induction) 

(a) X € A4seen(P,r,t) if EK(X) £ Mseen(P,r,t) and 

(X,K) £ E(r,t) and A^"1 £ MPoss(P,r,t) 

(b) Xi € Mseen(P, r,t) if Xx \ • • • \ Xk £ Mseen(P, r, t) and 

(Xi,...,Xfc)GC(r,i) 

(xv) Msaid(P,r,t) is the smallest set of messages such that: 

I. (Basis) 

Msaid(P, r, t - 1) U <SsmW(P, r, t - 1) C A W P , r, t) 

II. (Induction) 

(a) X, A- £ Msaid(P, r, t) if EK(X) £ Msaid(P, r, t) and 

(X, K) £ £(r, t) and X,K £ MpoSs(P, r, t) 

(b) X, /if € Msaid(P, r, t) if P^(X) £ Msaid(P, r, t) and 

(X, K) £ U(r, t) and X,K £ MpoSs(P, r, t) 

(c) Xi £ Msaid(P,r,t) if Xi | • • • | Xk £ Msaid(P,r, t) and 

(Xi,...,X,)GC(r,t) 
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RE3. If P performs receive(X) at t, then there exists a principal Q which performs 

send(X) at some t' < t. 

RE4. If P performs send(X) at t, then X G A4p0ss(-P,r,t). 

RE5. If P performs encrypt(X, K) or hash(X, K) at t, then X, AT G Mposs(P, r, t). 

RE6. If P performs concatenate^,..., Xfc) at t, then Xi,..., X*, € A4p0ss(P, r, t). 

(This completes Definition 4.3.) 

The following lemmas are easily proved from Definition 4.3. 

Lemma 4.2 For all t,t' such that t <t' the following holds: 

(a) Mgenr(P,r,t) C Mgenr(P,r,t'); 

(b) Mrecv(P,r,t) C Mrecu(P,r,t'); 

fcj £(P,r,t)C£(P,r,t'); 

(d) H(P,r,t)CH(P,r,t'); 

(e) C(P,r,t)CC(P,r,t'); 

if) MpoSS(P,r,t) C XpossCP.r,*'); 

faj -Mseen(P,r,t) C A4seen(/W); 

Lemma 4.3 For all t, t' such that t < t' the following holds: 

(a) £(r,t)C£(r,t'); 

(b) H(r,t)CH(r,t'); 

(c) C(r,t)QC(r,t'). 

Lemma 4.4 For each time t, the following sets are finite: 

(a) Mgenr(P,r,t), and Mrecv(P,r,t); 
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(b) £(P,r,t), H(P,r,t), andC(P,r,t). 

We will later prove the finiteness property for the sets Mposs(P,r,t), M.seen(P-,r->~k)-, 

andA4sajd(P,r,t). 

Lemma 4.5 For each time t, the following sets are finite: 

£(r,t),U(r,t), andC(r,t). 

Lemma 4.6 For all t, t' such that t < t' the following holds: 

(a) Mgenr(r,t) C Mgenr(r,t'); 

(b) Mencr(r,t) C Mencr(r, t'); 

(c) Mhash(r,t)QMhash(r,t'); 

(d) Meanest) Q MConc(r,t'). 

Lemma 4.7 For each time t, the following sets are finite: 

Mgenr(r, t),Mencr(r,t),Mhash(r,t), and Mconc(r, t). 

Lemma 4.8 

(a) If (X, K) £ £(P, r, t) then X, K £ MPoss(P, r, t - 1). 

(b) If(X,K) £ n(P,r,t) then X, K £ Mposs(P,r,t - 1). 

(c) If(Xx,... ,Xfc) G C(P,r,t) then Xx,...,Xk£ MPoss(P,r,t- 1). 

Proof. (By induction on t.) We only prove part (a); the remaining parts are proved 

similarly. 

1. (Basis) Let t = tfirst(r). By definition 4.3, £(P,r,t^Tst(r)) = 0. Therefore, the 

required statement holds vacuously. 

2. (Induction) Let t > tfirst(r) be arbitrary. W e assume the inductive hypothesis: 

if (X,K) £ £(P,r,t) then X,K £ Mposs(P,r,t - 1); and we show this implies 

that, if (X,K) £ £(P,r,t + 1) then X, K £ Mposs(P,r,t). 

Suppose (X, K) £ £(P, r, t +1). By definition 4.3 we need to consider the follow­

ing two cases: 
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Case (A): (X, K) £ £(P, r, t). The inductive hypothesis yields X, K £ MpOSS(P, r, t -

1). By L e m m a 4.2(f) it follows that X, K £ Mp0ss(P,r,t). 

Case (B): P performs encrypt(X,K) at t. RE5 yields X,K £ MpoSs(P,r,t). 

(This completes the proof of Lemma 4.8.) D 

In the sequel, we shall make use of a proof technique which is vital to proving 

properties of the following inductively defined sets: Mp0ss(P, r, t), MSeen(P, r, t), and 

Msaid(P, r, t). It suffices to explain this technique in context of the set Mp0ss(P, r, t), 

since it works similarly in other contexts. Essentially, the technique works as follows. 

W e construct a sequence of sets Mp0SS(P,r,t) for i = 0,1,2,..., with the following 

property: (1) the first set in the sequence is the basis set for A4poss(P, r, t), and (2) each 

of the remaining sets in the sequence is the union of the set which immediately precedes 

it and the set obtained from the preceding set by applying the closure operation exactly 

once. The point of the above construction is now obvious: for proving that a particular 

statement holds for J^iposs(P-,f^)i w e use induction on i to show that it holds for all 

sets Mposs(P,r,t). 

Definition 4.4 Let i > 0. 

1. Let t = *first(r). Then AA
i
poss(P,r,t) = 0 for all i. 

2. Let t > tfirst(r). Then 

Mposs(P,r,t) = < 

where 

Mposs(P, r, t - 1) U Sposs{P, r,t-l) if i = 0 

{ M#ss(P,r,t)US if»>0 

S = {EK(X) \X,K£ Mp-Jss(P, r, t) and (X, K) £ £(r, t)} 

U{HK(X) \X,K£ Mlp-Jss(P,r,t) and (X,K) £ U(r,t)} 

U{(Xi|---|X,)|Xi,...,X,G^-yP,r,t)and(Xi,...,Xfc)GC(r,t)} 

U { X | EK(X),K~
l £ A4J70yP,r,t) and (X,K) £ £(f,t)} 

U {X{ | (Xi | • • • | X,) G A4J7oyP,r,t) and (Xx,...,Xk)£ C(r,t)}. 

The following lemma is easily proved from Definition 4.3 and Definition 4.4. 
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Lemma 4.9 
00 

Mposs(P,r,t) C Mposs(P,r,t) C • • • C |J Af^^r,*) = A^P,,-,*) 
i=0 

L e m m a 4.10 

Mgenr(P,r,t) C A4p0ss(P, r, t) 

Proof. By induction on t: 

1. (Basis) Let t = t^rst(r). By definition 4.3, 

A4&enr(P,r,tfirst(r)) = Mp0SS(P,r,tfast(r)) = 0. 

Therefore, the required statement holds. 

2. (Induction) Let t > tj[vst(r) be arbitrary. W e assume the inductive hypothesis: 

Mgenr(P,r,t) C A4p0ss(-P,^,t); and we show this implies Mgenr(P,r,t + 1) C 

MpoSS(P,r,t + l). 

From Lemma 4.1(a) and the inductive hypothesis it follows that M.genr(P, r, t) U 

Sgenr(P,r, t) C A4poss(P, r, t) U Sposs(P,r,t). By definition 4.3, Af oenr(P, r, t + 

1) = Mgenr(P,r,t) U Sgenr(P,r,t), and, by definition 4.4, A4°OS5(P,r,t + 1) = 

A4poss(P, r, t) U 5poss(P, r, t). Hence Mgenr(P, r, t + 1) C A4£0SS(P, r, t + 1). By 

Lemma 4.9 it follows that Mgenr(P, r,t -\-1) C Mposs(P, r,t + 1). 

(This completes the proof of Lemma 4.10.) • 

Lemma 4.11 

A4poss(P,r,t) C Mgenr(r,t) U A4encr(r,t) U Mhash(r,t) U A4COnc(r,t) 

Proof. By induction on t: 

1. (Basis) Let t = tj[TSt(r). By definition 4.3, Mposs(P,r,tfiTSt(r)) = 0 and 

Mgenr(r,tfost(r))UMencr(r,tfast(r))UMhash(r,t^ 

0. Therefore, the required statement holds. 

2. (Induction) Let t > t^rst(r) be arbitrary. W e assume the inductive hypothesis: 

(HP1) for all t' < t, Mposs(P, r, t') C Mgenr(r, t') UMencr(r, t') U Mhash(r, t') U 

A4Conc(^,t'); and we show this implies Mp0ss(P,r,t) C A4oenr(^,t)UA4encr(^0
u 

^/>as/>M)U^conc(r,t). 

By Lemma 4.9 it suffices to show that, for all Y and for all m, if Y £ Mp0SS(P, r, t) 

then Y £ Mgenr(r,t) U Mencr(r,t) U A i / ^ ^ t ) U AfConc(r,t). This assertion 

is shown using induction on m: 
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I. (Basis) Let m = 0. Suppose Y £ Mp0SS(P,r,t). By definition 4.4, Y £ 

MpOSS(P, r, t - 1) U Sposs(P, r,t-l). 

Case (i): Y £ Mposs(P,r,t-l). HP1 yields Y £ Mgenr(r,t - 1) U Mencr(r,t -

1) U Mhos^t - 1) U MConc(r,t - 1). By Lemma 4.6 it follows that 

Y £ Mgenr(r,t) U AWr(r,t) U Af j,fl5j,(r,t) U AtConc(r,t). 

Case(ii): Y G <5poss(P,r,t - 1). 

Case (A): P performs generate(Y) at t — 1. 

By definition 4.3, Y G Mgenr(r,t). 

Case (B): P performs receiue(Y) at t — 1. 

RE3 yields: there exists a Q which performs send(Y) at some 

time t' < t - 1. RE4 yields Y G A*poss(Q,r,*'). HP1 yields 

Y G A4oenr(r,t') U A W r ( M ' ) U Mhash(r,t') U A U n c M ' ) - By 

Lemma 4.6 it follows that Y G A4oenr(^i)
!UAlencr(r,t)UA</ia5/l(r,t)U 

A4Conc(r,t). 

Case (C): P performs encrypt(X, K) at t - 1 for some X and some K, where 

Y = EK(X). 
By definition 4.3, P#(X) £ Mencr(r,t). Hence Y G Mencr(r,t). 

Case (D): P performs hash(X,K) at t - 1 for some X and some K, where 

Y = HK(X). 

Similar to Case (C). 

Case (E): P performs concatenate(Xx,... ,Xfc) at t - 1 for some Xi,... ,Xfc, 

where Y = Xi | • • • | Xk. 

Similar to Case (C). 

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis: 

(HP2) for all Y, if Y G A4™0SS(P,r,t) then Y G Mgenr(r,t) U A4encr(r,t) U 

Mhash(r,t) U A4Conc(r,t); and we show this implies that, for all Y, if 

Y G M^8(P,r,t) then Y G Mgenr(r,t) U A W r ( M ) U Mhash(r,t) U 

A4Conc(r,t). 

Suppose Y G A*35&(P,r,t). By definition 4.4, 

YGA^0SS(P,r,t) 

U { E K ( X ) | X,K £ M^0SS(P,r,t) and (X,K) G £(r,t)} 

U { # K ( X ) 1 X, A" G A4^0SS(P,r,t) and (X,K) £ H(r,t)} 

U{(Xi | ••• | Xk) | Xi,...,Xfc G A4>*(P,r,t) and (Xi,... ,Xfc) G C(r,t)} 
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U {X | EK(X), K-
1 £ M™0SS(P,r,t) and (X,K) £ £(r,t)} 

U{X{ | (Xi | ... | Xk) £ M™0SS(P,r,t) and (Xu... ,Xk) £ C(r,t)}. 

Case (A): Y G M™oss(P,r,t). HP2 yields Y G Mgenr(r,t) U Mencr(r,t) U 

Mhash(r,t)UMconc(r,t). 

Case (B): Y G {£x(X) \X,K£ M™0SS(P,r,t) and (X, A) G £(r,t)}. 

We have Y = EK(X) for some X and some K such that (X, A") G 

£(r,t). By definition 4.3, Ejr(X) G Mencr(r,t). HenceY G Mencr(r,t). 

Case (C): Y G {#A-(X) | X, A G A4^oss(P,r,t) and (X,K) £ U(r,t)}. 

Similar to Case (B). 

Case (D): Y G {(Xx \ • • • | Xk) \ Xx,...,Xk £ M™0SS(P,r,t) and (Xi,...,Xfc) G 

C(r,t)}. 

Similar to Case (B). 

Case (E): Y G {X | EK(X),K~
1 £ M^oss(P,r,t) and (X,K) £ £(r,t)}. 

We have (Y,AT) G £(r,t) for some K. By definition 4.3, (Y,K) £ 

£(Q,r,t) for some Q. By Lemma 4.8(a), Y,K £ Mp0ss(Q,r,t - 1). 

HP1 yields Y G Mgenr(r,t - 1) U A4encr(r,t - 1) U Mhash(r,t - 1) U 

A4Conc(r,t - 1). By Lemma 4.6 it follows that Y G Mgenr(r,t) U 

A4 encr(r, t) U A4 /^(r, t) U Af COnc(r, t). 

Case (F): Y G {X; | (Xx | • • • | X,) G A4^0SS(P, r, t) and (Xl5..., X,) G C(r, t)}. 

Similar to Case (E). 

(This completes the proof of Lemma 4.11.) 

• 

Lemma 4.12 

(a) Let (X,K) £ £(r,t). If EK(X) £ MPoss(P,r,t') for some P and for some t' < t, 

then(X,K) ££(r,t'). 

(b) Let (X,K) £ U(r,t). If HK(X) £ MpoSs(P,r,t') for some P and for some 

t' <t, then(X,K)£H(r,t'). 

(c) Let (Xu...,Xk)£ C(r, t). If Xx \ • • • \ Xk £ MPoss(P, r, t') for some P and for 

some t' < t, then (Xt,...,Xk)£ C(r,t'). 

Proof. We only prove part (a); the remaining parts are proved similarly. We have 

(X, K) £ £(r, t). Suppose EK(X) £ Mposs(P, r, t') for some P and for some t' < t. By 
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definition 4.3, EK(X) £ Mencr(r,t). RE2 yields EK(X) $ Mgenr(r,t)UMhash(r,t)U 

Mconc(r,t). By Lemma 4.6 it follows that EK(X) <£ Mgenr(r,t') U Mhash(r,t') U 

Mconc(r,t'). Since EK(X) £ Mp0Ss(P,r,t'), it follows by Lemma 4.11 that EK(X) £ 

Mgenr(r,t')UMencr(r,t')UMhash(r,t')UMConc(r,t'). Hence EK(X) £ Mencr(r,t'). 

By definition 4.3, EK(X) = EK,(X') for some (X',K') £ £(r,t'). We have t > t'. 

By Lemma 4.6 it follows that (X',K') £ £(r,t). RE1 yields X = X' and K = K'. 

Therefore, (X,K) £ £(r,t'). • 

Lemma 4.13 

(a) IfX,K £ MPoss(P,r,t) and (X,K) £ £(r,t), then EK(X) £ Mposs(P,r,t). 

(b) IfX,K £ Mposs(P,r,t) and (X,K) £ H(r,t), then HK(X) £ Mposs(P,r,t). 

(c) If Xi,...,Xk £ Mp0SS(P,r,t) and (Xx,...,Xk) £ C(r,t), then Xx \ • • • | Xk £ 

Mposs(P,r,t). 

(d) IfEK(X),K~
1 £ Mp0Ss(P,r,t) for some (X,K) £ £(r,t), then X £ Mp0Ss(P,r,t). 

(e) IfXi | ••• \ Xk £ MpoSs(P,r,t) for some (Xx,... ,Xk) £ C(r,t), then Xx,... ,Xk £ 

MpoSs(P,r,t). 

Proof. W e only prove part (a); the remaining parts are proved similarly. Sup­

pose X, K £ MPoss(P,r,t) and (X, A') £ £(r,t). By Lemma 4.9 it suffices to show 

that EK(X) £ Mposs(P,r,t) for some /. Since X,K £ Mp0Ss(P,r,t), it follows by 

Lemma 4.9 that X, K £ M^0SS(P, r, t) for some m. By definition 4.4, A4^"/S(P, r, t) D 

{EK(X) \X,K£ M™0SS(P,r,t) and (X,K) £ £(r,t)}. Hence EK(X) £ M™£s(P,r,t). 

• 

Definition 4.5 Let i > 0. 

1. Let t = tfiTst(r). Then Mseen(P,r,t) = 0 for all *. 

2. Let t > tfixst(r)- Then 

Mseen(P,r,t) 

where 

S = 

Mseen(P,r,t - 1) U Srecv(P,r, t - 1) if i = 0 

Mi&n(P,r,t)\JS if:>0 

{X | EK(X) £ M.
{£en(P,r,t) and K~

x £ MPoss(P,r,t) and (X,K) £ £(r,t)} 

U {Xi | (Xx | • • • | X,) G M^en(P,r,t) and (Xx,... ,Xk) £ C(r,t)}. 
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The following lemma is easily proved from Definition 4.3 and Definition 4.5. 

Lemma 4.14 

oo 

M°seen(P,r,t) C M\een(P,r,i) C • • • C (J A4Jseen(P,r,t) = MSeen(P,r,t) 

i=0 

Lemma 4.15 

MreCv(P,r,t) C MSeen(P,r,t) 

Proof. By induction on t: 

1. (Basis) Let t = t^rst(r). By definition 4.3, 

Mrecv(P,r,tfast(r)) = Mseen(P,r, tfirst(r)) = 0. 

Therefore, the required statement holds. 

2. (Induction) Let t > tfirst(r) be arbitrary. W e assume the inductive hypothesis: 

Mrecv(P,r,t) C A4Seen(^,r,t); and we show this implies Mrecv(P,r,t + 1) C 

Afseen(P,r,t+l). 

By the inductive hypothesis it follows that 

A4reci;(P, r, t) U ^^^(P, r, t) C A4seen(i
3, r, i) U Srect;(P, r> *)• 

By definition 4.3, AWt>(jP, r, t+1) = A4rect;(^, r, t)USrecv(P, r, t), and, by defini­

tion 4.5, A4°een(P,r,t + l) = A4seen(^,r,t)U<WCP,r,*)- Hence Mrecv(P,r,t + 

1) Q A<5een(^ r^ + 1)' B y L e m m a 4-14 ii; follows tnat Mrecv(P,r,t + 1) C 

MSecn(P,r,<+l). 

(This completes the proof of L e m m a 4.15.) D 

Lemma 4.16 

Mseen(P,r,t)C Mposs(P,r,t) 

Proof. By induction on t: 

1. (Basis) Let t = tfirst(r). By definition 4.3, 

A4seen(P,r,tfirst(r)) = A4p0SS(P,r,tfirst(r)) = 0. 

Therefore, the required statement holds. 
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2. (Induction) Let t > tfirs+(r) be arbitrary. We assume the inductive hypothesis: 

(HP1) MSeen(P,r,t) C Mp0ss(P,r,t); and we show this implies MSeen(P,r,t-r-

l)QMp0ss(P,r,t + l). 

By Lemma 4.14 it suffices to show that, for all m, M™een(P, r, t+1) C Mp0ss(P, r,1+ 

1). This assertion is shown using induction on m: 

I. (Basis) Let m = 0. From Lemma4.1(b) and HP1 it follows that MSeen(P, r, t)U 

Srecv(P,r,t) C A4poss(P,r,t)U<Sposs(P,r,t). By definition 4.5, A4°een(P,r,t+ 

1) = A45een(P,r,t) U SreCt;(P,r,*), and, by definition 4.4, Mp0SS(P,r,t + 

1) = A^possCP.r^USpo^r,*). Hence A4°een(P,r, t+1) C A4°0SS(P,r,t+ 

1). By Lemma 4.9 it follows that M°seen(P,r,t + 1) C AV5S(P,r,t + 1). 

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis: 

(HP2) M^een(P,r,t + 1) C A4p0ss(iV,t + 1); and we show this implies 

M%+ln(P,r,t + 1) C Mposs(P,r,t + 1). 

It suffices to show that, for all Y, if Y G A ^ + ^ P ^ t + 1) then Y G 

A4p0SS(P,r,t + 1). Suppose Y G A ^ n ( ^ M + l)- BY definition 4.5, 

Y£M™een(P,r,t + l) 

U {X | EK(X) £ M™een(P,r,t-r-1) and (X,K) £ £(r,t + 1) and 

JT 1 eMposs(P,r,t + l)} 

U {Xi | (Xi | • • • | Xk) £ M7een(P,r,t + 1) and (Xi,... ,Xk) £ C(r,t + 1)}. 

Case (i): Y G A4™een(P,r,t -f 1). HP2 yields Y G MpoSs(P,r,t + 1). 

Case (ii): Y G {X | £*(X) G M%een(P,r,t + 1) and (X,tf) G £(r,t + 1) and 

AT"1 £ Mp0ss(P,r,t + l)}. 

We have, for some K, EK(Y) £ M^een(P: r, t + 1), (Y, #) G £(r, t + 1), 

and AT"1 G A4poS5(P,r,t + 1). HP2 yields EK(Y) £ MpoSs(P,r,t + 1). 

By Lemma 4.13(d) it follows that Y G Mposs(P,r,t + 1). 

Case (iii): Y G {X; | (Xi | • • • | Xk) £ M%een(P,r,t + 1) and (Xx,...,Xk) £ 

C(r,t + 1)}-

We have Y = Xi for some i and for some Xx \ • • • \ Xk £ M™een(P, r, t + 

1) such that (Xi, ...,Xk) £ C(r,t + 1). HP2 yields Xx \ • • • | Xk £ 

Mposs(P,r,t + 1). By Lemma 4.13(e) it follows that Xi,...,Xfc G 

Mpo88(P,r,t + 1). But Y = X{ for some i, so Y G A4p0s5(P,r,t + 1). 

(This completes the proof of Lemma 4.16.) • 



4.2. A computational model of communicating principals 72 

Lemma 4.17 Let Y £ A4seen(P,r,t). Then 

(a) ifY = EK(X) for some (X,K) £ £(r,t) and K~
l £ Mp0ss(P,r,t), then X £ 

MSeen(P,r,t), and 

(b) ifY = Xx\---\Xk for some (Xx,...,Xk)£ C(r,t), then 

Xx,...,Xk £ MSeen(P,r,t). 

Proof. We only prove part (a); part (b) is proved similarly. Since Y G M.seen(P->r,t), 

it follows by Lemma 4.14 that Y G M.™een(P,r,t) for some m. Suppose Y = EK(X) 

for some (X, K) £ £(r, t), and further suppose K~l £ MPoss(P, r, t). By definition 4.5, 

M&en(P,r,t) D {X | EK(X) £ M^een(P,r,t)and(X,K) £ £(r,t) and K~x £ 

Mposs(P,r,t)}. Hence X G M^n(P,r,t). By Lemma 4.14 it follows that X G 

MSeen(P,r,t). 

a 

Definition 4.6 Let i > 0. 

1. Let t = tfirst(r). Then A4^(P,r,t) = 0 for all i. 

2. Let t > tfirst(r). Then 

Ui (p ., = f Msaid(P, r, t - 1) U Ssaid(P, r,t-l) if i = 0 

A ' W * ^ \^yp, r,t)U5 if^>o 

where 

5 = 

{X, A^ | £tf(X) G M ^ P , r, t) and X, A G A4poss(P, r, t) and 

(X,K)££(r,t)} 

U {X, A^ | HK(X) £ M^id(P,r,t) and X,AT G A4poS*(P,r,t) and 

(X,K)£U(r,t)} 

U {Xi | (Xi | • • • | X,) G M^id(P,r,t) and (Xi,... ,Xk) £ C(r,t)}. 

The following lemma is easily proved from Definition 4.3 and Definition 4.6. 

Lemma 4.18 oo 
M°said(P,r,t) C A4^(P,r,t) C • • • C U M

l
said(P,r,t) = A*Mirf(P,r,t) 

i=0 
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Lemma 4.19 

Msaid(P,r,t)CMposs(P,r,t) 

Proof. By induction on t: 

1. (Basis) Let t = t^rst(r). By definition 4.3, 

^Sa*d(Ar,tfirst(r)) = MPoss(P,r,t^Tst(r)) = 0. 

Therefore, the required statement holds. 

2. (Induction) Let t > t-^rst(r) be arbitrary. We assume the inductive hypothesis: 

(HP1) Msaid(P,r,t) C Mposs(P,f,t); and we show this implies Msaid(P,r,t + 

l)QMp0ss(P,r,t + l). 

By Lemma 4.18, it suffices to show that, for all Y and for all rn, if Y G 

Mm -JP,r,t + 1) then Y G Mposs(P,r,t + 1). This assertion is shown using 

induction on m: 

I. (Basis) Let m = 0. Suppose Y G M°said(P,r,t + 1). By definition 4.6, 

Case (A): Y G Msaid(P,r,t). HP1 yields Y G A4p0ss(/>,t). By Lemma 4.2(f) 

it follows that Y G Mp0ss(P,r,t + 1). 

Case (B): Y G Ssaid(P,r,t). By definition 4.2, P performs send(Y) at t. RE4 

yields Y G Mp0ss(P,r,t). By Lemma 4.2(f), Y G MpoSs(P,r,t + 1). 

II. (Induction) Let m > 0 be arbitrary. W e assume the inductive hypothesis: 

(HP2) for all Y, if Y G M™aid(P,r,t + 1) then Y £ Mp0ss(P^,t + 1); 

and we show this implies that, for all Y, if Y G A4™+.^(P,r,t + 1) then 

Y£MPoss(P,r,t + l). 

Suppose Y G M™£d(P,r,t + 1). By definition 4.6, 

y^BrfM+i) 
U {X, AT | £*(X) G Mmsaid(P, r, t + 1) and X, # G A4p05S(P, r, t + 1) and 

(X,AT)G£(r,t + l)} 

U {X,K | #*(X) £ M7aid(P^^ + X) and X ' ^ G Mposs(P,r,t + 1) and 

(X,A^)G^(r,t + l)} 

U {Xi | (Xi | • • • | Xfc) G M™aid(P,r,t + 1) and (X1;... ,Xfc) G C(r,t + 1)}. 
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Case (i): Y G M™aid(P, r, t + 1). HP2 yields Y G Mp0Ss(P, r, t + 1). 

Case (ii): Y G {X, AT | P K(X) G A4™^(P,r,t + l) and X, X G A4p05S(P,r,t + l) 

and(X,X)G£(r,t + l)}. 

We have Y = X or Y = A for some X, A such that X, K £ Mp0ss(P, r, t+ 

1). Therefore, Y G Mposs(P,r,t + 1). 

Case (iii): Y G {X, X | HK(X) £ M™aid(P,r,t-rl) and X, K £ Mposs(P,r,t + l) 

and(X,X)G"H(r,t + l)}. 

Similar to Case (ii). 

Case(iv): Y G {X4- | (Xx | • • • | X,) G Af™ w(P,r,t + 1) and (Xx,... ,Xk) £ 

C(r,t + 1)}. 

W e have Y = Xi for some i and for some Xx \ • • • \ Xk £ M™aid(P, r, t + 

1) such that (Xi,...,Xfc) G C(r,t + 1). HP2 yields (Xi,...,X^) G 

Mposs(P,r,t + 1). By Lemma 4.13(e) it follows that Xx,...,Xk £ 

Mp0ss(P,r,t + 1). But Y = Xt- for some t, so Y G Mp0ss(P,r,t + 1). 

(This completes the proof of Lemma 4.19.) n 

Lemma 4.20 

(a) IfEK(X) £ Msaid(P,r,t) for some (X,K) £ £(r,t) such that X, K £ Mp0ss(P,r,t), 

then X,K £ Msaid(P,r,t). 

(b) IfHK(X) £ Msaid(P, r, t) for some (X, K) £ ri(r, i) such that X, K £ Mp0Ss{P, r, t), 

t/ienX,XGA<said(P,r,t). 

(c) IfXx | • • • | Xjfe G Msaid(P,r,t) for some (Xx, ...,Xk)£ C(r,t), then Xx,...,Xk£ 

Msaid(P,r,t). 

Proof. We only prove part (a); the remaining parts are proved similarly. Suppose 

EK(X) £ Msaid(P,r,t) for some (X, A) G £(r,t) such that X, K £ Mp0Ss(P,r,t). 

By Lemma 4.18 it suffices to show that X,K £ Mlsaid(P,r,t) for some /. Since 

EK(X) £ Msaid(P,r,t) it follows by Lemma 4.18 that EK(X) £ M™aid(P,r,t) for 

some m. By definition 4.6, M^d(P,r,t) D {X,K | EK(X) £ Mmsaid(P,r,t) and 

(X,K) £ £(r,t) and X, K £ Mposs(P,r,t)}. Hence X, X G A4J+^(P,r,t). 

(This completes the proof of Lemma 4.20.) • 

Proposition 4.1 For each time t, the following sets are finite: 
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(a) MPoss(P,r,t); 

(b) MSeen(P,r,t); 

(c) Msaid(P,r,t). 

Proof. 

(a) Follows from Lemma 4.11 and Lemma 4.7. 

(b) Follows from Lemma 4.16 and part (a). 

(c) Follows from Lemma 4.19 and part (a). 

D 

The following corollary to Proposition 4.1 is easily proved. 

Corollary 4.1 For each time t, the following holds: 

(a) MPoss(P,r,t) = M
k
poss(P,r,t) for some k; 

(b) MSeen(P,r,t) = M
k
seen(P,r,t) for some k; 

(c) M8aid(P,r,t) = M
k
said(P,r,t) for some k; 

Proposition 4.2 

Let Y £ Afp05S(P, r, t) for some m, and suppose that Y G' A4.Seen(P,r,t). 

(a) IfY = EK(X) for some (X,K) £ £(r,t), then X,K £ M^0SS(P,r,t). 

(b) IfY = HK(X) for some (X,K) £ U(r,t), then X,K £ M™0SS(P,r,t). 

(c) If Y = Xx | • • • | Xk for some (Xx, ...,Xk)£ C(r,t), then 

Xx,...,Xk£M™0SS(P,r,t). 

Proof. We prove parts (a), (b) and (c) simultaneously by induction on t: 

1. (Basis) Let t = tfirst(r). By definition 4.4, Mposs(P,r,t) = 0 for all i. Therefore, 

the required statement holds vacuously. 

2. (Induction) Let t > tftrs+(r) be arbitrary. We assume the inductive hypothesis: 

(HP1) for all m, if Y £ M^0SS(P,r,t) and Y £ Mseen(P,r,t) then 
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(a) if Y = EK(X) for some (X, K) £ £(r, t) then X, K £ M™0SS(P, r, t), and 

(b) if Y = HK(X) for some (X, K) £ U(r, t) then X, K £ Mp\>ss(P, r, t), and 

(c) if Y = Xi | • • • | Xk for some (Xx, ...,Xk) £ C(r,t) then Xx,...,Xk £ 

M^oss(P,r,t). 

We show the above hypothesis implies that, for all m, if Y £ Mposs(P,r,t + 1) 

and Y g" MSeen(P, r, t + 1) then 

(a) if Y = PK(X) for some (X, K) £ £(r, t +1) then X, X G M™0SS(P, r, t +1), 

and 

(b) if Y = #A'(X) for some (X, K) £ "H(r,t + 1) then X, X G Af™oss(P,r,t + l), 

and 

(c) if Y = Xi | • • • | Xk for some (Xl5... ,Xk) £ C(r,t + 1) then X1?... ,Xk £ 

M™0SS(P,r,t+l). 

The above assertion is shown using induction on m: 

I. (Basis) Let m = 0. Suppose Y G Mposs(P,r,t + l) and Y g" Afseen(P,r,t + 

1). By definition 4.4, Y G A4poss(P,r,t) U Sposs(P,r,t). 

Case (i): Y G MpoSs(P,r,t). By Lemma 4.9 it follows that Y G M™'oss(P,r,t) 

for some m'. 

Case (a): Y = £ K(X) for some (X,X) G £(r,t + 1). 

By Lemma 4.12(a) it follows that (X,X) G £(r,t). Since Y g 

A4Seen(-P, r, t+1), it follows by Lemma4.2(g) that Y g" A4seen(P,r, t). 

HP1 yields X,X G M%oss(P,r,t). By Lemma 4.9 it follows that 

X, X G MPoss(P, r, t). Hence, by definition 4.4, X, X £ Mposs(P, r, t+ 

1). 

Case (b): Y = # K ( X ) for some (X, X) G U(r, t + 1). 

Similar to Case (a). 

Case (c): Y = Xx \ • • • \ Xk for some (Xl5..., X*) G C(r, t + 1). 

Similar to Case (a). 

Case(ii): Y G Sp0SS(P,r,t). 

Case (a): Y = E*(X) for some (X, X) G £(r,f + 1). 

By definition 4.3, EK(X) £ Mencr(r,t-\-l)- Hence Y G AWr(r,t+ 

! ) • 
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Case (A): P performs generate(Y) at t. 

By definition 4.3, Y G Mgenr(r,t + 1), which is impossible by 

RE2. 

Case (B): P performs receive(Y) at t. 

By definition 4.3, Y G Mseen(L\f',t + 1), which is impossible by 

assumption. 

Case (C): P performs encrypt(X', K') at t for some X' and some X', where 

Y = £*,(*')• 
RE5 yields X',X' G AVss(P,r,t). By definition 4.3, (X',X') G 

£(r,t + 1). RE1 yields X = X' and K = K'. Hence X, X G 

Mp0ss(P, r, t). Therefore, by definition 4.4, X, X G Mposs(P, r, t+ 

1). 

Case (D): P performs hash(X',K') at t for some X' and some K', where 

Y=# K'(X'). 

By definition 4.3, Y G M^^r^ + 1), which is impossible by 

RE2. 

Case (E): P performs concatenate(X[,... ,X'k) at t for some X'1,...,X'k, 

where Y = X{ | • • • | X'k. 

Similar to Case (D). 

Case (b): Y = HK(X) for some (X,X) G %(r,t + 1). 

Similar to Case (a). 

Case(c): Y = Xx \ • • • \ Xk for some (Xu... ,Xk) £ C(r,t + 1). 

Similar to Case (a). 

II. (Induction) Let m > 0 be arbitrary. W e assume the inductive hypothesis: 

(HP2) for all m, if Y G M^0SS(P,r,t + 1) and Y g A4seen(P,r,t + 1) then 

(a) if Y = EK(X) for some (X, X ) G £(r,t + l) then X, X G A4^0SS(P,r,t + 

1), and 

(b) ifY = HK(X) for some (X, X ) G U(r, t+1) then X , X G A4^0S5(P,r,t+ 

1), and 

(c) if Y = Xi | • • • | Xk for some (Xi,..., X*) G C(r, t+1) then Xu...,Xk£ 

M%0SS(P,r,t + l). 

W e show the above hypothesis implies that, if Y G M^ssiP^^ + !) a n d 

Y£A4Seen(^,r-,t + l) then 
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(a) if Y = EK(X) for some (X, X) G £(r, t + 1) then X, X G M^S\(P, r, t + 

1), and 

(b) if Y = HK(X) for some (X, X) G U(r, t+1) then X, X G M$£8(P, r, t+ 

1), and 

(c) ifY = Xi !••• |Xfcforsome(Xi,...,Xfc)GC(r,t+l)thenX1,...,XfcG 

A4^+V(P,r,t + l). 

Suppose Y G Mffis(P,r,t+l) and Y g" A4seen(P,r,t+l). By definition 4.4, 

Y£M™oss(P,r,t + l) 

U { ^ K ( X ) | X,X G A4™OS5(P,r,t + 1) and (X, X) G £(r,t + 1)} 

U {HK(X) I X, X G M^OSS(P, r, t + 1) and (X, X) G ft(r, t + 1)} 

U {(Xx 1 • • • | Xk) I Xi,... ,Xk £ M™oss(P,r,t + 1) and 

(X!,...,Xfc)GC(r,t + l)} 

U {X | EK(X), X-
1 G A4™oss(P,r,t + 1) and (X, X) G £(r,t + 1)} 

U {Xi | (Xi 1 • • • | Xfc) G Af£0SS(P,r,t + 1) and (Xi,...,Xfc) G C(r,t + 1)}. 

Case (A): Y G MpOSS(P,r,t + 1). The required statement follows from HP2 and 

Lemma 4.9. 

Case (B): Y £ {EK(X) | X,X G M%0SS(P,r,t + 1) and (X,X) G £(r,< + 1)}. 

W e have Y = EK<(X') for some X', X' G M^oss(P,r,t + 1) such that 

(X',X') G £(r,* + 1). By definition 4.3, EK>(X') £ Mencr(r,t + 1), 

and therefore, Y G Mencr(r,t + 1). 

Case (a): Y = EK(X) for some (X,X) G £(r,t + 1). 

RE1 yields X = X' and X = X'. Hence X, X G Af™0SS(P,r,t + 1). 

By Lemma 4.9 it follows that X, X G A ^ + ^ P , ? ^ + 1). 

Case (b): Y = # * (X) for some (X, X) G U(r,t + 1). 

By definition 4.3, Y G At/^(r,* + 1), which is impossible by RE2. 

Case (c): Y = Xi | • • • | Xk for some (X1}... ,Xk) £ C(r,t + 1). 

By definition 4.3, Y G A4Conc(r,t + 1), which is impossible by RE2. 

Case (C): Y G {HK(X) \ X,K £ M™0SS(P,r,t + 1) and (X,X) G H(r,t + 1)}. 

Similar to Case (B). 

Case (D): Y G {(Xi | ••• | Xk) | Xi,...,Xfc G A4™0SS(P,r,t+l) and (Xi,... ,Xk) £ 

C(r,t + 1)}. 

Similar to Case (B). 
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Case (E): Y G {X | EK(X),K~
X £ M™0SS(P,r,t + 1) and (X,X) £ £(r,t + 1)}. 

We have EK(Y), X"
1 £ M™0SS(P, r, t+1) for some X such that (Y, X) G 

£(r,t+ 1). By Lemma4.9 it follows that EK(Y), X"
1 G Mposs(P,r,t + 

1). Since Y £ Mseen(P,r,t + 1) it follows by the contrapositive of 

Lemma 4.17(a) that EK(Y) $ MSeen(P,r,t + 1). HP2 yields Y, X G 

Mposs(P,r,t + 1). The required statement then follows from HP2 and 

Lemma 4.9. 

Case(F): Y £ {X{ \ (Xx \ • • • \ Xk) £ M%0SS(P,r,t + 1) and (Xx,... ,Xk) £ 

C(r,t + 1)}. 

We have Y = X{ for some i and for some Xx | • • • | Xk £ Mposs(P, r, t + 

1) such that (X!,...,Xfc) GC(r,t + l). Since X,- g" Mseen(P,r,t + 1) 

for some i, it follows by the contrapositive of Lemma 4.17(b) that 

Xi | • • • | Xk$ Mseen(P, r, t+1). HP2 yields Xx,...,Xk£ M™0SS(P, r, t+ 

1). But Y = Xi for some i, so Y £ Mposs(P, r, t + 1). The required 

statement then follows from HP2 and Lemma 4.9. 

(This completes the proof of Proposition 4.2.) O 

Looking back at the proof of Proposition 4.2, it is apparent that we could have proved 

a stronger statement. We can refine the hypothesis further to prove the following 

result, for example: Suppose Y G J^/i^0ss(Pi
r^) f°r s o m e rni and suppose that Y ^ 

MSeen(P,r,t). If Y = EK(X) for some (X, X) G £(r,t), then 

^ ( MPoss(P,r,t- 1) if m = 0 and t > tfirst(r) 

1 ^Fo^(P>r>*) ifm>0. 
However, the statement of Proposition 4.2 is less cumbersome and proves to be more 

direct for our purposes. 

The following theorem is easily proved from Proposition 4.2 and Lemma 4.9. 

Theorem 4.1 Let Y £ MPoss(P-,r,t), and suppose that Y g" MSeen(P,r,t). 

(a) IfY = EK(X) for some (X, X) G £(r,t), then X, X G Mp0ss(P,r,t). 

(b) IfY = HK(X) for some (X,K) £ U(r,t), then X, X G Mp0Ss(P,r,t). 

It is apparent that we have omitted the following case from the statement of Theo­

rem 4.1: (c) If Y = Xi | • • • | Xfc for some (Xx,...,Xk) £ C(r,t), then Xx,...,Xk £ 

Mposs(P,'r,t). We do this simply because the omitted case is exactly part (e) of 

Lemma 4.13, which, however, does not require the extra hypothesis that Y g" MSeen(P, r, t). 
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Theorem 4.2 If X £ MSeen(P,r,t), then X £ Msaid(Q,r,t') for some Q and for 

some t' <t. 

Proof. By induction on t: 

1. (Basis) Let t = f̂irst(
r). By definition 4.3, Mseen(P,r>^first(r)) — 0. Therefore, 

the required statement holds vacuously. 

2. (Induction) Let t > t^g^r) be arbitrary. We assume the inductive hypothesis: 

(HP1) for all t' < t, if X G Aiseen(P,r,t'), then X G Msaid(Q,r,t") for some 

Q and for some t" < t'; and show this implies that, if X G MSeen(P,r,t) then 

X G Msaid(Q, r, t') for some Q and for some t' < t. 

By Lemma 4.14 it suffices to show that, for all m, if X £ M™een(P,r,t), then 

X G Msaid(Q,r,t') for some Q and for some t' < t. We show this by induction 

on m: 

I. (Basis) Let m = 0. Suppose X G A4°een(P,r,t). By definition 4.5, X G 

A4see„(P,r,t - 1) U <Sre«;(P,r,t - 1). 

Case (i): X G Mseen(P,r,t - 1). 

HP1 yields X G Msaid(Q,r,t') for some Q and for some t' < t - 1. 

Case(ii): X £ Srecv(P->r,t-1). 

RE3 yields: there exists a Q which performs send(X) at some t' < 

t - 1. By definition 4.2, X G Ssaid(Q,r,t'), and therefore, by defi­

nition 4.6, X G M°said(Q,r,t' + 1). By Lemma 4.18 it follows that 

X G Msaid(Q,r,t' + 1), which is as required, since t' + 1 < t. 

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis: 

(HP2) if X G Af™en(P,r,t), then X G Msaid(Q,r,t') for some Q and for 

some t' < t; and we show this implies that, if X G M^erl(P, r, t), then X G 

Msaid(Q, r, t') for some Q and for some t' < t. Suppose X G A ^ ^ P , r, t). 

By definition 4.5, 

XGA^een(P,r,t) 

U {Y | EK(Y) £ M™een(P,r,t) and (Y, X) G £(r,t) and 

K-1 £ Mposs(P,r,t)} 

U { Y | (Yi | ••• I Yk) £ M
m
seen(P,r,t) and (Yi,..., Yk) £ C(r,t)} 

Case (A): X £ M^een(P,r,t). 

HP2 yields X G Msaid(Q,r,t') for some Q and for some t' < t. 
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Case (B): X £ {Y \ EK(Y) £ M™een(P,r,t) and (Y,K) £ £(r,t) and X" 1 £ 

Mposs(P,r,t)}. 

W e have, for some K, EK(X) £ M™een(P,r,t), (X, X ) G £(r,t), 

and X" 1 G MpoSS(P,r,t). HP2 yields EK(X) £ Msaid(Q,r,t') for 

some Q and for some t' < t. Consider the smallest t' < t for which 

there exists Q such that EK(X) £ Msaid(Q,r,f), and fix one such 

Q. Thus, for all R and for all t" < t', EK(X) g" Msaid(R,r,t"). 

By the contrapositive of the inductive hypothesis HP1 it follows that 

EK(X) g" Mseen(Q,r,t'). Since EK(X) £ Msaid(Q,r,t'), it follows by 

Lemma 4.19 that P^(X) £ MpOSs(Q,r,t'). Also, we have (X, X ) G 

£(r,t) and t' < t. By Lemma 4.12 it follows that (X, X ) G £(r,t'). 

Since EK(X) £ MpoSs(Q,r,t') and EK(X) (jL Mseen(Q,r,t'), it follows 

by Theorem 4.1 that X, X G Mp0ss(Q, r, t'). By Lemma 4.20(a) it 

follows that X, K £ Msaid(Q,r,t'). 

Case (C): X £ {Yt \ (Yx \ - - - \Yk) £ Mjeen(P,r,t) and (Yx,..., Yk) £ C(r, t)}. 

W e have X = Y, for some i such that Yx \ ••• \Yk £ M™een(P,r,t) and 

(Yx,. ..,Yk)£ C(r,t). HP2 yields Yx \ • • • \ Yk £ Msaid(Q,r,t') for some 

Q and for some t' < t. By Lemma 4.19 it follows that Yx \ • • • \Yk £ 

Mposs(Q,r,t'). Also, we have (Yx,...,Yk) £ C(r,t) and t' < t. By 

Lemma 4.12(c) it follows that (Yi,...,Yfc) £C(r,t'). By Lemma 4.20(c) 

it follows that Yx,...,Yk £ Msa^d(Q,r,t'). But X — Yi for some i, so 
x^Msaid(Q,r,t'). 

(This completes the proof of Theorem 4.2.) • 

4.3 Related work 

The semantic model developed in this chapter alleviates some major deficiencies of ex­

isting models for authentication logics proposed by Abadi and Tuttle [8], and Syverson 

and van Oorschot [9]. In particular, the problems it addresses include the following: 

• A fundamental problem with existing models is that they reflect the syntax of 

the corresponding logics. As emphasized by Syverson [27], this makes the proof 

of soundness of such logics largely trivial and uninformative. 

• A more compelling problem with existing models is that the definitions made as 

part of the models are generally not made sufficiently accurate. As a result, there 
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is often confusion about exactly what properties can be proved as a consequence 

of such definitions. For example, the A T logic paper claims that the logic pro­

posed by its authors is sound with respect to the model defined in that paper. 

However, it has been subsequently reported that one of the axioms of the A T 

logic is unsound (cf. Syverson and van Oorschot [9]). Indeed, no detailed proofs 

of soundness of the logics A T and SVO have been published yet. 

• Existing models leave implicit some critical assumptions that underlie authenti­

cation logics; for example, the assumption that messages can only be constructed 

in a unique way within the system, which is formally captured in our model as 

restrictions REl and RE2. It is difficult to see how proofs of properties which 

depend on such assumptions can be carried out formally in existing models. 

Overall, existing models do not appear to enable proofs of desired properties to be 

carried out rigorously. 

Although our model is motivated by notions found in previous works, it is essen­

tially independent of any logical syntax. It formalizes various critical assumptions that 

underlie authentication logics, but which are nonetheless absent from existing models 

for such logics. In contrast to previous works, we have provided detailed and accurate 

proofs of the properties of our model. Our model is therefore a major advance as 

compared to the models of Abadi and Tuttle [8], and Syverson and van Oorschot [9]. 



Chapter 5 

The soundness of a logic of authentication 

This chapter presents a logic for analyzing authentication protocols. The logic pre­

sented here is motivated by the model developed in the previous chapter. The se­

mantics we give for the logic is based on this model; thus our logic has an essentially 

independently motivated semantics. W e demonstrate the virtue of this approach by 

giving a mathematically rigorous and intuitively convincing proof of soundness of the 

logic. While the syntax of the logic presented in this chapter is somewhat similar in 

appearance to that of the logics AT and SVO, there is a significant underlying dif­

ference nonetheless; namely, that the soundness of our logic is proved rigorously. As 

emphasized elsewhere in this thesis, claims regarding the soundness of the logics AT 

and S V O appear unsupported by published evidence. 

5.1 Logic 

5.1.1 Syntax 

W e begin by defining a formal language L Although l is defined without essential 

regard to the intended interpretation, its structure is motivated by that interpretation. 

The symbols of £ are defined as follows. 

1. Logical symbols 

{HE-1 

-, A V =4> <S> 

occurs-encr occursJiash occurs.conc 

fresh 

generates received sees said says has recognizes 

83 
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believes controls 

2. Parameters 

Pi, P2, ..., Pn (for some fixed natural number n) 

KX,K%, ... 

NUN2, ... 

?1, 92, ... 

The classification of the symbols into the above two classes is motivated by their 

intended interpretation: the logical symbols are the symbols whose interpretation will 

be fixed, whereas the interpretation of the parameters will be allowed to vary. However, 

this distinction plays no essential role in characterizing the language itself. The symbols 

Pi,..., Pn are called principal symbols. The symbols Xi are called key symbols. The 

symbols Ni are called nonce symbols. The symbols qi are called propositional symbols. 

The symbols Pi, Ki, and Ni are called primitive symbols. 

Formation rules 

W e distinguish two classes of expressions in L the terms and the formulas. The 

terms are the expressions which under their intended interpretation represent messages. 

The formulas are the expressions which under their intended interpretation represent 

assertions about messages. 

The terms are defined as follows. 

Tl. Any primitive symbol is a term. 

T2. For each fixed positive integer k if Xx,... ,Xk are terms, then Xi | • • • | Xk is a 

ter m. 

T3. If X is a term and X is a key symbol, then EK(X) and HK(X) are terms. 

T4. If X is a key symbol, then X-1 is a term. 

T5. No expression is a term unless it can be shown to be so from (T1)-(T4). 

The formulas are defined as follows. 

Fl. Any propositional symbol is a formula. 

F2. If (b is a formula, then so is ->(/>. 
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F3. If <p and tb are formulas, then so are <b A ip, cb V ib, <b => if), and <b <$• ̂ . 

F4. If X is a term and X is a key symbol, then occurs-encr(X, K) and occurs Jiash(X, K) 

are formulas. 

F5. For each fixed positive integer k if Xi,..., Xk are terms, then occurs-Conc(Xi,..., Xk) 

is a formula. 

F6. If X is a term, then fresh(X) is a formula. 

F7. If P is a principal symbol and X is a term, then P generates X, P received X, 

P sees X, P said X, P says X, and P has X are formulas. 

F8. If X is a key symbol and P and Q are principal symbols, then P & Q is a 

formula. 

F9. If P is a principal symbol and <b is a formula, then P believes (b and P controls <b 

are formulas. 

F10. No expression is a formula unless it can be shown to be so from (F1)-(F9). 

Formal system 

W e now define a formal system, called L, which consists of the language £ together 

with a deductive apparatus for £. The deductive apparatus is specified by defining the 

following: (1) a set of axioms; (2) a finite set of inference rules. 

The axioms of L are divided into two classes: the logical axioms and the proper 

axioms (also called, nonlogical axioms). W e shall fix a set of formulas as the logical 

axioms. The set of proper axioms consists of formulas which are protocol-specific, and 

is thus left unspecified. By an inference rule p we mean a relation among formulas: 

if a set of formulas T is in relation p to a formula <j>, then we say that ̂  is a direct 

consequence of the formulas in V by virtue of p. 

The set of logical axioms and the set of inference rules is fixed as follows. 

1. Logical axioms 

W e define the set of logical axioms in terms of axiom-schemas, all instances of 

which are logical axioms. To give the axiom-schemas, we need several classes of 

metavariables. Let 

• (^,X)^ be metavariables ranging over formulas, 
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• P, Q, R be metavariables ranging over principal symbols, and 

• X, Xi, X2, ... be metavariables ranging over terms. 

Let k range over the set of all positive integers, and let i range over the set 

{1,..., k} for each fixed k. 

The following are the axiom-schemas of L: 

Al. <p =* (x =» <t>) 

A 2 . (<f> =» (X => </0) => ((<f> => X) =* {<t> => *!>)) 

A 3 , (-x => -•<£) => (hx =>• <f>) =* x) 

A4. P generates X => P /ias X 

A5. P sees X =^ P has X 

A6. P said X ^ P hasX 

A7. P hasX A P has X A occurs.encr(X,K) => P has EK(X) 

A8. P hasX r\P has X A occurs Jiash(X, X) =^ P /ms ## (X) 

A9. P hasXiA--- A P /ms Xfc A occwrs_conc(Xi,..., X*) =>- P has X a | • • • | Xfc 

A10. P has EK(X) A occurs_encr(X, X) A P /ms X
- 1 ^ P has X 

All. P ftas Xi | • • • | Xk A occurs-conc(Xx,... ,Xk) ̂  P has Xi A • • • A P has Xk 

A12. P received X =>• P sees X 

A13. P sees # K ( X ) A occurs.encr(X, K) A P has K~x => P sees X 

A14. P sees Xi | • • • | Xk A occurs-conc(Xi,..., Xk) => 

P sees Xi A • • • A P sees Xk 

A15. P said £#(X) A occurs.encr(X, K) A P has X A P has K =» 

P said X A P said K 

A16. P said HK(X) A occursJiash(X, K) A P has X A P has K => 

P said X A P said K 

All. P said Xi | • • • | Xk A occurs.conc(Xx,..., Xk) =>• 

P said Xx A • • • A P said Xk 

A18. P says X => P saidX 

A19. P said X A fresh(X) =>- P soys X 

A20. fresh(Xi) A occurs.conc(Xx,... ,Xk) =» fresh(Xx \ • • • \ Xk) 
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A21. fresh(X) A occurs„encr(X, K) =* fresh(EK(X)) 

A22. fresh(K) A occurs.encr(X, X ) =* fresh(EK(X)) 

A23. fresh(X) A occursJiash(X, K) => fresh(HK(X)) 

A24. fresh(K) A occursJiash(X, X ) =*> fresh(HK(X)) 

A25. P &Q&Q&P 

A26. P &Q AR sees EK(X) A occurs_encr(X, K) =» 

(P saidXAP said EK(X)AP has K)V(Q saidXAQ said EK(X)AQ has K) 

A27. P hQ AR sees HK(X) A occurs Jiash(X, K) => 

(P said X A P said ff#(X) A P feas X)V 

(Q said X AQ said HK(X) A Q has X ) 

A28. P believes (b A P believes (<b => x^>) =$- P believes if> 

A29. P believes <f> =$• P believes (P believes fa) 

A30. ->P believes <p => P believes (->P believes fa) 

A31. P controls <f> A P believes <b =>• </> 

2. Inference rules 

Rl. (Modus Ponens) If d> and ^ are any formulas, then V> is a direct consequence 

of <̂> and </> => ij>. 

R2. (Necessitation) If </> is any formula and P any principal symbol, then 

P believes <f> is a direct consequence of 0. 

(This completes the definition of L.) 

For the purpose of studying properties of L, we define some standard proof-theoretic 

notions: proof in L, theorem ofL, and deduction in L from a set of formulas. 

Definition 5.1 A proof in L is a finite sequence of formulas fa, ..., fa such that, for 

each i, either fa is an axiom, or fa is a direct consequence of some preceding formulas 

by a rule of inference. 

Definition 5.2 A formula <^ is a theorem ofL (written hL fa) if <b is the last formula 

of a proof in L. 

Notice that all axioms (logical or proper) of L are theorems of L. 
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Definition 5.3 A deduction in L from a set of formulas T is a finite sequence of 

formulas fa, ..., fa such that, for each i, either fa is an axiom, or fa is an element of 

T, or fa is a direct consequence of some preceding formulas by a rule of inference. 

Definition 5.4 A formula <j> is deducible in L from a set of formulas Y (written Y hL fa) 

if </> is the last formula of a deduction in L from Y. 

The following lemma is easily proven from the above definitions. 

Lemma 5.1 Let <b, XJJ be any formulas and Y, A any sets of formulas. Let P be any 

principal symbol. 

(a) IfY is the empty set, then Y \~L (b iff\~L <j>-

(b) IfY\-L(f> then YUA\-Lfa 

(c) Y \~ <b iff there is a finite subset £ ofY such that £ hjr, <p. 

(d) IfY\-L<p and Y \~L <j> =£• ip, then Y \~L ip. 

(e) IfY\-L,4> then Y \~L P believes <j>. 

5.1.2 Semantics 

W e introduce a possible worlds framework. Fix a system, say, Pi,..., Pn, where n is 

the number of principal symbols in £. Intuitively, a world is an ordered pair (r,t), 

which consists of a run r of the system and a time t. Let TZ be the set of all runs of 

the system. If R C H, call {(r,t) \ r £ R and t > t^TSt(r)} the set of worlds of R, 

denoted w(R). The semantics we define is of a model-theoretic nature; it rests on the 

usual notions: interpretation, truth for an interpretation, and validity. Roughly, an 

interpretation is a structure relative to which truth is defined. The class of structures 

we take as interpretations is essentially due to Kripke. (Since their invention Kripke 

structures have become a pervasive tool in giving semantics for modal logics.) For our 

purposes an interpretation consists of the following components: a set of runs RCfc, 

a truth assignment to the primitive propositions with respect to the set of worlds of P, 

n binary relations (one for each principal) on the set of worlds of P, called possibility 

relations, and a function / which maps terms of £ to messages in M. 

Definition 5.5 Let $0 be the set of propositional symbols of £. An interpretation of 

£ is a tuple / = (P, it, ~1}..., ~ n, / ) , where: 
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1. RCK, 

2. TT : $0 -> 2™(
R), 

3. for each i, ~i is a binary relation on w(R) (so that ~t- C u>(P) x w(P)) which is 

transitive and euclidean, and 

4. (a) / maps each principal symbol to a distinct element of V (the set of principal 

names); 

(b) / maps each key symbol to an element of /C (the set of keys); 

(c) / maps each nonce symbol to an element of M (the set of nonces); 

(d) if Xi,...,Xfc are terms, then f(Xx | ••• | X*) = f(Xx) | ••• | f(Xk) (the 

concatenation of the strings f(Xx),..., f(Xk)); 

(e) if X is a key symbol and X is a term, then f(EK(X)) - Ef(K)(f(X)) (the 

symbol E on the right-hand side is the semantic keyed encryption function 

defined in the model); 

(f) f{Hx(X)) = Hf(K)(f(X)) (the symbol H on the right-hand side is the 

semantic keyed hash function defined in the model); 

(g) if X is a key symbol, then f(K~x) = (/(X))_1 (the symbol -1 on the right-

hand side is the function from K to /C_1 specified earlier). 

Although the above definition fixes the possibility relations to be transitive and eu­

clidean, there is considerable flexibility in choosing alternative properties. W e follow 

the usual idea that a principal's possibility relation determines its beliefs, and that the 

properties of the possibility relation govern the properties of the notion of belief. 

Convention. We normally suppress /; for example, instead of f(K) we write X. 

Any resulting ambiguity is resolved from the context. 

Fix an interpretation / = (il,7r,~i,...,~„,/). If ( M ) G w(R), we say that (r,t) 

is in I. W e now define what it means for a formula d> to be true for (r, t) in I (written 

Hrt) *£)• T h e d e f m i t i o n Proceeds by induction on the structure of fa 

Definition 5.6 For all i, j £ {1,..., n} and for all positive integers /: 

1. H=fr,t) <?m iff (r> *) € ^m). for m = 1,2,.. .. 
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3. h{r,t) ^ A ^ i f f h(,,t) 0 and hfr,t) V>-

4- h(r,t) </> V V> ^ h(,,t) </> or (=(,,*) 0 or both. 

5. |=fr)t) <£ =4> if) iff either not ^ [ r t ) fa or |=Jrt) t/>, or both. 

6- Y=(r,t) <f> & V> iff either j=[r>t) </> and (=(,.)t) V, or not f=(r)f) </> and not f=£.(t) V>. 

7. (=(Tft) Pi generates X iff X G Mgenr(Pi,r, t). 

8. l=[rit) Pi received X iff X G AWu(P,,r,t). 

9. f=(rit) Pt- sees X iff X G A4seen(Pi,r,t). 

10- h(r,*) pi saidX {®Xe Msaid(Pi,r,t). 

H- H(r,«) pi says X iff X G Msaid(Pi,r,t) \ Msaid(Pi,r,0). 

12. |=fr>t) Pi fcas X iff X G A4poss(Pi, r, t). 

13. H(r,t) occws_encr(X,X) iff (X, X) G £(r,t). 

14. f=frit) occurs_/iasfc(X, X) iff (X, X) G U(r,t). 

15. |=fr>t) occitrs-concCXi,..., X,) iff (Xx,..., X,) G C(r, t). 

16. \={r>t) /res/>(X) iff X £ A<said(ft, r, 0) for all k = 1,..., n. 

17. [=(r t) Pi & Pj iff for all t' < t, for all X , for all k = 1,..., n: 

(a) if £K(X) G A4smW(Pfc,r,t') and (X, X) G £(r,t'), then 

£ J C ( X ) G A4seen(Pfc,r,t') or Pfc G {Pi,Pj} or both, and 

(b) if HK(X) £ Msaid(Pk,r,t') and (X, X ) G U(r,t'), then 

HK(X) £ Mseen(Pk,r,t') or Pk £ {Pi,Pj} or both. 

18. Y^\r,t)
 pi believes (j) iff for all worlds (r',f) in /, if (r,t) ~i (r',f) then j=(rV/) </>. 

19. (=[r>t) Pi contro/s d> iff h(r,t) ^ &e/ieue$ <£ implies f={rt) <£. 

The truth conditions defined above need some explanation. Clause (1) reflects what 

has already been noted before: we fix the truth of propositional symbols by means 

of TT. Clauses (2)-(6) reflect standard propositional truth assignments for'--, A, V, 

=*, and &. Each of the clauses (7)-(15), with the seeming exception of clause (11), 

reflects notions that we have independently developed in the model of the previous 
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chapter. However, says is simply a derived notion: the truth condition for says is 

essentially that for said with an added restriction. A similar comment applies to the 

notion reflected by clause (16); the only novelty here is that we quantify over all sets 

of said messages for a fixed time of 0. Essentially, the truth condition for <-> captures 

the following intuition: a key K is shared between principal P and Q iff P and Q are 

the only principals encrypting and hashing messages using X . Clause (18) reflects the 

standard possible worlds view of belief. Roughly, it says that a principal P believes 

exactly those facts that are true in the worlds P considers possible. 

To this point, the notion of truth is defined relative to a given interpretation and a 

world in that interpretation. As usual, we extend this notion to truth with respect to 

a given interpretation and define validity in terms of truth for all interpretations. 

Definition 5.7 A formula <f> is true for an interpretation I (written |=7 fa) iff </> is true 

for every world in A 

Definition 5.8 A formula <f> is valid (written \= fa) iff <f> is true for every interpretation. 

The following proposition shows that the inference rules preserve truth with respect to 

interpretations. 

Proposition 5.1 Let (b, ib be any formulas and P any principal symbol. For any 

interpretation I: 

(a) If f=7 <f> and ^ 7 (b^^, then \=* </>• 

(b) If |=7 fa then Y=* P believes fa 

Proof. 

(a) Suppose there is an interpretation / such that j=7 <j> and l^7 <b=^rb. Then \=l <f> 

and \=l <b =» V> for every w in A Therefore, by condition 5 of definition 5.6, 

\=l ib for every w in /; that is, [=7 fa as required. 

(b) Suppose there is an interpretation I such that |=7 fa Then \=l (b for every UJ in 

I. Therefore, by condition 18 of definition 5.6, \=l P believes <f> for every w in /; 

that is, j=7 P believes fa as required. 

(This completes the proof of Proposition 5.1.) ° 

Corollary 5.1 Let <j> and I/J be any formulas and P any principal symbol. 

(a) If\=4> and \= 4>=> ij), then \= i>. 
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(b) If (= <p, then (= P believes <f>. 

Hereafter we write ^7 <p to mean not (=7 fa and similarly for the cases with or without 

subscripts and superscripts. If P denotes a principal symbol, write ~p to stand for the 

possibility relation of the principal denoted by P. 

W e now proceed to show that all the logical axioms of L are valid. 

Lemma 5.2 The following formulas are valid: 

(a) <f>^(X^<b) 

(b) (<t>^(x^ VO) =* ((<£ =» x) =* (</> =* </>)) 

fcj (-X =* -^) =* ((-X =* 0) =* X) 

Proof. We only prove part (a); the remaining parts are proved similarly. Take an 

arbitrary interpretation I and an arbitrary world w in I such that j=7 fa From con­

dition 5 of definition 5.6 and the fact that j=J, fa it follows that \=*w x => fa as required. 

(This completes the proof of Lemma 5.2.) n 

Lemma 5.3 The following formulas are valid: 

(a) P generates X => P has X 

(b) P received X =£- P sees X 

(c) P sees X => P has X 

(d) P saidX => P hasX 

Proof. 

(a) Take an arbitrary interpretation / and an arbitrary world (r, t) in / such that 

\=(rt) P generates X. Then, by condition 7 of definition 5.6, X G Mgenr(P,r,t), 

and therefore, by Lemma 4.10, X G MPoss(P,r,t). Hence, by condition 12, 

\=Lt\ P has X, as required. 

(b) Follows similarly using Lemma 4.15. 

(c) Follows similarly using Lemma 4.16. 

(d) Follows similarly using Lemma 4.19. 
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(This completes the proof of Lemma 5.3.) Q 

Lemma 5.4 The following formulas are valid: 

(a) P has X A P has K A occurs_encr(X, X) =^> P has EK(X) 

(b) P hasX A P has K A occursJiash(X,X) =4> P has HK(X) 

(c) P has Xx A • • • A P has Xk A occurs.conc(Xx,...,Xk) => P has Xx \ • • • | Xk 

(d) P has EK(X) A occurs„encr(X, K) A P has X"
1 ^ P has X 

(e) P has Xx \ • • • \ Xk A occurs-conc(Xx,..., Xk) =*> P has Xx A • • • A P has Xk 

Proof. We only prove part (a); the remaining parts are proved similarly. Take an 

arbitrary interpretation / and an arbitrary world (r,t) in / such that (=(r)t) P has 

X A P has K A occurs.encr(X,K). Then, by conditions 3, 12, and 14 of defini­

tion 5.6, X, X G Mposs(P,r,i) and (X, X) G £(r,t), and therefore, by Lemma4.13(a), 

EK(X) £ MPoss(P,r,t). Hence, by condition 12, |=(r)t) P has EK(X), as required. 

(This completes the proof of Lemma 5.4.) D 

Lemma 5.5 The following formulas are valid: 

(a) P sees EK(X) A occurs-encr(X, K) A P has X'
1 =3- P sees X 

(b) P sees Xi | • • • | Xk A occurs-Conc(Xx,..., X*) => P sees Xx A • • • A P sees Xk 

Proof. We only prove part (a); the remaining part is proved similarly. Take an arbi­

trary interpretation J and an arbitrary world (r,t) in / such that |={yit) P sees EK(X)A 

occurs.encr(X, K) A P has K'1. Then, by conditions 3, 9, 12, and 14 of definition 5.6, 

EK(X) £ Mseen(P,r,t), (X,K) £ £(r,t), and X"
1 G Mposs(P,r,t), and therefore, 

by Lemma 4.17(a), X G Mseen(P,r,t). Hence, by condition 9, !=fr>f) P sees X, as 

required. 

(This completes the proof of Lemma 5.5.) D 

Lemma 5.6 The following formulas are valid: 

(a) P said EK(X) A occurs.encr(X, X) A P has X A P has K ^ P said X A P said K 

(b) P said HK(X) A occursJiash(X, X) A P has X A P has X => P said X A P said K 
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(c) P said Xi | • • • | Xfc A occurs_conc(Xi,..., Xk) =>• P said Xx A • • • A P said Xk 

Proof. We only prove part (a); the remaining parts are proved similarly. Take an 

arbitrary interpretation / and an arbitrary world (r,t) in / such that \=Lt\ P said 

EK(X) A occurs^encr(X, X ) A P has X A P has X =» P said X A P said K. Then, by 

conditions 3, 10, 12 and 13 of definition 5.6, EK(X) £ Msaid(P,r,t), (X, X ) G £(r,t), 

and X, X G MPoss(P,r,t), and therefore, by Lemma 4.20(a), X, X G Msaid(P,r,t). 

Hence, by conditions 3 and 10, \=[Tit) P said X A P said X, as required. 

(This completes the proof of Lemma 5.6.) n 

Lemma 5.7 The following formulas are valid: 

(a) P says X => P said X 

(b) P said X A fresh(X) =>• P says X 

Proof. 

(a) Take an arbitrary interpretation / and an arbitrary world (r, t) in / such that 

\=lrt) P saVs X- T h e n ' b^ c o n d i t i o n n o f definition 5.6, X G Msaid(P,r,t) \ 

Msaid(P,r,0), and therefore, X G Msaid(P,r,t). Hence, by condition 11, (=fr,t) 

P said X, as required. 

(b) Take an arbitrary interpretation J and an arbitrary world (r, t) in 1" such that 

f=frt) P said X Afresh(X). Then, by conditions 3, 10 and 16 of definition 5.6, 

X e Msaid(P,r,t) and X G" A45mW(Q,r,0) for all Q; in particular, X g 

A4sairf(P,r,0), and therefore, X G A4safj(P,r,t) \ AtsflW(P,r,0). Hence, by 

condition 11, ̂ ^ P saysX, as required. 

(This completes the proof of Lemma 5.6.) ' 

Lemma 5.8 The following formula is valid: 

fresh(Xi) A occurs_conc(Xx,. ..,Xk)=> fresh(Xx | • • • | Xfc) 

Proof. (By contradiction.) Suppose there is an interpretation / for which the formula 

fresh(Xi) A occurs_conc(Xx,... ,Xfc) =* fresh(Xx | • • • | X*) is not true. Then there ex­

ists a world (r, t) in / such that ̂ fr>i) fresh(Xi) A occurs.conc(Xx,.. •, Xk) =» fresh(Xx \ 

... | Xk). By condition 5 of definition 5.6, j=fr(i) fresh(Xi) A occurs-Conc(Xx, ...,Xk) 
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a n d V=(r,t) fresh(Xx | ••• | Xk). By conditions 3, 15 and 16, Xt- g A4said(P,r,0) for 

all P, (Xi,...,Xfc) G C(r,i), and X x | • • • | Xk £ Msaid(Q,r,0) for some Q. If 

(Xi,... ,Xk) £ C(r, 0), then, by Lemma 4.20(c), Xx,...,Xk£ Msaid(Q,r, 0), and the 

required statement follows by contradiction. It remains to show that (Xx,...,Xk) £ 

C(r,0). 

Case (i): Let t < 0. From (Xi,...,X*) £ C(r,t), it follows that (Xi,...,Xfc) G C(r,0), 

trivially when t = 0, and by Lemma 4.3 when t < 0. 

Case (ii): Let t > 0. Since Xx \ - • • \ Xk £ Msaid(Q,r,0), it follows by Lemma 4.19 that 

Xi | ••• | Xk £ MpOss(Q,r,0). Also, (Xi,...,Xfc) G C(r,t). By Lemma 4.12(c) 

it follows that (Xi,..., X*) G C(r, 0). 

(This completes the proof of Lemma 5.8.) • 

Lemma 5.9 The following formulas are valid: 

(a) fresh(X) A occurs.encr(X, K) =>- /resa(P^(X)) 

(b) fresh(K) A occurs_encr(X, K) =>• fresh(Ex(X)) 

(c) fresh(X) A occursJiash(X, K) =$• /res/i(iJ^(X)) 

(d) fresh(K) A occursJiash(X, K) => fresh(HK(X)) 

Proof. (By contradiction.) We only prove part (a); the remaining parts are proved 

similarly. Suppose there is an interpretation / for which the formula fresh(X) A 

occurS-encr(X,K) => /res/i(P^(X)) is not true. Then there exists a world (r,t) in 

/ such that y=\ri\ fresh(X) A occur\s_encr(X, X ) =>- fresh(EK(X)). By condition 5 of 

definition 5.6, \=Lt\ fresh(X) A occurs.encr(X,K) and ^
7
r>i) fresh(EK(X)). By con­

ditions 3, 13, and 16, X g Msaid(P,r,0) for all P, (X,X) G £(r,t), and EK(X) £ 

Msaid(Q,r,0) for some Q. Consider the smallest t' < 0 for which there exists R 

such that EK(X) £ Msaid(R,r,t'), and fix one such P. Thus, for all R' and for 

all t" < t', EK(X) £ Msaid(R',r,t"). The contrapositive of Theorem 4.2 yields 

EK(X) 0 MSeen(R,r,t'). Since EK(X) £ Msaid(R,r,t'), it follows by Lemma 4.19 

that EK(X) £ Mp0ss(R,r,t'). W e now show that (X, X ) G £(r,t'). Recall that 

(X,K)££(r,t). 

Case (i): Let t < t'. It follows that (X, X) G £(r,t'), trivially when t = t', and by 

Lemma 4.3 when t <t'. 
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Case (ii): Let t > t'. By Lemma 4.12(a) it follows that (X,X) G £(r,t'). 

Thus, (X,X) G £(r,t'). By Theorem 4.1 it follows that X, X G Mposs(R,r,t'). Since 

EK(X) £ Msaid(R,r,t') it follows by Lemma 4.18 that EK(X) £ M
m -JR,r,t') for 

some m, and therefore, by definition 4.6, X,X £ M™£d(R,r,t'). By Lemma 4.18, 

X,X G Msaid(R,r,t'), and therefore, by Lemma 4.2, X, X £ Msaid(R,r,0) since 

t' < 0, which contradicts the fact that X G" Msaid(P,r,0) for all P. 

(This completes the proof of Lemma 5.6.) • 

L e m m a 5.10 The following formula is valid: 

1. P&Q&Q&P 

Proof. Obvious. • 

Lemma 5.11 The following formulas are valid: 

IS 

(a) P <-» Q A R sees EK(X) A occurs.encr(X, X) => 

(P said X A P said EK(X) A P has X) V (Q said X AQ said EK(X) A Q has X) 

(b) P & Q A R sees HK(X) A occursJiash(X, K) => 

(P said X A P said HK(X) A P has X) V (Q said X AQ said HK(X) A Q has X) 

Proof. We only prove part (a); the remaining part is proved similarly. Take an 

arbitrary interpretation / and an arbitrary world (r,t) in / such that \=Lt\ P <-> 

Q A R sees EK(X) A occurS-encr(X, K). Then, by condition 3 of definition 5.6, 

Hfrt) P ^ Qi hfr.t) P sees EK(X), and \=Lt\ occurs_encr(X,K). By condition 9, 

ER(X) £ MSeen(R,r,t), and therefore, by Theorem 4.2, EK(X) £ Msaid(R',r,t') for 

some R! and for some t' < t. Consider the smallest t' < t for which there exists R' 

such that EK(X) £ Msa{d(R',r,t'), and fix one such R'. Thus, for all R" and for all 

t" < t', EK(X) G* Msaid(R", r, t"). By the contrapositive of Theorem 4.2 it follows that 

EK(X) <£ Mseen(R',r,t'). Since EK(X) £ Msaid(R',r,t'), it follows by Lemma 4.19 

that EK(X) £ Mp0ss(R',r,t'). By condition 14, (X,X) G £(r,t), and therefore, by 

Lemma 4.12(a), (X, X) G £(r,t') since t' < t. Hence, by condition 18(a), R' £ {P,Q}. 

Also, by Theorem 4.1, X, X £ Mp0ss(R',r,t'). Since EK(X) £ Msaid(R',r,t'), it 

follows by Lemma 4.18 that EK(X) £ A4̂ fl̂ (P',r,t') for some m, and therefore, 

by definition 4.6, X,X G M™+>d(R',r,t'). By Lemma 4.18, X, X G Msaid(R',r,t'). 
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Hence, by Lemma 4.2, EK(X),X £ Msaid(R',r,t) and X G Mposs(R',r,t) since 

t' < t. Hence, by conditions 3, 4, 10 and 12, (=frt) (P said X A P said EK(X) A P has 

K) V (Q saidX A Q said EK(X) A Q has K), as required. 

(This completes the proof of Lemma 5.11.) • 

L e m m a 5.12 The following formulas are valid: 

(a) P believes d> A P believes (d> => ip) =4> P believes if) 

(b) P believes d> =^ P believes (P believes fa) 

(c) ->P believes d> =>• P believes ->(P believes fa) 

Proof. 

(a) Take an arbitrary interpretation / and an arbitrary world w in I such that |=7 

P believes cbAP believes (<j> => fa). Then, by conditions 3 and 18 of definition 5.6, 

|=7# d> and [=7# d> =>• if) for every to' in I such that UJ ~ P UJ'. Therefore, by 

condition 5, \=w> d> for every UJ' in / such that UJ ~ P UJ'. Hence, by condition 18, 

[=7 P believes ip, as required. 

(b) Take an arbitrary interpretation / and an arbitrary world UJ in / such that |=7 

P believes fa Then, by condition 18 of definition 5.6, (*) for every w' in / such 

that UJ ~ P UJ', \=TW, d>. W e wish to show that [=
7 P believes (P believes fa). By 

condition 18 it suffices to show that for every w' in / such that w ~p w', and for 

every w" in I such that w' ~ P UJ", [=̂ // 0. This statement clearly holds by the 

transitivity of ~ p and (*). 

(c) Take an arbitrary interpretation / and an arbitrary world UJ in / such that ^ 7 

-iP believes fa By conditions 2 and 18 of definition 5.6, (**) there exists a world 

UJ0 in I such that w ~ P w0 and |=
7
0 ->fa W e wish to show that \=*w P believes 

->(P believes fa). By conditions 2 and 18 it suffices to show that for every w' in / 

such that UJ ~ P W' there is a UJ" in / such that UJ' ~ P UJ" and |=7U» ->fa But if w' 

is a world in / such that UJ ~ P UJ', then from the euclideanness of ~p and (**) it 

follows that UJ0 is a world in / such that w' ~ P W0 and 1=^ -yfa as required. 

(This completes the proof of Lemma 5.12.) D 

L e m m a 5.13 The following formula is valid: 

P believes d> A P controls d> => d> 
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Proof. Take an arbitrary interpretation / and an arbitrary world (r,t) in / such 

that (=7rt) P believes d> A P controls fa Then, by condition 3 of definition 5.6, 

N(r,t) P beeves <p and \=[r^ P controls fa Hence, by condition 19, \=Lt\ fa as required. 

(This completes the proof of Lemma 5.13.) • 

Theorem 5.1 Every logical axiom ofL is valid. 

Proof. 

1. Axioms (A1)-(A3) are valid, by Lemma 5.2. 

2. Axioms (A4)-(A6), and axiom (A12) are valid, by Lemma 5.3. 

3. Axioms (A7)-(A11) are valid, by Lemma 5.4. 

4. Axioms (A13)-(A14) are valid, by Lemma 5.5. 

5. Axioms (A15)-(A17) are valid, by Lemma 5.6. 

6. Axioms (A18)-(A19) are valid, by Lemma 5.7. 

7. Axiom (A20) is valid, by Lemma 5.8. 

8. Axioms (A21)-(A24) are valid, by Lemma 5.9. 

9. Axiom (A25) is valid, by Lemma 5.10. 

10. Axioms (A26)-(A27) are valid, by Lemma 5.11. 

11. Axioms (A28)-(A30) are valid, by Lemma 5.12. 

12. Axiom (A31) is valid, by Lemma 5.13. 

(This completes the proof of Theorem 5.1.) D 

Soundness theorems 

Let L0 be the system L with an empty set of proper axioms. Thus, the only axioms of 

L0 are the logical axioms (Al) through (A32). 

We are now ready to establish the main soundness theorem. 

Theorem 5.2 Every theorem of LQ is valid. 
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Proof. Let d> be a theorem of L0. The required statement is proved by induction on 

the length of a proof in L0 of d>. 

Let d>i, ..., d>„ = d> be the sequence of formulas of a proof in L0 of d>. W e show, by 

induction on i, that |= fa for 1 < i < n. 

1. (Basis) Let i = 1. Then fa must be a logical axiom, and therefore, by Theo­

rem 5.1, (= fa. 

2. (Induction) Let i > 1 be arbitrary. Assume the inductive hypothesis that, for all 

j < i, \=fa. 

Case (1): fa is a logical axiom. As in the basis step, f= fa. 

Case (2): fa follows by modus ponens from formulas fa and d>m, where j < % and 

m < i, and <pm is of the form fa =» fa. By the inductive hypothesis, |= fa 

and f= d>j => fa, and therefore, by Corollary 5.1(a), \= fa. 

Case (3): fa follows by necessitation from a formula d>j} where j < i, and <& is of 

the form P 6e/ieues fa for some principal symbol P. By the inductive 

hypothesis, ! =̂ fa, and therefore, by Corollary 5.1(b), [= P 6e/ieues fa, which 

is as required. 

(This completes the proof of Theorem 5.2.) • 

Note that the statement of Theorem 5.2 does not hold for L, since in general we allow 

L to contain proper axioms which can be arbitrary formulas. However, a modified form 

of the soundness theorem can still be obtained for L. Technically, when carrying out 

deductions in L we are only interested in those interpretations for which all the proper 

axioms are true. W e can then prove soundness of L relative to such interpretations. 

(This idea is routinely used in the study of formal systems with proper axioms.) 

Definition 5.9 An interpretation / is a model ofL iff every axiom of L is true for I. 

Theorem 5.3 Every theorem ofL is true for any model ofL. 

Proof. Suppose that / is an interpretation for which all the axioms of L are true. Let 

d> be a theorem of L. The required statement is proved by induction on the length of a 

proof in L of d>. 

Let fa,fa,---An = 4>^ the sequence of formulas of a proof in L of fa W e show, 

by induction on i, that |=7 fa for 1 < i < n. 
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1. (Basis) Let i — 1. Then fa must be an axiom, and therefore, by supposition, 

r-'fa-

2. (Induction) Let i > 1 be arbitrary. Assume the inductive hypothesis that, for all 

j < i, \=* fa. 

Case (1): fa is an axiom. As in the basis step, [=7 fa. 

Case (2): fa follows by modus ponens from formulas (bj and d>m, where j < i and 

m < i, and d>m is of the form (bj => fa- By the inductive hypothesis, (=
7 4>j 

and j=7 d>j =^ fa, and therefore, by Proposition 5.1(a), !(=7 <&. 

Case (3): fa follows by necessitation from a formula fa, where j < i, and fa is of the 

form P believes fa for some principal symbol P. By the inductive hypothesis, 

^=7 fa, and therefore, by Proposition 5.1(b), [=7 P believes fa, which is as 

required since d>» is of the form P believes fa. 

(This completes the proof of Theorem 5.3.) ° 



Chapter 6 

A model for reasoning about lower bounds 
on rounds 

In this chapter we introduce a new model, which allows reasoning about lower bounds 

on rounds for a class of authentication protocols. This continues the theme of formal 

reasoning developed in the preceding chapters. The motivation for the model intro­

duced here is a largely informal body of bounds arising from the work of Gong [36], [37], 

[38]. Our aim in developing the model is to provide a systematic means for deriving 

such bounds. In particular, we will show how some of the bounds intuitively obtained 

by Gong are formally derived in our model. 

(Parts of this chapter appeared in preliminary form elsewhere [39].) 

6.1 Introduction 

An authentication protocol, in its barest form, consists of a sequence of message ex­

changes. The appeal of defining metrics for comparing authentication protocols is 

obvious. Of course, the most important aspect of a protocol is its correctness and 

there is a sizable amount of literature on this subject. However, the literature on met­

rics for authentication protocols is rather sparse. An essentially similar observation to 

the one made above motivates Gong [36], [37], [38] to study some efficiency metrics 

for authentication protocols. Specifically, he defines two efficiency metrics: the number 

of messages and the number of rounds. The former metric simply means the total 

number of message exchanges comprising a protocol. To define the latter metric, Gong 

uses the notion of round: a round consists of protocol messages that can be exchanged 

simultaneously—the number of rounds is then taken to mean the minimum number 

of rounds needed to complete the protocol. Notice that the notion of round reflects 

the concurrency inherent in a distributed protocol: multiple participants may simul­

taneously send or receive messages in one round. In his works, Gong [36], [37], [38] 

gives lower bounds on the above two metrics for some common protocol classes, in an 

101 
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informal manner. Independently, Yahalom [40], [41] has devised a model for analyz­

ing bounds on the number of messages for a class of secure asynchronous protocols. 

The model provides constructs for expressing security requirements using the notion 

of verifiable causality, which is related to Lamport's [42] happened before relation. Ya­

halom [40] employs the model to define a class of secure data exchange protocols, and 

derives a lower bound on the number of messages for this class. However, the metric 

of rounds is not addressed in his work. 

Set against the above background, we introduce a model to formally derive bounds 

on rounds from security requirements. The idea behind our model can be sketched as 

follows. W e adopt Yahalom's notion of verifiable causality between events as a means 

of specifying security requirements for asynchronous protocols. This allows us to define 

the notion of an abstract protocol class in terms of verifiable causality. A characteristic 

property of this notion is that it induces a partial order on an associated set of events; 

this partial order is a causal order in the sense of Lamport [42]. A round then precisely 

consists of a set of causally unordered events. The key upshot of the definitions we 

make to exploit this fact is that they lead us to a theorem for proving lower bounds on 

the number of rounds. The theorem gives rise to a simple graph-theoretic technique 

for finding bounds. 

6.2 Basic model 

We begin by recalling some of the notions described by Yahalom [40]. 

A system consists of a collection of nodes, also called principals, which communicate 

solely by asynchronous message passing. That is, we assume that: (1) the principals do 

not maintain synchronized clocks, and (2) the only means of communication between 

principals is via message exchanges. Each principal can generate a new pseudoran­

dom value, called an up-nonce, which is unpredictable by others. If is assumed that 

principals may act maliciously, that is, they can see, modify, or replay any message 

exchanged within the system. Further, any principal can inject fake messages into the 

system. 

An event is an action taken by a principal. The actions a principal can perform 

include the following: (i) sending a message M, denoted send(M); (ii) receiving a 

message M, denoted receive(M). Each node maintains its own local abstract clock. It 

is assumed that the local clock value at a principal is incremented at least once between 

two successive events at that principal. Each event E is associated with the local clock 
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reading, c(E), at the principal where that event occurs. 

Following Lamport [42], we define a happened before relation, denoted —>, as the 

smallest binary relation on the set of events of a system satisfying the following condi­

tions: 

1. E -• E' holds: 

(i) if E and E' are events occurring at the same principal such that c(E) < 

c(E'), or 

(ii) if E = send(M) and E' = receive(M) for any message M exchanged between 

two principals, or 

(iii) if E -> E" and E" -+ E' for some E". 

2. E-frE for all E. 

The above definition essentially generalizes the following two basic observations about 

the order of events in a distributed system (cf. [43]): (a) A principal is a sequential 

process; that is, the events occurring at the same principal are totally ordered; (b) 

Whenever a message exchange takes place, the event of sending the message occurs 

before the event of receiving the message. It is easy to see that -> is an irreflexive, 

transitive, anti-symmetric relation; that is, a partial order on the events of a system. 

A basic property of ->• is concerned with a notion of information flow between 

events. If E{ -> Ej for events E{ and Ej at two different principals P{ and Pj, respec­

tively, then the above definition implies that there exists a send event, send(M), at 

Pi, and a receive event, receive(M'), at Pj, for some messages M and M', such that 

send(M) -)• receive(M'). W e then say that there is an information flow from Ei to Ej. 

Note that the happened before relation effectively captures the notion of potential 

causality: E -> E' means E may (but does not necessarily) causally affect E'. The 

basic idea underlying Yahalom's notion of verifiable causality is to capture strict causal 

dependence between events, in that the occurrence of one event is precluded without 

the occurrence of another event. This notion is relativised to principals, and causal 

dependence is further distinguished as precedence or succession between events, as 

follows. 

Definition 6.1 ([40]) An event Ei of one principal Pi verifiably-precedes an event 

Ej of another principal Pj if Pi can establish that Ej could not be generated without 

Pj receiving some information derived from the occurrence of Ei or from some event 

at Pi that occurred after E{. 
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Definition 6.2 ([40]) An event Ei of one principal P{ verifiably-succeeds an event 

Ej of another principal Pj if, at the time it generates Ei, P{ can establish that Ej has 

occurred. 

As noted by Yahalom [40], the notions of verifiable precedence and verifiable succession 

defined above are strictly independent: Ei verifiably-precedes Ej does not necessarily 

imply that Ej verifiably-succeeds Ei (and vice-versa). 

The following propositions relate verifiable causality with potential causality. 

Proposition 6.1 ([40]) For any two events Ej and Ei that have occurred at different 

principals, if E{ verifiably-precedes Ej then Ei -> Ej. 

Proposition 6.2 ([40]) For any two events Ej and Ei that have occurred at different 

principals, if Ei verifiably-succeeds Ej then Ej —»• Ei. 

As noted by Yahalom [40], the two notions represented by Ei verifiably-precedes Ej 

and Ej verifiably-succeeds Ei are strictly stronger than Ei —>• Ej. The converses of 

Propositions 6.1 and 6.2 do not hold. 

The following definition is intended to capture the notion of an event at one principal 

occurring relatively recently with respect to an event at another principal. 

Definition 6.3 ([40]) An event Ej of one principal Pj A-precedes an event Ei of 

another principal Pi if Pi can establish that Ej was generated at most A ticks (as 

measured by Pi on its local site clock) before the generation of Ei. 

In Yahalom's model, the notion of A-precedence is central to capturing the security 

requirement that principals be able to determine that certain messages are fresh and 

not replays of earlier ones. 

The following theorem (Theorem 1 of Yahalom [40]) gives necessary and sufficient 

conditions for A-precedence. 

Theorem 6.1 An event Ej of a principal Pj at one site A-precedes an event Ei of 

principal Pi at another site if and only if the following conditions hold: 

1. There exists another event E\, generated by principal Pi, such that E\ verifiably-

precedes Ej. 

2. Ei verifiably-succeeds Ej. 

3. c(Ei) - c(E\) < A. 
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Note that the first condition above asserts that for a principal Pi to establish that an 

event Ej at a different principal Pj A-precedes an event Ei at Pi, there must exist 

another event E\ at Pi, from which there is an information flow to Ej. This information 

flow implicitly includes a receive event (respectively, send event) of some message at 

Pj (respectively, Pi). The received message at Pj is referred to as a A-precedence 

establishing (A-pe) message by Yahalom [40]. 

Informally, a protocol defines a sequence of events at various principals. An execu­

tion of a protocol consists of a realization in which various protocol events take place 

at the principals involved. Each event is associated with the protocol execution where 

it occurs. Events that occur in different executions at the same principal are assumed 

to be unrelated, in that the clock values associated with such events are incomparable. 

For the purpose of deriving bounds, the significance of the above model is that 

it allows us to deduce the information flows that are needed to satisfy some security 

requirements. Essentially, Yahalom [40] exploits this fact to obtain a lower bound on 

the number of messages for a particular class of protocols. 

6.3 Extending the model: Rounds 

For our purposes, we abstract a class of secure asynchronous protocols as a collection of 

protocols that achieve some goal defined using Yahalom's notions of verifiable causality. 

W e represent such a goal in general by means of the following: (1) a finite set £b of 

base events at various principals, and (2) a set C of verifiable causal relationships over 

£b defined using verifiably-precedes, verifiably-succeeds, or A-precedes. Clearly, C 

induces a partial order, defined by ->, on the set £ = £b U £d, where £d is a possibly 

empty set of additional events induced by Theorem 6.1. W e thus represent a protocol 

class formally as a partially ordered set n = (£, -<), where -< denotes the partial order 

associated with £. 

As an aside, we note that in light of the poset formulation for a protocol class, it 

appears natural to view an individual protocol of class n as a totally ordered set (£, <), 

where < is a total order on £ consistent with -<; that is, such that E -< E' implies 

E < E', for all E, E' £ £. In other words, a protocol of class n may be thought of as 

a topological sort (cf. [44]) of the poset (£, -<)- However, we do not explore the notion 

of an individual protocol further, since the protocol class abstraction suffices here. 
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6.3.1 Rounds and causality 

Gong [36] defines the metric number of rounds as follows: 

The number of rounds in a protocol is the total number of time units from 

the instant that the [protocol] originator sends the first message till the 

instant that the last message is received, under the best execution scenario. 

(p. 28) 

Further, "A round consists of all messages that can be sent and received in parallel 

within one time unit" ([36], p. 27). For the sake of the above definition, Gong makes the 

following two idealized timing assumptions: (i) exactly one time unit elapses between 

sending and receiving of a message; and (ii) the processing time for any event is exactly 

zero time units. As Gong observes, the number of rounds gives a rough estimate on 

the execution time of a protocol. 

For our purposes more precision is required than the definitions used by Gong. 

In our model, the notion of 'time' is captured by the happened before relation. W e 

effectively use this relation to formulate below our counterparts to Gong's notions on 

rounds. First, we need to fix a message set associated with a protocol class. 

Definition 6.4 A message M is a triple (P,Q,m), P ^ Q, denoting that principals 

P and Q are the sender and recipient, respectively, of the message contents, rn. 

Thus, messages with the same contents but which are sent or received at different 

principals are distinct messages for our purposes. The case where a principal is meant 

to send the message contents to itself does not appear to be meaningful in our context. 

(Such messages do not serve to establish verifiable causality.) The side condition in the 

definition rules out this uninteresting case by excluding messages of the form (P, P, m ) . 

W e fix a message set M on any protocol of class n = (£,-<) as the set of messages 

corresponding to the prescribed send (or alternatively, receive) events in £: 

M = {M\ send(M) £ £} 

Following Lamport [42], we say that events E and E' are concurrent if E -ft E' and 

E' ft E, and write this as E || E'. W e then define a round to consist of a subset of M 

for which the corresponding send events are concurrent. 

Definition 6.5 Let M' C M be non-empty. Then M' is a round of M, if send(M) || 

send(M') for all M, M' £ M'. 
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Intuitively, the rounds comprising a protocol are mutually exclusive and exhaustive: 

each element of the message set belongs to exactly one round. 

Definition 6.6 A round partition of M. is a partition 7r of M such that every block 

of 7r is a single round of M.. 

We call a round partition linear if its blocks may be totally ordered to be consistent 

with -<; this is intended to capture the idea that there is an execution order over that 

round partition. 

Definition 6.7 A round partition -K of M is linear if there exists a total order < on 

7r satisfying the following restriction: for all 7r«, TXJ £ TT, if there exist messages Mi £ i^i 

and Mj £ Wj such that send(Mi) X send(Mj), then 7Ti < rtj. 

A round partition may not necessarily be linear. For example, consider a hypothetical 

protocol class with: 

M = {MX,M2,M3,M4} 

X = {(send(Mx),send(M2)),(send(M3),send(M4))} 

where Mx, M2, M3, and M4 are all distinct messages. In this example, the set 

{{MX,M4}, {M2, M3}} is a round partition of M but not a linear round partition. 

We can now define the number of rounds. 

Definition 6.8 The number of rounds for n is the rank of the smallest (having fewest 

blocks) linear round partition of M. 

Notice how our definition pins down the intended meaning of the phrase, "best execu­

tion scenario," seen in Gong's informal definition earlier. 

6.3.2 Rounds and directed acyclic graphs 

We now proceed to relate lower bounds on rounds with the structure of the poset 

defining a protocol class. 

Definition 6.9 Let II = (£,•<) be a protocol class. Define £s C £ and -<a C x such 

that: 

1. £s — {E | E £ £ and E is a send event}, and 

2. ^s=^f)(£sx£s). 
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Then the poset (£s, -<s) is called the send-poset of n. 

Implicit in the above definition is the fact that X s is a partial order on £s. This fact 

follows directly from clauses 1 and 2. Technically, the send-poset of a protocol class 

n = (£, -<) is simply a restriction of the poset (£, -<) to the send events in £. 

As before, let M denote the message set on n. 

Lemma 6.1 Let nx and n2 be the ranks, respectively, of the smallest round partition 

and the smallest linear round partition of M. Then nx < n2. 

The proof of this lemma is immediate from the fact that the set of linear round parti­

tions of M. is a subset of the set of round partitions of M. 

W e can now state our main theorem. 

Theorem 6.2 Let Q(H) be the number of rounds for a protocol class H whose send-

poset is (£s,~<s)- If there exist send events send(Mx), send(M2), ..., send(Mn) £ £s 

such that: 

send(Mx) -<s send(M2) -<s • • • -<s send(Mn), 

then tt(Yl) > n. 

Proof. Assume that send(Mi) -<s send(MJ+i) for i — 1, ..., n - 1. Since -<s is irreflex­

ive, we have Mi ^ Mj, when i ̂  j. Therefore, the set M' = {Mi,..., Mn} has exactly 

n elements. Clearly, M' Q M. Now, any subset of M containing two or more distinct 

elements of M' cannot be a round of M. This follows from Definition 6.5, by the 

assumption: for all M,M' £ M', M ^ M', we have send(M) [f send(M'). Then any 

round partition of M must contain at least n blocks. Hence by Lemma 6.1 it follows 

that the smallest linear round partition of M must also contain at least n blocks. • 

To obtain the best lower bound implied by Theorem 6.2, we obviously need to find 

the longest chain of send events in £s. This is conveniently viewed in graph-theoretic 

terms: we can view the poset (£s,<s) as an acyclic digraph G, with £s as the set 

of vertices and <s as the set of edges. The longest chain of send events in £s then 

corresponds to the longest path between any pair of vertices in G. 

6.4 Case study 

We shall now demonstrate our model by deriving lower bounds on rounds for several 

classes of authenticated key exchange protocols informally analyzed by Gong [36]. 
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The overall setting is as follows (cf. [36]): Two clients A and B share secret keys 

with a trusted server S. The protocol aim is to distribute a fresh temporary session 

key for use between the clients, followed by an optional handshake using the session 

key to verify the presence of clients. In particular, each client must be convinced that 

the message from where it gets the session key, as well as the message from which it 

confirms the presence of the other client, have not been replayed. (Hereafter, we refer 

to such messages as session key message and handshake message, respectively.) This 

is achieved using either nonces or timestamps as freshness identifiers, distinguished as 

nonce based - N B or timestamp based - TB. The session key goal is distinguished as 

A O - authentication only, or A H - authentication with handshake. The candidates for 

choosing the temporary key are distinguished as SO - server only, C O - one client only, 

or C C - both clients. In the C C case, the temporary session key is suitably derived 

from two individual partial key values respectively chosen by the clients. 

The choice of the above setting parameters gives twelve protocol classes in all. 

W e distinguish them using Gong's [36] shorthand notation: T B / N B + A O / A H + 

SO/CO/CC. (Examples of concrete protocols for each class can be found in Gong's 

paper [36].) 

Since our model precludes synchronized clocks, it does not apply to the T B cases. 

The remaining six asynchronous (NB) cases, labeled Case 7-12 in Gong's paper [36], 

fit in with our model; we will consider each of these cases in turn below. First, we 

recall some general assumptions made by Gong [36, p. 28]: 

HI A client cannot send out a handshake message before it has received 

the temporary key. Thus, the last handshake message cannot be sent 

before all clients have received the temporary key. 

H2 A client without a synchronized clock cannot accept a temporary key 

before it sends out a nonce. 

H3 The protocol responder (client) or the server cannot send out any 

message (e.g., a nonce) before the protocol originator sends out a no­

tification message. 

(For convenience we have labeled Gong's assumptions above.) Further, client A is 

designated as the protocol originator and client B is called the protocol responder. 

Some remarks on Gong's above assumptions are in order: (HI) implicitly reflects 

that knowledge of the temporary key is necessary to form the handshake message. 

(H2) is essentially captured in our model using Yahalom's Theorem 6.1. To see the 



6.4. Case study 110 

connection between the two, note that (H2) is informally based on the requirement 

that a client be able to verify the freshness of session key messages [36, p. 27]; the 

notion of A-precedence allows us to express such requirements precisely. Observe that 

(H2) is simply a derived fact about the system, as implied by condition 1 of Yahalom's 

Theorem 1. W e will directly capture (HI) and (H3) using the happened before relation. 

(HI) applies to the three A H cases, whereas (H3) is common to all six cases. 

Without loss of generality, we assume in the following that the generation event 

of a message coincides with the send event of that message. For all protocol classes 

considered below, we make the following event definition: 

eA,o send of protocol start message at A 

In the remainder of this section, we prove lower bounds on rounds for the six 

protocol classes: 

• NB+AO+SO 

• NB+AH+SO 

• NB+AO+CO 

• NB+AH+CC 

• NB+AO+CC 

• NB+AH+CC 

In our proofs, we make use of a Prolog procedure for maximal path finding in DA G s , 

which is shown in appendix D. 

6.4.1 Protocol class NB+AO+SO 

To specify this class, we define the following events: 

es,i 
es,2 

eA,i 

es.i 

send of session key message for A at £ 
send of session key message for B at S 

receive of session key message at A 
receive of session key message at B 

and capture the session key goal as follows: 

C R 1 es,x A-precedes eA,x 

C R 2 es,2 A-precedes eB,i 
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CR1 and C R 2 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there 

exist send events eAi2 and eBf2, respectively, at A and B such that: 

CR3 eA>2 -> es,x 

CR4 es,i ->• eA,i 

CR5 eB,2 -> e5)2 

CR6 e5)2 -> eB,i 

To satisfy (H3), we stipulate the following constraints: 

CR7 eAi0-^es,i 

CR8 eA,o ->• e£,2 

W e collect the above events and happened before relationships to form the required 

posets. 

(£7,-<7): 

£7 = {eAfi,eAti,eAt2,eB,i,eB,2,es,i,es,2} 

-^ = {(eA,2, es,i), (eS>i, e^.i), (eB,2, e5,2), (e<?,2, eB,i), (eA,o, e5,i), (eA,o, es,2)} 

The partial order shown above does not explicitly include every pair of events which is 

ordered by -*, since the omitted pairs are deduced by the path-finding algorithm used 

later. W e will tacitly follow this convention hereafter. 

£] = {eAfi,eAt2,eB,2,es,i,es,2} 

^l = {(eAt2,es,x),(
eB,2,es<2),(

eA,o,es,i),(eA,o,eBt2)} 

We now use the path finding program given in appendix D to obtain the best lower 

bound implied by Theorem 6.2. To save space, we only show the resulting output here: 

MaxPath = [e(a,0),e(b,2),e(s,2)] 

Bound = 3; 

It is instructive to compare the maximal path found above with Gong's [36] informal 

proof: 

The responder [B] has to be notified before it can send out its nonce and 

later receive a fresh message; thus three rounds is a lower bound, (p. 30) 
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6.4.2 Protocol class NB+AH+SO 

We define the following additional events: 

eAi3 send of handshake message for B at A 

ejgt3 send of handshake message for A at B 

eAA receive of handshake message at A 

eBA receive of handshake message at B 

and capture the handshake goal as follows: 

CR9 eAi3 A-precedes ej3)4 

CR10 eB,3 A-precedes eAA 

We capture (HI) using the following constraints: 

CR11 eA,i -* eA}3 

CR12 eB,i -• eB,3 

CR9 and CR10 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there 

exist send events eB,5 and eA,5, respectively, at B and A such that: 

CR13 eBi5 -+ eAi3 

CR14 eA<3 ->• eBA 

CR15 eA>5 -»• eB}3 

CR16 eBi3 -+ eAA 

To satisfy (H3), we stipulate the following additional constraint: 

CR17 eAfi -> eB,5 

(£8,-<*)•• 

£8 = £7 U{eAt3,eAt4,eAt5,eB>3,eBA,eBt5} 

•<8 = ^7U 

{(eA,i, eA,3), (eBti,eBi3), (eB>5, eA,3), (eA>3, eB,4), (eA)5, eB,3), (eBf3, e A 4 ) , (eA,0, eB,5 

£? = {eA,o,eA,2, eA,3,eA,5,eB,2ieB>3,eBt5,es,i,es,2} 

^ = {(eA)2, es,i), (es,i, eA,3), (eB)2, e5>2), (es,2, es,3), (eA,o, e5,i), (eA,o, eB,2), 

(eB,5, eA,3), (eA,5, eB,3), (eA,0, eB,5)} 
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MaxPath = [e(a,0),e(b,2),e(s,2),e(b,3)] 

Bound = 4; 

The above path is simply an extension of the path found in the previous case. It is 

again instructive to compare with Gong's [36] informal proof: 

... at least one more round is needed than in Case 7 [NB+AO+SO] to 

complete the handshake [after both clients have received the temporary 

key]; thus four rounds is a lower bound ... (p. 30) 

6.4.3 Protocol class NB+AO+CO 

Here we assume that the protocol responder chooses the session key. (The case where 

the protocol initiator chooses the session key can be similarly worked out.) To specify 

this class, we define the following events: 

es,i 

eA,i 

eB,i 

send of session key message for A at S 

receive of session key message at A 

send of session key message for S at B 

and capture the session key goal as follows: 

CR1 es,i A-precedes eAji 

CR2 e^i A-precedes eA,i 

CR3 ejg.i verifiably-precedes es,i 

CR1 and CR2 respectively imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 

that there exist send events eA>2 and eA<3 at A such that: 

CR4 eAa -»• es,i 

CR5 es,i -»• eA,i 

CR6 eA,s -> eB,i 

CR7 eB,i -> eA,x 

CR3 implies by Proposition 6.1 that: 

CR8 eB,i -> eSfi 

To satisfy (H3), we stipulate the following constraints: 

CR9 eA>0 -> es,i 

CR10 eAfi -> eB,i 
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(£9,<>: 

£ = {6,4,0,6,4,1,6^,2,6^,3,65,1,65,1} 

-<!9 = {(eA,2, es,i), (es,i,eA,i), (eAt3, eB,i), (eB,i,eAA), (eB,i, es,i), (eA,o, es.i), (eA,o, eB,i)} 

9 ,9\. 
& < ) 

£9 

^9 

» e 

{e.4,0, eA,2, eA,3, es,i, es,i} 

{(eA,2, es,x), (eA,s, eB,i), (eB,i,es,x), (eAfi, es,i), (eA,o, eB>1)} 

MaxPath = [e(a,3) ,e(b,l) ,e(s,l)] 

Bound = 3; 

MaxPath = [e(a,0),e(b,l),e(s,l)] 

Bound = 3; 

6.4.4 Protocol class N B + A H + C O 

We introduce the following additional events: 

eAA 

eB,2 

eA,5 

eB,3 

send of handshake message for B at A 

send of handshake message for A at B 

receive of handshake message at A 

receive of handshake message at B 

and capture the handshake goal as follows: 

CR11 e^,4 A-precedes ej3,3 

CR12 eS)2 A-precedes eA,5 

We capture (HI) using the following constraint: 

CR13 eA,x -> eAA 

CR11 and CR12 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there 

exist send events eB,4 and eAfi, respectively, at B and A such that: 

CR14 eB,4 -*• eAA 

CR15 e.4,4 -> es,3 

CR16 eA,6 ->
 eB,2 

CR17 eB,2 -» eA,5 
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To satisfy (H3), we stipulate the following additional constraints: 

CR18 eAfi -> eB]2 

CR19 eAfi -> eB)4 

(£10,^10): 

£10 = £9 U{eyi,4,eA,5,eA,6,eB,2,eB,3,eB,4} 

^10 = ^9 U{(e^,i, eAA), (eB,4, eAA), (eAA, eB,3), (eAfi, eB,2), (eB?2, e^.s), 

(eA,o,eBt2),(eAfi, eBA)} 

(£l°,<°) 

£]° = 

x1.0 = 

W , o , eAy2, eAt3, eAA, eA>6, eB,i, eB)2,
 eB,4, es.i} 

{(eA,2, es,i), (es,i, e A | 4), (eA,3, eB,i), (eB,i, e A ) 4), (eB,i, es,i), (eA,o, e<y,i): 

(eA)0, eB,i), (eB,4, eA,4), (eA,6, eB,2), (eA,o, eB,2), (eA,o, eB)4)} 

MaxPath = [e(a,3),e(b,l),e(s,l),e(a,4)] 

Bound = 4; 

MaxPath = [e(a,0),e(b,l),e(s,l),e(a,4)] 

Bound = 4; 

6.4.5 Protocol class NB+AO+CC 

To specify this class, we define the following events: 

es,i 

es,2 

eA,i 

eA,2 

eB,i 

eB)2 

send of partial session key message for A at S 

send of partial session key message for B at S 

send of partial session key message for S at A 

receive of partial session key message at A 

send of partial session key message for S at B 

receive of partial session key message at B 

and capture the session key goal as follows: 

C R 1 es,i A-precedes eA,2 

C R 2 ec 2 A-precedes eB,2 

C R 3 eB,i A-precedes eA,2 

C R 4 eA,x A-precedes eB,2 
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C R 5 eBii verifiably-precedes es,i 

C R 6 eAA verifiably-precedes 65,2 

C R 1 and C R 2 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there 

exist send events eAi3 and eBi3, respectively, at A and B such that: 

C R 7 eA,3 -> e5,i 

C R 8 e5,i ->• eA,2 

C R 9 e B i 3 -• es,2 

CR10 eS)2 ->• eB?2 

C R 3 and C R 4 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there 

exist send events eAA and eB)4, respectively, at A and B such that: 

CR11 eAA ->• eB,i 

CR12 eB)1 -+ eA,2 

CR13 eBi4 -• eA,i 

C R 1 4 eA,x -> eB,2 

C R 5 and C R 6 imply by Proposition 6.1 respectively the following: 

CR15 eB,i -» es,i 

CR16 eA,i -> eS)2 

To satisfy (H3), we stipulate the following constraints: 

C R 1 7 eAfi ->• eB,i 

CR18 eA;0 -+ eB,3 

CR19 eA)0 -»• eB,4 

(^11,-<11): 

£11 = {eA,o,eA,i,eA,2,eA,3,eA,4,eBji,eB)2,eB,3,eB,4,es,i,es,2} 

^ n = {(eA(3, e S ) 1), (es,i, e A ) 2), (eB,3, es,2), (es,2, eB,2), (eA,4, eB,i), (eB>1, e A > 2), 

(eB,4, eA,i), (eA,i, e B ) 2), (eB,u
 es,i), (eA,i, e5)2), (eA)0, eB,i), (eAfo, e B ) 3), 

(eA,o,eB)4)} 

£s
n = {eA,o,eA,i,eA,3,eA,4,eBii,eBi3,eB)4,e5,i,es,2} 

^ i 1 = {(eA)3, e5,i), (eB,3, e5|2), (eA;4, eB,i), (eB)4, eA,i), (eB)i, e5,i), (eA,u
 e5,2), 

(eA,o, eB,i), (eA,o, e B ) 3), (eA,o, eB,4)} 
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MaxPath = [e(a,0),e(b,4),e(a,l),e(s,2)] 

Bound = 4; 

6.4.6 Protocol class NB+AH+CC 

We introduce the following additional events: 

eA,5 send of handshake message for B at A 

eB)5 send of handshake message for A at B 

eAje receive of handshake message at A 

eB,6 receive of handshake message at B 

and capture the handshake goal as follows: 

CR20 eA;5 A-precedes eB,6 

CR21 eB)5 A-precedes eA)6 

We capture (HI) using the following constraints: 

CR22 eAi2 -)• eA)5 

CR23 eB)2 -> eB>5 

CR20 and CR21 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there 

exist send events eB)7 and eAJ, respectively, at B and A such that: 

CR24 eB,7 -)• eAj5 

CR25 eA,5 -> es,6 

CR26 e A ) 7^e B, 5 

CR27 eB,5 -> eA>6 

To satisfy (H3), we stipulate the following additional constraints: 

CR28 eA,0 -• eB,5 

CR29 eA,0 -• eB,7 

(£12,^12): 

£12 = £UU 

{eA,5, eA,6, eA,7, eB,5, eB,6, eB,7} 

-^ = ^ n U 

{(eA,2, eA,s), (eB,2, eB,5), (eB)7, eA,s), (eA,5, eBfi), (&A,r, eB)s), (eB,s, eA)6) 

(eA,o,eB,5),(eA,o,eB,7)} 
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{sr,<2y-

£]2 = {eA,o, eAA, eA)3, eA,4, eAi5, eA)7, eB>1, eB)3, eB,4, eB,5, eB,7, es,i, es,2} 

~^s — {(e^,3, es,x), (es,i, e A, 5), (eB,3, e S ) 2), (e5)2, e B, 5), (eA,4, eB,i), (eB)4, eA,i), 

(eB,i, es,i), (eA,i, e5,2), (eA,0, eB,i), (eA,o, e B, 3), (eA)0, e B, 4), (eB)7, e A ) 5), 

(eA,7, e B, 5), (eA>0, e B, 5), (eA)0, eB,7)} 

MaxPath = [e(a,0),e(b,4),e(a,l),e(s,2),e(b,5)] 

Bound = 5; 



Chapter 7 

Conclusions 

The subtlety which underlies reasoning about authentication protocols is well-recognized 

in the literature. It is also recognized that both formal as well as informal methods are 

useful to tackle the underlying subtlety [61], [62]. Authentication logics constitute a 

significant class of formal methods for reasoning about protocols. This thesis lays some 

semantic foundations for such logics. It also contributes to reasoning about efficiency 

metrics for protocols. Appendix E illustrates the use of an existing informal method 

for protocol analysis and design due to Boyd and Mao [45]. W e show how it can be 

heuristically used to explain flaws in several well-known protocols and to design new, 

improved protocols. Below we look back on the main developments of this thesis and 

suggest some directions for future work. 

7.1 Summary 

In Chapter 1 we review several existing authentication logics and discuss some of 

the motivations underlying their evolution. In Chapter 2 we stress the need for a 

semantic basis for authentication logics. W e make our case by means of some convincing 

examples based on a well-known authentication logic of Gong, Needham and Yahalom; 

our intention is not criticize their logic but only to draw attention to the problematic 

nature of semantically unsupported syntactic definitions. In Chapter 3 we modify the 

logic of Gong, Needham and Yahalom to obtain a modified logic with the property 

that derivations in the logic are finite. This allows a direct automation of the modified 

logic using forward-chaining. In Chapter 4 we develop a model to explain some of the 

notions that existing logics attempt to capture, not in terms of any logical formalism 

but within a framework which we can appeal to on independent grounds. One of the 

virtues of our model is that it forces us to make explicit various assumptions that 

are needed to formally establish the properties which are usually associated with the 

above notions. In Chapter 5 we exploit the model developed earlier to help devise a new 

119 
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authentication logic which is sound with respect to that model. The soundness theorem 

established there gives us confidence that our logic correctly models in syntactic terms 

the properties which we wish to capture. The conventional metalogical machinery we 

employ in carrying out the proof of the soundness theorem should enable comparisons 

of the logic with more traditional logics. W e emphasize that the proposed logic is rather 

modest in regards to the number of features it offers for protocol analysis: it does not 

capture many interesting notions found in other logics. However, it stands out from 

these logics in a unique way—it is accompanied by a rigorous proof of soundness. It is 

our understanding that some notable researchers have lately expressed concern about 

the lack of solid foundations for authentication logics [63], [64]. W e believe our work 

represents a positive step in this direction. Indeed, in the words of Tuttle [28], 

".. .let's go back to basics and concentrate on [emphasis ours] meaningful 

models and definitions. Then let's see what new logics these definitions 

suggest." 

In Chapter 6 we develop a general model for reasoning about the round complexity 

of authentication protocols. The model draws upon some existing notions of causality 

to build a definition of the metric number of rounds. The upshot of our definition is a 

key theorem that yields lower bounds on the number of rounds. 

7.2 Future work 

There are a number of directions to consider for future work. This includes modeling 

of the notion of recognizability using the computational model developed in Chapter 4. 

A preliminary attempt at this is documented in Appendix F. However, it remains to 

be seen how the notion of recognizability can be integrated into the logic developed in 

Chapter 5. It is not clear that the traditional possible worlds semantics for belief that 

we have adopted best fits our purposes. It would be worthwhile to find a more natural 

semantics for belief. An interesting problem is to investigate whether the notion of 

recognizability holds the key to defining a more natural semantics for belief. 

Although we have used the model proposed in Chapter 6 to verify the correctness 

of some existing bounds on rounds from the literature, the model should also provide 

a means to investigate bounds for more complex protocol classes. It would also be 

desirable to make our model applicable to a synchronous setting. Such a move seems 

feasible since the definitions that we make to capture the notions related to rounds 
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are essentially independent of the assumption that the system is asynchronous. A 

theoretically stimulating direction is to provide a formal semantics for the notion of 

verifiable causality; this would compel us to develop a more solid foundation for the 

model proposed in Chapter 6. 



Bibliography 

[1] M. Burrows, M. Abadi, and R. Needham, "A Logic of Authentication," Tech. 

Rep. 39, Systems Research Center, Digital Equipment Corporation, Palo Alto, 

California, Feb. 1989. Revised Feb. 1990. 

[2] L. Gong, R. Needham, and R. Yahalom, "Reasoning about Belief in Cryptographic 

Protocols," in Proc. IEEE Symposium on Security and Privacy, (Los Alamitos, 

California), pp. 234-248, IEEE Computer Society Press, May 1990. 

[3] L. Gong, Cryptographic Protocols for Distributed Systems. PhD thesis, Cambridge 

University, U.K., 1990. 

[4] K. Gaarder and E. Snekkenes, "Applying a Formal Analysis Technique to the 

CCITT X.509 Strong Two-Way Authentication Protocol," Journal of Cryptology, 

vol. 3, pp. 81-98, 1991. 

[5] R. Kailar and V. D. Gligor, "On Belief Evolution in Authentication Protocols," 

in Proc. IEEE Computer Security Foundations Workshop IV, (Los Alamitos, Cal­

ifornia), pp. 103-116, IEEE Computer Society Press, 1991. 

[6] P. C. van Oorschot, "Extending Cryptographic Logics of Belief to Key Agreement 

Protocols (Extended Abstract)," in Proc. First ACM Conference on Computer 

and Communications Security, pp. 232-243, Nov. 1993. 

[7] W. Mao and C. Boyd, "Towards Formal Analysis of Security Protocols," in Proc. 

of Computer Security Foundations Workshop VI, pp. 147-158, IEEE Computer 

Society Press, 1993. 

[8] M. Abadi and M. R. Tuttle, "A Semantics for a Logic of Authentication," in 

Proceedings of the Tenth ACM Symposium on Principles of Distributed Computing, 

pp. 201-216, A C M Press, August 1991. 

122 



BIBLIOGRAPHY 
123 

[9] P. F. Syverson and P. C. van Oorschot, "On Unifying Some Cryptographic Proto­

col Logics," in Proc. IEEE Symposium on Security and Privacy, pp. 14-28, May 

1994. 

[10] G. Wedel and V. Kessler, "Formal Semantics for Authentication Logics," in Com­

puter Security - ESORICS 96 (E. Bertino, ed.), vol. 1146 of Lecture Notes in 

Computer Science, pp. 219-241, Springer-Verlag, 1996. 

[11] R. M. Needham and M. D. Schroeder, "Using Encryption for Authentication in 

Large Networks of Computers," Communications of the ACM, vol. 21, pp. 993-

999, Dec. 1978. 

[12] M. Burrows, M. Abadi, and R. Needham, "A Logic of Authentication," ACM 

Trans, on Computer Systems, vol. 8, pp. 18-36, Feb. 1990. 

[13] D. E. Denning and G. M. Sacco, "Timestamps in Key Distribution Protocols," 

Communications of the ACM, vol. 24, pp. 533-536, Aug. 1981. 

[14] M. Burrows, M. Abadi, and R. Needham, "The Scope of a Logic of Authenti­

cation," in Distributed Computing and Cryptography (J. Feigenbaum, ed.), no. 2 

in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 

pp. 119-126, A M S k A C M Press, 1991. 

[15] N. Heintze and J. D. Tygar, "Timed Models for Protocol Security," Tech. Rep. 

CMU-CS-92-100, Carnegie Mellon University, School of Computer Science, Pitts­

burgh, PA 15213, Jan. 1992. 

[16] U. Engberg, "Analyzing Authentication Protocols," Tech. Rep. TR DAIMIIR-97, 

Aarhus University, Denmark, 1990. 

[17] C. A. Boyd, "Hidden Assumptions in Cryptographic Protocols," in Proc. IEE, 

no. 6, pp. 433-436, Nov. 1990. 

[18] V. D. Gligor, R. Kailar, S. Stubblebine, and L. Gong, "Logics for Cryptographic 

Protocols - Virtues and Limitations," in Proc. IEEE Computer Security Foun­

dations Workshop IV, (Los Alamitos, California), pp. 219-226, IEEE Computer 

Society Press, 1991. 

[19] D. M. Nessett, "A Critique of The Burrows, Abadi and Needham Logic," ACM 

Operating Systems Review, vol. 24, pp. 35-38, Apr. 1990. 



BIBLIOGRAPHY 
124 

[20] M. Burrows, M. Abadi, and R. Needham, "Rejoinder to Nessett," ACM Operating 

Systems Review, vol. 24, pp. 39-40, Apr. 1990. 

[21] L. Gong, "Variations on the Themes of Message Freshness and Replay," in Pro­

ceedings of the Computer Security Foundations Workshop VI, (Los Alamitos, Cal­

ifornia), pp. 131-136, IEEE Computer Society Press, 1993. 

[22] K. Gaarder and E. Snekkenes, "On The Formal Analysis of PKCS Authentication 

Protocols," in Advances in Cryptology - Auscrypt'90 (J. Seberry and J. Pieprzyk, 

eds.), vol. 453 of Lecture Notes in Computer Science, pp. 106-121, Springer Verlag, 

1990. 

[23] R. A. Rueppel and P. C. van Oorschot, "Modern key agreement techniques," 

Computer Communications, vol. 17, pp. 458-465, July 1994. 

[24] C. Boyd and W. Mao, "On a Limitation of BAN Logic," in Advances in Cryptology 

- EUROCRYPT '93 (T. Helleseth, ed.), no. 765 in Lecture Notes in Computer 

Science, pp. 240-247, Springer Verlag, 1993. 

[25] A. Mathuria, R. Safavi-Naini, and P. Nickolas, "Some Remarks on the Logic of 

Gong, Needham and Yahalom," in Proceedings of the 1994 International Computer 

Symposium, (National Chiao Tung University, Taiwan), pp. 303-308, December 

1994. 

[26] P. F. Syverson, "The Use of Logic in the Analysis of Cryptographic Protocols," in 

Proc. IEEE Symposium on Security and Privacy, pp. 156-170, June 1991. 

[27] P. F. Syverson, "Knowledge, Belief, and Semantics in the Analysis of Crypto­

graphic Protocols," Journal of Computer Security, vol. 1, no. 3, pp. 317-334, 

1992. 

[28] M. R. Tuttle, "Flaming in Franconia: Build Models, not logics." Note on the 

panel discussion on the Use of Formal Methods in the Analysis of Cryptographic 

Protocols, Computer Security Foundations Workshop V, June 1992. 

[29] R. J. Anderson, "UEPS - A Second Generation Electronic Wallet," in Computer 

Security - ESORICS 92 (Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, eds.), 

pp. 411-418, Springer-Verlag, 1992. 



BIBLIOGRAPHY 
125 

[30] R. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Sig­

natures and Public-key Cryptosystems," Communications of the ACM, vol. 21, 

pp. 120-126, Feb. 1978. 

[31] "National Bureau of Standards. Data Encryption Standard." Federal Information 

Processing Standards, Pub. 46, Washington, D.C., Jan. 1977. 

[32] A. Mathuria, R. Safavi-Naini, and P. Nickolas, "On the Automation of GNY 

Logic," in Proceedings of the Eighteenth Australasian Computer Science Confer­

ence (ACSC '95) (R. Kotagiri, ed.), vol. 17:(1) of Australian Computer Science 

Communications, pp. 370-379, February 1995. 

[33] E. A. Campbell and R. Safavi-Naini, "On Automating The BAN Logic of Au­

thentication," in Proc. 15th Australian Computer Science Conference (ACSC-15), 

1992. 

[34] R. C. Hauser and E. S. Lee, "Verification and Modelling of Authentication Proto­

cols," in Computer Security - ESORICS 92 (Y. Deswarte, G. Eizenberg, and J.-J. 

Quisquater, eds.), no. 648 in Lecture Notes in Computer Science, pp. 141-154, 

Springer-Verlag, 1992. 

[35] A. Mathuria, "Automating BAN Logic," Master's thesis, University of Wollon­

gong, Department of Computer Science, 1994. 

[36] L. Gong, "Lower Bounds on Messages and Rounds for Network Authentication 

Protocols," in Proc. First ACM Conference on Computer and Communications 

Security, pp. 26-37, Nov. 1993. 

[37] L. Gong, "Efficient network authentication protocols: Lower bounds and opti­

mal implementations," Tech. Rep. 94-15, SRI Computer Science Laboratory, C A 

94025, U. S. A, Oct. 1994. 

[38] L. Gong, "Efficient network authentication protocols: lower bounds and optimal 

implementations," Distributed Computing, vol. 9, no. 3, pp. 131-145, 1995. 

[39] A. Mathuria, R. Safavi-Naini, and P. Nickolas, "Causality, partial orders and lower 

bounds on rounds for a class of authentication protocols," in Proceedings of the 

Twentieth Australasian Computer Science Conference (ACSC'97) (M. Patel, ed.), 

vol. 19:(1) of Australian Computer Science Communications, pp. 27-36, February 

1997. 



BIBLIOGRAPHY 126 

[40] R. Yahalom, "Optimality of Asynchronous Two-Party Secure Data-Exchange Pro­

tocols," Journal of Computer Security, vol. 2, no. 2-3, pp. 191-209, 1993. 

[41] R. Yahalom, "Optimality of Multi-Domain Protocols," in Proc. First ACM Con­

ference on Computer and Communications Security, pp. 38-48, Nov. 1993. 

[42] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System," 

Communications of the ACM, vol. 21, pp. 558-565, July 1978. 

[43] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and 

Design, ch. 10. Reading, Massachusetts: Addison Wesley, second ed., 1994. 

[44] D. F. Stanat and D. F. McAllister, Discrete Mathematics in Computer Science. 

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1977. 

[45] C. Boyd and W. Mao, "Designing Secure Key Exchange Protocols," in Computer 

Security - ESORICS 94 (D. Gollmann, ed.), vol. 875 of Lecture Notes in Computer 

Science, pp. 93-105, Springer-Verlag, 1994. 

[46] C. Boyd and A. Mathuria, "Systematic design of key establishment protocols 

based on one-way functions," IEE Proceedings - Computers and Digital Tech­

niques, vol. 144, pp. 93-99, Mar. 1997. 

[47] A. Mathuria, "Addressing weaknesses in two cryptographic protocols of Bull, Gong 

and Sollins," Electronics Letters, vol. 31, pp. 1543-1544, Aug. 1995. 

[48] L. Gong, "Using One-Way Functions for Authentication," Computer Communi­

cation Review, vol. 19, pp. 8-11, Oct. 1989. 

[49] R. Molva, G. Tsudik, E. V. Herreweghen, and S. Zatti, "KryptoKnight Authen­

tication and Key Distribution System," in Computer Security - ESORICS 92 

(Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, eds.), vol. 648 of Lecture Notes 

in Computer Science, pp. 155-174, Springer-Verlag, 1992. 

[50] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung, 

"The KryptoKnight Family of Light-Weight Protocols for Authentication and Key 

Distribution," IEEE/ACM Transactions on Networking, vol. 3, pp. 31-41, Feb. 

1995. 

[51] R. C. Merkle, "A Fast Software One-Way Hash Function," Journal of Cryptology, 

vol. 3, pp. 43-58, Sept. 1990. 



BIBLIOGRAPHY 127 

[52] R. Anderson, "The Classification of Hash Functions," in Fourth IMA Conference 

on Coding and Cryptography, pp. 83-93, 1994. 

[53] T. A. Berson, L. Gong, and T. M. A. Lomas, "Secure, Keyed, and Collisionful 

Hash Functions." Included in technical report SRI-CSL-94-08, Computer Science 

Laboratory, SRI International, Menlo Park, California, May 1994. 

[54] B. Preneel, R. Govaerts, and J. Vandewalle, "Hash Functions for Information 

Authentication," in Proceedings of the 6th Annual European Computer Conference 

(CompEuro'92) - Computer Systems and Software Engineering (P. Dewilde and 

J. Vandewalle, eds.), pp. 475-480, IEEE Computer Society Press, 1992. 

[55] R. L. Rivest, "The M D 5 message-digest algorithm." Request for Comments (RFC) 

1320, Internet Activities Board, Internet Privacy Task Force, April 1992. 

[56] C. Boyd and W . Mao, "Design and Analysis of Key Exchange Protocols via 

Secure Channel Identification," in Advances in Cryptology - ASIACRYPT '94 

(J. Pieprzyk and R. Safavi-Naini, eds.), vol. 917 of Lecture Notes in Computer 

Science, pp. 171-181, Springer-Verlag, 1995. 

[57] D. Denning, Cryptography and Data Security. Reading, Mass.: Addison-Wesley, 

1982. 

[58] M. Abadi and R. Needham, "Prudent Engineering Practice for Cryptographic 

Protocols," in Proceedings of the 1994 IEEE Symposium on Security and Privacy, 

(Los Alamitos, California), pp. 122-136, IEEE Computer Society Press, may 1994. 

[59] J. A. Bull, L. Gong, and K. R. Sollins, "Towards Security in an Open Systems 

Federation," in Computer Security - ESORICS 92 (Y. Deswarte, G. Eizenberg, 

and J.-J. Quisquater, eds.), vol. 648 of Lecture Notes in Computer Science, pp. 3-

20, Springer-Verlag, 1992. 

[60] C. Mitchell, "Limitations of Challenge-Response Entity Authentication," Elec­

tronic Letters, vol. 25, pp. 1195-1196, August 1989. 

[61] M. Abadi and R. Needham, "Prudent engineering practice for cryptographic pro­

tocols," IEEE Transactions on Software Engineering, vol. 22, pp. 6-15, Jan. 1996. 

[62] R. Anderson and R. Needham, "Programming Satan's Computer," in Computer 

Science Today: Recent Trends and Developments (J. van Leeuwen, ed.), vol. 1000 

of Lecture Notes in Computer Science, pp. 426-440, Springer-Verlag, 1995. 



BIBLIOGRAPHY 128 

[63] L. Paulson and R. Needham, "Authentication Logics: New Theory and Imple­

mentations." Computer Laboratory, University of Cambridge, E P S R C research 

proposal GR/K77051. http://www.cl.cam.ac.uk/users/lcp/Auth. 

[64] L. Paulson, "Proving Properties of Security Protocols by Induction," Tech. Rep. 

409, University of Cambridge, Computer Laboratory, Dec. 1996. 

[65] I. Bratko, Prolog programming for artificial intelligence. Addison-Wesley Publish­

ers Ltd., Second ed., 1990. 

http://www.cl.cam.ac.uk/users/lcp/Auth


Appendix A 

B A N logic rules 

A.l Message-meaning rules 

P^Q&P,P< {X}K 
P^Q^X 

P£&Q,P< {X}K-i 

P\E,Q^P,P<(X)y 

P£Q\-x 

A.2 Nonce-verification rule 

P^j(X),P^Q^X 

A.3 Jurisdiction rule 

P^Q\^X,P^Q^X 

P^X 

A.4 Belief rules 

P |= X, P j= Y P^(X,Y) P^Q^(X,Y) 
P^(X,Y) F M P^Q^X 

A.5 Utterance rule 

P^Q^(X,Y) 

P^Q^X 
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A.6. Message seeing rules 

A.6 Message seeing rules 

P < (X, Y) 

P<X 

P < (X)Y 
P<X 

P\EEQ&P,P« {X}K 

p 

p 

p 

N&p, 
p< 

N^Q, 

<x 

p< 

\X 

p< 

{X}K 

{X}K-, 

P<X 

A.7 Freshness rule 

P N jKjO 
P^l(X,Y) 

A.8 Shared key and shared secret rules 

P^R&R' P^Q^R&R' 

P^R' &R P^Q^R'& R 

P^R^R' P^Q^R^R' 

P^R'^R P^Q^R'^R 

A.9 Supplementary rules 

P\^R\^Q&P, P<{X}K 
P<X 

P^Q\^H(X), P*X 

P\=Q^X 

P^Q^H(Xx,...,Xk), P<Xx,...,P<Xk 
P^Q^(Xx,...,Xk) 



Appendix B 

G N Y logic rules 

B.l Rationality rule 

If ^- is a rule, then for any principal P, so is p I c
x, 

B.2 Being-told rules 

p< *x 
Tl 

T2 

T3 

T4 

T5 

T6 P.X 

P<X 

P < (X, Y) 

P<X 

P<{X}K, P3K 

P<X 

P<{X}+K, P3-K 

P<X 

P<F(X,Y), P3X 

P<Y 

P<{X}-K, P3+K 

B.3 Possession rules 

p<x 
PI 

P2 

PBX 

P3X, PBY 

PB(X,Y), P3F(X,Y) 

P 3 (X, Y) 
P 3 P3X 
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B.4. Freshness rules 

P4 

P5 

P6 

P7 

P8 

P3 X 

P 3 H(X) 

P3 F(X,Y), P3X 

P3Y 

P 9 K, P3X 
P 3 {X}K, P 3 {xyK> 

P9+AT, PBX 
P 3 {X}+K 

P 3 -K, P3X 

P 3 {X}-K 

B.4 Freshness rules 

P N i(*) 
P\=t{X,Y), P\=ftF(X)) 

P M |I(X), P 3 K 

Fl 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

F10 

p |= i({x}K), P N KixVK
1) 

P \= H(JQ, P 3 +AT 
P |= |1({X}+K) 

P rs H(X), P 3 -JT 
P |= $({X}-K) 

P N tt(+^) 
P N »(-#) 

P N tt(-^) 
P N «(+*) 
P }= cb(X), P \= t{K), P3K 

P NK{X}K), P N»({*}*) 

p F PM 

P }= cb(X), P N »(-*), P 3 -A 
Plilpru) 

~FR(^mr 



B.5. Recognizability rules ,,, 

P N tt(#PO), P 3 ff(X) 
P N »(*) 

B.5 Recognizability rules 

Rl P ^ #*) 
P M ( * , n p^4>(F(x)) 

R2 

R3 

R4 

R5 

R6 

P N #*), P 3 K 
P N #{*}*), P N </>({*}?) 

PNffl, P3+A-
p 1= ̂ ({X}+K) 

p 1= </>({*}-*) 

P |= <p(X), P3X 
P |= #ff (X)) 

P 3 #(X) 

P N 4>(X) 

B.6 Message interpretation rules 

P < *{*}*, P 3 JT, P N ^ Q , P N fl*), P N tt(AT, fl*) 
P ̂  Q h X, P N Q h {*}*, P N G 3 A-

12 

13 

14 

15 

16 

P <J *{X, <S>}+K, P 3 (-K, S), P N ^ P, 

P^P&Q, P^^>(X,S), P^j(X,S,+K) 

p^QY- {x,<s>), P N Q h {*,<£>}+*, P |= Q 3 +ir 

P< *H(X,<S>), P3(X,S), P^PAQ, P£$(X,S) 

P^Q\^(X,<S>), P\=Q^H(X,<S>) 

P<{X}-K, P3-rK, P^Q, P^cb(X) 

P^Q^X, P ^ Q h {X}-K 

P<{X}-K, P3+K, P\Et$Q, P^cb(X), P£j(X,+K) 

P^Q3(-K,X) 

P^Q^X, P N ilffl 

P^Q3X 



B. 7. Jurisdiction rules 
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IT pNQh(^y) 
PWQ^x 

B.7 Jurisdiction rules 

P ^ Q ^ C PNQNc 
p^c" 

J2 PN<5K<5N *, PNQh(*->c), p̂ )i(x) 
PFQFC 

J3 P N <3 b <2 N *, PNQNQNC 
P~WQWC 

B.8 Never-originated-here rules 

lv P < JX}K, P3K, P^phQ, P |= flX), P |= (g)(P) 

12' 

13' 

P<{X,<S>}+K, P3(S,-K), P^
+4P, 

P\=P&Q, P |= flX,5), P |= ®(P) 
p t= Q M*, <5>), P N Q h {*, <̂ >}+x 

P<P/(X,<5>), P9(X,5), P^PAQ, P$=<b(X,S), P£®(P) 

P^Q\^(X,<S>), P |= Q (~ # (*, < S >) 



Appendix C 

C.l Being-told rules 

Tl 

T2 

T3 

T4 

T5 

T6 

T7 

P< *X 
P<X 

P < (X, Y) 

P<X 

P<{X}K, P3K 

P<X 

P<{X}+K, P3-K 

P<X 

P<F(X,Y), P3X 

P<Y 

P<{X}-K, P3+K 

P<X 

P<X~~>C 

P<X 

C.2 Possession rules 

p<x 
PI 

P3 

P5 

P 3 X 

P 3 (X, Y) 
P3X 

P9 F(X,Y), P3X 
P3Y 

Modified G N Y logic 
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C.3. Freshness rules 

C.3 Freshness rules 

F, PN«W, P3(x,y) 

p~¥Wx) 

F1„ P N IK*), P 3 F(X) 
P N «(F(X)) 

P N tt(*), P 3 AT, P 9 {X}x 
^ N «({*}*-) 

p2„ P |= »W, P 3 #, P 3 {X}^
1 

pWmxW) 

Fr P N tt(*), P 3 +A-, P 3 {X}+K 
P N »({*}+*) 

P4, P N ttffl, P 3 -K, P 3 {X}_K 
P N K{x}-K) 

P \= iJ(+AQ, P 3 -A-
P N tt(-̂ ) 

PN»(-n P3+A-
P N tt(+Ar) 

F7, P N fl*), P N fl W, P 3 ^ P 9 {X}y 
P N »({*}*) 

F7„ P N fl*), P N fl W, P 3 K, P3 {X}J 
P N «({*}*) 

PR, P N fl*), P N fl(+*Q, P 3 -rK, P3 {X}+K 
P |= Jt({X}+Ar) 

pq/ P N fl*), P N fl(-/Q, P 3 -K, P 3 {*}_K 
p N *({*}-*) 

pin, P N fl(*), P 3 *, P 3 g(X) 
p |= t)(p;(x)) 

F11, P NITO), -P 3 ff(X), P 3 X 
PM(*) 



C.4. Recognizability rules 1 „7 

C.4 Recognizability rules 

R1, PNfl*), P3(*,y) 
PNfl*,^) 

R1„ P N fl*), P 3 P(X) 
PNflP(*)) 

R2' 

R2" 

R3' 

R4' 

R5' 

P N fl*), P 3 K, P 3 {X}K 
P N fl{*k) 

P N fl*), P 9 AT, P 3 {X}^1 

^ N fl{*}?) 

P |= flX), P 3 +AT, P 9 {X} + g 

P N fl{*W) 

P E= flX), P 9 -K, P 3 {X}_K 

P N fl{*}-*) 

P |EE flX), P3X, P3 H(X) 

P \= cf>(H(X)) 

C.5 Message interpretation rules 

n 

12 

13 

14 

15 

16 

P< *{X}K^C, P3K, P^P^Q, P^fl*), PNfl(*,̂ ) 
P^Q\^X, P^Qh {X}K ̂ C, P^Q3K 

P < *{X, <S>}+^ ~> C, P 3 (-K, S), P (=t? P, 

P N ^ g , PNfl*,£), P N tt(*, fr+JQ 

P< *H(X,<S>)^>C, P3(X,S), P\EEP&Q, Pf=jl(X,S) 

P N £ h (*> <^>), P N Q h #(*, <s>) ~> c 

P < {X}_K ̂ C, P 3 +AT, P ̂  Q, P M fl*) 
p^Qh*, P N Q h {X}-K -> c 

P<{X}_K, P3+AT, P^tfQ, P^flX), P̂ jj(X,+A-) 
PMQ3(-A^,X) 

p ̂ Q h*, ̂Nfl(*) 
P^Q3X 



C.6. Jurisdiction rules 
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P^Q^(X,Y) 

P^Q\-X 

P^Q^X^C 

P N Q h * 

I9 P^Q^X^(C,C) 

P\EEQ \^X^C 

C.6 Jurisdiction rules 

c, P\ 

P^C 

JI p N Q K c, P |= Q N c 

J2 PNlMi.*' P N Q h (*- c), P N »(*) 

J3 

P^Q^C 

C.7 Never-Originated-Here rules 

; P < {X}K ^C, P3K, P^P&Q, P |= flX), P ^ ®(P) 
II 

12' 

p^Qh*, PNQh- {*k -> c 

P«{X,<S>}+*^C, P 3(5,-1^, P:M^P, 
P ^ P & Q , p^flx,s), P ^ ( P ) 

13 

p ̂  g h (*, <<?>), P N Q h {*, <<?>}+* - c 

, P<H(X,<S>)^C, P3(X,S), P^P^Q, P\=<f>(X,S), P|=®(P) 
P^Q\^(X, <S>), P \= Q h H(X, <S>) ~> C 



Appendix D 

Path finding program 

The following Prolog procedure for path finding in DAGs is adopted from the text by 

Bratko [65] with slight simplifications. It employs a brute force technique to determine 

maximal paths, and is thus highly inefficient. We nonetheless use it for the sake of 

simplicity. 

*/, lbr(Digraph, MaxPath, Bound): 

'/, MaxPath is the longest path between 

V, any pair of vertices in Digraph 

lbr(Digraph, MaxPath, Bound) :-

path(_, _, Digraph, MaxPath, Bound), 

not((path(_, _, Digraph, _, Cost), 

Cost > Bound)). 

'/. path (A, Z, Digraph, Path, Cost): 

X Digraph is represented as 

'/, digraph (Nodes, Edges), where 

'/, Nodes is a list of vertices and 

'/, Edges is a list of edges in Digraph 

y 

°/0 Path is an acyclic path with 

•/, cost Cost from A to Z in Digraph 

'/, p(X, Y) means there is an edge 

'/. from X to Y in Digraph 

path(A, Z, Digraph, Path, Cost) :-

139 
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pathl(A, [Z], 1, Digraph, Path, Cost). 

pathl(A, [AlPathl], Costl, _, 

[AlPathl], Costl). 

pathl(A, [YlPathl], Costl, 

digraph(Nodes, Edges), Path, Cost) :-

member(p(X, Y), Edges), 

Cost2 is Costl + 1, 

pathl(A, [X, YlPathl], Cost2, 

digraph(Nodes, Edges), Path, Cost). 



Appendix E 

An informal approach to the analysis and 
design of some key exchange protocols 

In this appendix, we investigate the security of several existing key exchange protocols 

using a methodology proposed by Boyd and Mao [45]. The main idea behind this 

methodology is to view the security of key exchange protocols in terms of two design 

principles based on confidentiality and authenticity properties. The purpose of this 

appendix is to demonstrate the effectiveness of the above view by means of case studies 

of some published protocols. Specifically, we will analyze several notable key exchange 

protocols from the literature that are based on one-way functions. The analyses we 

carry out provide valuable insight into the working of the protocols and reveal security 

weaknesses in some of the protocols. Alternative protocols will be devised that can not 

only be shown to be secure in a specific sense, but which are also simple and elegant 

when compared with the protocols analyzed. 

(The contents of this appendix are based on a recent work co-authored with Colin 

Boyd [46], and an earlier work by the author [47]. Colin Boyd provided an unpublished 

manuscript to the author, which formed a substantial basis for the joint work with the 

author.) 

E.l Introduction 

Key exchange protocols involve an exchange of messages between two or more users 

with the aim of establishing a shared key among the users. Such protocols employ 

cryptographic functions to provide confidentiality and authenticity of the distributed 

keys. A variety of such functions are available in practice, and it is important to select 

them judiciously while designing protocols. Although the majority of key exchange 

protocols found in the literature use either symmetric cryptosystems or public key 

cryptosystems, such protocols can equally be designed using one-way hash functions. 

The idea of using one-way hash functions as a basis for key exchange protocols appears 
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to be due to Gong [48]. It has also been adopted by IBM in their KryptoKnight 

authentication and key distribution system [49], [50]. 

A one-way hash function / can be characterized as follows (cf., e.g., Merkle [51]): 

(1) Given x it is easy to calculate the hash value f(x); and (2) Given a hash value y, 

it is computationally infeasible to find a value x such that f(x) = y. Moreover, the 

function produces a fixed length output, but allows an input value of arbitrary length. 

As noted by Anderson [52] and by Berson et al. [53], the above characterization of a 

one-way hash function is not adequate for the security of key exchange protocols of the 

type suggested by Gong and other similar protocols found in the literature. In partic­

ular, such protocols make use of a secret value in the input to the function, in a keyed 

manner, so there are additional constraints governing the use of the function that do 

not follow from the above definition, and which must therefore be made explicit. The 

desired functions are commonly labeled as keyed hash functions or message authenti­

cation codes (MACs) [54]. The exact properties required of a keyed hash function may 

well be application specific; however, for the protocols we are concerned with here it 

appears suitable to assume the properties of a Secure Keyed One-Way Hash Function 

( S K O W H F ) defined by Berson et al. [53]. For convenience we recall their definition 

below. 

A function g() that maps a key k and a second bit string x to a string of a fixed 

length is a S K O W H F if it satisfies five additional properties: 

1. Given k and x, it is easy to compute g(k,x)\ 

2. Given k and g(k,x), it is hard to compute x; 

3. Given k it is hard to find two values x and y such that g(k,x) = g(k,y), but 

A. Given (possibly many) pairs x and g(k,x), it is hard to compute k; 

5. Without knowledge of k, it is hard to compute g(k, x) for any x. 

W e also assume that the mapping from input to output has the property that it is 

impossible to predict any portion of the output, other than by computing the function. 

It is possible to construct keyed hash functions using conventional unkeyed hash 

functions such as M D 5 [55]. There are some potential advantages of using one-way hash 

functions instead of conventional cryptosystems in designing key exchange protocols. 

Namely, that hash function implementations may have less export restrictions than 

conventional cryptosystems and may also be faster as compared to such cryptosystems. 
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E.2 Channels for secure key exchange 

We begin by briefly reviewing the methodology due to Boyd and Mao [45]. 

Cryptographic transformations can broadly be viewed to provide the following two 

primitive security services: 

• Confidentiality of a message guarantees that only the authorized users will be 

able to read it. 

• Authenticity of a message guarantees that only an authorized user could have 

created it. 

The authorized users here are defined by their possession of the required cryptographic 

keys. The above two properties form the basis for the notion of abstract channels of 

confidentiality or authentication that may be used to characterize a secure key exchange 

protocol. The notation 

S ̂  A:m 

denotes that m is sent by S over a confidentiality channel to A. It implies S knows no 

one except A could possibly read m. The notation 

A^-S:m 

denotes that m is received by A over an authentication channel from S. It implies 

A knows no one except S could have possibly sent m. The above notations differ 

fundamentally from the conventional notation 

S ->• A : m 

which only indicates that m is meant to be received by A supposedly from S. It does 

not imply that m remains confidential to A or that S has actually sent m. 

The basic goal of a key exchange protocol is to establish a shared key between two 

or more users for a subsequent session. W e recall below two principles for secure key 

exchange (cf. Boyd and Mao [45]): 

Key confidentiality The key must not be divulged to any unauthorized user. In 

other words, there must exist a confidentiality channel from the generator of the 

key to each recipient of the key. 
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K e y authenticity Each recipient of the key must be sure that the key comes from an 

authorized user and is a new key for use with the stated users. In other words, 

there must exist an authentication channel from the generator of the key to each 

recipient of the key. 

The first principle suggests that the new shared key is all that needs to be sent along a 

confidentiality channel from the key originator to a key recipient. The second principle 

suggests that this key must also be sent along an authentication channel from the key 

originator to the recipient together with a freshness identifier and the names of each 

recipient of the key. Typically, the freshness identifier used is an unpredictable nonce 

previously sent by the recipient. 

It is easy to show that adherence to the above two principles suffices to guarantee 

the security of the resulting protocol in the following sense [45]: The key recipients 

know that the key must have newly originated from an authorized user and they also 

know who else this key is shared with. This security guarantee is demonstrable in a 

simple manner, without appealing to specific attacks. 

In practice, a variety of concrete protocols may be designed by defining the required 

confidentiality and authentication channels in various ways using the available cryp­

tographic functions. On the other hand, existing protocols can also be analyzed by 

investigating how these channels are possibly realized in the protocols, even when they 

might not have been specifically identified by the authors of the protocols. For a sample 

application of such an approach on several existing protocols employing conventional 

cryptosystems, cf. Boyd and Mao [56]. 

In the protocols considered in the following sections we shall focus only on key 

exchange. Some of the existing protocols we analyze using the above approach appear 

to include an additional feature that allows users to mutually confirm their receipt of 

the session key. However, as explained later in the appendix this feature lies outside 

the scope of the analysis approach. Therefore, we do not attempt to address key 

confirmation while using the analysis approach. 

For the sake of uniformity in presenting the protocols below, we make slight adjust­

ments to the original notation used by the protocol authors. The notation ',' usually 

denotes concatenation. Following standard practice, we extend the notation f(k, x) and 

write f(k, xi,x2,..., xn) to mean that the second argument of / is the concatenation 

of Xi,X2,...,Xn. 
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E.3 Gong's Protocols 

The first protocol suggested by Gong [48] is both novel and ingenious, and appears 

to represent the original idea of using a one-way function as the basis for the security 

of a key exchange protocol. The scenario is a typical one for such protocols; a server 

S is trusted by a pair of users to distribute a session key for use in a subsequent 

session between the users. The server initially shares a secret Pv with each user U. 

The messages exchanged in a successful run of the protocol between A and B are as 

follows [48, p. 9]: 

1. A-^B: A,B,nA 

2. B^S: A,B,nA,nB 

3. S -> B : ns,f(PB,ns,nB,A)®(k,hA,hB),g(PB,k,hA,hB) 

A. B^-A: ns,hB 

5. A^B: hA 

Here / and g are publicly known keyed one-way (hash) functions. The values nA and 

nB are random values chosen for a one-time use (nonces) by A and B respectively. If, 

for example, B receives a message containing nB, then B can be sure that the message 

is new. The value ns is similarly a nonce chosen by S, but as we shall explain below, it 

is for the purpose of confidentiality and not authentication. The values k (the shared 

session key), hA, and hB are extracted using the following equation: 

(k,hA,hB) = f(PA,ns,nA,B) 

Here it is assumed that the procedure for extracting the fields k, hA, and hB from the 

value computed as f(PA,ns,nA, B) is known in advance. 

It is immediately apparent from the above equation that the protocol is highly 

asymmetrical with respect to A and B. Both S and A contribute to the value of the 

session key via ns and nA, respectively, but B has no influence on it. (Although J3's 

name appears in the above equation, it remains fixed in every run.) 

W e now isolate the confidentiality and authentication channels used to deliver k to 

A and B respectively. 

Channels from S to A We first note that k is generated by A and S jointly using 

their shared secret PA- W e can regard the value ns relayed by B to A (from S) as 

analogous to k encrypted with PA. W e draw this analogy essentially by observing that 
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PA is a secret value that is required to recover k using ns. Thus we may consider the 

confidentiality channel from S to A: 

S-^A:k 

to be defined as 

B ->• A:ns 

where f(PA,ns, ...) = (k,...). Notice that the channel definition is quite restrictive in 

the choice of the session key. The server S cannot choose the key value independently 

of A. Furthermore, this value is the result of an application of a one-way function. 

This implies that the key cannot be chosen to have specific structure. 

Authentication of k to A is provided by the value hB relayed by B to A. The 

properties we assumed of / imply that it is feasible to derive the value hB only with 

the knowledge of PA. Furthermore, since only A and S share PA, A may be sure that S 

must have originally sent hB, as A itself does not send it in the protocol. Additionally, 

A may be sure that k and hB must be new since both are obtained as a function of 

nA. Thus we may consider the authentication channel from S to A: 

A<A- S:k,nA,B 

to be defined as 

B -* A : hB 

where f(PA,..., nA, B) = (k,..., hB). 

It is now apparent that the confidentiality and authentication functions are tied 

together, and this appears to make the analysis complex. 

Channels from S to B The authentication and confidentiality channels from S to 

B are rather different. 

We may consider the confidentiality channel from S to B: 

S -^ B:k 

to be defined as 

S^B:f(PB,ns,...)®k 

Since ns is randomly chosen each time by S, we can consider f(PB,ns,- - -) to be 

essentially random. Moreover, it is infeasible to form f(PB,...) without knowledge of 

PB. So the confidentiality channel can be simply viewed as analogous to the Vernam 

cipher with a non-repeating random ciphering key, known as the one-time pad (cf. [57]). 
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We may consider the authentication channel from S to B: 

B^-S:k,nB,A 

to be defined as 

S '-• B : f(PB, - - - ,nB,A) ® (k,hA,hB),g(PB,k,hA,hB) 

We observe a curious feature of the channel definition. The authentication function is 

coupled with key delivery in such a way that B has no real assurance that k is new. 

Indeed, it is possible for A to circumvent this channel. Suppose that A knows an old 

session key k' from a previous run of the protocol between some user X and B. Then 

A can force B to accept k' for a new session with A, as follows. In the attacking run, 

the first two protocol messages are exchanged as in a normal run. 

1. A->B: A,B,nA 

2. B ->• S : A,B,nA,nB 

The next message from S which is actually meant for B is intercepted by A. 

3. S->A: ns,f(PB,ns,nB,A)®(k,hA,hB),g(PB,k,hA,hB) 

Now A computes the value (k, hA, hB) = f(PA, ns, nA, B), and computes the exclusive-

or (XOR) of this value with the intercepted value f(PB,ns,nB,A) © (k,hA,hB), to 

extract f(PB,ns, nB, A). Then A pretends to be S and sends the following message to 

B: 

3'. A^B: ns,f(PB,ns,nB,A)®(k',h
,
x,h'B),g(PB,k',h'x,h

,
B) 

Here we assume that h'x, h'B, and g(PB,k!, h'x, h'B) were recorded by A from the previ­

ous run between X and B. The rest of of the protocol is then successfully completed 

as follows. 
4. B-+ A: ns,h'B 

5. A -> B : h'x 

The above attack is rather unconventional, because here A itself purportedly de­

feats the security of the subsequent session with B. It is easily precluded under the 

assumption that B trusts A to let a session key between the two to faithfully pass from 

S to B. Nonetheless, such an assumption appears to be only implicit in Gong's dis­

cussion [48] and may be viewed as a potential weakness. In suggesting general design 

guidelines for cryptographic protocols, Abadi and Needham [58] caution that such trust 

assumptions may not always apply and should be adjudged carefully. The particular 

assumption seems to arise in Gong's protocol not so much as a genuine requirement, 

but rather as a result of a misplaced authentication channel. 
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E.3.1 Gong's alternative protocol 

In the same paper [48], Gong suggests an alternative protocol in which the responsibility 

for key generation rests solely with S. The server S now randomly chooses all of k, 

hA and hB to be of the appropriate size. And the message it sends is symmetric with 

respect to A and B [48, p. 10]: 

3. S -+ B : ns,f(PA,ns,nA,B)@(k,hA,hB),g(PA,k,hA,hB), 

f(PB,ns, nB, A) © (k, hA,hB),g(PB,k, hA, hB) 

A. B-+A: ns,f(PA,ns,nA,B)@(k,hA,hB),g(PA,k,hA,hB),hB 

The rest of the messages remain the same as in the previous protocol, and are omitted 

for the sake of brevity. 

The confidentiality and authentication channels to A and B are now essentially the 

same as those to B in the original protocol. So the curious feature applies to both A 

and B; each of them can make the other accept a previously shared old key. Again it 

is crucial to make this assumption explicit. 

E.4 A protocol of Bull, Gong and Sollins 

We now explain how the analysis technique enables us to discover the cause of a flaw in 

a protocol due to Bull et al. [59]. In this protocol, the message sent by S is somewhat 

similar to the one in Gong's alternative protocol. A successful run of the protocol 

between A and B can be given as follows. 

1. A->B: A,f(PA,B),nA 

2. B^S: A,B,f(PB,S,A,f(PA,B),nA),nA,nB 

3. S^B: f(PB,A,nB)@k,f(PB,A,nB,k), 

f(PA,B,nA)®k,f(PA,B,nA,k) 

A. B-+A: f(PA,B,nA)@k,f(PA,B,nA,k) 

It is easy to see that in this protocol the session key k is not sent over a confidentiality 

channel from S. For note that S cannot possibly be sure that nA or nB is new. As a 

result there is no guarantee that the session key is XORed with a new random value 

each time. So we can regard the particular channels used by S as analogous to the 

Vernam cipher with a possibly repeating ciphering key (cf. [57]). Thus in contrast to 

Gong's protocols, the channels here no longer provide a confidentiality service. For 

example, suppose each of k' (an old session key) and k (a new session key) is XORed 
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with the same ciphering key x, giving the ciphertexts x 0 k' and x 0 k, respectively. 

Then given k' we can easily break the ciphertext x@k by computing (x@k')@(x@k)®k', 

to reveal k. 

In more concrete terms, suppose that in the above protocol an attacker E knows an 

old session key k', and that she has also recorded n'A, f(PA, B) and f(PA, B,n'A) 0 k', 

all from the corresponding run. W e also make the reasonable assumption that S and 

B ignore replays of nonces not generated by them. An attacking run on the protocol 

proceeds as follows, with E masquerading as A [47]: 

1. E^B: A,f(PA,B),n'A 

2. B->S: A,B,f(PB,S,A,f(PA,B),n'A),n'A,nB 

3. S^B: f(PB,A,nB)@k,f(PB,A,nB,k) 

f(PA,B,n'A)®k,f(PA,B,n'A,k) 

A. B^E: f(PA,B,n'A)®k,f(PA,B,n'A,k) 

Although k is intended to be a new session key A and B, an attacker E can easily 

compute 

(f(PA, B, n'A) 0 k) 0 (f(PA, B, n'A) 0 k') 0 k' 

to obtain k. At the end of the attacking run B believes k is shared with A, whereas 

in fact it is shared with an impostor E; it is easy to construct a similar attack where 

E masquerades as B to A. This concludes the modus operandi of our attack on 

the protocol. However, the gist of the above attack is that the protocol makes a 

fundamentally wrong use of a cryptographic algorithm. 

In the same work [47] where the above attack was first published by us, we also 

suggested the following improved protocol to counter this attack: 

1. A-+ B : A,nA 

2. B ->• S : A,B,nA,nB 

3. S^B: ns,f(PB,A,nB,ns)®k,f(PB,A,nB,k), 

f(PA, B, nA, ns) 0 k, f(PA, B, nA, k) 

A. B-+A: ns,f(PA,B,nA,ns)®k,f(PA,B,nA,k) 

Ironically, we later discovered that our improved protocol suffers from essentially the 

same curious feature found in Gong's protocols. Observe that in this protocol k is 

sent over a confidentiality channel from S to B. So the improved protocol does in­

deed represent a marked improvement over the protocol of Bull et al. However, the 

confidentiality channel used in this protocol is still not quite in its simplest form. In 

particular, it is unnecessary to include A's name and nB in defining this channel, since 



E.5. KryptoKnight protocols 1 5 0 

these fields are already included in the authentication channel from S to B. In fact, 

their inclusion in the confidentiality channel is not only superfluous but, as explained 

below, also serves to potentially undermine the authentication channel. 

Consider the confidentiality channel definition, inclusive of the superfluous elements: 

S ^ B : f(PB,A,nB,ns)@k 

And consider the authentication channel definition, which is actually in its adequate 

form: 

S-+B:f(PB,A,nB,k) 

It becomes apparent that the inclusion of redundant fields in the confidentiality channel 

results in a striking similarity between the formats of the hashed components used in 

the two channel definitions. This symmetry can be exploited to construct essentially 

the same type of attack we demonstrated on Gong's protocols earlier. For instance, A 

can force B to accept ns as a session key between the two by intercepting message 3 

and replacing it with message 3', as follows. 

3. S^A: ns,f(PB,A,nB,ns)®k,f(PB,A,nB,k), 

f(PA, B, nA, ns) 0 k, f(PA, B, nA, k) 

3'. A^B: ns,f(PB,A,nB,ns)®nsJ(PB,A,nB,ns),... 

Undoubtedly, it is possible to assume away such an attack by putting side conditions on 

the protocol. For example, we can require that k and ns be somehow made distinct by a 

protocol implementation. Or, as in Gong's protocols, we can make a trust assumption 

on B's side about A's actions. Alternatively, here we can even eliminate such an 

assumption, by requiring B to perform an additional check. Still further, the attack 

can be avoided by constraining protocol implementations to follow a particular ordering 

on the fields before hashing. (Such countermeasures are by no means exhaustive.) In 

principle, however, such measures do very little to address the unnecessary confusion 

of the confidentiality and authentication channels. (An essentially similar discussion 

applies to the channels from S to A.) 

E.5 KryptoKnight protocols 

KryptoKnight [49], [50] is an authentication and key distribution system developed by 

IBM. The KryptoKnight protocols have been implemented as part of IBM's NetSP 

(Network Security Program) system. 
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E.5.1 Initial version 

The original KryptoKnight mechanism described by Molva et al. [49] enables a user A 

to obtain a session key generated by S for use between A and B, as follows: 

1. A -* S : nA 

2. S^A: nA,ns,B,T,f(PA,ns®B,nA,ns@S,T)®k 

(A similar exchange also essentially takes place between S and B.) Here T is the 

duration for which the session key k is meant to remain valid. In contrast to Gong's 

protocols, ns is not chosen at random by S, but is obtained as the encryption of nA 

under k using a non-reversible encryption function E: 

ns = E(k,nA) 

(E may be considered to have the same properties as /.) However, ns can be considered 

as essentially random, since k is randomly chosen by S. Thus the confidentiality channel 

from S to A is similar to that in Gong's alternative protocol. 

The authentication channel from S to A is essentially based on the binding between 

k and ns, albeit in a highly convoluted fashion. We may consider the authentication 

channel: 

A^- S:k,nA,B 

to be defined as 

S^A:nsJ(PA,ns®B,...)®k 

where ns = E(k,nA). Notice this channel definition appears rather peculiar when 

compared with its counterpart from the protocol of Bull et al. Relatedly, the simplicity 

associated with the latter definition is no longer preserved. 

E.5.2 Recent version 

The above key exchange mechanism appears to have been simplified by Bird et al. [50] 

to derive some recent protocols of the KryptoKnight family. Although our analysis of 

the original KryptoKnight mechanism did not reveal any specific weaknesses, we find 

surprising failures in the recent protocols. 

Let us consider a specific instance of the basic key exchange protocol of Bird et 

al. [50, p. 35]: 

1. A-+S: B,nA 

2. S^A: T,f(PA,B,nA,T)®k 
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It is apparent that this protocol provides neither session key confidentiality nor au­

thenticity. The cause for loss of confidentiality is similar to that in the protocol of Bull 

et ai, which we discussed in the previous section. On the other hand, there is no au­

thentication channel from S to A; A cannot be sure that the session key it supposedly 

recovers upon a protocol execution is indeed from S. 

W e note that several key exchange protocols proposed by Bird et al. ([50], pp. 

36-38) are meant to cover the above instance as well, although the specific protocols 

proposed there employ the following message format: 

S -* A:ns,T,f(PA,nA,ns,S,B,T)@k,... 

Unlike the original KryptoKnight mechanism, here ns is randomly chosen by S, inde­

pendently of nA; nA itself is randomly chosen by A. Surprisingly, Bird et al. suggest 

that the nonce ns is of no particular value in their protocols: 

... the use of Nk [ns] in the tickets does not serve any particular purpose. 

Nk [ns] is used here simply to preserve some homogeneity between ticket 

format in all scenarios, but for no other significant purpose. ([50], p. 38) 

Nevertheless, it is easy to see that ns is crucial for maintaining session key confiden­

tiality in their protocols. Indeed, if we act on the above suggestion of Bird et al. and 

omit ns from their protocols, then an attack similar to the one that we demonstrated 

on the protocol of Bull et al. in the previous section follows immediately. 

On the other hand, Bird et al. admittedly allow loss of session key integrity. They 

note that B can change the session key, without A's knowledge ([50], p. 37). However, 

the resulting situation appears rather dubious with the protocols of Bird et ai, when 

compared with Gong's protocols. For now B can even arrange that A and C share 

the same session key, and thus authenticate each other, although each of them may 

be purportedly authenticating B. Below we demonstrate an attack on one of their 

proposed protocols: the A-B-K ticket distribution protocol (expanded version). A 

successful run of the protocol between A and B can be given as follows [50, pp. 37]: 

1. A -^ B : A,nA 

2. B -> S : nA,nB,A,B 

3. S^B: ns,T,f(PA,nA,ns,S,B,T)®k, 

f(PB,nB,ns,S,A,T)®k 

A. B^A: ns,T,f(PA,nA,ns,S,B,T)®k 

For simplicity of presentation, we have omitted certain message elements from the 

original protocol since they do not affect our attack. In the following 'triangle' attack 
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on the above protocol, B engages in two parallel runs of the protocol, one with A and 

the other with C. S generates k and k' as the session keys for use between A and B, 

and C and B, respectively; kx is a value chosen by B. 

1. A-+B: A,nA 

2. B-> S : nA,nB,A,B 

3. S-+B: ns,T,f(PA,nA,ns,S,B,T)®k, 

f(PB,nB,ns,S,A,T)®k 

A. B->A: ns,T,f(PA,nA,ns,S,B,T)®kx 

V. C^B: C,nc 

2'. B->S: nc,n'B,C,B 

3'. S-^B: n's,T,f(Pc,nc,n's,S,B,T)®k', 

f(PB,n'B,n's,S,C,T)®k' 

A'. B^C: n's,T,f(Pc,nc,n's,S,B,T)®kx 

N o w A and C unexpectedly end up sharing kx, although they did not directly partici­

pate in a mutual run with each other. 

E.6 Alternative designs using secure channels 

The protocols examined in the previous sections reflect a mix-up of confidentiality 

and authentication channels. In particular, these protocols exhibit confusion about 

the purpose of the message fields and the use of cryptographic transformations. It 

is tempting to speculate that this confusion might have even been the root of flaws 

or unusual features in some of the protocols. W e can easily avoid such defects by 

addressing the desired channels explicitly at the design stage itself. In fact, the same 

technique we used to analyze existing protocols can be applied equally well to design 

new protocols that can be shown to be secure. A key exchange protocol is designed 

by simply defining the required channels from the key originator to the key recipients. 

W e illustrate this concept below by designing two concrete protocols using one-way 

functions. 

E.6.1 Three-party key exchange 

Consider a conventional key exchange scenario where a shared key k needs to be estab­

lished between two principals A and B via a trusted server S. The server S is assumed 
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to share secrets PA and PB with A and B, respectively. The desired channels from S 

to A are specified as [45]: 

S^A: k 

A^-S: k,A,B,N 

where AT is a nonce used to convince A that k is new. The channels from S to B are 

similarly specified. We can look upon the above specification as a generic key exchange 

protocol. A concrete protocol is derived from the specification by implementing the 

required channels using the available cryptographic functions. 

We shall define the required confidentiality channel from S to A as: 

S-+A:f{PA,ns)®k 

where ns is a random value chosen by S. And we shall define the required authentica­

tion channel from 5 to A as: 

S^A:f(PA,k,B,nA) 

where nA is a random value chosen by A. Recall that the hash value f(PA,...) cannot 

be formed without the knowledge of PA. Furthermore, PA is a shared secret between 

A and S. We can thus regard A's name as being implicitly included in the use of 

PA, and thereby omit it from the actual definition. (The desired confidentiality and 

authentication channels from S to B are similarly defined.) 

We assume that the ordering of messages is irrelevant, except for the constraint 

that certain messages must necessarily precede others. A protocol that makes the 

desired confidentiality and authentication channels concrete is now easily constructed 

as follows: 

1. A^fB: A,B,nA 

2. B -> S : A,B,nA,nB 

3. S-+B: ns,f(PB,ns)@k,f(PB,k,A,nB),f(PA,ns)®k,f(PA,k,B,nA) 

A. B^A: ns,f(PA,ns)®k,f(PA,k,B,nA) 

It is clear that the precise formulation of the channel requirements enables us to op­

timize the design by using exactly what is needed in each channel. The protocol is 

conceptually simple and elegant—the confidentiality and authentication channels now 

only contain those elements that are relevant to the function of each channel. Conse­

quently, the channels are now transparent, which makes the purpose of the protocol 

messages quite clear. 
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E.6.2 Conference key exchange 

The above design extends straightforwardly to a conference key protocol. Assume that 

there are n different participants from a set U = {Ux, U2,..., Un}, and that each Ut € U 

shares a secret PU{ with S initially. Let k denote a conference key chosen by S to be 

shared among the participants contained in U. Then each U{ e U generates its own 

nonce, nVi, and carries out the following exchange with S: 

1. Ui-^S: U,nVi 

2. S-+UH ns,f(PUt,ns)®k,f(PUt,k,U\Ui,nUi) 

('\' denotes the set difference operator.) 

E.7 Discussion 

Throughout this appendix we have employed a methodology of Boyd and Mao [45] 

to pinpoint problems of varying seriousness in several existing key exchange protocols 

based on one-way functions. Furthermore, we used the insight gained from the analyses 

carried out to design a simplified protocol which we claim is as secure as any published 

protocol of its type, and still enjoys a transparent and elegant design. The simplicity 

of this approach has further enabled us to design a new conference key protocol as an 

obvious extension. 

It may be argued that our protocols are susceptible to guessing attacks on the long-

term secrets assumed initially if these secrets were user chosen passwords. However, all 

the previous protocols we considered also have the same feature. Although we make 

guessing infeasible by simply assuming that the initial secrets are well-chosen, it may 

be desirable to relax this assumption and investigate alternative designs that allow 

passwords to be used. 

As noted by Boyd and Mao [45], their approach is targeted at key exchange only. 

W e emphasize that it does not directly apply to the analysis of protocol properties 

that are essentially independent of key exchange. W e illustrate this scope limitation 

by means of an example here. Consider the following protocol due to Bull et al. [59]: 

1. A->S 

2. S->A 

3. A^S 

A. S-+A 

nA 

ns, k 0 f(PA,nA, ns), f(k, ns), ns 

f(k,ns) 

f(k,nA) 
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Here S generates two nonces ns and ns. The first two messages constitute the key 

exchange phase of the protocol: these messages are used to transfer a new session key 

k from 5 to A for use between them. It is not difficult to isolate the confidentiality 

and authentication channels used to transfer k from S to A. Indeed, the reason we 

are giving this example is not because we are concerned with the key exchange phase 

here. It is to show that the working of the subsequent phase lies outside the scope 

the analysis approach that we have used so far. The phase consisting of the last two 

messages essentially constitutes a handshake using the session key k. The intended 

interpretation of this handshake is as follows: the third message is used to confirm A's 

receipt of the session key; and the fourth message is used to confirm 5"s receipt of A's 

confirmation. However, the latter message provides no such guarantee, as shown by an 

attack we found on this protocol earlier [47]. 

In the attacking run, an attacker E copies the opening message from A: 

1. A -> S : nA (copied by E) 

The next message from S, which is actually meant for B, is intercepted by E: 

2. S -» E : ns,k® f(PA,nA,ns),f(k,ns),ns 

Now E simply replaces h~s with nA in the above message. She also sends the resulting 

message to A pretending to be S: 

2'. E^A: ns,k@ f(PA,nA,ns),f(k,ns),nA 

She then prevents A's response from reaching S and instead plays it back to A: 

3. A^E: f(k,nA) 

A. E^A: f(k,nA) 

At the end of the attacking run, A wrongly believes that S has responded to its 

handshake message, although S in fact did not participate in the handshake. 

The above attack essentially rests on the inability of a principal to detect a replay 

of one of its own messages. Such attacks are not new; similar attacks have been 

addressed in the past (cf., e.g., Mitchell [60]). For example, if the hash used as a 

handshake message also includes the name of the originator then the above attack is 

easily averted: 

3. A->5: f(k,ns,A) 

A. S^A: f(k,nA,S) 



E. 7. Discussion 157 

Other possible solutions include the use of direction bits or of different hash functions 

in the handshake messages. For a discussion on the use of similar countermeasures in 

a more general setting, cf. Gong [21]. 



Appendix F 

Modeling of recognizability 

Treat this section as though it followed on directly from the end of Chapter 4. 

The notion of recognizable messages essentially reflects the following intuition: (1) 

if a principal P generates a message X, then X is recognizable by P; (2) any message 

that can be possibly verified on the basis of P's recognizable messages, perhaps using 

keys possessed by P, is also recognizable by P. The idea behind (2) is expanded as 

follows: (2') if a message X is recognizable by P and Y = EK(X) for some K such 

that K~x is possessed by P, then Y is recognizable by P (since P can decrypt Y using 

K to reveal the recognizable message X); (2") if a message X is recognizable by P 

and Y = EX(K) for some K such that K is possessed by P, then Y is recognizable by 

P (since P can encrypt the recognizable message X using K to obtain Y); (2'") if a 

message X is recognizable by P and Y = HKX for some K such that K is possessed 

by P, then Y is recognizable by P (since P can hash the recognizable message X using 

K to obtain Y); and (6) if a message X is recognizable by P and Y = Yx | • • • | Yk for 

some Yx,..., Yk such that X = Yi for some i, then F is recognizable by P (since P can 

reveal from Y the recognizable message X). W e fix the set of P's recognizable messages 

for each time. The closure operation that we use in defining P's set of recognizable 

messages at time t roughly captures amongst others the following statement: 

(*) if a message X is in this set and Y = EK(X) for some K such that A-1 is in 

the set of P's possessed messages at t, then Y is in the set of P's recognizable 

messages at t, provided that some principal has encrypted X using K, and thus 

constructed EK(X), at a time earlier than t. 

For each time t, we define the message set Mrecg(P,r,t) to model the intuitive 

notion of recognizable messages. 

Definition F.l 

1. Let t = tfa^r). Then Mrecg(P,r,t) = 0. 
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2. Let t > tfiTSt(r). Then Mrecg(P,r,t) is the smallest set of messages such that: 

I. (Basis) 

Mrecg(P,r,t- 1) U Sgenr(P,r,t- 1) C MreCg(P,r,t) 

II. (Induction) 

(a) EK(X) € A4rec5(P, r, t) if (X, A') € £(r, t) and 

A G Mrecg(P,r,t) and 

A€A4poss(P,r,t) 

(b) AV(X) € A4rec^(P, r, i) if (X, K) e S(r, t) and 

X G Mrecg(P,r,t) and 

A^eM^iV,*) 
(c) tfjcPOeAW^M) if(X,A)€ft(r,i)and 

X e Mrecg(P,r,t) and 

A G MpoSs(P,r,t) 

(d) Xx\---\Xk£Mrecg(P,r,t) if (Xl5..., Xk) G C(r,t) and 

Xi € Mrecg(P,r,t) for some i 

L e m m a F.l For a//i, i' s«cfr t/iat t < t' the following holds: 

Mrecg{P,r,t) Q Mrecg(P,r,t') 

Definition F.2 Let i > 0. 

1. Let t = tfostCr). Then A4lreĉ (P,r,t) = 0 for all i. 

2. Let t > ifirstCr). Then 

_ J Mrecg(P, r, < - 1) U <S<,enr(P, r, < - 1) if t = 0 

^ WP'r'*> ~ j M ^ ( P , r, t) U 5 ifi > 0 

where 

5 = {£*(*) I (X, K) eS(r,t) and X G M ^ ( P , M ) and 

K £ Mposs(P,r,t)} 

U {£tf(X) | (X, AT) € S(r,t) and X € M\£g{Ptr,t) and 

A - 1 € Mposs(P,r,t)} 

U { # K ( X ) | (X, K) G rl(r,t) and X € M%lcg(P,r,t) and 

K E Mposs(P,r,t)} 

U{(Xx\---\Xk)\(Xx,..-,Xk)€C(r,t)and 

Xj G M^^P, r,t) for some j}. 
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The following lemma is easily proved from Definition F.l and Definition F.2. 

Lemma F.2 

Mrecg(P,r,t) C M\ecg(P,r,t) C • • • C |J Mrecg(P,r,t) = MTecg(P,r,t) 

i=Q 

Lemma F.3 

Mgenr(P,r,t) C Mrecg(P,r,t) 

Proof. By induction on t: 

1. (Basis) Let t = tfirst(r). By definition 4.3 and definition F.l, Mgenr(P,r,t^st(r)) = 

Mrecg(P,r,t^Tst(r)) = 0. Therefore, the required statement holds. 

2. (Induction) Let t > tgrst(r) be arbitrary. We assume the inductive hypothesis: 

Mgenr(P,r,t) C Mrecg(P,r,t); and we show this implies Mgenr(P,r,t + 1) C 

A4recy(P,r,t-r-l). 

By the inductive hypothesis it follows that Mgenr(P,r,t) U Sgenr(P,r,t) C 

A^rec^MjUSgenr^r,*). By definition 4.3, A4^enr(P,r, t+1) = A4ffenr(^,»",*)U 

Sgenr(P,r,t), and, by definition F.2, A^^(P,r,t+l) = Mrecg(P,r,t)USgenr(P,r,t). 

Hence Mgenr(P,r,t + 1) C M°recg(P,r,t + 1). By Lemma F.2 it follows that 

A4^enr(P,r,t-l-1) C A4recff(P,r,t + 1). 

(This completes the proof of Lemma F.3.) • 

Lemma F.4 

Mrecg(P,r,t) C Mgenr(r,t) U A W r M ) U Mhash(r,t) U A4 c c mc(M) 

Proof. (Similar to proof of Lemma 4.11.) By induction on t: 

1. (Basis) Let t = tfast(r).
 B ^ definition 4-3 a n d definition F.l, A4rec^(P, r, tfa8t(r)) = 

0 and Mgenr(r,tfast(r)) U jMenCr(Mfirst(r)) U A4/ias/l(
r^first(r))U 

MConc(r,£frrst(
r)) = $• Therefore, the required statement holds. 

2. (Induction) Let t > t^Tst(r) be arbitrary. W e assume the inductive hypothesis: 

(HP1) for all t' < t, Mrecg(P,r,t') C Mgenr(r,t')UMencr(r,t')UMhash(r,t')U 

MConc(r,t'); and we show this impliesMrecg(P,r,t) C A40enr(r,i)UA4enCr(r,t)U 

A4/,as/>M) U A 4 c o n c M ) . 

By Lemma F.2 it suffices to show that, for all Y and for all m, if y G M™ecg(P, r, t) 

then y G Mgenr(r,t) U A4encr(r,t) U Xfcas/i(r,*) U A4conc(r,i). This assertion 

is shown using induction on m: 
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I. (Basis) Let m = 0. Suppose Y G M°recg(P,r,t). By definition F.2, Y G 

Mrecg(P,r,t- 1) (J Sgenr(P,r,t - 1). 

Case(i): Y G MKCg(P,r,t - 1). KP1 yields Y e Mgenr(r,t-1)U Mencr(r,t-

l) U Mhash(r^ ~ 1) U A4conc(r,i - 1). By Lemma 4.6 it follows that 

Y G A4^enr(r,t) U A4enCr(r,*) U Mhash(r,t) U A4COnc(r,i). 

Case (ii): Y G Sgenr(P,r,t - 1). 

By definition 4.2, P performs generate(Y) at i - 1, and therefore, by 

definition 4.3, Y G Mgenr(r,t). 

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis: 

(HP2) for all Y, if Y G M™ecg(P, r, t) then y G Af genKr, t)UM encr(r, t) U 

•^hash(r^) u A4Conc(r,t); and we show this implies that, for all Y, if 

y G A4™"g(P,r,t) then y G Mgenr(r,t) U A4enCr(r,t) U A4/,agft(r,t) U 

MConc(r,t). 

Suppose y G M^c
l
g(P,r,t). By definition F.2, 

y G M?ecg(P,r,t) 

U { £ K ( X ) | (X,K) G £(r,*) and X G M™ecg(P,r,t) and 

AGA4poSS(P,r,0} 

U { £ K ( X ) | (X,tf) G S(r,t) and X G M™ecg(P,r,t) and 

A^GAV^P,^)} 

U { # K ( X ) | (X, A) G ft(r,t) and X G M™ecg(P,r,t) and 

AGA4^os5(P,r,t)} 

U {(Xa | • • • | Xfc) | (X1?... ,Xk) G C(r,i) and 

Xj G M™ecg(P,r,t) for some j}. 

Case (A): y G M^ecg(P,r,t). HP2yieldSy G Mgenr(r,t)UMencr(r,t)l)Mhash(r,t) 

MConc(r,t). 

Case(B): y G {£*(*) I (*> *0 e £(r,t) and X G A4^ecy(P,r,i) and A G 

Mp0ss(P,r,t)}. 

We have y = EK(X) for some X and some A such that (X, A) G £(r, i) 

and X G A4^cp(P,r,t) and AT G A/fposs^M)- By definition 4.3, 

EK(X) G A W r M ) . Hence y G Mencr(r,t)-

Case (C): y G {£*(X) | (X, AT) G S(r,t) and X G M^ecg(P,r,t) and AT"
1 G 

A4poss(P,r,i)}. 

Similar to Case (B). 
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Case(D): Y G {HK(X) \ (X,K) G H(r,t) and X G M^cg(P,r,t) and K G 

MpoSs(P,r,t)}. 

Similar to Case (B). 

Case (E): Y G {(Xx \ - • - \ Xk) \ (Xx,...,Xk) G C(r,t) and Xj G M?ecg(P,r,t) 

for some j}. 

Similar to Case (B). 

(This completes the proof of Lemma F.4.) • 

The statement of Lemma F.4 is rather weak; it is apparent from the proof of this 

lemma that we can also obtain the following stronger statement: Mrecg(P,r,t) C 

Mgenr(P,r,t) U Mencr(r,t) U Mhash(r,t) U MConc(r,t). 

Lemma F.5 Let X G Mrecg(P,r,t). Then 

(a) if (X,K) G S(r,t) for some K such that K G Mp0ss(P,r,t), then EK(X) G 

Mrecg(P,r,t), and 

(b) if (X,K) G £(r,t) for some K such that K'1 G Mp0ss(P,r,t), then EK(X) G 

Mrecg(P,r,t), and 

(c) if (X,K) G H(r,t) for some K such that K G Mposs(P,r,t), then HK(X) G 

Mrecg(P,r,t), and 

(d) ifXx | • • • | Xfc G C(r,t) and X = X{ for some i, then Xx | • • • | Xk G M recg(P, r, t), 

Proof. We only prove part (a); the remaining parts are proved similarly. Suppose 

(X, A") G £(r,t) for some A such that A G Mposs(P,r,t). By Lemma F.2 it suffices 

to show that EK(X) G Mlrecg{P,r,t) for some /. Since X G Mrecg(P,r,t), it follows 

by Lemma F.2 that X G M^ecg(P, r, t) for some m. By definition F.2, M^g(P, r, t) D 

{EK(X) | (X,AT) G (̂r,*) and X G M^ecg(P,r,t) and A G A4po55(P,r,t). Hence 

EK(X)GA4^e+J(P,r,t).
 D 

Proposition F.l For each time t, the set Mrecg(P,r,t) is finite. 

Proof. Follows from Lemma F.4 and Lemma 4.7. ° 

Corollary F.l For each time t, Mrecg(P,r,t) = Mkrecg(P,r,t) for some k. 
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