
University of Wollongong

Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

1997

Contributions to authentication logics and analysis
of authentication protocols
Anish Mathuria
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Mathuria, Anish, Contributions to authentication logics and analysis of authentication protocols, Doctor of Philosophy thesis, School
of Information Technology and Computer Science, University of Wollongong, 1997. http://ro.uow.edu.au/theses/2009

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

T TNIVERSITY
\ \ 70LLONGONG

Contributions to authentication logics
and analysis 01 autnentication protocols

UNIVERSITY Of

WOLLONGONG

A thesis submitted in fulfillment of the

requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Anish Mathuria, M S c (Hons)

School of Information Technology &; Computer Science
September 1997

© Copyright 1997

by

Anish Mathuria, MSc (Hons)

All Rights Reserved

ii

Dedicated to

my sisters: Pooja and Bhavna;

and my fiancee: Hemal

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Anish Mathuria, MSc (Hons)

September 11, 1997

iv

Preface

An authentication protocol essentially provides a mechanism for verifying the identities

of nodes in an insecure network, and for the safe distribution of secrets. The subject of

authentication protocols is enormously subtle. It is surprisingly easy to design incorrect

protocols. A typical authentication protocol consists of an exchange of just a few

messages, may appear intuitively correct, and still not work as intended. It is common

to find examples of published protocols in the literature which have subsequently been

found to contain flaws. As a result, methods for verifying the correctness of protocols

have proliferated. A pioneering work in this area is a modal logic of Burrows, Abadi

and Needham. Their work has led to the development of a substantial number of

logics of a similar kind, often referred to as "authentication logics". If authentication

logics are to be used to verify the correctness of protocols, then there is a need to

verify the correctness of the logics themselves. The latter is the metalogical problem

of obtaining assurance about the soundness of a logic. A meaningful solution to this

problem requires the development of an independently motivated semantics for the

logic. However, as compared to the formalisms in which authentication logics are

couched, the development of semantics for such logics has generally lagged behind.

Indeed, despite some notable previous work in the latter direction, it is rare to find a

rigorous proof of soundness for an existing authentication logic.

There are several other interesting areas in the study of protocols besides authen­

tication logics. These include alternative methods for analyzing protocols, and models

for analyzing protocol efficiency.

This thesis makes some contributions to the areas of authentication logics and

protocol analysis; the contributions made are summarized below.

1. Authentication logics

(a) A critical appraisal of an authentication logic of Gong, Needham and Ya-

halom:

v

It is shown that the above logic exhibits several undesirable features, in­

cluding instances of unsoundness, incompleteness, and redundancy. These

observations are used to highlight the need for a semantic basis for authen­

tication logics.

(b) A modification to the logic of Gong, Needham and Yahalom for automatic

analysis of protocols:

The proposed modification lends to a simple technique for automating de­

ductions in the modified logic. Not only does the automation provided serve

as an aid in analyzing protocols, but it also proves useful in confirming some

of the difficulties in using the original logic.

(c) A computational model for authentication logics:

The proposed model decouples the syntax and semantics of notions that are

central to existing authentication logics. The import of the resulting model

is that it provides a solid foundation for devising such logics.

(d) An authentication logic and its proof of soundness:

The model developed above is used to devise a new authentication logic and

to establish a soundness theorem for the logic in a rigorous manner.

2. Protocol analysis

A model for reasoning about lower bounds on rounds:

The proposed model is primarily motivated by the need to verify the correct­

ness of some informal bounds found in the literature. It provides a precise

definition of the metric number of rounds and a theorem which relates lower

bounds on rounds with security requirements.

The thesis is organized as follows. Chapter 1 is an introductory survey on authenti­

cation logics. The Chapters 2, 3, 4, and 5 cover parts (l)(a)-(d) above, respectively.

Chapter 6 covers part 2. Chapter 7 contains our conclusions.

vi

Acknowledgments

I owe very much to the support and guidance that I have received from my co-

supervisors: Associate Professor Reihaneh Safavi-Naini and Dr. Peter Nickolas. Their

unrelenting technical feedback has led to the timely completion of this work. Rei has

been instrumental in securing my entry into the PhD program at the University of

Wollongong. Much of the financial support that I needed at various times while this

work was in progress has been arranged by her. I would also like to thank her for

introducing m e to the subject of authentication logics, and for insisting that I keep

deadlines. Peter has been an excellent teacher to me. He has had a deep influence on

my research outlook; from him I have learnt to appreciate the power of mathematical

proofs and clear writing. His warm nature, integrity, and high standards have provided

m e with a great deal of inspiration.

I have been privileged enough to have found an expert collaborator in Dr. Colin

Boyd. I have benefited a lot from many stimulating discussions with him on the subject

of protocol security. I am grateful to Professor Jennifer Seberry for her advice and

financial support. I would also like to acknowledge the financial support that I have

received from the University of Wollongong in the form of a postgraduate award for

the past two years. The University of Wollongong Research Office, the Department of

Computer Science, and the Centre for Computer Security Research have also provided

additional support to enable m e to attend several conferences at various times. I thank

the two anonymous referees for their comments and criticism.

I would like to thank all my friends for their support behind the scenes and for

believing in me; in particular, Gopesh Rana (Bobby), Jyotindra Trivedi and Dhananjay

Patel. I am indebted to Bobby for bailing m e out of a financial difficulty during the

course of this work. Finally, I am grateful to my parents and the rest of my family for

their love and understanding.

vii

Mathematical preliminaries

This section contains a concise summary of some standard mathematical notations,

definitions, and results used in this thesis.

Integers

The notation Z denotes the set of all integers {..., —2 , — 1,0,1,2,...}.

Sets

If X is a finite set, the rank of X is the number of elements in X. Let X be some set

(finite or infinite). The powerset of X, written 2X, is the set of all subsets of X. Let

Y and Z be any two sets. The cartesian product of Y and Z, written Y x Z, is the set

{(Uiz) I V £ ̂ an<i z £ ^ } - -̂ partition rr of X is a set of non-empty subsets of X such

that: (1) the elements of n are pairwise disjoint, and (2) the union of all elements of -K

is the set X. An element of a partition is called a block.

Relations

Let X be some set (finite or infinite). A binary relation on R is a subset of X x X. If R

is a binary relation on X, we usually write xRy instead of (x,y) £ R, for x,y £ X. A

relation Ron X is: reflexive if, for every x £ X, xRx; transitive if, for every x,y,z £ X,

whenever xRy and yRz, then xRz; euclidean if, for every x,y,z £ X, whenever xRy

and xRz, then yRz. A relation R on X is irreflexive if, for every a: £ X, (x,x) 0 X;

anti-symmetric if, for every x,y £ X, whenever (x,y) £ R, then (y, x) $ R. The

reflexive transitive closure of a binary relation R, written R*, is the smallest reflexive

transitive relation that includes R as a subset. A partial order is a binary relation that

is irreflexive, anti-symmetric, and transitive. Let R be a relation on X, and let X' be a

subset of X. Define the relation R' on X' as R' = Rf] (X' x X'); if R is a partial order

on X, then R' is a partial order on X'. W e normally use the symbol -< to denote an

viii

arbitrary partial order. If -< is a partial order on X, the ordered pair (X, -<) is called

a partially ordered set, or a poset. A partial order R on X is a total order if, for every

x,y £ X, xRy or yRx. W e normally use the symbol < to denote an arbitrary total

order. If < is a total order on X, the ordered pair (X, <) is called a totally ordered

set. If R is partial order on X, then an infinite descending chain with respect to R

is an infinite sequence xx,X2,-.- of elements of X such that xn+xRxn for all n; R is

well-founded if there are no infinite descending chains with respect to R.

Strings

An alphabet is a finite and non-empty set of symbols. If S is an alphabet, the set of

all finite strings of symbols from £ is written as S*. W e write the empty sequence as

(). If S is a finite sequence and s £ E, then S • s denotes the sequence obtained by

extending S by s. If Sx, S2, • • • is a (finite or infinite) sequence of finite sequences with

the property that Si is an initial segment of Si+X for each i = 1,2,..., then call the

shortest sequence of which all the Si are initial segments the union of the Si.

Graphs

A digraph is an ordered pair G = (V, R) where V is a set and R is a binary relation on

V. The elements of V are called the nodes of G; the elements of R are called the edges

of G. An edge e = (a, b) is said to originate at node a and terminate at node b; the

node a is called the initial node of e and the node b is called the terminal node of e.

The number of edges which originate (respectively, terminate) at a node a is called the

outdegree (respectively, indegree) of a. A finite or infinite sequence of edges is called a

path if the terminal node of each edge in the sequence is the initial node of the next

edge, if any, in the sequence. A path is said to originate in the initial node of the first

edge and end in the terminal node of the last edge, if any, in the sequence. A path

that originates from a node a and ends in a node b is called a path from a to b. A path

that originates and ends at the same node is called a cycle. A digraph that does not

contain any cycles is called acyclic.

Trees

A tree is a digraph with a nonempty set of nodes such that: (1) there is exactly one

node, called the root of the tree, which has indegree 0; (2) every node other than the

root has indegree 1; and (3) for every node a of the tree, there is a path from the root

ix

to a. A tree is called finitely generated if each node of the tree has a finite outdegree.

A tree is called finite if it has only finitely many nodes; otherwise the tree is called

infinite. A branch of a tree is a path that originates at the root of the tree.

Konig's lemma

Every finitely generated tree with infinitely many nodes must contain at least one

infinite branch.

x

Contents

Preface v

Acknowledgments vii

Mathematical preliminaries viii

1 A survey of BAN-like logics 1

1.1 Introduction 2

1.2 BAN logic 3

1.3 G N Y logic 7

1.4 G logic 11

1.5 GS logic 12

1.6 K G logic 14

1.7 V O logic 17

1.8 M B logic 20

1.9 AT logic 22

1.10 SVO logic 25

1.11 W K logic 26

2 An informal proposal for rectifying some problematic features of the

G N Y logic 28

2.1 Soundness troubles: recognizability and freshness rules 29

2.1.1 Unsound rule 29

2.1.2 Unsound conclusions from pairs of rules 31

2.1.3 Side conditions 32

2.2 Completeness troubles: The Yahalom protocol 33

2.2.1 Protocol parsing 34

2.2.2 The Yahalom protocol 35

xi

2.2.3 Analyzing the Yahalom protocol using G N Y logic 35

2.2.4 Adding a new rule 37

2.3 Redundancy in the logic 39

3 A modification of the GNY logic for automatic analysis of protocols 40

3.1 Introduction 40

3.2 Modifying the G N Y rule set 41

3.2.1 Adding new rules 42

3.2.2 Modifying existing rules 42

3.2.3 Deleting existing rules 43

3.3 Finiteness of derivations 44

3.4 Implementing the tool 48

3.4.1 Formulas and statements 49

3.4.2 Derived statements 50

3.4.3 Logical rules 50

3.5 Using the tool: an example 50

4 Semantic foundations for authentication logics 53

4.1 Informal groundwork 53

4.1.1 Possessed messages 54

4.1.2 Seen messages 55

4.1.3 Said messages 56

4.2 A computational model of communicating principals 56

4.3 Related work 81

5 The soundness of a logic of authentication 83

5.1 Logic 83

5.1.1 Syntax 83

5.1.2 Semantics 88

6 A model for reasoning about lower bounds on rounds 101

6.1 Introduction 101

6.2 Basic model 102

6.3 Extending the model: Rounds 105

6.3.1 Rounds and causality 106

6.3.2 Rounds and directed acyclic graphs 107

6.4 Case study 108

xii

6.4.1 Protocol class N B + A O + S O 110

6.4.2 Protocol class N B + A H + S O 112

6.4.3 Protocol class N B + A O + C O 113

6.4.4 Protocol class N B + A H + C O 114

6.4.5 Protocol class N B + A O + C C 115

6.4.6 Protocol class N B + A H + C C 117

7 Conclusions 119

7.1 Summary 119

7.2 Future work 120

Bibliography 122

A BAN logic rules 129

A.l Message-meaning rules 129

A.2 Nonce-verification rule 129

A.3 Jurisdiction rule 129

A.4 Belief rules 129

A.5 Utterance rule 129

A.6 Message seeing rules 130

A.7 Freshness rule 130

A.8 Shared key and shared secret rules 130

A.9 Supplementary rules 130

B GNY logic rules 131

B.l Rationality rule 131

B.2 Being-told rules 131

B.3 Possession rules 131

B.4 Freshness rules 132

B.5 Recognizability rules 133

B.6 Message interpretation rules 133

B.7 Jurisdiction rules 134

B.8 Never-originated-here rules 134

C Modified GNY logic 135

C.l Being-told rules 135

C.2 Possession rules 135

xiii

C.3 Freshness rules 136

C.4 Recognizability rules 137

C.5 Message interpretation rules 137

C.6 Jurisdiction rules 138

C.7 Never-Originated-Here rules 138

D Path finding program 139

E An informal approach to the analysis and design of some key exchange

protocols 141

E.l Introduction 141

E.2 Channels for secure key exchange 143

E.3 Gong's Protocols 145

E.3.1 Gong's alternative protocol 148

E.4 A protocol of Bull, Gong and Sollins 148

E.5 KryptoKnight protocols 150

E.5.1 Initial version 151

E.5.2 Recent version 151

E.6 Alternative designs using secure channels 153

E.6.1 Three-party key exchange 153

E.6.2 Conference key exchange 155

E.7 Discussion 155

F Modeling of recognizability 158

xiv

List of Tables

3.1 Representing formulas 49

3.2 Representing statements 50

xv

List of Figures

3.1 Protocol analysis 48

xvi

Chapter 1

A survey of BAN-like logics

This chapter surveys some prominent logics for reasoning about authentication proto­

cols. The seminal work in this area is a modal logic of Burrows, Abadi and Needham [1],

usually called, the B A N logic. This logic has been extremely influential in the authen­

tication protocol literature; it has stimulated widespread interest in the formal analysis

of protocols. The logics we will survey are more or less classified in the literature as

BAN-like logics. This nomenclature is somewhat loose, yet sufficiently descriptive to

convey our intent, viz: The BAN-like logics share the following two traits. (1) They

appear to be somehow related to the original B A N logic. (2) They were suggested by

others subsequent to the B A N logic and were motivated as extensions or improvements

over this logic.

W e follow the usual convention of naming BAN-like logics after their authors. In

addition to the B A N logic itself, we will survey the BAN-like logics proposed by:

• Gong, Needham and Yahalom [2] (GNY);

. Gong [3] (G);

• Gaarder and Snekkenes [4] (GS);

• Kailar and Gligor [5] (KG);

• van Oorschot [6] (VO);

• Mao and Boyd [7] (MB);

• Abadi and Tuttle [8] (AT);

• Syverson and van Oorschot [9] (SVO);

• Wedel and Kessler [10] (WK).

1

1.1. Introduction 2

W e will survey these logics in the order presented above, which is more or less chrono­

logical, with one exception. The logic of Abadi and Tuttle appeared prior to that of

Kailar and Gligor; however, we make the above rearrangement for the sake of conve­

nience.

1.1 Introduction

We begin with some terminology which is commonly used to describe mechanisms

referred to as: authentication protocols. Broadly speaking, an authentication protocol

consists of a sequence of message exchanges designed to achieve some security objective

using cryptographic functions. The design of authentication protocols usually makes

the following two characteristic assumptions (cf. Needham and Schroeder [11]). (1) A

protocol is subject to an adversarial environment: it is assumed that there is an enemy

who can see and manipulate messages exchanged in the communication network at will,

with the purpose of subverting the protocol objectives. (2) The cryptographic functions

that underlie a protocol are assumed to be secure—for example, an encrypted message

is considered to be impossible for anyone to decrypt without knowing the decryption

key. The goals of authentication protocols can vary depending on application, but they

broadly fall into the following two categories: entity authentication, in which the aim is

to verify the identities of one or more communicating principals; and authenticated key

exchange, in which the aim is to make available a shared key between some principals.

Some of the earliest examples of authentication protocols can be found in the paper

by Needham and Schroeder [11].

The terminology used to describe authentication protocols includes the following

terms: principals, keys, and nonces. A principal is an entity which takes part in a

protocol run. Typically, the keys used by a protocol are classified as: the long-term

keys (also sometimes called terminal keys), which are cryptographic keys assumed to

be available initially; the session keys, which are cryptographic keys to be securely

obtained via the protocol itself. Usually, a session key obtained in one run of the

protocol is deemed unsafe for use in subsequent runs of the protocol. In particular, a

sound protocol should be robust against replay of session keys. In other words, if A

and B are two principals wishing to establish a session key via a suitable protocol, then

it should not be possible for an enemy to manipulate the protocol messages to make

the principals believe that an old session key is a new one. A nonce is a quantity which

is typically used for verifying the freshness of messages [11]. The simplest example

1.2. BAN logic 3

of a nonce is a random number: if A generates a random number r and sends a

message containing r, then A can be assured that any message which cannot be feasibly

constructed without the knowledge of r cannot possibly be made prior to the message

in which A originally sends r.

In the literature most protocols are schematically described by means of syntax

representing a sequence of message exchanges between some principals. It is worth

noting that a typical protocol description identifies the order in which the protocol

messages are meant to be exchanged in a successful run of the protocol. Specifically, a

message exchange of the form A -» B : M means that, at the point where this exchange

appears in the associated protocol, (1) principal A is supposed to send a message M,

and (2) that this message is supposed to be received by principal B. This exchange

might be accompanied by additional checks which are performed by B upon receipt,

if any, of the message claimed as M ; typically B does not proceed with the rest of the

protocol if the stipulated check is unsuccessful.

1.2 BAN logic

The BAN logic [1] is a logic for reasoning about authentication protocols in terms

of belief statements. It provides a useful formalism which reflects at a high level of

abstraction how authentication protocols are intuitively understood to work.

The syntax of the B A N logic distinguishes three types of primitive objects: princi­

pals, keys, and nonces. A protocol message is expressed as a formula of the logic. Let

P, Q, R range over principals; let K range over keys; let X, Y, XX,X2,... range over

formulas. The formulas of the logic along with their informal semantics can be given

as follows.

P believes X; P believes that X is true.

P sees X; P has received a message from which it can read X.

P once saidX; P has sent (or uttered) a message containing X.

P has jurisdiction over X; P is trusted on the truth of X.

X is fresh; X has not been sent previous to the current protocol run.

P and Q share key K which is good in the sense that it remains

confidential to P, Q and principals trusted by either P or Q.

P has K as its public key. The corresponding private-key K~l remains

confidential to P and principals trusted by P.

P and Q share secret X in the sense that it remains

P\=X

P<X

P ̂ x

P^X

»(*)

P&Q

4F

P^Q

1.2. BAN logic 4

confidential to P, Q and principals trusted by either P or Q.

{X}K X encrypted with key K.

(X)Y X combined with Y; Y serves as a proof of origin of X.

The notation used above is from the original presentation of the logic [1]. A latter

presentation of the logic [12] uses a more verbose but mnemonic notation; for example,

PbelievesX instead of P ^ X. However, we retain the original notation here. The logic

also includes as formulas the following expressions: (1) {X}K from P, which means

that the encrypted message identified originates from P; (2) (X,Y), which means

the conjunction of X and Y (the B A N logic uses ',' as the propositional conjunction

operator). The logic treats conjunction as an operator on sets of formulas, leaving

properties such as associativity and commutativity implicit.

Essentially, the inference rules of the logic reflect intuitive consequences of the

semantics of the logical constructs. Typically, an inference rule is read, 'if formulas

Xi,...,Xn hold then formula Y holds', written more concisely as:

Xi,..., Xn

Y

The main inference rules of the logic are [1]:

• Message-meaning rules:

P^P&Q, P< {X}K

P^QY^X

This rule allows the identity of the sender of an encrypted message to be deduced

from the encryption key used. It makes up one of the three message-meaning

rules of the logic; the message-meaning rules for public-keys and shared secrets

are given along similar lines.

• Freshness rule:

p N a m

This rule allows the freshness of a message to be deduced from the freshness of a

subpart of the message.

• Nonce-verification rule:

P^l(X), P^Q^X

P\EEQ^EX

This rule allows beliefs from freshly uttered messages to be derived.

1.2. BAN logic 5

• Jurisdiction rule:

P^Q^X, P^Q^X

P^X

This rule allows beliefs based on jurisdiction to be derived.

There are several other inference rules which reflect other properties of the various

logical constructs; however, the ones given above are central to the logic. For the sake

of convenience we list the original set of inference rules in appendix A.

A protocol to be analyzed using the logic is first transformed into an idealized proto­

col, which is essentially the sequence of protocol message exchanges expressed in terms

of a set of logical formulas. Roughly speaking, a protocol idealization reflects some

intended interpretation of the protocol messages. An example helps convey the basic

idea behind idealization. Consider the message exchange S —> A : {Na,B,Kab}Kas->

in which a trusted server S distributes a session key Kai to be shared between A and

B. Here Kas is a key shared by A and S, and Na is A's nonce, which is used by A to

verify that the message is not a replay. Suppose the above message exchange is part

of some protocol, and that this message exchange implies that S asserts Kab to be a

good session key for A and B. Then this assertion is typically reflected in the protocol

idealization by the formula: (1) A < {Na, A *¥ B}i<as- To proceed with the analysis,

some formulas which express initial assumptions about the protocol in question are also

asserted, and the inference rules are then applied to determine whether the formulas

expressing the goal of the protocol are derivable using the logic. For example, the above

idealization can be accompanied by the following assumptions: (2) A ^ fj(iV0); and

(3) A ^ S |=>- A *hb B. It is easy to see that we can derive the formula A ^ i ^ B

from (1), (2) and (3) using the logic. The import of the logical analysis is that it forces

us to make explicit the various assumptions needed to obtain the desired goals. If the

desired goals do not follow from an application of the logic, the pre-conditions to the

inference rules often provide a hint to further assumptions that might be needed. Intu­

itively, if an unreasonable assumption is found in the process, it suggests the presence

of a protocol flaw. For example, the B A N logic has been used to verify a flaw in the

Needham-Schroeder protocol pointed out by Denning and Sacco [13]. In analyzing the

protocol using their logic, Burrows et al. [1] show that this flaw manifests as a dubious

statement amounting to the assumption that one of the parties believes that the session

key distributed via the protocol is fresh.

The logic has also been used by Burrows et al. [1] to analyze several other well-

known protocols from the literature. As concerning their example protocol analyses

using the logic it is worth rehashing an observation of van Oorschot [6]. Namely, that

1.2. BAN logic 6

the protocol analyses presented by them might give the impression that all assumptions

needed in a protocol analysis are known a priori. However, it should be stressed that

the assumptions included in their analyses are made beforehand only for the sake

of appearance. The main idea in the using the logic is to detect various unobvious

assumptions which might be needed in addition to those assumptions that are initially

made at the outset.

As noted by its authors [1], [14], the validity of the inference rules of the logic

depends on a number of subtle assumptions that are made outside of the logic. For

example, the validity of the message-meaning rule above requires the assumption that

P has not sent the encrypted message {X}# himself. This is reflected simply by

writing the encrypted message as '{AT}#- from i2' in the original rule together with

the side condition that P ^ R. Another important assumption concerns the nonce-

verification rule above. There it is assumed that the message X does not contain

any encrypted subparts (i.e., any subformula of the form {Y}x), since intuitively a

principal may not necessarily believe in a message that it cannot read. If we suppose

that this assumption is satisfied, the rule effectively implies that principals are honest,

in the sense that all message parts which a principal can read from the messages it sends

must be believed by that principal. However, Burrows et al. recommend a rather strong

operational notion of honesty: they require that a principal believe every message he

sends. This strong notion of honesty has drawn some criticism of the logic, despite

the fact that the soundness of the nonce-verification rule does not strictly depend on

this requirement. For example, Heintze and Tygar [15] note that such a requirement

precludes a B A N logic analysis of the Needham-Schroeder protocol, since this protocol

requires a principal to send an encrypted message he may not believe in (Message 3).

However, it is fair to say that the strong version of honesty recommended by Burrows

et al. appears to be an inadvertent slip; if we retain the weaker version of honesty, an

analysis of the protocol using the logic still goes through as intended. Moreover, the

original B A N logic analysis of the protocol does not conform to the notion of honesty in

the strong sense. On the other hand, the weak notion of honesty appears to be a quite

useful requirement to make in the logic. For example, Engberg [16] also enforces the

same weak notion of honesty while applying the logic; he shows that absurd conclusions

can be drawn using the logic otherwise.

The B A N logic also makes two general assumptions concerning encrypted mes­

sages, (a) It assumes message integrity in the sense that encrypted messages cannot

be spliced or aggregated without destroying the message structure—for example, that

1.3. GNY logic 7

an encrypted message {M, M'}K cannot be obtained from the sole knowledge of the

two encrypted messages {M}K and {M'}K (and vice-versa). However, there may be

protocols where the cryptographic mechanisms used do not provide such guarantees

(cf. Boyd [17] and Gligor et al. [18]). (b) It assumes that encrypted messages are verifi­

able in the sense that the result of a decryption can be somehow verified to be genuine.

To put (a) and (b) another way, the logic cannot be used to detect the lack of message

integrity or message verifiability in protocols.

Although the B A N logic is simple to use, proofs carried out in the logic require

subtle interpretation. An early example of the underlying subtlety is provided by a

protocol due to Nessett [19] (we omit Message 2 from the original protocol since it is

not relevant to the present discussion):

Message 1. A -> B : {Na, Kab}K-i

Here B trusts A to generate a session key Ka\, to be shared between them. The

nonce Na is used by A to convince B that Message 1 is fresh. K~
x is A's private key

for use in a suitable public-key system. The corresponding public-key Ka is publicly

known. Nessett [19] asserts some formulas meant to reflect the initial assumptions,

which include amongst others the formula A ^ A «4b B, and shows that the B A N logic

can be used to sanction the protocol in the sense that the formula B ^ A «4b B can be

derived from Message 1. The protocol of course is insecure, nevertheless, since everyone

knows Ka and can thus decrypt Message 1 using Ka to obtain Kab- Based on the above

example protocol analysis, Nessett claims that the B A N logic is flawed. However,

Burrows et al. [20] refute the grounds on which Nessett advances his claim. They

object to the assumption A ^ A if B above as being unjustifiable since Message 1

contradicts this assumption. The essence of the controversy surrounding Nessett's

point and the counterpoint of Burrows et al. is not novel: a 'proof is only as good as

the assumptions it makes. However, it does accurately point out a practical difficulty

in appealing to proofs in the logic.

1.3 GNY logic

The logic of Gong, Needham and Yahalom [2] is one of the earliest BAN-like logics.

Their logic largely modifies and adds to the B A N logic notation and rules in an attempt

to provide more features than the logic on which it is framed.

Unlike the B A N logic, the syntax of the G N Y logic distinguishes between mes­

sages and assertions about messages. The former are represented in the G N Y logic

1.3. GNY logic 8

as formulas (which do not assume truth-values), whereas the latter are represented

as statements. Essentially, this distinction precludes messages from being treated as

believable expressions in the logic.

Let X, Y range over formulas, and let C range over statements. The formulas of

the G N Y logic include the following:

{X}K encryption of X with shared key K.

{X}^1 decryption of X with shared key K.

{X}+K encryption of X with public-key +K.

{X}_x decryption of X with private-key — K.

H(X) one-way hash of X.

F(X, Y) a many-to-one function of X and Y which is one-to-one and invertible

when either X or Y is fixed; for example, X © Y.

X ~» C X with extension C; C reflects some interpretation of X.

Let P, Q, R range over principals. Essentially, the new notions introduced in the

G N Y logic are expressed by the following statements:

P < *X P has received a message from which it can read X and

X is not-originated-from P in the sense that X has not

been previously sent by P in the current run.

P ^ ®(P) P can identify that certain messages never-originated-from him

in the sense that they have not been sent by P in any run.

P 3 X P possesses X; P has received X or can compute X.

P ^ <i>(X) P believes X is recognizable; P recognizes X in the sense that

P can forecast part or whole of the contents of X without

receiving X.

P ^ $ = ^ Q N * P believes Q is honest and competent in the sense that

Q has jurisdiction over all his beliefs.

The remaining statements of the logic are made along similar lines to the BAN logic,

except that they are formed within the scope of the belief construct; for example, the

G N Y logic includes a statement of the form P ^ l(X), but not j(X). The term shared

secrets is used to encompass both encryption keys as well as other types of secrets in

the G N Y logic. Typically, the symbol S ranges over secrets. The logic uses a single

construct in place of the two B A N logic constructs f* and #. However, the G N Y logic

notation for sharing of secrets is rather loose: P ^ P O- Q. This notation is rather

1.3. GNY logic 9

restrictive since it does not admit of statements of the form R ^ P A Q when the

principal denoted by R is distinct from the principals denoted by P and Q. However,

such statements are often needed in practice, as is evident from the protocol analyses

given in the G N Y logic paper; see, for example, the analysis of the Needham-Schroeder

protocol there (p. 241).

The G N Y logic has over forty inference rules, many of them quite complex in

terms of the number of premises involved. For the sake of convenience we list them in

appendix B. Some of these are rules which are absent from the B A N logic but which

seem intuitively justifiable. For example, one part of the freshness rule F2,

P N IIPO, P 9 K
p |= »({*}*), PNiKTO*1)'

essentially captures an inference which did not seem to be required for the protocol

analyses carried out by Burrows et al. [1] using their logic. A large number of rules

reason about new notions introduced in the logic, for instance, those of possession and

recognizability.

The rest of this section discusses the intended role of the following notions found

in the logic: not-originated-from and never-originated-from, possession, recognizability,

and honesty.

Not-originated-from and Never-originated-from

The idea behind the notions of not-originated-from and never-originated-from is to

capture the side condition to the B A N logic message-meaning rules for shared keys.

Recall that the side condition reflects the assumption that a principal can tell whether

an encrypted message was sent by himself or not. The informal semantics of the notion

of not-originated-from is that, if P receives X at some point and X is not-originated-

from P (written P < *X), then P has not sent X since the start of the current protocol

run up to that point. The G N Y logic is accompanied by a parser algorithm which

mechanically translates a protocol description into one with the not-originated-marker

*. There are two distinct ways the G N Y logic attempts to capture the original B A N

logic side condition. Firstly, it reformulates the B A N logic message-meaning rule for

shared keys by including premises of the form P < *{X}K and P ^ §(X) in place

of P < {X}K and the extra side condition; see the message interpretation rule II in

appendix B.6. An alternative reformulation simply distinguishes the side condition

by means of a premise of the form P ^ (8>(P); see the never-originated-rule II' in

appendix B.8. Despite their intuitive appeal, the usefulness of the above two notational

1.3. GNY logic 10

devices is rather limited. Since the parser algorithm only controls the current run of

the protocol, the G N Y logic reformulation involving the not-originated-from notion is

of use only in the case of a protocol which requires a message X to be conveyed by

some principal P and such that the same message X is to be later told to P. The rule

II then produces the desirable effect of blocking the derivation of beliefs for P from X.

The reformulation which makes use of the never-originated-from notion simply seems

to be another way of writing the side condition. Since the G N Y logic does not include

any rules with statement of the form P ^ <S>(-P) as conclusions, it is debatable whether

this notion represents an improvement over the B A N logic side condition.

Possession

The notion of possession is a noteworthy addition introduced in the G N Y logic. This

notion underlies many rules of the B A N logic; for example, in the B A N logic message

seeing rule for shared keys:

P ^ P & Q , P<{X}K
P<X

it is implicitly assumed that P possesses K. However, this assumption has the effect

of conflating the two distinct notions of possession of a key K and that of belief about

K. The G N Y logic make this distinction explicit; the above rule is reworked as:

T q P<{X}K, P3K
i6- P«X

Recognizability

As noted in previous section, the B A N logic makes the implicit assumption that en­

crypted messages are verifiable. The G N Y logic captures this assumption explicitly

by reformulating the B A N logic message-meaning rules; for example, in the message

interpretation rule II of the G N Y logic,

P<*{X}K, PBK, P^P&Q, P^c^(X), P\=j{X,K)

P\=Q^X, P^Q^ {X}K, P^QBK

the premise P |= </>(X) essentially reflects the implicit B A N logic assumption that en­

crypted messages are verifiable. A n example protocol analysis which evidently demon­

strates the usefulness of the recognizability feature of the logic can be found in the

G N Y logic paper, where the logic is shown to reveal the lack of message verifiability

in the enhanced Needham-Schroeder protocol. Specifically, an analysis of the protocol

1.4. G logic 11

using the G N Y logic does not yield a certain desired protocol goal, in contrast to a

B A N logic analysis. The difference is attributed to the fact that one of the message

exchanges used by the protocol is: Q sends to P an encrypted message {N9}K, where

Nq is a nonce generated by Q and K is a session key between P and Q. The lack of

recognizability of this message relative to P produces the desirable effect of blocking

the derivation of the following statement using the logic: P ^ Q ^ P <-> Q.

The G N Y logic has several rules which allow derivation of statements of the form

P ^ (f*(X); see the 'recognizability rules' in appendix B.5. While the notion of recog­

nizability appears to be a useful addition to the logic, certain recognizability rules of

the G N Y logic are problematic; we will discuss some of the problems involved in the

next chapter.

Honesty

Recall that the B A N logic makes the implicit assumption that principals are honest.

However, not all principals may be equally honest; in other words, the notion of honesty

can be specified relative to a trusting principal. The G N Y logic makes such a viewpoint

explicit. Essentially, the B A N logic nonce-verification rule is reformulated in the logic

as the jurisdiction rule J2,

P)= Q h» Q N *, PWQ^(X<^C), FN KX)
P^QWC

where the premise P |s Q (=£> Q ^ * means that Q is trusted by P over his beliefs.

The honesty requirement is enforced during a protocol analysis using the G N Y

logic by means of a belief consistency check: to idealize a protocol message exchange

P —> Q : X as Q < *X ~> C a precondition is that the statement P ^ C holds.

Similarly, a possession consistency check is also carried out to enforce the intuitive

requirement that a principal can only send possessed messages: another precondition

to the above idealization step is that the statement P 3 X holds.

1.4 G logic

The original GNY logic has been revised by Gong [3] in his doctoral thesis. The revised

logic mostly expands the G N Y logic set of rules concerning notions such as freshness

and message interpretation. Essentially, the only new feature to be found in this logic

is a notion called eligibility:

1.5. GS logic 12

P oc X P is eligible to convey X; P holds the relevant possessions and beliefs

to convey X.

Here the requirement that P holds the 'relevant' possessions and beliefs for a formula

X ~> C is roughly understood to mean that the statements P 9 X and P ^ C hold,

among other things. In the revised logic, the consistency requirement given in the

G N Y logic paper is reflected by the rule Tl [3],

P -> Q : AT, P oc X

Q<X

which essentially excludes message exchanges not satisfying the belief or possession

consistency checks. Additionally, the logic includes several rules, called 'eligibility

rules', which allow statements of the form P oc X to be derived. In effect, these rules

define the set of formulas which a principal is eligible to convey. For example, the rule

El [3],

P3 X

ToTx'
says that a principal is eligible to convey any formula he possesses. It is worth noting
that in the revised logic P's eligibility to convey { X } K "^ C is not intended to mean

the same thing as (1) P possession of X and K, and (2) P's belief in C. This is

apparent from the eligibility rule E5 [3],

P oc X, P3 K, P |EB P &Q, P^C

P oc {X}K ~> C

where the premise P ^ P & Q indicates a component of P's 'relevant' beliefs which is

independent of P's belief in C. It is thus clear that the consistency requirement made

in the revised logic is more stringent than that motivated in the G N Y logic paper.

The significance of the belief and possession consistency requirements is further

discussed by Gong [21]. He argues that their absence can lead to infeasible specifications

in the sense that: (1) protocols which do not meet the possession consistency check

cannot be realized, and (2) protocols which do not meet the belief consistency check

may allow non-causal beliefs to be derived. Here non-causality of beliefs means that

some statement of the form P |= Q ^ C holds, but that the statement Q ^ C does

not hold.

1.5 GS logic

The logic of Gaarder and Snekkenes [4], [22] extends the BAN logic in two ways: (1) It

reformulates the B A N logic notions and rules for public-key systems. (2) It introduces

1.5. GS logic 13

new notions for reasoning about freshness mechanisms which lie outside the scope of

the B A N logic. These two extensions are described below.

Recall that the notions of binding of a public-key and that of the secrecy of the

corresponding private-key are represented by means of a single construct in the B A N

logic: H->. The GS logic distinguishes between these two notions using the following

constructs:

VK(K, P) K is P's authentic public-key.

n(P) P's private-key is good in the sense that it is a secret known

to P alone.

The above distinction is further reflected in the GS logic by the rule R13 [4],

P^VK(K,Q), P^I1(Q), P<a(X,Q)

P^Q^X

which is essentially obtained by reformulating the B A N logic message-meaning rule

for public-keys; here a(X, Q) replaces {X}K-i used in the latter rule to represent X

signed with Q's private-key. The GS logic also replaces the B A N logic message seeing

rule for public-keys with the following rule [4]:

P<a(X,Q)
R 1 4- P<X

Notice that the above rule makes the implicit assumption that a principal possesses

every principal's public-key, including his own.

Essentially, the B A N logic nonce-verification rule tells us that no beliefs can be

derived from a message sent during a protocol run if that message is not fresh (i.e. if that

message has been sent previous to the current protocol run). However, some protocols

make use of mechanisms which do not rely on the notion of freshness in the above sense

and, yet, for which it is intuitively reasonable to establish the level of belief supported

by the nonce-verification rule. The basic idea underlying such mechanisms is the use of

a duration-stamp to indicate a time interval for which a message is claimed to be good.

The above observations essentially motivate the remaining GS logic extensions that

incorporate time into the logical syntax. In particular, the logic includes the following

constructs to reflect the associated notions of duration-stamp and good time interval.

(Q(ti,t2),X) X tagged with duration-stamp @(ti,t2); X holds in the interval tx, t2.

<\(ti,t2) h, t2 denotes a good time interval; the current time lies in the interval

between ti and t^.

1.6. KG logic 14

The logic includes the following rule to reason about duration-stamps [4]:

R 1, P^QW A(t.,<2), PNQ h(6(tuh),x)
R 5- FWoWx

Here it is assumed that the validity of a time interval is ascertained by a principal

relative to its own local clock. The rule R15 allows beliefs from uttered messages

attested by duration-stamps to be derived; it is framed similar to the nonce-verification

rule of the B A N logic.

The import of the above extensions is demonstrated in the GS logic paper [4] by

means of a concrete protocol which has been fielded for use: the CCITT X.509 protocol.

An analysis of this protocol using the extended logic is shown to compare favorably

with a B A N logic analysis of the same protocol. The main improvement concerns the

idealization of the certificates used to distribute public-keys in the protocol. A protocol

analysis using the B A N logic requires the dubious assumption that the certificates are

fresh, despite the fact that the actual working of the protocol does not make this

assumption. Stated another way, the timing mechanism used to guarantee the validity

of the certificates in the protocol can be captured in the GS logic, whereas in the B A N

logic it cannot.

1.6 KG logic

Kailar and Gligor [5] have devised a BAN-like logic to extend the applicability of the

original B A N logic. They argue that the B A N logic suffers from the following two

limitations: (1) The B A N notion of key jurisdiction is dependent on key generation;

that is, a principal who is authorized to generate a key only has jurisdiction over that

key. However, there may be protocols which do not satisfy key jurisdiction in the above

sense. Gligor et al. [18] sketch an example to motivate the restrictive nature of the

B A N logic notion of key jurisdiction. Suppose that (a) P trusts Q to read and forward

a key K generated by R, and (b) P trusts Q to maintain the privacy of K. Although Q

does not have jurisdiction over K in the above sense, P's trust in Q should allow P to

infer K is a good key for use with Q. Nonetheless the B A N logic does not capture this

line of reasoning. (2) The B A N logic allows derivation of non-causal beliefs in certain

protocols. The K G logic is essentially aimed to address the above two concerns.

The syntax of the K G logic makes the ordering of protocol message exchanges ex­

plicit using the notion of a message round (also called, message instance). Specifically,

a message round corresponds to a transfer of a message contents X from a source prin­

cipal P to a destination principal Q, possibly via other principals, with the property

1.6. KG logic 15

that either: (1) X is signed with P's private-key and encrypted with Q's public-key,

or (2) X is encrypted with a key shared by P and Q. The idea of message ordering

can be explained by means of an example. Suppose we have a protocol which transfers

data values X and Y from S to A and B, respectively, as follows:

Message 1. S ^ A : {X,{Y}KJKas

Message 2. A -• B : {Y}Kbs

Here Kas and Kbs are keys shared by A and B with S, respectively. The above protocol

consists of two message rounds: one which transfers X from S to A and another one

which transfers Y from S to B. The Messages 1 and 2 above are then explicitly

represented in terms of message rounds using the following tuples, respectively:

{Mi, S, A, (X, {M2, S, B, Y})} and {M2, S, B, Y},

where in general (1) a tuple of the form {Mi,P,Q,X} denotes that X is transferred

from P to Q in message round i; and (2) the message rounds comprising the protocol

are consecutively denoted as: Mi, M2, ..., Mi for a fixed positive integer I.

The additional notions introduced in the logic along with their informal semantics

can be given as:

P > {Mi, P, Q,X} P sends a message with contents X in round i to Q.

Q < {Mi, P, Q,X} Q sees a message with contents X in round i;

Q reads X and knows X originated from P.

KS(X, Mi) the knowledge set of X at round Mi; the set of all principals who

know X when the message identified in Mi is seen.

Trustx(P,Q) P trusts Q on the context X.

Apart from the B A N logic notation, some additional notation from predicate logic and

set theory is used in formulating the set of inference rules of the logic; for example, the

symbol V is used to denote universal quantification and the symbol £ is used to denote

set membership. Below we list some of the rules of the K G logic [5].

• Belief in the uniqueness of the message recipient:

P>{Mt,P,Q,X], P^(R<{Mj,P,Q,X})

P^(R = Q)

Notice that this rule is cast from the perspective of a message originator instead

of the intended recipient of the message; it essentially replaces the B A N logic

message-meaning rules.

1.6. KG logic 16

• Set inclusion belief (1):

P$KS(X,Mi), P«{Mi+uQ,P,X}

P£KS(X,Mz+i) = {P,Q}

This rule allows belief in the knowledge set of a message content to be derived

based on messages that are seen.

• Set inclusion belief (2):

P^(Q^KS(X,Mj)), P>{Mi+i,P,Q,X}

P |= KS(X, Mi+i) = KS(X, Mi) U {Q}

This rule allows belief in the knowledge set of a message content to be derived

based on messages that are sent; it reflects a notion of so-called 'eager' belief, not

present in the B A N logic.

• Belief in the freshness of message contents:

P£$(X,Mk), P<{Mk,Q,P,(X,Y)}

PWKY,Mk)

Here the premise P ^ l(X, Mk) is taken to mean that P believes X is fresh in

round k; and similarly for the rule's conclusion.1

• Belief about another principal's knowledge set beliefs:

P<{Mk,Q,P,X}, P\^$(X,Mk)

P\=Q\B(KS(X,Mk) = {P,Q})

This rule essentially replaces the B A N logic nonce-verification rule.

• First-level beliefs:

P |= {P, Q} C KS(K, Mj), TrustK(P, R) VP £ KS(K, Mi)

Here: (1) Mi is taken to mean the last round of the protocol being analyzed, and

(2) the premise TrustK(P,R) V P £ KS(K,Mi) essentially says that P trusts all

principals who know K to maintain its secrecy. In effect, the above rule allows

beliefs about keys to be derived without the need for key jurisdiction in the sense

of the B A N logic.

intuitively, this rule appears to be questionable. From the the BAN logic notion of freshness it is
apparent that we cannot infer that Y is fresh from the fact that (X, Y) is fresh, since this would imply
that if Y was sent previous to the current protocol run then so are all messages of the form (X, Y).

1.7. VO logic 17

• Second-level beliefs:

P\EQ^{P,Q}C KS(K,Mi), P |= TrustK(Q,R) VP £ KS(K,Mi)

P^Q\=P&Q

Kailar and Gligor [5] give several examples of protocol analyses using their logic

to demonstrate its potential advantages over the BAN logic. Here we sketch one of

the example protocol analyses which they give to show that the BAN logic does not

preserve belief ordering. Specifically, a ticket-forwarding protocol is analyzed using the

BAN logic, based on the following idealization of the protocol [5, Subsection 5.3]:

Message 2. TGS -> X

Message 3. X ->• Y

Message 4. Y -» S

...,{xKxa-ss}Kx_

...,{XJ*'S}KX.

...,{X <—> S}KX/Y_S

TGS

Y

In the protocol analysis given, it is essentially shown that although Y ^ X ^ X i—>

S is derived from Message 3, only S ^ X ^ X <—> S is derived from Message 4,

instead of the desired S |= Y ^ X |EE X £^->S S. Notice that the latter is still

possible to derive using the BAN logic if we appeal to the weak notion of honesty

discussed in Section 1.2. Accordingly, we cannot include the formula X <—> S in
A y / y g

the idealization of Message 4 above, since in their analysis Y ^ X i—Y S does not

hold. However, in accordance with the honesty requirement we can include the formula

X |= X K ^ S S instead, since Y |= X |= X K ^ S S holds. The desired formula

S ^ Y ^ X ^ X ¥-^S S is then easily derived.

1.7 V O logic

Van Oorschot [6] provides an extension of the BAN and GS logics to cater for key agree­

ment protocols. The notion of key agreement used in such protocols can be described as

follows. Two principals wishing to establish a common secret key individually generate

a pair of keys consisting of a public key-agreement key and a private key-agreement key.

As these names suggest, each principal keeps its private key-agreement key secret, but

reveals its public key-agreement key. The common key is then obtained by each prin­

cipal as some suitable function / of its own private key-agreement key and the other

principal's public key-agreement key, where / is chosen in advance and made public.

A characteristic feature of the above notion of key agreement is that the common key

established is not obtained from any trusted principal and is exclusively obtained by

1.7. VO logic 18

the two principals who derive the key jointly. However, the B A N logic notion of good

keys cannot be used to distinguish this feature: recall that the B A N logic construct

P & Q means that K is good for P and Q in the sense that if is known only to P or Q

or principals trusted by either of them. The above observation essentially motivates the

V O logic refinements of the broader B A N logic notion of good shared keys. Specifically,

the refinements include the following two constructs:

P1^ Q K is P's unconfirmed secret for use with Q; P possesses K and knows

that no other principal except Q can possibly obtain K.

P*& Q K is P's confirmed secret for use with Q; P receives evidence to the

effect that its unconfirmed secret meant for use with Q is indeed

possessed by Q.

Here possession is treated as in the sense of the G N Y logic. The V O logic includes

the construct P has K in place of the less verbose G N Y construct P 9 K. As in the

GS logic, the notions of binding of a public-key and the secrecy of the corresponding

private-key are treated distinctly. In the V O logic, further distinction is made between

the asymmetric key pairs used for signature, encryption, and key agreement. However,

since the notation for asymmetric encryption key pairs is not exploited in the logic, we

omit it here.

PKa(P, K) K is the public signature-verification key associated with P.

PK~1(P) P's private signature key K~x is good in the sense that it is

known only to P.

PK5(P, K) K is the public key-agreement key associated with P.

PK71(P) P's private key-agreement key K'1 is good in the sense that

it is known only to P.

{X}sP X signed with P's private signature key.

{X}K X encrypted with shared key K.

confirm(K) Current knowledge of K has been demonstrated in the sense that K

has been used to perform some cryptographic action such as encrypting

or hashing.

Notice that the constructs PK?{P) and {X}sP essentially replace their GS logic coun­

terparts n(P) and o-(X,P), respectively.

The logic introduces several rules for reasoning about key-agreement keys. For the

sake of notational convenience, the following adjustments are made in presenting the

rules there [6]:

1.7. VO logic 19

• PKS(P) is written in place of PKS(P, K) when K is evident from the context or
is not explicitly referred to, and

• PKs(P) is used to denote the value of the public-key agreement key of P.

The rules for key-agreement keys are given as follows [6].

• Unqualified key-agreement:

R 3 0 PhasPK-6\P), PhasPKs(U)

P has K

Here K = f(PKj1(P), PKS(U)) is called an unqualified key for P, which is taken

to mean that the identity of principal U is not verified.

• Qualified key-agreement:

R31 P N PKJ\P), P N PKs(Q\ P N PKJ\Q)

P^P^Q

Here K— denotes that K is a qualified key, which is taken to mean that P knows

that K cannot be possessed by any other principal except Q.

Key confirmation:

P ^ P f4 Q, P sees *confirm(K)
R32.

P\=PK4Q

Here K+ denotes that K is a confirmed key, which is taken to mean that P has

obtained confirmation that Q actually possesses K.

The VO logic paper contains analyses of three well-known key-agreement protocols us­

ing the extended logic: the STS protocol, the Goss protocol and the Giinther protocol.

(An informal description of the working of some other notable key-agreement proto­

cols independent of any logical formalism can be found in a paper by Rueppel and van

Oorschot [23].) The analyses are shown to reveal some subtle differences between the

assumptions made and the goals reached by these protocols. The comparison are made

on the basis of six generic goals captured using the logical syntax. For example, the two

goals called secure key establishment (G3) and key confirmation (G4) are respectively

expressed as follows [6]: A ^ A <h» B and A ^ Ait B (and similarly for B), where

A and B denote the two principals wishing to establish a common key K via some

suitable protocol. All the above three protocols are shown to attain G3, whereas only

the STS protocol is shown to attain G4.

1.8. MB logic 20

1.8 M B logic

Mao and Boyd [7] have devised a BAN-like logic to address some of their objections

to the B A N logic. Their main criticism concerns the lack of well-defined rules for

protocol idealization in using the B A N logic. The point is that this difficulty can lead

to incorrect idealizations. A simplified version of the Otway-Rees protocol is used as an

example of a protocol which can be sanctioned using the B A N logic and yet for which

an attack is possible (cf. Boyd and Mao [24]). Their other criticisms of the B A N logic

include the lack of typing and the absence of a notion of confidentiality. The former

criticism concerns an oddity noted as early as by Burrows et al. [1] themselves, namely

that their logic does not make any distinction between messages and formulas (truth-

valued expressions); for example, the logical syntax allows as formulas expressions of

the form P ^ N, where N is a nonce. The latter criticism is motivated by means of

the flaw in Nessett's protocol: the flaw is traced to a failure of the protocol to maintain

the confidentiality of the key distributed.

The syntax of the M B logic makes a distinction between messages and formulas

by means of a typing mechanism. The logical syntax is divided into three syntactic

classes: V (for principals), M (for messages), and T (for formulas). Typically,

• the letters P, Q, R, ... are used to denote elements of class V;

• the letters K, M, N, ... are used to denote elements of class M; and

• the letters X, Y, Z, ... are used to denote elements of class T.

Additionally, the symbol S is used to denote a set of principals; Sc denotes the comple­

ment of the set of principals denoted by S. A set of formation rules defines the class M

of messages and the class T of formulas of the logic. For example, the belief formulas

are formed as follows: . ^ . ^ x f - ^ f . The B A N logic constructs ++, H- and \

are similarly reformulated. Further, 'A' replaces ',' used to represent the conjunction

operator in the B A N logic. The additional notions introduced in the M B logic can be

given as follows.

P said M using the encryption key K.

P sees M using the decryption key K.

P is a super-principal.

the principals in the set Sc cannot see M.

K

P\^M

P<M

sup(P)

S° 4M

1.8. MB logic 21

Of these the first two are essentially refinements of the B A N logic notions of said and

seen messages. The idea here is to make the key used to convey a message or see a

message explicit; the original B A N logic constructs (without superscripts) are taken to

mean that the key used is not of particular significance. The notion of a super-principal

is used to capture unconditional trust in some principal. Notice that this notion is far

less expressive when compared to the B A N logic notion of jurisdiction. The notion

cannot see provides a basis to express confidentiality requirements.2

The terms challenge, replied challenge and response are used to capture the context-

dependent role played by message elements. Typically, a nonce issued by some principal

is called a challenge in a message where it is originally sent; it is called a replied challenge

in a message where it is received by the originator of the challenge. A response is

taken to be a primitive message which is combined with a replied challenge by the

originator of the message containing the replied challenge. The above terminology is

used to formulate rules for protocol idealization using two constructs, called 'message

combinators': | and 3ft. The first of these, '|', is used to associate challenges or responses;

the second, '3£', is used to associate responses with challenges, typically as response 3ft

challenge.

Below we list the principal rules of the logic [7].

• Authentication rule (Al):

P^P&QAP<M

P^Q\^M

• Confidentiality rule (C):

P\=P&QAP^SC4MAP\^M

P £ (S U {Q}f 4 M

• Nonce-verification rule (N):

P |= j(M) AP^Q^M

P^Q^P^Q

2We can formulate this notion more clearly, and without any loss of generality, as:

5 <J| M the principals in the set S cannot see M.

However, we retain the more cumbersome formulation in deference to the original presentation of the

logic.

1.9. AT logic 22

• Super-principal rule (S):

P^Q^XAP^ sup(Q)

P\EEX

• Fresh rule (F):

P |= l(M) A P < NMM

P N IIW
• Good-key rule (Gl):

P^{P,Q}C4KAP^^(K)

P^P&Q

A backward reasoning technique is recommended in analyzing protocols using the logic.

The aim of this technique is to derive the minimal sets of assumptions needed to infer

a fixed set of desired protocol goals using the logic. The reasoning technique is applied

to the Nessett protocol and it is shown that an application of the confidentiality rule

is needed to meet a specific protocol goal, which in turn requires an unreasonable

assumption.

1.9 AT logic

The BAN-like logics that we have discussed so far rely heavily on syntax, with little

apparent effort being made to define the semantics of logical expressions independently

of the syntax. The work of Abadi and Tuttle [8] marks a turning point in this regard:

it is one of the earliest works to make an attempt at providing such a semantics for a

BAN-like logic and to suggest a soundness theorem for the proposed logic.

The AT logic can be thought of as a reformulated B AN logic with a revised se­

mantics. As discussed by Abadi and Tuttle, the motivations for their logic include the

following semantic issues related to the original logic:

• The meaning of good keys: They note that the secrecy property stipulated in the

informal semantics of the BAN logic notion of good keys is not strictly necessary

for the soundness of the message-meaning rules of the logic. This point is reflected

in the formal semantics of the BAN logic, since there a good key K is defined

in terms of who sends messages encrypted with K. However, according to them,

this definition is also quite strong: if K is a good key between P and Q then

anyone can send a message encrypted with K as long as P and Q are the only

principals using K to encrypt messages.

1.9. AT logic 23

• Possession v/s Belief: They argue that these two notions should be made distinct

in the logic, for the sake of a proper semantics. This observation is motivated by

the fact that the notion of possession is implicit in the B A N logic seeing rules,

where it is assumed that belief in a key implies possession of that key.

• Stability of beliefs: In the BAN logic, it is assumed that formulas are stable in

the sense that a formula remains true once it becomes true. In particular, the

stability of belief formulas is critical to the soundness of the nonce-verification

rule of the logic. However, this requirement can be removed by expressing the

conclusion of the rule slightly differently, viz: if P said X and X is fresh, then P

has recently said X. To carry this idea further, they suggest defining the notion

of jurisdiction in terms of the notion recently said in place of belief. The B A N

logic essentially takes the latter course because of the way the nonce-verification

rule is designed to work.

The syntax of the A T logic is designed to exclude messages from being treated

as formulas, unlike the B A N logic. Another difference concerns the fact that the

A T logic relates more closely to traditional propositional modal logics of belief: it

includes primitive propositions and the standard propositional connectives for negation,

disjunction, conjunction, implication, and equivalence, respectively denoted as ->, V, A,

D, and =. Typically,

• the symbols P, Q, R, S range over principals,

• the symbol K ranges over keys,

• the symbol X ranges over messages, and

• the symbols <p, ib range over formulas.

The logic proper includes a set of axioms which essentially express the statements

captured via inference rules in the B A N logic as formulas in the logic itself. Most of

the logical axioms are formulated without the use of the belief operator. For example,

one of the axioms for message-meaning is stated as:

A5. P &QARsees{Xs}K D QsaidX

with the side condition that P =£ S. The axioms for belief are formulated separately;

for example, one of the axioms for belief is given as:

Al. P believes d> A P believes (<b D if>) D P believes tp

1.9. AT logic 24

The logic also includes two inference rules typically found in more traditional logics:

modus ponens (Rl) and belief necessitation (R2).

Rl. From h (b and h <b D vj infer h xb.

R2. From h <£ infer h P believes <j>.

Here h </> means that <£ is derivable in the logic.

A model of computation is given to define a semantics for the logic. The main idea

of the model is to assign truth-values to formulas with respect to a run r and a time

t, where a run typically represents an execution of a given protocol. Each principal is

assumed to be capable of performing the following actions:

• send(m,Q): the action of sending of message m to principal Q.

• receive(m): the action of receiving of message m.

• newkey(K): the action of generating key K.

Further, the two notions history and key set are associated with each principal. A

principal's history in r is taken to be the sequence of all actions P performs in r; the

key set is simply the set of keys the principal holds. The notion of a key set is essentially

used to define two operations on messages: seen-submsgs^M) and said-submsgs^M).

If K denotes the key set of some principal P, then roughly speaking: the first operation

determines the messages seen by P as a result of receiving M; the second operation

determines the messages said by P as a result of sending M. The notions sketched

above suffice to give a flavor of the truth conditions defined in the A T logic paper. For

example, the truth condition for P seesX is stated as,

(r, k) [= P sees X

iff, for some message M, at time k in r:

1. receive(M) appears in P's local history, and

2. X £ seen-submsgs^M), where K is P's key set.

A notable aspect of the semantics of the A T logic is its treatment of the notion of

belief. This notion is defined in terms of possible worlds, where a world is a pair (r, k)

consisting of a run r and a time k: a principal P believes a formula <f> in (r, k) if <f> is

true in all the worlds P considers possible in (r,k). This contrasts with the syntactic

approach used in defining the notion of belief in the B A N logic.

1.10. SVO logic 25

The A T logic paper includes a theorem (cf. Theorem 1 of Abadi and Tuttle [8])

which states that the logical axiomatization is sound with respect to the semantics

defined. However, no proof of this theorem has been published.

1.10 SVO logic

Syverson and van Oorschot [9] have devised a BAN-like logic to encompass selective

features from the logics B A N , G N Y , V O and AT. The syntax and semantics of their

logic mostly follows the line of the A T logic with additional extensions. To deal with

the demands that their aimed expansion seemingly brings to the logical syntax, they

employ some notational short cuts. For example, the notation {X}K is used to denote

encrypted (using a public-key encryption or a shared key encryption function) as well

as signed messages. Additionally, the notation F(XX,... ,Xk) subsumes the previous

notation and also the notation (Xx,... ,Xk) used to denote concatenated messages.

Notice that the authors of previous BAN-like logics have avoided such notational short

cuts. The syntax of formulas of the SVO logic includes constructs to denote binding

of public-keys for signature verification and public-keys for key agreement: PKC(P, K)

and PKg(P,K), which are essentially from the V O logic. Unlike the latter, however,

no explicit constructs are defined in the syntax to denote the V O logic concepts related

to goodness of corresponding private keys. The construct P receives X essentially

replaces the construct P seesX of the AT logic. The latter is reserved for the notion of

possession: P sees X is used to denote that P possesses X. The notation K~l is used

to denote the complement of key K. Most of the axioms and the inference rules found

in the A T logic are included in a slightly different form in the SVO logic. For example,

the message-meaning axiom (A5) of the A T logic is recast as:

3. P & Q A R received {XQ}K D Q saidX

The SVO logic includes several other axioms to reflect the intended extensions. For

example, the following axiom is designed to reflect the V O logic notion of key agreement:

5. PKS(P, Kv) A PK8(Q, Kq) DP&Q

where Kpq = f(Kp,K~
x) — f(Kq, K~

x) for some key agreement function /. Similarly,

the axiom given below is designed to capture the possession rules of the G N Y logic

collectively, barring the rules PI and P3. (The latter two are reflected by means of

individual axioms.)

10. PseesXx A • • • A P seesXn D P seesF(XX,... ,Xn)

1.11. WK logic 26

Perhaps the more interesting axioms are those that indirectly relate to the G N Y logic

notion of recognizability. These are the two axioms called comprehending axioms:

11. P believes (P sees F(X)) D P believes (P sees X)

12. Preceived F(X) A P believes (P sees X) D P believes (P received F(X))

Here the expression P believes (P seesX) is taken to replace the G N Y logic statement

P |= <f>(X).

The model of computation of the SVO logic is similar to that of the A T logic.

Essentially, the former is obtained by modifying the latter to include additional notions.

For example, the action of generating a key K, denoted newkey(K) in the model of

Abadi and Tuttle, is replaced by the more general action of generating a primitive

message X, denoted generate(X). This modification is used in defining the notion of

seen messages, with the aim of capturing the G N Y logic notion of possession: a set of

seen messages is associated with a principal, which includes, amongst other things, the

messages that are received or generated by that principal.

The SVO logic paper contains a soundness theorem for the proposed logic. However,

the sketch of the proof given there leaves the soundness of most of the logical axioms

implicit.

1.11 WK logic

The logic of Wedel and Kessler [10] is one of the latest BAN-like logics along the

lines of the logics A T and SVO. One of the motivations underlying their logic is to

allow analysis of protocols relying on various cryptographic mechanisms that cannot

be adequately captured in these two logics. The authors of the W K logic take a middle

ground between the notations of BAN-like logics that predate the AT logic and the

notational short cuts introduced in the SVO logic. For example, the syntax of the W K

logic distinguishes between encrypted and hashed messages, unlike the SVO logic. The

W K logic notations for encryption, hashing and signing functions are respectively given

as enc, h, and a. However, the notation enc is variously used to cover symmetric or

asymmetric encryption functions as well as signature functions with message recovery;

the notation a is reserved for signature functions that do not provide message recovery.

The notation F is used to denote either of enc, h, or a; the notation F(M) is taken

to mean the structure of the message computed by F on M, not its value. A notion

of message localized towards a principal is defined to capture what parts of a message

structure can be verified by the principal. If M is a message, the notation Mp is read

1.11. WK logic 27

M localized towards P; for example, if P possesses M then (h(M))p is defined to be

equal to h(M); this definition reflects the property that P can verify the hash of any

messages he possesses. A set of generalized messages M.j> is defined to consist of all

messages that can be constructed from the basic message items and with the additional

property that it is closed under localization.

Unlike the logics AT and SVO, the syntax of formulas of the W K logic precludes

formulas from being treated as messages. Most of the constructs found in the logics

AT and S V O are also carried over to the W K logic with some adjustments. The

notation — > is used to denote the propositional connective for implication. A primitive

construct P recognizes M is used to denote the notion of recognizability; this contrasts

with the S VO logic where recognizability is not defined as a primitive notion. The

constructs e & P, a & P, and a & P replace their SVO logic counterparts PK^(P, K),

PKa(P,K), and PKS(P,K), respectively. The W K logic includes axioms similar to

those found in the logics on which it is framed. For example, the AT/SVO logic

message-meaning axiom for shared keys is modified to capture the associated side

condition in the logic itself:

Al. R seesF(K,X) A P & Q A -P saidF(K,X) — • Q said(K,X)

Here F(K, X) is taken to variously denote shared-key encryption as well as hashing of

X using K. The jurisdiction axiom found in the AT/SVO logics is modified to bring

it closer to the original B A N logic rule, as follows:

J. P controls <f> A P believes <f> — > (j)

The logic also includes several additional axioms; for example, an axiom for recogniz­

ability is given as:

Rl. P recognizes Xi — > P recognizes (Xx,..., Xk)

A noteworthy innovation of the authors of the W K logic concerns protocol idealiza­

tion. Unlike the logics A T and SVO, protocol analyses using the W K logic are carried

out without having to treat formulas as messages. The semantics of the W K logic is

developed along essentially similar lines to the logics A T and SVO. The authors of

the W K logic use their semantics to suggest instances of unsoundness in some earlier

logics; for example, the G N Y logic recognizability rule R6. (We will have occasion to

return to this rule in the next chapter.) The proof of soundness of the W K logic follows

the line of the SVO logic paper: it leaves the soundness of most of the logical axioms

implicit.

Chapter 2

An informal proposal for rectifying some
problematic features of the G N Y logic

This chapter highlights some problematic features of the GNY logic. In particular, we

will point out several classes of problems which arise in the G N Y logic:

1. an unsound rule;

2. the possibility of drawing unsound conclusions by pairing rules;

3. the incompleteness of the set of rules; and

4. rules with redundant premises.

The notions of soundness and completeness of a logic are usually defined with respect

to an independently motivated formal semantics for the logic. However, as we shall

discuss in the following section, the G N Y logic does not appear to have such a seman­

tics. Our use of the terms "unsound" and "incomplete" in this chapter must therefore

be understood informally. W e will give specific instances of the above problems and

suggest some solutions to rectify these informally, at the syntactic level. A formal

justification for the suggested solutions, however, rests ultimately on provision of an

independently motivated semantics for the logic. Our purpose here is not to find a

semantic solution to the problems, but our observations clearly point out the need for

such a solution. In a later chapter, we will build an independently motivated semantic

model for BAN-like logics, which provides a step in the former direction.

(Parts of this chapter appeared in preliminary form elsewhere [25].)

28

2.1. Soundness troubles: recognizability and freshness rules 29

2.1 Soundness troubles: recognizability and fresh­

ness rules

Informally, if a logic is sound then false conclusions cannot be inferred from true

premises in the logic. A formal semantics for the logic provides a precise structure with

respect to which soundness can be proved. However, in order to obtain any assurance

about the soundness of the logic, the semantics itself must be sufficiently independent

of the logical syntax. As emphasized by Syverson [26], [27], an independently moti­

vated semantics can provide adequate assurance about the validity and power of the

logic, by means of soundness and completeness proofs, respectively.

Gong, Needham and Yahalom [2], like Burrows, Abadi and Needham [1], provide

an "operational" semantics for their logic, but as has been argued by others, most

notably by Syverson [27] and by Tuttle [28], the original semantics of these logics is

not independently motivated, as it takes its structure directly from the logical syntax.

For example, the authors of the B A N logic define the semantics of the jj operator to

correspond directly to the freshness inference rule of their logic. A set of fresh formulas

T is defined for each run under consideration, as follows: T contains all formulas X

such that \(X) holds as an initial assumption, and additionally J7 is taken to enjoy the

closure property that, if X £ T and X is a subformula of Y then Y £ T. Then \(X) is

defined to be true in the corresponding run if X £ T. (The G N Y logic semantics of the

(I operator is also taken to be defined similarly.) The problem with such a semantics

is that it does not provide us with any independent means to check the soundness of

the inference rules themselves. Indeed, we give examples below of unsound conclusions

derivable in the G N Y logic.

2.1.1 Unsound rule

The G N Y logic recognizability rule R6 states that if P possesses the hash of X, then P

believes X is recognizable. Note that recognizability of X is intended to mean that P

has prior expectations about the contents of X independent of the act of receiving it;

this interpretation of recognizability is part of the informal semantics given by Gong,

Needham and Yahalom [2, p. 236]. Surprisingly, the rule R6 enables the conclusion

that P believes X is recognizable from the premise that P possesses X: from P B X

it follows by rule P4 that P 3 H(X), and therefore, by R6, that P |= <j>(X). There is

nothing wrong with P4; it just says that a principal is capable of computing the hash

of a message he possesses. Seemingly, the problem lies with R6. The rule becomes

2.1. Soundness troubles: recognizability and freshness rules 30

problematic when we take into account the fact that a principal P's possessions include

the following: (1) the messages received by P, and (2) the messages that can possibly

be computed from P's possessed messages. This fact is evident from the possession

rules PI through P8 of the logic. Since, by rule Pi, every message P receives is also

possessed by P, the rule R6 in effect tells us that every message received by P is also

recognizable by P. However, this conclusion conflicts with a basic intuition underlying

the notion of recognizability. For example, consider a protocol where P generates a

random value Np, and sends it to Q. Here Np is not recognizable by Q, although Q

possesses it.

The problem with R6 can also be seen from another viewpoint. Recall that the

notion of recognizability is meant to reflect the implicit B A N logic assumption that

encrypted messages are verifiable. For instance, the rule 11, which is the G N Y logic

counterpart of the B A N logic message-meaning rule for shared keys stipulates a recog­

nizability premise, P ^ (f>(X), to express the B A N logic assumption explicitly. This

rule also has the following two premises: (a) P< *{X}K and (b) P 3 K. Given R6, it is

easy to see that the recognizability premise itself is derivable from these two premises

using the logic: From (a) and rule Tl, P < {X}K, and therefore, from (b) and T3,

P < X. Hence, by PI, P 3 X, and so, by P4 and R6, P |EE (b(X). It is clear here that

R6 really begs the recognizability feature of the logic.

Ironically enough, the unsoundness of R6 is perhaps best illustrated by appealing

to the analysis of the enhanced Needham-Schroeder protocol in the G N Y logic paper,

which is used to promote the recognizability feature of the logic. As part of the protocol

handshake, Q sends to P an encrypted message {N<J}K, where Nq is a nonce generated

by Q and K is a session key known to P and Q. In the protocol analysis given in

the paper (p. 242), it is argued that this message is unrecognizable to P, since Nq is

unpredictable by P. Thus P can only gain possession of Nq (so that P 3 Nq), but

not any beliefs from this message. The latter is essentially reflected in the logic by

the recognizability premise in the rule II. To make the above message recognizable to

P, it is suggested that the message be modified to include Q's identifier: {NQ,Q}K;

the modified version is seen to allow the expected belief for P to be derived under

the additional assumption that P ^ 4>(Q)- However, since we have P 3 Nq, R6

allows us to infer that P ^ <f>(Nq), which does not require the extra assumption that

P ^ d>(Q). It should be emphasized that we are not claiming that the protocol

modification suggested in the G N Y logic paper is superfluous. The point of the above

exercise is only to reinforce our claim that R6 is at odds with the original purpose of

2.1. Soundness troubles: recognizability and freshness rules 31

adding recognizability to the logic.

2.1.2 Unsound conclusions from pairs of rules

W e first recall an observation made by Anderson [29], namely that the freshness rules

F2 and F7 of the G N Y logic, when used together, imply a "strange result". Suppose

that for principal P all of the following conditions hold: (1) P believes that formula

X is recognizable; (2) P possesses a key K; (3) P believes that K is fresh. Then, by

F7, P |= \({X}K), and therefore from F2 and the fact that {{X}^1 = X, it follows

that P ̂ |(X).

Curiously, although each of the rules F2 and F7 is plausible in itself, when used

together as above these rules produce a suspect conclusion. For example, we can extend

the analysis of the modified enhanced Needham-Schroeder protocol in the G N Y logic

paper, to derive the nonsensical conclusion that P ^ $(Q), as follows. Observe that in

the protocol analysis given there (p. 241), the following statements hold: (a) P ^ 4>(Q);

and (b) P 3 K. (K is a session key known to P and Q.) The statement (a) holds

by assumption, and the statement (b) holds from message 4 of the protocol in which

S sends to P the following: {NP,Q, K,.. .}KPS- T O derive the nonsensical conclusion

using F2 and F7, we need the statement P ^ l(K). This is a reasonable statement to

obtain, since the session key K, which is generated by the server S in the protocol, is

normally expected to be a fresh quantity. W e can capture this in the logic as follows.

Firstly, we introduce two additional statements as assumptions: (c) S ^ l(K); and (d)

P ^ S =$> §(K). Secondly, we modify the idealization of the above message to include

the former statement in the extension attached to the message:

P< *{...}Kp.^>(S\=P&Q,S£i{K))

We can now derive the statement P ^ S ^ $(K) in an essentially similar way to which

the statement P ^ S ^ P & Q is derived from the original idealization in the G N Y

logic paper. The required statement P ^ t(K) then immediately follows from (d) and

the jurisdiction rule Jl.

W e note that the problem pointed out by Anderson is not only confined to the

freshness rules F2 and F7 used together. There are several other pairs of freshness and

recognizability rules which lead to essentially the same problem:

(i) R2 and F7;

(ii) F8 and F4;

2.1. Soundness troubles: recognizability and freshness rules 32

(iii) F9 and F3;

(iv) R3 and F9;

(v) R4 and F8.

Note that with the pairs (iii) and (v) we assume public-key schemes where {{X}^K}+K =

X; for example, R S A [30].

2.1.3 Side conditions

To tackle the above problem, we suggest side conditions to several of the freshness and

recognizability rules of the logic. W e begin by replacing each of the rules F2, F7, and

R2 with two equivalent rules:

P fcs ft(X), P3K

P N «({*}*)

P |= l(X), P3K

P N H (T O K)

P j= <b(X), P 1= j(K), P3K

P N !{{x}K)

P £ cb(X), P \= j{K), P3K

P N l(W?)
P jss <b(X), P3K

P N 4>{{X}K)

P |= #X), P 3 if

P |== < K W K)

W e proceed to include the following side condition to the rule F2": X is not of the

form {Y}K- The intuition used to arrive at this side condition is as follows. Let us

assume that the statements P |EE %({Y}K) and P 3 K hold. In the absence of the side

condition, by F2; we can obtain the conclusion P [EE \(Y). N O W , the only way we could

have established P |= J({Y}K) is by a prior application of either of the rules F2' or F7'.

Observe that: (1) If F2' were applied, then the statement P |= ${Y) holds a priori; (2)

If F7' were applied, then the statements P |= <j>(Y) and P ^ Jt(A") hold a priori. In

the former case, since the statement P ^ J|(Y) holds already, deriving it through F2"

is of no use essentially. However, in the latter case, deriving the statement P ^ §(Y)

F2'

F2"

F7'

F7"

R2'

R2"

2.2. Completeness troubles: The Yahalom protocol 33

through F2" is unsound since this statement does not necessarily hold. Intuitively

then, by the side condition on F2", we have only omitted the possibility of an unsound

conclusion, without losing any useful derivations.

W e can also argue for similar side conditions to each of the rules F3, F4, F7", F8,

F9, R2", R3, and R4. W e list below these rules along with their corresponding side

conditions.

P t= tJ(X), P 3 +K
F3 — , /r ., 7 — , X is not of the form {Y}-K

P NttlW+A-)

P E= ft(X) P 3 —K
F 4 DL-Jlyl x > X is not of the form iY}+K

Ppmxl-K)

F7" u/rv-i-iN ' X 1S not of the form \YSK
P F IKWjr)

F8 m-u/rvi \ ' X 1S not °f the form \Ys-K
P F K W + K -)

F9 Di-^rv-i \ '
 X 1S not of the form VJ+*

R2" Pn^(yrV^ ^^»
 X is not of the form W*

P F <?({A-}*:)

R3 P^t:x2\S^XK> xisnotoftheformW-*
R4 ^X^h^T^' X is not of the form {F}+/<

P F-</>({AJ-_K)

Similarly, we include the side condition: X is not of the form {Y}^1, to the rules F2',

F7', and R2', for conventional cryptosystems in which {{A-}^1}^ = X; for example,

DES [31]. Note that the side conditions to F3 and F8 are only needed for public-key

schemes in which {{X}-K}+K = X.

2.2 Completeness troubles: The Yahalom protocol

In this section we give an example of a non-trivial rule which is not captured by the

G N Y logic [2]. W e find this rule to be essential for verifying the working of the Yahalom

file:///Ys-K

2.2. Completeness troubles: The Yahalom protocol 34

protocol, which according to the G N Y logic paper, is apparently within the scope of

the logic (p. 243). While it has been suggested that in such logics rules may be added

when needed (cf. Gong [3, p. 18]), because of the variety of cryptographic techniques

possible, an independently motivated semantics is essential if we are to be able to

obtain assurance about the soundness of the added rules.

Essentially, the message interpretation rules of the logic enable the derivation of

beliefs from encrypted or hashed messages. As we shall see below, the G N Y logic

lacks a message interpretation rule to reason about the use of a shared secret in the

Yahalom protocol. In analyzing this protocol, we use the protocol parsing scheme given

by Gong [3], instead of the scheme given in the G N Y logic paper. First, we clarify the

reasons for not using the original parsing scheme.

2.2.1 Protocol parsing

The first step in analyzing a protocol described in the conventional notation is to

generate a form suitable for manipulation in the logic. In the G N Y logic, this task is

performed by a protocol parser. For each protocol message X received by a principal

P (written P < X), the parser inserts symbolic information to distinguish those parts

of X which are not included in any message sent by P up to the point of receiving X

in the current protocol run. Specifically, for every statement of the form P < X, the

parser inserts a not-originated-here marker, '*', in front of each complete subpart Y

of X, if Y does not appear as a subpart of any message P has sent previously in the

current run (p. 238).

W e observe that the only message interpretation rules with a formula of the form

P < *X appearing as a premise are the rules II, 12, and 13. In each of these rules,

the not-originated-here marker is either prefixed to an encrypted formula (II and 12,

respectively) or a hashed formula (13). For the purpose of using the logic to derive

beliefs from encrypted or hashed messages, it makes no significant difference whether

the insertion of the not-originated-here marker is carried out for non-encrypted and

non-hashed message parts or not; we choose not to. Not only does this simplify the

parsing process, it also avoids a peculiar problem with original parsing scheme. In

particular, we note that the original scheme precludes some legitimate applications of

the message interpretation rules. For example, in the analysis of a voting protocol in
*S'

the G N Y logic paper, the statement Q ^ Q ^4 Pi is clearly required to apply 13 to

the second message of the protocol (p. 239). Presumably, we can derive this statement

from the protocol assumption Q ^ Q «4 Pi, but there is nothing in the logic which

2.2. Completeness troubles: The Yahalom protocol

would enable us to do so. However, such a difficulty does not arise if we adopt the

modified parsing scheme given by Gong [3].

2.2.2 The Yahalom protocol

The goal of the Yahalom protocol [1] is to distribute an authenticated session key to

two principals A and B via a trusted third party known as the authentication server

S. The following sequence of messages describes a successful run of the protocol (p.

30):

1. A-+B:A,Na

2. B^S:B,{A,Na,Nb}Kbs

3. S -+ A : {B, Kab, Na, Nb}Kas, {A, Kab}Kbs

4. A^B:{A,Kab}Kbs,{Nb}Kab

As explained by Burrows et al. [1], this protocol makes use of an uncertified key: a key

which is used before its validity is established.

In the sequel, we refer to the protocol initiator A as 'Alice' and the other principal

B as 'Bob', following standard practice. Initially, Alice and Bob share keys Kas and Kbs

with the authentication server S respectively. Alice initiates the protocol by sending

her identity and a nonce Na to Bob. In the second message, Bob sends to the server

his own name and an encrypted part {A, Na, Nb}Kbs, where Nb is Bob's nonce. In the

third message, the server sends to Alice: {B,Kab,Na,Nb}Kas, {A,Kab}Kbs. The first

encrypted part tells Alice that Kab is a good session key for communicating with Bob,

and also tells her Bob's nonce. The second encrypted part is intended for Bob. In

the fourth message, Alice forwards this encrypted part to Bob, along with Bob's nonce

encrypted with Kab. Bob decrypts the first encrypted part of this message to get Kab,

and uses it to decrypt the second encrypted part. If the latter decryption yields Bob his

nonce A7;,, then he obtains assurance that Kab is a good session key for communicating

with Alice.

2.2.3 Analyzing the Yahalom protocol using GNY logic

W e begin the analysis by using the parsing scheme to produce a protocol description

containing *'s in the appropriate places:

2.2. Completeness troubles: The Yahalom protocol 36

1. B< A,Na
2. S< B,*{A,Na,Nb}Kbs

3. A<*{B,Kab,Na,Nb}Kas^S£A
IhbB,

*{A, Kab}Kbs ^S^A&B

4. B < *{ A, Kab}Kbs ^S^A*hbB,

*{Nb} ^A\=A*hbB

In the above description, we have also added extensions which describe the beliefs held

when the messages are sent. The following statements describe the initial protocol

assumptions:

A 3 Kas; A |= A *& S; A3Na; A^ j(Na);

A £ <f>{B)

B3Kbs; B^EBK& S; B3 Nb; B |= J(iV6);

B f= <j>(Nb); B |EE A ft B

S3Kas; S\EEA*hsS; S 3 Kbs; S $= B *&'S;

S3Kab; S^A&B

That is, Alice possesses a secret Kas and believes it is a secret between herself and 5".

Similarly, Bob possesses a secret Kbs and believes it is a secret between himself and S.

Each possesses a nonce and believes that it is fresh. Alice believes that the identifier B

is recognizable to her. Bob believes that Nb is recognizable to him. Also, Bob believes

that his nonce Nb is a suitable secret with Alice. The server S possesses valid keys

Kas and Kbs with Alice and Bob, respectively. It also possesses a session key K and

believes A' is a suitable secret between Alice and Bob.

A\=S\^S^*; A\=S*A&B

B\=S\^S\=*; B^S^A&B;

B\=A^A\^*

Both Alice and Bob believe that S is honest and competent. They also trust S to invent

a suitable secret key for them. Also, Bob believes that Alice is honest and competent.

For a run of the protocol, we apply the inference rules to the messages, as follows:

Message 1: From PI we obtain B 3 (A,Na).

2.2. Completeness troubles: The Yahalom protocol 37

Message 2: From T2 and PI we obtain S 3 B. From T2, Tl, T3, and PI we obtain

S3(A,Na,Nb).

Message 3: The extension S |EE A *& B attached to the two encrypted parts is valid

because it holds by assumption. From Tl, T3, T2, PI and the first encrypted

part, we obtain A 3 Kab and A 3 Nb.

From Fl, Rl, II, J2, and J3 we obtain A |= S [= A K<$ B. Hence, by Jl,

A ^ A «46 B. We can thus include this statement in the extension attached to

the second encrypted part of message 4.

Message 4: From Tl, T3, T2, PI and the first encrypted part we obtain B 3 Kab-

However, we cannot derive any beliefs from this part since the statement

B ^ $({A,Kab}Kbs) does not hold. In the actual working of the protocol, Bob

deduces that Kab is shared with Alice if the decryption of the second encrypted

part yields his nonce. By appealing to the G N Y logic rules, we find that the only

way we can proceed in the logic to reason in this manner is by first establishing

that Bob believes the extension attached to the second encrypted part. However,

none of the G N Y logic rules enable this to be derived; the only applicable rule is

II which cannot be applied, since it requires the recipient of an encrypted mes­

sage to believe that the key used to encrypt the message is shared with another

principal a priori.

2.2.4 Adding a new rule

The incompleteness revealed by the above analysis motivates us to propose the addi­

tion of the following new message interpretation rule to the logic:

P<*{X,<S>}K, P3K,P^PAQ,P^ cb(X,S), P N t(X,S,K)
P |= Q h (X,<S>), P N Q h {X,<S>}K,P \=Q3K

That is, suppose that for principal P all of the following conditions hold: (1) P receives

a formula consisting of X concatenated with S, encrypted with key K and marked with

a not-originated here mark; (2) P possesses K; (3) P believes S is a suitable secret

for himself and Q; (4) P believes that X concatenated with S is recognizable; (5) P

believes that at least one of S, X, or K is fresh. Then P is entitled to believe that:

(1) Q once conveyed the formula X concatenated with S; (2) Q once conveyed the

formula X concatenated with S and encrypted with K; (3) Q possesses K. (A similar

rule can be added along previous lines to the set of "never-originated-here" rules of the

2.2. Completeness troubles: The Yahalom protocol 38

G N Y logic.) The new rule 18 enables us to derive Bob's beliefs in the validity of Kab,

as follows:

Message 4 (continued): From 18 and the second encrypted part we obtain

K,
B |= A 3 Kab, and B |= A [~ {Nb}Kab ~*A^A&B. From F2, J2, and J3 we

obtain B\=A^A*&B. W e can include the statement A |= S |= A ff B in

the extension attached to the second encrypted part, since this statement holds

from message 3. W e also need an additional assumption which reflects Bob's trust

in Alice to pass on the session key from the server: B ^ A [=>> (S ̂ A <¥ B).

This assumption is the logical embodiment of a curious feature of the protocol:

Alice can make Bob believe in a replayed session key. Notice that the statement

of the assumption essentially amounts to Bob believing that this does not take

place. The fact that we are forced to make the odd assumption explicit during

the analysis provides a good example of the virtue of the logic. (The above pro­

tocol feature also emerges from the B A N logic analysis of the Yahalom protocol,

cf. [1, p. 33].) From 18, J2, J3, and Jl we finally obtain B |= A *& B.

To conclude our analysis of the Yahalom protocol, we list the final position attained:

A 3 Kab; A^A*h
b B

B 3 Kah; P |EE A ff B; B^A3 Kab

B^A^A*& B

Both Alice and Bob possess the session key and believe in it. In addition, Bob believes

that Alice possesses the session key and believes in it.

The above analysis shows an interesting point: it hints at a possible redundancy in

the last message of the protocol. The analysis tells us that no beliefs about Kab are

derived for Bob from the encrypted part which Alice forwards him from the server in

message 4: {A, Kab}Kbs- Also notice that Bob binds the identity claimed by Alice to his

nonce, by concatenating them and encrypting with Kbs in message 2. Apparently then,

in the last message of the protocol, Bob's nonce not only assures him of the freshness

of the encrypted half sent by Alice, but also guarantees that Kab is shared with Alice.

Since Bob decrypts the encrypted part forwarded by Alice only to gain possession of

Kab, we can delete Alice's name from this part:

3'. S -+ A : {B, Kab, Na, Nb}Kas, {Kab}Kbs

A'. A^B:{Kab}Kbs,{Nb}Ka Lab

2.3. Redundancy in the logic 39

An analysis of the modified protocol using the logic confirms our above intuition: the

same final position as the original protocol is achieved by the modified protocol.

2.3 Redundancy in the logic

In this section, we give an example of a rule which contains a redundant premise.

Observe that the message interpretation rule 12 includes the following statements as

premises: (1) P < *{X,< S >}+K; (2) P 3 -K; and (3) P 3 S. In the original rule,

(2) and (3) are combined into one single premise using the conjunction operator ',':

P 3 (-K, S). W e replace this premise by (2) and (3) only for the sake of convenience.

It is easy to see that (3) follows from (1) and (2): From Tl and (1), P<{X, <S>}+K,

and therefore, from (2) and T4, P < (X, < S >). Hence, by T2, P < S, and so, by PI,

P 3 S. Thus, we see that the premise (3) of the above rule is redundant. (The message

interpretation rule 12' exhibits a similar redundancy.)

Chapter 3

A modification of the G N Y logic for
automatic analysis of protocols

This chapter proposes a modified GNY logic, and describes the implementation of a

protocol analysis tool based on that logic. The modifications are designed to allow the

logical statements derivable from any protocol represented by a finite set of statements

to be deduced in a finite number of steps, without losing any useful inferences. The

tool can be used to automatically generate proofs of statements representing protocol

goals.

(Parts of this chapter appeared in preliminary form elsewhere [32].)

3.1 Introduction

The BAN and GNY logics can be used to effectively explain the working of proto­

cols. Very often a protocol analysis using the logics reveals missing assumptions or

deficiencies in the protocol begin analyzed. This can lead to the assumptions or the

original protocol being revised and the inference rules being reapplied to determine if

the desired goal is then attainable. The process of applying and reapplying the infer­

ence rules, however, is in practice often tedious and error-prone to do by hand. Several

tools which relieve the manual burden of carrying out this task for the B A N logic or

modified versions of it can be found in the literature; see, for example, [16], [33], [34],

[35]. The appeal of tools for mechanical validation is clear, but such tools can also

assist in examining the role played by protocol messages and assumptions in attaining

the desired goal. In addition, such tools can also be used to verify proofs of protocol

goals which are obtained by manually applying the logic. Manual analysis of protocols

using the G N Y logic is particularly unwieldy, as the logic has more than forty inference

rules. Moreover, the G N Y logic operates at a finer level than its predecessor, so proofs

of protocol goals in the logic typically work out to be much longer than their B A N

logic counterparts.

40

3.2. Modifying the GNY rule set 41

Our main aim in automating the logic is to be able to mechanically determine

whether one or more statements describing the goal of a protocol are derivable using

the logic from some initial assumptions. Furthermore, it is also desirable to obtain all

statements that are derivable from the initial assumptions. This allows us to analyze

the state of the principals after the execution of each protocol step. W e therefore use a

forward-chaining strategy in automating the logic. This involves repeated application

of the inference rules of the logic to the set of statements consisting of the idealized

protocol, initial assumptions, and derived statements, until all statements derivable are

obtained. However, many of the inference rules of the original G N Y logic are unsuitable

for forward-chaining. The problem is clear just from the freshness rule Fl,

P N Kx)
p^i(x,Yy

which essentially says that if A" is a fresh message and X is concatenated with any

other message Y, then the resulting message is also fresh. (The rule has one more

conclusion; however, the one shown suffices to illustrate the problem.) It is easy to see

that this rule can be used to derive an infinite set of statements starting from a finite

set of statements of the form P ^ U(AT). Although the inference expressed by this rule

is intuitive and desirable, it is necessary to restrict the application of the rule for the

purposes of forward-chaining.

W e will show that the set of inference rules can be modified in such a way that the

statements derivable from any protocol represented by a finite set of statements are

also finite in number. Essentially, the point of our modifications is to convert the set

of rules into a form which is directly amenable to forward-chaining. The modifications

are designed to produce a restricted logic in the sense that the modified logic does not

capture all inferences which are possible in the G N Y logic. However, we will argue that

the inferences lost by the modified logic do not affect our central aim in using the logic:

that is, to reason about a principal's possessions and his beliefs about the statements

conveyed by other principals, based on the messages received by the principal. In other

words, we can still use the modified logic to analyze protocols with the same intended

effect as the original G N Y logic.

3.2 Modifying the GNY rule set

We now describe the modifications to the set of inference rules of the GNY logic, which

we make in order to obtain finiteness of derivations. Additionally, we include several

3.2. Modifying the GNY rule set 42

new rules which are clearly required during protocol analyses using the logic, but which

are nonetheless absent from the original G N Y logic [2]. The resulting set of rules is

given in appendix C, and a proof of finiteness of derivations for this rule set is given

in the next section.

3.2.1 Adding new rules

W e add three new rules all of which enable dropping of extensions attached to formulae:

T7

18

19

P\=Q y^x^c
While the above rules capture rather trivial inferences, these rules are nevertheless

required during protocol analyses. The first two rules, T7 and 18, are also present in

an extended version of the G N Y logic found in Gong's thesis [3]; the role played by

these rules should be intuitively clear. Surprisingly, the rule 19 is absent from both the

original G N Y logic [2] and Gong's extension [3]. Essentially, 19 enables the splitting

of message extensions which are conjunctions of two or more statements. The logical

use of this rule's conclusion is made in the jurisdiction rule J2 where it appears as a

premise (see appendix C.6). A handy example of the need for 19 can be seen from the

analysis of the Yahalom protocol given in the previous chapter: there we tacitly made

P<X^C
P«X

P^QY^X^

P^Q\-X

P^Q^X^

c

(C,C>)

K, use of this rule in proceeding with the derivation of the statement B ^ A 44b B from

the statement B |= A ^ {Nb}Kab ^ (A |= A *& B, A |= S |= A %? B).

3.2.2 Modifying existing rules

Like Fl, several other freshness and recognizability rules cause problems by repeated

application. W e deal with this problem by modifying these rules into a form suitable for

forward-chaining. Notice that every freshness and recognizability rule has a conclusion

of the form P ^ l(X) and P ^ <t>(X), respectively. Our modification introduces an

additional premise of the form P 3 X in each of these rules; the modified freshness

and recognizability rules are listed in appendices C.3 and C.4, respectively. W e now

discuss the rationale behind the modifications to the freshness rules; the modifications

to the recognizability rules are explained similarly.

3.2. Modifying the GNY rule set 43

The idea behind the modifications to the freshness rules is to limit the original

rules to allow only those inferences which contribute to our purpose of reasoning about

a principal's possessions and beliefs about the statements conveyed by other princi­

pals. Evidently, from the possession rules of the G N Y logic we see that a principal

P's possessions do not depend on P's beliefs. Therefore what we can conclude using

a freshness rule for P is of no use for the above purpose if it does not affect P's be­

liefs about statements conveyed by others. Essentially, the rule which enables us to

obtain such beliefs for P is the jurisdiction rule J2, which has a premise of the form

P ^ Q |~ (X ~> C). This premise reflects the requirement that P can only obtain be­

liefs from messages sent by some well-known principal Q, and appears as a conclusion

of the message interpretation rules II, 12, 13, 14, II', 12', and 13'. Hence the statement

P ^ t(X) is of significance in deriving P's beliefs in statements conveyed by others

only if it appears as a premise in one of these rules. Out of these rules, only II, 12,

and 13 have a freshness premise. Further, each of these rules satisfies the following

property: if P ^ §(XX,... ,Xm) is the freshness premise of the rule, then P 3 Xi

for i — 1,... ,m. For example, take II; this rule has a freshness premise of the form

P |= \(X,K). Since this premise is meant to denote P |= \(X) or P ^ j(K) ([2], p.

245), we can replace II by the following two equivalent rules:

T , P< *{X}K, P3K, P^P&Q, P^ <KX), P N ttffl

P^Q^X, PNQh {X}K, P^Q^K

n„ P<*{X}K, P3K, P^EP&Q, PN(4 fNP)
P^Q^X, PNQh{x}K, P^QBK

It is easy to see that in both II' and II", P possesses the formula appearing in the

corresponding freshness premise:

II': From the premise P < *{X}K and rule Tl, P <J {X}K, and therefore, from the

premise P 3 K and rule T3, P < X. So, by PI, P 3 X, as required.

II": Trivially, P 3 K holds as a premise.

3.2.3 Deleting existing rules

W e delete several possession rules of the logic: P2, P4, P6, P7 and P8. Each of these

rules can be applied indefinitely to derive new possessions. For example, suppose the

statements P 3 X and P 3 K hold. Then we can use the possession rule P6 for shared

3.3. Finiteness of derivations 44

keys,
P3K, P3X

P3{X}K, P3{X}~^

to derive the infinite set of statements: P 3 {X}K, P 3 {{X}K}K, The above

rules are evidently useful in enforcing the possession consistency check, but their role

during protocol analyses otherwise is not so clear. Furthermore, we do not include

this check in automating the logic, since it is intended to be performed outside of the

logic. For our purposes, we simply find it convenient to delete these rules. Similarly,

we delete the G N Y logic rationality rule, which states that if ~ is a rule, then so is
2

, , for any principal P.

3.3 Finiteness of derivations

In this section, we prove that for the modified rule set given in appendix C:

The statements derivable from a finite set of idealized protocol steps and

initial assumptions are finite in number, and are therefore derivable in a

finite number of steps.

Essentially, we will follow a a technique used by Engberg [16] to prove a similar property

for a modified version of the B A N logic.

W e begin with a set-theoretic formulation of the statement which we wish to prove.

To this end, it is convenient to introduce the notation (T>/E) to denote a generic

inference rule, where V is the set consisting of the premises of the rule and E is

the conclusion of the rule; here we assume that rules with multiple conclusions are

decomposed in the obvious way into separate rules, each with a single conclusion.

Denote by IZ the modified set of rules. W e define an operator p on sets of statements,

as follows: for any set of statements S,

p(S) =SU{E: there exists (V/E) £ 11 such that V C S}.

Thus p returns <S together with the statements derivable from S by applying the infer­

ence rules in 1Z exactly once. The main idea of the proof is an argument showing that

there exists an n such that

P
n(S) = P~(S),

where we use p°°(S) to denote the infinite union U™=0p
m(S).

3.3. Finiteness of derivations 45

Recall that any statement of the logic is a statement of the form P < X or P 3 X

or P ^ C. The key step in the argument is to construct a well-founded and finitary

relation over the set of statements of the forms P 3 X, P<X, and P ^ C. We construct

the required relation, denoted by -<, in terms in terms of six subsidiary relations -<<„

-<3, -<3, -<t, -<% and -<£, as follows:

(1) P«X-<P<Y ifX^Y

(2) P3X <P<Y if X x| Y

(3) P3X^P3Y iiXA^Y

(A) P^C <P3 X if C -<| A

(5) P ^ C ^ P < A : ifC^A
(6) P^C-^P^P* ifC^NP>

The definitions of the subsidiary relations are derived from suitably chosen classes of

rules and are given below.

The definition of -<4 is read off the being-told rules Tl, T2, T3, T4, T5, T6 and T7

(see appendix C.l), where T2 and T5 are used in their two symmetrical forms, giving

clauses as follows:
(1) X -<* *A

(2)(i) X^(X,Y)

(ii) X^(Y,X)

(3) X -«« {X}K

(A) X ^ {X}+K

(5)(i) X<<F(X,Y)

(ii) X^F(Y,X)

(6) X -<« {X}-K

(7) X^X^C

The definition of -<| consists of a single clause which is read off the possession rule PI

(see appendix C.2):

(1) X^%X

The definition of -<9 is read off the possession rules P3 and P5 (see appendix C.2),

where both the rules are used in their two symmetrical forms, giving clauses as follows:

(l)(i) X<3(X,Y)

(ii) X^(Y,X)

(2)(i) X^F(X,Y)

(ii) X^BF(Y,X)

3.3. Finiteness of derivations 46

The definition of -<L consists of two clauses. The first clause is read off each of the

freshness rules Fl', Fl", F2', F2", F3', F4', F5', F6', F7', F7", F8', F9', F10', and Fll'

(see appendix C.3). The second clause is read off each of the recognizability rules Rl',

Rl", R2', R2", R3', R4', and R5' (see appendix C.4).

(1) t{X)*%X

(2) <b(X)^%X

The definition of -<t is read off: (A) the message interpretation rules 11, 12, 13, 14 and

15 (see appendix C.5), and (B) the rules for never-originated-here messages II', 12' and

13' (see appendix C.7). Each rule contributes as many clauses to the definition as the

number of conclusions in the rule, giving clauses as follows:

(l)(i)

(ii)

(iii)

(2)0)

(ii)
(iii)

(3)(0

(")

(4)0)

(")

(5)(i)

(ii)

(6)(i)

(ii)

(7)0)

(ii)

(8)(i)

(ii)

Q\~X

Q h {X}K ~> C
Q3K

Q\-X

Q [~ {X}+K ^ C
Q3+K

Q^x

Q ̂ H(X) ~> C

Q^x

Q ̂ {X}-K -> C
Q3-K

Q3X

Q\-X

Q h WK - C
Q\-X

Q h {X}+K -> C

QY^x

Q ^ H(X) ~* C

-<i
%

-4
•<i

*i
%

%

•<i

- *

"t
-*>*

^N
-*>*

^N

•<i

-<%

• < %

^

*{X}K^C

*{X}K ~> c

*{X}K ~> c

*{X}+K o+ c

*{X}+K -> c

{X}+K ~ c

*H(X) ~> C

*H(X) -> C

{X}-K ̂ C

{X}-K -> C

{X}-K

{X}-K

{X}K -* C

{X}K -> C

{X}+K -> C

{X}+K ^ C

H(X)^C

H(X) ~> C

The definition of X ^ is read off: (A) the message interpretation rules 16, 17, 18 and 19

(see appendix C.5), where 17 and 19 are used in their two symmetrical forms, and (B)

3.3. Finiteness of derivations 47

the jurisdiction rules Jl, J2 and J3 (see appendix C.6), giving clauses as follows:

(1) Q3X -<£ Q\^X

(2)(i) Q^X -<w Q*{X,Y)

(ii) Q K ^N QM*',*)
(3) Q h ^ ^ N Q h ^ - ^ C

(4)(i) QY-X^C -<w QY-X^(C,C)

(ii) QY^X^C ^N ghx^(C",c)
(5) a -<w Q^C

(6) Q ^ C ^ N QY^(X^C)

(7) QN^ ^ QNQNc

This completes the definitions of the six subsidiary relations. Of the six relations, the

most critical in the analysis are: -<<,, -<9, and -<^. It is easy to see that each of these

three relations is well-founded. Consider the definition of the first of the three, -<<,: the

formula on the left in each clause is syntactically shorter than the formula on the right,

so there cannot be infinite descending chains with respect to -<«. Well-foundedness of

-<9 and -<^ is equally easily proved. (Well-foundedness of the other three subsidiary

relations -<|, -<^ and -<t is not required.)

W e proceed to show that -< is also well-founded; that is, there are no infinite

descending chains with respect to -<. If we show that: (*) any infinite descending

chain with respect to -< must contain an infinite chain of statements of one of the three

forms P3X,P<X,ovP ^ C, then the well-foundedness of -< follows from the

well-foundedness of -<<,, -<3, and -<^. It remains to show that (*) holds. So assume

there is an infinite descending chain • • • -< Cz -< C2 •< Cx, where each C% is a statement

of one of the three forms P < X, P 3 X, or P ^ C. W e say that -<^ occurs at Ci if

Ci+i is obtained from an application of clause (6) in the definition of -<; and similarly

in the case of the relations -<jL, -<fL, -<9, -<|, and -<<.

Case (A): Suppose that -<^ occurs at Cn for some n. It follows that -<^ also occurs at Cm

for all m>n; that is, there is an infinite descending chain with respect to -<(|=.

Case (B): Suppose that -<|= does not occur at d for all i. It follows that -<jL and -<^ do

not occur at Ci for all i.

Case (i): Suppose that -<9 occurs at Cn for some n. It follows that -<9 occurs at Cm

for all m > n; that is, there is an infinite descending chain with respect to

3.4. Implementing the tool 48

PROTOCOL ANALYZER

IDEALIZED

MESSAGES

ASSUMPTIONS

INFERENCE
RULES

PROOF
GENERATOR

RESULTS

DERIVED
STATEMENTS

Figure 3.1: Protocol analysis

Case (ii): Suppose that -<9 does not occur at Ci for all i. It follows that -<* does not

occur at Ci for all i. Therefore the only remaining case is that -<< occurs at

Cn for some n. It follows that -<<, occurs at Cm for all m > n; that is, there

is an infinite descending chain with respect to -<!<.

A further property of all six subsidiary relations is that they are finitary; that is,

given any statement C of the form P 3 X or P < X or P ^ C, the set of statements

{D : D -< C} is finite. This is easy to see in the case of the relation -<<<, and is equally

easily proved for the other five relations. It follows straightforwardly that -< is also

finitary. Since -< is well-founded as well as finitary, it follows by Konig's lemma that

for any C the set of statements {D : D -<* C}, where -<* denotes the transitive and

reflexive closure of -<, is finite as well.

Now the definitions of the subsidiary relations and of -< are constructed so as to

give a straightforward guarantee that for each rule (TJ/E) £ 1Z, there exists C £ V

such that E -< C; that is, in each rule the conclusion is smaller, with respect to -<,

than at least one of the premises. Therefore, if <S is the set of idealized steps and initial

assumptions of any protocol, then for every C £ p°°(S), there exists S £ S such that

C ^* S. Hence

p°°(S)C \J{C:C ^* S}.
S£S

Now the right-hand side above is a finite union, since by assumption the set <S is finite.

By the finitary property we established earlier, the set {C : C -<* S}, for any S £ S,

is finite as well. Therefore, we conclude that p°°(S) is finite, as required.

3.4 Implementing the tool

We now outline an implementation of a tool based on the modified set of rules given

in appendix C. The tool is implemented along similar lines as in our previous work on

3.4. Implementing the tool 49

Formula

(X,Y)

WK
m-Kl

{X}+K

W-K
H(X)

F(Xi,... ,Xn)

*X

X^C
X

Structure

[X,Y]
encrypt(X, shared(K))

decrypt(X, shared(K))

encrypt(X, public(K))

decrypt(X, private(K))

h(X)

f(Xl, ..., Xn)

star(X)

ext(X, C)

ext(X, nil)

Table 3.1: Representing formulas

automating the B A N logic [35]. It consists of (1) an inference engine which produces

the complete set of logical statements derivable from an input specification consisting

of the idealized protocol and the initial assumptions, and (2) a routine to extract

proofs from the database of derived statements. Since the modification we make to the

original tool only concerns the representation of the logical syntax, we will mostly skip

the details of the remaining parts of the implementation. Figure 3.1 gives an overall

block diagram of how the tool is used in analyzing protocols [35]. As in the original

tool, we use Prolog as an implementation language and represent the logical syntax in

terms of Prolog structures.

3.4.1 Formulas and statements

In the logic, protocol messages are represented as formulas. The building blocks of

messages are constants like principal names, keys, nonces, etc. W e typically represent

these constants by one or more lowercase letters. For example, a session key Kab

for principals A and B is denoted by the Prolog atom kab. The remaining formulas

like concatenation, encryption, functions, etc. are represented by Prolog structures

chosen to represent their typographical counterparts wherever possible. W e also use

the structure ext(X, nil) to represent a formula X without any extension. Table 3.1

shows how we represent the logical formulas by means of Prolog structures.

The statements of the logic are similarly represented by appropriately named Prolog

structures as shown in Table 3.2. It is straightforward to translate any formula or

statement in the logical syntax to its Prolog counterpart by looking up Tables 3.1 and

3.2.

3.5. Using the tool: an example

Statement

P<X

P3X

PY-x
P NIIPO
p |= 4>{X)
P\EQ&R

PW&Q
P\EEC

P^QY^C

PNQKQN*
Cx, C2

Structure

told(P, X)

possesses(P, X)
conveyed(P, X)

believes(P, fresh(X))

believes(P, recognizes(X))

believes(P, secret(Q,S,R))

believes(P, public(K,Q))
believes(P, C)

believes(P, controls(Q,C))
believes(P, honest(Q))
[CI, C2]

Table 3.2: Representing statements

3.4.2 Derived statements

Apart from representing the logical constructs in Prolog syntax, we also need to main­

tain derivation information about statements obtained by applying the inference rules.

The predicate fact/3 which represents an inference step is used for this purpose. It

takes the form:

fact(Index, Stat, reason(PremIs, Rule))

Here the integer argument Index is used to index instances of fact/3. The second

argument Stat is bound to a derived statement. In the last argument, Premls is a list

containing the indices of premises used in deriving Stat by an application of rule Rule.

3.4.3 Logical rules

The representation of the inference rules is best explained by means of an example; the

being-told rule Tl is defined by the following clause for told/2:

told(told(P, X), reason([I], 'Tl')) :-

fact(I, told(P, star(X)), _) .

3.5 Using the tool: an example

We now demonstrate the use of the tool by means of one of the protocol analyzed in

the G N Y logic paper [2]: the voting protocol. Our aim here is to illustrate how the

3.5. Using the tool: an example 51

tool confirms a problem with the parsing scheme, which we discussed in the previous

chapter.

The idealized protocol is given as follows (p. 239):

1. Pi < *Nq

2. Q< *Ph *N{, Wi, *H(Nq, * <Si>, V])

3. P,< *R,*H(Ni,<Si>,R)

Here Si is a secret between P; and Q, and Ni and Nq are nonces generated by Pt and

Q, respectively.

The following statements describe the protocol assumptions:

Pi 3 Si; Pi3Ni; Pt £ Q & P* />• |= Jj(^)

Q3Si; Q3Nq; Q £ Q & />•; Q £ l{Nq)

It is straightforward to convert the above statements into the syntax of the tool using

Tables 1 and 2. For example, the second idealized message is represented by the Prolog

fact:

fact(2, told(q, [star(pi), star(ni), star(vi), ext(star(h([nq, star(si), vi])),

nil)]), reason([], 'Step')).

The set of Prolog facts representing the idealized protocol and the initial assumptions

is then loaded into the analyzer to obtain all the logical statements derivable:

?- analyze(voting).

Analyzed in 4 cycles

The database of facts can now simply be queried to determine whether a particular goal

statement is attained or not. For example, according to the G N Y paper, the statements

Q ^ Pi Y-1 Vi and Pi ̂ Q (~ R hold for the protocol (p. 239). The following queries

can be used to verify this:

?- fact(I, believes(q,conveyed(pi,vi)), Rule).

no

?- fact(I, believes(pi,conveyed(q,r)), Rule).

I = 37

Rule = reason([33],17);

yes

The output of the above queries show that Q ^ Pi |~ V does not hold, whereas

Pi ̂ Q (~ R holds. It is not difficult to explain the discrepancy behind this mis­

match. Looking at the analysis sketched in the G N Y paper, we see that the conclusion

3.5. Using the tool: an example 52

Q ^ Pi |~ V is obtained from the message interpretation rule 13 and the second mes­

sage. It is easy to see that in the premises of the intended application of the rule,

the secret Si appears prefixed with a *; for example, one of the premises works out
*S' -̂

to be: Q ^ Q <4 Pi. Although we have the statement Q ^ Q <4 Pt as an initial

assumption, we see that the statement Q ^ Q *4 Pi does not follow from the logic. As

we discussed in the previous chapter, this difficulty is best dealt with by modifying the

parsing scheme so that non-encrypted and non-hashed message parts are not marked

with *'s. The desired statement Q ^ Pi |~ Vi is immediately derived once we alter the

idealization of the second message to reflect this change:

fact(2, told(q, [pi, ni, vi, ext(star(h([nq, si, vi])), nil)]), reason([],

'Step')).

| ?- fact(I, believes(q, conveyed(pi, vi)), Rule).

I = 37

Rule = reason([31],17);

no

The proof explanation routine can be further used to obtain explicit representations of

proofs of derived statements. For example, we obtain the following machine-generated

proof of Q ^=Pi\~Vi:

?- explain_proof(believes(q, conveyed(pi,vi))).

1. told(q,[pi,ni,vi,ext(star(h([nq,si,vi])),

nil)]) {Step}

2. told(q.vi) {1, T2}

3. possesses(q,vi) {2, PI}

4. possesses(q,si) {Assumption}

5. possesses(q,nq) {Assumption}

6. believes(q,fresh(nq)) {Assumption}

7. believes(q,secret(q,si,pi)) {Assumption}

8. told(q,ext(star(h([nq,si,vi])),nil)) {1, T2}

9. believes(q,conveyed(pi,[nq.si.vi])) {8, 7,

6, 5, 4, 3, 13}

10. believes(q,conveyed(pi,vi)) {9, 17}

Chapter 4

Semantic foundations for authentication
logics

The motivation for this chapter is perhaps best described by the title of a note written

by Tuttle [28]: "Flaming in Franconia: Build models, not logics.'''' Broadly speaking,

the problem statement is as follows: To develop a model capable of providing a semantic

basis for BAN-like logics, but which is essentially independent of any such logic itself.

In constructing a model in this chapter, we will attempt to isolate and formalize

the semantics of some of the notions found in existing logics, without appealing too

closely to the logical formalisms themselves. In the next chapter, we will devise a logic

based on the model constructed here.

4.1 Informal groundwork

We begin by reviewing some of the notions which form the mainstay of existing models

for BAN-like logics, namely the models due to Abadi and Tuttle [8], Syverson and

van Oorschot [9], and Wedel and Kessler [10]. Our intention is to highlight some of

the problems that arise in defining such notions semantically and to lay down some

groundwork for the model which we will construct in the next section.

As in existing works, we are interested in modeling a system of communicating,

message-passing principals. W e assume that principals can perform some actions;

for convenience we divide the class of actions into two: communication actions, and

message-construction actions. For example: (1) The actions of sending and receiving

a message belong to the former class; (2) The action of constructing a constant term

such as the name of a principal belongs to the latter class.

The notions which are central to our model are those that associate various sets of

messages with principals: possessed messages, seen messages, and said messages.

53

4.1. Informal groundwork 54

4.1.1 Possessed messages

The notion of possessed messages essentially reflects the following intuition: (1) if a

principal P receives or constructs a message X, then X is possessed by P; (2) any

message that can be possibly computed by P from P's possessed messages is also

possessed by P. Motivated by the above intuition, we can proceed to construct a

definition for the set of P's possessed messages as follows: we form the set of all the

messages which P receives or constructs and close this set off under the operations

that are available to P within the system. W e make the assumption that the available

operations include: keyed encryption function E_(-), keyed hashing function H_(-), and

concatenation function _ | • • • | _. To continue the previous definition we can require, for

example, that if a message X and a key K are in the set of P's possessions, then so is

the message EK(X); of course, this also implies that so are the messages EK(EK(X)),

EK(FK(EK(X))), However, the unbounded nature of this definition makes the set

of P's possessed messages infinite; this means potentially all messages are possessed

by P. Furthermore, it introduces arbitrary messages, which does not seem necessary

for reasoning about messages that are actually constructed within the system. As in

existing approaches, we fix the set of P's possessed messages for each time t, but we

do not allow this set to be infinite in our model. W e will employ a limited notion of

possession, which works as follows. In defining the set of possessed messages for a given

time t, we restrict the closure operation to admit only those messages which occur in

the system at that time. Intuitively, a message occurs at time t, if it was constructed

by any principal at a time earlier than t. A characteristic property of the resulting

definition is that the set of possessed messages is finite. As we shall see in the next

section, our definition also has many other interesting properties which appear quite

natural.

The notion of a message being constructed in the system also enables us to formulate

the assumption that 'accidents' do not happen. That is, we treat what is highly

improbable as impossible: we shall assume that a message can be constructed in the

system in only one way. For example, if a message is constructed as an encryption

then our assumption guarantees that the same message cannot be constructed as a

concatenation. As another example, if a message is constructed as an encryption of X

using K, then the same message cannot be constructed as an encryption of X' using

K', unless X = X' and K = K'. The assumption which rules out chance equality

between messages is crucial for our definitions to make sense. For example, one part

of the closure operation that we will use in defining P's set of possessed messages at

4.1. Informal groundwork 55

time t roughly captures the following statement:

(*) if a message Y is in this set and Y = EK(X) for some K, X such that AT"1 is

also in this set, then so is X, provided that some principal has encrypted X using

K, and thus constructed EK(X), at a time earlier than t.

Essentially, it is by virtue of the assumption which says that messages can be con­

structed in only one way that we can fix X as intended in the above statement. Of

course, this assumption cannot hold with certainty in the real world. However, it

simply reflects an idealization and is not unrealistic to make for our purposes.

The statement (*) above reflects an example of how we capture decryptions in the

model. The role of deconcatenations is captured similarly; we will give an example of

this below.

4.1.2 Seen messages

The notion of seen messages is somewhat more restrictive than that of possessed mes­

sages. It essentially reflects what messages can be extracted by a principal from the

messages it receives: (1) if a principal P receives a message X, then X is seen by

P; (2) any message that can be possibly extracted from P's seen messages, perhaps

using keys possessed by P, is also seen by P. The idea behind (2) is expanded as

follows: (2') if a message Y is seen by P and Y — EK(X) for some X, K such that

K~l is possessed by P, then X is seen by P; and (2") if a message Y is seen by P and

Y = Xi | • • • | Xk for some Xx,..., Xk, then P's seen messages include X{ for all i. As

with the set of P's possessed messages, we fix the set of P's seen messages for each

time t. The closure operation that we will use in defining the set of P's seen messages

at time t has essentially the following two properties:

(**) if a message Y is in this set and Y = EK(X) for some X, K such that K~x is

in the set of P's possessed messages at time t, then X is in the set of P's seen

messages at time t, provided that some principal has encrypted X using K, and

thus constructed EK(X), at a time earlier than t, and

(***) if a message Y is in this set and Y = Xi \ • • • \ Xk for some Xx,..., Xk, then so

are Xx,..., Xk, provided that some principal has concatenated Xx,..., Xk, and

thus constructed Xx \ • • • | Xk, at a time earlier than t.

Again our assumption which says that messages can be constructed in only one way is

crucial to the intended meaning of the statements (**) and (***) above. Notice that

(**) shows an example of how we capture deconcatenations in the model.

4.2. A computational model of communicating principals

4.1.3 Said messages

The notion of said messages essentially reflects the following intuition: (1) if a principal

P sends a message X, then X is said by P; (2) if X is said by P, then so are the

messages from which X was immediately constructed, if those messages are possessed

by P. Intuitively, if X is a message then the messages from which X was immediately

constructed are those messages that allow X to be obtained as the output of a single

message-construction action. For example, to construct an encrypted message EK(X)

the immediate messages that are needed are X and K. W e emphasize that the notion

of 'immediate messages' is not inductive in nature: in the previous example X could

itself have been constructed as an encrypted message EK'(X'); however, X' and K'

are not amongst the immediate messages from which EK(X) was constructed. In our

model, we will fix the set of P's said messages for each time t. To define the set of said

messages along the above lines, we need to capture the notion of immediate messages.

This is done simply in terms of the notion of a message being constructed in the system.

For example, one part of the closure operation that we will use in defining P's set of

said messages at time t roughly captures the following statement:

(f) if a message Y is in this set and Y = EK(X) for some X, K such that X and

K are in the set of P's possessed messages at time t, then X and K are in the

set of P's said messages at time t, provided that some principal has encrypted X

using K, and thus constructed EK(X), at a time earlier than t.

4.2 A computational model of communicating prin­

cipals

Let E be a finite alphabet, and let M — E* be the set of all messages. For simplicity,

we take E = {0,1}; the set M. then consists of all binary strings of finite length. Let a

finite set of principal names V C M be fixed; henceforth we always refer to principal

names simply as principals. Let a set of nonces J\f C Ai be fixed. Let the set of

all possible keys K C M be fixed. For each key K £ K,, we assume a one-to-one

function EK '• M —> M is fixed, which we call a keyed encryption function. Assume

a set /C_1 C M is fixed along with a one-to-one onto function -1 : /C —> /C-1. For

each K £ K, we assume a non-invertible function EK - M ->• M is fixed, which we

call a keyed hash function. For each natural number m > 1, we use the symbol | to

represent m-fold concatenation function over E*. If Xx,..., Xm £ M, we usually write

56

4.2. A computational model of communicating principals 57

\m(Xx,.. .,Xm) as Xx | • • • | Xm.

Informally, for each K £ K we use the value K~x to stand for the property that the

inverse function of EK is accessible. The difficulty of decrypting a message encrypted

under K without the knowledge of K'1 will be captured by the way we define certain

sets of messages in the model later. The collision-free property of keyed hash functions

will be captured as part of a restriction we will make on our model later.

W e assume that there is a global notion of time which is linear and discrete; for

convenience we think of time as ranging over the set of all integers Z. W e call our finite

collection V of principals a system (of principals). The actions a principal can perform

are defined by the following:

1. generate(m): This corresponds to generating a primitive term m.

2. send(m): This corresponds to sending a message m.

3. receive(m): This corresponds to receiving a message rn.

A. encrypt(m,k), and hash(m,k): These correspond to encrypting, and keyed hash­

ing, respectively, of a message m using key k.

5. concatenate(mx,..., mk): This corresponds to concatenating messages mx,..., mk.

W e assume that at a given time a principal can perform at most one of the above

actions. W e also include a null action, denoted null, assumed to be performed precisely

when none of the above actions is performed.

Fix a system: V = {Pi,P2,..., Pn} for some positive integer n. Intuitively, the

notion of a run of the system describes an execution of the system over time. W e shall

characterize a run r of the system by means of the following components: (1) a time

f̂irst(r)> calle(i the start time for r, at which execution is assumed to begin; (2) for

each i, a sequence h(Pi,r), called the total history of Pi in r, which describes all the

actions Pi performs in r.

Definition 4.1 A runr of the system is a tuple (t^TS^(r),h(Px,r),... ,h(Pn,r)), where:

L hTst(r) € Z> a n d

2. for each i, h(Pi, r) is the union of the sequences h(Pi,r, ̂ first(
r))) h(P{, r, £first(

r) +

1), ..., which are determined as follows:

0 if * = *flrst(r)

h(Pi, r, t — 1) • a if t > tfirst(
r) a nd a is the action

performed by Pi at time t — 1.

h(Pi,r,t) =

\

4.2. A computational model of communicating principals 58

It is convenient to call the sequence h(Pi,r,t), for each i, the partial history of Pi at

t in r. W e emphasize that h(Pi,r,t) includes all actions Pi has performed in r up to,

but not including, time t.

Let a principal P and a run r of the system be fixed. The key component of the

model consists of the definition of several message sets. For convenience we define some

auxiliary sets first.

Definition 4.2 Let a denote the action P performs at time t in r.

(a) Sgenr(P,r,t) =

ifX\ if a = receive(X)

0 otherwise

{X} if a = generate(X)

0 otherwise

(c) Sposs(P,r,t) = <

{X} if a = generate(X) or a = receive(X)

{EK(X)} if a = encrypt(X, K)

{HK(X)} \{a = hash(X,K)

{(Ai | • • • | Xk)} if a = concatenate(Xx,... ,Xk)

0 otherwise

\X\ if a — send(X)

(d) Ssaid(P,r,t) = { \ i .
1 0 otherwise

The following lemma is easily proved from Definition 4.2.

Lemma 4.1

(a) Sgenr(P,r,t) C Sposs(P>r,t);

(b) Srecv(P,r,t) C Sposs(P,r,t).

In preparation for the lengthy definition that will follow, we begin by discussing

informally some of the sets to be defined there. For each time t, we will define the fol­

lowing message sets: Mgenr(P,r,t), Mrecv(P,r,t), Mposs(P,r,t), Mseen(P,r,t), and

Msaid(P,r,t). Informally, the set Mgenr(P,r,t) (respectively, Mrecv(P,r,t)) consists

of all the messages P produces by means of the generate^) (respectively, receive^))

action at any time in r up to, but not including, time t. In other words, for all X:

(1) X £ Mgenr(P,r,t) iff generate(X) appears in h(P,r,t); (2) X £ Mrecv(P,r,t) iff

receive(X) appears in h(P,r,t). The sets Mposs(P,r,t), Mseen(P,r,t), and Msaid(P,r,t)

are meant to model the intuitive notions of possessed messages, seen messages, and said

4.2. A computational model of communicating principals 59

messages, respectively. As discussed in the previous section, in defining these sets we

shall use the idea of a message 'occurring in the system'. Certain sets of tuples are

useful for capturing this idea: €(P,r,t), U(P,r,t), and C(P,r,t). The set £(P,r,t)

(respectively, li(P,r,t)) consists of 2-tuples corresponding to message-key pairs; the

set C(P,r,t) consists of m-tuples of messages for various natural numbers ra > 1.

Informally, we use the set €(P,r,t) to record all the pairs (X, K) such that P has

performed the action encrypt(X, K) at any time in r up to, but not including, time t;

and similarly for the sets %(P,r,t) and C(P,r,t), respectively. Notice that the union

of the sets £(Pj, r, t) for all i identifies all encryptions that are constructed by any prin­

cipal in r at any time earlier than t; and similarly for hashes and concatenations. For

convenience we introduce the following additional sets to denote the respective unions:

£ M) = U?=iW,r,t), H(r,t) = [£=xH(Pi,r,t), and C(r,t) = {fl=xC(Pi,r,t).

To formulate the assumption that messages can be constructed in only one way, we

distinguish sets of messages occurring in the system according to the type of action

which gave rise to them. For example, we will define the set M.genr(r,t) as the set

containing all the messages constructed by means of the generateQ action by any

principal at any time in r up to, but not including, time t; and similarly the sets

Mencr(r,t), -A^hashkri^)-> a n d -M concO", t) for encrypted, hashed and concatenated

messages, respectively. The desired assumption is then stated in two parts: one part

which says that the above sets are pairwise disjoint; another part which says that

P_(_) and H_(J) (respectively, _ | • • • | _) are one-to-one functions when restricted to

those message-key pairs (respectively, message-tuples) which occur in the system.

W e will make use of the sets S(r,t), %(r,t), and C(r,t) in defining the closure

operation that determines the set Mposs(P, r, t). For example, suppose that a message

X and a key K are in this set. Then our definition implies that so is the encrypted

message EK(X), but only if (X, K) £ S(r,t), i.e. if the encrypted message already

occurs in the system at time t in r. The sets MSeen(P,r,t), and Msaid(P,r,t) will

also be defined along similar lines.

The following definition brings together the above discussion and is central to our

model. It proceeds in two parts: Each of the above sets is defined to be empty at

t = ifirst(r)- Then assuming all sets are defined at all times up to and including t-1,

we define them at t. In parallel with these definitions, we restrict the actions that can

be performed at a given time.

4.2. A computational model of communicating principals 60

Definition 4.3

1. Let t = tfast(r).

(i) Mgenr(P,r,t) = A4recu(P,r,i) = 0

(ii) S(P, r, t) = U(P, r, t) = C(P, r, t) = 0

(iii) S(r,t) = U(r,t) = C(r,t) = ®

(iv) Mgenr(r,t) = Mencr(r,t) = -M/,05/,(r,t) = A4COnc(r,t) = 0

(v) M p o 4 P , r , t) = Mseen(P,r,t) = A4 s aid(^W) = 0

REO. The only action permitted is the generate() action.

2. Let t > tfirst(r).

(i) Mgenr(P,r,t) = A45enr(P,r,t - 1) U Sgenr(P,r,t - 1)

(ii) A4rect;(P,r,t) = Mrecv(P,r,t - 1) U Srecv(P,r,t - 1)

(iii) £(P,r,t) = £(P,r,t-l)U5, where

{(X, A")} if P performs encrypt(X, K) at time t - 1
S= <

0 otherwise

(iv) ft(P,r,i) = ft(P,r,*-l)U5,where

{(X, K)} if P performs hash(X, K) at time t - 1

otherwise

(v) C(P, r, t) = C(P, r, t - 1) U S, where

{(Xx,..., Xk)} if P performs concatenate(Xx,..., Xk) at

5 = time i — 1

otherwise

4.2. A computational model of communicating principals 61

(vi) S(r,t) = \JS(Pi,r,t)
i-i

(vii) rl(r,t) = \JU(Pi,r,t)
i=i

n

(viii) C(r,t)= \JC(Pi,r,t)
»=i

RE1. (a) If (X,K),(X',K') £ S(r,t) and EK(X) = EK,(X'), then X = X' and

K = K'.

(b) If (X, K), (X', K') £ ri(r, t) and HK(X) = HK,(X'), then X = X' and

K = K'.

(c) If(Xx,...,Xk),(X'x,...,X'k,)£C(r,t)andXx\---\Xk = X'x\---\X'k,,

then k = k' and Ai = X'i, ..., Xk = X'k>.

(ix) Mgenr(r,t) = |J A4^enr(Pi,r,t)
i=l

(x) AWr(M) = {£*(X) | (X, #) € £(r,i)}

(xi) Mhash(r,t) = {HK(X) | (X, tf) e tt(r,i)}

(xii) A4«mc(r,t) = {(Xx \ • • • \ Xk) \ (Xx, ...,Xk)£ C(r,t)}

RE2. The sets Mgenr(r,t), Mencr(r,t), Mhash(r,t), and Mconc(r,t) are pair-

wise disjoint.

(xiii) Mposs(P, r, t) is the smallest set of messages such that:

I. (Basis)

Mposs(P, r, t - 1) U SpoSs(P, r, t - 1) C A4poSS(P, r, t)

4.2. A computational model of communicating principals 62

II. (Induction)

(a)

(b)

(c)

(d)

(e)

EK(X) £ Mposs(P,r

HK(X) £ Mp0SS(P,r

,0

• . *)

Xi \---\Xk£Mposs(P,r,t)

X £ Mp0ss(P,r,t)

Xi £ Mposs(P,r,t)

if X,K £MPoss(P,r,t) and

(X,K)£S(r,t)

if X, K £ MpOSS(P, r, t) and

(X,K)£U(r,t)

if Xx,...,Xk£MPoss(P,r,t)

and(Xi,...,Xfc)GC(r,t)

if^(X),A'-1€^oss(P,r,t)

and (X, AT) e £(r, <)

ifXi |---|Xfc€Mpo5S(P,r,*)

and(Xi,...,Xfc)GC(r,t)

(xiv) M. seen(P*\t) is the smallest set of messages such that:

I. (Basis)

Mseen(P, r, t - 1) U <SreCt;(P, r, t - 1) C A4seen(P, r, t)

II. (Induction)

(a) X € A4seen(P,r,t) if EK(X) £ Mseen(P,r,t) and

(X,K) £ E(r,t) and A^"1 £ MPoss(P,r,t)

(b) Xi € Mseen(P, r,t) if Xx \ • • • \ Xk £ Mseen(P, r, t) and

(Xi,...,Xfc)GC(r,i)

(xv) Msaid(P,r,t) is the smallest set of messages such that:

I. (Basis)

Msaid(P, r, t - 1) U <SsmW(P, r, t - 1) C A W P , r, t)

II. (Induction)

(a) X, A- £ Msaid(P, r, t) if EK(X) £ Msaid(P, r, t) and

(X, K) £ £(r, t) and X,K £ MpoSs(P, r, t)

(b) X, /if € Msaid(P, r, t) if P^(X) £ Msaid(P, r, t) and

(X, K) £ U(r, t) and X,K £ MpoSs(P, r, t)

(c) Xi £ Msaid(P,r,t) if Xi | • • • | Xk £ Msaid(P,r, t) and

(Xi,...,X,)GC(r,t)

4.2. A computational model of communicating principals 63

RE3. If P performs receive(X) at t, then there exists a principal Q which performs

send(X) at some t' < t.

RE4. If P performs send(X) at t, then X G A4p0ss(-P,r,t).

RE5. If P performs encrypt(X, K) or hash(X, K) at t, then X, AT G Mposs(P, r, t).

RE6. If P performs concatenate^,..., Xfc) at t, then Xi,..., X*, € A4p0ss(P, r, t).

(This completes Definition 4.3.)

The following lemmas are easily proved from Definition 4.3.

Lemma 4.2 For all t,t' such that t <t' the following holds:

(a) Mgenr(P,r,t) C Mgenr(P,r,t');

(b) Mrecv(P,r,t) C Mrecu(P,r,t');

fcj £(P,r,t)C£(P,r,t');

(d) H(P,r,t)CH(P,r,t');

(e) C(P,r,t)CC(P,r,t');

if) MpoSS(P,r,t) C XpossCP.r,*');

faj -Mseen(P,r,t) C A4seen(/W);

Lemma 4.3 For all t, t' such that t < t' the following holds:

(a) £(r,t)C£(r,t');

(b) H(r,t)CH(r,t');

(c) C(r,t)QC(r,t').

Lemma 4.4 For each time t, the following sets are finite:

(a) Mgenr(P,r,t), and Mrecv(P,r,t);

4.2. A computational model of communicating principals 64

(b) £(P,r,t), H(P,r,t), andC(P,r,t).

We will later prove the finiteness property for the sets Mposs(P,r,t), M.seen(P-,r->~k)-,

andA4sajd(P,r,t).

Lemma 4.5 For each time t, the following sets are finite:

£(r,t),U(r,t), andC(r,t).

Lemma 4.6 For all t, t' such that t < t' the following holds:

(a) Mgenr(r,t) C Mgenr(r,t');

(b) Mencr(r,t) C Mencr(r, t');

(c) Mhash(r,t)QMhash(r,t');

(d) Meanest) Q MConc(r,t').

Lemma 4.7 For each time t, the following sets are finite:

Mgenr(r, t),Mencr(r,t),Mhash(r,t), and Mconc(r, t).

Lemma 4.8

(a) If (X, K) £ £(P, r, t) then X, K £ MPoss(P, r, t - 1).

(b) If(X,K) £ n(P,r,t) then X, K £ Mposs(P,r,t - 1).

(c) If(Xx,... ,Xfc) G C(P,r,t) then Xx,...,Xk£ MPoss(P,r,t- 1).

Proof. (By induction on t.) We only prove part (a); the remaining parts are proved

similarly.

1. (Basis) Let t = tfirst(r). By definition 4.3, £(P,r,t^Tst(r)) = 0. Therefore, the

required statement holds vacuously.

2. (Induction) Let t > tfirst(r) be arbitrary. W e assume the inductive hypothesis:

if (X,K) £ £(P,r,t) then X,K £ Mposs(P,r,t - 1); and we show this implies

that, if (X,K) £ £(P,r,t + 1) then X, K £ Mposs(P,r,t).

Suppose (X, K) £ £(P, r, t +1). By definition 4.3 we need to consider the follow­

ing two cases:

4.2. A computational model of communicating principals 65

Case (A): (X, K) £ £(P, r, t). The inductive hypothesis yields X, K £ MpOSS(P, r, t -

1). By L e m m a 4.2(f) it follows that X, K £ Mp0ss(P,r,t).

Case (B): P performs encrypt(X,K) at t. RE5 yields X,K £ MpoSs(P,r,t).

(This completes the proof of Lemma 4.8.) D

In the sequel, we shall make use of a proof technique which is vital to proving

properties of the following inductively defined sets: Mp0ss(P, r, t), MSeen(P, r, t), and

Msaid(P, r, t). It suffices to explain this technique in context of the set Mp0ss(P, r, t),

since it works similarly in other contexts. Essentially, the technique works as follows.

W e construct a sequence of sets Mp0SS(P,r,t) for i = 0,1,2,..., with the following

property: (1) the first set in the sequence is the basis set for A4poss(P, r, t), and (2) each

of the remaining sets in the sequence is the union of the set which immediately precedes

it and the set obtained from the preceding set by applying the closure operation exactly

once. The point of the above construction is now obvious: for proving that a particular

statement holds for J^iposs(P-,f^)i w e use induction on i to show that it holds for all

sets Mposs(P,r,t).

Definition 4.4 Let i > 0.

1. Let t = *first(r). Then AA
i
poss(P,r,t) = 0 for all i.

2. Let t > tfirst(r). Then

Mposs(P,r,t) = <

where

Mposs(P, r, t - 1) U Sposs{P, r,t-l) if i = 0

{ M#ss(P,r,t)US if»>0

S = {EK(X) \X,K£ Mp-Jss(P, r, t) and (X, K) £ £(r, t)}

U{HK(X) \X,K£ Mlp-Jss(P,r,t) and (X,K) £ U(r,t)}

U{(Xi|---|X,)|Xi,...,X,G^-yP,r,t)and(Xi,...,Xfc)GC(r,t)}

U { X | EK(X),K~
l £ A4J70yP,r,t) and (X,K) £ £(f,t)}

U {X{ | (Xi | • • • | X,) G A4J7oyP,r,t) and (Xx,...,Xk)£ C(r,t)}.

The following lemma is easily proved from Definition 4.3 and Definition 4.4.

4.2. A computational model of communicating principals 66

Lemma 4.9
00

Mposs(P,r,t) C Mposs(P,r,t) C • • • C |J Af^^r,*) = A^P,,-,*)
i=0

L e m m a 4.10

Mgenr(P,r,t) C A4p0ss(P, r, t)

Proof. By induction on t:

1. (Basis) Let t = t^rst(r). By definition 4.3,

A4&enr(P,r,tfirst(r)) = Mp0SS(P,r,tfast(r)) = 0.

Therefore, the required statement holds.

2. (Induction) Let t > tj[vst(r) be arbitrary. W e assume the inductive hypothesis:

Mgenr(P,r,t) C A4p0ss(-P,^,t); and we show this implies Mgenr(P,r,t + 1) C

MpoSS(P,r,t + l).

From Lemma 4.1(a) and the inductive hypothesis it follows that M.genr(P, r, t) U

Sgenr(P,r, t) C A4poss(P, r, t) U Sposs(P,r,t). By definition 4.3, Af oenr(P, r, t +

1) = Mgenr(P,r,t) U Sgenr(P,r,t), and, by definition 4.4, A4°OS5(P,r,t + 1) =

A4poss(P, r, t) U 5poss(P, r, t). Hence Mgenr(P, r, t + 1) C A4£0SS(P, r, t + 1). By

Lemma 4.9 it follows that Mgenr(P, r,t -\-1) C Mposs(P, r,t + 1).

(This completes the proof of Lemma 4.10.) •

Lemma 4.11

A4poss(P,r,t) C Mgenr(r,t) U A4encr(r,t) U Mhash(r,t) U A4COnc(r,t)

Proof. By induction on t:

1. (Basis) Let t = tj[TSt(r). By definition 4.3, Mposs(P,r,tfiTSt(r)) = 0 and

Mgenr(r,tfost(r))UMencr(r,tfast(r))UMhash(r,t^

0. Therefore, the required statement holds.

2. (Induction) Let t > t^rst(r) be arbitrary. W e assume the inductive hypothesis:

(HP1) for all t' < t, Mposs(P, r, t') C Mgenr(r, t') UMencr(r, t') U Mhash(r, t') U

A4Conc(^,t'); and we show this implies Mp0ss(P,r,t) C A4oenr(^,t)UA4encr(^0
u

^/>as/>M)U^conc(r,t).

By Lemma 4.9 it suffices to show that, for all Y and for all m, if Y £ Mp0SS(P, r, t)

then Y £ Mgenr(r,t) U Mencr(r,t) U A i / ^ ^ t) U AfConc(r,t). This assertion

is shown using induction on m:

4.2. A computational model of communicating principals 67

I. (Basis) Let m = 0. Suppose Y £ Mp0SS(P,r,t). By definition 4.4, Y £

MpOSS(P, r, t - 1) U Sposs(P, r,t-l).

Case (i): Y £ Mposs(P,r,t-l). HP1 yields Y £ Mgenr(r,t - 1) U Mencr(r,t -

1) U Mhos^t - 1) U MConc(r,t - 1). By Lemma 4.6 it follows that

Y £ Mgenr(r,t) U AWr(r,t) U Af j,fl5j,(r,t) U AtConc(r,t).

Case(ii): Y G <5poss(P,r,t - 1).

Case (A): P performs generate(Y) at t — 1.

By definition 4.3, Y G Mgenr(r,t).

Case (B): P performs receiue(Y) at t — 1.

RE3 yields: there exists a Q which performs send(Y) at some

time t' < t - 1. RE4 yields Y G A*poss(Q,r,*'). HP1 yields

Y G A4oenr(r,t') U A W r (M ') U Mhash(r,t') U A U n c M ') - By

Lemma 4.6 it follows that Y G A4oenr(^i)
!UAlencr(r,t)UA</ia5/l(r,t)U

A4Conc(r,t).

Case (C): P performs encrypt(X, K) at t - 1 for some X and some K, where

Y = EK(X).
By definition 4.3, P#(X) £ Mencr(r,t). Hence Y G Mencr(r,t).

Case (D): P performs hash(X,K) at t - 1 for some X and some K, where

Y = HK(X).

Similar to Case (C).

Case (E): P performs concatenate(Xx,... ,Xfc) at t - 1 for some Xi,... ,Xfc,

where Y = Xi | • • • | Xk.

Similar to Case (C).

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis:

(HP2) for all Y, if Y G A4™0SS(P,r,t) then Y G Mgenr(r,t) U A4encr(r,t) U

Mhash(r,t) U A4Conc(r,t); and we show this implies that, for all Y, if

Y G M^8(P,r,t) then Y G Mgenr(r,t) U A W r (M) U Mhash(r,t) U

A4Conc(r,t).

Suppose Y G A*35&(P,r,t). By definition 4.4,

YGA^0SS(P,r,t)

U { E K (X) | X,K £ M^0SS(P,r,t) and (X,K) G £(r,t)}

U { # K (X) 1 X, A" G A4^0SS(P,r,t) and (X,K) £ H(r,t)}

U{(Xi | ••• | Xk) | Xi,...,Xfc G A4>*(P,r,t) and (Xi,... ,Xfc) G C(r,t)}

4.2. A computational model of communicating principals 68

U {X | EK(X), K-
1 £ M™0SS(P,r,t) and (X,K) £ £(r,t)}

U{X{ | (Xi | ... | Xk) £ M™0SS(P,r,t) and (Xu... ,Xk) £ C(r,t)}.

Case (A): Y G M™oss(P,r,t). HP2 yields Y G Mgenr(r,t) U Mencr(r,t) U

Mhash(r,t)UMconc(r,t).

Case (B): Y G {£x(X) \X,K£ M™0SS(P,r,t) and (X, A) G £(r,t)}.

We have Y = EK(X) for some X and some K such that (X, A") G

£(r,t). By definition 4.3, Ejr(X) G Mencr(r,t). HenceY G Mencr(r,t).

Case (C): Y G {#A-(X) | X, A G A4^oss(P,r,t) and (X,K) £ U(r,t)}.

Similar to Case (B).

Case (D): Y G {(Xx \ • • • | Xk) \ Xx,...,Xk £ M™0SS(P,r,t) and (Xi,...,Xfc) G

C(r,t)}.

Similar to Case (B).

Case (E): Y G {X | EK(X),K~
1 £ M^oss(P,r,t) and (X,K) £ £(r,t)}.

We have (Y,AT) G £(r,t) for some K. By definition 4.3, (Y,K) £

£(Q,r,t) for some Q. By Lemma 4.8(a), Y,K £ Mp0ss(Q,r,t - 1).

HP1 yields Y G Mgenr(r,t - 1) U A4encr(r,t - 1) U Mhash(r,t - 1) U

A4Conc(r,t - 1). By Lemma 4.6 it follows that Y G Mgenr(r,t) U

A4 encr(r, t) U A4 /^(r, t) U Af COnc(r, t).

Case (F): Y G {X; | (Xx | • • • | X,) G A4^0SS(P, r, t) and (Xl5..., X,) G C(r, t)}.

Similar to Case (E).

(This completes the proof of Lemma 4.11.)

•

Lemma 4.12

(a) Let (X,K) £ £(r,t). If EK(X) £ MPoss(P,r,t') for some P and for some t' < t,

then(X,K) ££(r,t').

(b) Let (X,K) £ U(r,t). If HK(X) £ MpoSs(P,r,t') for some P and for some

t' <t, then(X,K)£H(r,t').

(c) Let (Xu...,Xk)£ C(r, t). If Xx \ • • • \ Xk £ MPoss(P, r, t') for some P and for

some t' < t, then (Xt,...,Xk)£ C(r,t').

Proof. We only prove part (a); the remaining parts are proved similarly. We have

(X, K) £ £(r, t). Suppose EK(X) £ Mposs(P, r, t') for some P and for some t' < t. By

4.2. A computational model of communicating principals 69

definition 4.3, EK(X) £ Mencr(r,t). RE2 yields EK(X) $ Mgenr(r,t)UMhash(r,t)U

Mconc(r,t). By Lemma 4.6 it follows that EK(X) <£ Mgenr(r,t') U Mhash(r,t') U

Mconc(r,t'). Since EK(X) £ Mp0Ss(P,r,t'), it follows by Lemma 4.11 that EK(X) £

Mgenr(r,t')UMencr(r,t')UMhash(r,t')UMConc(r,t'). Hence EK(X) £ Mencr(r,t').

By definition 4.3, EK(X) = EK,(X') for some (X',K') £ £(r,t'). We have t > t'.

By Lemma 4.6 it follows that (X',K') £ £(r,t). RE1 yields X = X' and K = K'.

Therefore, (X,K) £ £(r,t'). •

Lemma 4.13

(a) IfX,K £ MPoss(P,r,t) and (X,K) £ £(r,t), then EK(X) £ Mposs(P,r,t).

(b) IfX,K £ Mposs(P,r,t) and (X,K) £ H(r,t), then HK(X) £ Mposs(P,r,t).

(c) If Xi,...,Xk £ Mp0SS(P,r,t) and (Xx,...,Xk) £ C(r,t), then Xx \ • • • | Xk £

Mposs(P,r,t).

(d) IfEK(X),K~
1 £ Mp0Ss(P,r,t) for some (X,K) £ £(r,t), then X £ Mp0Ss(P,r,t).

(e) IfXi | ••• \ Xk £ MpoSs(P,r,t) for some (Xx,... ,Xk) £ C(r,t), then Xx,... ,Xk £

MpoSs(P,r,t).

Proof. W e only prove part (a); the remaining parts are proved similarly. Sup­

pose X, K £ MPoss(P,r,t) and (X, A') £ £(r,t). By Lemma 4.9 it suffices to show

that EK(X) £ Mposs(P,r,t) for some /. Since X,K £ Mp0Ss(P,r,t), it follows by

Lemma 4.9 that X, K £ M^0SS(P, r, t) for some m. By definition 4.4, A4^"/S(P, r, t) D

{EK(X) \X,K£ M™0SS(P,r,t) and (X,K) £ £(r,t)}. Hence EK(X) £ M™£s(P,r,t).

•

Definition 4.5 Let i > 0.

1. Let t = tfiTst(r). Then Mseen(P,r,t) = 0 for all *.

2. Let t > tfixst(r)- Then

Mseen(P,r,t)

where

S =

Mseen(P,r,t - 1) U Srecv(P,r, t - 1) if i = 0

Mi&n(P,r,t)\JS if:>0

{X | EK(X) £ M.
{£en(P,r,t) and K~

x £ MPoss(P,r,t) and (X,K) £ £(r,t)}

U {Xi | (Xx | • • • | X,) G M^en(P,r,t) and (Xx,... ,Xk) £ C(r,t)}.

4.2. A computational model of communicating principals 70

The following lemma is easily proved from Definition 4.3 and Definition 4.5.

Lemma 4.14

oo

M°seen(P,r,t) C M\een(P,r,i) C • • • C (J A4Jseen(P,r,t) = MSeen(P,r,t)

i=0

Lemma 4.15

MreCv(P,r,t) C MSeen(P,r,t)

Proof. By induction on t:

1. (Basis) Let t = t^rst(r). By definition 4.3,

Mrecv(P,r,tfast(r)) = Mseen(P,r, tfirst(r)) = 0.

Therefore, the required statement holds.

2. (Induction) Let t > tfirst(r) be arbitrary. W e assume the inductive hypothesis:

Mrecv(P,r,t) C A4Seen(^,r,t); and we show this implies Mrecv(P,r,t + 1) C

Afseen(P,r,t+l).

By the inductive hypothesis it follows that

A4reci;(P, r, t) U ^^^(P, r, t) C A4seen(i
3, r, i) U Srect;(P, r> *)•

By definition 4.3, AWt>(jP, r, t+1) = A4rect;(^, r, t)USrecv(P, r, t), and, by defini­

tion 4.5, A4°een(P,r,t + l) = A4seen(^,r,t)U<WCP,r,*)- Hence Mrecv(P,r,t +

1) Q A<5een(^ r^ + 1)' B y L e m m a 4-14 ii; follows tnat Mrecv(P,r,t + 1) C

MSecn(P,r,<+l).

(This completes the proof of L e m m a 4.15.) D

Lemma 4.16

Mseen(P,r,t)C Mposs(P,r,t)

Proof. By induction on t:

1. (Basis) Let t = tfirst(r). By definition 4.3,

A4seen(P,r,tfirst(r)) = A4p0SS(P,r,tfirst(r)) = 0.

Therefore, the required statement holds.

4.2. A computational model of communicating principals 71

2. (Induction) Let t > tfirs+(r) be arbitrary. We assume the inductive hypothesis:

(HP1) MSeen(P,r,t) C Mp0ss(P,r,t); and we show this implies MSeen(P,r,t-r-

l)QMp0ss(P,r,t + l).

By Lemma 4.14 it suffices to show that, for all m, M™een(P, r, t+1) C Mp0ss(P, r,1+

1). This assertion is shown using induction on m:

I. (Basis) Let m = 0. From Lemma4.1(b) and HP1 it follows that MSeen(P, r, t)U

Srecv(P,r,t) C A4poss(P,r,t)U<Sposs(P,r,t). By definition 4.5, A4°een(P,r,t+

1) = A45een(P,r,t) U SreCt;(P,r,*), and, by definition 4.4, Mp0SS(P,r,t +

1) = A^possCP.r^USpo^r,*). Hence A4°een(P,r, t+1) C A4°0SS(P,r,t+

1). By Lemma 4.9 it follows that M°seen(P,r,t + 1) C AV5S(P,r,t + 1).

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis:

(HP2) M^een(P,r,t + 1) C A4p0ss(iV,t + 1); and we show this implies

M%+ln(P,r,t + 1) C Mposs(P,r,t + 1).

It suffices to show that, for all Y, if Y G A ^ + ^ P ^ t + 1) then Y G

A4p0SS(P,r,t + 1). Suppose Y G A ^ n (^ M + l)- BY definition 4.5,

Y£M™een(P,r,t + l)

U {X | EK(X) £ M™een(P,r,t-r-1) and (X,K) £ £(r,t + 1) and

JT 1 eMposs(P,r,t + l)}

U {Xi | (Xi | • • • | Xk) £ M7een(P,r,t + 1) and (Xi,... ,Xk) £ C(r,t + 1)}.

Case (i): Y G A4™een(P,r,t -f 1). HP2 yields Y G MpoSs(P,r,t + 1).

Case (ii): Y G {X | £*(X) G M%een(P,r,t + 1) and (X,tf) G £(r,t + 1) and

AT"1 £ Mp0ss(P,r,t + l)}.

We have, for some K, EK(Y) £ M^een(P: r, t + 1), (Y, #) G £(r, t + 1),

and AT"1 G A4poS5(P,r,t + 1). HP2 yields EK(Y) £ MpoSs(P,r,t + 1).

By Lemma 4.13(d) it follows that Y G Mposs(P,r,t + 1).

Case (iii): Y G {X; | (Xi | • • • | Xk) £ M%een(P,r,t + 1) and (Xx,...,Xk) £

C(r,t + 1)}-

We have Y = Xi for some i and for some Xx \ • • • \ Xk £ M™een(P, r, t +

1) such that (Xi, ...,Xk) £ C(r,t + 1). HP2 yields Xx \ • • • | Xk £

Mposs(P,r,t + 1). By Lemma 4.13(e) it follows that Xi,...,Xfc G

Mpo88(P,r,t + 1). But Y = X{ for some i, so Y G A4p0s5(P,r,t + 1).

(This completes the proof of Lemma 4.16.) •

4.2. A computational model of communicating principals 72

Lemma 4.17 Let Y £ A4seen(P,r,t). Then

(a) ifY = EK(X) for some (X,K) £ £(r,t) and K~
l £ Mp0ss(P,r,t), then X £

MSeen(P,r,t), and

(b) ifY = Xx\---\Xk for some (Xx,...,Xk)£ C(r,t), then

Xx,...,Xk £ MSeen(P,r,t).

Proof. We only prove part (a); part (b) is proved similarly. Since Y G M.seen(P->r,t),

it follows by Lemma 4.14 that Y G M.™een(P,r,t) for some m. Suppose Y = EK(X)

for some (X, K) £ £(r, t), and further suppose K~l £ MPoss(P, r, t). By definition 4.5,

M&en(P,r,t) D {X | EK(X) £ M^een(P,r,t)and(X,K) £ £(r,t) and K~x £

Mposs(P,r,t)}. Hence X G M^n(P,r,t). By Lemma 4.14 it follows that X G

MSeen(P,r,t).

a

Definition 4.6 Let i > 0.

1. Let t = tfirst(r). Then A4^(P,r,t) = 0 for all i.

2. Let t > tfirst(r). Then

Ui (p ., = f Msaid(P, r, t - 1) U Ssaid(P, r,t-l) if i = 0

A ' W * ^ \^yp, r,t)U5 if^>o

where

5 =

{X, A^ | £tf(X) G M ^ P , r, t) and X, A G A4poss(P, r, t) and

(X,K)££(r,t)}

U {X, A^ | HK(X) £ M^id(P,r,t) and X,AT G A4poS*(P,r,t) and

(X,K)£U(r,t)}

U {Xi | (Xi | • • • | X,) G M^id(P,r,t) and (Xi,... ,Xk) £ C(r,t)}.

The following lemma is easily proved from Definition 4.3 and Definition 4.6.

Lemma 4.18 oo
M°said(P,r,t) C A4^(P,r,t) C • • • C U M

l
said(P,r,t) = A*Mirf(P,r,t)

i=0

4.2. A computational model of communicating principals 73

Lemma 4.19

Msaid(P,r,t)CMposs(P,r,t)

Proof. By induction on t:

1. (Basis) Let t = t^rst(r). By definition 4.3,

^Sa*d(Ar,tfirst(r)) = MPoss(P,r,t^Tst(r)) = 0.

Therefore, the required statement holds.

2. (Induction) Let t > t-^rst(r) be arbitrary. We assume the inductive hypothesis:

(HP1) Msaid(P,r,t) C Mposs(P,f,t); and we show this implies Msaid(P,r,t +

l)QMp0ss(P,r,t + l).

By Lemma 4.18, it suffices to show that, for all Y and for all rn, if Y G

Mm -JP,r,t + 1) then Y G Mposs(P,r,t + 1). This assertion is shown using

induction on m:

I. (Basis) Let m = 0. Suppose Y G M°said(P,r,t + 1). By definition 4.6,

Case (A): Y G Msaid(P,r,t). HP1 yields Y G A4p0ss(/>,t). By Lemma 4.2(f)

it follows that Y G Mp0ss(P,r,t + 1).

Case (B): Y G Ssaid(P,r,t). By definition 4.2, P performs send(Y) at t. RE4

yields Y G Mp0ss(P,r,t). By Lemma 4.2(f), Y G MpoSs(P,r,t + 1).

II. (Induction) Let m > 0 be arbitrary. W e assume the inductive hypothesis:

(HP2) for all Y, if Y G M™aid(P,r,t + 1) then Y £ Mp0ss(P^,t + 1);

and we show this implies that, for all Y, if Y G A4™+.^(P,r,t + 1) then

Y£MPoss(P,r,t + l).

Suppose Y G M™£d(P,r,t + 1). By definition 4.6,

y^BrfM+i)
U {X, AT | £*(X) G Mmsaid(P, r, t + 1) and X, # G A4p05S(P, r, t + 1) and

(X,AT)G£(r,t + l)}

U {X,K | #*(X) £ M7aid(P^^ + X) and X ' ^ G Mposs(P,r,t + 1) and

(X,A^)G^(r,t + l)}

U {Xi | (Xi | • • • | Xfc) G M™aid(P,r,t + 1) and (X1;... ,Xfc) G C(r,t + 1)}.

4.2. A computational model of communicating principals 74

Case (i): Y G M™aid(P, r, t + 1). HP2 yields Y G Mp0Ss(P, r, t + 1).

Case (ii): Y G {X, AT | P K(X) G A4™^(P,r,t + l) and X, X G A4p05S(P,r,t + l)

and(X,X)G£(r,t + l)}.

We have Y = X or Y = A for some X, A such that X, K £ Mp0ss(P, r, t+

1). Therefore, Y G Mposs(P,r,t + 1).

Case (iii): Y G {X, X | HK(X) £ M™aid(P,r,t-rl) and X, K £ Mposs(P,r,t + l)

and(X,X)G"H(r,t + l)}.

Similar to Case (ii).

Case(iv): Y G {X4- | (Xx | • • • | X,) G Af™ w(P,r,t + 1) and (Xx,... ,Xk) £

C(r,t + 1)}.

W e have Y = Xi for some i and for some Xx \ • • • \ Xk £ M™aid(P, r, t +

1) such that (Xi,...,Xfc) G C(r,t + 1). HP2 yields (Xi,...,X^) G

Mposs(P,r,t + 1). By Lemma 4.13(e) it follows that Xx,...,Xk £

Mp0ss(P,r,t + 1). But Y = Xt- for some t, so Y G Mp0ss(P,r,t + 1).

(This completes the proof of Lemma 4.19.) n

Lemma 4.20

(a) IfEK(X) £ Msaid(P,r,t) for some (X,K) £ £(r,t) such that X, K £ Mp0ss(P,r,t),

then X,K £ Msaid(P,r,t).

(b) IfHK(X) £ Msaid(P, r, t) for some (X, K) £ ri(r, i) such that X, K £ Mp0Ss{P, r, t),

t/ienX,XGA<said(P,r,t).

(c) IfXx | • • • | Xjfe G Msaid(P,r,t) for some (Xx, ...,Xk)£ C(r,t), then Xx,...,Xk£

Msaid(P,r,t).

Proof. We only prove part (a); the remaining parts are proved similarly. Suppose

EK(X) £ Msaid(P,r,t) for some (X, A) G £(r,t) such that X, K £ Mp0Ss(P,r,t).

By Lemma 4.18 it suffices to show that X,K £ Mlsaid(P,r,t) for some /. Since

EK(X) £ Msaid(P,r,t) it follows by Lemma 4.18 that EK(X) £ M™aid(P,r,t) for

some m. By definition 4.6, M^d(P,r,t) D {X,K | EK(X) £ Mmsaid(P,r,t) and

(X,K) £ £(r,t) and X, K £ Mposs(P,r,t)}. Hence X, X G A4J+^(P,r,t).

(This completes the proof of Lemma 4.20.) •

Proposition 4.1 For each time t, the following sets are finite:

4.2. A computational model of communicating principals 75

(a) MPoss(P,r,t);

(b) MSeen(P,r,t);

(c) Msaid(P,r,t).

Proof.

(a) Follows from Lemma 4.11 and Lemma 4.7.

(b) Follows from Lemma 4.16 and part (a).

(c) Follows from Lemma 4.19 and part (a).

D

The following corollary to Proposition 4.1 is easily proved.

Corollary 4.1 For each time t, the following holds:

(a) MPoss(P,r,t) = M
k
poss(P,r,t) for some k;

(b) MSeen(P,r,t) = M
k
seen(P,r,t) for some k;

(c) M8aid(P,r,t) = M
k
said(P,r,t) for some k;

Proposition 4.2

Let Y £ Afp05S(P, r, t) for some m, and suppose that Y G' A4.Seen(P,r,t).

(a) IfY = EK(X) for some (X,K) £ £(r,t), then X,K £ M^0SS(P,r,t).

(b) IfY = HK(X) for some (X,K) £ U(r,t), then X,K £ M™0SS(P,r,t).

(c) If Y = Xx | • • • | Xk for some (Xx, ...,Xk)£ C(r,t), then

Xx,...,Xk£M™0SS(P,r,t).

Proof. We prove parts (a), (b) and (c) simultaneously by induction on t:

1. (Basis) Let t = tfirst(r). By definition 4.4, Mposs(P,r,t) = 0 for all i. Therefore,

the required statement holds vacuously.

2. (Induction) Let t > tftrs+(r) be arbitrary. We assume the inductive hypothesis:

(HP1) for all m, if Y £ M^0SS(P,r,t) and Y £ Mseen(P,r,t) then

4.2. A computational model of communicating principals 76

(a) if Y = EK(X) for some (X, K) £ £(r, t) then X, K £ M™0SS(P, r, t), and

(b) if Y = HK(X) for some (X, K) £ U(r, t) then X, K £ Mp\>ss(P, r, t), and

(c) if Y = Xi | • • • | Xk for some (Xx, ...,Xk) £ C(r,t) then Xx,...,Xk £

M^oss(P,r,t).

We show the above hypothesis implies that, for all m, if Y £ Mposs(P,r,t + 1)

and Y g" MSeen(P, r, t + 1) then

(a) if Y = PK(X) for some (X, K) £ £(r, t +1) then X, X G M™0SS(P, r, t +1),

and

(b) if Y = #A'(X) for some (X, K) £ "H(r,t + 1) then X, X G Af™oss(P,r,t + l),

and

(c) if Y = Xi | • • • | Xk for some (Xl5... ,Xk) £ C(r,t + 1) then X1?... ,Xk £

M™0SS(P,r,t+l).

The above assertion is shown using induction on m:

I. (Basis) Let m = 0. Suppose Y G Mposs(P,r,t + l) and Y g" Afseen(P,r,t +

1). By definition 4.4, Y G A4poss(P,r,t) U Sposs(P,r,t).

Case (i): Y G MpoSs(P,r,t). By Lemma 4.9 it follows that Y G M™'oss(P,r,t)

for some m'.

Case (a): Y = £ K(X) for some (X,X) G £(r,t + 1).

By Lemma 4.12(a) it follows that (X,X) G £(r,t). Since Y g

A4Seen(-P, r, t+1), it follows by Lemma4.2(g) that Y g" A4seen(P,r, t).

HP1 yields X,X G M%oss(P,r,t). By Lemma 4.9 it follows that

X, X G MPoss(P, r, t). Hence, by definition 4.4, X, X £ Mposs(P, r, t+

1).

Case (b): Y = # K (X) for some (X, X) G U(r, t + 1).

Similar to Case (a).

Case (c): Y = Xx \ • • • \ Xk for some (Xl5..., X*) G C(r, t + 1).

Similar to Case (a).

Case(ii): Y G Sp0SS(P,r,t).

Case (a): Y = E*(X) for some (X, X) G £(r,f + 1).

By definition 4.3, EK(X) £ Mencr(r,t-\-l)- Hence Y G AWr(r,t+

!) •

4.2. A computational model of communicating principals 77

Case (A): P performs generate(Y) at t.

By definition 4.3, Y G Mgenr(r,t + 1), which is impossible by

RE2.

Case (B): P performs receive(Y) at t.

By definition 4.3, Y G Mseen(L\f',t + 1), which is impossible by

assumption.

Case (C): P performs encrypt(X', K') at t for some X' and some X', where

Y = £*,(*')•
RE5 yields X',X' G AVss(P,r,t). By definition 4.3, (X',X') G

£(r,t + 1). RE1 yields X = X' and K = K'. Hence X, X G

Mp0ss(P, r, t). Therefore, by definition 4.4, X, X G Mposs(P, r, t+

1).

Case (D): P performs hash(X',K') at t for some X' and some K', where

Y=# K'(X').

By definition 4.3, Y G M^^r^ + 1), which is impossible by

RE2.

Case (E): P performs concatenate(X[,... ,X'k) at t for some X'1,...,X'k,

where Y = X{ | • • • | X'k.

Similar to Case (D).

Case (b): Y = HK(X) for some (X,X) G %(r,t + 1).

Similar to Case (a).

Case(c): Y = Xx \ • • • \ Xk for some (Xu... ,Xk) £ C(r,t + 1).

Similar to Case (a).

II. (Induction) Let m > 0 be arbitrary. W e assume the inductive hypothesis:

(HP2) for all m, if Y G M^0SS(P,r,t + 1) and Y g A4seen(P,r,t + 1) then

(a) if Y = EK(X) for some (X, X) G £(r,t + l) then X, X G A4^0SS(P,r,t +

1), and

(b) ifY = HK(X) for some (X, X) G U(r, t+1) then X , X G A4^0S5(P,r,t+

1), and

(c) if Y = Xi | • • • | Xk for some (Xi,..., X*) G C(r, t+1) then Xu...,Xk£

M%0SS(P,r,t + l).

W e show the above hypothesis implies that, if Y G M^ssiP^^ + !) a n d

Y£A4Seen(^,r-,t + l) then

4.2. A computational model of communicating principals 78

(a) if Y = EK(X) for some (X, X) G £(r, t + 1) then X, X G M^S\(P, r, t +

1), and

(b) if Y = HK(X) for some (X, X) G U(r, t+1) then X, X G M$£8(P, r, t+

1), and

(c) ifY = Xi !••• |Xfcforsome(Xi,...,Xfc)GC(r,t+l)thenX1,...,XfcG

A4^+V(P,r,t + l).

Suppose Y G Mffis(P,r,t+l) and Y g" A4seen(P,r,t+l). By definition 4.4,

Y£M™oss(P,r,t + l)

U { ^ K (X) | X,X G A4™OS5(P,r,t + 1) and (X, X) G £(r,t + 1)}

U {HK(X) I X, X G M^OSS(P, r, t + 1) and (X, X) G ft(r, t + 1)}

U {(Xx 1 • • • | Xk) I Xi,... ,Xk £ M™oss(P,r,t + 1) and

(X!,...,Xfc)GC(r,t + l)}

U {X | EK(X), X-
1 G A4™oss(P,r,t + 1) and (X, X) G £(r,t + 1)}

U {Xi | (Xi 1 • • • | Xfc) G Af£0SS(P,r,t + 1) and (Xi,...,Xfc) G C(r,t + 1)}.

Case (A): Y G MpOSS(P,r,t + 1). The required statement follows from HP2 and

Lemma 4.9.

Case (B): Y £ {EK(X) | X,X G M%0SS(P,r,t + 1) and (X,X) G £(r,< + 1)}.

W e have Y = EK<(X') for some X', X' G M^oss(P,r,t + 1) such that

(X',X') G £(r,* + 1). By definition 4.3, EK>(X') £ Mencr(r,t + 1),

and therefore, Y G Mencr(r,t + 1).

Case (a): Y = EK(X) for some (X,X) G £(r,t + 1).

RE1 yields X = X' and X = X'. Hence X, X G Af™0SS(P,r,t + 1).

By Lemma 4.9 it follows that X, X G A ^ + ^ P , ? ^ + 1).

Case (b): Y = # * (X) for some (X, X) G U(r,t + 1).

By definition 4.3, Y G At/^(r,* + 1), which is impossible by RE2.

Case (c): Y = Xi | • • • | Xk for some (X1}... ,Xk) £ C(r,t + 1).

By definition 4.3, Y G A4Conc(r,t + 1), which is impossible by RE2.

Case (C): Y G {HK(X) \ X,K £ M™0SS(P,r,t + 1) and (X,X) G H(r,t + 1)}.

Similar to Case (B).

Case (D): Y G {(Xi | ••• | Xk) | Xi,...,Xfc G A4™0SS(P,r,t+l) and (Xi,... ,Xk) £

C(r,t + 1)}.

Similar to Case (B).

4.2. A computational model of communicating principals 79

Case (E): Y G {X | EK(X),K~
X £ M™0SS(P,r,t + 1) and (X,X) £ £(r,t + 1)}.

We have EK(Y), X"
1 £ M™0SS(P, r, t+1) for some X such that (Y, X) G

£(r,t+ 1). By Lemma4.9 it follows that EK(Y), X"
1 G Mposs(P,r,t +

1). Since Y £ Mseen(P,r,t + 1) it follows by the contrapositive of

Lemma 4.17(a) that EK(Y) $ MSeen(P,r,t + 1). HP2 yields Y, X G

Mposs(P,r,t + 1). The required statement then follows from HP2 and

Lemma 4.9.

Case(F): Y £ {X{ \ (Xx \ • • • \ Xk) £ M%0SS(P,r,t + 1) and (Xx,... ,Xk) £

C(r,t + 1)}.

We have Y = X{ for some i and for some Xx | • • • | Xk £ Mposs(P, r, t +

1) such that (X!,...,Xfc) GC(r,t + l). Since X,- g" Mseen(P,r,t + 1)

for some i, it follows by the contrapositive of Lemma 4.17(b) that

Xi | • • • | Xk$ Mseen(P, r, t+1). HP2 yields Xx,...,Xk£ M™0SS(P, r, t+

1). But Y = Xi for some i, so Y £ Mposs(P, r, t + 1). The required

statement then follows from HP2 and Lemma 4.9.

(This completes the proof of Proposition 4.2.) O

Looking back at the proof of Proposition 4.2, it is apparent that we could have proved

a stronger statement. We can refine the hypothesis further to prove the following

result, for example: Suppose Y G J^/i^0ss(Pi
r^) f°r s o m e rni and suppose that Y ^

MSeen(P,r,t). If Y = EK(X) for some (X, X) G £(r,t), then

^ (MPoss(P,r,t- 1) if m = 0 and t > tfirst(r)

1 ^Fo^(P>r>*) ifm>0.
However, the statement of Proposition 4.2 is less cumbersome and proves to be more

direct for our purposes.

The following theorem is easily proved from Proposition 4.2 and Lemma 4.9.

Theorem 4.1 Let Y £ MPoss(P-,r,t), and suppose that Y g" MSeen(P,r,t).

(a) IfY = EK(X) for some (X, X) G £(r,t), then X, X G Mp0ss(P,r,t).

(b) IfY = HK(X) for some (X,K) £ U(r,t), then X, X G Mp0Ss(P,r,t).

It is apparent that we have omitted the following case from the statement of Theo­

rem 4.1: (c) If Y = Xi | • • • | Xfc for some (Xx,...,Xk) £ C(r,t), then Xx,...,Xk £

Mposs(P,'r,t). We do this simply because the omitted case is exactly part (e) of

Lemma 4.13, which, however, does not require the extra hypothesis that Y g" MSeen(P, r, t).

4.2. A computational model of communicating principals 80

Theorem 4.2 If X £ MSeen(P,r,t), then X £ Msaid(Q,r,t') for some Q and for

some t' <t.

Proof. By induction on t:

1. (Basis) Let t = f̂irst(
r). By definition 4.3, Mseen(P,r>^first(r)) — 0. Therefore,

the required statement holds vacuously.

2. (Induction) Let t > t^g^r) be arbitrary. We assume the inductive hypothesis:

(HP1) for all t' < t, if X G Aiseen(P,r,t'), then X G Msaid(Q,r,t") for some

Q and for some t" < t'; and show this implies that, if X G MSeen(P,r,t) then

X G Msaid(Q, r, t') for some Q and for some t' < t.

By Lemma 4.14 it suffices to show that, for all m, if X £ M™een(P,r,t), then

X G Msaid(Q,r,t') for some Q and for some t' < t. We show this by induction

on m:

I. (Basis) Let m = 0. Suppose X G A4°een(P,r,t). By definition 4.5, X G

A4see„(P,r,t - 1) U <Sre«;(P,r,t - 1).

Case (i): X G Mseen(P,r,t - 1).

HP1 yields X G Msaid(Q,r,t') for some Q and for some t' < t - 1.

Case(ii): X £ Srecv(P->r,t-1).

RE3 yields: there exists a Q which performs send(X) at some t' <

t - 1. By definition 4.2, X G Ssaid(Q,r,t'), and therefore, by defi­

nition 4.6, X G M°said(Q,r,t' + 1). By Lemma 4.18 it follows that

X G Msaid(Q,r,t' + 1), which is as required, since t' + 1 < t.

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis:

(HP2) if X G Af™en(P,r,t), then X G Msaid(Q,r,t') for some Q and for

some t' < t; and we show this implies that, if X G M^erl(P, r, t), then X G

Msaid(Q, r, t') for some Q and for some t' < t. Suppose X G A ^ ^ P , r, t).

By definition 4.5,

XGA^een(P,r,t)

U {Y | EK(Y) £ M™een(P,r,t) and (Y, X) G £(r,t) and

K-1 £ Mposs(P,r,t)}

U { Y | (Yi | ••• I Yk) £ M
m
seen(P,r,t) and (Yi,..., Yk) £ C(r,t)}

Case (A): X £ M^een(P,r,t).

HP2 yields X G Msaid(Q,r,t') for some Q and for some t' < t.

4.3. Related work 81

Case (B): X £ {Y \ EK(Y) £ M™een(P,r,t) and (Y,K) £ £(r,t) and X" 1 £

Mposs(P,r,t)}.

W e have, for some K, EK(X) £ M™een(P,r,t), (X, X) G £(r,t),

and X" 1 G MpoSS(P,r,t). HP2 yields EK(X) £ Msaid(Q,r,t') for

some Q and for some t' < t. Consider the smallest t' < t for which

there exists Q such that EK(X) £ Msaid(Q,r,f), and fix one such

Q. Thus, for all R and for all t" < t', EK(X) g" Msaid(R,r,t").

By the contrapositive of the inductive hypothesis HP1 it follows that

EK(X) g" Mseen(Q,r,t'). Since EK(X) £ Msaid(Q,r,t'), it follows by

Lemma 4.19 that P^(X) £ MpOSs(Q,r,t'). Also, we have (X, X) G

£(r,t) and t' < t. By Lemma 4.12 it follows that (X, X) G £(r,t').

Since EK(X) £ MpoSs(Q,r,t') and EK(X) (jL Mseen(Q,r,t'), it follows

by Theorem 4.1 that X, X G Mp0ss(Q, r, t'). By Lemma 4.20(a) it

follows that X, K £ Msaid(Q,r,t').

Case (C): X £ {Yt \ (Yx \ - - - \Yk) £ Mjeen(P,r,t) and (Yx,..., Yk) £ C(r, t)}.

W e have X = Y, for some i such that Yx \ ••• \Yk £ M™een(P,r,t) and

(Yx,. ..,Yk)£ C(r,t). HP2 yields Yx \ • • • \ Yk £ Msaid(Q,r,t') for some

Q and for some t' < t. By Lemma 4.19 it follows that Yx \ • • • \Yk £

Mposs(Q,r,t'). Also, we have (Yx,...,Yk) £ C(r,t) and t' < t. By

Lemma 4.12(c) it follows that (Yi,...,Yfc) £C(r,t'). By Lemma 4.20(c)

it follows that Yx,...,Yk £ Msa^d(Q,r,t'). But X — Yi for some i, so
x^Msaid(Q,r,t').

(This completes the proof of Theorem 4.2.) •

4.3 Related work

The semantic model developed in this chapter alleviates some major deficiencies of ex­

isting models for authentication logics proposed by Abadi and Tuttle [8], and Syverson

and van Oorschot [9]. In particular, the problems it addresses include the following:

• A fundamental problem with existing models is that they reflect the syntax of

the corresponding logics. As emphasized by Syverson [27], this makes the proof

of soundness of such logics largely trivial and uninformative.

• A more compelling problem with existing models is that the definitions made as

part of the models are generally not made sufficiently accurate. As a result, there

4.3. Related work 82

is often confusion about exactly what properties can be proved as a consequence

of such definitions. For example, the A T logic paper claims that the logic pro­

posed by its authors is sound with respect to the model defined in that paper.

However, it has been subsequently reported that one of the axioms of the A T

logic is unsound (cf. Syverson and van Oorschot [9]). Indeed, no detailed proofs

of soundness of the logics A T and SVO have been published yet.

• Existing models leave implicit some critical assumptions that underlie authenti­

cation logics; for example, the assumption that messages can only be constructed

in a unique way within the system, which is formally captured in our model as

restrictions REl and RE2. It is difficult to see how proofs of properties which

depend on such assumptions can be carried out formally in existing models.

Overall, existing models do not appear to enable proofs of desired properties to be

carried out rigorously.

Although our model is motivated by notions found in previous works, it is essen­

tially independent of any logical syntax. It formalizes various critical assumptions that

underlie authentication logics, but which are nonetheless absent from existing models

for such logics. In contrast to previous works, we have provided detailed and accurate

proofs of the properties of our model. Our model is therefore a major advance as

compared to the models of Abadi and Tuttle [8], and Syverson and van Oorschot [9].

Chapter 5

The soundness of a logic of authentication

This chapter presents a logic for analyzing authentication protocols. The logic pre­

sented here is motivated by the model developed in the previous chapter. The se­

mantics we give for the logic is based on this model; thus our logic has an essentially

independently motivated semantics. W e demonstrate the virtue of this approach by

giving a mathematically rigorous and intuitively convincing proof of soundness of the

logic. While the syntax of the logic presented in this chapter is somewhat similar in

appearance to that of the logics AT and SVO, there is a significant underlying dif­

ference nonetheless; namely, that the soundness of our logic is proved rigorously. As

emphasized elsewhere in this thesis, claims regarding the soundness of the logics AT

and S V O appear unsupported by published evidence.

5.1 Logic

5.1.1 Syntax

W e begin by defining a formal language L Although l is defined without essential

regard to the intended interpretation, its structure is motivated by that interpretation.

The symbols of £ are defined as follows.

1. Logical symbols

{HE-1

-, A V =4> <S>

occurs-encr occursJiash occurs.conc

fresh

generates received sees said says has recognizes

83

5.1. Logic 84

believes controls

2. Parameters

Pi, P2, ..., Pn (for some fixed natural number n)

KX,K%, ...

NUN2, ...

?1, 92, ...

The classification of the symbols into the above two classes is motivated by their

intended interpretation: the logical symbols are the symbols whose interpretation will

be fixed, whereas the interpretation of the parameters will be allowed to vary. However,

this distinction plays no essential role in characterizing the language itself. The symbols

Pi,..., Pn are called principal symbols. The symbols Xi are called key symbols. The

symbols Ni are called nonce symbols. The symbols qi are called propositional symbols.

The symbols Pi, Ki, and Ni are called primitive symbols.

Formation rules

W e distinguish two classes of expressions in L the terms and the formulas. The

terms are the expressions which under their intended interpretation represent messages.

The formulas are the expressions which under their intended interpretation represent

assertions about messages.

The terms are defined as follows.

Tl. Any primitive symbol is a term.

T2. For each fixed positive integer k if Xx,... ,Xk are terms, then Xi | • • • | Xk is a

ter m.

T3. If X is a term and X is a key symbol, then EK(X) and HK(X) are terms.

T4. If X is a key symbol, then X-1 is a term.

T5. No expression is a term unless it can be shown to be so from (T1)-(T4).

The formulas are defined as follows.

Fl. Any propositional symbol is a formula.

F2. If (b is a formula, then so is ->(/>.

5.1. Logic 85

F3. If <p and tb are formulas, then so are <b A ip, cb V ib, <b => if), and <b <$• ̂ .

F4. If X is a term and X is a key symbol, then occurs-encr(X, K) and occurs Jiash(X, K)

are formulas.

F5. For each fixed positive integer k if Xi,..., Xk are terms, then occurs-Conc(Xi,..., Xk)

is a formula.

F6. If X is a term, then fresh(X) is a formula.

F7. If P is a principal symbol and X is a term, then P generates X, P received X,

P sees X, P said X, P says X, and P has X are formulas.

F8. If X is a key symbol and P and Q are principal symbols, then P & Q is a

formula.

F9. If P is a principal symbol and <b is a formula, then P believes (b and P controls <b

are formulas.

F10. No expression is a formula unless it can be shown to be so from (F1)-(F9).

Formal system

W e now define a formal system, called L, which consists of the language £ together

with a deductive apparatus for £. The deductive apparatus is specified by defining the

following: (1) a set of axioms; (2) a finite set of inference rules.

The axioms of L are divided into two classes: the logical axioms and the proper

axioms (also called, nonlogical axioms). W e shall fix a set of formulas as the logical

axioms. The set of proper axioms consists of formulas which are protocol-specific, and

is thus left unspecified. By an inference rule p we mean a relation among formulas:

if a set of formulas T is in relation p to a formula <j>, then we say that ̂ is a direct

consequence of the formulas in V by virtue of p.

The set of logical axioms and the set of inference rules is fixed as follows.

1. Logical axioms

W e define the set of logical axioms in terms of axiom-schemas, all instances of

which are logical axioms. To give the axiom-schemas, we need several classes of

metavariables. Let

• (^,X)^ be metavariables ranging over formulas,

5.1. Logic 86

• P, Q, R be metavariables ranging over principal symbols, and

• X, Xi, X2, ... be metavariables ranging over terms.

Let k range over the set of all positive integers, and let i range over the set

{1,..., k} for each fixed k.

The following are the axiom-schemas of L:

Al. <p =* (x =» <t>)

A 2 . (<f> =» (X => </0) => ((<f> => X) =* {<t> => *!>))

A 3 , (-x => -•<£) => (hx =>• <f>) =* x)

A4. P generates X => P /ias X

A5. P sees X =^ P has X

A6. P said X ^ P hasX

A7. P hasX A P has X A occurs.encr(X,K) => P has EK(X)

A8. P hasX r\P has X A occurs Jiash(X, X) =^ P /ms ## (X)

A9. P hasXiA--- A P /ms Xfc A occwrs_conc(Xi,..., X*) =>- P has X a | • • • | Xfc

A10. P has EK(X) A occurs_encr(X, X) A P /ms X
- 1 ^ P has X

All. P ftas Xi | • • • | Xk A occurs-conc(Xx,... ,Xk) ̂ P has Xi A • • • A P has Xk

A12. P received X =>• P sees X

A13. P sees # K (X) A occurs.encr(X, K) A P has K~x => P sees X

A14. P sees Xi | • • • | Xk A occurs-conc(Xi,..., Xk) =>

P sees Xi A • • • A P sees Xk

A15. P said £#(X) A occurs.encr(X, K) A P has X A P has K =»

P said X A P said K

A16. P said HK(X) A occursJiash(X, K) A P has X A P has K =>

P said X A P said K

All. P said Xi | • • • | Xk A occurs.conc(Xx,..., Xk) =>•

P said Xx A • • • A P said Xk

A18. P says X => P saidX

A19. P said X A fresh(X) =>- P soys X

A20. fresh(Xi) A occurs.conc(Xx,... ,Xk) =» fresh(Xx \ • • • \ Xk)

5.1. Logic 87

A21. fresh(X) A occurs„encr(X, K) =* fresh(EK(X))

A22. fresh(K) A occurs.encr(X, X) =* fresh(EK(X))

A23. fresh(X) A occursJiash(X, K) => fresh(HK(X))

A24. fresh(K) A occursJiash(X, X) =*> fresh(HK(X))

A25. P &Q&Q&P

A26. P &Q AR sees EK(X) A occurs_encr(X, K) =»

(P saidXAP said EK(X)AP has K)V(Q saidXAQ said EK(X)AQ has K)

A27. P hQ AR sees HK(X) A occurs Jiash(X, K) =>

(P said X A P said ff#(X) A P feas X)V

(Q said X AQ said HK(X) A Q has X)

A28. P believes (b A P believes (<b => x^>) =$- P believes if>

A29. P believes <f> =$• P believes (P believes fa)

A30. ->P believes <p => P believes (->P believes fa)

A31. P controls <f> A P believes <b =>• </>

2. Inference rules

Rl. (Modus Ponens) If d> and ^ are any formulas, then V> is a direct consequence

of <̂> and </> => ij>.

R2. (Necessitation) If </> is any formula and P any principal symbol, then

P believes <f> is a direct consequence of 0.

(This completes the definition of L.)

For the purpose of studying properties of L, we define some standard proof-theoretic

notions: proof in L, theorem ofL, and deduction in L from a set of formulas.

Definition 5.1 A proof in L is a finite sequence of formulas fa, ..., fa such that, for

each i, either fa is an axiom, or fa is a direct consequence of some preceding formulas

by a rule of inference.

Definition 5.2 A formula <^ is a theorem ofL (written hL fa) if <b is the last formula

of a proof in L.

Notice that all axioms (logical or proper) of L are theorems of L.

5.1. Logic 88

Definition 5.3 A deduction in L from a set of formulas T is a finite sequence of

formulas fa, ..., fa such that, for each i, either fa is an axiom, or fa is an element of

T, or fa is a direct consequence of some preceding formulas by a rule of inference.

Definition 5.4 A formula <j> is deducible in L from a set of formulas Y (written Y hL fa)

if </> is the last formula of a deduction in L from Y.

The following lemma is easily proven from the above definitions.

Lemma 5.1 Let <b, XJJ be any formulas and Y, A any sets of formulas. Let P be any

principal symbol.

(a) IfY is the empty set, then Y \~L (b iff\~L <j>-

(b) IfY\-L(f> then YUA\-Lfa

(c) Y \~ <b iff there is a finite subset £ ofY such that £ hjr, <p.

(d) IfY\-L<p and Y \~L <j> =£• ip, then Y \~L ip.

(e) IfY\-L,4> then Y \~L P believes <j>.

5.1.2 Semantics

W e introduce a possible worlds framework. Fix a system, say, Pi,..., Pn, where n is

the number of principal symbols in £. Intuitively, a world is an ordered pair (r,t),

which consists of a run r of the system and a time t. Let TZ be the set of all runs of

the system. If R C H, call {(r,t) \ r £ R and t > t^TSt(r)} the set of worlds of R,

denoted w(R). The semantics we define is of a model-theoretic nature; it rests on the

usual notions: interpretation, truth for an interpretation, and validity. Roughly, an

interpretation is a structure relative to which truth is defined. The class of structures

we take as interpretations is essentially due to Kripke. (Since their invention Kripke

structures have become a pervasive tool in giving semantics for modal logics.) For our

purposes an interpretation consists of the following components: a set of runs RCfc,

a truth assignment to the primitive propositions with respect to the set of worlds of P,

n binary relations (one for each principal) on the set of worlds of P, called possibility

relations, and a function / which maps terms of £ to messages in M.

Definition 5.5 Let $0 be the set of propositional symbols of £. An interpretation of

£ is a tuple / = (P, it, ~1}..., ~ n, /) , where:

5.1. Logic 89

1. RCK,

2. TT : $0 -> 2™(
R),

3. for each i, ~i is a binary relation on w(R) (so that ~t- C u>(P) x w(P)) which is

transitive and euclidean, and

4. (a) / maps each principal symbol to a distinct element of V (the set of principal

names);

(b) / maps each key symbol to an element of /C (the set of keys);

(c) / maps each nonce symbol to an element of M (the set of nonces);

(d) if Xi,...,Xfc are terms, then f(Xx | ••• | X*) = f(Xx) | ••• | f(Xk) (the

concatenation of the strings f(Xx),..., f(Xk));

(e) if X is a key symbol and X is a term, then f(EK(X)) - Ef(K)(f(X)) (the

symbol E on the right-hand side is the semantic keyed encryption function

defined in the model);

(f) f{Hx(X)) = Hf(K)(f(X)) (the symbol H on the right-hand side is the

semantic keyed hash function defined in the model);

(g) if X is a key symbol, then f(K~x) = (/(X))_1 (the symbol -1 on the right-

hand side is the function from K to /C_1 specified earlier).

Although the above definition fixes the possibility relations to be transitive and eu­

clidean, there is considerable flexibility in choosing alternative properties. W e follow

the usual idea that a principal's possibility relation determines its beliefs, and that the

properties of the possibility relation govern the properties of the notion of belief.

Convention. We normally suppress /; for example, instead of f(K) we write X.

Any resulting ambiguity is resolved from the context.

Fix an interpretation / = (il,7r,~i,...,~„,/). If (M) G w(R), we say that (r,t)

is in I. W e now define what it means for a formula d> to be true for (r, t) in I (written

Hrt) *£)• T h e d e f m i t i o n Proceeds by induction on the structure of fa

Definition 5.6 For all i, j £ {1,..., n} and for all positive integers /:

1. H=fr,t) <?m iff (r> *) € ^m). for m = 1,2,.. ..

5.1. Logic 90

3. h{r,t) ^ A ^ i f f h(,,t) 0 and hfr,t) V>-

4- h(r,t) </> V V> ^ h(,,t) </> or (=(,,*) 0 or both.

5. |=fr)t) <£ =4> if) iff either not ^ [r t) fa or |=Jrt) t/>, or both.

6- Y=(r,t) <f> & V> iff either j=[r>t) </> and (=(,.)t) V, or not f=(r)f) </> and not f=£.(t) V>.

7. (=(Tft) Pi generates X iff X G Mgenr(Pi,r, t).

8. l=[rit) Pi received X iff X G AWu(P,,r,t).

9. f=(rit) Pt- sees X iff X G A4seen(Pi,r,t).

10- h(r,*) pi saidX {®Xe Msaid(Pi,r,t).

H- H(r,«) pi says X iff X G Msaid(Pi,r,t) \ Msaid(Pi,r,0).

12. |=fr>t) Pi fcas X iff X G A4poss(Pi, r, t).

13. H(r,t) occws_encr(X,X) iff (X, X) G £(r,t).

14. f=frit) occurs_/iasfc(X, X) iff (X, X) G U(r,t).

15. |=fr>t) occitrs-concCXi,..., X,) iff (Xx,..., X,) G C(r, t).

16. \={r>t) /res/>(X) iff X £ A<said(ft, r, 0) for all k = 1,..., n.

17. [=(r t) Pi & Pj iff for all t' < t, for all X , for all k = 1,..., n:

(a) if £K(X) G A4smW(Pfc,r,t') and (X, X) G £(r,t'), then

£ J C (X) G A4seen(Pfc,r,t') or Pfc G {Pi,Pj} or both, and

(b) if HK(X) £ Msaid(Pk,r,t') and (X, X) G U(r,t'), then

HK(X) £ Mseen(Pk,r,t') or Pk £ {Pi,Pj} or both.

18. Y^\r,t)
 pi believes (j) iff for all worlds (r',f) in /, if (r,t) ~i (r',f) then j=(rV/) </>.

19. (=[r>t) Pi contro/s d> iff h(r,t) ^ &e/ieue$ <£ implies f={rt) <£.

The truth conditions defined above need some explanation. Clause (1) reflects what

has already been noted before: we fix the truth of propositional symbols by means

of TT. Clauses (2)-(6) reflect standard propositional truth assignments for'--, A, V,

=*, and &. Each of the clauses (7)-(15), with the seeming exception of clause (11),

reflects notions that we have independently developed in the model of the previous

5.1. Logic 91

chapter. However, says is simply a derived notion: the truth condition for says is

essentially that for said with an added restriction. A similar comment applies to the

notion reflected by clause (16); the only novelty here is that we quantify over all sets

of said messages for a fixed time of 0. Essentially, the truth condition for <-> captures

the following intuition: a key K is shared between principal P and Q iff P and Q are

the only principals encrypting and hashing messages using X . Clause (18) reflects the

standard possible worlds view of belief. Roughly, it says that a principal P believes

exactly those facts that are true in the worlds P considers possible.

To this point, the notion of truth is defined relative to a given interpretation and a

world in that interpretation. As usual, we extend this notion to truth with respect to

a given interpretation and define validity in terms of truth for all interpretations.

Definition 5.7 A formula <f> is true for an interpretation I (written |=7 fa) iff </> is true

for every world in A

Definition 5.8 A formula <f> is valid (written \= fa) iff <f> is true for every interpretation.

The following proposition shows that the inference rules preserve truth with respect to

interpretations.

Proposition 5.1 Let (b, ib be any formulas and P any principal symbol. For any

interpretation I:

(a) If f=7 <f> and ^ 7 (b^^, then \=* </>•

(b) If |=7 fa then Y=* P believes fa

Proof.

(a) Suppose there is an interpretation / such that j=7 <j> and l^7 <b=^rb. Then \=l <f>

and \=l <b =» V> for every w in A Therefore, by condition 5 of definition 5.6,

\=l ib for every w in /; that is, [=7 fa as required.

(b) Suppose there is an interpretation I such that |=7 fa Then \=l (b for every UJ in

I. Therefore, by condition 18 of definition 5.6, \=l P believes <f> for every w in /;

that is, j=7 P believes fa as required.

(This completes the proof of Proposition 5.1.) °

Corollary 5.1 Let <j> and I/J be any formulas and P any principal symbol.

(a) If\=4> and \= 4>=> ij), then \= i>.

5.1. Logic 92

(b) If (= <p, then (= P believes <f>.

Hereafter we write ^7 <p to mean not (=7 fa and similarly for the cases with or without

subscripts and superscripts. If P denotes a principal symbol, write ~p to stand for the

possibility relation of the principal denoted by P.

W e now proceed to show that all the logical axioms of L are valid.

Lemma 5.2 The following formulas are valid:

(a) <f>^(X^<b)

(b) (<t>^(x^ VO) =* ((<£ =» x) =* (</> =* </>))

fcj (-X =* -^) =* ((-X =* 0) =* X)

Proof. We only prove part (a); the remaining parts are proved similarly. Take an

arbitrary interpretation I and an arbitrary world w in I such that j=7 fa From con­

dition 5 of definition 5.6 and the fact that j=J, fa it follows that \=*w x => fa as required.

(This completes the proof of Lemma 5.2.) n

Lemma 5.3 The following formulas are valid:

(a) P generates X => P has X

(b) P received X =£- P sees X

(c) P sees X => P has X

(d) P saidX => P hasX

Proof.

(a) Take an arbitrary interpretation / and an arbitrary world (r, t) in / such that

\=(rt) P generates X. Then, by condition 7 of definition 5.6, X G Mgenr(P,r,t),

and therefore, by Lemma 4.10, X G MPoss(P,r,t). Hence, by condition 12,

\=Lt\ P has X, as required.

(b) Follows similarly using Lemma 4.15.

(c) Follows similarly using Lemma 4.16.

(d) Follows similarly using Lemma 4.19.

5.1. Logic 93

(This completes the proof of Lemma 5.3.) Q

Lemma 5.4 The following formulas are valid:

(a) P has X A P has K A occurs_encr(X, X) =^> P has EK(X)

(b) P hasX A P has K A occursJiash(X,X) =4> P has HK(X)

(c) P has Xx A • • • A P has Xk A occurs.conc(Xx,...,Xk) => P has Xx \ • • • | Xk

(d) P has EK(X) A occurs„encr(X, K) A P has X"
1 ^ P has X

(e) P has Xx \ • • • \ Xk A occurs-conc(Xx,..., Xk) =*> P has Xx A • • • A P has Xk

Proof. We only prove part (a); the remaining parts are proved similarly. Take an

arbitrary interpretation / and an arbitrary world (r,t) in / such that (=(r)t) P has

X A P has K A occurs.encr(X,K). Then, by conditions 3, 12, and 14 of defini­

tion 5.6, X, X G Mposs(P,r,i) and (X, X) G £(r,t), and therefore, by Lemma4.13(a),

EK(X) £ MPoss(P,r,t). Hence, by condition 12, |=(r)t) P has EK(X), as required.

(This completes the proof of Lemma 5.4.) D

Lemma 5.5 The following formulas are valid:

(a) P sees EK(X) A occurs-encr(X, K) A P has X'
1 =3- P sees X

(b) P sees Xi | • • • | Xk A occurs-Conc(Xx,..., X*) => P sees Xx A • • • A P sees Xk

Proof. We only prove part (a); the remaining part is proved similarly. Take an arbi­

trary interpretation J and an arbitrary world (r,t) in / such that |={yit) P sees EK(X)A

occurs.encr(X, K) A P has K'1. Then, by conditions 3, 9, 12, and 14 of definition 5.6,

EK(X) £ Mseen(P,r,t), (X,K) £ £(r,t), and X"
1 G Mposs(P,r,t), and therefore,

by Lemma 4.17(a), X G Mseen(P,r,t). Hence, by condition 9, !=fr>f) P sees X, as

required.

(This completes the proof of Lemma 5.5.) D

Lemma 5.6 The following formulas are valid:

(a) P said EK(X) A occurs.encr(X, X) A P has X A P has K ^ P said X A P said K

(b) P said HK(X) A occursJiash(X, X) A P has X A P has X => P said X A P said K

5.1. Logic 94

(c) P said Xi | • • • | Xfc A occurs_conc(Xi,..., Xk) =>• P said Xx A • • • A P said Xk

Proof. We only prove part (a); the remaining parts are proved similarly. Take an

arbitrary interpretation / and an arbitrary world (r,t) in / such that \=Lt\ P said

EK(X) A occurs^encr(X, X) A P has X A P has X =» P said X A P said K. Then, by

conditions 3, 10, 12 and 13 of definition 5.6, EK(X) £ Msaid(P,r,t), (X, X) G £(r,t),

and X, X G MPoss(P,r,t), and therefore, by Lemma 4.20(a), X, X G Msaid(P,r,t).

Hence, by conditions 3 and 10, \=[Tit) P said X A P said X, as required.

(This completes the proof of Lemma 5.6.) n

Lemma 5.7 The following formulas are valid:

(a) P says X => P said X

(b) P said X A fresh(X) =>• P says X

Proof.

(a) Take an arbitrary interpretation / and an arbitrary world (r, t) in / such that

\=lrt) P saVs X- T h e n ' b^ c o n d i t i o n n o f definition 5.6, X G Msaid(P,r,t) \

Msaid(P,r,0), and therefore, X G Msaid(P,r,t). Hence, by condition 11, (=fr,t)

P said X, as required.

(b) Take an arbitrary interpretation J and an arbitrary world (r, t) in 1" such that

f=frt) P said X Afresh(X). Then, by conditions 3, 10 and 16 of definition 5.6,

X e Msaid(P,r,t) and X G" A45mW(Q,r,0) for all Q; in particular, X g

A4sairf(P,r,0), and therefore, X G A4safj(P,r,t) \ AtsflW(P,r,0). Hence, by

condition 11, ̂ ^ P saysX, as required.

(This completes the proof of Lemma 5.6.) '

Lemma 5.8 The following formula is valid:

fresh(Xi) A occurs_conc(Xx,. ..,Xk)=> fresh(Xx | • • • | Xfc)

Proof. (By contradiction.) Suppose there is an interpretation / for which the formula

fresh(Xi) A occurs_conc(Xx,... ,Xfc) =* fresh(Xx | • • • | X*) is not true. Then there ex­

ists a world (r, t) in / such that ̂ fr>i) fresh(Xi) A occurs.conc(Xx,.. •, Xk) =» fresh(Xx \

... | Xk). By condition 5 of definition 5.6, j=fr(i) fresh(Xi) A occurs-Conc(Xx, ...,Xk)

5.1. Logic 95

a n d V=(r,t) fresh(Xx | ••• | Xk). By conditions 3, 15 and 16, Xt- g A4said(P,r,0) for

all P, (Xi,...,Xfc) G C(r,i), and X x | • • • | Xk £ Msaid(Q,r,0) for some Q. If

(Xi,... ,Xk) £ C(r, 0), then, by Lemma 4.20(c), Xx,...,Xk£ Msaid(Q,r, 0), and the

required statement follows by contradiction. It remains to show that (Xx,...,Xk) £

C(r,0).

Case (i): Let t < 0. From (Xi,...,X*) £ C(r,t), it follows that (Xi,...,Xfc) G C(r,0),

trivially when t = 0, and by Lemma 4.3 when t < 0.

Case (ii): Let t > 0. Since Xx \ - • • \ Xk £ Msaid(Q,r,0), it follows by Lemma 4.19 that

Xi | ••• | Xk £ MpOss(Q,r,0). Also, (Xi,...,Xfc) G C(r,t). By Lemma 4.12(c)

it follows that (Xi,..., X*) G C(r, 0).

(This completes the proof of Lemma 5.8.) •

Lemma 5.9 The following formulas are valid:

(a) fresh(X) A occurs.encr(X, K) =>- /resa(P^(X))

(b) fresh(K) A occurs_encr(X, K) =>• fresh(Ex(X))

(c) fresh(X) A occursJiash(X, K) =$• /res/i(iJ^(X))

(d) fresh(K) A occursJiash(X, K) => fresh(HK(X))

Proof. (By contradiction.) We only prove part (a); the remaining parts are proved

similarly. Suppose there is an interpretation / for which the formula fresh(X) A

occurS-encr(X,K) => /res/i(P^(X)) is not true. Then there exists a world (r,t) in

/ such that y=\ri\ fresh(X) A occur\s_encr(X, X) =>- fresh(EK(X)). By condition 5 of

definition 5.6, \=Lt\ fresh(X) A occurs.encr(X,K) and ^
7
r>i) fresh(EK(X)). By con­

ditions 3, 13, and 16, X g Msaid(P,r,0) for all P, (X,X) G £(r,t), and EK(X) £

Msaid(Q,r,0) for some Q. Consider the smallest t' < 0 for which there exists R

such that EK(X) £ Msaid(R,r,t'), and fix one such P. Thus, for all R' and for

all t" < t', EK(X) £ Msaid(R',r,t"). The contrapositive of Theorem 4.2 yields

EK(X) 0 MSeen(R,r,t'). Since EK(X) £ Msaid(R,r,t'), it follows by Lemma 4.19

that EK(X) £ Mp0ss(R,r,t'). W e now show that (X, X) G £(r,t'). Recall that

(X,K)££(r,t).

Case (i): Let t < t'. It follows that (X, X) G £(r,t'), trivially when t = t', and by

Lemma 4.3 when t <t'.

5.1. Logic
96

Case (ii): Let t > t'. By Lemma 4.12(a) it follows that (X,X) G £(r,t').

Thus, (X,X) G £(r,t'). By Theorem 4.1 it follows that X, X G Mposs(R,r,t'). Since

EK(X) £ Msaid(R,r,t') it follows by Lemma 4.18 that EK(X) £ M
m -JR,r,t') for

some m, and therefore, by definition 4.6, X,X £ M™£d(R,r,t'). By Lemma 4.18,

X,X G Msaid(R,r,t'), and therefore, by Lemma 4.2, X, X £ Msaid(R,r,0) since

t' < 0, which contradicts the fact that X G" Msaid(P,r,0) for all P.

(This completes the proof of Lemma 5.6.) •

L e m m a 5.10 The following formula is valid:

1. P&Q&Q&P

Proof. Obvious. •

Lemma 5.11 The following formulas are valid:

IS

(a) P <-» Q A R sees EK(X) A occurs.encr(X, X) =>

(P said X A P said EK(X) A P has X) V (Q said X AQ said EK(X) A Q has X)

(b) P & Q A R sees HK(X) A occursJiash(X, K) =>

(P said X A P said HK(X) A P has X) V (Q said X AQ said HK(X) A Q has X)

Proof. We only prove part (a); the remaining part is proved similarly. Take an

arbitrary interpretation / and an arbitrary world (r,t) in / such that \=Lt\ P <->

Q A R sees EK(X) A occurS-encr(X, K). Then, by condition 3 of definition 5.6,

Hfrt) P ^ Qi hfr.t) P sees EK(X), and \=Lt\ occurs_encr(X,K). By condition 9,

ER(X) £ MSeen(R,r,t), and therefore, by Theorem 4.2, EK(X) £ Msaid(R',r,t') for

some R! and for some t' < t. Consider the smallest t' < t for which there exists R'

such that EK(X) £ Msa{d(R',r,t'), and fix one such R'. Thus, for all R" and for all

t" < t', EK(X) G* Msaid(R", r, t"). By the contrapositive of Theorem 4.2 it follows that

EK(X) <£ Mseen(R',r,t'). Since EK(X) £ Msaid(R',r,t'), it follows by Lemma 4.19

that EK(X) £ Mp0ss(R',r,t'). By condition 14, (X,X) G £(r,t), and therefore, by

Lemma 4.12(a), (X, X) G £(r,t') since t' < t. Hence, by condition 18(a), R' £ {P,Q}.

Also, by Theorem 4.1, X, X £ Mp0ss(R',r,t'). Since EK(X) £ Msaid(R',r,t'), it

follows by Lemma 4.18 that EK(X) £ A4̂ fl̂ (P',r,t') for some m, and therefore,

by definition 4.6, X,X G M™+>d(R',r,t'). By Lemma 4.18, X, X G Msaid(R',r,t').

5.1. Logic 97

Hence, by Lemma 4.2, EK(X),X £ Msaid(R',r,t) and X G Mposs(R',r,t) since

t' < t. Hence, by conditions 3, 4, 10 and 12, (=frt) (P said X A P said EK(X) A P has

K) V (Q saidX A Q said EK(X) A Q has K), as required.

(This completes the proof of Lemma 5.11.) •

L e m m a 5.12 The following formulas are valid:

(a) P believes d> A P believes (d> => ip) =4> P believes if)

(b) P believes d> =^ P believes (P believes fa)

(c) ->P believes d> =>• P believes ->(P believes fa)

Proof.

(a) Take an arbitrary interpretation / and an arbitrary world w in I such that |=7

P believes cbAP believes (<j> => fa). Then, by conditions 3 and 18 of definition 5.6,

|=7# d> and [=7# d> =>• if) for every to' in I such that UJ ~ P UJ'. Therefore, by

condition 5, \=w> d> for every UJ' in / such that UJ ~ P UJ'. Hence, by condition 18,

[=7 P believes ip, as required.

(b) Take an arbitrary interpretation / and an arbitrary world UJ in / such that |=7

P believes fa Then, by condition 18 of definition 5.6, (*) for every w' in / such

that UJ ~ P UJ', \=TW, d>. W e wish to show that [=
7 P believes (P believes fa). By

condition 18 it suffices to show that for every w' in / such that w ~p w', and for

every w" in I such that w' ~ P UJ", [=̂ // 0. This statement clearly holds by the

transitivity of ~ p and (*).

(c) Take an arbitrary interpretation / and an arbitrary world UJ in / such that ^ 7

-iP believes fa By conditions 2 and 18 of definition 5.6, (**) there exists a world

UJ0 in I such that w ~ P w0 and |=
7
0 ->fa W e wish to show that \=*w P believes

->(P believes fa). By conditions 2 and 18 it suffices to show that for every w' in /

such that UJ ~ P W' there is a UJ" in / such that UJ' ~ P UJ" and |=7U» ->fa But if w'

is a world in / such that UJ ~ P UJ', then from the euclideanness of ~p and (**) it

follows that UJ0 is a world in / such that w' ~ P W0 and 1=^ -yfa as required.

(This completes the proof of Lemma 5.12.) D

L e m m a 5.13 The following formula is valid:

P believes d> A P controls d> => d>

5.1. Logic 98

Proof. Take an arbitrary interpretation / and an arbitrary world (r,t) in / such

that (=7rt) P believes d> A P controls fa Then, by condition 3 of definition 5.6,

N(r,t) P beeves <p and \=[r^ P controls fa Hence, by condition 19, \=Lt\ fa as required.

(This completes the proof of Lemma 5.13.) •

Theorem 5.1 Every logical axiom ofL is valid.

Proof.

1. Axioms (A1)-(A3) are valid, by Lemma 5.2.

2. Axioms (A4)-(A6), and axiom (A12) are valid, by Lemma 5.3.

3. Axioms (A7)-(A11) are valid, by Lemma 5.4.

4. Axioms (A13)-(A14) are valid, by Lemma 5.5.

5. Axioms (A15)-(A17) are valid, by Lemma 5.6.

6. Axioms (A18)-(A19) are valid, by Lemma 5.7.

7. Axiom (A20) is valid, by Lemma 5.8.

8. Axioms (A21)-(A24) are valid, by Lemma 5.9.

9. Axiom (A25) is valid, by Lemma 5.10.

10. Axioms (A26)-(A27) are valid, by Lemma 5.11.

11. Axioms (A28)-(A30) are valid, by Lemma 5.12.

12. Axiom (A31) is valid, by Lemma 5.13.

(This completes the proof of Theorem 5.1.) D

Soundness theorems

Let L0 be the system L with an empty set of proper axioms. Thus, the only axioms of

L0 are the logical axioms (Al) through (A32).

We are now ready to establish the main soundness theorem.

Theorem 5.2 Every theorem of LQ is valid.

5.1. Logic 99

Proof. Let d> be a theorem of L0. The required statement is proved by induction on

the length of a proof in L0 of d>.

Let d>i, ..., d>„ = d> be the sequence of formulas of a proof in L0 of d>. W e show, by

induction on i, that |= fa for 1 < i < n.

1. (Basis) Let i = 1. Then fa must be a logical axiom, and therefore, by Theo­

rem 5.1, (= fa.

2. (Induction) Let i > 1 be arbitrary. Assume the inductive hypothesis that, for all

j < i, \=fa.

Case (1): fa is a logical axiom. As in the basis step, f= fa.

Case (2): fa follows by modus ponens from formulas fa and d>m, where j < % and

m < i, and <pm is of the form fa =» fa. By the inductive hypothesis, |= fa

and f= d>j => fa, and therefore, by Corollary 5.1(a), \= fa.

Case (3): fa follows by necessitation from a formula d>j} where j < i, and <& is of

the form P 6e/ieues fa for some principal symbol P. By the inductive

hypothesis, ! =̂ fa, and therefore, by Corollary 5.1(b), [= P 6e/ieues fa, which

is as required.

(This completes the proof of Theorem 5.2.) •

Note that the statement of Theorem 5.2 does not hold for L, since in general we allow

L to contain proper axioms which can be arbitrary formulas. However, a modified form

of the soundness theorem can still be obtained for L. Technically, when carrying out

deductions in L we are only interested in those interpretations for which all the proper

axioms are true. W e can then prove soundness of L relative to such interpretations.

(This idea is routinely used in the study of formal systems with proper axioms.)

Definition 5.9 An interpretation / is a model ofL iff every axiom of L is true for I.

Theorem 5.3 Every theorem ofL is true for any model ofL.

Proof. Suppose that / is an interpretation for which all the axioms of L are true. Let

d> be a theorem of L. The required statement is proved by induction on the length of a

proof in L of d>.

Let fa,fa,---An = 4>^ the sequence of formulas of a proof in L of fa W e show,

by induction on i, that |=7 fa for 1 < i < n.

5.1. Logic 100

1. (Basis) Let i — 1. Then fa must be an axiom, and therefore, by supposition,

r-'fa-

2. (Induction) Let i > 1 be arbitrary. Assume the inductive hypothesis that, for all

j < i, \=* fa.

Case (1): fa is an axiom. As in the basis step, [=7 fa.

Case (2): fa follows by modus ponens from formulas (bj and d>m, where j < i and

m < i, and d>m is of the form (bj => fa- By the inductive hypothesis, (=
7 4>j

and j=7 d>j =^ fa, and therefore, by Proposition 5.1(a), !(=7 <&.

Case (3): fa follows by necessitation from a formula fa, where j < i, and fa is of the

form P believes fa for some principal symbol P. By the inductive hypothesis,

^=7 fa, and therefore, by Proposition 5.1(b), [=7 P believes fa, which is as

required since d>» is of the form P believes fa.

(This completes the proof of Theorem 5.3.) °

Chapter 6

A model for reasoning about lower bounds
on rounds

In this chapter we introduce a new model, which allows reasoning about lower bounds

on rounds for a class of authentication protocols. This continues the theme of formal

reasoning developed in the preceding chapters. The motivation for the model intro­

duced here is a largely informal body of bounds arising from the work of Gong [36], [37],

[38]. Our aim in developing the model is to provide a systematic means for deriving

such bounds. In particular, we will show how some of the bounds intuitively obtained

by Gong are formally derived in our model.

(Parts of this chapter appeared in preliminary form elsewhere [39].)

6.1 Introduction

An authentication protocol, in its barest form, consists of a sequence of message ex­

changes. The appeal of defining metrics for comparing authentication protocols is

obvious. Of course, the most important aspect of a protocol is its correctness and

there is a sizable amount of literature on this subject. However, the literature on met­

rics for authentication protocols is rather sparse. An essentially similar observation to

the one made above motivates Gong [36], [37], [38] to study some efficiency metrics

for authentication protocols. Specifically, he defines two efficiency metrics: the number

of messages and the number of rounds. The former metric simply means the total

number of message exchanges comprising a protocol. To define the latter metric, Gong

uses the notion of round: a round consists of protocol messages that can be exchanged

simultaneously—the number of rounds is then taken to mean the minimum number

of rounds needed to complete the protocol. Notice that the notion of round reflects

the concurrency inherent in a distributed protocol: multiple participants may simul­

taneously send or receive messages in one round. In his works, Gong [36], [37], [38]

gives lower bounds on the above two metrics for some common protocol classes, in an

101

6.2. Basic model 102

informal manner. Independently, Yahalom [40], [41] has devised a model for analyz­

ing bounds on the number of messages for a class of secure asynchronous protocols.

The model provides constructs for expressing security requirements using the notion

of verifiable causality, which is related to Lamport's [42] happened before relation. Ya­

halom [40] employs the model to define a class of secure data exchange protocols, and

derives a lower bound on the number of messages for this class. However, the metric

of rounds is not addressed in his work.

Set against the above background, we introduce a model to formally derive bounds

on rounds from security requirements. The idea behind our model can be sketched as

follows. W e adopt Yahalom's notion of verifiable causality between events as a means

of specifying security requirements for asynchronous protocols. This allows us to define

the notion of an abstract protocol class in terms of verifiable causality. A characteristic

property of this notion is that it induces a partial order on an associated set of events;

this partial order is a causal order in the sense of Lamport [42]. A round then precisely

consists of a set of causally unordered events. The key upshot of the definitions we

make to exploit this fact is that they lead us to a theorem for proving lower bounds on

the number of rounds. The theorem gives rise to a simple graph-theoretic technique

for finding bounds.

6.2 Basic model

We begin by recalling some of the notions described by Yahalom [40].

A system consists of a collection of nodes, also called principals, which communicate

solely by asynchronous message passing. That is, we assume that: (1) the principals do

not maintain synchronized clocks, and (2) the only means of communication between

principals is via message exchanges. Each principal can generate a new pseudoran­

dom value, called an up-nonce, which is unpredictable by others. If is assumed that

principals may act maliciously, that is, they can see, modify, or replay any message

exchanged within the system. Further, any principal can inject fake messages into the

system.

An event is an action taken by a principal. The actions a principal can perform

include the following: (i) sending a message M, denoted send(M); (ii) receiving a

message M, denoted receive(M). Each node maintains its own local abstract clock. It

is assumed that the local clock value at a principal is incremented at least once between

two successive events at that principal. Each event E is associated with the local clock

6.2. Basic model 103

reading, c(E), at the principal where that event occurs.

Following Lamport [42], we define a happened before relation, denoted —>, as the

smallest binary relation on the set of events of a system satisfying the following condi­

tions:

1. E -• E' holds:

(i) if E and E' are events occurring at the same principal such that c(E) <

c(E'), or

(ii) if E = send(M) and E' = receive(M) for any message M exchanged between

two principals, or

(iii) if E -> E" and E" -+ E' for some E".

2. E-frE for all E.

The above definition essentially generalizes the following two basic observations about

the order of events in a distributed system (cf. [43]): (a) A principal is a sequential

process; that is, the events occurring at the same principal are totally ordered; (b)

Whenever a message exchange takes place, the event of sending the message occurs

before the event of receiving the message. It is easy to see that -> is an irreflexive,

transitive, anti-symmetric relation; that is, a partial order on the events of a system.

A basic property of ->• is concerned with a notion of information flow between

events. If E{ -> Ej for events E{ and Ej at two different principals P{ and Pj, respec­

tively, then the above definition implies that there exists a send event, send(M), at

Pi, and a receive event, receive(M'), at Pj, for some messages M and M', such that

send(M) -)• receive(M'). W e then say that there is an information flow from Ei to Ej.

Note that the happened before relation effectively captures the notion of potential

causality: E -> E' means E may (but does not necessarily) causally affect E'. The

basic idea underlying Yahalom's notion of verifiable causality is to capture strict causal

dependence between events, in that the occurrence of one event is precluded without

the occurrence of another event. This notion is relativised to principals, and causal

dependence is further distinguished as precedence or succession between events, as

follows.

Definition 6.1 ([40]) An event Ei of one principal Pi verifiably-precedes an event

Ej of another principal Pj if Pi can establish that Ej could not be generated without

Pj receiving some information derived from the occurrence of Ei or from some event

at Pi that occurred after E{.

6.2. Basic model
104

Definition 6.2 ([40]) An event Ei of one principal P{ verifiably-succeeds an event

Ej of another principal Pj if, at the time it generates Ei, P{ can establish that Ej has

occurred.

As noted by Yahalom [40], the notions of verifiable precedence and verifiable succession

defined above are strictly independent: Ei verifiably-precedes Ej does not necessarily

imply that Ej verifiably-succeeds Ei (and vice-versa).

The following propositions relate verifiable causality with potential causality.

Proposition 6.1 ([40]) For any two events Ej and Ei that have occurred at different

principals, if E{ verifiably-precedes Ej then Ei -> Ej.

Proposition 6.2 ([40]) For any two events Ej and Ei that have occurred at different

principals, if Ei verifiably-succeeds Ej then Ej —»• Ei.

As noted by Yahalom [40], the two notions represented by Ei verifiably-precedes Ej

and Ej verifiably-succeeds Ei are strictly stronger than Ei —>• Ej. The converses of

Propositions 6.1 and 6.2 do not hold.

The following definition is intended to capture the notion of an event at one principal

occurring relatively recently with respect to an event at another principal.

Definition 6.3 ([40]) An event Ej of one principal Pj A-precedes an event Ei of

another principal Pi if Pi can establish that Ej was generated at most A ticks (as

measured by Pi on its local site clock) before the generation of Ei.

In Yahalom's model, the notion of A-precedence is central to capturing the security

requirement that principals be able to determine that certain messages are fresh and

not replays of earlier ones.

The following theorem (Theorem 1 of Yahalom [40]) gives necessary and sufficient

conditions for A-precedence.

Theorem 6.1 An event Ej of a principal Pj at one site A-precedes an event Ei of

principal Pi at another site if and only if the following conditions hold:

1. There exists another event E\, generated by principal Pi, such that E\ verifiably-

precedes Ej.

2. Ei verifiably-succeeds Ej.

3. c(Ei) - c(E\) < A.

6.3. Extending the model: Rounds 105

Note that the first condition above asserts that for a principal Pi to establish that an

event Ej at a different principal Pj A-precedes an event Ei at Pi, there must exist

another event E\ at Pi, from which there is an information flow to Ej. This information

flow implicitly includes a receive event (respectively, send event) of some message at

Pj (respectively, Pi). The received message at Pj is referred to as a A-precedence

establishing (A-pe) message by Yahalom [40].

Informally, a protocol defines a sequence of events at various principals. An execu­

tion of a protocol consists of a realization in which various protocol events take place

at the principals involved. Each event is associated with the protocol execution where

it occurs. Events that occur in different executions at the same principal are assumed

to be unrelated, in that the clock values associated with such events are incomparable.

For the purpose of deriving bounds, the significance of the above model is that

it allows us to deduce the information flows that are needed to satisfy some security

requirements. Essentially, Yahalom [40] exploits this fact to obtain a lower bound on

the number of messages for a particular class of protocols.

6.3 Extending the model: Rounds

For our purposes, we abstract a class of secure asynchronous protocols as a collection of

protocols that achieve some goal defined using Yahalom's notions of verifiable causality.

W e represent such a goal in general by means of the following: (1) a finite set £b of

base events at various principals, and (2) a set C of verifiable causal relationships over

£b defined using verifiably-precedes, verifiably-succeeds, or A-precedes. Clearly, C

induces a partial order, defined by ->, on the set £ = £b U £d, where £d is a possibly

empty set of additional events induced by Theorem 6.1. W e thus represent a protocol

class formally as a partially ordered set n = (£, -<), where -< denotes the partial order

associated with £.

As an aside, we note that in light of the poset formulation for a protocol class, it

appears natural to view an individual protocol of class n as a totally ordered set (£, <),

where < is a total order on £ consistent with -<; that is, such that E -< E' implies

E < E', for all E, E' £ £. In other words, a protocol of class n may be thought of as

a topological sort (cf. [44]) of the poset (£, -<)- However, we do not explore the notion

of an individual protocol further, since the protocol class abstraction suffices here.

6.3. Extending the model: Rounds 106

6.3.1 Rounds and causality

Gong [36] defines the metric number of rounds as follows:

The number of rounds in a protocol is the total number of time units from

the instant that the [protocol] originator sends the first message till the

instant that the last message is received, under the best execution scenario.

(p. 28)

Further, "A round consists of all messages that can be sent and received in parallel

within one time unit" ([36], p. 27). For the sake of the above definition, Gong makes the

following two idealized timing assumptions: (i) exactly one time unit elapses between

sending and receiving of a message; and (ii) the processing time for any event is exactly

zero time units. As Gong observes, the number of rounds gives a rough estimate on

the execution time of a protocol.

For our purposes more precision is required than the definitions used by Gong.

In our model, the notion of 'time' is captured by the happened before relation. W e

effectively use this relation to formulate below our counterparts to Gong's notions on

rounds. First, we need to fix a message set associated with a protocol class.

Definition 6.4 A message M is a triple (P,Q,m), P ^ Q, denoting that principals

P and Q are the sender and recipient, respectively, of the message contents, rn.

Thus, messages with the same contents but which are sent or received at different

principals are distinct messages for our purposes. The case where a principal is meant

to send the message contents to itself does not appear to be meaningful in our context.

(Such messages do not serve to establish verifiable causality.) The side condition in the

definition rules out this uninteresting case by excluding messages of the form (P, P, m) .

W e fix a message set M on any protocol of class n = (£,-<) as the set of messages

corresponding to the prescribed send (or alternatively, receive) events in £:

M = {M\ send(M) £ £}

Following Lamport [42], we say that events E and E' are concurrent if E -ft E' and

E' ft E, and write this as E || E'. W e then define a round to consist of a subset of M

for which the corresponding send events are concurrent.

Definition 6.5 Let M' C M be non-empty. Then M' is a round of M, if send(M) ||

send(M') for all M, M' £ M'.

6.3. Extending the model: Rounds 107

Intuitively, the rounds comprising a protocol are mutually exclusive and exhaustive:

each element of the message set belongs to exactly one round.

Definition 6.6 A round partition of M. is a partition 7r of M such that every block

of 7r is a single round of M..

We call a round partition linear if its blocks may be totally ordered to be consistent

with -<; this is intended to capture the idea that there is an execution order over that

round partition.

Definition 6.7 A round partition -K of M is linear if there exists a total order < on

7r satisfying the following restriction: for all 7r«, TXJ £ TT, if there exist messages Mi £ i^i

and Mj £ Wj such that send(Mi) X send(Mj), then 7Ti < rtj.

A round partition may not necessarily be linear. For example, consider a hypothetical

protocol class with:

M = {MX,M2,M3,M4}

X = {(send(Mx),send(M2)),(send(M3),send(M4))}

where Mx, M2, M3, and M4 are all distinct messages. In this example, the set

{{MX,M4}, {M2, M3}} is a round partition of M but not a linear round partition.

We can now define the number of rounds.

Definition 6.8 The number of rounds for n is the rank of the smallest (having fewest

blocks) linear round partition of M.

Notice how our definition pins down the intended meaning of the phrase, "best execu­

tion scenario," seen in Gong's informal definition earlier.

6.3.2 Rounds and directed acyclic graphs

We now proceed to relate lower bounds on rounds with the structure of the poset

defining a protocol class.

Definition 6.9 Let II = (£,•<) be a protocol class. Define £s C £ and -<a C x such

that:

1. £s — {E | E £ £ and E is a send event}, and

2. ^s=^f)(£sx£s).

6.4. Case study 108

Then the poset (£s, -<s) is called the send-poset of n.

Implicit in the above definition is the fact that X s is a partial order on £s. This fact

follows directly from clauses 1 and 2. Technically, the send-poset of a protocol class

n = (£, -<) is simply a restriction of the poset (£, -<) to the send events in £.

As before, let M denote the message set on n.

Lemma 6.1 Let nx and n2 be the ranks, respectively, of the smallest round partition

and the smallest linear round partition of M. Then nx < n2.

The proof of this lemma is immediate from the fact that the set of linear round parti­

tions of M. is a subset of the set of round partitions of M.

W e can now state our main theorem.

Theorem 6.2 Let Q(H) be the number of rounds for a protocol class H whose send-

poset is (£s,~<s)- If there exist send events send(Mx), send(M2), ..., send(Mn) £ £s

such that:

send(Mx) -<s send(M2) -<s • • • -<s send(Mn),

then tt(Yl) > n.

Proof. Assume that send(Mi) -<s send(MJ+i) for i — 1, ..., n - 1. Since -<s is irreflex­

ive, we have Mi ^ Mj, when i ̂ j. Therefore, the set M' = {Mi,..., Mn} has exactly

n elements. Clearly, M' Q M. Now, any subset of M containing two or more distinct

elements of M' cannot be a round of M. This follows from Definition 6.5, by the

assumption: for all M,M' £ M', M ^ M', we have send(M) [f send(M'). Then any

round partition of M must contain at least n blocks. Hence by Lemma 6.1 it follows

that the smallest linear round partition of M must also contain at least n blocks. •

To obtain the best lower bound implied by Theorem 6.2, we obviously need to find

the longest chain of send events in £s. This is conveniently viewed in graph-theoretic

terms: we can view the poset (£s,<s) as an acyclic digraph G, with £s as the set

of vertices and <s as the set of edges. The longest chain of send events in £s then

corresponds to the longest path between any pair of vertices in G.

6.4 Case study

We shall now demonstrate our model by deriving lower bounds on rounds for several

classes of authenticated key exchange protocols informally analyzed by Gong [36].

6.4. Case study 109

The overall setting is as follows (cf. [36]): Two clients A and B share secret keys

with a trusted server S. The protocol aim is to distribute a fresh temporary session

key for use between the clients, followed by an optional handshake using the session

key to verify the presence of clients. In particular, each client must be convinced that

the message from where it gets the session key, as well as the message from which it

confirms the presence of the other client, have not been replayed. (Hereafter, we refer

to such messages as session key message and handshake message, respectively.) This

is achieved using either nonces or timestamps as freshness identifiers, distinguished as

nonce based - N B or timestamp based - TB. The session key goal is distinguished as

A O - authentication only, or A H - authentication with handshake. The candidates for

choosing the temporary key are distinguished as SO - server only, C O - one client only,

or C C - both clients. In the C C case, the temporary session key is suitably derived

from two individual partial key values respectively chosen by the clients.

The choice of the above setting parameters gives twelve protocol classes in all.

W e distinguish them using Gong's [36] shorthand notation: T B / N B + A O / A H +

SO/CO/CC. (Examples of concrete protocols for each class can be found in Gong's

paper [36].)

Since our model precludes synchronized clocks, it does not apply to the T B cases.

The remaining six asynchronous (NB) cases, labeled Case 7-12 in Gong's paper [36],

fit in with our model; we will consider each of these cases in turn below. First, we

recall some general assumptions made by Gong [36, p. 28]:

HI A client cannot send out a handshake message before it has received

the temporary key. Thus, the last handshake message cannot be sent

before all clients have received the temporary key.

H2 A client without a synchronized clock cannot accept a temporary key

before it sends out a nonce.

H3 The protocol responder (client) or the server cannot send out any

message (e.g., a nonce) before the protocol originator sends out a no­

tification message.

(For convenience we have labeled Gong's assumptions above.) Further, client A is

designated as the protocol originator and client B is called the protocol responder.

Some remarks on Gong's above assumptions are in order: (HI) implicitly reflects

that knowledge of the temporary key is necessary to form the handshake message.

(H2) is essentially captured in our model using Yahalom's Theorem 6.1. To see the

6.4. Case study 110

connection between the two, note that (H2) is informally based on the requirement

that a client be able to verify the freshness of session key messages [36, p. 27]; the

notion of A-precedence allows us to express such requirements precisely. Observe that

(H2) is simply a derived fact about the system, as implied by condition 1 of Yahalom's

Theorem 1. W e will directly capture (HI) and (H3) using the happened before relation.

(HI) applies to the three A H cases, whereas (H3) is common to all six cases.

Without loss of generality, we assume in the following that the generation event

of a message coincides with the send event of that message. For all protocol classes

considered below, we make the following event definition:

eA,o send of protocol start message at A

In the remainder of this section, we prove lower bounds on rounds for the six

protocol classes:

• NB+AO+SO

• NB+AH+SO

• NB+AO+CO

• NB+AH+CC

• NB+AO+CC

• NB+AH+CC

In our proofs, we make use of a Prolog procedure for maximal path finding in DA G s ,

which is shown in appendix D.

6.4.1 Protocol class NB+AO+SO

To specify this class, we define the following events:

es,i
es,2

eA,i

es.i

send of session key message for A at £
send of session key message for B at S

receive of session key message at A
receive of session key message at B

and capture the session key goal as follows:

C R 1 es,x A-precedes eA,x

C R 2 es,2 A-precedes eB,i

6.4. Case study 111

CR1 and C R 2 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there

exist send events eAi2 and eBf2, respectively, at A and B such that:

CR3 eA>2 -> es,x

CR4 es,i ->• eA,i

CR5 eB,2 -> e5)2

CR6 e5)2 -> eB,i

To satisfy (H3), we stipulate the following constraints:

CR7 eAi0-^es,i

CR8 eA,o ->• e£,2

W e collect the above events and happened before relationships to form the required

posets.

(£7,-<7):

£7 = {eAfi,eAti,eAt2,eB,i,eB,2,es,i,es,2}

-^ = {(eA,2, es,i), (eS>i, e^.i), (eB,2, e5,2), (e<?,2, eB,i), (eA,o, e5,i), (eA,o, es,2)}

The partial order shown above does not explicitly include every pair of events which is

ordered by -*, since the omitted pairs are deduced by the path-finding algorithm used

later. W e will tacitly follow this convention hereafter.

£] = {eAfi,eAt2,eB,2,es,i,es,2}

^l = {(eAt2,es,x),(
eB,2,es<2),(

eA,o,es,i),(eA,o,eBt2)}

We now use the path finding program given in appendix D to obtain the best lower

bound implied by Theorem 6.2. To save space, we only show the resulting output here:

MaxPath = [e(a,0),e(b,2),e(s,2)]

Bound = 3;

It is instructive to compare the maximal path found above with Gong's [36] informal

proof:

The responder [B] has to be notified before it can send out its nonce and

later receive a fresh message; thus three rounds is a lower bound, (p. 30)

6.4. Case study 112

6.4.2 Protocol class NB+AH+SO

We define the following additional events:

eAi3 send of handshake message for B at A

ejgt3 send of handshake message for A at B

eAA receive of handshake message at A

eBA receive of handshake message at B

and capture the handshake goal as follows:

CR9 eAi3 A-precedes ej3)4

CR10 eB,3 A-precedes eAA

We capture (HI) using the following constraints:

CR11 eA,i -* eA}3

CR12 eB,i -• eB,3

CR9 and CR10 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there

exist send events eB,5 and eA,5, respectively, at B and A such that:

CR13 eBi5 -+ eAi3

CR14 eA<3 ->• eBA

CR15 eA>5 -»• eB}3

CR16 eBi3 -+ eAA

To satisfy (H3), we stipulate the following additional constraint:

CR17 eAfi -> eB,5

(£8,-<*)••

£8 = £7 U{eAt3,eAt4,eAt5,eB>3,eBA,eBt5}

•<8 = ^7U

{(eA,i, eA,3), (eBti,eBi3), (eB>5, eA,3), (eA>3, eB,4), (eA)5, eB,3), (eBf3, e A 4) , (eA,0, eB,5

£? = {eA,o,eA,2, eA,3,eA,5,eB,2ieB>3,eBt5,es,i,es,2}

^ = {(eA)2, es,i), (es,i, eA,3), (eB)2, e5>2), (es,2, es,3), (eA,o, e5,i), (eA,o, eB,2),

(eB,5, eA,3), (eA,5, eB,3), (eA,0, eB,5)}

6\4. Case study 113

MaxPath = [e(a,0),e(b,2),e(s,2),e(b,3)]

Bound = 4;

The above path is simply an extension of the path found in the previous case. It is

again instructive to compare with Gong's [36] informal proof:

... at least one more round is needed than in Case 7 [NB+AO+SO] to

complete the handshake [after both clients have received the temporary

key]; thus four rounds is a lower bound ... (p. 30)

6.4.3 Protocol class NB+AO+CO

Here we assume that the protocol responder chooses the session key. (The case where

the protocol initiator chooses the session key can be similarly worked out.) To specify

this class, we define the following events:

es,i

eA,i

eB,i

send of session key message for A at S

receive of session key message at A

send of session key message for S at B

and capture the session key goal as follows:

CR1 es,i A-precedes eAji

CR2 e^i A-precedes eA,i

CR3 ejg.i verifiably-precedes es,i

CR1 and CR2 respectively imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2

that there exist send events eA>2 and eA<3 at A such that:

CR4 eAa -»• es,i

CR5 es,i -»• eA,i

CR6 eA,s -> eB,i

CR7 eB,i -> eA,x

CR3 implies by Proposition 6.1 that:

CR8 eB,i -> eSfi

To satisfy (H3), we stipulate the following constraints:

CR9 eA>0 -> es,i

CR10 eAfi -> eB,i

6.4. Case study 114

(£9,<>:

£ = {6,4,0,6,4,1,6^,2,6^,3,65,1,65,1}

-<!9 = {(eA,2, es,i), (es,i,eA,i), (eAt3, eB,i), (eB,i,eAA), (eB,i, es,i), (eA,o, es.i), (eA,o, eB,i)}

9 ,9\.
& <)

£9

^9

» e

{e.4,0, eA,2, eA,3, es,i, es,i}

{(eA,2, es,x), (eA,s, eB,i), (eB,i,es,x), (eAfi, es,i), (eA,o, eB>1)}

MaxPath = [e(a,3) ,e(b,l) ,e(s,l)]

Bound = 3;

MaxPath = [e(a,0),e(b,l),e(s,l)]

Bound = 3;

6.4.4 Protocol class N B + A H + C O

We introduce the following additional events:

eAA

eB,2

eA,5

eB,3

send of handshake message for B at A

send of handshake message for A at B

receive of handshake message at A

receive of handshake message at B

and capture the handshake goal as follows:

CR11 e^,4 A-precedes ej3,3

CR12 eS)2 A-precedes eA,5

We capture (HI) using the following constraint:

CR13 eA,x -> eAA

CR11 and CR12 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there

exist send events eB,4 and eAfi, respectively, at B and A such that:

CR14 eB,4 -*• eAA

CR15 e.4,4 -> es,3

CR16 eA,6 ->
 eB,2

CR17 eB,2 -» eA,5

6.4. Case study 115

To satisfy (H3), we stipulate the following additional constraints:

CR18 eAfi -> eB]2

CR19 eAfi -> eB)4

(£10,^10):

£10 = £9 U{eyi,4,eA,5,eA,6,eB,2,eB,3,eB,4}

^10 = ^9 U{(e^,i, eAA), (eB,4, eAA), (eAA, eB,3), (eAfi, eB,2), (eB?2, e^.s),

(eA,o,eBt2),(eAfi, eBA)}

(£l°,<°)

£]° =

x1.0 =

W , o , eAy2, eAt3, eAA, eA>6, eB,i, eB)2,
 eB,4, es.i}

{(eA,2, es,i), (es,i, e A | 4), (eA,3, eB,i), (eB,i, e A) 4), (eB,i, es,i), (eA,o, e<y,i):

(eA)0, eB,i), (eB,4, eA,4), (eA,6, eB,2), (eA,o, eB,2), (eA,o, eB)4)}

MaxPath = [e(a,3),e(b,l),e(s,l),e(a,4)]

Bound = 4;

MaxPath = [e(a,0),e(b,l),e(s,l),e(a,4)]

Bound = 4;

6.4.5 Protocol class NB+AO+CC

To specify this class, we define the following events:

es,i

es,2

eA,i

eA,2

eB,i

eB)2

send of partial session key message for A at S

send of partial session key message for B at S

send of partial session key message for S at A

receive of partial session key message at A

send of partial session key message for S at B

receive of partial session key message at B

and capture the session key goal as follows:

C R 1 es,i A-precedes eA,2

C R 2 ec 2 A-precedes eB,2

C R 3 eB,i A-precedes eA,2

C R 4 eA,x A-precedes eB,2

6.4. Case study 116

C R 5 eBii verifiably-precedes es,i

C R 6 eAA verifiably-precedes 65,2

C R 1 and C R 2 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there

exist send events eAi3 and eBi3, respectively, at A and B such that:

C R 7 eA,3 -> e5,i

C R 8 e5,i ->• eA,2

C R 9 e B i 3 -• es,2

CR10 eS)2 ->• eB?2

C R 3 and C R 4 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there

exist send events eAA and eB)4, respectively, at A and B such that:

CR11 eAA ->• eB,i

CR12 eB)1 -+ eA,2

CR13 eBi4 -• eA,i

C R 1 4 eA,x -> eB,2

C R 5 and C R 6 imply by Proposition 6.1 respectively the following:

CR15 eB,i -» es,i

CR16 eA,i -> eS)2

To satisfy (H3), we stipulate the following constraints:

C R 1 7 eAfi ->• eB,i

CR18 eA;0 -+ eB,3

CR19 eA)0 -»• eB,4

(^11,-<11):

£11 = {eA,o,eA,i,eA,2,eA,3,eA,4,eBji,eB)2,eB,3,eB,4,es,i,es,2}

^ n = {(eA(3, e S) 1), (es,i, e A) 2), (eB,3, es,2), (es,2, eB,2), (eA,4, eB,i), (eB>1, e A > 2),

(eB,4, eA,i), (eA,i, e B) 2), (eB,u
 es,i), (eA,i, e5)2), (eA)0, eB,i), (eAfo, e B) 3),

(eA,o,eB)4)}

£s
n = {eA,o,eA,i,eA,3,eA,4,eBii,eBi3,eB)4,e5,i,es,2}

^ i 1 = {(eA)3, e5,i), (eB,3, e5|2), (eA;4, eB,i), (eB)4, eA,i), (eB)i, e5,i), (eA,u
 e5,2),

(eA,o, eB,i), (eA,o, e B) 3), (eA,o, eB,4)}

6.4. Case study 117

MaxPath = [e(a,0),e(b,4),e(a,l),e(s,2)]

Bound = 4;

6.4.6 Protocol class NB+AH+CC

We introduce the following additional events:

eA,5 send of handshake message for B at A

eB)5 send of handshake message for A at B

eAje receive of handshake message at A

eB,6 receive of handshake message at B

and capture the handshake goal as follows:

CR20 eA;5 A-precedes eB,6

CR21 eB)5 A-precedes eA)6

We capture (HI) using the following constraints:

CR22 eAi2 -)• eA)5

CR23 eB)2 -> eB>5

CR20 and CR21 imply by Theorem 6.1, Proposition 6.1, and Proposition 6.2 that there

exist send events eB)7 and eAJ, respectively, at B and A such that:

CR24 eB,7 -)• eAj5

CR25 eA,5 -> es,6

CR26 e A) 7^e B, 5

CR27 eB,5 -> eA>6

To satisfy (H3), we stipulate the following additional constraints:

CR28 eA,0 -• eB,5

CR29 eA,0 -• eB,7

(£12,^12):

£12 = £UU

{eA,5, eA,6, eA,7, eB,5, eB,6, eB,7}

-^ = ^ n U

{(eA,2, eA,s), (eB,2, eB,5), (eB)7, eA,s), (eA,5, eBfi), (&A,r, eB)s), (eB,s, eA)6)

(eA,o,eB,5),(eA,o,eB,7)}

6.4. Case study 118

{sr,<2y-

£]2 = {eA,o, eAA, eA)3, eA,4, eAi5, eA)7, eB>1, eB)3, eB,4, eB,5, eB,7, es,i, es,2}

~^s — {(e^,3, es,x), (es,i, e A, 5), (eB,3, e S) 2), (e5)2, e B, 5), (eA,4, eB,i), (eB)4, eA,i),

(eB,i, es,i), (eA,i, e5,2), (eA,0, eB,i), (eA,o, e B, 3), (eA)0, e B, 4), (eB)7, e A) 5),

(eA,7, e B, 5), (eA>0, e B, 5), (eA)0, eB,7)}

MaxPath = [e(a,0),e(b,4),e(a,l),e(s,2),e(b,5)]

Bound = 5;

Chapter 7

Conclusions

The subtlety which underlies reasoning about authentication protocols is well-recognized

in the literature. It is also recognized that both formal as well as informal methods are

useful to tackle the underlying subtlety [61], [62]. Authentication logics constitute a

significant class of formal methods for reasoning about protocols. This thesis lays some

semantic foundations for such logics. It also contributes to reasoning about efficiency

metrics for protocols. Appendix E illustrates the use of an existing informal method

for protocol analysis and design due to Boyd and Mao [45]. W e show how it can be

heuristically used to explain flaws in several well-known protocols and to design new,

improved protocols. Below we look back on the main developments of this thesis and

suggest some directions for future work.

7.1 Summary

In Chapter 1 we review several existing authentication logics and discuss some of

the motivations underlying their evolution. In Chapter 2 we stress the need for a

semantic basis for authentication logics. W e make our case by means of some convincing

examples based on a well-known authentication logic of Gong, Needham and Yahalom;

our intention is not criticize their logic but only to draw attention to the problematic

nature of semantically unsupported syntactic definitions. In Chapter 3 we modify the

logic of Gong, Needham and Yahalom to obtain a modified logic with the property

that derivations in the logic are finite. This allows a direct automation of the modified

logic using forward-chaining. In Chapter 4 we develop a model to explain some of the

notions that existing logics attempt to capture, not in terms of any logical formalism

but within a framework which we can appeal to on independent grounds. One of the

virtues of our model is that it forces us to make explicit various assumptions that

are needed to formally establish the properties which are usually associated with the

above notions. In Chapter 5 we exploit the model developed earlier to help devise a new

119

7.2. Future work 120

authentication logic which is sound with respect to that model. The soundness theorem

established there gives us confidence that our logic correctly models in syntactic terms

the properties which we wish to capture. The conventional metalogical machinery we

employ in carrying out the proof of the soundness theorem should enable comparisons

of the logic with more traditional logics. W e emphasize that the proposed logic is rather

modest in regards to the number of features it offers for protocol analysis: it does not

capture many interesting notions found in other logics. However, it stands out from

these logics in a unique way—it is accompanied by a rigorous proof of soundness. It is

our understanding that some notable researchers have lately expressed concern about

the lack of solid foundations for authentication logics [63], [64]. W e believe our work

represents a positive step in this direction. Indeed, in the words of Tuttle [28],

".. .let's go back to basics and concentrate on [emphasis ours] meaningful

models and definitions. Then let's see what new logics these definitions

suggest."

In Chapter 6 we develop a general model for reasoning about the round complexity

of authentication protocols. The model draws upon some existing notions of causality

to build a definition of the metric number of rounds. The upshot of our definition is a

key theorem that yields lower bounds on the number of rounds.

7.2 Future work

There are a number of directions to consider for future work. This includes modeling

of the notion of recognizability using the computational model developed in Chapter 4.

A preliminary attempt at this is documented in Appendix F. However, it remains to

be seen how the notion of recognizability can be integrated into the logic developed in

Chapter 5. It is not clear that the traditional possible worlds semantics for belief that

we have adopted best fits our purposes. It would be worthwhile to find a more natural

semantics for belief. An interesting problem is to investigate whether the notion of

recognizability holds the key to defining a more natural semantics for belief.

Although we have used the model proposed in Chapter 6 to verify the correctness

of some existing bounds on rounds from the literature, the model should also provide

a means to investigate bounds for more complex protocol classes. It would also be

desirable to make our model applicable to a synchronous setting. Such a move seems

feasible since the definitions that we make to capture the notions related to rounds

7.2. Future work 121

are essentially independent of the assumption that the system is asynchronous. A

theoretically stimulating direction is to provide a formal semantics for the notion of

verifiable causality; this would compel us to develop a more solid foundation for the

model proposed in Chapter 6.

Bibliography

[1] M. Burrows, M. Abadi, and R. Needham, "A Logic of Authentication," Tech.

Rep. 39, Systems Research Center, Digital Equipment Corporation, Palo Alto,

California, Feb. 1989. Revised Feb. 1990.

[2] L. Gong, R. Needham, and R. Yahalom, "Reasoning about Belief in Cryptographic

Protocols," in Proc. IEEE Symposium on Security and Privacy, (Los Alamitos,

California), pp. 234-248, IEEE Computer Society Press, May 1990.

[3] L. Gong, Cryptographic Protocols for Distributed Systems. PhD thesis, Cambridge

University, U.K., 1990.

[4] K. Gaarder and E. Snekkenes, "Applying a Formal Analysis Technique to the

CCITT X.509 Strong Two-Way Authentication Protocol," Journal of Cryptology,

vol. 3, pp. 81-98, 1991.

[5] R. Kailar and V. D. Gligor, "On Belief Evolution in Authentication Protocols,"

in Proc. IEEE Computer Security Foundations Workshop IV, (Los Alamitos, Cal­

ifornia), pp. 103-116, IEEE Computer Society Press, 1991.

[6] P. C. van Oorschot, "Extending Cryptographic Logics of Belief to Key Agreement

Protocols (Extended Abstract)," in Proc. First ACM Conference on Computer

and Communications Security, pp. 232-243, Nov. 1993.

[7] W. Mao and C. Boyd, "Towards Formal Analysis of Security Protocols," in Proc.

of Computer Security Foundations Workshop VI, pp. 147-158, IEEE Computer

Society Press, 1993.

[8] M. Abadi and M. R. Tuttle, "A Semantics for a Logic of Authentication," in

Proceedings of the Tenth ACM Symposium on Principles of Distributed Computing,

pp. 201-216, A C M Press, August 1991.

122

BIBLIOGRAPHY
123

[9] P. F. Syverson and P. C. van Oorschot, "On Unifying Some Cryptographic Proto­

col Logics," in Proc. IEEE Symposium on Security and Privacy, pp. 14-28, May

1994.

[10] G. Wedel and V. Kessler, "Formal Semantics for Authentication Logics," in Com­

puter Security - ESORICS 96 (E. Bertino, ed.), vol. 1146 of Lecture Notes in

Computer Science, pp. 219-241, Springer-Verlag, 1996.

[11] R. M. Needham and M. D. Schroeder, "Using Encryption for Authentication in

Large Networks of Computers," Communications of the ACM, vol. 21, pp. 993-

999, Dec. 1978.

[12] M. Burrows, M. Abadi, and R. Needham, "A Logic of Authentication," ACM

Trans, on Computer Systems, vol. 8, pp. 18-36, Feb. 1990.

[13] D. E. Denning and G. M. Sacco, "Timestamps in Key Distribution Protocols,"

Communications of the ACM, vol. 24, pp. 533-536, Aug. 1981.

[14] M. Burrows, M. Abadi, and R. Needham, "The Scope of a Logic of Authenti­

cation," in Distributed Computing and Cryptography (J. Feigenbaum, ed.), no. 2

in DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

pp. 119-126, A M S k A C M Press, 1991.

[15] N. Heintze and J. D. Tygar, "Timed Models for Protocol Security," Tech. Rep.

CMU-CS-92-100, Carnegie Mellon University, School of Computer Science, Pitts­

burgh, PA 15213, Jan. 1992.

[16] U. Engberg, "Analyzing Authentication Protocols," Tech. Rep. TR DAIMIIR-97,

Aarhus University, Denmark, 1990.

[17] C. A. Boyd, "Hidden Assumptions in Cryptographic Protocols," in Proc. IEE,

no. 6, pp. 433-436, Nov. 1990.

[18] V. D. Gligor, R. Kailar, S. Stubblebine, and L. Gong, "Logics for Cryptographic

Protocols - Virtues and Limitations," in Proc. IEEE Computer Security Foun­

dations Workshop IV, (Los Alamitos, California), pp. 219-226, IEEE Computer

Society Press, 1991.

[19] D. M. Nessett, "A Critique of The Burrows, Abadi and Needham Logic," ACM

Operating Systems Review, vol. 24, pp. 35-38, Apr. 1990.

BIBLIOGRAPHY
124

[20] M. Burrows, M. Abadi, and R. Needham, "Rejoinder to Nessett," ACM Operating

Systems Review, vol. 24, pp. 39-40, Apr. 1990.

[21] L. Gong, "Variations on the Themes of Message Freshness and Replay," in Pro­

ceedings of the Computer Security Foundations Workshop VI, (Los Alamitos, Cal­

ifornia), pp. 131-136, IEEE Computer Society Press, 1993.

[22] K. Gaarder and E. Snekkenes, "On The Formal Analysis of PKCS Authentication

Protocols," in Advances in Cryptology - Auscrypt'90 (J. Seberry and J. Pieprzyk,

eds.), vol. 453 of Lecture Notes in Computer Science, pp. 106-121, Springer Verlag,

1990.

[23] R. A. Rueppel and P. C. van Oorschot, "Modern key agreement techniques,"

Computer Communications, vol. 17, pp. 458-465, July 1994.

[24] C. Boyd and W. Mao, "On a Limitation of BAN Logic," in Advances in Cryptology

- EUROCRYPT '93 (T. Helleseth, ed.), no. 765 in Lecture Notes in Computer

Science, pp. 240-247, Springer Verlag, 1993.

[25] A. Mathuria, R. Safavi-Naini, and P. Nickolas, "Some Remarks on the Logic of

Gong, Needham and Yahalom," in Proceedings of the 1994 International Computer

Symposium, (National Chiao Tung University, Taiwan), pp. 303-308, December

1994.

[26] P. F. Syverson, "The Use of Logic in the Analysis of Cryptographic Protocols," in

Proc. IEEE Symposium on Security and Privacy, pp. 156-170, June 1991.

[27] P. F. Syverson, "Knowledge, Belief, and Semantics in the Analysis of Crypto­

graphic Protocols," Journal of Computer Security, vol. 1, no. 3, pp. 317-334,

1992.

[28] M. R. Tuttle, "Flaming in Franconia: Build Models, not logics." Note on the

panel discussion on the Use of Formal Methods in the Analysis of Cryptographic

Protocols, Computer Security Foundations Workshop V, June 1992.

[29] R. J. Anderson, "UEPS - A Second Generation Electronic Wallet," in Computer

Security - ESORICS 92 (Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, eds.),

pp. 411-418, Springer-Verlag, 1992.

BIBLIOGRAPHY
125

[30] R. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Sig­

natures and Public-key Cryptosystems," Communications of the ACM, vol. 21,

pp. 120-126, Feb. 1978.

[31] "National Bureau of Standards. Data Encryption Standard." Federal Information

Processing Standards, Pub. 46, Washington, D.C., Jan. 1977.

[32] A. Mathuria, R. Safavi-Naini, and P. Nickolas, "On the Automation of GNY

Logic," in Proceedings of the Eighteenth Australasian Computer Science Confer­

ence (ACSC '95) (R. Kotagiri, ed.), vol. 17:(1) of Australian Computer Science

Communications, pp. 370-379, February 1995.

[33] E. A. Campbell and R. Safavi-Naini, "On Automating The BAN Logic of Au­

thentication," in Proc. 15th Australian Computer Science Conference (ACSC-15),

1992.

[34] R. C. Hauser and E. S. Lee, "Verification and Modelling of Authentication Proto­

cols," in Computer Security - ESORICS 92 (Y. Deswarte, G. Eizenberg, and J.-J.

Quisquater, eds.), no. 648 in Lecture Notes in Computer Science, pp. 141-154,

Springer-Verlag, 1992.

[35] A. Mathuria, "Automating BAN Logic," Master's thesis, University of Wollon­

gong, Department of Computer Science, 1994.

[36] L. Gong, "Lower Bounds on Messages and Rounds for Network Authentication

Protocols," in Proc. First ACM Conference on Computer and Communications

Security, pp. 26-37, Nov. 1993.

[37] L. Gong, "Efficient network authentication protocols: Lower bounds and opti­

mal implementations," Tech. Rep. 94-15, SRI Computer Science Laboratory, C A

94025, U. S. A, Oct. 1994.

[38] L. Gong, "Efficient network authentication protocols: lower bounds and optimal

implementations," Distributed Computing, vol. 9, no. 3, pp. 131-145, 1995.

[39] A. Mathuria, R. Safavi-Naini, and P. Nickolas, "Causality, partial orders and lower

bounds on rounds for a class of authentication protocols," in Proceedings of the

Twentieth Australasian Computer Science Conference (ACSC'97) (M. Patel, ed.),

vol. 19:(1) of Australian Computer Science Communications, pp. 27-36, February

1997.

BIBLIOGRAPHY 126

[40] R. Yahalom, "Optimality of Asynchronous Two-Party Secure Data-Exchange Pro­

tocols," Journal of Computer Security, vol. 2, no. 2-3, pp. 191-209, 1993.

[41] R. Yahalom, "Optimality of Multi-Domain Protocols," in Proc. First ACM Con­

ference on Computer and Communications Security, pp. 38-48, Nov. 1993.

[42] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System,"

Communications of the ACM, vol. 21, pp. 558-565, July 1978.

[43] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts and

Design, ch. 10. Reading, Massachusetts: Addison Wesley, second ed., 1994.

[44] D. F. Stanat and D. F. McAllister, Discrete Mathematics in Computer Science.

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1977.

[45] C. Boyd and W. Mao, "Designing Secure Key Exchange Protocols," in Computer

Security - ESORICS 94 (D. Gollmann, ed.), vol. 875 of Lecture Notes in Computer

Science, pp. 93-105, Springer-Verlag, 1994.

[46] C. Boyd and A. Mathuria, "Systematic design of key establishment protocols

based on one-way functions," IEE Proceedings - Computers and Digital Tech­

niques, vol. 144, pp. 93-99, Mar. 1997.

[47] A. Mathuria, "Addressing weaknesses in two cryptographic protocols of Bull, Gong

and Sollins," Electronics Letters, vol. 31, pp. 1543-1544, Aug. 1995.

[48] L. Gong, "Using One-Way Functions for Authentication," Computer Communi­

cation Review, vol. 19, pp. 8-11, Oct. 1989.

[49] R. Molva, G. Tsudik, E. V. Herreweghen, and S. Zatti, "KryptoKnight Authen­

tication and Key Distribution System," in Computer Security - ESORICS 92

(Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, eds.), vol. 648 of Lecture Notes

in Computer Science, pp. 155-174, Springer-Verlag, 1992.

[50] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung,

"The KryptoKnight Family of Light-Weight Protocols for Authentication and Key

Distribution," IEEE/ACM Transactions on Networking, vol. 3, pp. 31-41, Feb.

1995.

[51] R. C. Merkle, "A Fast Software One-Way Hash Function," Journal of Cryptology,

vol. 3, pp. 43-58, Sept. 1990.

BIBLIOGRAPHY 127

[52] R. Anderson, "The Classification of Hash Functions," in Fourth IMA Conference

on Coding and Cryptography, pp. 83-93, 1994.

[53] T. A. Berson, L. Gong, and T. M. A. Lomas, "Secure, Keyed, and Collisionful

Hash Functions." Included in technical report SRI-CSL-94-08, Computer Science

Laboratory, SRI International, Menlo Park, California, May 1994.

[54] B. Preneel, R. Govaerts, and J. Vandewalle, "Hash Functions for Information

Authentication," in Proceedings of the 6th Annual European Computer Conference

(CompEuro'92) - Computer Systems and Software Engineering (P. Dewilde and

J. Vandewalle, eds.), pp. 475-480, IEEE Computer Society Press, 1992.

[55] R. L. Rivest, "The M D 5 message-digest algorithm." Request for Comments (RFC)

1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

[56] C. Boyd and W . Mao, "Design and Analysis of Key Exchange Protocols via

Secure Channel Identification," in Advances in Cryptology - ASIACRYPT '94

(J. Pieprzyk and R. Safavi-Naini, eds.), vol. 917 of Lecture Notes in Computer

Science, pp. 171-181, Springer-Verlag, 1995.

[57] D. Denning, Cryptography and Data Security. Reading, Mass.: Addison-Wesley,

1982.

[58] M. Abadi and R. Needham, "Prudent Engineering Practice for Cryptographic

Protocols," in Proceedings of the 1994 IEEE Symposium on Security and Privacy,

(Los Alamitos, California), pp. 122-136, IEEE Computer Society Press, may 1994.

[59] J. A. Bull, L. Gong, and K. R. Sollins, "Towards Security in an Open Systems

Federation," in Computer Security - ESORICS 92 (Y. Deswarte, G. Eizenberg,

and J.-J. Quisquater, eds.), vol. 648 of Lecture Notes in Computer Science, pp. 3-

20, Springer-Verlag, 1992.

[60] C. Mitchell, "Limitations of Challenge-Response Entity Authentication," Elec­

tronic Letters, vol. 25, pp. 1195-1196, August 1989.

[61] M. Abadi and R. Needham, "Prudent engineering practice for cryptographic pro­

tocols," IEEE Transactions on Software Engineering, vol. 22, pp. 6-15, Jan. 1996.

[62] R. Anderson and R. Needham, "Programming Satan's Computer," in Computer

Science Today: Recent Trends and Developments (J. van Leeuwen, ed.), vol. 1000

of Lecture Notes in Computer Science, pp. 426-440, Springer-Verlag, 1995.

BIBLIOGRAPHY 128

[63] L. Paulson and R. Needham, "Authentication Logics: New Theory and Imple­

mentations." Computer Laboratory, University of Cambridge, E P S R C research

proposal GR/K77051. http://www.cl.cam.ac.uk/users/lcp/Auth.

[64] L. Paulson, "Proving Properties of Security Protocols by Induction," Tech. Rep.

409, University of Cambridge, Computer Laboratory, Dec. 1996.

[65] I. Bratko, Prolog programming for artificial intelligence. Addison-Wesley Publish­

ers Ltd., Second ed., 1990.

http://www.cl.cam.ac.uk/users/lcp/Auth

Appendix A

B A N logic rules

A.l Message-meaning rules

P^Q&P,P< {X}K
P^Q^X

P£&Q,P< {X}K-i

P\E,Q^P,P<(X)y

P£Q\-x

A.2 Nonce-verification rule

P^j(X),P^Q^X

A.3 Jurisdiction rule

P^Q\^X,P^Q^X

P^X

A.4 Belief rules

P |= X, P j= Y P^(X,Y) P^Q^(X,Y)
P^(X,Y) F M P^Q^X

A.5 Utterance rule

P^Q^(X,Y)

P^Q^X

129

A.6. Message seeing rules

A.6 Message seeing rules

P < (X, Y)

P<X

P < (X)Y
P<X

P\EEQ&P,P« {X}K

p

p

p

N&p,
p<

N^Q,

<x

p<

\X

p<

{X}K

{X}K-,

P<X

A.7 Freshness rule

P N jKjO
P^l(X,Y)

A.8 Shared key and shared secret rules

P^R&R' P^Q^R&R'

P^R' &R P^Q^R'& R

P^R^R' P^Q^R^R'

P^R'^R P^Q^R'^R

A.9 Supplementary rules

P\^R\^Q&P, P<{X}K
P<X

P^Q\^H(X), P*X

P\=Q^X

P^Q^H(Xx,...,Xk), P<Xx,...,P<Xk
P^Q^(Xx,...,Xk)

Appendix B

G N Y logic rules

B.l Rationality rule

If ^- is a rule, then for any principal P, so is p I c
x,

B.2 Being-told rules

p< *x
Tl

T2

T3

T4

T5

T6 P.X

P<X

P < (X, Y)

P<X

P<{X}K, P3K

P<X

P<{X}+K, P3-K

P<X

P<F(X,Y), P3X

P<Y

P<{X}-K, P3+K

B.3 Possession rules

p<x
PI

P2

PBX

P3X, PBY

PB(X,Y), P3F(X,Y)

P 3 (X, Y)
P 3 P3X

131

B.4. Freshness rules

P4

P5

P6

P7

P8

P3 X

P 3 H(X)

P3 F(X,Y), P3X

P3Y

P 9 K, P3X
P 3 {X}K, P 3 {xyK>

P9+AT, PBX
P 3 {X}+K

P 3 -K, P3X

P 3 {X}-K

B.4 Freshness rules

P N i(*)
P\=t{X,Y), P\=ftF(X))

P M |I(X), P 3 K

Fl

F2

F3

F4

F5

F6

F7

F8

F9

F10

p |= i({x}K), P N KixVK
1)

P \= H(JQ, P 3 +AT
P |= |1({X}+K)

P rs H(X), P 3 -JT
P |= $({X}-K)

P N tt(+^)
P N »(-#)

P N tt(-^)
P N «(+*)
P }= cb(X), P \= t{K), P3K

P NK{X}K), P N»({*}*)

p F PM

P }= cb(X), P N »(-*), P 3 -A
Plilpru)

~FR(^mr

B.5. Recognizability rules ,,,

P N tt(#PO), P 3 ff(X)
P N »(*)

B.5 Recognizability rules

Rl P ^ #*)
P M (* , n p^4>(F(x))

R2

R3

R4

R5

R6

P N #*), P 3 K
P N #{*}*), P N </>({*}?)

PNffl, P3+A-
p 1= ̂ ({X}+K)

p 1= </>({*}-*)

P |= <p(X), P3X
P |= #ff (X))

P 3 #(X)

P N 4>(X)

B.6 Message interpretation rules

P < *{*}*, P 3 JT, P N ^ Q , P N fl*), P N tt(AT, fl*)
P ̂ Q h X, P N Q h {*}*, P N G 3 A-

12

13

14

15

16

P <J *{X, <S>}+K, P 3 (-K, S), P N ^ P,

P^P&Q, P^^>(X,S), P^j(X,S,+K)

p^QY- {x,<s>), P N Q h {*,<£>}+*, P |= Q 3 +ir

P< *H(X,<S>), P3(X,S), P^PAQ, P£$(X,S)

P^Q\^(X,<S>), P\=Q^H(X,<S>)

P<{X}-K, P3-rK, P^Q, P^cb(X)

P^Q^X, P ^ Q h {X}-K

P<{X}-K, P3+K, P\Et$Q, P^cb(X), P£j(X,+K)

P^Q3(-K,X)

P^Q^X, P N ilffl

P^Q3X

B. 7. Jurisdiction rules
134

IT pNQh(^y)
PWQ^x

B.7 Jurisdiction rules

P ^ Q ^ C PNQNc
p^c"

J2 PN<5K<5N *, PNQh(*->c), p̂)i(x)
PFQFC

J3 P N <3 b <2 N *, PNQNQNC
P~WQWC

B.8 Never-originated-here rules

lv P < JX}K, P3K, P^phQ, P |= flX), P |= (g)(P)

12'

13'

P<{X,<S>}+K, P3(S,-K), P^
+4P,

P\=P&Q, P |= flX,5), P |= ®(P)
p t= Q M*, <5>), P N Q h {*, <̂ >}+x

P<P/(X,<5>), P9(X,5), P^PAQ, P$=<b(X,S), P£®(P)

P^Q\^(X,<S>), P |= Q (~ # (*, < S >)

Appendix C

C.l Being-told rules

Tl

T2

T3

T4

T5

T6

T7

P< *X
P<X

P < (X, Y)

P<X

P<{X}K, P3K

P<X

P<{X}+K, P3-K

P<X

P<F(X,Y), P3X

P<Y

P<{X}-K, P3+K

P<X

P<X~~>C

P<X

C.2 Possession rules

p<x
PI

P3

P5

P 3 X

P 3 (X, Y)
P3X

P9 F(X,Y), P3X
P3Y

Modified G N Y logic

135

C.3. Freshness rules

C.3 Freshness rules

F, PN«W, P3(x,y)

p~¥Wx)

F1„ P N IK*), P 3 F(X)
P N «(F(X))

P N tt(*), P 3 AT, P 9 {X}x
^ N «({*}*-)

p2„ P |= »W, P 3 #, P 3 {X}^
1

pWmxW)

Fr P N tt(*), P 3 +A-, P 3 {X}+K
P N »({*}+*)

P4, P N ttffl, P 3 -K, P 3 {X}_K
P N K{x}-K)

P \= iJ(+AQ, P 3 -A-
P N tt(-̂)

PN»(-n P3+A-
P N tt(+Ar)

F7, P N fl*), P N fl W, P 3 ^ P 9 {X}y
P N »({*}*)

F7„ P N fl*), P N fl W, P 3 K, P3 {X}J
P N «({*}*)

PR, P N fl*), P N fl(+*Q, P 3 -rK, P3 {X}+K
P |= Jt({X}+Ar)

pq/ P N fl*), P N fl(-/Q, P 3 -K, P 3 {*}_K
p N *({*}-*)

pin, P N fl(*), P 3 *, P 3 g(X)
p |= t)(p;(x))

F11, P NITO), -P 3 ff(X), P 3 X
PM(*)

C.4. Recognizability rules 1 „7

C.4 Recognizability rules

R1, PNfl*), P3(*,y)
PNfl*,^)

R1„ P N fl*), P 3 P(X)
PNflP(*))

R2'

R2"

R3'

R4'

R5'

P N fl*), P 3 K, P 3 {X}K
P N fl{*k)

P N fl*), P 9 AT, P 3 {X}^1

^ N fl{*}?)

P |= flX), P 3 +AT, P 9 {X} + g

P N fl{*W)

P E= flX), P 9 -K, P 3 {X}_K

P N fl{*}-*)

P |EE flX), P3X, P3 H(X)

P \= cf>(H(X))

C.5 Message interpretation rules

n

12

13

14

15

16

P< *{X}K^C, P3K, P^P^Q, P^fl*), PNfl(*,̂)
P^Q\^X, P^Qh {X}K ̂ C, P^Q3K

P < *{X, <S>}+^ ~> C, P 3 (-K, S), P (=t? P,

P N ^ g , PNfl*,£), P N tt(*, fr+JQ

P< *H(X,<S>)^>C, P3(X,S), P\EEP&Q, Pf=jl(X,S)

P N £ h (*> <^>), P N Q h #(*, <s>) ~> c

P < {X}_K ̂ C, P 3 +AT, P ̂ Q, P M fl*)
p^Qh*, P N Q h {X}-K -> c

P<{X}_K, P3+AT, P^tfQ, P^flX), P̂ jj(X,+A-)
PMQ3(-A^,X)

p ̂ Q h*, ̂Nfl(*)
P^Q3X

C.6. Jurisdiction rules
138

P^Q^(X,Y)

P^Q\-X

P^Q^X^C

P N Q h *

I9 P^Q^X^(C,C)

P\EEQ \^X^C

C.6 Jurisdiction rules

c, P\

P^C

JI p N Q K c, P |= Q N c

J2 PNlMi.*' P N Q h (*- c), P N »(*)

J3

P^Q^C

C.7 Never-Originated-Here rules

; P < {X}K ^C, P3K, P^P&Q, P |= flX), P ^ ®(P)
II

12'

p^Qh*, PNQh- {*k -> c

P«{X,<S>}+*^C, P 3(5,-1^, P:M^P,
P ^ P & Q , p^flx,s), P ^ (P)

13

p ̂ g h (*, <<?>), P N Q h {*, <<?>}+* - c

, P<H(X,<S>)^C, P3(X,S), P^P^Q, P\=<f>(X,S), P|=®(P)
P^Q\^(X, <S>), P \= Q h H(X, <S>) ~> C

Appendix D

Path finding program

The following Prolog procedure for path finding in DAGs is adopted from the text by

Bratko [65] with slight simplifications. It employs a brute force technique to determine

maximal paths, and is thus highly inefficient. We nonetheless use it for the sake of

simplicity.

*/, lbr(Digraph, MaxPath, Bound):

'/, MaxPath is the longest path between

V, any pair of vertices in Digraph

lbr(Digraph, MaxPath, Bound) :-

path(_, _, Digraph, MaxPath, Bound),

not((path(_, _, Digraph, _, Cost),

Cost > Bound)).

'/. path (A, Z, Digraph, Path, Cost):

X Digraph is represented as

'/, digraph (Nodes, Edges), where

'/, Nodes is a list of vertices and

'/, Edges is a list of edges in Digraph

y

°/0 Path is an acyclic path with

•/, cost Cost from A to Z in Digraph

'/, p(X, Y) means there is an edge

'/. from X to Y in Digraph

path(A, Z, Digraph, Path, Cost) :-

139

140

pathl(A, [Z], 1, Digraph, Path, Cost).

pathl(A, [AlPathl], Costl, _,

[AlPathl], Costl).

pathl(A, [YlPathl], Costl,

digraph(Nodes, Edges), Path, Cost) :-

member(p(X, Y), Edges),

Cost2 is Costl + 1,

pathl(A, [X, YlPathl], Cost2,

digraph(Nodes, Edges), Path, Cost).

Appendix E

An informal approach to the analysis and
design of some key exchange protocols

In this appendix, we investigate the security of several existing key exchange protocols

using a methodology proposed by Boyd and Mao [45]. The main idea behind this

methodology is to view the security of key exchange protocols in terms of two design

principles based on confidentiality and authenticity properties. The purpose of this

appendix is to demonstrate the effectiveness of the above view by means of case studies

of some published protocols. Specifically, we will analyze several notable key exchange

protocols from the literature that are based on one-way functions. The analyses we

carry out provide valuable insight into the working of the protocols and reveal security

weaknesses in some of the protocols. Alternative protocols will be devised that can not

only be shown to be secure in a specific sense, but which are also simple and elegant

when compared with the protocols analyzed.

(The contents of this appendix are based on a recent work co-authored with Colin

Boyd [46], and an earlier work by the author [47]. Colin Boyd provided an unpublished

manuscript to the author, which formed a substantial basis for the joint work with the

author.)

E.l Introduction

Key exchange protocols involve an exchange of messages between two or more users

with the aim of establishing a shared key among the users. Such protocols employ

cryptographic functions to provide confidentiality and authenticity of the distributed

keys. A variety of such functions are available in practice, and it is important to select

them judiciously while designing protocols. Although the majority of key exchange

protocols found in the literature use either symmetric cryptosystems or public key

cryptosystems, such protocols can equally be designed using one-way hash functions.

The idea of using one-way hash functions as a basis for key exchange protocols appears

141

E.l. Introduction 142

to be due to Gong [48]. It has also been adopted by IBM in their KryptoKnight

authentication and key distribution system [49], [50].

A one-way hash function / can be characterized as follows (cf., e.g., Merkle [51]):

(1) Given x it is easy to calculate the hash value f(x); and (2) Given a hash value y,

it is computationally infeasible to find a value x such that f(x) = y. Moreover, the

function produces a fixed length output, but allows an input value of arbitrary length.

As noted by Anderson [52] and by Berson et al. [53], the above characterization of a

one-way hash function is not adequate for the security of key exchange protocols of the

type suggested by Gong and other similar protocols found in the literature. In partic­

ular, such protocols make use of a secret value in the input to the function, in a keyed

manner, so there are additional constraints governing the use of the function that do

not follow from the above definition, and which must therefore be made explicit. The

desired functions are commonly labeled as keyed hash functions or message authenti­

cation codes (MACs) [54]. The exact properties required of a keyed hash function may

well be application specific; however, for the protocols we are concerned with here it

appears suitable to assume the properties of a Secure Keyed One-Way Hash Function

(S K O W H F) defined by Berson et al. [53]. For convenience we recall their definition

below.

A function g() that maps a key k and a second bit string x to a string of a fixed

length is a S K O W H F if it satisfies five additional properties:

1. Given k and x, it is easy to compute g(k,x)\

2. Given k and g(k,x), it is hard to compute x;

3. Given k it is hard to find two values x and y such that g(k,x) = g(k,y), but

A. Given (possibly many) pairs x and g(k,x), it is hard to compute k;

5. Without knowledge of k, it is hard to compute g(k, x) for any x.

W e also assume that the mapping from input to output has the property that it is

impossible to predict any portion of the output, other than by computing the function.

It is possible to construct keyed hash functions using conventional unkeyed hash

functions such as M D 5 [55]. There are some potential advantages of using one-way hash

functions instead of conventional cryptosystems in designing key exchange protocols.

Namely, that hash function implementations may have less export restrictions than

conventional cryptosystems and may also be faster as compared to such cryptosystems.

E.2. Channels for secure key exchange 143

E.2 Channels for secure key exchange

We begin by briefly reviewing the methodology due to Boyd and Mao [45].

Cryptographic transformations can broadly be viewed to provide the following two

primitive security services:

• Confidentiality of a message guarantees that only the authorized users will be

able to read it.

• Authenticity of a message guarantees that only an authorized user could have

created it.

The authorized users here are defined by their possession of the required cryptographic

keys. The above two properties form the basis for the notion of abstract channels of

confidentiality or authentication that may be used to characterize a secure key exchange

protocol. The notation

S ̂ A:m

denotes that m is sent by S over a confidentiality channel to A. It implies S knows no

one except A could possibly read m. The notation

A^-S:m

denotes that m is received by A over an authentication channel from S. It implies

A knows no one except S could have possibly sent m. The above notations differ

fundamentally from the conventional notation

S ->• A : m

which only indicates that m is meant to be received by A supposedly from S. It does

not imply that m remains confidential to A or that S has actually sent m.

The basic goal of a key exchange protocol is to establish a shared key between two

or more users for a subsequent session. W e recall below two principles for secure key

exchange (cf. Boyd and Mao [45]):

Key confidentiality The key must not be divulged to any unauthorized user. In

other words, there must exist a confidentiality channel from the generator of the

key to each recipient of the key.

E.2. Channels for secure key exchange
144

K e y authenticity Each recipient of the key must be sure that the key comes from an

authorized user and is a new key for use with the stated users. In other words,

there must exist an authentication channel from the generator of the key to each

recipient of the key.

The first principle suggests that the new shared key is all that needs to be sent along a

confidentiality channel from the key originator to a key recipient. The second principle

suggests that this key must also be sent along an authentication channel from the key

originator to the recipient together with a freshness identifier and the names of each

recipient of the key. Typically, the freshness identifier used is an unpredictable nonce

previously sent by the recipient.

It is easy to show that adherence to the above two principles suffices to guarantee

the security of the resulting protocol in the following sense [45]: The key recipients

know that the key must have newly originated from an authorized user and they also

know who else this key is shared with. This security guarantee is demonstrable in a

simple manner, without appealing to specific attacks.

In practice, a variety of concrete protocols may be designed by defining the required

confidentiality and authentication channels in various ways using the available cryp­

tographic functions. On the other hand, existing protocols can also be analyzed by

investigating how these channels are possibly realized in the protocols, even when they

might not have been specifically identified by the authors of the protocols. For a sample

application of such an approach on several existing protocols employing conventional

cryptosystems, cf. Boyd and Mao [56].

In the protocols considered in the following sections we shall focus only on key

exchange. Some of the existing protocols we analyze using the above approach appear

to include an additional feature that allows users to mutually confirm their receipt of

the session key. However, as explained later in the appendix this feature lies outside

the scope of the analysis approach. Therefore, we do not attempt to address key

confirmation while using the analysis approach.

For the sake of uniformity in presenting the protocols below, we make slight adjust­

ments to the original notation used by the protocol authors. The notation ',' usually

denotes concatenation. Following standard practice, we extend the notation f(k, x) and

write f(k, xi,x2,..., xn) to mean that the second argument of / is the concatenation

of Xi,X2,...,Xn.

E.3. Gong's Protocols 1 4-

E.3 Gong's Protocols

The first protocol suggested by Gong [48] is both novel and ingenious, and appears

to represent the original idea of using a one-way function as the basis for the security

of a key exchange protocol. The scenario is a typical one for such protocols; a server

S is trusted by a pair of users to distribute a session key for use in a subsequent

session between the users. The server initially shares a secret Pv with each user U.

The messages exchanged in a successful run of the protocol between A and B are as

follows [48, p. 9]:

1. A-^B: A,B,nA

2. B^S: A,B,nA,nB

3. S -> B : ns,f(PB,ns,nB,A)®(k,hA,hB),g(PB,k,hA,hB)

A. B^-A: ns,hB

5. A^B: hA

Here / and g are publicly known keyed one-way (hash) functions. The values nA and

nB are random values chosen for a one-time use (nonces) by A and B respectively. If,

for example, B receives a message containing nB, then B can be sure that the message

is new. The value ns is similarly a nonce chosen by S, but as we shall explain below, it

is for the purpose of confidentiality and not authentication. The values k (the shared

session key), hA, and hB are extracted using the following equation:

(k,hA,hB) = f(PA,ns,nA,B)

Here it is assumed that the procedure for extracting the fields k, hA, and hB from the

value computed as f(PA,ns,nA, B) is known in advance.

It is immediately apparent from the above equation that the protocol is highly

asymmetrical with respect to A and B. Both S and A contribute to the value of the

session key via ns and nA, respectively, but B has no influence on it. (Although J3's

name appears in the above equation, it remains fixed in every run.)

W e now isolate the confidentiality and authentication channels used to deliver k to

A and B respectively.

Channels from S to A We first note that k is generated by A and S jointly using

their shared secret PA- W e can regard the value ns relayed by B to A (from S) as

analogous to k encrypted with PA. W e draw this analogy essentially by observing that

E.3. Gong's Protocols .. 4fi

PA is a secret value that is required to recover k using ns. Thus we may consider the

confidentiality channel from S to A:

S-^A:k

to be defined as

B ->• A:ns

where f(PA,ns, ...) = (k,...). Notice that the channel definition is quite restrictive in

the choice of the session key. The server S cannot choose the key value independently

of A. Furthermore, this value is the result of an application of a one-way function.

This implies that the key cannot be chosen to have specific structure.

Authentication of k to A is provided by the value hB relayed by B to A. The

properties we assumed of / imply that it is feasible to derive the value hB only with

the knowledge of PA. Furthermore, since only A and S share PA, A may be sure that S

must have originally sent hB, as A itself does not send it in the protocol. Additionally,

A may be sure that k and hB must be new since both are obtained as a function of

nA. Thus we may consider the authentication channel from S to A:

A<A- S:k,nA,B

to be defined as

B -* A : hB

where f(PA,..., nA, B) = (k,..., hB).

It is now apparent that the confidentiality and authentication functions are tied

together, and this appears to make the analysis complex.

Channels from S to B The authentication and confidentiality channels from S to

B are rather different.

We may consider the confidentiality channel from S to B:

S -^ B:k

to be defined as

S^B:f(PB,ns,...)®k

Since ns is randomly chosen each time by S, we can consider f(PB,ns,- - -) to be

essentially random. Moreover, it is infeasible to form f(PB,...) without knowledge of

PB. So the confidentiality channel can be simply viewed as analogous to the Vernam

cipher with a non-repeating random ciphering key, known as the one-time pad (cf. [57]).

E.3. Gong's Protocols
147

We may consider the authentication channel from S to B:

B^-S:k,nB,A

to be defined as

S '-• B : f(PB, - - - ,nB,A) ® (k,hA,hB),g(PB,k,hA,hB)

We observe a curious feature of the channel definition. The authentication function is

coupled with key delivery in such a way that B has no real assurance that k is new.

Indeed, it is possible for A to circumvent this channel. Suppose that A knows an old

session key k' from a previous run of the protocol between some user X and B. Then

A can force B to accept k' for a new session with A, as follows. In the attacking run,

the first two protocol messages are exchanged as in a normal run.

1. A->B: A,B,nA

2. B ->• S : A,B,nA,nB

The next message from S which is actually meant for B is intercepted by A.

3. S->A: ns,f(PB,ns,nB,A)®(k,hA,hB),g(PB,k,hA,hB)

Now A computes the value (k, hA, hB) = f(PA, ns, nA, B), and computes the exclusive-

or (XOR) of this value with the intercepted value f(PB,ns,nB,A) © (k,hA,hB), to

extract f(PB,ns, nB, A). Then A pretends to be S and sends the following message to

B:

3'. A^B: ns,f(PB,ns,nB,A)®(k',h
,
x,h'B),g(PB,k',h'x,h

,
B)

Here we assume that h'x, h'B, and g(PB,k!, h'x, h'B) were recorded by A from the previ­

ous run between X and B. The rest of of the protocol is then successfully completed

as follows.
4. B-+ A: ns,h'B

5. A -> B : h'x

The above attack is rather unconventional, because here A itself purportedly de­

feats the security of the subsequent session with B. It is easily precluded under the

assumption that B trusts A to let a session key between the two to faithfully pass from

S to B. Nonetheless, such an assumption appears to be only implicit in Gong's dis­

cussion [48] and may be viewed as a potential weakness. In suggesting general design

guidelines for cryptographic protocols, Abadi and Needham [58] caution that such trust

assumptions may not always apply and should be adjudged carefully. The particular

assumption seems to arise in Gong's protocol not so much as a genuine requirement,

but rather as a result of a misplaced authentication channel.

E.4. A protocol of Bull, Gong and Sollins 148

E.3.1 Gong's alternative protocol

In the same paper [48], Gong suggests an alternative protocol in which the responsibility

for key generation rests solely with S. The server S now randomly chooses all of k,

hA and hB to be of the appropriate size. And the message it sends is symmetric with

respect to A and B [48, p. 10]:

3. S -+ B : ns,f(PA,ns,nA,B)@(k,hA,hB),g(PA,k,hA,hB),

f(PB,ns, nB, A) © (k, hA,hB),g(PB,k, hA, hB)

A. B-+A: ns,f(PA,ns,nA,B)@(k,hA,hB),g(PA,k,hA,hB),hB

The rest of the messages remain the same as in the previous protocol, and are omitted

for the sake of brevity.

The confidentiality and authentication channels to A and B are now essentially the

same as those to B in the original protocol. So the curious feature applies to both A

and B; each of them can make the other accept a previously shared old key. Again it

is crucial to make this assumption explicit.

E.4 A protocol of Bull, Gong and Sollins

We now explain how the analysis technique enables us to discover the cause of a flaw in

a protocol due to Bull et al. [59]. In this protocol, the message sent by S is somewhat

similar to the one in Gong's alternative protocol. A successful run of the protocol

between A and B can be given as follows.

1. A->B: A,f(PA,B),nA

2. B^S: A,B,f(PB,S,A,f(PA,B),nA),nA,nB

3. S^B: f(PB,A,nB)@k,f(PB,A,nB,k),

f(PA,B,nA)®k,f(PA,B,nA,k)

A. B-+A: f(PA,B,nA)@k,f(PA,B,nA,k)

It is easy to see that in this protocol the session key k is not sent over a confidentiality

channel from S. For note that S cannot possibly be sure that nA or nB is new. As a

result there is no guarantee that the session key is XORed with a new random value

each time. So we can regard the particular channels used by S as analogous to the

Vernam cipher with a possibly repeating ciphering key (cf. [57]). Thus in contrast to

Gong's protocols, the channels here no longer provide a confidentiality service. For

example, suppose each of k' (an old session key) and k (a new session key) is XORed

E.4. A protocol of Bull, Gong and Sollins 149

with the same ciphering key x, giving the ciphertexts x 0 k' and x 0 k, respectively.

Then given k' we can easily break the ciphertext x@k by computing (x@k')@(x@k)®k',

to reveal k.

In more concrete terms, suppose that in the above protocol an attacker E knows an

old session key k', and that she has also recorded n'A, f(PA, B) and f(PA, B,n'A) 0 k',

all from the corresponding run. W e also make the reasonable assumption that S and

B ignore replays of nonces not generated by them. An attacking run on the protocol

proceeds as follows, with E masquerading as A [47]:

1. E^B: A,f(PA,B),n'A

2. B->S: A,B,f(PB,S,A,f(PA,B),n'A),n'A,nB

3. S^B: f(PB,A,nB)@k,f(PB,A,nB,k)

f(PA,B,n'A)®k,f(PA,B,n'A,k)

A. B^E: f(PA,B,n'A)®k,f(PA,B,n'A,k)

Although k is intended to be a new session key A and B, an attacker E can easily

compute

(f(PA, B, n'A) 0 k) 0 (f(PA, B, n'A) 0 k') 0 k'

to obtain k. At the end of the attacking run B believes k is shared with A, whereas

in fact it is shared with an impostor E; it is easy to construct a similar attack where

E masquerades as B to A. This concludes the modus operandi of our attack on

the protocol. However, the gist of the above attack is that the protocol makes a

fundamentally wrong use of a cryptographic algorithm.

In the same work [47] where the above attack was first published by us, we also

suggested the following improved protocol to counter this attack:

1. A-+ B : A,nA

2. B ->• S : A,B,nA,nB

3. S^B: ns,f(PB,A,nB,ns)®k,f(PB,A,nB,k),

f(PA, B, nA, ns) 0 k, f(PA, B, nA, k)

A. B-+A: ns,f(PA,B,nA,ns)®k,f(PA,B,nA,k)

Ironically, we later discovered that our improved protocol suffers from essentially the

same curious feature found in Gong's protocols. Observe that in this protocol k is

sent over a confidentiality channel from S to B. So the improved protocol does in­

deed represent a marked improvement over the protocol of Bull et al. However, the

confidentiality channel used in this protocol is still not quite in its simplest form. In

particular, it is unnecessary to include A's name and nB in defining this channel, since

E.5. KryptoKnight protocols 1 5 0

these fields are already included in the authentication channel from S to B. In fact,

their inclusion in the confidentiality channel is not only superfluous but, as explained

below, also serves to potentially undermine the authentication channel.

Consider the confidentiality channel definition, inclusive of the superfluous elements:

S ^ B : f(PB,A,nB,ns)@k

And consider the authentication channel definition, which is actually in its adequate

form:

S-+B:f(PB,A,nB,k)

It becomes apparent that the inclusion of redundant fields in the confidentiality channel

results in a striking similarity between the formats of the hashed components used in

the two channel definitions. This symmetry can be exploited to construct essentially

the same type of attack we demonstrated on Gong's protocols earlier. For instance, A

can force B to accept ns as a session key between the two by intercepting message 3

and replacing it with message 3', as follows.

3. S^A: ns,f(PB,A,nB,ns)®k,f(PB,A,nB,k),

f(PA, B, nA, ns) 0 k, f(PA, B, nA, k)

3'. A^B: ns,f(PB,A,nB,ns)®nsJ(PB,A,nB,ns),...

Undoubtedly, it is possible to assume away such an attack by putting side conditions on

the protocol. For example, we can require that k and ns be somehow made distinct by a

protocol implementation. Or, as in Gong's protocols, we can make a trust assumption

on B's side about A's actions. Alternatively, here we can even eliminate such an

assumption, by requiring B to perform an additional check. Still further, the attack

can be avoided by constraining protocol implementations to follow a particular ordering

on the fields before hashing. (Such countermeasures are by no means exhaustive.) In

principle, however, such measures do very little to address the unnecessary confusion

of the confidentiality and authentication channels. (An essentially similar discussion

applies to the channels from S to A.)

E.5 KryptoKnight protocols

KryptoKnight [49], [50] is an authentication and key distribution system developed by

IBM. The KryptoKnight protocols have been implemented as part of IBM's NetSP

(Network Security Program) system.

E.5. KryptoKnight protocols 151

E.5.1 Initial version

The original KryptoKnight mechanism described by Molva et al. [49] enables a user A

to obtain a session key generated by S for use between A and B, as follows:

1. A -* S : nA

2. S^A: nA,ns,B,T,f(PA,ns®B,nA,ns@S,T)®k

(A similar exchange also essentially takes place between S and B.) Here T is the

duration for which the session key k is meant to remain valid. In contrast to Gong's

protocols, ns is not chosen at random by S, but is obtained as the encryption of nA

under k using a non-reversible encryption function E:

ns = E(k,nA)

(E may be considered to have the same properties as /.) However, ns can be considered

as essentially random, since k is randomly chosen by S. Thus the confidentiality channel

from S to A is similar to that in Gong's alternative protocol.

The authentication channel from S to A is essentially based on the binding between

k and ns, albeit in a highly convoluted fashion. We may consider the authentication

channel:

A^- S:k,nA,B

to be defined as

S^A:nsJ(PA,ns®B,...)®k

where ns = E(k,nA). Notice this channel definition appears rather peculiar when

compared with its counterpart from the protocol of Bull et al. Relatedly, the simplicity

associated with the latter definition is no longer preserved.

E.5.2 Recent version

The above key exchange mechanism appears to have been simplified by Bird et al. [50]

to derive some recent protocols of the KryptoKnight family. Although our analysis of

the original KryptoKnight mechanism did not reveal any specific weaknesses, we find

surprising failures in the recent protocols.

Let us consider a specific instance of the basic key exchange protocol of Bird et

al. [50, p. 35]:

1. A-+S: B,nA

2. S^A: T,f(PA,B,nA,T)®k

E.5. KryptoKnight protocols 1 5 2

It is apparent that this protocol provides neither session key confidentiality nor au­

thenticity. The cause for loss of confidentiality is similar to that in the protocol of Bull

et ai, which we discussed in the previous section. On the other hand, there is no au­

thentication channel from S to A; A cannot be sure that the session key it supposedly

recovers upon a protocol execution is indeed from S.

W e note that several key exchange protocols proposed by Bird et al. ([50], pp.

36-38) are meant to cover the above instance as well, although the specific protocols

proposed there employ the following message format:

S -* A:ns,T,f(PA,nA,ns,S,B,T)@k,...

Unlike the original KryptoKnight mechanism, here ns is randomly chosen by S, inde­

pendently of nA; nA itself is randomly chosen by A. Surprisingly, Bird et al. suggest

that the nonce ns is of no particular value in their protocols:

... the use of Nk [ns] in the tickets does not serve any particular purpose.

Nk [ns] is used here simply to preserve some homogeneity between ticket

format in all scenarios, but for no other significant purpose. ([50], p. 38)

Nevertheless, it is easy to see that ns is crucial for maintaining session key confiden­

tiality in their protocols. Indeed, if we act on the above suggestion of Bird et al. and

omit ns from their protocols, then an attack similar to the one that we demonstrated

on the protocol of Bull et al. in the previous section follows immediately.

On the other hand, Bird et al. admittedly allow loss of session key integrity. They

note that B can change the session key, without A's knowledge ([50], p. 37). However,

the resulting situation appears rather dubious with the protocols of Bird et ai, when

compared with Gong's protocols. For now B can even arrange that A and C share

the same session key, and thus authenticate each other, although each of them may

be purportedly authenticating B. Below we demonstrate an attack on one of their

proposed protocols: the A-B-K ticket distribution protocol (expanded version). A

successful run of the protocol between A and B can be given as follows [50, pp. 37]:

1. A -^ B : A,nA

2. B -> S : nA,nB,A,B

3. S^B: ns,T,f(PA,nA,ns,S,B,T)®k,

f(PB,nB,ns,S,A,T)®k

A. B^A: ns,T,f(PA,nA,ns,S,B,T)®k

For simplicity of presentation, we have omitted certain message elements from the

original protocol since they do not affect our attack. In the following 'triangle' attack

E.6. Alternative designs using secure channels
153

on the above protocol, B engages in two parallel runs of the protocol, one with A and

the other with C. S generates k and k' as the session keys for use between A and B,

and C and B, respectively; kx is a value chosen by B.

1. A-+B: A,nA

2. B-> S : nA,nB,A,B

3. S-+B: ns,T,f(PA,nA,ns,S,B,T)®k,

f(PB,nB,ns,S,A,T)®k

A. B->A: ns,T,f(PA,nA,ns,S,B,T)®kx

V. C^B: C,nc

2'. B->S: nc,n'B,C,B

3'. S-^B: n's,T,f(Pc,nc,n's,S,B,T)®k',

f(PB,n'B,n's,S,C,T)®k'

A'. B^C: n's,T,f(Pc,nc,n's,S,B,T)®kx

N o w A and C unexpectedly end up sharing kx, although they did not directly partici­

pate in a mutual run with each other.

E.6 Alternative designs using secure channels

The protocols examined in the previous sections reflect a mix-up of confidentiality

and authentication channels. In particular, these protocols exhibit confusion about

the purpose of the message fields and the use of cryptographic transformations. It

is tempting to speculate that this confusion might have even been the root of flaws

or unusual features in some of the protocols. W e can easily avoid such defects by

addressing the desired channels explicitly at the design stage itself. In fact, the same

technique we used to analyze existing protocols can be applied equally well to design

new protocols that can be shown to be secure. A key exchange protocol is designed

by simply defining the required channels from the key originator to the key recipients.

W e illustrate this concept below by designing two concrete protocols using one-way

functions.

E.6.1 Three-party key exchange

Consider a conventional key exchange scenario where a shared key k needs to be estab­

lished between two principals A and B via a trusted server S. The server S is assumed

E.6. Alternative designs using secure channels

to share secrets PA and PB with A and B, respectively. The desired channels from S

to A are specified as [45]:

S^A: k

A^-S: k,A,B,N

where AT is a nonce used to convince A that k is new. The channels from S to B are

similarly specified. We can look upon the above specification as a generic key exchange

protocol. A concrete protocol is derived from the specification by implementing the

required channels using the available cryptographic functions.

We shall define the required confidentiality channel from S to A as:

S-+A:f{PA,ns)®k

where ns is a random value chosen by S. And we shall define the required authentica­

tion channel from 5 to A as:

S^A:f(PA,k,B,nA)

where nA is a random value chosen by A. Recall that the hash value f(PA,...) cannot

be formed without the knowledge of PA. Furthermore, PA is a shared secret between

A and S. We can thus regard A's name as being implicitly included in the use of

PA, and thereby omit it from the actual definition. (The desired confidentiality and

authentication channels from S to B are similarly defined.)

We assume that the ordering of messages is irrelevant, except for the constraint

that certain messages must necessarily precede others. A protocol that makes the

desired confidentiality and authentication channels concrete is now easily constructed

as follows:

1. A^fB: A,B,nA

2. B -> S : A,B,nA,nB

3. S-+B: ns,f(PB,ns)@k,f(PB,k,A,nB),f(PA,ns)®k,f(PA,k,B,nA)

A. B^A: ns,f(PA,ns)®k,f(PA,k,B,nA)

It is clear that the precise formulation of the channel requirements enables us to op­

timize the design by using exactly what is needed in each channel. The protocol is

conceptually simple and elegant—the confidentiality and authentication channels now

only contain those elements that are relevant to the function of each channel. Conse­

quently, the channels are now transparent, which makes the purpose of the protocol

messages quite clear.

E. 7. Discussion
155

E.6.2 Conference key exchange

The above design extends straightforwardly to a conference key protocol. Assume that

there are n different participants from a set U = {Ux, U2,..., Un}, and that each Ut € U

shares a secret PU{ with S initially. Let k denote a conference key chosen by S to be

shared among the participants contained in U. Then each U{ e U generates its own

nonce, nVi, and carries out the following exchange with S:

1. Ui-^S: U,nVi

2. S-+UH ns,f(PUt,ns)®k,f(PUt,k,U\Ui,nUi)

('\' denotes the set difference operator.)

E.7 Discussion

Throughout this appendix we have employed a methodology of Boyd and Mao [45]

to pinpoint problems of varying seriousness in several existing key exchange protocols

based on one-way functions. Furthermore, we used the insight gained from the analyses

carried out to design a simplified protocol which we claim is as secure as any published

protocol of its type, and still enjoys a transparent and elegant design. The simplicity

of this approach has further enabled us to design a new conference key protocol as an

obvious extension.

It may be argued that our protocols are susceptible to guessing attacks on the long-

term secrets assumed initially if these secrets were user chosen passwords. However, all

the previous protocols we considered also have the same feature. Although we make

guessing infeasible by simply assuming that the initial secrets are well-chosen, it may

be desirable to relax this assumption and investigate alternative designs that allow

passwords to be used.

As noted by Boyd and Mao [45], their approach is targeted at key exchange only.

W e emphasize that it does not directly apply to the analysis of protocol properties

that are essentially independent of key exchange. W e illustrate this scope limitation

by means of an example here. Consider the following protocol due to Bull et al. [59]:

1. A->S

2. S->A

3. A^S

A. S-+A

nA

ns, k 0 f(PA,nA, ns), f(k, ns), ns

f(k,ns)

f(k,nA)

E. 7. Discussion
156

Here S generates two nonces ns and ns. The first two messages constitute the key

exchange phase of the protocol: these messages are used to transfer a new session key

k from 5 to A for use between them. It is not difficult to isolate the confidentiality

and authentication channels used to transfer k from S to A. Indeed, the reason we

are giving this example is not because we are concerned with the key exchange phase

here. It is to show that the working of the subsequent phase lies outside the scope

the analysis approach that we have used so far. The phase consisting of the last two

messages essentially constitutes a handshake using the session key k. The intended

interpretation of this handshake is as follows: the third message is used to confirm A's

receipt of the session key; and the fourth message is used to confirm 5"s receipt of A's

confirmation. However, the latter message provides no such guarantee, as shown by an

attack we found on this protocol earlier [47].

In the attacking run, an attacker E copies the opening message from A:

1. A -> S : nA (copied by E)

The next message from S, which is actually meant for B, is intercepted by E:

2. S -» E : ns,k® f(PA,nA,ns),f(k,ns),ns

Now E simply replaces h~s with nA in the above message. She also sends the resulting

message to A pretending to be S:

2'. E^A: ns,k@ f(PA,nA,ns),f(k,ns),nA

She then prevents A's response from reaching S and instead plays it back to A:

3. A^E: f(k,nA)

A. E^A: f(k,nA)

At the end of the attacking run, A wrongly believes that S has responded to its

handshake message, although S in fact did not participate in the handshake.

The above attack essentially rests on the inability of a principal to detect a replay

of one of its own messages. Such attacks are not new; similar attacks have been

addressed in the past (cf., e.g., Mitchell [60]). For example, if the hash used as a

handshake message also includes the name of the originator then the above attack is

easily averted:

3. A->5: f(k,ns,A)

A. S^A: f(k,nA,S)

E. 7. Discussion 157

Other possible solutions include the use of direction bits or of different hash functions

in the handshake messages. For a discussion on the use of similar countermeasures in

a more general setting, cf. Gong [21].

Appendix F

Modeling of recognizability

Treat this section as though it followed on directly from the end of Chapter 4.

The notion of recognizable messages essentially reflects the following intuition: (1)

if a principal P generates a message X, then X is recognizable by P; (2) any message

that can be possibly verified on the basis of P's recognizable messages, perhaps using

keys possessed by P, is also recognizable by P. The idea behind (2) is expanded as

follows: (2') if a message X is recognizable by P and Y = EK(X) for some K such

that K~x is possessed by P, then Y is recognizable by P (since P can decrypt Y using

K to reveal the recognizable message X); (2") if a message X is recognizable by P

and Y = EX(K) for some K such that K is possessed by P, then Y is recognizable by

P (since P can encrypt the recognizable message X using K to obtain Y); (2'") if a

message X is recognizable by P and Y = HKX for some K such that K is possessed

by P, then Y is recognizable by P (since P can hash the recognizable message X using

K to obtain Y); and (6) if a message X is recognizable by P and Y = Yx | • • • | Yk for

some Yx,..., Yk such that X = Yi for some i, then F is recognizable by P (since P can

reveal from Y the recognizable message X). W e fix the set of P's recognizable messages

for each time. The closure operation that we use in defining P's set of recognizable

messages at time t roughly captures amongst others the following statement:

(*) if a message X is in this set and Y = EK(X) for some K such that A-1 is in

the set of P's possessed messages at t, then Y is in the set of P's recognizable

messages at t, provided that some principal has encrypted X using K, and thus

constructed EK(X), at a time earlier than t.

For each time t, we define the message set Mrecg(P,r,t) to model the intuitive

notion of recognizable messages.

Definition F.l

1. Let t = tfa^r). Then Mrecg(P,r,t) = 0.

158

2. Let t > tfiTSt(r). Then Mrecg(P,r,t) is the smallest set of messages such that:

I. (Basis)

Mrecg(P,r,t- 1) U Sgenr(P,r,t- 1) C MreCg(P,r,t)

II. (Induction)

(a) EK(X) € A4rec5(P, r, t) if (X, A') € £(r, t) and

A G Mrecg(P,r,t) and

A€A4poss(P,r,t)

(b) AV(X) € A4rec^(P, r, i) if (X, K) e S(r, t) and

X G Mrecg(P,r,t) and

A^eM^iV,*)
(c) tfjcPOeAW^M) if(X,A)€ft(r,i)and

X e Mrecg(P,r,t) and

A G MpoSs(P,r,t)

(d) Xx\---\Xk£Mrecg(P,r,t) if (Xl5..., Xk) G C(r,t) and

Xi € Mrecg(P,r,t) for some i

L e m m a F.l For a//i, i' s«cfr t/iat t < t' the following holds:

Mrecg{P,r,t) Q Mrecg(P,r,t')

Definition F.2 Let i > 0.

1. Let t = tfostCr). Then A4lreĉ (P,r,t) = 0 for all i.

2. Let t > ifirstCr). Then

_ J Mrecg(P, r, < - 1) U <S<,enr(P, r, < - 1) if t = 0

^ WP'r'*> ~ j M ^ (P , r, t) U 5 ifi > 0

where

5 = {£*(*) I (X, K) eS(r,t) and X G M ^ (P , M) and

K £ Mposs(P,r,t)}

U {£tf(X) | (X, AT) € S(r,t) and X € M\£g{Ptr,t) and

A - 1 € Mposs(P,r,t)}

U { # K (X) | (X, K) G rl(r,t) and X € M%lcg(P,r,t) and

K E Mposs(P,r,t)}

U{(Xx\---\Xk)\(Xx,..-,Xk)€C(r,t)and

Xj G M^^P, r,t) for some j}.

160

The following lemma is easily proved from Definition F.l and Definition F.2.

Lemma F.2

Mrecg(P,r,t) C M\ecg(P,r,t) C • • • C |J Mrecg(P,r,t) = MTecg(P,r,t)

i=Q

Lemma F.3

Mgenr(P,r,t) C Mrecg(P,r,t)

Proof. By induction on t:

1. (Basis) Let t = tfirst(r). By definition 4.3 and definition F.l, Mgenr(P,r,t^st(r)) =

Mrecg(P,r,t^Tst(r)) = 0. Therefore, the required statement holds.

2. (Induction) Let t > tgrst(r) be arbitrary. We assume the inductive hypothesis:

Mgenr(P,r,t) C Mrecg(P,r,t); and we show this implies Mgenr(P,r,t + 1) C

A4recy(P,r,t-r-l).

By the inductive hypothesis it follows that Mgenr(P,r,t) U Sgenr(P,r,t) C

A^rec^MjUSgenr^r,*). By definition 4.3, A4^enr(P,r, t+1) = A4ffenr(^,»",*)U

Sgenr(P,r,t), and, by definition F.2, A^^(P,r,t+l) = Mrecg(P,r,t)USgenr(P,r,t).

Hence Mgenr(P,r,t + 1) C M°recg(P,r,t + 1). By Lemma F.2 it follows that

A4^enr(P,r,t-l-1) C A4recff(P,r,t + 1).

(This completes the proof of Lemma F.3.) •

Lemma F.4

Mrecg(P,r,t) C Mgenr(r,t) U A W r M) U Mhash(r,t) U A4 c c mc(M)

Proof. (Similar to proof of Lemma 4.11.) By induction on t:

1. (Basis) Let t = tfast(r).
 B ^ definition 4-3 a n d definition F.l, A4rec^(P, r, tfa8t(r)) =

0 and Mgenr(r,tfast(r)) U jMenCr(Mfirst(r)) U A4/ias/l(
r^first(r))U

MConc(r,£frrst(
r)) = $• Therefore, the required statement holds.

2. (Induction) Let t > t^Tst(r) be arbitrary. W e assume the inductive hypothesis:

(HP1) for all t' < t, Mrecg(P,r,t') C Mgenr(r,t')UMencr(r,t')UMhash(r,t')U

MConc(r,t'); and we show this impliesMrecg(P,r,t) C A40enr(r,i)UA4enCr(r,t)U

A4/,as/>M) U A 4 c o n c M) .

By Lemma F.2 it suffices to show that, for all Y and for all m, if y G M™ecg(P, r, t)

then y G Mgenr(r,t) U A4encr(r,t) U Xfcas/i(r,*) U A4conc(r,i). This assertion

is shown using induction on m:

161

I. (Basis) Let m = 0. Suppose Y G M°recg(P,r,t). By definition F.2, Y G

Mrecg(P,r,t- 1) (J Sgenr(P,r,t - 1).

Case(i): Y G MKCg(P,r,t - 1). KP1 yields Y e Mgenr(r,t-1)U Mencr(r,t-

l) U Mhash(r^ ~ 1) U A4conc(r,i - 1). By Lemma 4.6 it follows that

Y G A4^enr(r,t) U A4enCr(r,*) U Mhash(r,t) U A4COnc(r,i).

Case (ii): Y G Sgenr(P,r,t - 1).

By definition 4.2, P performs generate(Y) at i - 1, and therefore, by

definition 4.3, Y G Mgenr(r,t).

II. (Induction) Let m > 0 be arbitrary. We assume the inductive hypothesis:

(HP2) for all Y, if Y G M™ecg(P, r, t) then y G Af genKr, t)UM encr(r, t) U

•^hash(r^) u A4Conc(r,t); and we show this implies that, for all Y, if

y G A4™"g(P,r,t) then y G Mgenr(r,t) U A4enCr(r,t) U A4/,agft(r,t) U

MConc(r,t).

Suppose y G M^c
l
g(P,r,t). By definition F.2,

y G M?ecg(P,r,t)

U { £ K (X) | (X,K) G £(r,*) and X G M™ecg(P,r,t) and

AGA4poSS(P,r,0}

U { £ K (X) | (X,tf) G S(r,t) and X G M™ecg(P,r,t) and

A^GAV^P,^)}

U { # K (X) | (X, A) G ft(r,t) and X G M™ecg(P,r,t) and

AGA4^os5(P,r,t)}

U {(Xa | • • • | Xfc) | (X1?... ,Xk) G C(r,i) and

Xj G M™ecg(P,r,t) for some j}.

Case (A): y G M^ecg(P,r,t). HP2yieldSy G Mgenr(r,t)UMencr(r,t)l)Mhash(r,t)

MConc(r,t).

Case(B): y G {£*(*) I (*> *0 e £(r,t) and X G A4^ecy(P,r,i) and A G

Mp0ss(P,r,t)}.

We have y = EK(X) for some X and some A such that (X, A) G £(r, i)

and X G A4^cp(P,r,t) and AT G A/fposs^M)- By definition 4.3,

EK(X) G A W r M) . Hence y G Mencr(r,t)-

Case (C): y G {£*(X) | (X, AT) G S(r,t) and X G M^ecg(P,r,t) and AT"
1 G

A4poss(P,r,i)}.

Similar to Case (B).

162

Case(D): Y G {HK(X) \ (X,K) G H(r,t) and X G M^cg(P,r,t) and K G

MpoSs(P,r,t)}.

Similar to Case (B).

Case (E): Y G {(Xx \ - • - \ Xk) \ (Xx,...,Xk) G C(r,t) and Xj G M?ecg(P,r,t)

for some j}.

Similar to Case (B).

(This completes the proof of Lemma F.4.) •

The statement of Lemma F.4 is rather weak; it is apparent from the proof of this

lemma that we can also obtain the following stronger statement: Mrecg(P,r,t) C

Mgenr(P,r,t) U Mencr(r,t) U Mhash(r,t) U MConc(r,t).

Lemma F.5 Let X G Mrecg(P,r,t). Then

(a) if (X,K) G S(r,t) for some K such that K G Mp0ss(P,r,t), then EK(X) G

Mrecg(P,r,t), and

(b) if (X,K) G £(r,t) for some K such that K'1 G Mp0ss(P,r,t), then EK(X) G

Mrecg(P,r,t), and

(c) if (X,K) G H(r,t) for some K such that K G Mposs(P,r,t), then HK(X) G

Mrecg(P,r,t), and

(d) ifXx | • • • | Xfc G C(r,t) and X = X{ for some i, then Xx | • • • | Xk G M recg(P, r, t),

Proof. We only prove part (a); the remaining parts are proved similarly. Suppose

(X, A") G £(r,t) for some A such that A G Mposs(P,r,t). By Lemma F.2 it suffices

to show that EK(X) G Mlrecg{P,r,t) for some /. Since X G Mrecg(P,r,t), it follows

by Lemma F.2 that X G M^ecg(P, r, t) for some m. By definition F.2, M^g(P, r, t) D

{EK(X) | (X,AT) G (̂r,*) and X G M^ecg(P,r,t) and A G A4po55(P,r,t). Hence

EK(X)GA4^e+J(P,r,t).
 D

Proposition F.l For each time t, the set Mrecg(P,r,t) is finite.

Proof. Follows from Lemma F.4 and Lemma 4.7. °

Corollary F.l For each time t, Mrecg(P,r,t) = Mkrecg(P,r,t) for some k.

	coverpage.pdf
	University of Wollongong
	Research Online
	1997

	Contributions to authentication logics and analysis of authentication protocols
	Anish Mathuria
	Recommended Citation

