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0. Introduction and summary

The theory of fractional factorial designs, first introduced by Finney [12],
has found increasing use in agricultural, biological, industrial, and other various
experimentations. One reason for the usefulness of fractional designs in prefer-
ence to complete factorials is that they involve a lesser number of assemblies or
treatment combinations, since higher order effects can be in general assumed negli-
gible. In the beginning, the theory was developed for orthogonal fractional
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designs in which the estimates of various effects of interest are all uncorrelated.
However, as is well known, they are available only for special values of N as-
semblies. Moreover they are in general uneconomic in that they require a large
value of N in comparison with the number of unknown effects. As generaliza-
tions of orthogonal fractional designs, Chakravarti [5] first introduced the concept
of balanced fractional designs. 1In these designs the covariance matrix of the
estimates of effects has desirable features second to orthogonal fractional designs,
although the estimates are not uncorrelated. Of course, balanced fractional
designs are flexible in the number of N assemblies with the fact that more experi-
mental situations can be handled. Such economic designs are very attractive
and often practical.

After important work of Bose and Srivastava [2, 3], Srivastava and/or
Chopra have developed balanced fractional 2™ factorial (briefly, 2m-BFF) designs
of resolution V (cf. [7-10, 28, 34, 35, 37]). It is known from their results that
these designs have close relationships with balanced arrays (B-arrays) of strength
4, which make it possible to interpret the problems into those in combinatorial
fields. For some work in these fields, see Chakravarti [6], Srivastava [29],
Srivastava and Chopra [36], Rafter and Seiden [18]. The above investigations,
however, have been restricted to the effects up to two-factor interactions only.
Since three factor or higher order interactions can not always be neglected, it
is desirable to study fractional designs of higher resolution.

Recently, Yamamoto, Shirakura and Kuwada [41] have established a general
connection between a 2”-BFF design of resolution 2/+ 1 and a B-array of strength
21. In the above paper, the authors also have discussed some properties of a
triangular type multidimensional partially balanced (TMDPB) association
scheme, defined among the effects up to [-factor interactions, which are useful
for clarifying the algebraic structures of 2"-BFF designs of resolution 2/+1.
The concept of MDPB association schemes was first introduced by Bose and
Srivastava [3] in relation to the analysis of fractional designs. Using the decom-
position of the TMDPB association algebra 21 into its two-sided ideals, Yamamoto,
Shirakura and Kuwada [42] have obtained an explicit expression for the charac-
teristic polynomial of the information matrix M, of a 2"-BFF design T of resolu-
tion 2/+1. (This result includes that of a 2"-BFF design of resolution V (/=2)
given by Srivastava and Chopra [35].) It is used for comparing 2"-BFF designs
of higher odd resolution by popular criteria such as minimizing the trace, determi-
nant or largest root of M7!. Indeed, Shirakura [23] has presented optimal
2m-BFF designs of resolution VII (/= 3) with respect to the trace criterion for each
6<m <8 and for the reasonable number of N assemblies. On the other hand,
the study of balanced designs of even resolution is' much more rare. For work
on such designs, see Shirakura [24], Srivastava and Anderson [30, 33]. Particu-
larly, by use of the properties of the TMDPB association algebra QI, Shirakura
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[247 has obtained a general result that some B-arrays of strength 2/ yield 2"-BFF
designs of resolution 2/.

This paper will make further deep investigations on 2"-BFF designs of odd
or even resolution on the basis of the above mentioned results. 2"-BFF designs
derived from B-arrays of strength 2/ will be characterized. This paper thus con-
sists of three parts. [n Part I, the algebraic structures of 2"-BFF designs are dis-
cussed. In Section 1, fractional 27 factorial designs of resolution 2/ or 2/+1 are
treated. In Section 2, 2"-BFF designs of resolution 2/ or 2/+1 are defined. A
relation between a 2"-BFF design of resolution 2/+ 1 and a B-array of strength 2/,
m constraints and index set {yg, 1y,-.., lt5;} 1S also given. Section 3 gives defini-
tions of an /+1 sets TMDPB association scheme and its relationship algebra
. Furthermore it is observed that U called the /41 sets TMDPB association
algebra is decomposed into the direct sum of /-1 two-sided ideals A, (f=0, 1,
..., ). Section 4 presents the irreducible representation K, of the information
matrix M, for a B-array T of strength 2/ with respect to each ideal %,. For
later use, explicit expressions for K, are given for each case /=2 and 3. As will
be seen, many of the results in this part have been already established by the
authors [41, 42]. For clarification of this paper, however, we shall recall them.

In Part TI, optimal 2°-BFF designs of resolution VII with respect to the trace
and determinant criteria are presented for any given N assemblies with 130N
<150. For this purpose, Section 5 gives explicit expressions for the trace and
determinant of M7! for a 2m-BFF design T of resolution 2/+1. These can be
obtained from the characteristic polynomial of M, due to [42]. As a by-product,
the existence conditions for 2"-BFF designs of resolution 2/+41 or B-arrays of
strength 2/ arc also given in terms of the m and y; (i=0, 1,..., 2[). Sections
6 and 7 deal with constructions of B-arrays of strength t. Simple arrays in
Section 7 have been introduced by Shirakura [22], as special cases of B-arrays.
In Section 8, the required designs are given with the covariance matrices of the
estimates and other useful informations.

In Part 111, 2»-BFF designs of even resolution derived from various B-arrays
of strength 2/ are investigated. Section 9 deals with 2"-BFF designs of resolution
21 obtained from B-arrays of strength 2/ with index p;=0, which are called S,
type 27-BFF designs. For the case /=3, Section 10 presents optimal S; type
2m-BFF designs with respect to the generalized trace (GT) criterion, due to [24],
for m=6, 7, and for every value of N within a certain practical range. Note that
the optimal S, type 28-BFF designs have been already presented by [24]. As in
Section 8, the covariance matrices of the estimates and other useful informations
are also given for such designs. In Section 11, alias structures of [-factor inter-
actions in S, type 2"-BFF designs and their estimability derived from these struc-
tures are discussed. Section 12 shows that there exists a 2"-BFF design of
resolution 1V with the minimum number of assemblies N=2m. [t can be obtained
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from a B-array of strength 4 with u,=0. Section 13 shows that some 2"-BFF
designs of resolution 2/ can be also obtained from B-arrays of strength 2/ with
kg 81"8=0, where xj "% (f=0,1,...,1) are the last diagonal elements of
K. Such designs are called S/(f;, f,,..., B,) type 2m-BFF designs if wxp #t:!=#1
=kpfrlbr= . =yfbr17F =0 and ki *!7*#0 for a#p,. For given N as-
semblies, there are a large number of possible S,(f,,..., B,) type 2"-BFF designs.
A criterion for comparing these designs is also given which is called the partial
generalized trace (PGT) criterion. In Section 14, for the case /=3, optimal
Si(B1,-.., B,) type 2m-BFF designs with respect to the PGT criterion are presented
for m=6, 7, 8, and for desirable values of N.

Part I. 2™-BFF designs and their algebraic structures

1. Fractional 2™ factorial designs

Consider a factorial experiment with m factors f,, f5,..., [, €ach at two
levels (i.e., a 2™ factorial design). An assembly (or treatment combination) will
be represented by (jy, ja,..-, j.) Where j,, the level of the factor f,, equals 0 or 1.
There are 2™ assemblies in all. Consider the observations y(ji, jz,..., jm) COL-
responding to assemblies (j,, j,,..-,Jn) and their expectations #7(ji, jar- > Jum)
=Exp[y(jis jare-s jm)]- It is well known (cf. [41]) that the various factorial
effects can be expressed as linear combinations of all expectations #(j;, j25---» jm)>
i.e.,

(11) H(Eh €250y 8m) = ~2%n— , 2 . dgll,’ejzz,’.::','s{"m ’1(1'1, jl""’ Jm)

where

didzdm = dj,(e,)d;,(82) -d;, (€m).

E11E2500058m

Here dy(0)=d;(0)=d,(1)=1 and ds(1)=—1. In particular the general mean
is represented by 6(0, 0,..., 0) and the main effect of the factor f,, is represented by
0(ey, €35..., &), Where &, =1 and &,=0 for r#t,. The two-factor interaction of
the factors f,, and f,, is represented by 8(e,, ,,..., &,), where g =g,=1 and
e, =0 for r#t,, t,. In general the k-factor interaction of the factors f, , f,,-... fy,
is represented by 8(ey, &,,..., €,), where g, =g,,=---=¢, =1 and the remaining e,
are all zero.
Let
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y(,...,0,0) 6(o,..., 0, 0)

y(0,...,0, 1) 6(0, ..., 0, 1)
Y = . and @ = .

y(,., L, 1) 0q1,..., 1, 1)

be respectively the 2™ x 1 vectors of all observations and effects in the binary
order. From (1.1), ® can be expressed in the following form:

(1.2) 6 = 5 Dy Exp [ Y],

where

Diy=D@®D®---®@ D (m times Kronecker products of D).

do(0) d,(0) 11
D= = .
do(1) di(1) -1 1
Note that D, is an Hadamard matrix of order 2™. Thus D, D{,,y =2™ I ,m, where
I, denotes usually the identity matrix of order p. From (1.2), we thus have

Here

(1.3) Exp[Y] = D,,,0

or

(1'4) 71(j1, jZ""sjm) = Z dx{ll,,ejzz,’,,s{,:" 0(81’ 82a'-" 8m)'
€13E9s0ms Em

For simplicity we shall write 0,=0(0,0,...,0) and 0,,,,.,, =0(¢, &,..., &,) if
&, =&,=-=g =landg,=0forr#t,, t,,..., ,. Then(1.4) reduces to the follow-
ing:

(1.5) r](jl,jZ;“" ]m) = Z Z djtl”.djgkotl'"tk

k=0 {t (s, }EMEK

=0+ % d;,0,+ > d; d;. 0,

{ti}e _ {t1,t2}em2 2
ot dydyyed; B pem

where m, denotes the class of all subsets of {1, 2,..., m} with cardinality k and
d;=1 or —1 according as j=1 or 0.

The formula (1.3), (1.4) or (1.5) is used as a statistical linear model in a 2™
factorial design. For any fixed integer / (1 </<m/2), we shall assume a general
situation where (I+1)-factor and higher order interactions are negligible (i.e.,
0,1, =0 for kz1+1). (Throughout this paper, note that we are considering
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such a situation.) The number of unknown effects, therefore, is v,=1+<']n>

+< rzn >+ +< T) and the vector of these effects is written as

(16) 0" =(0450,0,,...,0,:0,5 05, 01035 Oraeppecss O 1)
= (041 {0:,35 {00,035 5 {00503
For later use, we shall provide the following vectors: A
o={0.); {0,035 Orpenie ), Ao = 1)),
1.7 6 = (0,: 6y), (Ixv,_y),

s = (0, (1x(7)s

ie, @=(0):605)=(0,: 8,: 8,). From(1.5), we can obtain the following model
for the expectation of the observation corresponding to an assembly (j,, jz».--,
Jm):

(18) n(.j]’j29-'-3jm)

d;, -d

= 0¢+ Z Z kdj“ Jeat 'j:kOtltz"'flc‘

Let T be a suitable set of N assemblies (called a fraction) in which any given
assembly may not occur or occur once or more times. Then T can be considered
as a (0, 1) matrix of size mx N whose a-th column (j{, j¥,..., j®) denotes
the a-th assembly for =1, 2,..., N. Lety be the N x 1 observation vector whose
a-th element is y(j', j%,..., j')) and further consider the N observations
in y; as independent random variables with common variance ¢ (>0). From

(1.8) y can be expressed as

Exp[yr] = E¥0,

(1.9
Var [yT] = O-ZIN’

where E is the N x v, design matrix of T whose elements of the first column cot-
responding to the general mean 0, are all I, and whose elements of a-th rows
corresponding to an effects 0, ,,..,, are d157>dj§;)---dj§:).

The concept of estimable functions of # will be stated in the following defini-
tions:

DEfFINITION 1.1. A px 1 vector ¥ is called a parametric function of 6
if each element of § is a linear function of unknown effects 0, ,,.,, (k1) with
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known constant coefficients, in other words, if W is such that
(1.10) ¥ = (8,
where C is a px v, matrix with known constant elements.

DerFINITION 1.2. A parametric function Y of @ is called an estimable func-
tion (or, simply, estimable) if each element of Y has an unbiased linear esti-
mate under the model (1.9), in other words, if there exists a px N matrix A of
constant elements such that

Exp[Ay;] =¥,
identically in @. Also Ay is called an unbiased estimate of .

DerFINITION 1.3. For any given fraction T and estimable function ¥,
its unbiased estimate @ is called the best linear unbiased estimate (BLUE)
of W if the a-th element Ofl/; has a minimum variance in the class of all unbiased
linear estimates of the a-th element of ¥ for each a=1, 2,..., p.

For the observation vector y; and design matrix E, consider the following
equations for a v;x 1 vector 8*:

(1.11) M6* = Eryr,

where M ;= ELE; called the information matrix. These are so called the normal
equations.

THEOREM 1.1 (Gauss-Markov Theorem). For any estimable function
=C8, its BLUE y is unique and given by

¥ = Co*,
where 8* is a solution of the normal equations (1.11).

Of course, the BLUE & depends on a fraction T. By matrix theory, there
exists always a solution 8* of the normal equations (1.11) and it is in general not
unique for a given T. However Theorem 1.1 shows that for any two solutions
6% and 0% of the normal equations (1.11), |[;=COT=C0’§ holds.

As a means of classifying fractions, Box and Hunter [4] introduced the
term ‘‘resolution.” First we shall define a fractional 2™ factorial (briefly,
2m-FF) design of odd resolution.

DEeFINITION 1.4. A fraction T is called a 2™-FF design of resolution 21+ 1
if @ itself is estimable, i.e., if y=C0, where C=1,, is an estimable function of
6.
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From the model (1.9) and Definition 1.2, it is easy to see that Tis a 2"-FF
design of resolution 2/+1 if and only if its information matrix is nonsingular.
From Theorem 1.1, furthermore, it follows that for a 2"-FF design T of resolution

21+ 1, the BLUE @ of @ is given by
(1.12) 6 = ViEryr,

where Vpo=M7z!. Note that fisa unique solution of (1.11). In addition it can be
easily shown that its covariance matrix Var[@] is given by

(1.13) Var[6] = Vyo2.

From the nonsingularity of M, and the model (1.9), we can easily prove the
following

THEOREM 1.2. Let T be a 2™-FF design of resolution 21+1. Then the num-
ber of distinct assemblies in T must be at least v,.

Next we shall define a 2"-FF design of even resolution.

DeFINITION 1.5. A fraction T is called a 2m-FF design of resolution 2l
if 8, given in (1.7) is estimable.

In a 2m-FF design of resolution 2I, in general, the general mean 6, and
I-factor interactions themselves are not estimable, but some linear functions
of these effects are estimable. These functions determine alias structures of
0, and 0,,,.,. In 2"-FF designs of even resolution, it is very important to
investigate such alias structures (see Sections 11-13). It is well known (see, e.g.,
Scheffé [21]) that T'is a 27-FF design of resolution 2/ if and only if there exists
a matrix X of size px N such that XE;=[0,x,, I,, Opx,], Where p=v,_,—1
and q=( rln ) The symbol 0,,, denotes the p x g matrix whose elements are all

0. In this case, by considering C=XE; in Theorem 1.1, we obtain the BLUE
8, of 8,,

0o = XEL6*.

For general fractional experiments (i.e., fractional s™ or s;Xs, X - Xs,
factorial designs), the concept of the term ‘‘resolution 2/ or 21+ 1" can be similarly
defined but we shall not consider it here. As compared with designs of odd resolu-
tion, in general, it is very difficult to obtain those of even resolution. For earlier
work on designs of resolution IV, see, e.g., Anderson and Srivastava [1], Margolin
[16, 17], Shirakura [24], Srivastava and Anderson [30, 33], Webb [39].
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2. 2m-BFF designs and B-arrays of strength 21

First consider a 2™-FF design T of resolution 2]+ 1 and the covariance matrix
Var [@] for the design T.

DEeFINITION 2.1. T is called a balanced fractional 2™ factorial (2™-BFF)
design of resolution 21+ 1 if the covariance matrix Var [@] is invariant under any
permutation of m factors.

ReEMARK. It has been observed in [41] that Definition 2.1 is equivalent to
one of the following three statements: (i) For a design T(P) obtained from T by
letting T(P)=PT, where P is any permutation matrix of order m, M3 =Mzl
holds, (ii) for any two estimates 9,1...,u and 9,1...,; in the BLUE é,

Var [érlmtu] = Var [91:01---1..)] s

Cov [0,1...,u, 91’1"'1"[,] = Cov [9,(“...,“), 0,(,1...,;})] s

where 7 is anyAelemeAnt of the permutation group {r; T=<r %1) . (22):::1'("’11))},
and (iii) Cov[6,,..,., 0,...,] is a function of u, v and |{t,,..., t,}O{t],..., t}}|
(or |{tq,..., t,} n{t1,..., £,}), and Var [9,1...,u] is only of u, where the symbols
|S] and S;© S, denote respectively the cardinality of the set S and the symmetric
difference of the sets S; and S,, i.e., S;,©5,=S,US8,-S,nS,.

Now we define a balanced array (‘‘partially balanced” array, in the termi-
nology of Chakravarti [5]) of strength ¢ (with 2 symbols), which has a close rela-
tionship with a balanced design considered in this paper.

DEerFINITION 2.2. A (0, 1) matrix T of size m x N is called a balanced array
(B-array) of strength t, size N, m constraints and index set {yg, tq,-.., de} (or
indices u; (i=0, 1,..., 1)) if for every t-rowed submatrix T* of T, every vector with
weight (or number of nonzero elements) j occurs exactly p; times (j=0, 1,..., 1)
as a column of T*.

For the B-array defined above, it is easily shown that N= Z§'=o< ; )y ;. Thus
the term “‘size”” will be omitted if not necessary.

Let e(t,---t,; t7---t,) be the element of an information matrix M =E.E}
in the cell corresponding to (t;---t,; t1---t;) for 6,,..,, and 0,,..,, in 8. Then the
following two theorems have been established by Yamamoto, Shirakura and

Kuwada [41]:

THEOREM 2.1. Let T be a 2™-FF design of resolution 214+1. Then a neces-
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sary and sufficient condition for T to be balanced is that the information matrix
My has at most 21+ 1 distinct elements vy, (i=0, 1,..., 21) such that

Yi = s(tl'“tu; tll'“tlv) lf Htl*"" tu} e {tll""’ t’u}l =i

THEOREM 2.2, A necessary and sufficient condition for M to be expressible
by such elements y, is that T is a B-array of strength 21, m constraints and index
set {Uo, M1se..s Ha}- A connection between the elements y; of My and the indices
i, of a B-array T is given by

N e A
(2.2) M= Z’L :0 p:o (- 1)P< jip)<2lp—i>3’j

for all i=0,1,..., 2L

Throughout this paper we assume < g >=0 if and only if b>a =0 or b<O.

Next we shall make the definition of a 2"-BFF design of even resolution.

DEerFINITION 2.3. A 2"-FF design T of resolution 21 is said to be balanced
if the covariance matrix Var[0,] for T is invariant under any permutation of m
factors.

In Part III, a 2"-BFF design of even resolution will be discussed in detail.

A 2m-FF design of resolution 2/+1 (or 2I) is said to be orthogonal if the
covariance matrix Var [5] (or Var [50]) is diagonal in this design. A B-array of
strength ¢, size N, m constraints and index set {ug, iy,..., i,} reduces to an or-
thogonal array with parameters (N, m, 2, t) of index u when po=p,=--=g,
(=u, say) (see Raghavarao [19]). It is well known (see, e.g., [41]) that an or-
thogonal array with parameters (N, m, 2, 2]) (or parameters (N, m, 2, 21—1))
of index u is equivalent to an orthogonal fractional 2™ factorial design of resolu-
tion 2/+1 (or 2[). However orthogonal arrays with parameters (N, m, 2, 1)
of index u are available only for the special numbers N =27y and the possibility
of the existence of such arrays is in general very small. In such a sense, the class
of balanced designs arises naturally as the next wide class to be looked into.

3. TMDPB association schemes and TMDPB association algebras

As a generalization of partially balanced association schemes, multidimen-
sional partially balanced association schemes have been first introduced by Bose
and Srivastava [3]. Subsequently the theory has been developed in Srivastava
and Anderson [31, 32], Yamamoto, Shirakura and Kuwada [41], Yamamoto
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and Tamari [43].

Consider p mutually disjoint non-null finite sets of objects S,, S,,..., S,
with |S;|=n;, each. Suppose that a relation of association is defined for each
ordered pair of objects x;, € S; and x;, €S, and that x, is called the a-th associate
of x;, for some « belonging to a set of association indices IT¢-). As in the case
of partially balanced association schemes, every object is called the zeroth associate
of itself and 0¢ ITU-» is assumed. The following definition is due to [41]:

DerFINITION 3.1.  The relation of association defined among the sets S,,
S;3,..., S, is called a p sets multidimensional partially balanced (MDPB) associa-
tion scheme if the following conditions are satisfied:

(i) The relation of association is symmetrical, i.e., if x;, is the a-th as-
sociate of x,,, then the x;, is also the a-th associate of x,.

(ii) With respect to any x;,,€S;, the objects of S;, distinct from x,,, can
be divided into n'»9 distinct classes and the number of objects in the a-th
associate class Sja; x;,) is n{+9. The numbers n:) and n{9 are inde-
pendent of the particular object x;, chosen out of S,.

(ili) Let S;, S; and S, be any three sets where they are not necessarily
distinct. Consider the sets Si(B; x;;) and Si(y; x;,) where x,,€S; and x,€S;
are the a-th associates. Then the number of objects common to S (B; x;,) and
Su(vs x;) is p(i, j, @5 k, B, y) which depends on the pair (x;, x,) and S, only
through i, j, a, k, B and 7.

Note that the condition (i) implies n>D=nl.D and p(, j, a; k, B, 7)=
p(j, i, o; k,y, B), and that the number n§>? =1 can be consistently defined for all i,

Now let Sg, Sy, Sa,..., and §; be I+1 sets of effects {0,}, {6,.}, {0;0,}5-

and {6,,,,...}, the cardinalities of these sets being 1, (T) (’;) and (’;’)

respectively. Suppose a relation of association is defined among these sets
in a way such that 0,,..,,€ S, and 6,,... € S, are the a-th associates if

(3.1 Ktyoeo ) N {t0, .., 15} = min(u, v)~a,

where min(u, v) denotes the minimum of the integers u and v. Then the follow-
ing theorem has been established by Yamamoto, Shirakura and Kuwada [41]:

THEOREM 3.1. Among the 1+1 sets of effects {04}, {0,,}, {0111,}>--» {0y}
the relation of association defined by (3.1) is an 14+1 sets MDPB association
scheme with parameters

{0, 1,..., min (u, v)} if u#v,
H("»") =
{1, 2,..., u} if u=uy,
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min (u, v)+1 if u#v,
nl o) =
u if u=uv,
nlwo) = ) u )( m—u >
“ min(u, v) —a v—min(u, v)+a /°

min(u,v)—a min(u, D)—“ u—min(u, v)+a
ZO k

p(u,v,a;w, B, y) = 3 min(u, w) — f—k

(v—min(u, v)+o X m—u—v+min(u, v) —a )
min(v, w)—y—k /A w—min(u, w)+ f—min(v, w)+y+k /°

The association thus defined is called an [+1 sets triangular type MDPB
(TMDPB) association scheme. As seen from Yamamoto, Fujii and Hamada

[40], it can be regarded as a generalization of triangular series of association

schemes. To investigate the algebraic structure of an I+ 1 sets TMDPB associa-
tion scheme, first consider the <'3>x<'3> matrices Ag,“-")=ua:'i::;'"‘a I, (=0,
1,..., min(u, v); u, v=0, 1,..., ), called the local association matrices. Each

matrix A% ?) is defined as follows:

(3-2) ety

t1oetysa -

1 if 6., is the a-th associate of 0,,..,
[ 0 otherwise.
From (3.1) and Theorem 3.1, we have

Ay = Iemy,

Agv,u) — (Agu,v))/’

min{u,v) (u.0)
3-3) z, 4" =6mxm,

a=0
A&i =neim),

min(u,v)

Ag AP = B pw, v, 03 w, B ALY,
=

where G,,, denotes the p x g matrix whose elements are all 1 and, particularly,
Jp=Gpxi- Next consider the ordered association matrices D) of size v;x v,
obtained in a way such that every matrix has (I+1)? submatrices M9 of size
<'v:')x<’:‘) in the w-th row block and s-th cohimn block for w, s=0, 1,..., ],
and that all but M@ =A%) are zero matrices, i.e., M(W'S)=0(3)x('g) for

(w, 5)#(u, v). Here O,,,
Then, from (3.3) we have

denotes the px g matrix whose elements are all 0.
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ng,u) — (Dgu,v))”

=
=
~—~

(u,u) —
(3.4) 2 D =1,

u=0

I min(u,»)

4 ,
Z Z D;“'D) =Gv1><v,9

u=0 v=0 =0

DlwISls.0) = § mi%’v) (u v, a;w, B )D(u,v)

B Y = Yws » P, v, o W, b, YU, 5
a=

where 6,,=1 or 0 according as w=s or not. The association matrices B+
which represent the relation of association of an /41 sets TMDPB association
scheme can be defined as follows:

(3.5) o[ DADER 0w,
3.5 By =
D;"’”) if u=nv.

The algebra A={B|jx=0, 1,..., min(u, v); 0Su=<v=<1} generated by (l-;3)

symmetric matrices B{*-*) is called an [+1 sets TMDPB association algebra.
The following theorem is due to [41]:

THEOREM 3.2. The l+1 sets TMDPB association algebra W is a semi-
simple, completely reducible matrix algebra. It can be also represented by the
linear closure [D{¥?|a=0, 1,..., min(u, v); u, v=0, 1,..., 1] of all (I+1)(I+2)
(214 3)/6 ordered association matrices D{#?),

Now consider the (T)x('g) matrices Ag?%, (=0, 1,..., min(u, v); u,

v=0, 1,..., ), which are linearly linked with the association matrices A%:?) by
the following (see [27], [42]):

8
(3.6) A = 3 Zuso) glu0)* for 0a<ucxy,
u=0
3.7 Ap0$ = 3 P g for 0<f<u<u,
B 2 20
(3.8) At = (Aw¥y for u> v,
where

(59 = i(_l)m_b<u;ﬁ)(z:@(m—u;ﬁ+b>{<m;_u;/? z:ﬁ)}i
b=0

<v——z+b> i
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(
z”"‘ = ()bﬁzﬂ';’”) .
(u0) m) u\/ m—u
u/\a/\v—u+o

Here ¢B=(r/?>_< ﬁTl ) Then the matrices Ag’* have the following pro-

(3.10)

perties:

& Cu,u)é —
2 =T

311 Az =0 S

AL“’W)#A;,W"")“ — 5aﬂA(ﬂu,v)$,
rank (A4"%) = ¢,
(312) A;’u,v)# — C;’u,v)A;}u,u)ﬁA(Ou,v) for u é v,

where

i =) T

Let Dy~v'* be the matrices obtained by replacing the only nonzero submatrix
Agev) of D by Ag?*. From (3.6)-(3.11), we have

A

o4

IIA

u

[iA

(3.13) Dy = ¥ ZweD@r  for 0 v,
B=0

(3.14) Dy =3 2 D for 0<Psusn,
a=0

1=k I\’; if k=0y
(3.15) 3 3 Dywi=
u=0p=0 diag [1,,_,, Op, x»p,] if 12kg],
where p,=> %24 (™), and
Déu,u)# — (Dgu,v)ii)’,
(3.16) DS,"'“')"D,(;S’”)” — 5ws51pDéu,v)#,
rank (D§"0%) = ¢,

From Theorem 3.2 and (3.13)-(3.16), the following theorem can be established
(cf. [42]):

THEOREM 3.3,
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(i) The I+1 sets TMDPB association algebra W is represented by the
linear closure of all (14 1)(1+2)(21+3)/6 matrices D§*?%, i.e.,

A=[Dy#B=0,1,..,mnu,v);uv=01.,1].

(ii) Let A, be the matrix algebra generated by (1—f+1)* matrices D§»*#
for each =0, 1,..., 1, i.e.,

Wy = [Df*u, v =B, f+1,.., 11,
then W, is the minimal two-sided ideal of W and
AN, = WA, = 6,,%,.

(iii) The algebra N is decomposed into the direct sum of 141 ideals Ay,
i.e.,

A= W@A, D DU,

(iv) Each ideal Ay has D§2* (u, v=4, B+1, .., 1) as its basis and it is
isomorphic to the complete (I—f+1)x(I—B+1) matrix algebra with multi-

s oy=(3)-(57 1)

This theorem implies that for any matrix B (=X .o 2120 2420 A /Dy 2'%,
say) belonging to 2I, there exists a v, x v, orthogonal matrix P such that
(3.17) P'BP = diag[Ag; Ay, - Ay Apyeny Af,

L AL
X dp

where A, are the (/—f+1)x(I—f+1) matrix with (i, j) elements /. The
matrix A, is called the irreducible representation of B with respect to each ideal
A,, for which we shall use the following notation:

Wy B— Ay,

4. The irreducible representations of the information matrices for B-ar-
rays of strength 21

Now consider a B-array T of strength 2[, m constraints and index set {uq,
Iys-.» U2y} Further consider the information matrix M for the B-array T as a
design. In this section we shail obtain the irreducible representations of My
with respect to ideals 2,. They will occur in later discussions frequently.

From Theorem 2.1 and (3.1), it is easy to see that if two effects 0,,..,, and
Oy, are the a-th associates, then
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B(tl"'tu; t’lt;)) = Vo>

where w=|u—v|+20a, y; are given in (2.1) and &(t,---t,; t;---t,) is the element
of My corresponding to 6,...,, and 6,..,.. From the definition of association
matrices D{#-?, therefore, M, can be expressed as

1 I min(u,v) (a0
M=% 3 2 v.De"".
u=0 v=0 a=0

Hence it follows from Theorem 3.2 that the information matrix M, belongs to the
I+1 sets TMDPB association algebra %. From (3.13) M can be also expressed
as

-8 1-p . . .
(4.1) M= 3 3 3 xjpiD{f+ipeis,
=0 i=0 j=0
Here
. P B+i . . . .
(4.2) kpld = Kp' = ag'o yj—i+2uz§i€c+"ﬁ+1) for 0si<jsl-§;

0=l

where zf,';;"’ are given in (3.9). From Theorem 3.3, therefore, we can obtain
the (I—p+1)x(I—p+1) symmetric matrices K, (=0, 1,..., ) such that for the
B-array T,
W,: My — K,
where
Kg:o Kjﬂorl “es K3)1~p

4.3) Kp = : : :
K80 KB L. klB 18

In particular the matrices K, for the cases I=2, 3 are important. Therefore
explicit expressions of K, for =2, 3 are presented in the following example:

ExAMPLE 4.1.
(i) The case I=2.
~ 12 -
Yo mii2y, (31) Y2
= _ 1/2
(3[(;3) Yo+ (m—1)y, (mTl> {2y, +(m—=2)y3} |,
(Sym.) vo+2(m—2)v2+(m2_2>v4
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K,

_I: Yo—72 (m—2)12(y; —7ys3) J
(2x2) ’

(Sym.) Yot (m—4)y,—~(m—3)y,
K; = 90=2y,474 = 2*p,,
where
Yo = N = pg+puo+4(ps+pq)+6p,, V1 = Ha—Ho+2(us—1y),
V2 = Hatlo—2y V3= pa—po— 23— 11,

Va = Mg+ po—Hpus+p,)+6u,.

(i) The case [=3.

K, = Yot {m=1)7, <m—2_—1>1/2{2?1+(m—2)v3}
(x4) st tmas (%)
sym)
L.
("33 ent on-3m
(52) by +30m=33+( ™52 )1}
70+ 30m=37243( "5 Jat ("5 e |
(yo=12 =220, =)
3 Yo+ (m—4)y, = (m—3)y,
(sym)
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<’";2>1/2(y2—y4)

_a\1/2
(252) " ert =65 —(m=drs} |,
- -9 —4
Yo+ (2m—9)y, +Ln_1__»4)2(m ) 74_<’n2 >V6
[Vo_?-)’z‘i‘h (m—4)t2(y; —2y3+75) }
2 = ’
(2x2) (Sym.) Yot (m—=T)y,— Cm—11)y4+4 (m—5)y,

K3 =v9=3y2+37:— 6
where
Yo = Mo+ Ho+0(tts+ )+ 15(ps + 1) + 2013,
Vi = fo— Mo+ A(s — 1y)+ 5y — 13),
V2 = Mo+ Ho+2(us+p ) —(pa+ p13) — i,
V3 = He— o — (g —H3), Va = Mot Ho—2(pts+ py) —(Ua+ 12) +4ps,
Vs = o= o= Mits = 1)+ 5(a— 112)s Vo = Moo —O0(is + 1) +

+ 15(py + p15) — 20u;.

Part 1I. 2™-BFF designs of odd resolution and their optimalities

5. Various properties derived from irreducible representations of the in-
formation matrices of 2™-BFF designs of resolution 2/+1

For a B-array T of strength 2/, m constraints and index set {go, iy,.--s H21}s
we have observed in Section 2 that Tis a 2"-BFF design of resolution 2!/ +1 if and
only if its information matrix My is nonsingular. We now proceed to consider
the characteristic polynomial of M of a 2™-BFF design of resolution 2/+ 1 which
will make it possible to investigate the balanced designs of higher resolution.

Since I, e U, if follows that

Q«[p: MT_)‘IW > Kﬂ_ill—ﬂ""i‘
From Theorem 3.3, we have the following theorem (cf. [42]):

THEOREM 5.1. The characteristic polynomial W(A) of the information
matrix My of a 2"-BFF design T of resolution 21+ 1 is given by
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(5.1) V(i) = det(Mp—2l,) = [T {det (K= AL,y )},
=0

where det(.) stands for the determinant of a matrix.
From this theorem, we can easily establish the following:

THEOREM 5.2. Let T be the design of Theorem 5.1. Then

5.2 (V) = (M5 = 3 ytr (K,
(5.3) det(Vy) = det (M31) = [ {det(K;1)}%»,
£=0

where tr(.) stands for the trace of a matrix.

From (1.13) we may note that for any 2"-FF design T of resolution 2/+1,
tr (V) is proportional to the average of the variances of all normalized linear
functions of the effects 0;,,..,, (k<I). On the other hand, det(Vy) is propor-
tional to the volume of the ellipsoid of concentration (see Cramér [11]). That
is, it corresponds to the volume of the region within which the true parametric
point may lie with a certain probability. In such a sense, a design T is said to
be optimal with respect to the trace or determinant criterion if it minimizes
tr (Vy) or det(V;), respectively. It is well known that in the class of all 2"-FF
designs of resolution 2/+4 1 with N assemblies, an orthogonal design is optimal with
respect to the above two criteria. For studies on optimal designs using various
criteria, see, e.g., Hedayat, Raktoe and Federer [13], Kiefer [14, 15], Raktoe and
Federer [20], Shirakura [25], Srivastava and Anderson [30, 33].

Let T be the matrix obtained from T by interchanging symbols O and 1. T
is called the complement of T. It is easy to see that if Tis a B-array of strength
2! with indices u;, then T is that of strength 2! with indices ji;=p,,_; (i=0, 1,...,
2l). Furthermore if T is a 2"-BFF design of resolution 2/+1, then T is also so.
Therefore T is called the complementary balanced design of T.

THEOREM 5.3. For a 2m-BFF design T of resolution 21+ and its com-
plementary design T,
tr(Vy) = tr(Vy),
5.9
det(Vy) = det (Vy).

Proor. This follows immediately from Theorem 3.2 in Shirakura and
Kuwada [26].

As will be scen later, this theorem is useful for finding optimal 2"-BFF
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designs of resolution VII with respect to the trace and determinant criteria. It
may be remarked that (5.4) holds for more general fractional designs (see
Srivastava, Raktoe and Pesotan [38]).

From the definition of balanced designs, it follows that T is a 2"-BFF design

of resolution 2/+1 if and only if Vye . Thus it is clear that the covariance

matrix Var [é] =02V has at most <l§3> distinct elements. Also we have

Ay,: Var [é] — 02 K51,

Using the inverse matrices Kz!, Shirakura and Kuwada [27] have obtained ex-
plicit expressions for all the distinct elements of V7. That is, let k% ; be (i, j)
elements of Kz! and let V{*»*) be the element of V; corresponding to 6,,..,,
and 6,,..,. which are the a-th associates. Then we have

THEOREM 5.4. For a 2m-BFF design of resolution 21+1,

A

u
(5.5) Veer = 3 khopop2les  for 0Sasusvsl,
=0

where z{2 ,, are given in (3.10).

Following a usual procedure in the calculation of Var [5], tr(Var [5]) and
det(Var [5]), we have to calculate the inverse of a large v, xv, <v,=1+<r1n>
++<";>> matrix M;. However the expressions of (5.2), (5.3) and (5.5)

imply that we have only to calculate the inverse of at most (I+ 1) x (I+ 1) matrix,
i.e., K,. Note that the sizes of matrices K; do not depend on the number of m
factors. For more explicit expressions of V{"*) for the cases [=2, 3, see [27].

In the following discussion we shall investigate some combinatorial proper-
ties which are useful for obtaining 2"-BFF designs of resolution 2I+1. Further
deep investigations will be discussed in Sections 6, 7 and 8.

The matrices K, are obviously dependent on the constraints m and indices
U, (i=0,1,...,2]) of a B-array T. The information matrix M is in general
positive semidefinite. From (5.1), we can establish the following theorems:

THEOREM 5.5. Let T be a B-array of strength 21, m constraints and index
set {lg, 115--s U21}. Then a necessary condition for the existence of T is that
every matrix K, (=0, 1,..., I) is positive semidefinite.

THEOREM 5.6. Consider the B-array T of Theorem 5.5. Then a necessary
and sufficient condition for T to be a 2™-BFF design of resolution 2141 is that
every matrix K, is positive definite.

From (2.1), (2.2), (3.9) and (4.2), after some calculations, we can express the



Balanced Fractional 2™ Factorial Designs 237
elements of K in terms of the m and y; (i=0, 1,..., 2I). For example
(5.6) K, = k0 =22y,

(5.72) k29 =220 2(u oy +21),

bl

(57b)  wfeh = Kk = 2202 m =214 D2~ ),
(5.7¢) kizl =22172{(m =21+ 2) (W4 g+ - ) —2(m =20},
(5.82) k29 =22 oty + 4+ - D)+ 61},

(5.8b) B9 =224 m =214+ ) 2 {py o — g+ 20y — - )

X
T
-

]
kel

Lol m—20+4\I12
589 w3 =xpg =228( I NRG p-2u,
(5.8d) kizd =22 (m =214 4) (14 2+ - )+ 4004 1+ - ) —2(m = 2D},

(5.8¢) k23 =

2

g = 220422 204 4) 2 = 1-2)
=2(m—=2D)(pye1 — -1}
(5.8f) K23 = 22'-4[( m=2+a )(#1+2+#1—2)
—2(m—21)(m—21+3)(u,+1+u,_1)+{3(m—21)2+5(m-21)+4}u,}

From (5.6)-(5.8), we thus have as immediate corollaries of Theorem 5.5 and
5.6 the following:

COROLLARY 5.7. A set of necessary conditions for the existence of the
B-array T of Theorem 5.5 is that the following inequalities hold:

(5.9) w0,

(5.10a) (Mm—=214+2)(y1+ -1 = 2(m—2Ny,,

(5.10b)  (m=21+2pp ypy— g + G 1y + pupy— ) 2 (m—20pt,

(5.11a) (m=214+8) (2 +1-2)+4(y 4 +u-1) = 2(m—2Dy, for 1z2,

G110 (T ) )+ Bm =202+ 5(m = 2D + 4}

2 2m=2D)(m=2143) (41t p-1) for 122

COROLLARY 5.8. A set of necessary conditions for the B-array of Theorem
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5.5 to be a 2"-BFF design of resolution 21+ 1 is that the inequalities (5.9)—(5.11)
hold with strict inequality in each case.

From the rest of elements of K, we can obtain results similar to Corollaries
5.7 and 5.8. However they are very complicated and will make this paper unduly
lengthy.

6. Existence conditions for B-arrays of strength ¢

For a (0, 1) matrix T of size m x N, let (i, i5,..., ix; T), (1 £k < m), denote
the number of times the vector » occurs as a column of T where v contains 1
exactly at the i -th, i,-th,..., i;-th positions and O elsewhere. In particular =(¢; T)
denotes the number of times the vector of weight O occurs as a column of T.
Whenever no emphasis on T is needed, we shall simply write t™(i,, i,,..., if)
=1(iy, ip,..., ix; T). The following two theorems are due to Srivastava [29]:

THEOREM 6.1. A necessary and sufficient condition for the existence of a
B-array T of strength t, m=t+1 constraints and index set {lg, {t1,..., U} Is
that there exists an integer d such that

2r=1
d<y; = max {0, ¥ (—1)},
152rst+1 9=0
6.1
. 2r
d= ;= min {3 (=1},
0=2rst g=0

Also if there exists an integer d which satisfies (6.1), then

k
Ty, iy, i) = 2 (=D, 4+ (=1)kd for 12k=Zt+1,
=1
(6.2) !
() = d.
THEOREM 6.2. A necessary and sufficient condition for the existence of a

B-array T of strength t, m=1t+2 constraints and index set {{y, ty,-.., i} IS
that there exist integers d and d; (i=1, 2,..., t+2) such that

@ Y,2d =y,

2r=1
dzy, = max {0, (= 1)7qus - -,
252r5142 =
6.3) .
(b) +m,...r,r,~l?,)>(em: (3 di}s

. 2r
d é lp22 = min { 2 (—1)Q+1q:u2r—q
0g2rst+1 ¢=0
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s 2r+1 1
+ min ( Z di,,))’a
Hinizese deMm! 2=0

where M} denotes the collection of all subsets of {1, 2,..., t+2} with cardinality
k. Also if there exist integers d and d; which satisfy (6.3), then

i e i) = 8 (= DIt (= DS dy + (~1)kd
g=0 a=1
(6.4) for 12k<t+42,
T2(p) = d.

DerFINITION 6.1.  For two (0, 1) matrices T, and T, of size mx N, T| is
said to be isomorphic to T, if there exist the permutation matrices Q, and Q,
of size mxm and N x N, respectively, such that Q,T,=T,Q, holds.

From (6.2) and (6.4), we can easily prove the following two corollaries:

COROLLARY 6.3. The number of nonisomorphic B-arrays of strength t,
m=t+1 constraints and index set {ug, l(,..., it;} is equal to that of integers d

satisfying (6.1).

COROLLARY 6.4. The number of nonisomorphic B-arrays of strength t,
m=t+2 constraints and index set {ug, Uy,-.., U} is equal to that of sets {d, d,,
dy,..., d,;,} such that d and d; satisfy (6.3a, b).

In Theorem 6.2, without loss of generality, we can assume d, =d,=--=d,,,.
Thus we have the following

COROLLARY 6.5. A necessary and sufficient condition for the existence of
a B-array T of strength t, m=t+2 constraints and index set {{lg, fyse. s s} IS
that there exist integers d', d; (i=1,..., t+2) such that

Yipzd 2dy 22 dis 2 Y4y,

2r—1 2r
(6.5) 'z = max {0, F (=D%uz-i-t 2 4.

252rst+2 q
, , . 2r 1 2r ,
dzyy,= min {3} (-1* [ 2 disa-i}-
0=52rst+1 g=2 i=0
As a generalization of Theorem 6.2 and 6.3, we now prove the following theo-
rem:

THEOREM 6.6. Let M2 be the collection of all subsets of {1, 2,...,t+3}
with cardinality k and let MP be that of {1, 2,..., t+3}—{i}, 1Zigt+3).
Then a necessary and sufficient condition for the existence of a B-array T of
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strength t, m=t+3 constraints and index set {g, piy,..., ,} is that there exist
integers d, d; and d, ; (i, j=1, 2,..., t+3; i< j) such that

@ Yy, = di,j <V
(6.6) ) y¥i<d<yy) for i=12,.,1+3
©) Y31 =d = Ys,,

where
6.7 Vi =, nax {0, qZ( D a1~y A5}
() — q+1
v osrqusn:n{qz'( D qu,, q+d2r+1}
5 Y3 = 2s?rasxr+3{0 ( Z (- 1)"“( >u2r—1—q+32r)}:
= q
b2 =, min ((Z (01§ Joar-gtdaran), min ).
Here '
= max (4}, dP=  min {Fd.h
1 Ju}emy)) @ (tserjrtemi? =
k k
ak= max Z{Zd — 2 di it
{i1yemrin)emy *=1 a,p=1
. k k
dv = min Z{Zdia— 2 di i)
{it,nsintedy o1 a,p=1

Also if there exist integers d, d; and d;; satisfying (6.6a, b, c), then

k

T30, 0,00, By) = :;1,(_ 1)"( g )#k—l—q+(— 1)"a2=1 iasip
(6.9)

F(~DF1Y d (=1 for 2SkSt+3,
a=1

©3(i) = dy, —d,

Tt 3(¢) =

Proor. Let T® and TG (i,j=1,2,...,t+3;i<j) be (t+2)x N and
(t+1) x N matrices obtained from T by omitting the i-th row and the i-th and
j-th rows, respectively. Let d; and d;; be the numbers of column vectors with
weight 0 of T® and T ), respectively. If T is a B-array of strength ¢, then
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T® and T are also of strength ¢.  Thus from Theorem 6.1 and 6.2 it follows
that for the B-array T9, the integers d;; and d; must satisfy (6.3a) and (6.3b)
(or (6.6a) and (6.6b)). For such integers d; and d, ;, therefore, a necessary and
sufficient condition for the existence of a B-array T with indicated indices is
equivalent to that there exist nonnegative integers (i, i,,..., i) such that the
following equations hold:

(i) +d = d;,,
©(iy, i) +1(i)+ (i) +d = dy, 4,
iy, iy, i3)+7(iy, i) +1(iy, i3)+1(,, i)+ () +7(i5),
+1(i3)+d = o,
in general, for all permissible k,
©(iys i2s i3y baseees )Ty, Boy dgseens i)+ Ty, I35 ig5eees i)
+1(ip, I3, Tayeees B FT(i 15 Qg5eeey )+ T(i0s Tgeenes ) FT(iss Pgoeees ix)
+ 1045 B) = -3

where d=1""3(¢) and (iy, ip,..., i) =1"3(iy, is,..., i;). From these equations,
it can be easily proved by induction on k that (6.9) hold. The condition.(6.6¢c)
is equivalent to that d=0 and (i, i,,..., i,)=0 for all distinct integers i,, i,,...,
i, with 1<, <t+3 and 1£k=<t+3. This completes the proof.

From (6.9), we have

COROLLARY 6.7. The number of nonisomorphic B-arrays of strength t,
m=t+3 constraints and index set {yiy, piy,..., i} is equal to that of sets {{d, ;},
{d;}, d} such that (6.6a, b, c) hold.

For a (0, 1) matrix T of size mxN, let z7 (0<g=<m) be the number of

columns in T which are of weight g. Then the following theorem has been given
in [29]:

THEOREM 6.8. Let T be a B-array of strength t, m constraints and index
set {Uo, f15.--» tey- Then the nonnegative integers z" must satisfy the follow-
ing equations:

610) 3 ‘5) ”::§.>z;;=<’;’>(;>uj for j=0,1,.,1

DEFINITION 6.2. A B-array with m constraints is said to be “‘trim” if
ZB=zm=0
4] m .
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DEFINITION 6.3. A 2™-BFF design of resolution 21+ 1 is said to be trim
if it is a trim B-array of strength 21 and m constraints.

7. Simple arrays with parameters (m; 2y, 4,,..., 4,,)

Let Q(k; m), (0<k=<m), be the (0, 1) matrix of size m x ( 7: ) whose columns

are all distinct vectors with weight k.

DEFINITION 7.1. A matrix obtained by juxtaposing each Q(k; m) A,
(k=0, 1,..., m) times, i.e.,

[QW0; m):---: QO0; m): Q(1; m):+--: Q(1; m): +--: Q(m; m): ---: Q(m; m)]

Ao Ay Am

is called a simple array (S-array). The numbers (m; Ay, Ays..., A,,) are called
the parameters of the S-array.

Each Q(k; m), of course, is an S-array with A,=1. Also it can be easily
checked that it is a B-array of strength ¢ with indices (T{::) (i=0, 1,..., 7).
Thus we have

THEOREM 7.1. An S-array with parameters (m; Ay, A(,..., A,,) is a B-array
m_

of strength t, m constraints and indices ;= Zi"=o< k_g)lk (i=0, 1,..., ).
Now we shall investigate some conditions for B-arrays to be S-arrays. From
the definition of a B-array, we can easily prove the following:

THEOREM 7.2. A B-array of strength t, m=t constraints and index set
{Mos U1se.es i} is an S-array with parameters (t; Ao=pg, Ay =[5, Ly=H).

We now prove

THEOREM 7.3. A B-array of strength t, m=t+1 constraints and index
set {lg; tys...s Uy} is an S-array with parameters (t+1; Ay, A1s...r A1), Where
Ag=T1(P) and Ay=71 (iy, iy,..., i) given in (6.2).

Proor. The proof follows from the fact that each t**1(iy, i,,..., i) in (6.2)
depends on distinct integers iy, i,,..., i, only through k.

COROLLARY 7.4. Let T be a B-array of strength t, m constraints and
index set {yg, t1,..., e} and let T (i=1, 2,..., m) be matrices obtained from
T by omitting i-th rows. If every TV is equivalent to an S-array with parame-

ters (m—1; Ay, A4,..., A,—1) such that p;= ',':;(‘)<mk__lj_t>l;‘ hold for j=0,



Balanced Fractional 2™ Factorial Designs 243

1,..., t, then Tis also an S-array. Its parameters are given by
AO = T(¢; T)’

b= S (=10 4(=1)Fy for 1<k<m.
g=1

Proofr. From assumption, T is of strength m —1, m constraints and index
set {4y, A%».-.» Am-1}. This completes the proof, because of Theorem 7.3.

THEOREM 7.5. Let T be a B-array of strength t, m=t+2 constraints and in-
dex set {lgy Pise-es ey If

zi*2 =0 forsome k with 1Zk<t+1,

where z{*? is the number of columns of T which are of weight k, then T is an S-
array with parameters lo=1t%(¢), 4t=0 and A =v"2(iy, iz..., i), 1Zr
Zt+2; r#£k), given in (6.4).

Proor. It is clear that zj*2=0 implies t**2(iy, i,,..., i;,)=0 for all distinct
elements i, ip,..., i of {1, 2,...,t+2}. From (6.4), therefore, the value of
k=1d; depends on k only. This shows that d;=d,=---=d,,,. Again from
(6.4), this implies that t**2(i,, i,,..., i,) depend on i,, i,,..., i, only through r.
This completes the proof.

CoROLLARY 7.6. Consider the B-array T of Theorem 7.5 with t=6, m=38
and py=1. Then T is an S-array with A;+2s=1 and 1,=0.

Proor. Without loss of generality, we assume that T is a trim B-array.
Therefore, after some calculation of (6.10), we have

z§+28 = 56(—3+3p,—2p;+po) 20,
(7.1)
z§ = 35(4-3p,+2p,—po) 2 O,

where po=po+He P1=H41+Us and p,=u,+u,. From (7.1), it is clear that
0<4—3p,+2p,—po=1 holds. Now assume that 4—3p,+2p, —po=1 holds.
Then z§=35 and z§+28=0. From Theorem 7.5, T is an S-array, so that z§

=< 2 >/14. This implies a contradiction. Hence we have 4—3p,+2p, + py =0,
that is, z§+2z8=56 and z§=0. Again from Theorem 7.5, it follows that T is
an S-array with z§+z§ =( g )(113 +A5)=56 and 1,=0. This completes the proof.

THEOREM 7.7. A B-array T of strength t, m (=t+2) constraints and index
set {Ugs tyye-r tey With u,=0(0=r<=t) is an S-array with parameters (m; A,,
Atsevs 15 00t 0, Apusr—r 415 -» Am) Which satisfy
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r—1

b = 2(%:;),1,( for i=0,1,.,r=1 (r#0),
k=0

(7.2)
Sl m—t .
Brt141= k;()( i—k )/lm+,_,+1+k Jor i=0,1,.,t—r—1 (r#1).

Note that for two cases po=0 and y, =0, the parameters of the S-array take
the form of (m;0,...,0, A,,_,41,---5 4,») and (m; Ao,..., 4,_{, 0,..., 0), respectively.
First we shall prove the following two lemmas:

LemMmA 7.8. Consider the B-array T of Theorem 7.7. Then the weight q
of a column of T must satisfy q<r or g>m-+r—1.

PrROOF. Assume that there exists a column vector of T with weight g satisfy-
ing r<qg<m+r—t. Then we can obtain a t-rowed submatrix T* of T such that
a column vector with weight r occurs in T*. This implies u, #0, a contradiction.
This completes the proof.

In view of Lemma 7.8, the B-array T of Theorem 7.7 can be expressed without
loss of generality as

T=1[Toy: Ta): ¢ Te-1y Tomtr—t+1y: % Tempds
where T, is a submatrix of T whose columns are only of weight g.

LEMMA 7.9. Consider the B-array T of Theorem 7.7. Then the sub-
matrices [Tigy:-++: Tp_yy] and [Tyipesi1y: -t Tyl are also B-arrays of
strength t and m constraints with index set {uq,..., hy_1, 0,..., 0} and {0,..., 0,
ey 15--+5 U}, FESpectively.

Proor. The number of times any column vector of weight ¢ (0Zg=<r—1)
occurs in any t-rowed submatrix of T does not depend on Tiuiyp—r41y5eees Timy
Thus [Tigy: -t Tp—1y] is a B-array of strength ¢, m constraints and index set
{1o> H15---s Py—1, 0,..., 0}.  Similarly it can be shown that [Tim4,ors1y: 2 Tyl
is a B-array with the indicated index set.

Proor oF THEOREM 7.7. We prove by induction that every T, (g=0,
1,...,r—1)is an S-array. From Lemma 7.9, the index set of the B-array [T(o,: -+:
T, -1y] is given by {uo,..., tty~1, 0,...,0}. Furthermore it is found that the number
of times a vector with weight r—1 occurs as a column of this array depends on
Te-1y only. Let v be the column vector of T,_,, which contains 1 exactly at
iy-th,..., i,_;-th positions and O elsewhere. Then in a t-rowed submatrix of
Ti, -1y which includes i,-th,..., i,_,-th rows, the column vector corresponding to
v must occur exactly t(iy,..., i,_; Tj,~qy) times. From the definition of a B-
array, it follows that ©(i,,..., i,_;; T,—1))=p,_, that is, it does not depend on the
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iy-th,..., i,_-th positions of v. This shows that T(,_,, is an S-array with 4,_,
=p,_1. Assume that [T;,): Tijy: -2 T,_yy] is an S-array. Then, since it
is a B-array of strength ¢ from Theorem 7.1, it is clear that [Tio,: ---: T;] is also
a B-array of strength ¢ and its index set takes the form of {ug,..., ), 0,..., 0}.
From an argument similar to the above, it follows that T;;, is an S-array with
A;j=uj. This proves that [Tioy:---: T;,_;y] is an S-array. In the same way, it
can be shown that the B-array [Ti,,4,—;41): ==+ Timy] is also an S-array. Clearly
the relation (7.2) follows from Theorem 7.1. This completes the proof of Theo-
rem 7.7.

Finally we shall prove the following

THEOREM 7.10. A necessary and sufficient condition for a B-array T of
strength t, m constraints and index set {yg, {iy,..., 4} to be an S-array is that
there exist intergers d'*1, d**2,..., d™ such that for each s=t,t+1,...,m—1,

2r—1
st =y max {0, q;o (=123},

(7 3) 1=2rss+1
a1 S Yg) = min (5 (=14},
where
uh= for k=0,1,..,1,
a4 o= a

k
it = 2 (= D*aps_ (= 1)kds*t for k=1,2,...,s+1.
q=1
If there exist integers d* satisfying (7.3), then the parameters of the S-array
are given by (m; Ao=ug, Ay =U7,..., An=um.

Proor. Let T/ be a j-rowed submatrix of T. If T is an S-array, then for
each s=t, t+1,...,m—1, Ts*! is also an S-array and a B-array of strength s.
Denote its parameters and index set by (s+1; ugtt, psti,..., ustd) and {43,
US,..., ps}, respectively. Particularly ui=p, for k=0, 1,...,t. From Theorems
6.1 and 7.3, it is clear that a connection between the parameters ui*! and the
indices u§ is given by (7.4). This implies that there exists an integer ds*! satisfy-
ing (7.3) for each s=t,t+1,...,m—1. Conversely let d'*t, d**2,...,d™ be
integers which satisfy (7.3). Then from Theorems 6.1 and 7.3, we can construct
S-arrays T**1, T**2,.., T™ in sequence. Let T=T™ then T is clearly a B-
array of strength ¢ and m constraints with the given index set.

As an immediate corollary to the above theorem, we have
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COROLLARY 7.11. The number of nonisomorphic S-arrays which are
equivalent to a B-array of strength t, m constraints and index set {ig, ly5.--,
i}, is equal to that of sets {d'*!, d**2,..., d™} satisfying (7.3).

In Theorem 7.10, note that there may be B-arrays of strength ¢t and m con-
straints with the same index set which are nonsimple, even if there exist integers
di satisfying (7.3). However it may be seen from [7-10, 23, 34, 37] and Section
8 that the possibility of the existence of such B-arrays is very small within a certain
practical range of N for =4, 6. In such a sense, Theorem 7.10 is very useful
for constructing 2"-BFF designs of resolution V or VII.

8. Optimal 2°-BFF designs of resolution VII with 130 <N <150

Now we shall consider 2°-BFF designs of resolution VII with N assemblies
satisfying v, (=130)XN<£150. Two criteria, the trace and determinant criteria,
will be used for comparing these designs. As mentioned in Section 5, the two
criteria are based on the amounts of (5.2) and (5.3), respectively.

First we proceed to consider trim B-arrays {or trim designs) T* (see Defini-
tions 6.2 and 6.3) of strength t=6, m=9 constraints, size N and index set {u,,
Hyse--s Hayp. To avoid repetition, suppose that such trim B-arrays T* are con-
sidered throughout this section. Further suppose that simply z,=z7 for g=1,
2,..., 8. Then it follows from Theorem 6.8 that for a trim B-array T*,

(@) 28z,4+7z,+2z5 = 84u,,
(b) 28z, +21z,+9z3+2z, = 252y,,
(C) 722+9Z3+624+225 = 252#2,

8.1) (d) z3+42z,+2z5+2z4 = 84u,,
() 2z44+62549z4+7z7 = 252u,,

(f) 2Z5+9Z6+2127+2828 = 252#5,
(8 z¢+7z;+28z5 = 84u,,

As in Section 7, define po=po+ i, py=u,;+us and p,=pu, +pu,. From (8.1),
after some calculations, we obtain

THEOREM 8.1. For a trim B-array T*, the following hold:
(@ yy= —16u3+15p,—12p,+7p, 2 0,

(®)  y2=4Q23u;—-21p,+15p,—5po) 2 0,
(8.2)
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(©  y3=28(=Tu3+6p,-3p,+po) 2 0,
(d)  ya =14(10u3—-6p,+3p;—po) Z 0,
where y =z,+2g, Y2=2,+27, y3=23+2¢ and y,=z4+2Zs.
THEOREM 8.2. For a trim B-array T¥*,
(@) N 242y,

® Nz PGyt

(8.3)
(©) N 29p+3%s,

1

d  py ?Iis-

I

Proor. It follows from (8.2a,b,c) that po+6p,=(21—-98)p,+(128
—26)us holds for f=6/5. Since N=py+6p,+15p,+20u;, we have N=9(4
—B)p,+6(2—1u, for p=6/5. The inequalities (8.3a, b) can be obtained by
taking f=4 and [=6/5, respectively. From (8.2b, c¢), also py+15p,=3p,
+19u;. Similarly we have (8.3c). The inequality (8.3d) can be easily obtained
from (8.2a, b, c).

THEOREM 8.3. For a trim B-array T*, u; =4 implies N =z 168.
Proor. This follows immediately from (8.3a).

THEOREM 8.4. Let T* be a trim 2°-BFF design of resolution VII. Then
us=1 and p,>6/5u5 hold.

Proor. This follows immediately from (5.9), (5.10a) and Corollary 5.8.

Now we are interested in the designs with N <150. In view of Theorem 8.3
and 8.4, we can restrict only to B-arrays with 1< u;<3. In the following discus-
sions, we shall make further investigations on trim B-arrays (or trim designs)
for each case of u;=1,2,3. In each case T and z{® (i=1,2,...,9; k=0,
1,..., 8) denote a B-array obtained from T* by omitting i-th row and the number
of columns of weight k in T, respectively.

(a) The case u;=1.

THEOREM 8.5. Let T* be a trim 2°-BFF design of resolution VII with
uz=1 and NZ150, then 52p,22,122p,21 and 6p,—3p;+po=10 (i.e,
Y4=0) hold.



248 Teruhiro SHIRAKURA

Proor. The first two inequalities follow from Theorems 8.2 and 8.4
Clearly T'9 is of strength 6 and 8 constraints with pu;=1. From Corollary
7.6, therefore, T¢) is also an S-array with a parameter A{°=0 for each i=1,
2,...,9. Since A{¥ is the number of times Q(k; 8) occurs as submatrices of TU),
it is found that z,=z5=0. This completes the proof.

THEOREM 8.6, Consider the B-array T* of Theorem 8.5. Then T* isan
S-array with (Ag=Ad,=As=Ag=A=0, Lz3=1) or (Iy=A3=4,=1s=43=0, Ag=1).

Proor. From Theorem 8.5, y,=0 holds. Hence it follows from (8.2c, d)
that z;+z,==84 holds. Again consider a B-array T9. By Corollary 7.6, it is
shown that T is an S-array with A{’=0 and A+ =1 for each i=1,
2,...,9. Since A{’ are nonnegative integers, A4’ =1 or 0 according as A’ =0
or 1. If A{?=1 and A’ =0 for some i, then we shall show that 1{’=1 and
AY=0 for all j=1,2,...,9. It is easy to see that z,=0 and A{’=1 imply
z;22$=56. Now suppose there exists an integer j such that 1%’=0 and
V=1, Then z5=0 and AY’=1 imply z¢=:z¥?=56. Thus z3+z¢=112
must hold. It contradicts z;+z¢=84. This shows that if A{’=1 and 1§’=0,
then z;=84 and z4=0 hold. As in Section 7, therefore, T* can be expressed
without loss of generality as

T* =[Ty): Toy: Tiay: Tyt Tyl

It is clear that the number of times a column vector of weight 3 occurs in any
6-rowed submatrix of T* depends on Ti3, only. This implies that T3, itself must
be an S-array with A;=1. Since it is also a B-array of strength 6, the submatrix
[Tyt Tizy: Tiqy: Tigy] must be of strength 6. Its index set takes the form of
{uo, 1, 1y, p3=0, ply, us, us}. From Theorem 7.7, it follows that this sub-
matrix is an S-array. Hence T* is an S-array with Ag=4,=As=1=125=0, 1;=1.
In the same way, we can show that T* is an S-array with A,=21;=21,=15=1,=0,
A¢=1 in the case when A{?=0and /1§’ =1.

(b) The case py=2.

THEOREM 8.7. Let T* be a trim 2°-BFF design of resolution VII with
u3=2and N2150. Then S=p,=3 and 8=p, =1 hold.

ProoF. This follows from Theorems 8.2 and 8.4.

THEOREM 8.8. There does not exist any trim B-array T* with p;=2,
p,=5 and N <150.

Proor. In this case p; =6 and p, £3 imply N>150 and y,< —4(14+5p¢)
<0, respectively. Thus the cases (i) p;=5 and (ii) p, =4 are considered. In
the case (i), (8.2a, b) reduce to
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y1=7p0_1720’ y2=4(16—5p0)20.

This shows that po =3 must hold. For a trim B-array T* with p,=35, p,=5 and
po=23, consider T and its trim B-array T* for i=1, 2,...,9. Then the index

set of T()* takes the form of {uP, uy,..., s, p’}, where 0L pu§P) 4+ uld (=p{P, say)
<3. From Theorem 6.8,

2042 = 8P -2 20, 2 +2( =28(4—pf) 20,
29428 =566 =) 20, 2 =35(3-p{) 20

hold for i=1, 2,...,9. If p{’=2, then z{? =z =0and z{’=35. From Theo-
rem 7.5, however, z{) must be a multiple of <§)=70. This implies a contra-
diction. On the other hand, p{’<1 implies z{’+2z%’<0. After all p{’=3
(i.e., z@’=0) for all i=1,2,...,9. Hence y,=0 holds. However it contra-

dicts y,=28 in (8.2d). Next consider the case (ii). Then similarly (8.2a, b)
reduce to

Y1=Tpe—520, y,=4(1-5p,) = 0.

Clearly there does not exist any nonnegative integer p, satisfying the above
inequalities. This completes the proof.

THEOREM 8.9. There does not exist any trim B-array T* with u;=2, p,=4
and 128 N £150.

In view of Theorem 1.1, note that a 2°-BFF design of resolution VII can not
be obtained from a trim B-array with N <128 (or a general B-array with N <130).
To prove the theorem, we need the following three lemmas:

Lemma 8.10. If there does not exist a B-array of strength 6 and m con-
straints with index set {ug+ag+o,(m—=06), py+0oy, Uss tas Ras Hs+ 0o, e+ 03
+o,(m—6)}, where o; (i=0, 1, 2, 3) are nonnegative integers, then there does
not exist any B-array of strength 6 and m constraints with {ug, 1, fas Uz, Has
s> He}-

ProOF. Suppose that there exists a B-array T of strength 6 and m con-
straints with index set {uq, ty,--., flg}. Further consider a matrix obtained by
juxtaposing the array T and an S-array with parameters (m; Ag=0a,, A; =0,
0,...,0,4,_{=ds, A,=03). From Theorem 7.1, it is clear that this matrix is a
B-array with the indicated index set. This implies a contradiction.

LEMMA 8.11. There does not exist a B-array of strength 6 and 9 constraints
with index set {10, 4, 2, 2, 2, 3, 8}.



250 Teruhiro SHIRAKURA

Proor. This follows immediately from Theorem 6.6.

LeEMMA 8.12. There does not exist an S-array corresponding to a B-array
of strength 6 and 9 constraints with uy;=2 and p,=4.

Proor. Consider an S-array with parameters (9; 4, 4(,..., 4g) such that
Ay +323+34,+ 45 = uy,
Az+324+ 35+ A6 = 2,
Aa+3As+346+ 4, = py,

where u,+p,=4. It is easy to see that there do not exist nonnegative integers
A; satisfying the above equations. This completes the proof, because of Theorem
7.1.

PrOOF OoF THEOREM 8.9. p, =7 and p,=3 imply N>150 and N<128
respectively. For 4<p, <6, by using Corollary 6.5, we can construct B-arrays
of strength 6 and 8 constraints. Furthermore, in view of Corollary 7.4 and
Lemma 8.12, among these B-arrays we can select ones which will be of strength
6 and 9 constraints. The following is a list of index sets of such B-arrays: (i)
When pu,=pu,=2 and p, =6, (i, iy, its, He)=(9, 4,2, 1), (8,4, 2,2),(7,4,2,3),
6,4,2,4),(54,2,5),(7,3,3,3), (6,3,3,4),(5,3,3,5),(8,4,2, 1), (7, 4, 2, 2),
(6,4,2,3),(54,2,4),(6,3,3,3),(53,3,4,(7,4,2, 1),(6,4,2,2), (5,4, 2, 3),
(5, 3,3,3), (4,3,3,4), (ii) when p,=u,=2 and p, =5, (1o, ty, its, ttg) =(6, 3,
2, 1), (53,2,2), (4,3,2,3), (3,3,2,4), (5,3,2,1), (4,3,2,2), (3,3,2,3),
4,3,2,1), (3,3,2,2), and (iii)) when p,=u,=2 and p,=4, (g, i1, Us. Ue)
=(3,2,2,1),(2,2,2,2). From Lemmas 8.10 and 8.11, however, it is found
that there do not exist B-arrays of strength 6 and 9 constraints with the above
index sets. For example, we shall show that there does not exist any B-array with
{9,4,2,2,2,2,1}. In Lemma 8.10 consider ay=1, a;=0,a,=1 and o;=4.
Then it follows from Lemma 8.11 that this array does not exist. This com-
pletes the proof.

THEOREM 8.13. There does not exist any trim B-array T* with u;=2,
p,=3 and 128< N £150.

Proor. Clearly p, =8 and p, <5 imply N>150 and N <128, respectively.
If p; =7, then (8.2b, c) reduce to

y2 = 488—5p,) 2 0, V3 =28(po—17) = 0.

Thus po=17 (i.e., y3=0) holds. As in Theorem 8.8, consider a trim B-array
TW*  Then from Theorem 6.8,
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2+ 2 = 28(12—p§P) 2 0,
2§ +2§) = 56(p§) ~11) 2 0, 2{) =35(13~p§") 2 0

hold for i=1, 2,...,9. From Theorem 7.5, therefore, p{) =11 (i.e., 24’ =z{ =0)
must hold for all i. Furthermore this implies y,=0. It contradicts y,=
14(23—py)#0 in (8.2d). 1In the same way, it can be shown that there does not
exist T* with p, =6. This completes the proof.

In consequence of Theorems 8.7-8.13, it is found that there does not exist
any trim B-array with g3 =2 and 128< N =£150.

(c) The case u;=3.

THEOREM 8.14. Let T* be a trim 2°-BFF design of resolution VII with
u3=3 and 128<N<150. Then p,=4,3=p, 22 and 3p, =py+3 (i.e., y,=126,
y2=y3=0, y;=%p, — 1)) hold.

Proor. From Theorems 8.2 and 8.4, we have p,=4 and 3=p,=1. The
remaining equalities follow from (8.2b, c, d). Now assume p,=1. Then py=0
and N=126. It gives a contradiction.

THEOREM 8.15. The B-array T* of Theorem 8.14 is an S-array with
parameters lg=~A,=A3=A¢=A,=2Ag=0 and A, +75=1.

ProoOF. As in Theorem 8.6, from Theorem 8.14 we can consider T* as the
following form:

T* = [Tyt Tyt Tisyt Tis]-

The number of times a column vector with weight 1 occurs in any é-rowed sub-
matrix of T* depends on T, only. This shows that T(,, itself is an S-array with
Ay=po/3. Therefore the submatrix [Ti4,: T(sy: Tisy] must be a B-array of
strength 6 and its index set takes the form of {up=0, u, Uz, t3 =23, 4, Us. Le}-
From Theorem 7.7, this submatrix is an S-array. Since y,= 126=< z ) (Aa+25),
T* is an S-array with the indicated parameters.

CoROLLARY 8.16. There does not exist any trim B-array with p,=p,=2,
H3=3 and 128< N <150.

Proor. This follows immediately from Theorems 7.1 and 8.15.

From the above results, we can easily construct trim B-arrays with 128<N
£150. Furthermore it is found that all the B-arrays obtained are fortunately
S-arrays. General B-arrays can be easily obtained from trim B-arrays by adding
column vectors, each being of weight 0 or 9. Among all the B-arrays for each
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TaBLE 8.1 Optimal 2°-BFF designs of resolution VII with respect to the trace cri-

terion
N po pm1 pa s pa ps s tt(Vr) 20 4 2 23 A4 25 A A A A
30 4 4 3 1 1 3 4 160156 0 1 0 1 0 O 0 1 0 1
*31 4 4 3 1 1 3 5 15277 0 1 0 1 0 O O 1 O 2
*132 4 4 3 1 1 3 6 15884 0 1 0 1 0 0 0 1 o0 3
133 4 4 3 1 1 3 7 158838 0 1 0 1 0 O O 1t O 4
*134 5 4 3 1 1 3 7 15890 1t t 0 1 0 0 0 1 0 4
135 5 4 3 1 1 3 8 1589 1 1 0 1 O O O 1 O 5
36 6 4 3 1 1 3 8 15821 2 1 0 1 O O O 1 O 5
137 6 4 3 1 1 3 9 158458 2 1 0 1 0 0 O 1 0 6
1337 4 3 1 1 3 9 158410 3 1 0 1 0 0 O 1 0 6
*139 7 5 3 1 1 3 4 152246 0 2 0 1 0 0 O 1 0 1
*140 7 5 3 1t 1 3 5 15137 0 2 0 1 0 O O 1 O 2
*141 7 5 3 1 1 3 6 15104 06 2 0 t O 0 O 1 O 3
*142 7 5 3 1 1 3 7 150928 0 2 0 1 0 0 O 1 0 4
143 7 5 3 1 1 3 8 150840 0 2 o0 1 0 0 0 1t O 5
14 7 5 3 1 1 3 9 15781 0 2 0 1 0 0 0 1 0 6
45 8 5 3 1 1 3 9 1507321 2 0 1 0 0 O 1t O 6
46 8 5 3 1 1 3 10 1506 1 2 0 1 0 O O 1 o0 7
147 9 5 3 1 1 3 10 150657 2 2 0 1 O O O 1 O 7
14810 6 3 1 1 3 4 14909 0 3 0 1 0 O O 1 O 1
*14910 6 3 1 1 3 5 148730 0 3 0 1 O O O 1 O 2
*IS010 6 3 1 1 3 6 148437 0 3 0 t+ O O 0 1 0 3

* This design is also optimal with respect to the determinant criterion.

TasLE 8.2 Optimal 2°-BFF designs of resolution VII with respect to the deter-
minant criterion

N po pr ps #s pa s ps 0 (Vp) 20 A4 A 2 A4 A A 4 Ag A
133 5 4 3 1 1 3 6 15842 1 1 0 1 0 O O 1 O 3
135 6 4 3 1 1 3 7 15814 2 1 0 1 0 0 0 1 O 4
137 7 4 3 1 1 3 8 158473 3 1 0 1 0 O O 1 O S
1383 4 4 3 1 1 4 6 158630 0 1 0 1 O O O 1 1 0
143 8 5 3 1 1 3 7 15081 1 2 o0 t O O O 1 O 4
144 8 5 3 1 1 3 8 1507792 1 2 o0 1 0 0 0 1 O 5
145 9 5 3 1 1 3 8 1570 2 2 0 1 0 0 0 1 O 5
146 9 5 3 1 1 3 9 1570 2 2 0 1t 0 0 0 1t O0 6
147 7 5 3 1 1 4 6 151719 0 2 0 1 O O O 1 1 0
148 7 5 3 1 1 4 7 15056 0 2 0 1t 0 0 o0 1 1 1
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TaBLE 8.3 Covariance matrices for optimal 2°-BFF designs of resolution. VII

V(O'ﬂ) V(OrZ) V(l»l) V(1-2)
N poopoopa ps s s 0 yoen yien ¢ yion pien

130 4 4 1 1 3 4 0017578 —0.001519 0.017578 0.001519
0.001519 —0.000651 —0.001519  —0.000651

131 4 4 1 1 3 5 0014526 —0.001010 0.017565 0.001553
0.001316 —0.000346 —0.001533 —0.000617

132 4 4 1 1 3 6 0013509 —0.000841 0.017560 0.001564
0.001248 —0.000244 —0.001537 —0.000606

133 4 4 1 1 3 7 0013000 —0.000756 0.017558 0.001570
0.001214 —0.000193 —0.001539  —0.000600

133 5 4 1 1 3 6 0013471 —0.000811 0.017545 0.001583
0.001224 —0.000258 —0.001552  —0.000587

134 5 4 1 1 3 7 0012947 —0.000720 0.017542 0.001589
0.001185 —0.000209 —0.001555  —0.000581

135 5 4 1 1 3 8 0.012630 —0.000664 0.017541 0.001594
0.001162 —0.000180 —0.001557 —0.000577

135 6 4 1 1 3 7 0012919 —0.000701 0.017534 0.001600
0.001170 —0.000217 —0.001563  —0.000571

136 6 4 1 1 3 8 0.012597 —0.000643 0.017532 0.001604
0.001145 —0.000188 —0.001565  —0.000566

V(l.s) V(272) V(2,2) V(2v8) V(S,l’:) V(3<3)
0 Vl(lxs) V1(2,2) VéZ’S) ! Vé2~3) V{373) 2 Vés»a)

—0.001519 0.011882 0.000380 —0.000380 0.011882 0.000380
0.000651 —0.000705 0.000705 0.000488  —0.000705 —0.000488

—0.001499 0.011797 0.000295 —0.000431  0.011851 0.000349
0.000671 —0.000790 0.000654 0.000437  —0.000736  —0.000519

—0.001492 0.011768 0.000267 —0.000448  0.011841 0.000339
0.000678 —0.000818 0.000637 0.000420 —0.000746  —0.000529

—0.001489 0.011754 0.000253 —0.000456  0.011836 0.000334
0.000682 —0.00832 0.000629 0.000412  —0.000751 —0.000534

—0.001501 0.011746 0.000244 —0.000437  0.011836 0.000334
0.000669 —0.000841 0.000648 0.000431 —0.000751 —0.000534

—0.001497 0.011730 .0.000228 —0.000445  0.011831 0.000329
0.000673 —0.000857 0.000640 0.000423 —0.000756  —0.000539

—0.001495 0.011720 0.000218 —0.000450  0.011828 0.000327
0.000675 —0.000867 0.000635 0.000418 —0.000759  —0.000541

—0.001501 0.011717 0.000215 —0.000440 0.011829 0.000327
0.000669 —0.000870 0.000645 0.000428  —0.000758 —0.000541

—0.001499 0.011706 0.000205 —0.000445  0.011826 0.000324
0.000671 —0.000880 0.000640 0.000423 —0.000761 —0.000544
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TABLE 8.3 (continued)
(0.0) (0,2) (1.1) V(1,2)
N po gy o s a0 s s yion Vi yies Vi pn o yn
137 6 4 3 1 1 3 9 0012382 —0.000604 0.017531 0.001607
0.001128 —0.000169 —0.001566 —0.000563
137 7 4 3 1 1 3 8 0.012577 —0.000630 0.017528 0.001610
0.001135 —0.000194 —0.001570 —0.000560
1383 7 4 3 1 1 3 9 0.012359 —0.000590 0.017526 0.001614
0.001117 —0.000174 —0.001571 —0.000556
133 4 4 3 1 1 4 6 0.020745 —0.001732 0.017342 0.001485
0.002094 —0.000878 —0.001419 —0.000737
139 7 5 3 1 1 3 4 0.017456 —0.001444 0.014418 0.000902
0.001424 —0.000671 —0.001207 —0.000400
140 7 5 3 1 1 3 5 0.014404 —0.000936 0.014404 0.000936
0.001221 —0.000366 —0.001221 —0.000366
141 7 5 3 1 1 3 6 0.013387 —0.000766 0.014400 0.000947
0.001153 —0.000264 —0.001225 —0.000355
142 7 5 3 1 1 3 7 0012878 —0.000682 0.014398 0.000953
0.001119 —0.000214 —0.001227 —0.000349
143 7 5 3 1 1 3 8 0.012573 —0.000631 0.014396 0.000956
0.001099 —0.000183 —-0.001229 —0.000346
143 8 5 3 1 1 3 7 0.012867 —0.000673 0.014397 0.000955
0.001117 —0.000219 —0.001228 —0.000347
144 7 5 3 1 1 3 9 0012370 —0.000597 0.014395 0.000958
0.001085 —0.000163 —0.001230 —0.000344
V(lva) V((JZ:E) V(Z»Z) V(2’3) V(S,s) V2(8r3)
0 V{l»s) V1(2»2) 5 V5213) ! Vé2,3) 0 V{3x3) V§3.3)
—0.001498 0.011699 0.000198 —0.000448  0.011824 0.000323
0.000672 —0.000887 0.000637 0.000420 —0.000763 —0.000546
—0.001502 0.011698 0.000196 —0.000442 0.011825 0.000323
0.000668 —0.000889 0.000643 0.000426 —0.000762 —0.000545
—0.001500 0.011691 0.000189 —0.000445 0.011823 0.000321
0.000670 —0.000896 0.000640 0.000423 —0.000764 —0.000547
—0.001450 0.011852 0.000366 —0.000383 0.011700 0.000393
0.000539 -—0.000727 0.000674 0.000513 —0.000789 —0.000377
—0.000956 0.011498 0.000431 —0.000295 0.011444 0.000376
0.000346 —0.000871 0.001007 0.000356 —0.000926 —0.000275
—0.000936 0.011414 0.000346 —0.000346 0.011414 0.000346
~ 0.000366 —0.000956 0.000956 0.000305 —0.000956 —0.000305
—0.000929 0.011385 0.000318 —0.000363  0.011403 0.000336
0.000373 —0.000984 0.000939 0.000288 —0.000966 —0.000315
—0.000926 0.011371 0.000303 —0.000371 0.011398 0.000331
0.000376 —0.000999 0.000931 0.000280 —0.000971 —0.000320
—0.000924 0.011363 0.000295 —0.000376  0.011395 0.000328
0.000378 —0.001007 0.000926 0.000275 —0.000975 —0.000323
—0.000927 0.011364 0.000297 —0.000367 0.011396 0.000328
0.000375 —0.001005 0.000935 0.000284 —0.000974 —0.000323
—0.000922 0.011357 0.000289 —0.000380 0.011393 0.000326
0.000380 —0.001013 0.000922 0.000271 —0.000977 —0.000326
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TABLE 8.3 (continued)

’*Vm.n) y(02) y (D p )
N o poop pa st s Mo ! yinn ¢ yon ¢ yien ¢ v
144 8 5 3 1 1 3 8 0.012556  —0.000619 0.014396 0.000958
0.0010%6 —0.000189 —0.001229  —0.000344
145 8 5 3 1 1 3 9 0.012348  —0.000584 0.014395 0.000961
0.001081 —0.000170 —0.001230  —0.000341
145 9 5 3 1 1 3 8 0.012545  —0.000612 0.014395 0.000960
0.001094 —0.000193 —0.001230  —0.000343
146 8 5 3 1 1 310 0012199  —0.000558 0.014394 0.000962
0.001071 —0.000155 —0.001231  —0.000340
146 9 5 3 1 1 3 9 0.012334  —0.000575 0.014394 0.000962
0.001079 —0.000174 —0.001231  —0.000340
147 9 5 3 1 1 310 0.012183  —0.000549 0.014394 0.000964
0.001069 —0.000160 —0.001231  —0.000338
147 7 5 3 1 1 4 6 0.020674 —0.001679 0.014467 0.000844
0.002023 —0.000896 —0.001139  —0.000486
148 10 6 3 1 1 3 4 0.017415  —0.001420 0.013364 0.000696
0.001393 —0.000678 —0.001103  —0.000316
14 7 5 3 1 1 4 7 0.015872 —0.001070 0.014400 0.000916
0.001459 —0.000477 —0.001206  —0.000415
149 10 6 3 1 1 3 5 0.014364 —0.000911 0.013351 0.000730
0.001189 —0.000373 —0.0011177  —0.000283
150 10 6 3 1 1 3 6 0.013346  —0.000741 0.013346 0.000741
0.001121 —0.000271 —0.001121  -0.000271
745 yien y e 4] | Z4430)) yen
v Vl(lra) . V1(2,2) V1§2:3) VZ(Z:{%) o V1(3:3) V§3v3)
—0.00925 0.011355 0.000288 —0.000372  0.011393 0.000325
0.000377 —0.001015 0.000930 0.000279  —0.000977  —0.000326
—0.000923 0.011349 0.000281 —0.000376  0.011391 0.000323
0.000379 —0.001021 0.000926 0.000275  —0.000979  —0.000328
—0.000926 0.011350 0.000283 —0.000370  0.011392 0.000324
0.000377 —0.001019 0.000933 0.000281  —0.000978  —0.000327
—0.000922 0.011345 0.000277 —0.000378  0.011390 0.000322
0.000380 —0.001025 0.000924 0.000273  —0.000980  ~0.000329
—0.000924 0.011344 0.000276 —0.000373  0.011390 0.000322
0.000378 —0.001026 0.000929 0.000278  —0.000980  —0.000329
—0.000923 0.011339 0.000272 —-0.000375  0.011388 0.000321
0.000379 —0.001031 0.000927 0.000276  —0.000981  —0.000330
—0.000991 0.011420 0.000438 —0.000302  0.011371 0.000389
0.000283 —0.000907 0.000957 0.000392  —0.000956  —0.000219
—0.000769 0.011371 0.000448 ~0.000267  0.011298 0.000375
0.000244 —0.000927 0.001108 0.000312  —0.000999  —0.000203
—0.000941 0.011343 0.000361 —0.000355  0.011335 0.000353
0.000332 —0.000984 0.000904 0.000339  —0.000992  —0.000256
—0.000748 0.011286 0.000363 —0.000318  0.011268 0.000345
0.000264 —0.001012 0.001057 0.000261  —0.001030  —0.000234
—0.000741 0.011258 0.000335 —0.000335  0.011258 0.000335

0.000271 —0.001040 0.001040 0.000244  —0.001040  —0.000244
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number N =po+ pe+6(t; +ps)+ 15(u, +p1,)+20u; with 130N =150, we can
find the required optimal designs with respect to the trace and determinant criteria.
In view of Theorem 5.3, however, note that we may restrict our attention to B-
arrays such that (i) u, > uy, if p, 5 py, (1) p, > ps if p,=p, and p, # ps, or (iii) go
=g if p,=p, and u, =ps. In Table 8.1, the optimal 2°-BFF designs T of resolu-
tion VII with respect to the trace criterion are given with the values of tr(Vy)
and the parameters 4; (i=0, 1,...,9) of the corresponding S-arrays. Note that
the optimal designs are completely determined by knowing the values ;. Next
let us consider the optimal designs with respect to the determinant criterion. In
this case it is interesting that for N=130-132, 134, 136, 139-142 and 149-150,
these designs are identical with the designs of Table 8.1, and moreover that for
the remaining values of N but N =138 and 147, these designs are the second-best
designs with respect to the trace criterion. These are given in Table 8.2 with
the values of tr(Vy) and 4,. By Theorem 5.4, we can easily obtain the distinct
elements V) of V; for each optimal design of Tables 8.1 and 8.2. These are
given in Table 8.3.

Part III. ' 2=-BFF designs of even resolution derived from B-arrays of
strength 27 and their optimalities

9. S, type 2=-BFF designs and their optimality

Consider a B-array T of strength 2/, m constraints and index set {ug, iy,.-.,
121} such that the following condition is satisfied:

det(K,) # 0 forall g=0,1,...,1-1,
9.1)
Kl = 0,

where K, are the (I—f+1) x (I—B+1) matrices given in (4.3). Note that a 2™
BFF design of resolution 2/+-1 can be no longer obtained from such an array T,

since its information matrix My is singular. The following theorem has been
established by Shirakura [24]:

THEOREM 9.1. Let T be the above B-array. Then T is a fractional design
in which

(@) 6, and Y,=Ay-P*@, (=0, 1,...,1—1) are estimable where 6, and
8, are given in (1.7),

(b) the BLUE §1,,=(6", Yi}) of (6, ¥})' is given by

9.2) Vip= X Eryr  for B=0,1,.,1-1,

where
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1-11-B-1 1-
(9'3) Xl‘ﬁ = z z Z Ka D(a+l ¢+1)s+ Z Z Kﬂ D(ﬂ+1 B+j)%
a % i=0 j=0 i=0 j=0

(x4 ; are (i, j) elements of Kz"), .
(c) the covariance matrix Var[@,] is invariant under any permutation of
m factors.

From Definition 2.3, the designs obtained in this theorem are a subclass of
2=-BFF designs of resolution 21.

DEerFINITION 9.1. A B-array T of strength 2l1, m constraints and index
set {Ug, l1y...» a1} is called an S, type 2m-BFF design if T satisfies Condition
9.1). :

It is easy to see that the covariance matrix Var [51] has at most <l§2>

distinct elements. By using the method similar to Theorem 5.4, we can obtain
the following

THEOREM 9.2. Let The an S; type 2™-BFF design and consider the elements
Vg2 of Var[8,] corresponding to 0,..., and 8,,..,., which are a-th associates.
Then
(94) V(u ) = quﬂu ﬁz{u v) for Oéaéuévél—l,

e
where 282 ,, are given in (3.10).

Now we shall state some combinatorial properties of S, type 2™-BFF designs.

From (5.6), K,=0 is equivalent to ,=0. To construct S, type 2"-BFF designs,

first of all, we must investigate B-arrays of strength 2/ with ;=0. From Theorem
7.7, we can establish '

THeEOREM 9.3. T is a B-array of strength 2l, m constraints and index set
{tos Hys.. s Hayy With =0 if and only if T is an S-array with parameters (m;
Aorerer A1 05000y 0, A1t 1500es Ap)s Where '

e B

21
Hiv1+1 = <m >}m I+1+k

9.5)

fori=0,1,..,1-1.

COROLLARY 9.4. A necessary and sufficient condition for the existence of
the B-array of Theorem 9.3 is that the following inequalities hold:
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-1 :
_1\itk m—21—1+l—k> >
igo( 1) ( i—k Hi = Ov

-1 . —2] — -3
igo(—l)'“(m lk_l;}_k l>”1+1+i.2_0
for all k=0,1,..., 1—-1.
Proor. See Shirakura [22].

The following two theorems are due to [24].

THEOREM 9.5. Let T be an S, type 2™-BFF design. Then the number of
distinct assemblies in T must be at least v} =v,—¢,=1 +m+< '; )+ +( sz)

+2(l'_"1>.

THEOREM 9.6. If there exists an S, type 2"-BFF design T with Ny (Zv})
assemblies, then for N> N, (N — No+1) nonisomorphic S, type 2™-BFF designs
with N assemblies can be obtained from T.

THEOREM 9.7. A necessary condition for the existence of an S; type 2™-
BFF design is that the following strict inequalities hold:

M- 141 > 0,
(Mm=214+8) (-2 +py2) > Mm =20 -y +psy)  for 12 2.
Proor. This follows from (5.7), (5.8f) and Condition (9.1).

THEOREM 9.8. Consider the case 1=2. Then there exist always S, type
2m-BFF designs for any N (Zvi=2m+1) assemblies.

Proor. Consider an S-array T with parameters (m; lo=1, 41,=1, 0,..., 0,
Am—1=1, A,,=0). From Theorem 9.3, then T'is equivalent to a B-array of strength
4, size N=2m+ 1, m constraints and index set {go=(m—3), p; =1, u,=0, p3=1,
Ha=(m—4)}. It is easy to check that the matrices Ky and K, in Example 4.1, (i)
are nonsingular for the B-array T. This implies that T is just an S, type 2"-BFF
design with the smallest number vi =2m+1 of assemblies. Because of Theorem
9.6, the proof of this theorem is completed.

Now consider the case [=3. In this case the smallest number is vi=1+m
+2 ’2n . Consider an S-array T with parameters (m; 1,=0, ,=1, 1,=1,
0,...,0,4,_,=1,2,_,=0, 4,,=1), which is identical with a B-array of strength 6,

size¢ N=v}, m constraints and index set {,u0=< m;S ), ui=m—5, u,=1, u;=0,



Balanced Fractional 2™ Factorial Designs 259

Ha=1, us=m—=6, ug =( m; 6 >+ 1}.  Unlike the case =2, it is very complicated
to show that for a general number m, the array T satisfies Condition (9.1). How-
ever for each value of m within a practical range, we shall be able to show that T
satisfies Condition (9.1).

From Theorems 9.6, 9.8 and the above statements, we may say that for any
given N, there are in general a large number of possible S, type 2”-BFF designs.
Among these, we must choose one which maximizes information in some sense.
For this purpose, Shirakura [24] has introduced the following amount for an S,
type 2"-BFF design T':

(9.6) Sy = ;g:(l)tﬁﬂtr(KEl).

Let Y be ¢4 x 1 vector whose elements are composed of ¢, independent linear
-1/2
functions in {q&,, /( 'l" >} Y. Then Sy can be rewritten as

Sy = tr(Var[6,Djo? + 5 tr(Var [§Dla?,

where li:; is the BLUE of y}. From (3.17), (4.1) and Condition (9.1), it is also
found that S; denotes the trace of a generalized inverse matrix of M.

DEFINITION 9.2. For given N assemblies, an S, type 2™-BFF design T is
said to be optimal with respect to the generalized trace (GT) criterion if T
minimizes St.

10. Optimal S, type 2™-BFF designs with m=6, 7

In view of the previous section, we are interested in optimal S; type 2"-BFF
designs with respect to the GT criterion for desirable numbers m and N=v}. In
this section, for the special case /=3, the optimal designs will be obtained for
m=6,7 and for every N with v} <=1+m+2<g‘))§N<v3 (=1+m+(';)
+( g‘)) In this case, note that since there exist always 2"-BFF designs of resolu-
tion VII with N =v, assemblies (see [23]), we need not consider S, type 2"-BFF
designs for larger N. For the optimal designs for m=8, see [24].

From Condition (9.1) and Theorem 9.3, first consider a B-array of strength
6, m constraints and index set {ug, i1, K2, #3=0, U4, s, Ue}, and the correspond-
ing S-array with parameters (m; Ay, A, 45, 23=0,.., 2,,_3=0, 4,_5, A,,_1, A
From (9.5), we have

bo = Ao+ (m=6,+( "3 6 Yo,y = My +(m—6)s,
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(10.1) B2 =24 M4 =1lpy_z W5 =lp_1+(M—6)p_»,
o = It (n =y +( ™50

From Corollary 9.4 and Theorem 9.7, we can obtain the following

THEOREM 10.1. A necessary condition for the existence of an S; type 2m-
BFF design is that the following inequalities hold:

(a) Ha g 13 Ha g ]a

102 ®) po+(™3 Ju2 2 (=6, w2 (m=-6s,

Mgt m=3 Ha = (M—=06)us, ps = (M—6)uy.
2

Now we shall prove

THeOREM 10.2. A4 necessary condition for the existence of an S, type 2m-
BFF design with N <v, is that thefoliowmg inequalities hold:

@ Lz ptpe)  for mA7,
(10.3)
‘ ® 32t for m=7.
ProorF. From (10.2b), it is easy to verify that pg+ pe+6(u, +us)=(m?—m
—30) (1, +pa)/2 holds.  Since N =pq+ pg +6(py + ps) + 15(n, + u,) <vs, we have
>< gl)(#z +44). This shows that

m+1 + 2(m+1)

(10.4) 3 m(m—1)

> (p2+p4).

Let m+1=3t+r where 0<r=2. Since we are assuming m2=6, we have t=2.
Now we shall show that (10.3a, b) hold for each case r=0, 1, 2. For r=0, the
left hand side of (10.4) reduces to t+6t/(9t2—9t+2). Clearly r=0 implies
mz8, so that £23. It is easy to see that 0<6¢/(9t> —9t+2)<1 holds for 123,
Hence we have t=(u,+u,). For r=1, the left hand side of (10.4) reduces to
t4+(3t2 +5t+2)/(9t> —3t). Since 0<(3t2+5t+2)/(9t>—31)<1 holds for =2,
we have t=(u,+p,). Finally consider the case r=2. Then the left hand side
of (10.4) reduces to t+(3t2+4t+2)/(9¢>+3¢t). Similarly it can be shown that
0<(3t2+4t+2)/(9t2+3t)<1 holds for t=3. Thus t>(u,+u,) for mz=11.
When m=7, from (10.4) it is clear that (10.3b) holds. This completes the proof.

From the above results, we can easily construct S5 type 2m-BFF designs for
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TasLe 10.1 Optimal S; type 2™-BFF designs
m=6 N w5 e Sy o M A A A A
37 0 1 1 1 0 1 1.20979 0 1 1 1 0 1
38 1 1 1 1 0 1 1.16667 - 1 1 1 1 0 1
39 1 1 1 1 0 2 -1.15368 1 1 1 1 o0 2
40 2 1 1 1 0 2 1.14619 2 1 1 1 0 2
4 2 1 1 1 0 3 114179 2 1 1 1 0 3
m=17 N w1 ope ot ps M Sr A A& A A A A4
50 1 2 1 1 1 1 143426 0 1 1 1 0 1
51 2 2 1 1 1 1 141425 1 1 1 1 0 1
52 2 2 1 1 1 2 1.40466 1 1 1 1 0 2
53 3 2 1 1 1 2 139952 2 1 1 1 0 2
54 3 2 1 1 1 3 1.39624 2 | 1 1 0 3
55 4 2 1 1 1 3 1.39388 3 1 1 1 0 3
56 1 2 1 1 2 1 1.15878 0 1. 1 1 1 0
57 2 2 1 1 2 1 113936 1 1 1 1 1 0
58 2 2 1 1 2 2 112012 1 1 1 1 1 1
59 3 2 1 1 2 2 111531 2 1 1 1 1 1
60 3 2 1 1 2 3 - 1.11032 2 1 1 -1 2
61 42 1 1 -2 3 110804 3 1 "1 -1 2
62 42 1 1+ 2 4 110571 31 1 1 -1 73
63 2 -3 1 12 1710960 0 -2 1 - ‘10
TasLE 10.2 Covariance matrices for optimal S, type 2»-BFF designs
m=6 N pooppaopgops pte VOO yge-n vien vien
37 o1 1101 0.02833 0.00187 —0.00083 0.03042
3% 111101 0.02832 0.00195 —0.00098 0.029935
39 1 111 0 2 0.02800 0.00150 —0.00135 0.02933
40 2 1 1 1 0 2 0.0279 0.00152 —0.00139 0.02926
4 2 1 1 1 0 3 0.02788 0.00137 —0.00152 0.02905
Vl(l’l) Véan) Vl(le) Vc('2»2) V1(2»2) Vz(Z,Z)
—0.00083 —0.00021 —0.00021 0.03250 0.00125 0.00125
—0.00130 0.00065 0.00065 ©0.03092 —0.00033 —0.00033
—0.00192 0.00013 0.00013 - 0.03049 —0.00076 - —0.00076
—0.00199 0.00027 0.00027 0.03020 —0.00105 - —0.00105
—0.00220 0.00010 0.00010 0.03005 --0.00120 —0.00120
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m=7 N oo g VO vin v v
50 121111 0.02980 0.00058 —0.00376 0.05237
51 221111 0.02742 0.00019 —0.00266 0.05231
52 221112 0.02708 0.00045 —0.00235 0.05211
53 3 21 1 1 2 0.02645 0.00036 —0.00206 0.05210
54 321113 0.02632 0.00045 —0.00195 0.05203
55 421113 0.02604 0.00041 —0.00181 0.05202
56 1 21121 0.03125 0.00000 —0.00446 0.04167
57 2211 21 0.02979 —0.00049 —0.00384 0.04150
58 2 211 2 2 002734 0.00000 —0.00279 0.04141
59 3 211 2 2 002673 —0.00012 —0.00253 0.04138
60 3 211 2 3 0.02604 0.00000 —0.00223 0.04136
61 4 2 11 2 3 0.02573 —0.00006 —0.00210 0.04135
62 4 2 1 1 2 4 0.02539 0.00000 —0.00195 0.04134
63 2 311 21 0.03097 —0.00028 —0.00419 0.03939
pn piun pan y o yisn p
—0.00666 —0.00231 0.00116 0.02633 —0.00145 0.00203
—0.00672 —0.00213 0.00134 0.02582 —0.00196 0.00151
—0.00692 —0.00237 0.00111 0.02555 —0.00223 0.00124
—0.00693 —0.00233 0.00115 0.02541 —0.00237 0.00110
—0.00700 —0.00241 0.00107 0.02531 —0.00247 0.00101
—0.00700 —0.00239 0.00109 0.02525 —0.00253 0.00094
—0.00521 0.00000 0.00000 0.02487 —0.00191 0.00255
—0.00537 0.00021 0.00021 0.02460 —0.00218 0.00228
—0.00547 0.00000 0.00000 0.02415 —0.00263 0.00183
—0.00549 0.00005 0.00005 0.02404 —0.00274 0.00172
—0.00551 0.00000 0.00000 0.02392 —0.00287 0.00159
—0.00552 0.00002 0.00002 0.02386 —0.00293 0.00154
—0.00553 0.00000 0.00000 0.02380 —0.00299 0.00147
—0.00515 —0.00020 0.00047 0.02432 —0.00227 0.00238

each m=6 and each N with vl <N <v,. Among these, we can obtain the required
optimal design T such that St in (9.6) is a minimum. In Table 10.1, the optimal
designs for m=6, 7 are given with the values of Ag, 41, 42, A_2> Am—15 A IN
(10.1). The distinct 20 elements V{#:*) in (9.4) for the designs are also given
in Table 10.2. As in Theorem 5.3, for an S, type 2"-BFF design T and its com-
plementary design T, we have S;=Sy. Thus it may be remarked that for the de-
signs in Table 10.1, their complementary designs are also optimal with respect to
the GT criterion,
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11. Alias structures of I-factor interactions in S, type 2™-BFF designs and
their estimability

In this section we shall make certain investigations on alising of I-factor
interactions in S, type 2m-BFF designs. It has been observed in Section 9 that
V,=A5P%, (=0, 1,...,1—1) are estimable in an S, type 2m-BFF design T.
From (3.7) and (3.11), ¥, are such that

(i) every element of ¥, represents the mean of effects of I-factor interac-
tions, i.e.,

=1 ;
'po ) <’7> {tl'tlv;ntl)e‘-mletltr“t'](;n),

(ii) the elements of Y, (B#0) represent contrasts between effects of I-factor
interactions, i.e.,

’('{‘)"”’ =0 for B #0,

(iii) any two contrasts, one belonging to ¥, and other to ¥, (a#f), are
orthogonal, i.e.,

V¥ =0 for a# B, and

(iv) there are ¢4 independent contrasts in each ¥, (8#0).
From the above statements, it is found that in all < lr_nl ) (=¢o+d,+-+

¢,_,) independent linear functions of @, ,,..,, are estimable in the design 7. How-
ever to observe the pattern of aliasing, a more simple expression for alias structures
of [-factor interactions is needed. We establish the following

Taeorem 11.1. In an S, type 2™-BFF design,
(11.1) ¥ = AY-1.0g,
is an estimable function of 8, where A1 s the local association matrix
of size (lr—nl )x('?) defined in (3.2). There are just (1?_11) independent
linear functions of @, in .

Proor. From (3.11) and (3.12), we have A{~1,0%45LD% = 4{i-1.D%

= LD A1 D8 4-1D for all f=0, 1,...,I—1. Hence the estimability of
V; (B=0, 1,..., [—1) implies that Y jzh A5~ 1-i-D¥4{J-1.99, is estimable. Since

YhzhAy- 1 VE =] where p=< lTl ), it is clear that ¢ is estimable. From
(3.6) and (3.11), AY=1DAGI=D = Dhzb(z451P)244-1-D% From (3.9),
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(1) = (m=1+1-p)(I—-P) #0 for all f=0,1,..,I—1, so that rank
(AE,“’s”):rank(A(ol‘l”)A(o”"”)=< l_r__"l ) This completes the proof.

ExampLE 11.1. »
(i) Consider an S, type 27-BFF design (I=2). Then 8,=(0,3, 8,3,...,

Otms 0235005 O 1> (1 x<'2")>, and rank(4{'2)=m. ¥ reduces to

(012403401 4+-+0,,
0124034054+ +0,,

Y =|0i3+0,3+03,++0;,

L 91m+02m+93m+"'+9m—1m~

(ii) Consider an S, type 2™-BFF design (I=3). Then 8%=(0123, 01245
0,2 O1345--+5 O 2 1)s (1 x(?)) and rank(AE)Z’”):(rz"). ¥ reduces to

[0123+0124+0125+ 4012,
0125+ 0135 +0y35+ +013,

¥ = ‘ 6124+0134+0145‘+"'+0i4m

Lelm—1m+92m~1m+"'+6m—2m41m_

COROLLARY 11.2. For an S, type 2m-BFF design T, the BLUE § of ¥ is
given by '

(11.2) ¥ = X, Eryr,

where X is the p x v, matrix such that
=1
Xl = ﬂgb (C‘(?t—l,t))ﬂ[opxqﬁ: Kll?_ﬁ,oAgl—l,ﬂ)#: K/g_ﬁ,lAgt—l,ﬁH)#:
R Ay CYOls
<p=< ITI ), q,;=2’,-’=o( iT1> and, particularly, [0,xo: A]=A>.

Proor. This follows immediately from (9.2), (9.3) and Theorem 11.1.
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RemMARK. From Theorem 9.5; the rank of the information matrix My
of an S, type 2"-BFF design T is v/ =1+< rln >+ +< 1T2>+ 2( lTl > Since

v}—v,_1=( lr_nL)’ from the design T we can not obtain more than .<IT1>

independent linear functions of 0, ,,..,, which are estimable. Therefore it follows
from Theorem 11.1 that any estimable function §* of @, is completely determined
by Y*=C*y, where C* is a matrix of appropriate size.

THEOREM 11.3. In an S, type 2"-BFF design, no l-factor interaction itself
is estimable.

PrROOF. Assume that some [-factor interaction 0,,,,..,, is estimable in this
design. Let & be the ( ';l ) x 1 vector obtained from &5 by replacing 6,,..,, with 1

and the remaining effects with 0. Now we shall show that rank (A)>< IT 1 ),
where A=[AJ"V:£]. Since AJ~-+PAY=D is nonsingular, det(A’A)=
det (AE)I-—I,I)AE)I,I—I))(I —S), where s= t'AE)t,t—-l)(A(ol—1,1)A(Ol,1—1))—1Ag)tv—l,t)t_
From (3.6),(3.9), (3.11) and (3.12), we have (4§~ 1-PAY- 1= V)"1 =3 L4 (255 1.D)~2
A,(yl_l”_i)“ and A%l,l—l)Af’l—l,l—l)#A%l—l,I)=(C;l—lv,l))—2A;’l,l)# for ﬁ=0’ 1’”.,
I-1. Since zfly -0 =(cf~ 1Y) tand Y fzhAHD¥ = I(my—A{"D*, it is clear that
1—s=tr(et' A%-P%). From (3.7), therefore, (1—5)# 0, so that det(4’A4) #0.
From matrix theory, it is found that there "does not exist any < l—"-ll > x 1
vector x satisfying

AG D =g,
This contradicts that 6,,...,, is estimable.

In view of this theorem, consider a situation where some of I-factor inter-
actions can be assumed negligible. By Theorem 11.1, we can easily prove the
following lemma:

LemMA 11.4. . In an S, type 2m-BFF design, r (g( lr_nl )) I-factar interac-

tions themselves are estimable if the column vectors of AY~1-Y correspond-
ing to these effects are independent, and if the remaining l-factor interac-
tions can be neglected.

Now let us consider an experiment with the special factor f,, such that every
I-factor interaction involving it can not be ignored. From properties of the matrix
AY-1.D_ then we may suppose without loss of generality that it is the first factor
fi- Thus we denote the vector composed of all ("f__ll) I-factor interactions
involving the factor f; by
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03 = (s ((77)x1).

THEOREM 11.5. In an S, type 2"-BFF design, 8} is estimable under the
assumption that the remaining l-factor interactions are negligible.

Proor. From the definition of association matrices, AY~1: can be
written in the form of

(11.3) AG-1D =

Igeay A1
-1 i

where A2 are the local association matrices, defined by (3.2), for (m—1)
factors f,, fs,..., fu- The first ('?___11> columns of AY~1.9 are clearly inde-
pendent. This completes the proof, because of Lemma 11.4.

Note that since rank(AE,"‘-”)=< lr—nl >, among the remaining [-factor

interactions we can. recover ( r;@_—zl )=< l_n_z 1 )—( ';1__11 ) (=z, say) those.
Consider the following matrix:

(11.4) e P 1 """"""" (=Aj1jz---j,9 say),

1 m1 F iaeis
where F1 ;... is the <T__11 )x z matrix composed of j,-th, j,-th,..., j,-th
columns of A§¢~1-P. Then it is easy to see that A;,..;. is nonsingular if and only

if (4¢-21-VF} . )isso. However it is in general difficult to observe whether
(A§-2.1-VF },.j.) is nonsingular or not. The following lemma is very useful:

Lemma 11.6. Let F?%,,..; be the zxz matrix composed of j-th,
ja-thy..., j-th columns of A§=2:Y. Then F2 is nonsingular if and only if

(AY-24-DF1 ) is so.

1z

Sz

ProoF. From (3.3), we have AY~2.1-DF(~1.0=24U~2.D  Hence AY-2.-1
-F} =2F? holds. This completes the proof.

Jowjz T S e
Let 63;,;,.;,) be the zx 1 vector composed of z effects which are ob-

tained from @, corresponding to j,-th, j,-th,..., j,-th columns of AY-1.D in
(11.3). Then we establish the following

THEOREM 11.7. Ifthe matrix Fj?;, . ; of Lemma 11.6 is nonsingular, then
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0} and 0%;,;,..;., are estimable in an S, type 2™-BFF design under the assump-
tion that the remaining l-factor interactions are negligible. Furthermore their
BLUEs 6} and 6% ...;,, are given as follows:

5=_?’2+ Jie Jz(F.ll )" l(yl"z%l—z’l_l))/l
% — (F1211) I(A(l 2,1- 1) yl)/z

D>

(11.5)

D>

(J1iz)
where y, and y, are the zx1 and (m 1>><1 vectors, respectively such that
(¥ y2)=V"in (11.2).

ProoOF. The proof of the first part of the theorem follows immediately from
(11.4), Lemmas 11.4 and 11.6. Now we shall show that (11.5) holds. From
(11.1), (11.2), (11.4), (11.5) and the assumption of this theorem, we have

o [ 0:
Exp [¥] =W=Aj‘...j={ :l

2
2(jtiz)

It is easily shown that the inverse matrix of 4;,...;, is given by

3Fj g, (F33)7! I('""l) 3F ), ()™ LAg-20m0

(Ajl...j’)-l = _(FJIJ,)- """"""""" (F2 """ )12(12[1) """"""""""""""""""

This completes the proof.

Designs of resolution less than or equal to VII are thus far very important.
For the cases =2, 3, therefore, we shall make further investigations on recovering
I-factor interactions. First consider the case =2 (4<m). In this case

0% = (912’ 013""5 6-lm)/’ ((m—l)x D,
rank (42 =m, z=1 and
APD = j m-1y = (1, 1., 1),
Therefore the matrix F2 of Lemma 11.6 is nonsingular for every j, =1, 2,...,

(mz— 1>. From Theorem 11.7, we can easily obtain

TaeoreMm 11.8. In an S, type 2"-BFF design, the two-factor interactions
0,;(i=2, 3,..., m) and any two-factor interaction 0 in {0,,,}, (1, 22), are esti-
mable ignoring the remaining two-factor interactions.

Next consider the case [=3 (6<m). Then
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03 = (0123 01245+ O12m 0138005 O 1) (( m2—1 >>< I >,
rank (4{2:3)) = ( g’) and z=m—1.

In this case, besides the special factor f,, further consider the special two factors
Ji, and f;, such that every three-factor interaction involving these two factors can
not be ignored. As before, we may suppose without loss of generality that they
are the second and third factors f, and f;. Therefore we can obtain the (m—3) x 1
vector

0%(1 2-m—3) — (0234, 9235,--» 623m)"

Since z—(m—3)=2, two effects 0 and 0,,,,,, can be further recovered from

titaty
the rest. Now suppose that at least one of the two effects involves the factor
f> or f;, and therefore suppose without loss of generality that the effect involves
the factor f,, i.e., 0,,,,=0;,, Consequently the following theorem can be

established:

THEOREM 11.9. In an S; type 2"BFF design, 63, 95(12...m_3) and the above
two effects O,,,, and O, (4<t,<t3;<m, ISt <t)<ty<m) are estimable

ignoring the remaining three—fdctor interactions.

Proor. First consider the case where the other effect involves the factor
f3» i€ Oy, =034, Further suppose that the j,_,-th.and j,-th columns of
A{l-3correspond to the effects '02,2,3 and 93,5 r,» Tespectively. Of course, the
i-th column of 4§'+3) corresponds to the i-th effect in 83 ;....—3, for each i=1,

2,...,m=3. Then the zxz submatrix F%,.,_3; _,;. of A{+?), defined in
Lemma 11.6, can be explicitly written in the form

(11.6) F2pom3joje = ,

where @, and a, are (m—3)x1 (0, 1) vectors with weight 2. In this case, it is
easy to verify that the matrix of (11.6) is nonsingular. Next consider the case
4t <ty <ty <m. Then the submatrix composed of the last two columns of

(11.6) is exchanged for
{ 0 0la; }
10 ay )
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where @, and a, are vectors with weight 2 and 3, respectively. Similarly it can
be easily shown that the new matrix is also nonsingular. This completes the proof,
because of Theorem 11.7.

12. Existence of a 2™-BFF design of resolution IV with the minimum
number of assemblies

It has been shown in Webb [39] and Margolin [17] that the minimum
number of assemblies must be 2m for a general 2™-FF design of resolution IV.
On the other hand, from Theorem 9.5 the corresponding number for S, type 2™-
BFF designs must be vi=2m+1. This difference follows from the fact that the
general mean 6, itself is estimable in S, type 2™-BFF designs. In this section we
shall show that a 2m-BFF design of resolution IV with N=2m assemblies can be
obtained from a B-array of strength 4 and m constraints, that is, there exists a
2m.BFF design of resolution IV with the minimum number of assemblies. First
consider an S-array T with parameters (m; 1y=0, 1,=1,0,..., 0, 4,,_, =1, 4,=0),
which is equivalent to a B-array of strength 4, size N =2m, m constraints and index
set {po=(m—4), u; =1, u, =0, p3=1, yy=(m—4)}. Then the matrices K, and
K, given in Example 4.1, (i) reduce to the following

2m 0 2(m—4)('§’>”2
Ky=| 0 2(m~—2)? 0 ’
(12.1) ‘2(m-4)(’2”>1/2 0 (m—1)(m—4)?
8 0 }
K, = -
L0 (m-2)

These matrices are clearly of rank (Ky)=2 and det(K,)#0. Let o, be the px1

vector whose elements are all 0, i.e., 0,=0,.,. Let C, be a v,xv, <v2= 1+m

+<r2n)> matrix such that

where h,=(m—4)(m—1)1/2/(2m)}/? and h, is any real number. Then we
shall prove
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LemmMma 12.1. For the B-array T mentioned above and its information
matrix My, there exists a v, x v, matrix X, such that X M;=C,.

Proor. The matrix C, is also expressed as
Co =(D81,1)#+DE)2,0)# +h1DE)2’2)“) + (D(ll,l)# +h2D(12,2)#)_

From Theorem 3.3, the matrix C, belongs to the 3 sets TMDPB association algebra
A. Therefore it follows from (3.17) that the irreducible representations of C,
with respect to ideals M, and A, are given as follows:

(0 0 0
QIO:CO—)F((;: 010 9
~_l 0 hl

1 0
9«[1ZC0"~"F(1)= .
LO A

From (12.1), it is easily shown that there exist 3 x 3 and 2 x 2 matrices X§ and
X}, respectively, such that X3K,=I9 and X}K,=TI}§. Let X, be a matrix such
that X, e U and the irreducible representations of X, are X§ and X}§. Then it
is easy to check that X M,=C, holds.

THEOREM 12.2. The B-array T of Lemma 12.1 is a 2™-BFF design of resolu-
tion IV in which a parametric function of ' =(8,; {0;}; {0;;}),

(12.2) $o=0Co0 =(0, 8y, 0,405+ 6,{h, AP D%+ h, A2 D*})
is estimable, where 8,=({0;}) and 8, =({0,;}). Its BLUE is given by
(12.3) 8o = Xo Eryr,
where X, is given in Lemma 12.1.
Proor. From (1.9) and Lemma 12.1, it follows that
Exp[£o] = Xo EfExpLyr] = Xo My = Cof = .

Hence {, is an estimable function of #. On the other hand, it follows from
Gauss-Markov Theorem that the BLUE f o of §, is uniquely given by fo=C00*
where @* is a solution of the normal equations (1.11). Thus we have f o=XoM8*
=XoEryy. Clearly wealso have Var [fo] =X M;Xa062=CoXp02. Since CoX}
e, it is found that Var [CAO] is invariant under any permutation of m factors.
This completes the proof.
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CoROLLARY 12.3. For the design T of Theorem 12.2,

(124) 6o = [on: {(Zt+ 2D a0 Lo, - L)t ) Oy By,

-1

Var [0,] = ("’;11 + 7l

’

(12.5)
Cov [gi: 91] = 71;(3‘11_%>0'2,
(12.6) Cov [9;', fo;;] =0,

where x,,=1/2(m—2)? and {,, is the BLUE of k-th element of the vector {0,453 0%
+ (1 AP+ b AR D90},

Proor. Let x;; (i, j=0, 1, 2) be (i, j) elements of XJ. From Lemma 12.1,
we have Xgo=Xg;=X10=Xp2=X;,=0 and x;,=1/2(m—2)2. Furthermore X}
=diag [1/8, h,/8(m—2)]. Therefore the m x v, submatrix of X, whose rows
correspond to the block of main effects 0, is given by

[om: b IA(OI'I)“+%A(11'1)#: O"‘"('i'):l'
From (3.7), (12.2) and (12.3), we thus have (12.4). Since Var [fo] =Cy Xyo? e,
we have the irreducible representations of C, X5, i.e.,
Wy: CoXy — diag[o0, x4, 1/2m],
Ay CoXy — diag[1, h,/(m—2)]/8.
Hence
var [€,] = [x“D(ol-““ +%D(11,1)#+21 Dt hy CI 2)#]
and, particularly, from the definition of Dj*»»*
Var[6,] = ((x“AgM>*+~§~Aglvl)#) o2

This shows that (12.5) and (12.6) hold.

Next, as in Section 11, we shall investigate the alias structure of 6, and
0;;. Unlike an S, type 2m-BFF design, note that, in general, 6, itself is not
estimable in the design T.

THEOREM 12.4. Suppose m>4. For the design T of Theorem 12.2,
d0¢jm+Agl’2)02
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is estimable, where d=(m—4)/2.

Proor. From (3.11) and (3.12), the estimability of {, in (12.2) implies
that 0,/m/2 - j,+(hyclt -2 AG D8 451D 4 hycl1:2) 4(1 D5 4LL.D)G, is estimable.
Now recall that h,#0 and h, is any real number. By letting h,=h,c{!+?)/
c{+?, from (3.11) it can be easily shown that df,j,+ (A5 V*+A{L-D¥)
A20,=d0,j,+ A28, is estimable.

COROLLARY 12.5. Inthe design Tof Theorem 12.2 (m>4), the general mean
and (m—1) two-factor interactions involving the special factor are estimable
under the assumption that the remaining two-factor interactions are negligible.

Proor. Without loss of generality, we can assume that the special factor
is the first factor. From the assumption and (11.3), therefore, d6,j,+A:2°8,
can be written as

(1111 [ 46, ]
1 0,
Vi, 0,1

L 1 2 J _01"'4

This shows that 0, 0,,, 03,..., 8, are estimable.
Finally consider the case where m=4. Then we establish the following

THEOREM 12.6. Let T be a B-array of strength 4, m=4 constraints and in-
dex set {0,1,0,1,0}. Then in this design T the general mean 0, and the
differences (8;;—0,,) are estimable, where {i, j} n{p, q}=¢ and {i, j} U {p, q}
={1, 2, 3, 4}.

Proor. In this case, 8 =(0,,, 013, 014, 033, 034), h;=0 and A-2% =
(A2 —A$2:2)/2.  Also recall that h, is any real number. Therefore by con-
sidering h,=0, it follows from Theorem 12.2 that the general mean 0, itself is
estimable. On the other hand, when h,=2, from (3.2) it can be shown that
04+(0;;—0,,) is estimable. This completes the proof, because of the estimability
of 0,.

As an easy corollary to Theorem 12.6, we have

CorOLLARY 12.7. Consider the B-array T of Theorem 12.6. Then in this
design T the (m—1) two-factor interactions involving the special factor them-
selves are estimable under the assumption that the remaining two-factor inter-
actions are negligible.
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13. Various types of 2™-BFF designs of resolution 2I and their optimality

It has been observed in Section 9 that B-arrays satisfying Condition (9.1)
yield 2"-BFF designs of resolution 2I. By further investigations of the properties
of matrices K, in (4.3), other types of 2m-BFF designs of resolution 2/ can be
similarly obtained from B-arrays of strength 21.

Let K§° be the (I— ) x (I— B) matrices obtained from K, by cutting the last
row and column. Consider the following condition: For r integers f; with
0B <B<--<p, =,

Ké:ﬁl,l_ﬂi = 0,
(13.1) det(K§) #0 (B =1-1),
det(K)#0 forall o with a#pf, and 0Za=l
Note that this condition is equivalent to Condition (9.1) when r=1 and §,=1.

ExampLE 13.1. Let us consider an S-array with parameters (m=28; 1,=1,
Ai=1,2,=0,2;=0,A,=1, 45=0, 1,=0, 1,=1, 43=0). It is equivalent to a
B-array of strength 6 (I=3), size N=87, m=8 constraints and index set {u,=2,
=1 p=1, u3=2, uy=1, us=1, pg=2}. From Example 4.1, (ii), it is easily
checked that this array satisfies x1:1=0, det(K{")#0 and det(Kz)#0 (=0, 1,
3). Here r=1 and §,=2.

Using an argument similar to Section 12, we shall show that B-arrays of
strength 2I, m constraints and index set {uq, f,..., 4y} satisfying Condition
(13.1) yield 2=-BFF designs of resolution 2I.

Lemma 13.1.  The condition xf#:'"#=0 implies x}'# =k} #3i=0 for
all j=0,1,...,1-p—1.

Proor. From Theorem 5.5, the matrix K, is positive semidefinite. Hence
it is easy to verify that w}#-*#=0 implies kj'#=x}#J=0 for j=0, 1,...,I—

p—1.
Let

1l
C=diag [L,_,, > h,AHD*],
a=0

where h, are real numbers such that h;=0 for f=8; (i=1, 2,...,r). Then we
shall prove

LemMmA 13.2. For a B-array T satisfying Condition (13.1), there exists a
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v, X v, matrix X such that XM =C holds.

Proor. From (3.15), the v, x v, matrix C is also expressed as
-1 u [}
C= 2 Z DLu,u)# + Z haDLl,l)s
u=0 a=0 a=0
-1 1-8-1
— Z { 2 DL«+¢,u+a)#+h1DLl,l)#}+thgl,l)#.
=0 u=0
This implies C e . Thus it follows from (3.17) that

diag[I,_,, h,} for «=0,1,...,1-1,
WA:C—T,=

h, for a«=1

Let
[ I,diag[K{9-1, 0] for o= By, Boseers B
r,K;! otherwise,
and let
!l Il-o l—a . .

(13.2) X=Y ¥ ZX;,JDI(’I?+1,I3+J)’

a=0 i=0 j=0

where yiJ are (i, j) elements of X,. Since XM e U and from Lemma 13.1
U XM, — XK, =T, for «a=0,1,...,1,
it is easy to see that XM ,=C holds.

THEOREM 13.3. Let T be the B-array of Lemma 13.2. Then a parametric
function,

0,
(13.3) ¥ =cCo=
(Th=oh ALD%)6,
is an estimable function of 8. The BLUE 7 of ¥ is given by
(13.4) & = X Epyr,
where X is given in (13.2).

Proor. From (1.9), Lemma 13.2 and Gauss-Markov Theorem, it is easy
to verify that ¥ is an estimable function of 8 and ¥ of (13.4) is the BLUE of ¥'.

THEOREM 13.4. For the B-array of Lemma 13.2, the covariance matrix
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Var [@'] is given as follows:

(13.5)  Var[¥] = XCq?

=1 l=a=1 l~a—1 (ati 0% =1 l~a~1
= [azo izo Jzo K?.jDaa i,a+j + 20 -20 h“K?, I-a
= = = a= i=

.(Dga-fi.l)# +Dgl,(ﬁ-i)#)+h°2lK?_a’l_aDgl,l)ﬁ} + h,zxf,,ngl")”]O'Z,

where k% ; are the (i, j) elements of K{®~! or K;' according as a=p, (k=1,
2,..., ) or not.

Proor. From (13.4) and Lemma 13.2, we have
Var [#] = XE; Var[y,1E;X' = XM X'6? = XCa?.

Since XCe ¥, it is clear that the irreducible representations of XC with respect
to ideals A, (x=0, 1,..., I) are given by

& “ee 4
K$,0 KB, 1-a—1 hoK% 1-a

X, r

K?—a-—l,l—a—l ha’c?-a—l,l—a )
(Sym) hazz K:alt-‘az,l-*az
This leads to (13.5).

Let X, be the v,_, x v,_; submatrix whose rows and columns are composed
of the first v,_, those of X. From (13.2) we have

. -1 l—~a~1 l-a-1 . i
(13.6) diag [Xl 1 O(T)x(rln)] = 3 iz=:0 jgo K?’jD(a+r,a+J)# = X0, say.

a=0
From (13.5), therefore, we have
(3.7) Var[8,] = X,,02,

where 51 is the BLUE of @, given in (13.4). Since X(® e, it is clear that
Var{@,] is invariant under any permutation of m factors. Thus we establish.

THEOREM 13.5. B-arrays satisfying Condition (13.1) are 2™-BFF designs
of resolution 2l such that the vectors AW%P*@, (a# By, Bs»-..r Br; 0Sa L) are
estimable.

DEeFINITION 13.1. A B-array T of strength 2l, m constraints and index
set {Uo, f1,-..» Uz} is called an S(B, Bys..., B,) type 2»-BFF design if T satisfies
Condition (13.1).
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Of course, we may say that an S,(8,,..., ,) type 2"-BFF design is identical
with an S, type 2m-BFF design if r=1 and f,=1.

THEOREM 13.6. For an S(B,, Bs,..., B) type 2m-BFF design T, the number
of distinct. assemblies in T must be at least v{(By, Bas-.., B,) =Vi— Xi=0Pp,

Proor. This follows from the fact that from (3.17) and Condition (13.1),
rank (M )=v}(f,,..., B,) holds.

As in Theorems 5.4 and 9.2, from (13.7) we can obtain the following

TuroreM 13.7. For an S{By, By..., B,) type 2m-BFF design T, the < ! +2)
distinct elements V) of the covariance matrix Var [01] are explicitly given
by

(13.8) Vi) = Zu: Ko g optit, for 0Zasu<vs<I-1.
p=0

In general, for given Nzv}(f,,..., B,), there are more than one distinct
S{By,-.-, B,) type 2™-BFF designs. Note that these designs can estimate a com-
mon parameter vector 8,. As a measure for comparing these designs, the amount
of tr(Var[6,]) will be used. Let

(13.9) S$9 = tr(Var [6,])/a>.
Then we can establish the following theorem:

THEOREM 13.8. For an S(Bi, B,---, B,) type 2"-BFF design T, S{® in
(13.9) can be expressed as

-1
(13.10) 549 = ﬁ;o ¢,,tr(Kf,°)—1),
Proor. From (13.7) and (13.8),

tr (Var [51])/02 =tr(X,,) = :;:( ’: )Vgu,u)

54 (b s 8
= p§0¢p(Ko,o+’€1,1 +ere g 1—p=1)-
This completes the proof.
In view of Definition 9.2, we make

DeFINITION 13.2. For given N assemblies, an S(By, P2,.-., B.) type 2m-
BFF design T is said to be optimal with respect to the partial generalized trace
(PGT) criterion if S is a minimum.
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ExampLE 13.2. Consider m=8, =3 and N=87. Let T; be a B-array of
strength 6, 8 constraints and index set {8,4,1,0,1,3,7}. Then it is easy
to check that T, is an S3(f4,..., B,) type 28-BFF design with r=1 and §,=3, i.e,,
T, is of S; type. By using the PGT criterion, now let us compare this design T,
and the design T of Example 13.1. From (13.10), we have S{°?=0.52654 and
S{9=1.18125. Thus the design T is better than T, with respect to the PGT
criterion, In fact, as will be seen from the next section, T is an optimal S3(f;,
..., B,) type 28-BFF design with respect to the PGT criterion. However, T, is an
optimal S, type 28-BFF design with respect to the GT criterion.

14. Optimal S;(8,, 85,-.., B.) type 2™-BFF designs with m=6, 7, 8

In this section, optimal S;(8;,..., ,) type 2"-BFF designs with respect to
the PGT criterion will be presented for 6<m <8 and for every number of N with
vi(Bi... B)EN<v,. For 2m-BFF designs of resolution VI, as pointed out in
Section 10, we are usually interested in ones for which the number of assemblies
is less than v;. First we shall begin by investigating combinatorial properties
of S5(By, .., B,) type 2™-BFF designs which are not of S; type (i.e., r=1; B, #3).
For those of S; type 2"-BFF designs, see Section 9. From (2.1), (2.2), (3.9),
(4.2), (5.7) and (5:8), we have

K9 = 24(m—4) (=),

ki1 = 24{(m—4) (s + py)— 2(m—6)us};

(14.1)

K92 = 22( m2—2 )l/z(ﬂs +uy—2u3),
142 b2 =22( 752 ) o= 2 s — ) - 20m— ) (e —p2)},

K302 = 22 {( m=2 )(,u5+,u1)—2(m—3)(m—6)(#4+#2)
+(3m2—3’1m+82)p3};
Kyd = {( m_1 )/3}”z{m(uo+u6)—2(m—6)(u1+u5)
(14.3) —m(py+pa)+4(m—6)us},
K33 = (’;‘)(/Lo-i-ﬂﬁ)—(m_1)(m—2)(m—6)(ﬂ1 +us)
+3(m—2)(5m? — 53m+ 144) (i, + 1)

—3(m—6)(5m?—39m+82)u,.



278 Teruhiro SHIRAKURA

From (14.1)-(14.3) and Lemma 13.1, we have

LemMA 14.1. For a B-array of strength 6, m constraints and index set
{#09 ul’”" /‘6}5

(i) ifxi-1=0, then
(14.4) Mo = pa, (M—Bpuy = (m—6)us,
(ii) ifx32=0, then
(14.5) 2us = py+ps, 2Am?2—9m+22)pu; = (m—3)(m—6)(uy+pa),

(iii) if k33 =0, then

Am=Dm=Dm=6) () = Mm=Dw 10421,

(14.6) —4(m—6)(m2—Tm+14)u,,

2( 7 )tto+ 1g) = 30m=2)(m? — I +24) (y + 1)

_ le(m—6)(m*—6m+11)
3 U

3.

THEOREM 14.2. Let m=6 and consider an S,(By,..., B.) type 26-BFF
design T with vi(By,..., B)E N <v; (=42) which is not of S5 type. Then, apart
from an interchange of 0 and 1, T exists only when it is one of B-arrays of
strength 6 with index set {1y, [y, 3, 3> Uas Us» He} SUch that

(i) N=32,{0,1,0,1,0,1,0}, (r=2;8,=0,8,=2),
(ii) N=32+4wo;+wy, {1 +we,0,1,0, 1,0, l+w,}, (r=2;8,=1,
B.=3),

where @y, and @, are nonnegative integers with wy, +w,; <9,

(i) N =334wos+wy,, {143, 1,0,1,0, 1, 0,5}, r=1; B, =2),
where wgy, and w,, are nonnegative integers with wg, +w,, <8,

(ivy N=38,{0,2,0,1,0,1,0},(r=2;8,=0, 8,=2),

(v) N=38+wg3+ w3, {®e3,2,0,1,0,1, w3}, (r =1; B =2),

where wy3 and w,; are nonnegative integers with 1 Swy;+w,3<3.
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Proor. From Lemma 14.1, x}'1=0, ¥}:2=0 and x3-3=0 imply u,=pu,
=0, gy =p3=us=0 and py=p,=p,=p,=0, respectively. In Section 9, recall
that k$:°=0implies y;=0. From the definition of a B-array, it follows that for
any given index set, there exists always a B-array of strength 6 and 6 constraints.
Therefore we can easily construct B-arrays with vi(B,,..., B,)SN <42 which
satisfy Condition (13.1). This completes the proof.

THEOREM 14.3. There does not exist any S5(B,,..., B,) type 27-BFF design
with vi(B,..., BN <v; (=64) which is not of S, type.

Proor. First consider x:1=0. From (14.4), 3u,=p; and u,=u, hold.
From the nonsingularity of K.Y, it follows that u,, 43 and u, must be
positive integers. Thus puj; is a multiple of 3. This implies N > 64, a contradic-
tion. For the case x3:2=0, from (14.5) we have 2u; =, +u; and duz=p,+ t,.
Since K'®) is nonsingular, it is clear that u,+u3 and p, +p, must be multiples
of 2 and 4, respectively. This implies N >64, a contradiction. Finally consider
k3:3=0. Then, from (14.6) we have 5{15(u, + 1) — (1o + )} =48u;. Similarly
it can be shown that this contradicts N>64 or det(K{®)#0. This completes
the proof.

THEOREM 14.4. Let m=8 and consider an S;(8,,..., B,) type 28-BFF
design T with vi(B,..., B) < N <vy (=93) which is not of S; type. Then, apart
from an interchange of 0 and 1, T exists only when it is one of B-arrays of
strength 6 with index set {g, {1y, Uy 3> Has Us, He} SUCh that

N=860+ws+w,, 3+we!,1,2,1,1,24+w,}, (r=1;8,=2),

where wy and w, are nonnegative integers with wy+w,;=<6. Furthermore T
is equivalent to an S-array with parameters (in=8; lg=1+wy, A; =1, 4,=0,
)~3=0, l4=‘, A«S:O, 1’6:0’ /17=1, },8=(l)1)-

ProOF. We shall use the same methods as in Theorems 14.2 and 14.3. For
k?:2=0, (14.5) reduces to 2u3;=p,+us and 14p;=5(u,+pn,). Since py3=0
implies det(K{®)=0, it is clear that u; and (u,+u,) must be multiples of 5
and 14, respectively. This gives N>93, a contradiction. For w3:3=0, (14.6)
reduces to 7(uo+ pe)=18(ua+pa—pa) and T(uy+us)=22(up +pa— ). If g
# Uy + 1y, then (ug+pe) and (u, +p5) must be multiples of 18 and 22, respec-
tively, which leads to the contradiction N=93. Thus the case u;=p,+ U4,
Ho=l,=Hs=ue is considered. This implies x§!=7,+(m—1)y;=0 (see Ex-
ample 4.1, (ii)), so that det(K?’)=0. This gives a contradiction. Finally con-
sider k}:'=0. From (14.4), then p,=pu, and u;=2u, hold. Since u,=0 or
U, =2 implies det (K{")=0 or N >93, respectively, the case u;=2, u,=p,=1
is considered. Therefore we suppose a B-array T with index set {po, py, =1,
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Ha=2, pa=1, Us, pe}, where O<p, +us;<2. The inequality p, + us=2 is due to
Shirakura [23], Theorem 4.1. Also u,+us=0 implies that the distinct number
of assemblies in T is less than vi(B,,..., B,)=73 if r=1 and §,=2. From Corol-
lary 6.5, it is easily shown that apart from an interchange of 0 and 1, the possible
index set of T is one of {2+ wp, 1,1,2, 1, 1, 24w} ,} and {24+ wp,, 1, 1,2, 1,
0, w},}, where wy,, w}, wy, and w}, are nonnegative integers satisfying wp,
+w4 ;<7 and wg,+w),<14. Simultaneously it is found that all B-arrays of
strength 6 with these index sets are identical with S-arrays. Among the B-arrays
obtained above, particularly, {2, 1, 1, 2, 1, 1, 2} and {2+ wj,, 1, 1, 2, 1, 0, w],}

TasLe 14.1 Optimal S; (81, Bs,..-, B,) type 2™-BFF designs

m=6 N Bo M1 M3 M Ma M5 Me S0 types

*32 01 0 1 0 1 0 0.68750 r=2; B1=0, f3=2
*32 1 01 0 1 0 1 0.68750 r=2; B1=1, B3 =3
*33 2 01 0 1 0 1 0.67676 r=2; p1=1, fy=3
*34 20 1 0 1 0 2 0.66602 r=2; =1, B1=3
*35 301 0 1 0 2 0.66243 r=2; f1=1, =3
*36 301 0 1 0 3 0.65885 r=2; f1=1, B3=
*37 4 0 1 0 1 0 3 0.65706 r=2; =1, B3=3
*38 0 2 0 1 0 1 O 0.62305 r=2; 8,=0, By=2
*39 1 2 0 1 0 1 0 0.62305 r=1; g3=2

39 0 2 0 1 0 1 1 0.62305 r=1; g1=2

*40 1 2 0 1 0 1 1 0.61111 r=1; g3=2

*41 2 2 0 1 0 1 1 0.60917 r=1; By=2
*41 1 2 01 0 1 2 0.60917 r=1; fy=2

m=17 N Ho #1 B3 M5 f4 M5 M S0 types

50 1 2 1 0 1 1 1 0.94936 r=1; §;=3

51 2 21 0 1 1 1 0.93579 r=1; g4=3

52 2 21 0 1 1 2 0.92836 r=1; ;=3

53 321 0 1 1 2 0.92469 r=1; 8,=3

54 321 0 1 1 3 0.92209 r=1; =3

55 4 2 1 0 1 1 3 0.92037 r=1; =3

56 1 21 0 1 2 1 0.84524 r=1; =3

57 2 21 0 1 2 1 0.83698 r=1; gy=

58 2 2°1 0 1 2 2 0.82444 r=1; =

59 32 1 0 1 2 2 0.82131 r=1; 8=

60 321 0 1 2 3 0.81780 r=1; g1=

61 4 2 1 0 1 2 3 0.81619 r=1; =3

62 4 2 1 0 1.-2 4 0.81450 r=1; By=3
*63 5 2 1 0 1 2 4 0.81353 r=1; ;=3
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TABLE 14.1 (continued)

m=8 N Mo M1 M3 My Uy Us s o types
65 3 3 1 0 1 2 2 1.60112 r=1; B;=3
66 4 3 1 0 1 2 2 1.58894 r=1; g;=3
67 4 3 1 0 1 2 3 1.58023 r=1; ;=3
68 5310 1 2 3 1.57599 r=1; ;=3
69 531 0 1 2 4 1.57291 r=1; p1=3
70 6 3 1 0 1 2 4 1.57076 r=1; 8,=3
71 6 3 1 0 1 2 5 1.56918 r=1; g;=3
72 3 31 0 1 3 3 1.28477 r=1; §;=3
73 4 3 1 0 1 3 3 1.27668 r=1; ;=3
74 4 3 1 0 1 3 4 1.26510 r=1; p1=3
75 5 3 1 0 1 3 4 1.26150 r=1; ;=3
76 5 3 1 0 1 3 5° 1.25747 r=1; g;=3
77 6 3 1 0 1 3 5 1.25550 r=1; ;=3
78 6 3 1 0 1 3 6 1.25342 r=1; ;=3
79 7 3 1 0 1 3 6 1.25219 r=1; g,=3
80 54 1 0 1 3 3 1.20743 r=1; ;=3
81 54 1 0 1 3 4 1.19826 r=1; ;=3
82 6 4 1 0 1 3 4 1.19257 r=1; 8;=3
83 6 4 1 0 t 3 5 1.18902 r=1; f;=3
84 7 4 1 0 1 3 5 1.18614 r=1; ;=3
85 7 4 1 0 I 3 6 1.18421 r=1; ;=3
86 8 4 1 0 1 3 6 1.18246 r=1; ;=3
*87 31 1 2 1 1 2 0.52654 r=1; g1=2
*88 31 1 2 t 1 3 0.50228 r=1; ;=2
*89 4 1 1 2 1 1 3 0.49706 r=1; B3=2
*90 4 1 1 2 1 1 4 0.49327 r=1; ;=2
*91 5 1 1 2 1 1 4 0.49149 r=1; py=2
*92 s 1.1 2 1 1 5 0.48991 r=1; ;=2

imply det(K,)=0 and det(K,)=0, respectively. This completes the proof.

In Table 14.1, optimal S;5(f,,..., B,) type 2"-BFF designs with respect to the
PGT criterion are presented for any given N assemblies, which satisfy (i) m=6,
32<NEZ41, (i) m=7,50SN<L63 and (iii) m=8, 655N <92. As in Tables
8.1 and 10.1, note that for the designs of Table 14.1, their complementary designs
are also optimal. From Section 9 and Theorems 14.2-14.4, it is found that for
any N with (m=7, 42< N <63) and (m=8, 65=< N £86), the optimal designs can
be chosen in the class of S, type 2m-BFF designs. Furthermore, as seen from
Table 10.1 and Shirakura [24], it is interesting that many of the optimal designs
are also optimal with respect to the GT criterion. In Table 14.1, the designs
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TasLE 14.2 Covariance matrices for optimal S; (54, 83,..., 5,) type 2»-BFF

designs
m=6 N Mo My Mo M3 My M5 Me Vé”"” Véom Véoyz) Vél‘l)
201010 0} 0.03125  0.00000 0.00000  0.03125
32 1010101
33 20101 01 003076 000049  —0.00049  0.03076
3 20101 0 2 00302 00000 —000098 003027
35 301 01 0 2 003011 0000016 —000114 003011
3 301 01 0 3 00295 000000 —000130  0.02995
37 40101 03 0028 00008 —000138 002987
38 020 1 01 0 00232 00095  —000098 002832
1201 01 0} 0.02832 000195  —0.00098  0.02832
9 020101 1
40 1 20101 I 00281 00077 —000i36 002817
4 2201 01 1
M 12010 1 2} 002808  0.00174  —0.00143  0.02814
m=T N po 1 ps s fty 5 Ms v yioen Ve yen

63 5 21 01 2 4 0.02520  —0.00003  —0.00187 0.04134

m=8 N g 5 p13 15 f14 P15 fs yive yirn vien €
87 3 1 1 2 1 1 2 0.01173  —0.00100 0.00015  0.01925
8 3 1 1 21 13 0.01130 0.00000 0.00000  0.01649
89 4 1 1 21 13 0.01129  —0.00022  —0.00003  0.01590
9 4 1 1 2 1 1 4 0.01116 0.00000  —0.00008  0.01552
9t 5 1 1 2 1 1 4 0.01111  —0.00010  —0.00011  0.01534
92 5112115 0.01104 0.00000 —0.00014  0.01519

which are not optimal with respect to the GT criterion will be indicated by the
asteric *. 1In Table 14.2, the distinct elements V{*¢ in (13.8) are also given
for these designs. For constructions of the designs, see Theorems 14.2 and
14.4.

Finally it may be remarked that for the case m =6, the number of assemblies
N =32 obtained in Theorem 14.2 is the minimum number for designs of resolu-
tion VI. Indeed it has been stated in Webb [39] that the minimum number
must be N=m?—m+2 in a general 2"-FF design of resolution VI. For m=7
and 8, we have N=44 and 58, respectively. However it is unknown whether
there exists a 2m-BFF design (m#6) of resolution VI with the minimum num-
ber.
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Vl(lxl) Véle) Vl(lyz) V62,2) V{Z»Z) VéZ-Z)

0.00000 0.00000 0.00000 0.03125 0.00000 0.00000
—0.00049 0.00049 0.00049 0.03076 -—0.00049 —0.00049
—0.00098 0.00000 0.00000 0.03027 —0.00098 —0.00098
—0.00114 0.00016 0.00016 0.03011 —0.00114 —0.00114
—0.00130 0.00000 0.00000 0.02995 —0.00130 —0.00130
—0.00138 0.00008 0.00008 0.02987 —0.00138 —0.00138
-0.00098 0.00195 0.00000 0.02832 —0.00098 0.00098
—0.00098 0.00195 0.00000 0.02832 —0.00098 0.00098
—0.00113 0.00162 —0.00033 0.02760 —0.00170 0.00026
—0.00116 0.00157 —0.00039 0.02748 —0.00181 0.00014

Vl(Ll) Vél-g) V‘(le) VéZxZ) V1(2 2) Vz(B-Z)
—0.00554 0.00001 0.00001 0.02376 —0.00302 0.00144

yien 145 pien | 458 y 2o Vi
0.00710 —0.00042 —0.00042 0.01289 0.00073 —0.00100
0.00434 0.00000 0.00000 0.01282 0.00067 —0.00107
0.00375 —0.00009 —0.00009 0.01281 0.00065 —0.00108
0.00336 0.00000 0.00000 0.01278 0.00063 —0.00110
0.00318 —0.00004 —0.00004 0.01277 0.00062 ~0.00111
0.00304 0.00000 0.00000 0.01276 0.00061 -0.00113
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