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ABSTRACT 

Contributions to Information-based Complexity, 

Image Understanding, and Logic Circuit Design 

David Lee 

This work consists of three parts. The first two describe new results In 

information-based complexity and applications of the general theory to the field of 

computer vision. The last presents an average case result of a. different sort: the 

design of a binary comparator. 

Part I is joint work with G. W. Wasilkowski. In this part, we study 

approximation of linear functionals on a separable Banach space equipped with a 

Gaussian measure. We study optimal information and optimal algorithms in 

average case, probabilistic and asymptotic settings, for a. general error functional. 

We prove that adaptive information is Dot more powerful than nonadaptive 

information and that II-spline algorithms, which are linear, are optimal in all 

three settings. We specialize our results to spaces of functions with continuous rth 

derivatives, equipped with a Wiener measure. In pa.rticular, we show that the 

interpolation by the na.tural splines of degree r+ 1 yields the optimal a.lgorithIilll. 

We apply the general results to the problem of integra.tion. 



Part II of this work studies the following image understanding problems: :2 & 

1/2 D sketch, shape from shading, and optical flow. We point out how known 

general optimality results in the worst case model may be applied to these 

problems. We indicate some preliminary results and work in progress, concerning 

the numerical solution of these problems. Algorithms which differ from those 

currently used in practice are proposed. 

Part HI provides a design of a binary comparator with completion signal, {or 

the purpose of optimizing the average processing time. The average propagation 

delay is a constant, independent of n, the number of input8, while the logic 

complexity is a linear function of n. 
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1. Chapter 1 

Approximation of Linear Functionals on a Banach Space 

with a Gaussian Measure 

(Joint Work with G. W. Wasilkowski) 



Abstract 

We study approximation of linear (uDetionals on separable Banach spaces 

equipped with 8. Gaussian measure. We study optimal information and optimal 

algorithIIl5 in average case, probabilistic and &5Y1Dptotic settings, for a. general 

efror criterion. We prove that adaptive information is not more powerful than 

nonadaptive information and that p-spline algorithms, which are linear, an 

optimal in all three settings. Some of these results hold (or approximation of 

linea.r operators. We specialize our results to space of functions with continuous 

rth derivatives, equipped with a. Wiener measure. In particular, we show that t.he 

natural splines of degree f!r+l yields the optimal algorithms. We apply the 

general results to the problem of integration. 

1 Introduction 

We illustrate the concepts and results or this paper by an integration example. 

We discuS5 this example at considerable length in the introduction, because it 

gives a simple illustration of the more general results obtained in this work. We 

state results for this example here, and defer the proofs until Section 5. 

Supp05e we want to approximate the integra.l of I, SI = f ~(t) dt, where I is 

o 
a runction with regularity r, i.e., I E C"/O,lj. We assume that instead or 

knowing I, we have inrormation N{f), which consists of n runction or derivative 

values at adaptively chosen points tj The problem IS to rind the optima.l 
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information a.nd the optimal algoritbIrul to minimize the approximation error. 

Much is known about this problem (or the worst case setting. For instance, see 

[37}, .Ch.6, for a list of references. In that setting, the error of an algorithm is 

measured by its performance for the worst integrand. It was shown that 

information consisting of (unction values a.t equi-spaccd points is almost optimal. 

Furthermore, for this information the algorithm based on perfect splines of degree 

r is optimal, with error e(n-r). 

In this paper, we study three settings: average case, probabilistic and 

asymptotic. We assume that the space C"'/O,l/ is equipped with a probability 

measure, which reflects a belief of how often a function may occur as an 

integrand. We choose a Wiener measure, which is an example oC a Gaussian 

measure. We study Wiener measures because they are among the most widely 

used and studied measures on Cunction spaces and because they are oC interest to 

physicists and sta.tisticians. We seek optimal inCormation and optimal algorithms. 

The {allowing results are obtained for all three settings: 

(i) The same algorithm based on interpolation by natural splines of degree 21"+1 

is optimal. 

(ii) The same information, function values at equi.spaced points, is almost optimal. 

(iii) Ada.ptive information 15 not more powerful than nonadaptive information. 

We now comment. on these results. We fir.5t elaborate on result (i), and compare 

it with the corresponding result for the worst case setting. 

The optimal algorithm has the following properties: 

• In the average case setting, it has the minimal average error, 
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In the probabilistic setting, it bas the maximal probability of not exceeding a 

prescribed error bound; 

• in the asymptotic setting, the sequence of optimal algorithms has the best rate 

of convergence (or almo3t all (unctions. 

The minimal average error IS equal to the square of the error of the If! 

-approximation of a certain (unction by splines of degree r. This Ie 

-approximation error is equal to B(n1r+l)), as proven In [311. Hence the average 

error is B(n-(r+1)) and the best rate of convergence is O-(r+l). 

There is a number of statistical pape~ addressing relations between splines or 

smoothing splines to the problem of Bayesian estimation, 3ce e.g., [4, 19, 20, 451. 

OUf results specialized to the integration problem may be viewed as a 

continuation of this study; see also Remark 5.1. 

For the average case, probabilistic and asymptotic setting3, the probability 

measure supplies additional information to that provided by the integrand value3. 

Therefore, we expect difrerent optimality results than in the WOr.lt case setting. 

Indeed, in the worst case setting, the optimal algorithm is bMed on perfect 

spline3 of degree r, where r is the regularity of the underlying function space 

arIO,l/. In the three settings of this paper, the optimal algorithm is based on 

natural l!Iplines of degree 2r+l. In terms of approximation error, the worst case 

error of the optimal algorithm IS e(n""), and the best possible rate of convergence 

IS roughly n·r. Therefore. the aVerage case error of the optimal algorithm is an 

order smaller and the best possible rate of convergence 10 the aVerage case setting 

IS an order faster than that ID the worst case setting. Furthermore. the resulting 



5 

optimal I'-spline algorithm is linear. Hence, if precomputation IS used, we ha.ve a. 

very simple and easy to implement optimal algorithm, which is desirable from the 

practical point of view. 

Result (ii), which is a conclusion from 1311 and the general results of Sections 2, 

3 and 4, states that evaluating the integrand at equi-spaced points is almost 

optimal in all three settings. Result (iii) states that one can use information witb 

a priori cbosen points, which cannot be improved by any adaptively cb05eo 

points. Notice that this is a very desirable property from the practical point of 

VIew, since: 

_ nonadaptive information has much simpler structure than adaptive information, 

and in seeking optimal information, we can confine ourselves to nonadaptive 

information only; 

- nonadaptive information can be computed very efficiently In parallel, whereas 

adaptive inCormation IS ill-suited Cor parallel computation. 

The above reported results for integration are consequences of a more general 

approach, which is studied in the first part of this paper. In the general setting, 

we study approximation of a linear functional defined on a separable Banach 

space, equipped with a Gaussian measure. Information consists of adaptive 

continuous linear functionals. We study optimal information and optimal 

algorithms in average case, probabilistic and asymptotic settings. The following 

results are obtained in all three settings: 

(i) the JI-spline algorithm is uniquely optimal; 

(ii) the same information IS optimal; 

(iii) adaptive information IS not more powerful than nonadaptive information. 
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Comments similar to that of the integration problem with a Wiener measure, 

which We used for illustration, hold in general. Some of these results hold even 

for a~proximation of linear operators which need not be continuous; we point it 

out when it occurs. 

We want to add that there exists a statistical literature addressing the 

approximation of linear functional! defined on function spa.ces with information 

consisting of function and derivative evaluations, see e.g., [19, 20, 22, 31, 34, 45]. 

There a.re also papers dealing with the approximation of linear operators defined 

on separable Hilbert spaces with arbitrary adaptive linear functional evaluations as 

information, see e.g., [16, 46, 49, 501. We know no literature addrc53ing 

approximation problems defined on general separable Ba.na.eh space~. 
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2 Average Case Setting 

In this section we study optimal algorithms and optimal information on the 

average. We begin with the definitions of basic concepts. 

Let S be a. continuous linear functional defined on a real sepa.rable Banach 

(1) 

We wish to construct :t -. :t(J) E R, which a.pproximates Sf with a. possibly 

small error. The error between SI and x is measured by E(SJ ~ x), where 

E : R - R+ ' R+ - [0,+00), 

is ca.lIed an error functional. The error between Sf and x is often measured by 

the absolute value of the difference, Sf - x. This corresponds to the error 

functional EO = I . I. which is convex and symmetric. These two properties of 

E are crucial for our analysis. We assume that the efror functiona.l E is convex 

and symmetric. (Some results hold even when E is neither convex nor symmetric 

and when S is a linear operator. In fact, it is enough to assume that E is an 

arbitrary function so that E(S() - g) is mea.surable for any fixed g E S(F1). We 

will point it out when it occurs.) 

We assume that the element I is unknown. Instead, we know NI, where N is 

called &on information operator (or information). In this paper, we assume that 

N : Fl - Rn has the form 

NI - fLil), "', Ln(f)}, V I E Fl , (2) 

where L1, ... Ln are continuous linear functionals. Without loss of generality, we 

assume that L l' .'" Ln are linearly independent. The number n is called the 

cardinality of N and is denoted by card(N) =0' n. 
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Knowing Nf, we construct an approximation x to Sf by an algorithm 4>, x = 

¢I{NI). By an algorithm 4> that uses N, we mean any mappmg 

4J ; N(Fl) = R" - R. (3) 

In the average calfe "ttting the error of tP 13 measured by the average value of 

E(st - 4J(Nt)), i.e., 

e··g(4J,N) = J E(St - 4J(Nf)) p(dt), 

Fl 

( 4) 

where p is a probability measure defined on the O'-field B(F1) of Borel sets from 

Fl' To guarantee that the error of tP is weB defined, we assume that tP IS 

measurable. However, this assumption is not restrictive, as i.s discu58ed in 148J. 

We seek algorithms wh05e average error is a5 .small as possible; such algorithms 

are called optimal. Note that the error of an algorithm tP depends on the error 

functional E and on the probability measure p, eavg{t/I,N) ,.",. eatJ9(t/J,N;E,p). 

Hence the optimal algorithm also depends on E and p. In this paper we assume 

that the measure Jl is Gaussian. We recall the definition and basic properties of 

Gaussian measures in Section 2.1. 

2.1 Gaussian Measures 

Let Fl " be the dual space of Fl , i.e., Fl " is the space of all continuous linear 

functionals L : Fl ..... R. Let Jl be a probability measure defined on B(Fl ). Then 

Jl is a Gaussian measure iff the characteristic functional .p1J of p, is of the form 

tl>lL) - 'xp{iL(.) - L(VL)/e}, It L E Fl ~ • - FL ( 5) 

for some element Cl E Fl and a linear operator V: F l " ..... Fl' The characteristic 

functional .pp of Jl is defined by 

tI>.(L) = 1 exp{iL(r)) p(dr), It L E Fl '· 

rl 
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It is known, see [44J, that for a. Gaussian measure p, with tPJl of the form (5), 

the mean element m# is equal to a, i.e., 

L{a) = L{m.) = f L{f) I'(df), 

F, 

and the correlation operator Gil IS equal to V, I.e., 

L,(VLeJ = L,rC.LeJ = 

f L,(f - mpJ L,ff - mpJ I'(df), V L, ' Le E F, '. 

F, 

(6) 

(7) 

The correlation operator C Jl of a Gaussian measure p has a number of 

important properties (some of which will be discussed below). We remark that not 

every operator 

, 
V: FI -- FI can be a correlation opera.tor of some Gaussian measure. If FJ is a 

separable Hilbert space, then V is a correlation operator of some Gaussian 

measure p iff V is symmetric, nonnegative definite a.nd has finite tra.ce. If FI is, 

as in this paper, a sepa.rable Bana.ch spa.ce, then the complete characterization of 

correlation operators of Gaussian rnea.sures remains an open problem. 

Let C JJ be the correlation operator of a Ga.ussian measure IJ· Then C IJ IS 

symmetric, 

and nonnegative definite, 

Hence, the correlation 

V L E F/ 
, 

operator C IJ generates a semi-innerproduct on F1 ' 

<L"L,>. - L/C.LeJ, V L, ' Le E F,', 

and the corresponding semi-norm on F1 (I, 



to 

Here <- , .> JJ and II . Ill' are an innerproduct and a. Dorm, respectively. iff C jJ 

is one:'to-one, or equivalently, iff C p is positive definite, i.e., L(C pL) > 0, V L E 

• F, ' L 1= o. 

2.2 Spline Algorithms are Optimal on the Average 

From now 00, let JJ be the Gaussian measure on B(F1) with mean element zero 

and correlation operator C. as in (7), and let N(f) = {LlI}, ... , Ln(f}f be 

inCormation. Without loss of generality we assume that the funetionab L1, .. " Ln 

are orthonormalized such that 

where 6 j,j is the Kronecker delta. 

For Y = fy" YI!' ... , y,J ERn, let 

n 

u(y,N} = E Yj C.Lj . 
j=l 

(8) 

(9) 

• Then (1 = rr{y,N) E C,/Fl ) for every y ERR, The element (1 bas the following 

two properties: 

(i) (1 interpolates V, 

N(a) = y, (10) 

(ii) (or every functional L" E Fl· such that CpL" = (1, LA has the minimal 

semi-Dorm, 

{1J} 

Indeed, L/(1) = L Yj<L j , Lj >,.,. = !Ii which proves (10). To prove (11), take 

j=l 
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, 
L E Fl such that N(C"L) ~ y. Let f - C"L. Then f = 17 + h, where N(h) 

= O. Define R = L - L~. Then R E FI - and CpR = f - t7 ;-. h. Thus, 

N(C"R) = 0, i.e., Lj (C"R) = R(C"L) = 0, i = 1, 2, ... , n. Observe tbat 

IILII/,= IWII/ + IIRII/ + 2<L',R>" , where <L',R>" = R(C"L') = Ru 

= L Yj R(C"L) = 0. Thus IILII" 2: IWII" .. claimed in (11). 

j=l 

~ote that if C
p 

is one-to-one, then L' = GIJ-Ill and IIL'U
p 
e = (C

IJ
-1q) q = 

2: '11/. Then, (11) can be rewritten as 

, 
L Y/ ~ (C"·l (7) 17 - min {(C~·l J)f : f E C/Fl ') and Nf - y}. 

j=l 

The element (fry,N) satisfying (i) and (ii) is called in the literature the spline 

interpolating 11 or, briefly, the lJpline. To stress the dependence of (f on the 

measure p, we shall call (f = (f(y,N) the ",-spline. 

We define the p-"pline algorithm that uses N by 

, 

q,'(y) = Su(y,N) = L Yj S(C"L), 'V y ERn. 

j=l 

Thus, the p-spline algorithm is linear in y. We now prove that it is optimal. 

(12) 

Let the average radius of information N be defined as the minima.l error among 

all algorithms that use N, 

'··'(N) - inf e··'(q"N). 

1> 

By a.n optimal algorithm we mean any algorithm t/J. with 

e·,g(q, ',N) = ,··g(N). 

(13) 
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Theorem 2.1 Let N be of the fOfm (8). Then the IJ-spline algorithm ¢. IS 

optimal and 

e··'W,N) - '··'(N) - I E(SI) v(df,N). (14) 

F 
Here v(,N) is the Gaussian measJre on B(F1) with mean element zero and 

correlation operator 

Cv - (I - "N) C. ' (15) 

o 

where the operator "N : F, - Fl i. given by "ril) - E Lj (f) C.Lj , V IE· 

j-l 

Proof. 

The proof follows from the fact that the II-spline is the mean of conditional (a 

posteriori) measure p(. I N(f) - y) which turns out to be equal to a translated 

measure II (sce the Appendix). 

In Lemma 6.3 of the Appendix, we prove that (or every t/J, 

,··g(.p,N) = 

o 

I (fJ1r rnle{ I E(S(f + ,,(y,N)) - .p(y)) v(dl,N)) "p{ - E y /Ie )dy. 

~ ~ ~ 

Hcnce, due to linearity of S, 

o (16) 

I (fJ1r) -ole{1 E(SI-(.p(y}-S"(y,N)))v(df,N)),,p{ -E y/le}dy. 

~ F, j=l 

In particular, we have 
n 

e··g(.p',N) - I (fJ1rrole {I E(SI) v(df,N)) "p{ - E y/le ) dy 
~ F, j-l 



= ! E(Sj) v(dj,N). 

F, 

On t~e ot~er ~.nd, (16) yield, 

rav'(N) _ 
n 

! (l!1rj"n/e { inj ! E(Sj - g) v(df,N)}exp{ - E Y//2 } dy 

R" gER F, j-1 

- inj ! E(Sj - g) v(df,N). 

gER F, 

13 

(17) 

Since v("N) is symmetric, i.e., v(A,N) - v( -A,N}, and E is symmetric, then, 

changing the variable f to -I. we get 

rav'(N) = inj ! {{E(Sj - g) + E(Sj + g)}/2 } v(dj,N). 

gER F, 

Convexity or E yield, E(Sj) !> (E(Sj - g) + E(Sj + g))/2. Thus, 

rav'(N) = ! E(Sj) v(dj,N) = ,av'(¢>',N). 

F, 

Hence the II-spline algorithm is optimal 0 

Remark 2.1. It is possible to generalize Theorem 2.1 without assuming that E 

is convex and symmetric and that S is a functional. Let S : Fl -- Fe be a linear 

operator into a linear space F f!' Let E be an arbitrary functional from Fe into R, 

such that for every element 9 E Fe the functional E(S(} - g) is measurable. The 

proof of Theorem 2.1 yields that 

rav'(N) = inj ! E(Sj - g) v(df,N). 

9EFe F, 

. . 
Suppose that there eXists an element 9 E R such that 
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r··g(N) -! E(Sf - 9 ') v(df,N). 

Fl -

Define the trtln~l"ted p-3pline algorithm q,. by 

, , 
,p (Nf) = ,p'(N!) + 9 . 

Then 

n 

! (1I1r)-nl e{! E(Sf - (,p'(y) - ,p'(y))) v(df,N)} ezp{ -E yllB} dy 

It' Fl j-l 

= ! E(Sf - 9 ') v(df,N) = r··g(N). 

Fl 

Thus, if g. exists, then 4J. is optimal. On the other hand, if g. does not exist, 

then there is no optimal algorithm, i.e., r
4vg(N) < e(Jv9(¢"N), V 9. However, 

. , 
takmg 9 so tha.t 

! E(Sf - 9 ') v(df,N) 

Fl 

15 close to rGV9(N), we get an a.lgorithm 4/(NjJ .... t/J1I(Nf) + g. with almost 

minimal average error. D 

We end this section by exhibiting an explicit formula for the radius of 

information N. 

Theorem 2.1. Let N be 01 the lorm (8). Then 

r •• g(N) _ (BI1t) lie ! OOE(' ,(N) lie) 'zp{ _ ,elB } d" 

o 

where 

(18) 



n 

erN) = S(C,fl) = IISII/ - 2: <S,Lj>/ 
j=l 

Proof. 

Define the induced proba.bility measure on B(R) by 

>'(B,N) = v(S -'(B),N), 'V B e B(R). 

15 

o (19) 

(20) 

Since v(,N) is Gaussian with mea.n element zero and correlation operator Cv ' X( 

,N) is the Ga.ussian (normal) measure on B(R) with meaD element (value) zero 

and correlation opera.tor (value) given by 
n 

erN) = S(C,fl) = <S,S>. - 2: <S,Lj >/ 
j=l 

Changing variables in , •• U(N) = ! E(SJ) v(dJ,N) by z = SJ. we get 

F, 

,a·U(N) =! E(z) >.(dz.N) 

R 

= (1J1r erN)) -'Ie 100 

E(z) .. p{ _ zel/!k(N)/ }dz. 

-00 

From this and symmetry of E, we get (18). 0 

Theorem 2.2 states that the average radius of N is fully characterized by erN). 

Note that due to (8), erN) can be rewritten aB 

n 

erN) - liS - 2: <S.Lj > .Lj 11/ 
j~l 

- inJ {liS - Gil. t: G e lin{L, • ... , Ln}}' 

Thus, the correlation value erN) is equal to the error of the least square 

approximation of S by lin{Ll' .. " Ln} with respect to <. , '>JJ . 
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2.3 Adaption Does not Help on the Average 

Up to now we have considered information of the form N(J) ..". {Llf), "'J 

L (fJ/. This means that N consists of n eva.luations of continuous linear 
n . 

functionals Li ' i =0" 1, fJ, .. " ft, which are chosen independently of f. This ill 

why N is called nonadaptive, denoted by N"Oft. In practice, a. more general kind 

of information is often u5ed. Namely, information consist8 of evaluations of n 

continuous linear functionals, which are chosen adaptively, depending on 

previously computed values. That is 

(21) 

where Vl - vi!) - Li!), Vi - V/!) - L/f, Vl' ... , Viol)' i - e, ... , n. W. 

as8ume that for a. fixed 11 - fyI' "'J 1I,J ERR, L",,I - La<' , Jll- .. " IIi-I) j" 

linear and continuous and that the mappings G i : Rn 
- Fl·' G /11) = L i,1I ' are 

Borel measurable. Such information fI1 is called adaptive. 

Since adaptive information ha5 much richer structure than nonada.ptive 

information, one might hope to achieve more by using adaptive information. We 

now prove that thill hope is groundless. That is, adaption doe~ not help on the 

average. (For similar rellults in Hilbert llpacell, see [46, 49, 50}. This shows that 

the restriction to nonadaptive information, which we made in previoull sections, is 

without 10M of generality. 

To prove tha.t ada.ption doell not help, we construct, for Bony ada.ptive l'f", 

nonadaptive information of a similar structure to ~, which is not less powerful. 

The construction is obtained by fixing Yi in (21). More precisely, given l'f", l'f"(fJ 

- ILl!), L,!, Yl)' ... , L.(f, Vl' ... , Vn_l) with Yi - V/!) - L,{!, yi!), ... , 

Yi_lfJJ], and given an element Y - = !Yl -, ... , Yn -] ERn, let 
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or course, N"on
,l

• is nonada.ptive. 

• Theorem 2.3 For every adaptive fVd, there exists an element 11 ERR, such 

that 

Proof. 

We only sketch the proof, since it is similar to that of [46] Th.3.1. Without 

loss of generality, we can a&5ume that Cor every 11 - lull .. " 'J,J ERn, 

<Li,1/ ' Lj,,1>p = 6i,j' V i,j - 1, e, "', n. 

It can b. shown that for any algorithm ~, (16) holds with v(,N) r.plae.d by v( 

,JII'lQn,). That is, 

n 

j (£7r("lt{j E(S!-(4>(y;'St1(y,N"on ,))}v(df,N"on,)) ezp{-L: y/le)dy. 

It' F, j=I 

From this and (14) (see also Remark 2.1). 

r···(N") -
n 

j (£7r) -nit ( in! 

It' !1~R 

j E(S! - g) v(df,N"on,)) ezp{ - L: y/12} dy 
F, )=1 

n 
(2e) 

- j (£7r) -nit r··'(N"on,) ezp{ - L: y/12} dy. 
It' j-I 

Suppose it were true tha.t ror any element 11 E R", 

Integrating over y, we would have 
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n 

, •• g(N") < f (fJ1r) -nle ,··g(N'''''' v! «p{ - E y/12} dy, 

It' j=l 

which" contradicts (22). Thus, there exists an element y* E R", such tha.t 

which completes the proof. D 

Theorem 2.3 states that to find optimal information, it IS sufficient to consider 

only nonadaptive information. 

Remark 2.2 In the proof of Theorem 2.3 we do not use convexity or 

symmetry of E a.nd the (act that S is a functional. Hence this theorem holds for 

S a.nd E as in Remark 2.1. 0 

2.4 Optimal Information 

Up to now we have assumed that the information operator N = ILl' ... , L,J is 

fixed. Suppose now that we can choose (unctionals Li ' which form information 

N. Let L be a given class of permissible (unctionals L. We want to find n 

functionals L/ from L such that the average radius of Nn ·, Nn - = /L1·, .. " 

Ln -} is minimal. Such information is called nth optimal information, and its 

radiU3 is called the nth minimal radiu8 (with respect to L), 

,··g(Nn ') = ,.vg(n,L) - in! (,··g(N) : N ~ ILl' "" L,J, Li E L}. 

We U5e Theorem 2.2 to exhibit optimal information. Due to that theorem, the 

radiu5 of N is given by 

,.vg(N) = (211<) lie f 00 E(t erN) lie) .. p{ _ tel! } dt. 

o 
Since E is convex and symmetric, E is non decreasing on R+ . Thus to rnlDlmlze 

raVU(N), it is enough to minimize c(N). Let 



[9 

e(n,L) = in! (e(N): N = {L l' ... , L,J, Li E L} 

(23) 

~ in! {liS - Gii/ : G E lin{Ll' ... , Ln}, Li E L}. 

Then 

,a.g(n,L) _ (S/1r) l/t f 00 E(. e(n,L) lit) «p{ _ .tle } d.. (24) 

o 

This means that the nth minima.l radius is fully characterized by the least 

square error of approximating S by a functional from n dimensiona.l spaces 

, , 
spanned by elements from L. Let L 1 ' ... , Ln E L be such that 

e(n,L) = in! {lis - Gil. t : G E lin{Ll ', ... , Ln '}}. 

, 
Then Nn ' 

, , , 
N n (f) = {Ll (f), ... , Ln (f)J 

is nth optimal. 

(25) 

(26) 
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3 Probabilistic Setting 

In this section we study optimal algorithIm and optima.l information in the 

pro6a6iii8tic setting. Let 5, E, N and tP be defined as in Section 2. As (or the 

average ,as. setting we wisb to approximate Sf by .p(Nf) so tbat E(Sf - NNf)) 

is small. In the probabilistic setting, the performance of ¢J is measured by the 

probability of success, i.e., by the probability that E(SJ ~ ¢J(Nf)) is small. More 

precisely, given € ~ 0, let 

and let 

prob(.p,N,E) - p({f e F1 : E(Sf - .p(Nf)) S E}), 

prob(N,E) = .up prob(</>,N,Ej. 
.p 

(27) 

(28) 

We seek an optimal algorithm 4/, i.e., an algorithm with the largest probability 

of success, 

• prob(.p ,N,E) = prob(N,Ej. 

3.1 Spline Algorithms are Optimal in the Probabilistic Setting 

For nonadaptive N let ¢I' be the p-spline algorithm and let e(N) be defined as 

in Section 2. For convex and symmetric E let 

E .1(E) - .up (t e R : E(t) S E }. 

To avoid some unimportant complications, we assume tha.t E(O) - 0, i.e., gl(f,J 

is well defined for any l E R+ . 

Theorem 3.1 For every nonadaptive N or the form (8), the II-spline algorithm 

,pI is optimal in the probabilistic setting, 
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prob(N,<) = prob(t/>',N,<) _ (8/1<I/e ! b "p{ _ te/8 } dt, (29) 

o 

with b = b(N,<) = E -l«)/c(N) l/e, Here, by convention, </0 = +00, 'I < E R+ 

Proof, 

As in the proofs of Theorems 2.1 a.nd 2.2. we conclude tha.t 

prob(t/>,N,<) = 

• 
(1i1r) -./e! JI((fEFl ,'E(Sf-(t/>(yH'(y))r.><},N)e<p{-E y//S}dy, 

It' j-l 

Therefore 

prob(N,<) -

• 
(1i1r) •• /e! 8upv({fEFl ,E(Sf - g)"; <},N) "p{ - E y//8}dy 

R'l>ER j-l 

= .up v({f E Fl ' E(Sf - g) ,,; <},N) 
gER 

= .up X({t E R' E(t - g) ,,; <},N), 
gER 

where 'At,N) is defined by (20). Since E is nondeereasing, 

cloau .. {t E R " E(t - g) ,,; <} - (t E R " It - gl ,,; E .1(,)}, and therefore 

j
ae 

prob(N,<) _ aup (li1rj'l/e .. p{ - te/S } dt, 

gER a
l 

with a l = aig) = (g - E -l«))/c(N) l/e and ae = a/g) = (g + 

E -l(£))/e(Nj l/e. It is easy to check that the supremum is a.ttained for g .",.. 0 

and therefore 



prob(N,f) = (e/1rj/2 f b "p{ _ t2/e } dt, 

o 

For the p-spline algorithm t/J. we get 

probW,N,f) - v({f e FI : E(SI) ~ f},N) - prob(N,fJ, 

Henee ¢J' is optimal. 0 
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Remark 3.1 Similar to Remark 2.1 one can easily prove the optimality of a. 

translated p-spline algorithm (or an arbitrary linear operator S and an arbitrary 

measurable E. More precisely, if there exists an element l E R for which lI({f E 

FI : E(SI - 9 ') ~ .} , N) .tt&i.s its m&xim&l .&lue, the. the algorithm ?O(NI) 

- t/J'{Nf) + g. is optimal. If such g. does Dot exist, then there is no optimal 

algorithm. 0 

3,2 Adaption does not help in the Probabilistic Setting 

, 
Theorem 3.2 For every adaptive information JIl, there exists an element 11 E 

Jrl, such tha.t 

prob(N.,·"',.) "= prob(N",fJ. 

Since the proof is similar to that of Theorem 2.3, we omit it. 

We waot to add that Theorem 3.2 holds also for S and E as in Remark 2.1. In 

, 
that cue the element 11 might strongly depend aD E and in particular might be 

quite different than the corresponding element from Theorem 2.3. However, if S is 

a linear functional and E is convex and symmetric, as we assume in this paper, 

, 
q!!,.e can choose a common element 11 such that both 
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and 

prob(Ny,nan,,) ~ prob(N",')' V , ~ 0 

holds at the sa.me time. That is, instead of ~ one can use Nil_non which is at 

least as good as ~ in both the average case and the probabilistic settings (or 

every E. For instance, if in/II e(N,ttm) is attained Cor y ..... z, one can set ,," -:" 

z. Otherwise, y" should be so that c(NIIlltm) is close enough to the above 

inCimum. 

3.3 Optimal Information in Probabilistic Setting 

We want to find optimal information (or the probabilistic setting. k. in Section 

2.4 let L be a given claM of linear Cunctionals. The nth maximal probability 

(with respect to L) is deCined as 

prob(n,L,') = .up {prob(N,,) : N - ILl' ... , L,J, L; E L}, 

and the nth optimal information N" - is defined by 

, 
prob(Nn ,i) - prob(n,L"J. 

Similar to Section 2.4, we maximize prob(N,E) iff the correlation va.lue erN) IS 

minimized. Thus, 

b' 

prob(n,L,l) - (f/r//e f 'zp{. "/f ) d" 
D 

where b' = b'(n,l) - E .1(l)/c(n,L) l/e and c(n,L) is given by (23). Since for 

N n - defined by (26), e(Nn -) "". c(n,L), the information opera.tor N n - is also 



24 

• optimal in the proba.bilistic setting. Note that N n does not depend on f. This 

a.nd the optima.lity of the II-spline algorithm tell us that using Nfl" and tP
D
·, we 

, 
ma:c:imize the probability of success for wery E. 
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4 Asymptotic Setting with a Measure 

In this section, we report very briefly about the optimality of p-spline 

a.lgorithms In the a.symptotic setting, ba.eed on a recent pa.per [50]. Unlike in the 

avera.ge ease a.nd proba.bilistic settings, we do not fix the ca.rdinality of 

information. Instead, we let n ::::z card(N,J go to infinity, and we investiga.te how 

to approximate Sf by <p.(N.f) so that ISf - <piN.fA 
-

tends to zero a.e Cast as possible for almo3t all f E Fl' That is, we have a. 

sequence of adaptive information operators {Nn } as defined in Section 2.3, and 

we seek a. sequence of algorithm! which enjoys the beet possible rate of 

convergence of IS! - tPn{NnfA for almolJt all f e Fl , We assume that N n is 

contained in Nn+1• i.e., 

which 15 not a. restrictive 8S5umption In practice. 

The a.symptotic setting has been recently investigated in [50] for linear problems 

in Hilbert spa.ces with a measure; that is, for approximation of S: Fl - Fe ' 

where Fl , Fe are separable Hilbert spaces, Fl is equipped with a Gaussian 

measure, and S is a continuous linear operator. Recall that here Fl is a separable 

Banach space and S is a continuous linear functional. However, knowing that A, 

the induced measure in (20), is Gaussian, one can obtain all the results Crom [50] 

for the case studied in th~ pa.per. We ha.ve 

Theorem 4.1 For every sequence of adaptive inCormation {N,,}' the p-spline 

algorithms {<I>" '} are optimal, i.e., for every sequence of algorithrm {<I>,,} 

(30) 
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This theorem states that some algorithms might be better than the p-spline 

algorithms only aD a. set of p-measure zero. Hence the best rate of convergence IS 

achieved by the p-spline algorithIrul. This rate is chara.c:terized in 

Theorem 4.2 For every sequence of adaptive information {Nn }, 

p({f E FJ : lim._oo lSf - ,pn'(N.fA / e(N. ' fjle - OJ) - 0, (31) 

and 

where e(N • .!) = e(N-°'. N I} , . IS the correlation value of A( ',N"'0fl n N I)' see 
, . 

(19). 0 

Theorems 4.1 and 4.2 state close relations between the asymptotic setting with a 

Gaussian measure and the average case setting. 

We now comment on optimal information. In the asymptotic setting information ... . 
{Nn } 15 optimal if it provides the best possible rate of convergence. Due to .. 
Theorem 4.2, this means that c(Nn ) goes to zero with the best rate of 

convergence. Due to Theorems 4.1 and 4.2, no sequence of algorithms using any 

sequence of information operators has rate of convergence better than c(n,L). Can 

this rate be achieved! Note that for N" -, as in Sections 2.4 and 3.4, c(N" -) -

c(n,L). However, for some specific L, N,," need not contain N n_1•. In this case 

we use the following approach, suggested by [56}. Let Nn •• be a sequence or 

information operators, such that Nn •• ~ N n+1··, and for n "",.. fie - 1, 



,-., 

(33) 

Then for every n, Nn -- contains Nfn/e/ ' and therefore, 

e(N. "} ~ e(N'{njey - e({njfJ,L}. 

Now, if e({njfJ,L} = e(e(n,L}}, whieh holds, for in,'ance, for ,(n,L) - e(n"}. 

then 

e(N. "} = e(,(n,L}}, 

and therefore {Nn **} is optimal. 
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5 Applications 

In this section we apply the results reported in the prevIOus sections to linear 

problelll5 in a space of regular functions equipped with a. Wiener measure. Since 

the original work by Wiener in the 1920's, Wiener measures have received a great 

deal of attention. They are among the most widely used and studied measures on 

(unction spaces, and they are of interest to statisticians and physicists, see 

14, 22, 31, 34, 45, 51, 521. 

__ .Y"e begin with the definition s.nd some properties of Wiener measures. 

5.1 Wiener measures 

Let or/O,ll be the class of r times continuously differentiable (unctions defined 

on 10,1/. Let CO' ~ (J E 0'10,1/: fii(O) = 0, i = 0, 1, ... , ,}, , = 0, 1, ... 

. Obviously, CO' equipped with the norm 11111 ~ sup (I1M(tA : t E 10,1f), is a 

separable Banach space. Let Dr be the rth derivative operator, Dr! .- Ir) for 

every f from C"/O,lj. Note that Dr, restricted to C/' is one-to-one and Dr(C/) 

= C 0 o· 

The Wiener measure IJ on B(C /) is defined by 

pCB) = w(D'(B)), I;f B E B(Co'), {34} 

where to is the classical Wiener measure on B(Cao), uniquely defined by 

w((f E C/ : [(t) - [(tf1) E ('j ,Ij) , i - 1, ... , k}) -

(35) 



Take an operator T defined on the space of integrable functions on /0,1/ 

(I'JXx) - 1 % J(I} dl. 

o 

Then (or m ~ 0, 

l

%[I'ltm., 
('r" JXx) - J. ... J(lmJ dlm···dt 1 

o 0 0 

- 11{X -Ir-
'
/{m - m J{t} dt 

o 

-1 ~{x - I}+ m-1/{m - m J{I} dt, 
o 

where (or k ~ 1 

{x - I}+, -
if t,$:r, 

iJ I>x, 

and 

(x - t)/ -

if t,$:r, 

if t >x. 
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{86} 

{87} 

Note that rm is one·to-one and Tm(Cj) = Cr!+ffl. Furthermore DmT m = I. 

For every L E (C/r, take a {unction sL : {a,lf - R, which IS of bounded 

variation. continuous (rom the left and sd1) = 0, such that 

L(J} - 11'1(,} d{'dl}}, II J E Co'. 
o 

{88} 

Such a. function sL exists due to Riesz Repre5entation Theorem a.nd the fact that 
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For every r ~ 0, the Wiener measure I' on B(C{J IS the Gaussian measure 

with mean element zero and correlation operator C # I 

(39) 

or equivalently, 

where gi') = fz'+1 - (. - ,)/+1//(r+1)1 , V " , E (O,l/. For complet,n,ss, 

we present a proof. For r .... 0, I' - w and the ch&r&Cteristic functional of JJ is 

equal to 

= 

= 

= 

,"p(iL(J)) w(df) 

,"p(i f ~(') d(-d'))) w(dJ) 
o 

,"pi - f ~l(t) d' /2 ) 
o 

,"pi f 1 (ToLl') d(od'))/2 ) 

o 

,"pi - L(- TsJ/2 }. 

For the third equality see (21J Th. 5.1, p.82. Thus, for r - 0, CwL """ - TsL" 

Hence w is Gaussia.n with mean element zero and correlation operator C wL = 

- T8L . For r ~ 1, P :lit wDr, and therefore 

,"p(iL(J)) p(dJ) = f 
CO 

o 

ezp(iLTr(J)) w(dJ) 



JI 

'tL E {cJr· 

Since LT r E (C/r, we get 

Not. th.t L{J) - j 11'){I) d{'dl)) .nd LT'(f) - L{T'f) - j 1 f(1) d{'dl)) . 

o 0 
Therefore Cw{LT ') = - T'L ' and LT '(Cw{LT ')) - L{T '(- ToU) = 

L{- T,+l.U = L{C.L) . Thu" "'iL) = ezp{ - L{C.L)/f } which proves th.t I' 

is the Gaussian measure on B(C /) with mean element zero and correlation 

operator C
IJ

, C#L = - T r+lsL . We now prove that (C",LXx) = L(Trg;eJ. 

Indeed, 

L{T'g.) = j ~D'T'9.XI) d{adl)) = j !.(t) d{'dt)) 
o 0 

= x,+l/{, + l)!j 1 1 d{'dl)) - j ~x _ 1)/+1/{, + 1)1 d{'d')) 

o 0 

= - .,+1/(, + 1)1 'dO) + j ~dl) d{{x - 1)/+l/(, + 1)1) + 
o 

(x - 0)/+1/{, + 1)! 'dO) 

a5 claimed. From (39) we see that for every L E (Co' r, C pL is a function from 

Co" with (r+l)t derivative of bounded variation. 
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5.2 Spline Algorithms and their Errors 

In this section we apply results from Section 2 to 4 for Fl - el, where p is 

the Wiener measure. Without loss of generality we consider only nonadaptive 

information, Since we know that adaption does not help. Let N. N(f) = ILlI), 

LI!), "" Li!)1 be given. Then 

Ll!) = ! '1')(t) d(elt)) 

o 
(40) 

for some lIi of bounded variation, continuous from the left &Ild lI;(l) - O. Note 

that 

(41) 

= ! 1 ej (t) elt) d(t) - <e; "j>, . 
o e 

Thus, the assumption (8) that <L j , Lj>1l .... 6j,j mea.ns that the functions "i 

are orthonormal in Ie -Dorm. Then the p-spline element interpola.ting !I = N(f) is 

of the following form 

For the p-spline algorithm t/J', t/J'(y) - S(1(y,N), we have 

,"'(t/J',N) _ (el,,!le ! 00 E(t e(N!le) ezp{ _ ,ele } d, 

o 

p,ob(t/J',N,<) _ (el,,!le ! b ezp{ _ ,ele ) d" 

o 

where b - b(N,<) = E -lMle(N) lie and 

(42) 

( 43) 
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(44) 

Since S belongs to (C / j*, there exists a (unction " of bounded variation, 

continuous (rom the left and s(1) = 0, such that 

S(f) = J 11,}(,) d(8(')). 

o 

Due to (41), we get 

erN) = inl (J 1 (8(') - g(')! d, : g e lin{'1' ... , 8n }}. 

o 
(45) 

Hence erN) equals to the square of the error of least square approximation of 8 

by 

lin{ "1' .. " 8n} with respect to the / e -Dorm. 

5.3 Standard Information 

From now on we assume that N consists of (unction a.nd derivatives eva.lua.tions, 

'V I e CO', (46) 

where 0 = to < tl < .,' < tp ~ 1 a.nd kl' "'J kp E {O, "'J r}. Then the 

cardinality of N i5 given by 

p 

n = ca,d(N) = L: (k, + 1). 
i=l 

Let L'J (f) - li)(,,) . Then 

L· . (I) = J 11,}(,} d( •. . (,}) 
I,) .,) 

o 
(47) 

with 
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';,j (t) = lj (t; - t)/,j/(r ' iJ! , I - 1, ... , p, j = 0, ... , k; , 

and lj .. 1 if j = r, and -1 otherwise. In order to construct the lA-spline 

algorithm one can ta.ke linear combinations of 8i,;" to normalize them as in (41). 

The~n the II-spline algorithm is given by (42) with 1Ii and 8j replaced by the 

corresponding linear combinations of /i)(t j) and 8i,j . Observe that the I'-spiine 

element t7 - rr(N(f),N} is a linear combination of tJi,j , i.e., it is a. piecewise 

polynomial interpolating 11 = N(f), 

trW(.;) = fj)(.;) , ; = 1, ... , p, j = 0, .. " k; , 

.nd trW(O) = 0, j = 0, ... , r. 

Furthermore (11) and (39) yield that 1I0;ltrlll. _ (O;ltrXtr) _ IItr(r+l~l\ ;. 

minima.l among all functions g such that g(j)(tj) .,. pi)(t j ), i ..,., 1, ...• P, j -=' 0, 

... , k; , and ljj(O) = 0, j = 0, ... , r. Thus, trO = tr(N(f),NX) is the n.t"r.1 

spline 0/ degree 21'+1 interpolating f a.t points 0 = to ' t 1 ' .... tp ~ 1, with 

multiplicities rno = r + 1, m 1 = kl + 1 , .. " mp = kp + 1, respectively. We 

ha.ve therefore the following 

Theorem 5.1 For any information N of the form (46) and for any r ~ 0, the 

spline algorithm ¢J'(y} = Su(y,N} based on the natural spline u(y,NX) of degree 

2r+l is optimal for both the average case and probabilistic settings. Furthermore, 

the best rate of convergence in the asymptotic setting is achieved by the sequence 

of the spline algorithIIl.5. 0 

Remark 5.1 Theorem 5.1 states, In particular, that the natural spline of 

degree 2r+l is the mean of the conditional (a posteriori) measure. This fact is 
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mentioned in the statistical literature. For instance, it IS written ID [4], p.llO, 

tha.t this result is a well-known part of the folklore. We were unable to find the 

proof of this result. There is a. number of very interesting papers, see e.g., 

fI9, 20, 45], where simila.r problems are analyzed and relations between Bayesian 

statistics and spline (unctions are exhibited. In particular, 1191 show that (or a 

number of stochastic processes (excluding the Wiener case) spline (unctions 

(different than natural splines) are the means of conditional measures. U 

5.4)ntegration Problem 

We now assume. specific rorm or the runction.l S. Let Sf = fa' f(t} dt. For 

any fee/we can rewrite this 8.5 

Sf = J 1 !{t} dt = - J I')(t) d{(l - t)'+1/(, + 1}.I). 

o 0 

We know that ~8 is optimal. We want to find optimal information of the form 

(46), i.e., with L ~ (L : 3 z, 3 j :5 " L(J) = fi)(z) 'I f E Co'}. Due to 

Sections 2.4 and 3.3, we need only to minimize erN). Note tha.t for every N of 

the rorm (46), 

erN) -

inf { J 1 { (1 _ t)'+l / (, + 1)1 - q(t) }e dt: q E P(N} } 

o 
where 

P(N) = lin{(tj - . }/-i/(, - J)!: i = 1, .. , p, j = 0, ... , k;l. 

This mea.ns that to find nth optimal information one needs to find optimal points 

a.nd their multiplicity so that the 12 -error of approximating l1{x) ~ (1 • t) r+l/(r 

+ 1)/ by spline functions of degree r is minimal This minimization is a. special 
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instance of a. more genera.l problem studied In [31J. In particular, they proved 

that 

c(n,L) _ ern -e(r+1}), ( 48) 

and, this is achieved by the following information N*, 

W(f) - ff(1/(n+1)), f(2/(n+1)), ... , f(n/(n+1))], V I E Co'. (49) 

This result and the results from Sections 2 a.nd 3 imply that 

Theorem 5.2 The information N* defined by (49) is aima!t optimal for every 

r > 0 in the average ca.sc and probabilistic settings. 0 

For n = fie - 1, ta.king {Nn *' such that N •• = IN1·, Ne~ N4 *- "'J 

n 

N j-l*/' 80S in Section 4, we conclude that 

Theorem 5.3 The information {Nn *' is optimal for the asymptotic setting for 

every r ~ O. The best possible rate of convergence n-(r+l) is achieved by the 

sequence of I'-spiine a.lgorithms that use {Nn *,. 0 

5.5 Worst Case Setting and Average Case Setting - a Comparison 

For the integra.tion problem, we compare the optimality results in the average 

case setting with that in the worst case setting. In the latter setting, we 

approximate Sf = folf(t) dt by using an algorithm tP, based on information N, 

50 that lSI - .p(NIA /11111 is small for every I E Co'. By 11'11 we mean the norm 

on the space Fl = Cor as before, i.e., 

11111 = sup { IJM(t).: t E fo,1] }. The worst c ... error of .p is defined by 

eW(.p,N) - sup {lSI - .p(N(f)A /11111: IE Co'}, 



and the worst cast' radius of N is 

Let ¢J. be a.n optimal a.lgorithm, I.e., 

From. [38) Appendix E. it follows that (or a.n optimal a.lgorithm tf>. 

,W(,p~N) = .up {iSf • ,p·(NfA.. 11111!S l} = 

inf .up {iSf • ,p(NfA.. 11111 < l}. 
,p 

Gaffney and Powell 161 proved that for every f with 11111 !S 1, 

pix) !S f(%) !S p/%), V % E (O,lf, 
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where PI and Pe are lower and upper envelopes obtained from the perfect "plint's 

of degree r with n-r+1 knots interpolating I, N(p 1) -- N(ptJ =N(f). Thus, the 

algorithm 4J., 

,p'(Nf) - S(Pl + pyle, 

provided by the perfect splines of degree r with n-r+ 1 knots interpolating f is 

optimal in the WOl'5t ca:se setting. Information N·n rema.ins almost optimal in the 

wonst case setting, but its wo,,,t cau ra.dius is proportional to n-r, instead. of 

n-(r+1), a:5 in the average case setting with EO """" 1"1. 

We summarize and contrast the optimality results of these two settings In Table 

I. 



almost optimal 
information N~n 

optimal algorith~ 
41· that uses N n 

worst case setting average case setting 

-- . _. __ ...• _- _ .... 

function evaluations 
at equi-spaced points 

based on perfect 
splines of degree 
r with n-r+l knots 

ern .r) 

Table 1 

function evaluations 

at equi-spaced points 

based on natural 

splines of degree 2r+l 
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The optimality results of the two settings are quite different. In the worst case 

setting, the optimal algorithm is based on the per feet splines of degree r with 0-

r+l knots. On the contrary, in the average eMe setting, the optimal algorithm is 

based on the natural spline5 of degree 21'+1. Furthermore, the average error of 

the I'-spline a.lgorithm is an order smaller that the worst case error of the 

optimal algorithm ¢ •. This is due to the fact that the probability measure p is 

concentrated on the set of functions with regularity almost r + 1/2, and 

therefore, supplies additional smoothnes:!l to the problem. This quantifies how 

much information is carried by the measure. 

5.6 Complexity 

VIe now discuss the above reported results from the complexity point of View, 

For the sake of simplicity we only consider the average case setting with E(.) = 

II 

Suppose that we want to approximate the integral of f with an average 
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(expected) error not exceeding a. preassigned accuracy E. Obviously, we would like 

to have information N and an algorithm ¢J with an average coot as sma.1I as 

possible. We assume that each (unction or derivative evaluation costs unity, and 

that the cost of each arithmetic operation 13 small compare to unity. Then the 

cost of each algorithm that uses information of cardinality n is at least n, and 

the cost of the spline algorithm is cloot to ft, since it is a linear algorithm. On 

the other hand, no algorithm ha$ average error les.s than or equal to f, unless it 

uses information of cardinality at least n" .... n *(£). where 

n' - min ( n : rovg(n,L) :S • } = e(l/.1/(r+1};. 

This implies that the complexity (i.e., the minimal cost) of the integration 

problem is 8{ l/f.l/(r+l~, and that. t.he spline algorithm t.hat. uses n "(l) function 

values a.t. equispa.ced points is aim03t optimal from the complexity point of 

VIew. 

We stress that. we have rest.ricted t.he considered algorithms to t.hose that. use 

information or fixed cardinality, whereas, in practice, information of varying 

cardinalit.y is commonly used. As will be report.ed in a fort.hcoming paper (see 

147/), t.his rest.rict.ion is without loss of genera.lity. Hence, the spline algorithm 

that wes n "(£) function values at equispaced points remains almost optimal in the 

class or a.lgorithms that use information of varying cardinality. 
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6 Appendix 

In this appendix, we prove some properties of Gaussian measures, which were 

used in previous sections. 

We begin with the following simple observation. Let p be the GaUS8ian measure 

with mean element mp and correlation operator GIJ . Then Cor a continuous 

linear functiona.l L, L E FJ "', the induced measure pL-1 is the Gaussian measure 

aD B(R) with mean L{m,J and correlation <L,L>", . That is, if <L,L>", is 

positive, then 

p(L"l(B))_ 

(II1r<L,L>,J -lief ezp{-(t-L(m,JI/(2<L,L>,J}dt, V'BEB(R), 

A 

and if <L,L>", = 0, then 

p(B) = 
(

10 

if L(m,J E B, 

if L(m,J f B. 

(SO) 

Indeed, the characteristic functional ¢ of pL-1 is given by .p(x) ... tfJ,lxL). Y :r 

e--R, and therefore f/;(z) = ezp{ ixL{m,J - xf!<L,L>p/2 }, as claimed. 

Let now N = /L" ... , L,J be of the form (8), i.e., <Li, Lj >" = 0i,j , and let 

mp - O. For the induced probability measure pN -1 defined on B(Rn), we have 

Lemma 8.1 The measure I'N·1 
13 Gaussian with mean element zero and 

correlation matrix identity, i.e., 

n 

pN"l(A) = p(N-VA)) = (lI1r)"nlef <xp{ - L v/12} dy. 
A j_l 

(51 ) 

Proof. 



For the characteristic functional 1/J -1 of I'N-l, we have 
.N 

" 
t/J .,(x) = I exp{i L Xj Yj} pN-1dy 
.N II' j-1 

" 
= I exp{i L Xj Lj (f}) p(df) 

F1 ;=1 

" 
-r/J("'x.L.) 

jJ ~ J J 
;":=1 

" 
= exp{ - L Xj xk<Lj , Lk>,/2 } 

j,k=l 

" 
= exp{ - L x//2 } 

j=l 

= exp{ - <x,x>/2 }, II x E R". 

This completes the proof. a 
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From [29J Th.8.1 p.147, we know that there exists a uDlque (up to a set of 

I'N -1 mea5ure zero in B(R")) family of probability mea.sures v( . I y,N) defined 

on B(F 1) and indexed by y E R", such that for all BE B(F1), 

v(N -l(y) I y,N) = 1, II y E R", a.e., 

v(B I ., N) i. pN -1 - integrable, 

/J(B) = I v(B I y,N) pW1(dy). 

II' 

(52) 

Thi3 family, called conditional measure, is crucial for our study, since for every 

!p.~&Surable ma.pping H, H : Fl - R, 

I H(f} p(df) = I {I H(f} v(df I y,N)} /JW1(dy), 

F1 II' F1 

and due to Lemma 6.1, 



f H(f) I'(df) ~ 
FI n 

(f}!r) -nle f {f H(f) lI(df I y,N)} exp{ - L y/lz } dy. 
II" N-I{r} j=l 

In particular, we have 

and 

n 

E(Sf - ,pry)) lI(df I y,NJ) exp{ - L y/lz } dy, 
j-l 

prob(,p,N,<) -

n 

(f}!r!"lzf 1I({fEFI :E(S!-¢(y)JS,<}Iy,N)ezp{-L y/IZ}dy. 
II" j-l 
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Lemma 6.2 For every N of the form (8), v( or y,N) is the Gaussian measure on 

B(F
J
) with mean element my = u(y,N) and correlation operator Gil ~ (1 - uN) 

Proof. 

We first prove tha.t for every 11 there exists a Gaussian measure with mean 

element u(JI,N) a.nd correlation operator ell = (/ - "N) C w For this purpose, 

let X be a functional from Fl· into C defined by 

X(L) - exp{ - L{c~J/e}, V L E FI '· 

Note that 

X(L) - n 

exp{-L{C"LJ/Z}exp{L <L,Lp"ele}~exp{-L{C"L)IZ}-PlL). 
j-l 
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Thus, 0 S 1 . X(L) S 1 - tfJ,lL), Y L E Fl *, Since tPp is the characteristic 

functional of the measure 11, X is also the characteristic functional of some 

probability measure defined OD B(F1), see [44J p.llS. Therefore, exp{ iL(l1(y,N)) 

- L(c~)/e} is also a characteristic functional of a. probability measure. Hence 

there exists a. family of probability measures fJ
,I 

such that 

!/Jp (L) - ,"p{ iL(u(y,N)) - L(c.,L)/e}, V L E F1'· 

• 
Due to the definition of Gaussian measures, P, IS Gaussian with mean element 

u(y,N) and correlation operator Cv =- (/ - UN) Cp. 

We now prove that v( . I y,N) """' PI). To prove this equality, we only need 

to show tha.t PIl satisfies (52). Since for all y'~, P, are Gaussian with a common 

correlation operator and mean elements u(y,N). respectively, they are translations 

of Po ' i.e., 

fJIB) - fJrIB - u(y,N)), V B E B(F1). 

Hence to prove that PIN .1(y)) =- 1, it is enough to show that PiN .1(0)) =- 1, 

since 

• 
Wl(y) = Wl(O) + u(y,N). Let G(f) = 2: L/(f). Then 

j=1 
• • f G(f) fJrldf) - 2: f L/(f) fJrldf) = 2: Lj (Cv L). 

Fl ;=1 Fl ;=1 

since Po has correlation operator Cv and mean element u(O,N) = O. A simple 

calculation yields that Li (ev L) =:II' 0, j - 1, e, ... , n. Thus 

f G(f) fJrIdf) = O. 

Fl 

Since G(f) <! 0, and G(f) > 0 iff f f N -1(0), this proves that fJrlFl - N -1(0)) 

= 0, and hence, fJrlN -1(0)) = 1. 
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It is easy to observe tha.t {JIB), as a. function of y, is pN -I.integrable for 

every B E B(F1). To complete the proof, we need only to show the last equality 

in (52). Let 

I'"(B) = ! PIB) I'N "'(dy), VB E B(F,). Of course, I' IS. probability 

II" 
measure aD B(F1J whose characteristic (unctional tV is given by 

n 

.p"(L) = (21<j"n/e! {! exp{iL(f)} P/df)} .. p{ - L y//Z} dy 

II" F, .i-' 

= (21<) "n/t ! .. p{ iL(u(y,N)) - L(C"L)IZ } exp{ - L y/12 } dy 
II" j_' 

n 

-exp{ -L(C"L)12}(21<) -n/t! .. p{ iL(u(y,N)) .. p{" L y/I£}dy. 

II" j-' 
The last integral is equal to 

n n 

(21<) -nit ! .. p{i L Yj<L,Lj>"} "p{ - L y/12 } dy 

II" j=' j=1 

= 'xp{ - <L,L>/2 + L(C"L)12 }. 

Thus we have 

.p"(L) = 'xp{ - <L,L>/Z} = .piL). 

Hence IJ~ = p, and the uniqueness of conditional measures implies that v( . I 

y,N) -

Pi). Thi. completes the proof. 0 

Lemma 1.3 For N of the form (8), let v( . ,N) be the Gaussian measure on 

B(F1) with mean element zero and correlation operator C", = (1 - t7NP p . Then 

for every algorithm q" we have 

,avg(¢>,N) = 

(53) 
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n 

(II1rrn/ef (f E(S(f-HI(y,N)}-<P(y))v(df,N)}txp{-L y//2}dy, 

R" F1 )=1 

and 

prob(t/>,N,l) -

n (54) 

(II1rr/e f 1I((feF1:E(S(f-HI(y,N)}-<P(y))s'l},N)ezp{-L y//2}dy_ 

R" j=1 

Proof_ 

From (52) and Lemma. 6.2, we get 

,
aV9(t/>,N) = n (55) 

(II1rrn/ e f f E(Sf - t/>(y)) f3ldf) txp{ - L y//2 } dy, 

R" F1 j-1 

where f3y is the Gaussian measure with mea.n element u(y,N) a.nd correlation 

operator Cv . Hence Po = v(,N}. Furthermore, since f3IB) = {JiB - (f(y,N)) = 

II(B - <1(y,N),N), V B e B(F1), we can rewrite (55) as 

n 

(1I1r)-n/e f {f E(S(f-HI(y,N)}-<P(y))v(df,N)}txp{-L y//2}dy, 

R" F1 )=1 

which proves (53). Since the proof of (54) is simila.r, we omit it. 0 
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Abstract 

We study the following three image understanding problems: 2 & 1/2 D sketch, 

shape from shading, and optica.l flow. 

1 Introduction 

One important application domain of inform&tioD~b&Sed complexity is Image 

Under3tclnding (IU). The characteristic fea.ture of IU is the construction of a. rich 

structure of Itt 5cene from limited, contaminated and priced information present 

in an image. In general, what is desired in the construction is some "best 

function" that fits the data derived from binocularity, projection, shading, motion, 

etc. Mathematically, this can be cast as an approximation (or interpolation) 

problem subject to some error criterion. For the purpose of approximation, one 

seeks appropriate algorithms, and much work has been done 

17, 10, 11, 13, 15, 17, 18, 351. 

In this part, we discuss three image understanding problem.s: £ 8 1/£ D ~ketch, 

shape from ~hading, and optical flow. We point out how known general 

optimality results in information-based complexity theory may be applied to some 

of these problem.s. We indicate some preliminary results and work in progress, 

concerning the numerieal solution of these problems. Algorithms which differ 

from those currently used in practice are proposed. 

We first review briefly the relevant part of the theory, the worst ea~e model, 

a.nd then discuss the following problems in turn: 2 8& 1/2 D sketch, shape from 

shading, a.nd optica.l flow. 
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2 Some Basics of Information-based Complexity 

We approximate a linear operator S: F 1 -- F 2 ' where F 1 is a. linear space and 

F2 is .& Darmed space with norm 11"11. We recover Sf, for ( E Fl ' based on 

information about f: N(f) =- [Lt(f), LII(f)). where Li is a functional on F 1 ' 

and N: F 1 -- RD. An algorithm tP uses this information to construct an 

approximation ¢(N(f)) E Fz • where 4': RII - Fz is an arbitrary mapping. Since 

any sr, such tha.t N(r) =- N(f), could be the element we want to approximate, 

and since in practice, we only consider r in a subset of F 1 ' F 0 ' we define the 

worst ea", local algorithm error as 

.(,,!,N,C) = sup IISC" ,,!(N(C))II, C e F, . 
C"eF o 

N(f")-N(r) 
(\) 

We seek a. 8trongly optimal algorithm, denoted by,·, which minimIZeS the local 

algorithm error, for each r in F I ' among all algorithms. If a strongly optimal 

algorithm exists, its algorithm error is the lower bound of all algorithm errors. 

We define the radiu3 of information, [37J, as 

r(N) = sup e(41·,N,f), where 41· is a. strongly optimal algorithm. (2) 

CeF, 

In the following discussion of IV problcIIl5, we use the notation and terminology 

given above. 



·.9 

3 2 & 1/2 D Sketch in Shape from Stereo 

The slight disparities in the images received from the left and right eyes enable 

humans to determine the shape and relative depth of visible surfaces. Marr· 

Poggio-GriIruon's stereo vision algorithm is one such algorithm that intends to 

model the stereo processing of the human visual system. For the details, see [7J. 

We discuss only one stage of this algorithm: the 2 & 1/2 0 sketch. After 

previous processing, disparity values are recorded. Based on these values, 

triangulations provide some depth values of the surface to be recovered. The 

problem of the derivation of the 2 & 1/2 0 sketch is the determination of the 

best possible interpolation for smoothly completing the surface from the discrete 

set of depth values. 

We address this issue from the point of view of information· based complexity. 

W-e first formulate the problem in the setting of the general theory. We then 

study the optimality of the spline algorithm and its implementation. Finally, we 

discuss possible decomposition of information for parallel or distributed 

computation. 

3.1 Choosing the Class of Surfaces 

Evidence from psychology indicates that human visual system is able to segment 

the surfa.ce into smooth patches of order two and to recover each patch. We 

assume that the part of the real world surface we want to recover is smooth and 

is viewed from a position free of accidental a.lignments. We further assume tha.t it 

has been segmented from other nearby surfaces. 

Formally, the surfaces can be represented as real valued fUDctions of two 

variables defined on a region 0, 
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I: D - R, D !;; R'. (3) 

We 38Sume that f and its first and second order partial derivatives are all square 

integrable. That is, the class of surfaces are located with respect to a. given 

background - the region D. and arc smooth at least up to the local curvature: 

their curvatures arc square-integrable. This class of surfaces is a linear space, 

denoted by F 1 as in Section 2. 

The surface we expect to "see" is part of the real world surface r, restricted to 

a bounded region G ~ D. This class of surfaces is also a. linear space. Assume 

that this linear spa.ce is equipped with a. norm for measuring the approxima.tion 

error, and we denote this Darmed space by F 2 ' as in Section 2. 

Let S be the mappmg which restricts a. surface (rom 0 to G. Then S is a. linear 

opera.tor Crom F 1 to F 2 . If f is the original surface in F 1 ' then, as described in 

Section 2, our goal is to recover Sf. We are interested in a strongly optimal 

algorithm, which minimizes the local algorithm error among all algorithms. 

3.2 Quantify Surface Cues as Information 

-.To recover a surface Sf, we need information about f, or ~urface cue~, which 

is, in this case, the depth values of the surface f at n points. Formally, as in 

Section 2, information is given by 

N(I) = [L,(I) ,', L.(f)1 (4) 

- [I(x, ' y,), "', ~x. ' y.)I, (x; , y;l e D, = 1, n. 
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3.3 Surface Consistence Constraint 

A natural constraint (rom practice is the surface consi"tency con"traint, see 

[71, which states that between known data, the surfa.ce cannot change in a 

radical manner. The cbange of a surface is quantified by it5 variation 8, defined 

as 

(5) 

As in Section 2, we confine ourselves to the class of surfaces F 0 ' which has 

uniformly bounded surface variation. For simplicity" we assume that the bound is 

I, i.e., F, - (I e FI : 11(1) :S I}. 

3.4 Spline Algorithm is Strongly Optimal 

Grimson [71 further explored the surface consistency constraint a.nd proposed a 

spline interpolation, which interpolates the data and minimizes (J. This is the 

spline algorithm. 

We are interested in strongly optimal a.lgorithms, which minimiZe the local 

algorithm error as defined in (1). It is known (see e.g. [37] ch.4) that 

Prop08ition 3.1 The spline a.lgorithm <p' 15 strongly optimal and linear. It has 

the form. 

• 
q,'(N(I)) - S"NI~ -:L: I(x" Y') S", ' .-1 

where the "piine 

• 
"NI~ ~:L: I(x" Y') '" ' .-1 

(6) 

(7) 
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and fr. is a. basia 6p/ine, i.e., the function of minimal surfa.ce varia.tion such that , 

3.5 Norms on F. and the Radius of Information 

& in (I), a norm on F2 mC8.'5ures the approximation error of a.n algorithm. 

There are infinitely many Dorms which can be assigned to F2 ' and one might 

expect that the optimality of algorithms depends on the norms. However, it turns 

out that the optimality of the spline algorithm is invariant with respect to the 

norms OD F 2 ' see e.g. [371 chAo 

On the other hand, it is obvious that the algorithm error itself doea depend on 

the norms on F 2 . For a fixed Dorm on F 2 ' the radius of information is, [37] 

cb.4, 

r{N) - ,up 
heker N 

II Sh II 

8(h) 
, where ker N - {f e F, N(r) = oj. (8) 

To provide an example, we assume that F 2 is equipped with a. supremum norm. 

We also a55ume that information i5 depth data on a regular grid of a unit square 

region G. It is known, [11 p.48, that r'(N) """ B( n-1 ), where n is the number of 

data points, for 

(9) 

Since 9'(f) :5 8(f) for ,II f e F, ' from (8), it IS obviou. that r{N) :5 r'(N). 

Therefore, r{N) - 0( n·' ). 
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3.6 Implementing the Spline Algorithms 

Implementing the spline a.lgorithms is important In practice. From (6), we only 

have to COD!!Itruct the spline uN(1l ' or (1 for short. Much effort has been devoted 

to it by image understanding researchers, see [7, 3SJ. 

We now briefly discuss two diflerent approaches. The first is to use the basis 

splines, and the :!!ccond is to use an approa.eh ba.sed on the reproducing kernel. 

3.6.1 Basis Spline Approach 

From (6), the spline is a linear combination of basis splines O'j , and the 

coefficients are known depth values. The basis splines are data independent and 

can be precomputed. However, for large 0, it may not be feasible to compute a.nd 

store all basis gplines because of time and space limitation. To implement the 

spline algorithm using this approach, one may have to explore efficient ways of 

storing and retrieving the basis splines. 

3.6.2 Reproducing Kernel Approach 

We discuss the construction of the spline usmg the reproducing kernel with the 

following further assumptions. Assume that D = RZ and G is the unit square in 

RZ and that f E F 1 IS a Schwartz di3tribution (see [24J), with all the partial 

derivatives interpreted m the distributiona.l sense. It is known [5] that there exists 

a reproducing kernel, from the semi-Hilbert norm (5), of the form K(x , y ; u , 

v) - (1/18",I[(x - u)2 + (y - v)2Jlog [(x - u)2 + (y - v),J. The reproducing 

kernel is useful (or representing the splines. 

Let (xa ' Ya)' (xp , Yp) and (Xj , Yj ) be arbitrary three non-colinear sampling 

points. Let Pj be the unique solution in fin{l,x,y} for Pj("1 ' y) = hjJ ' where 

i,j E J = {a,p,,}, and hjJ is the Kronecker delta. 
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It is known [25J that 

a(x , y) - h f(xj' Yj)Pj(x , y) (10) 

where I .... {I, .", n}, n is the number of depth data. and 

w(x , Y ; U , v) - K(x , Y ; u , v) - (11) 

h Pj(x , y)K(xj , Yj ; U , v) - h Pj(u , v)K(x , Y ; Xj , Yj) 

+ h ~ Pj(x , y)p.(u , v)K(xJ ' Yj ; x. ' y.). 

Therefore, to construet the spline u, we only need to compute ~. Since the 

spline interpolates the depth data, i.e., tr(x.. ' Y,) - f(x.. ' Yr) , to derive 3t ' one 

bas to solve a system of linear equations: 

(12) 

rEI - J. 

The coefficient matrix is .symmetric and po.sititle definite. To solve this system 

of linear equations, Cho/ea/cy factorization is studied in 124], with cost O( 0 3 ). It 

remains open if (12) can be solved in time essentially less than O( 0 3). 

3.7 Adaption Does not Help 

Information in (4) for 2 &:: 1/2 D sketch is depth data. This is nonadaptive 

in/ormation, since the sampling location of the ith depth value of N(f), (~ , Yi)' 

does Dot depend on the previously computed (i-I) depth va.lues of N(f). If the 

sampling location of the ith depth va.lue dota depend on the (i-I) depth values 



obtained, then we call it adaptive information. 

inrorma.tion is derined as 

N"(f) - , - I', ' 

where Zj ,.". r(":i ' Yj) a.nd 

xi = Xj(Zt ' "', Zi-l)' Y1 = Yj(ZI - 2, 

More precisely, adaptive 

(13) 

D. 

Ada.ptive information hae a richer structure than nonadaptive inrormation. One 

might hope that the previously computed (i-i) depth values supply additional 

information ror determining where to sample ror the ith depth value. Counter

intuitively, adaptive inrormation cannot aid 2 & 1/2 0 sketch a.nd some other 

image understanding problems, SlDce ror any adaptive inrormation Na, there exists 

nonadaptive inrormation NII.OII., such tha.t r{NII.OII.) s: r{Na), see 137] ch.2 and 138} 

chAo Therefore, in seeking the best places to sample, we can confine ourselves to 

nonadaptive inrormation only, which is simple and can be collected in parallel, 

which is ravorable for parallel or di3tributed computation. 



55 

4 Shape frOID Shading 

Research in shape from shading explores the relationship between Image 

brightneaa and object shape. A great deal of information is contained in the 

image brightness values, since image brightnes:5 i!!l related to surface orientation. 

Information can also be obtained from ocduding boundaric.s and other boundary 

conditiona, see [15]. 

Algorithms a.re designed to determine shape from shading, including 

characteriatic t':rpan.sion [2, 9, to, 11, 53, 54J, photometric 

112', 13, 32, 551, and numerical .shape from ahading and occluding boundariea 

[15J. Characteristic strip expansion method resorts to solving nonlinear partial 

dirrerential equations. Photometric stereo requires more than two images taken 

with different light source:!!. Numerica.l sha.pe from shading and occluding 

boundaries results in a Ia.rge system of nonlinear equations [151. and an itera.tive 

algorithm wa.s proposed for solving it. The existence and uniqueness of the 

solution remain a problem. Furthermore, the convergence of the iterative method 

has not been established. 

We will propose uSIDg a new iterative algorithm for solving the system of 

nonlinear equations derived in [151, and we will discuss its convergence. We study 

the exiat.enee a.nd the uniqueneS:!! of the rolution of the system as well. Finally. we 

discuaa a preliminary a.pproach based on the general theory of information·based 

complexity. 
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4.1 Numerical Shape from Shading and Occluding Boundaries 

The goal of numerical shape from shading and occluding boundaries IS to 

determine surface orientations from image brightness and boundary conditions. 

We discus:5 representation of surface orientations first, a.nd then the algorithm 

proposed by Ikeuchi and Horn in [15]. 

4.1.1 Gaussian Sphere and Stereographic Projection 

Surface orientation is quantified by the surfa.ce normal, a unit vector ID RI. A 

surfa.ce normal ca.n be represented by a point on a unit sphere, called the 

Gau""ian "phere. The part of the surfa.ce fa.cing us corresponds to the northern 

hemisphere, while points on the occluding boundaries correspond to the points on 

the equa.tor. 

The northern hemisphere is then projected into a plane, the e-" plane, which is 

tangent to the sphere at the north pole. The projection center is the south pole. 

This is called "tereographic projection. This is a conformal mapping, and the 

northern hemisphere is mapped onto a. closed disc of radius 2 in the e-q plane. 

Therefore, points in this disc represent the surface orientations. Notice that 

orientations of the occluding boundaries correspond to the points on the 

circumference of that disc. 

4.1.2 Image-Irradiance Equation and Boundary Conditions 

The surface orientations are related to the image brightness by the following 

image-irradiance equation, 

R({,q) = E(x,y), (x,y) E D, (14) 

where 0 IS a unit square region, e :=II e(x,y) and " = q(x,y) represent the 
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surface orientation, E(x,y) E C is the brightness measured at the point (x,y), and 

R(. , .) E Cl can be determined experimentally or theoretically if some 

information is available about the incident, emittant and pb3.3c angles, see 

[13, 271. The image-irradiance equation provides information for determining the 

surface orientation from image brightness. 

From (14) alone, one cannot determine the surface orientation (e,,,) at each 

point (x,y). We need supplementary information (rom boundary conditions. The 

outline of the projection of an object in the image plane is called its I!ilhoudte. 

Some parts or it may correspond to sharp edges OD the surface, and some p&rts 

to places where the surface curves Mound smoothly. The smooth parts of the 

surface correspond to the pa.rts of the silhouette, called occluding boundarielt, 

which supply important information about the shape of an object. Other 

information can also be obtained from ltelf-lthadow boundarielt, ltpecu/ar pointlt 

and singular points, see 115J. All these boundary conditions provide useful initial 

values (or the iterative algorithm, which we will discuss next. 

, 
Without loss of generality, we assume that R(e,,,), E{x,y) ~ 0, and that E(x,y) 

.- 0 if and only if (x,y) belongs to the occluding boundaries if and only if e(x,y) 

+ q'(x,y) - 4 if and only if R(€(x,y),q(x,y)) = O. We further assume that the 

surfaee orientations on the boundaries or D is known. 

4.1.3 Consistency Constraint 

We assume that the surface we perceive is smooth. More specifically, we assume 

that the first order pa.rtial derivatives of e(x,y) and q(x,y) are square integrable. 

We also assume that real world surfaces tend to be stable, and the stability is 

measured by 
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(15) 

where ex t (, • 'Ix a.nd fly denote the partial derivatives of e &nd q with 

respect to x and y. The ~ur face con"'.!tency con3traint is quantified as 

minimizing v. 

-ihus, observing the image-irradiaDce equa.tion (14) and boundary informa.tion, we 

are seeking functioDs ax,y) and q{x,y). which tend to minimize (IS). An approach 

used in [151 is 8piine-3moothing, see [231, I.e., to find e and" which IDlDlmlze 

I' - I'(e,q) - (16) 

1 {I(e.)' + (ey )' + (q.? + (qyl'J + XIR(e,q) - E(x,y)[' } dxdy. 

where the penalty parameter ). is set a.c:cording to the accuracy of the 

measurement of the Image brightness and the preciseness of the modeling of the 

lighting environment by R. The noisier the measurement and the less precise the 

modeling, the smaller the parameter )., For example, in [15], ). IS set, 

heuristically, in Inverse proportion to the root-mean·square of the noise In the 

image brightness measurements. 

4.1.4 An Iterative Algorithm 

In" the previous discussion, we described the image.irradiance equation, boundary 

conditions, the smoothness and consistency constraint, and arrived at spline-

smoothing. All quantities involved are continuous functions. 

We discretize the unit square region 0 In the xy-plane with mesh size h, and 



L 

60 

diseretize IJ by usmg dirrerence operators instead of differential operators, and 

summations instead of integrals. The corresponding diBcrde Mnoothing-3p/ine, or 

DSS for short, minimizes 

(17) 

where 

€ij and 'lij represent the surface orientation at tbe regular grid point (ih,jh), and 

Ej,j is the brightncM mea.sured at the grid point (ih,jb). The above minimiza.tion 

is subject to the boundary constraint.$, i.e., €ij and "ij a.re known if (ih,jh) 

belongs to the boundaries, 

To minimize (17), we ha.ve to solve a. large system of sparse nonlinear equations: 

where 

{;J ~ {;; - 4-1Xh'IR({;J ' q;) - E;) ')R({;J ' q;)/d{, 

q;J ~ q;J - - 4- 1 Xh'IR( {;J ' q;) - E;JI ,)R( {;J ' q;)/ iJ q, 

€ij· = [€i+lJ + eiJ+1 + €i-Ij + €i.i-IJ!4, and 

'liJ ".. l"i+IJ + '1ij+l + 'It..lj + '1iJ-11/4. 

(18) 

To solve (18) for (J and 'hoi ' lkeuchi and Horn [15J proposed the following 

iterative algorithm: 

C, ,(m+l) =
"J 

n, ,(m+l) _ 
'''J 

(19) 
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We can repeatedly use the values from the mtb iteration on the right-hand side 

to compute the values for the (m+l)t itera.tion on the left-hand side. The initial 

values are supplied by the boundary conditions, i.e., eij and '1iJ are known if 

(ib,jb) belongs to the boundaries. 

The existence and uniqueness of the solution remalD 8. problem, and the 

convergence of the iterative method has not been established. Furthermore, (18) is 

a nece""ary condition for minimizing (17), with the additiona.l constraint that In 

a. DSS, ei /
z + '1i/2 < 4, if (ih,jb) does not belong to the boundary points. 

L2 A New iterative Algorithm 

We propose a new iterative algorithm for solving (18), which, for a. ra.nge of A, 

converges to the unique solution of the system, which is the unique DSS, 

minimizing (17). For an arbitra.ry A, the uniqueness of the solution a.nd the 

convergence of the algorithm need further study. 

4.2.1 Matrix A 

Let K + 1 = h- t and N = K2. In the rest of this part, we will deal with an 

NxN ma.trix 

B -1 
-1 B-1 

A- (20) 
-1 B -1 

-1 B 

where the KxK matrix 
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4 -1 

-1 4-1 

B- (21 ) 
-1 4 -1 

-1 4 

We state a. few facts about ma.trix A, and for the details, see [331. 

Matrix A is symmetric and positive definite, with eigenvalues {Ai)' I,j ::::::I 1, ... 

K, where 

8in2 + "in2 __ _ ). (22) 
2(K+l) 2(K+l) 

The invcrnc of A. A-I, is a.lso symmetrie and pmsitive definite, with eigenvalues 

{Pi,)' i,j - 1, "', K, where 

A-I can be decomposed as 

Nt = HAH, 

where the diagonal matrix 

A ::::::I diag{Pi)' i,j"" 1, ... K, 

and H is the tensor product 

H - S$S, 

where the (i,j)th entry of the KxK matrix S is 

'I.J - i2/(K + 1))'/2 .inill'ij/(K + 1)). 

(23) 

(24) 

(25) 

(26) 

(27) 

Multiplying A-I by a vector costs 0( N2 ), using the conventional method. Since 

we can decompose A-I ""'" SeSAS.S and A is a diagonal matrix, taking advantage 

of the structure of the entries of S, 5iJ • we can use Fast Fourier Transforms 

(FFT) lor the multiplication, which costs 0( N(log N) ). 
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4.2.2 A New Iterative Algorithm 

Equation (18) can be rewritten as 

Mx - .. Xh'b(x), (28) 

where 

M = (::) (29) 

where A is given in (20), 

b= (30) 

I "', (R(€;j , q;) .. E;)~R(€;j , q;)IJ€, "', (R(€;j , q;) .. E;)JR(€;j , q;)lJq, ... 

IT, 

and 

x = [ e l ,! ' "', el,K ' "', eK,K' '11,1 ... '11,K ' "', 'lK,K JT. (31 ) 

Since A is non-degenerate, M IS also non-degenerate, and therefore, (28) IS 

equivalent to 

x = .. Xh'M"b(x), (32) 

We propose using the following iterative algorithm 

(33) 

where x(o) is an arbitrary initial element. 

We discUS3 the convergence of the iterative algoritbm (33) and the uniqueness of 

the solution of (32). 



4.2.3 Convergence of the Algorithm 

Our goal is to find a DSS x· = [ e1,1· , "'j e1,K* I "'J eK,K* , '11,1· , "', 'h,K* 

...• '1K,K* F. which minimizes (17). subject to the boundary constraints, i.e., the 

surfa.ce orientations are known OD boundaries. We call a DSS regular, if (ei/f 

+ ("i/)2 < 4, when (ih,jb) is not a boundary point. A regular DSS does not 

generate false occluding boundary points. 

Since (eij ,f'li,j) is in the closed disc with radius two, denoted by S, x is defined 

on a compact set in R2N, 82M. Since JJ in (17) is a. continuous function of X, it 

obtains its minimum on S2N, and therefore, DSS exists. We first show that a DSS 

is regular, and thus regular DSS exists. We then show that the DSS is unique 

and that algorithm (33) eonverges to this unique DSS. 

We assume tha.t there exist at least two boundary points, on which the surface 

orientations are different. 

To prove that a. DSS IS regular, we need 

Lemma 4.1 Let Po be a point on the circumference of a disc, and let Pi f 

Po' i ~ 1,2, ... ,k, be points in the disc. Then for () > 0 and K > 0, there 

exists po· in the disc, such tha.t (i) d(P 0 ' po·) < 6, and (ii) 

• • E d(Po • P;l' > E d(Po•• P;)' + Kd(Po . Po')'. 
_1 1_1 

(34) 

where d(P,Q) IS the Euclidean distance between P and Q. 0 

Proof. Denote tbe angle spanned by tbe vectors POP j and POP
j 

as <Pi' Po ' 

Pj >. Let 0 = max { <Pi' Po ' P j >, i,j ~ 1,2, ... ,k }. Let Q'PoQ be the 



bisector of Q. Since Pi is 10 the disc, Q < 11". <Pi' Po ' Q> < 11"/2, a.nd <Pi 

, Po ' Q'> - 11" - <Pi' Po ' Q> > 11"/2. Let po· be a point on PoQ such 

that d(Po • Po') < 5. Then in the triangle P'po'Pi • d(Po • P.)' = d(Po' • Pi)' 

+ d(Po . Po')' - 2d(Po' • Pi)d(Po • Po')co.<Po • Po' • Pi>· Since limp. _ p 
o 0 

<flt, , po· , Pi> - <Pi' Po ' Q'> > 11"/2, and limp. _ p Plo• = PiPO 
, 0 

Po'). There!ore. - 2d(Po' • Pi)d(PO • Po')coe<Po • Po' Pi> > Kd(Po • P,'),. 

and d(Po • Pi)' > d(Po' • Pi)' + Kd(Po • Po')'. Taking ,ummation over all i. we 

have (34). 0 

We are ready to prove 

Lemma 4.1 A DSS is regular. 0 

Proof. We prove by contradiction. We assume, on the contrary. that there 

exists a. DSS x·, which is not regular, I.e., 

p(x·) .... E (si/ + A ri/), 
'J 

where 

l(eI+1J-eiJ)' + (eiJ+1'-ei/)' + (qi+1J-qi/)' + (qiJ+l'-qi,j')'J/h' 

'lJ' - lR(elJ ' • qi/) - Eil· 

interior point of the region D, EiJ > o. 

We have 

I'(XO) = 

(35) 

(36) 



F(xO)+X!R({,/ ' q,/) - E,),+{i({'+I/ - {,/)'+(q'+I/ - q,/)'[+ 

[({'HI' - {,/)'+(q'J+I' - q'/)']+[({.I/ - {,/)'+(q.l/ - q,/),]+ 

[({i,j-I' - {,/)' + (q'J-I' - q'J-,')'J}/h', 

where F(x*) does not contain eiJ* and '1i/' 
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Let d(k,l;i,j) be the Euclidean distance between (ek/ ' 'Ik/) and (ei/ ' 'IiJ*)' 

Then 

I' (XO) = F(xO) + XIR( {iJ' , q,/) - E,j[' + 

[d,(i+l,j;i,j) + d,(i,j+l;i,j) + d,(i-I,j;i,j) + d'(i,j-l;i,DJ/h'. 

(37) 

Since Ejj > 0, R{ eij • , '1iJ *) = 0 and R is continuoU!, there exists a. disc, 

centered a.t (eil J '1i/) witb sufficiently small radius 6, such tha.t (or all (e,,,) 

inside the disc, [R(e,q) - Ej,l :$; (R(ei/ ' "i/) - Ej)2 - EiJ2 . 

Let P - {(i+l,j), (i-I,j), (i,j+l), (i,j-I)), and let A - ((k,l) E P: d(k,l;i,j) > 

a} and K ,.,. IP - AI. We analyse the following two cases, and arrive at a 

contradiction (or each CaBC. 

c .... 1. K < 4, i.e., there exj,t, at least one (k,I), sueh th.t d(k,l;i,j) > O. By 

applyiD& Lemma 4.1, with Po =z (ei/ ' '11/) and {PJ - At we know that there 

exmta (ro,,,·), iD:5ide the disc, centered a.t ((1/ ' 'Iil), with radius 6, such that 

)' d(k,l;i,j)' - )' d(k,l;i,j)' > )' d'(k,I;O,O), + Kd'(i,j;O,O), 
k,t(EP cbtA &1tA 

= )' d'(k,I;O,O), + )' d'(k,I;O,O), - )' d'(k,I;O,O)" 
ih~A !hfeP-A ~P 
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where d*(k,I;O,O) is the Euclidean distance between (ek ,*, ,,.: ,*) and (e*,'1*). , , 

p(x*). Therefore, x· is Dot a. DSS, a. contradiction. 

Case 2. K = 4, i.e, d(k,l;i,j) = 0, 'V k,t E P. We separate out all the grid 

points, adjacent to any of the points in P. We denote this set of grid points by 

p(l). We analyse p(1), in a. similar way as P, and we will arrive either at a 

contradiction or at the conclusion that d(k,i;i,j) = 0, V (k,l) E P U p(I), i.e., 

({.,,' , q.,,') ~ ({',q'), V (k,J) E PUPil). We repeat the same arguments as 

we expand the region of grid points with identical (e*,rt). Since D is a unit 

square region and there exist at least two boundary points on which the (fixed) 

surface orientations are different, we will arrive at a. contradiction no later than 

that the expanded region covers these two points. 

Thererore, an irregular DSS does not exist. This completes the proof. ~ 

We assume that {R({,q) - E,)aR({,q)/a{ and {R({,q) - E,)./R({,q)f.q are 

Lip3Chitz runctions, i.e., 

[{R({,q) - E,)dR({,q)/'{ - {R(e',q') - E,).IR(e',q')/.I{[ 

and (38) 

[{R({,q) - E,)./R({,q)f./q - {R(e',q') - E,)./R(e',q')/.q[ 

Let max {Li}k)hJ,k = "0 . Then we have 
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Propooilion 4.1 For X E [0 , 2TV,I[1 ' Th'/241'), algorithm (33) converges 

to the unique solution of (28), which is the unique DSS, minimizing (17). 0 

Proof. Let x·be a. regular DSS. Then x· == - AhZM-1b(x*). From (33) we ha.ve 

x(m+l) , x' = ' Xh'M,I[b(,.{m)) , b(x')[, and so lI,.{m+l) x'lI, ~ 

Xh'IIM,III,vollx(m) , x'll, . Since IIM'IIl, ~ [S'in'(lI'h/2)['1 < [2Th'(l 

, Th'/24)'I'I, IIx(m+l) , x'lI, ~ Xh'[2Th'(1 ' rh'/24n1voll,.{m) , x'll, = 

X[2l1"{l ' Th'/24)'I,lvollx(m) ,x'II,. Since X < 2rv,l(1 ' Th'/24'f, X[2l1"{l 

Since x(m) ha,., only one limit and (28) is a. necessary condition sa.tisfied by a. 

regular DSS, x(m) converges to the unique solution of (28), which is the unique 

DSS. n 

4.2.4 An Example 

As an exa.mple, we estimate "0 and the range of X for the case of a. Lambertian 

surfa.ce with the incident ra.ys coincident with the view direction. In this case, the 

image-irradiance equa.tion [151 

R({,q) = (4 • {' , q')/(4 + {' + q'), where {' + q' ~ 4. (39) 

Obviously, R is a. Lipschitz function and 

Vo ~ { ( sup I ~/ J{ ([R({,q), E,)dR({,ql/.W I )' + (40) 

{,up (I dldq (lR({,q), E,) JR({,q)/Jq} I}' )l/'. 

Since Im{ (1R({,q) , E'JIJR({,q)/){}[ - IIJR/J{J' + (R ' E,))2J!({,q}/J{,1 ~ 

I~R/4{1' + IR ' E,) [d2J!({,ql/){,I, we only need to estim.te the bounds of the 

absolute v.lues of ~R/J{ and)2J!({,q)/J{'. 
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Since.IR/~e = - 16e/(4 + (' + q')'. On. checks that IdR/del :5 3/3/8. 

On the other hand,.I'R/J(' = 16(3(' - q' - 4)/((' + q' + 4)'. On. checks 

that I~R/~I :5 1/4 . 

Since 0 :5 R, E'j :5 I, IR - E,) :5 1. Thus I)/.Ie ([R(e,q) - E,)~R(e,q)l)e}1 

:5 27/64 + 1/4 = 43/64. 

A similar analysis yi.lds I.)/~ ([R(e,q) - E,)~R(e,q)/.Iq}1 :5 27/64 + 1/4 = 

43/64. 

From (40) 

v, :5 43,fi/64. (41) 

Thus for ~ E [0 , 64,fi"'(1 - "'h'/24)'/43), the algorithm (33) converges to the 

unique DSS. 

4.2.5 Implementation of the Algorithm and its Complexity 

From Subsection 4.2.1 and (29), M-I is known, and therefore, to implement the 

algorithm (33), one has to multiply the 2Nx2N dense matrix M-I by a vector, 

which costs O( N2 ), using the conventional matrix multiplication. However as 

discussed in Subsection 4.2.1, we can use FFT to reduce the cost to 

O( N(log N) ). 

Let x· he the unique solution of (28) and let ~v,[2r(1 - "'h'/24)'j-l = 9 < 1. 

Then by 3. similar argument as in the proof of Proposition 4.1, we have IIx(m) 

- x'lI, :5 9 Ilxl~l) - x'lI, ' and ther.fore, 

IIxlm) - x'lI, :5 em Ilxl') - x'll, . (42) 
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As an example, we derive the number of itera.tive steps to compute a. solution of 

(28) with error bound O(b). Let k be the number of steps required, then we ha.ve 

(Jk ""'" h, 

k - log b flog 9. 

If 9 - 1/2, tben k - (log NJ/2. Tbus 

PropooitioD 4.2 For ~ e [0 , "ovo' [I - A'/24)'), it takes (log N) /2 steps 

for x(m) to converge to the solution of (28) with error h. The total cost, uSing 

FFT for matrix multiplication, is thu.s 0( N(log Nf ). 

4.3 Interpolating Spline and its Optimality 

When the data are noisy, the spline-smoothing approach IS appropriate. 

However, when the data. &re relatively precise, the interpolating 3pline approach 

is preferable. In that approach, one seeks a spline, which interpola.tes the data 

and minimizes (15). This is an interpolatory algorithm and is therefore aimo8t 

strongly optimal, i.e., strongly optimal within a factor of 2, see [37J ch. 1. The 

uniqueness of the spline and its construction need further investigation. 
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5 Optical Flow 

Biological systems typically move relatively continuously through the world, and 

the images projected on their retinas vary eS3entially continuously while they 

move. Such continuous flow of the imaged world acrOM the retina. is called 

optical flow. The optical flow a.s.signs to every point on the visual field a two-

dimensional "retina.l velocity", at which it is moving across the visual field. We 

study the approximation of the optical flow, or velocity field, based on a,' 

sequence of images. 

Assume that D is a. bounded image domain of interest. Without 1088 of 

generality, we assume that D is a unit square. We denote the image brightness at 

(X,y) E 0, projected by a. surface patch of a. moving object at time t, by E{x,y,t). 

After time Llt, the image of the same surface patch has moved to (x + .::1. ' y 

+.::12), with intensity E(x + .::11 ' Y +.::12 ' t + .::1t). The average rate of image 

intensity change at image point (x,y) and within time inter-val [t I t + .::1}, is 

E(x + .:l, ' y +.:l, ' t + .:It) - E(x , y , t) 

.:It 
= 

E(x + .:l, ' y +.:l, ' t + .:It) - E(x , y +.:l, ' t + .:It) .:l, 

.:l, .:It 

E(x , y +.:l, ' t + .:It) - E(x , y , t + .:It) .:l, 
-+ 

.:l, .:It 

E(x , y , t + .:It) - E(x , y , t) 

.:It 

Let .::1t - O. We assume that all the limits exist. We have 

+ 
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.:1, 
and (43) u(x,y,t) = lim~t_O 

.:11 .:11 

where (u(x,y,t),v(x,y,t)) is the velocity field at Image point (x,y) and time instance 

I. Thus we have 13, 14): 

- w(x,y,l) - p(x,y,I) u(x,y,l) + q(x,y,l) v(x,y,l) + r(x,y,I), (44) 

where p -JE/~x, q =jE"y and r -)E/jl ean be compuled direclly. The 

function - w is the rate of change of intensity, which is Dot known. 

From (44) alone, one cannot determine u, v and w uniquely, Assume that the 

partial derivatives of u, v and ware 5quare integra.ble. In &ddition to requlftng 

that (44) be satisfied, a consistency constraint is imposed in [31 and [14}, which 

is the minimization of the quadratic variations of u, v and w. Then u, v and w 

can be uniquely determined. In Subsections 5.1 and 5.2, we discuss two 

approaches for approximating u, v and w: spline-8moothing and the interpolating 

spline. We approximate the velocity field at an arbitrary time instance t, and 

we omit the time factor t in the following discussion. 

5.1 Spline-smoothing 

This approa.ch was used by Horn and Schunck [14] (where w=O), and by 

Cornelius and Kanade [3). They seek u,v and w, which minimize 

i ().-'I(u,)2 + (",,)' + (v,)' + (v,)') + p-'I(w,)2 + (w,)') 

+ [pu + qv + w + r)' } dx dy, 

where >. and JJ are penalty para.meters. 

(45) 
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5.1.1 Gauss-Seidel Iterative Method 

We di:!!cretize the unit square region DJ with mesh size h, and discretize (45) by 

using difference operator.! instead of diUerential operator:5 a.nd summations instead 

of integrals. The corresponding discrete spline-smoothing i5 to minimize 

where 

K - E [(X""j + p-'b,) + "j I, 

D-j,j -

b .. .". 

'. 

,. (46) 

where ui,j , vij , wi.,j , Pi,j , qi,j and rij are the function values of u, v, W, p, q 

and r at grid point (ib,jh), respectively, where i,j =:::. 1, K, K + 1 _ h·1 

[WI,I' "', w],K' "'J wK,KJT. We want to find U, V and W, which minimize (46). 

A necessary condition for minimizing (46) is 

-- ---- = 0, I,J = 1, K. (47) 

Therefore, 

.Xh'p .. (p. ·u.· + q .. v .. + w .. + r .. ) 
1.1 lJ .oJ 1.1 1..1 loJ 1,J' 

(48) 



and 

.ub'{p .. u .. + q. ·v·· + w .. + r .. ) . 
r loJ loJ 1..1 IJ I.J loJ 

To solve this system of linear equations, the Gauss-Seidel iterative method is 

proposed in [3, 14J. The convergence of the algorithm remains to be analyzed. 

Furthermore, even if the Gauss-Seidel iterative method converges (or this C8.'!Ie, it 

is known to converge slowly 1391. 

5.1.2 Conjugate Gradient Iterative Method 

Let N ..... K2. Then the system of linear equations (48) ca.n be rewritten as 

M (~) = . b' (x~f) (49) 

where tbe diagonal NxN matrices 

Q = diag(q.,., "', q.,K' ... qK,K)' (50) 

the Nxl vector R = Ir ... 1,1' I 

r ... r IT 
I,K' , K,K ' and the coefficient matrix 

(" '""' Xb"!'Q Xh"!' 

M- Xb'PQ A + Xh'Q' Xh'Q 

pb"!' pb'Q A + pb'j 

(51) 

where the NxN matrix A is given in (20). 

The coefficient matrix M is not symmetric (or >. - p. To symmetrize M, we 

multiply the last equation of (48) by X/ p, and we have 

(52) 



where 

A + Xh'P' 

M' - Xh'PQ 

Xh'P 

We have 

Xh'PQ 

A + Xh'Q' 

Xh'Q 

Xh'P 

Xh'Q 

(X/p)A + Xh'l 
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(53) 

Proposition 5.1 The coefficient matrix M* IS ~pa.rse, symmetric and p~itive 

definite. 0 

Proof. Ma.trix M* is spa.rse, since A is sparse, and P and Q are diagonal 

ma.trices. We now 5how tha.t M* i.s positive definite. Let x - [U,V,W]T, Then we 

have 

<M* x, x> = (54) 

A 

< A x , x > + Xh'<PU+QV+W,PU+QV+W>. 

(X/fJ)A 

Since <PU + QV + W , PU + QV + W> = IIPU + QV + WII,' ~ 0 and A 

is positive definite, see Subsection 4.2.1, and therefore ()./p)A is also positive 

definite, we have 

<M' x , x> > 0 lor x +- o. 0 

Since M* is non-degenera.te, we ha.ve 

Corollary 5.1 The systems of linea.r equa.tions (52) and hence (49) ha.ve ODe 

a.nd only one solution. 0 
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To solve (or it, we propose using the conjugate gradient itera.tive method, see 

18J ch.7. It converges much faster than Gauss-Seidel, and is optimal in terms of 

computational complexity, see 140j. 

On the other hand, algorithms with 3imp/e, local and parallel operations are 

more preferable in image understanding, since they are suitable (or parallel or 

distributed computation and feasible (or a biological system. The conjugate 

gradient method requires global interaction, which might not be desirable. We 

proprnle using the ChebY3hcv iterative method, which (avot'5 simple, local and 

parallel operation:!!, and converges much faster than Ga.uss-Seidel. 

5.1.3 Chebyshev Iterative Method 

We estimate the minimum and the maximum eigenvalues of the matrix M" in 

(53), since this is crucial for applying the Chebyshev iterative method. The 

minimum and the maximum eigenvalues of M* are 

Let 

Then 

~miD(M') = inf { <M' x , x>: Ilxll, = 1 } 

and (55) 

~mu(M') = sup { <M' x , x>: IIxll, = 1 } . 

(
A ) F - A 

(~/p)A 

(56) 

<M' x , x> - <F x , x> + ~h'<PU+QV+W,PU+QV+W>. (57) 

inf{ <F x , x>: IIxll,=l} = ~min(F)-min{~min(A),(A/p)~min(A)} 

= 898in'[1I'/2(K+l)] = 888in'(lI'h/2), where 8 = min { 1 , ~/p }. 



,up{ <F x , x>: Ilxll,-I} = Xmu(F)=max{Xmu(A),(X/p)Xmu(A)) 

_ 8q'08'1"./2(K+i)] = 8q'08'(".h/2), where q - max { 1 , X/p }. 

,up { Xh'<PU + QV + W , PU + QV + W>: IIxll, - 1 } -

,up { Xh'lIPU + QV + Will : IIxll, - 1 } 

< Xh'C' - , 

We ha.ve 
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PropOIition 5.2 The minimum and the ma.:c:imum eigenvalues of the ma.trix 

M' 

and (58) 

where 

8 - min { I, X/p }, 

q - max { I, X/p } and 

C - max {lP'JI} + max {Iq,)} + I. 

The condition number of M- is 

(59) 

For small h, the condition number of M· is of order h-2. 
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Based on the estima.tion of the minimum and the maximum eigenvalues, we 

propose using the Chebyshev method, which converges much faster than Gauss-

Seidel, and involves only simple, loca.l and parallel operation:!!. We can choose 

80sin2{lI'h/2} and 8'lC082(1rh/2) + Xb2C2 as lower and upper bounds of AmiD and 

).'mu' respectively. For small h, the bounds are tight, a.nd therefore, the 

Chebyshev method is numerically stable. Chebyshev method is also optimal in 

terms of computational complexity, see 1401. For the Chebyshev methods, see Is] 

ch.4 - 6 and Appendix A, which includes FORTRAN subroutines. 

5.1.4 Existence and Uniqueness of the Solution 

One chech tha.t the block matrix 

(d'''/~u,j~k,')'j;k,' (J'''/.oIu'jPk,')'j;k" (i'"I_u,jPk"),j;k,, 

(.I'''ljv,j.Pk"),j;k,, (i'''lp,jl'k"),j;k,, (J'"lp'j)Rk")ij;k,, 

(.I'''/,/w,jduk"),j;k,, (i'''liw,jl'k"),j;k,, (.1'''1 Jw,jFk"),j;k,, 

equals 2).-1b-2M*, which is positive definite. Therefore, the unique solution of 

TT4.6 obtains the minimal value of (46). We have 

PropOIition 5.3 There exists a unique solution for minimizing (46), which is 

the ,unique solution of the system of linear equations (52). 0 

5.2 Interpolating Splines 

The interpolating spline approach IS to find u, v and w, which satisfy the 

information constraint (44) exactly and minimize 

L ([(ux)' + (u,.)' + (vx'? + (v,'?! + ,.-'[(wx)' + (w,'?! )dx dy, (60) 

where jJ is a chosen parameter. 
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Similar to the spline-smoothing a.pproach, we discretize (60) on the unit squa.re 

region D with mesh size h. Then the corresponding di"crde interpolating "pline 

satisfies 

and minimizes 

where 

~J - [(u i+1j - uj.jf + (UiJ+l - uiJ? + (vi+1J - vi)2 + (viJ+1 - viJf1, 

and 

(There is a. short discussion of this approach in [14j for w:=O). 

(62) 

To solve this constrained minimization problem, we apply the method of 

Lagrange multipliers, and we have 

(63) 

where A = [>"1.1' "', '>"l,K' ... )"K,KIT, the coefficient matrix 

M- (64) 

, 
and U, V, W, P, Q and R are defined simila.rly as in (49). The coefficient 

matrix M is neither symmetric nor positive definite. It is easy to symmetrize M 

by dividing the third row by p. From (63) and (64), we have 



So 

AU + PA - 0, AV + QA = 0, AW + pA = 0, and 

PU + QV + W - - R. 

U = - A"PA, V = - A-'QA, W - - pA-'A, 

P( _ A-'PA) + Q( - A-'QA) + ( - pA"A) - - R, i.e., 

(PA-'P + QA"Q + pA-')A - R. 

Therefore, the problem is reduced to solving a system of linear equations 

M* A -= R, 

where 

M' - PA-'P + QA"Q + pA-'-

80 

(65) 

(66) 

After solving (66), U, V a.nd W ca.n be obtained directly from (65). We a.nalyze 

the matrix M*, and then discUS3 iterative methoch (or solving the g~tem of linear 

equations (66). 

5.2.1 Matrix M* 

We estimate the minimum and the maximum eigenvalues of the matrix M* in 

(66), since this is crucial for applying the Chebyshev iterative method. We ha.ve 

<M* x, x> -

«PA-'P)x , x> + «QA-'Q)x , x> + <pA"x , x>, 

in! { <pA-'x , x> } = p!8coo'( .. h/2)!-' and 

sup { <pA-'x , x> } - p!80in'(n/2)!·'. 

«PA-'P)x , x> + «QA"Q)x , x> -

IIP!!z' <A-'(Px )1I!PII,,(Px )/IIPII,> +IIQIIz' <A-'( Qx)/IIQII,,( QxllIlQII, >. 



.up { «PA"P)x , x> + «QA"Q)x , x>: Ilxll, = I ) 

S IIPII,'Xmu(A") + IIQII,'Xmu(A") 

- C[8'in'(1l'h/2)I", where C - max { p;/ } + max { q;,;' ). 

X ... (M') ~ inC { <pA"x , x>: IIxll, - 1 } - p[Scoo2(1l'h/2)[". 

Xmu(M') 

S sup{ «PA"P)x,x> + «QA"Q)x , x>} + ,up{ <pA"x , x>} 

S C!8.in'(.-h/2)[" + pls.in'(.-b/2)1"' - (C + p)[S.in'(.-h/2)[". 

Xmu(M') ~ ,up { <pA"x , x> } 

- p[S.in'(.-h/2)[,1 

Thus we ha.ve 
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Proposition 5.4 The ffilDlmum and the ma,,(1mum eigenvalues of the positive 

deCinite and symmetric matrix M· 

X.ru.(M') ~ p8ec'(1l'h/2)/S, 

and 

pcoc'(1l'h/2)fS S Xmu(M') S (C + p)coc'(1l'h/2)fS, 

where C = max { Pi} } + max { qi'/ }. 

The condition number of ma.trix M* is 

>......{M·)/>. ... (M') S {(C + p)fp)cot'('-h/2), 

o 

For small h, the condition number of M* is of order b-2. 

Since M* is non-degenerate. we have 

(67) 

(68) 

(69) 
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Corollary 5.2 The systems of linear equations (66) and (63) have one and only 

one solution. 0 

5.2.2 Iterative Methods and their Implementation 

Since the coefficient matrix M* of (66) i:5 l!Iymmetric &lld positive derlDite, the 

conjugate gradient iterative metbod can be used. 

As explained in the spline·smoothing approach, based aD the estimation of the 

ffilDlmum and the maximum eigenvalues of M·, we propose using the Chebyshev 

method. 

The coefricient matrix M* is dense, and each itera.tive step requlre3 multiplying 

this matrix by a. vector, which costs O{N2), using the conventional matrix 

multiplication. However, we can decompose M* into a sum of PA-1P, QA-IQ and 

"A-I. Since A-I has a special structure, as indicated in Subsection 4.2.1, we can 

use the FFT, to reduce the cost of each matrix multiplication to O( N (log N) ), 

and therefore, ea.ch matrix multiplication by M· costs O( N (log N ) ). After 

solving (66), we can compute V, V and W from (65). with cost O( N (log N) ). 



83 

3. Chapter 3 

Comparator with Completion Signal 
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Abstract 

We provide a. design of a binary comparator with completion signal, for the 

, 
purpose of optimizing the average processing time. The a.verage propaga.tion delay 

is a. constant, independent of n t the number of inputs, while the logic complexity 

is a. linear function of n. 

1 Introduction 

Binary comparators can be implemented in tree form. A tree circuit of a binary 

comparator ioS shown in Fig.l~l. The inputs 8.t and hi to the primary module Pi 

represent the i-tb bits of binary numbers A and B t which are to be compared. 

(The most significant bits are 80
1 

and h
t
). The output of Pi specifies, in suita.bly 

coded form, whether ~ is equal to, smaller than or greater than hi' referred to a.a: 

E, S or G, respectively. Each I-module receives signa.ls derived from two other 

modules (lor P). The I~module processes these data and emits a signal that 

indicates the relative size of the corresponding parts of A and B, confined by the 

leaves of the subtree with the I-module as the root. The output from the root 1-

module of the whole tree provides the final result of the comparison of A and 

B. The functions performed by the P- and I-modules are shown in Fig.l~2 and 

1-3, respeetively, and the coding will be discussed In the next section. It is 

obvious that the gate complexity is a linear function of n, the number of inputs, 

and the propagation delay is proportiona.l to the logarithm of n. For tree-like 

comparators, "e [28[ .nd [43[, .nd for the implement.tion, "e [26], [30], and [36]. 
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2 A Binary Comparator with Completion Signal 

From the I-module function it is obvious that ooce the left input is S (or G) 

the" output of this module will be 'trapped' into 5 (or G). Therefore, if the left 

input to the leftmost I-modules on a level is S (or G), then the output! of this 

module and all the leftmost I-modules down to the root I-module will be all the 

same. Thus, if the left input to 8. leftmost I-module is S (or G), then the fmal 

output will be the same. IC we could identify the first leftmost I-module, which 

emits an S (or G) output, 'extract' it as the final answer, and signal the 

completion, then we might reduce the propagation delay aD the average, since we 

do not have to wait until the signal propagates down to the root I-module. 

We design a binary comparator with a tree structure, which generates a 

completion signal at the earliest level of the tree circuit and delivers the final 

correct result, with no hazard. The a.dded cost relative to the circuit of Fig.l·l is 

small. We first design the p. and J·module!!l and then complete the design of the 

comparator. The delay analysi!!l i!!l given in the next section. The worst c~e 

delay i!!I, of COUnle, still log n , but the average case delay is a constant, 

independent of the number of inputs. For the basic concepts and a general 

di!!lcussion of combinational circuit!!! with completion signal, !!lee 142] and 141). 

The functions performed by the p. and I-modules are the !!lame as that In 

Fig.l·2 and 1·3, respectively. The coding and logic expres"ions of the p. and I· 

modules are given in Fig.2·1, 2·2 and 2·3, respectively. We choose the l·hot code 
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to avoid a. hazard; this will be made clear later when we discuss the completion 

signal. 

Fig.2·4 depicts a design of a binary comparator with a completion signal. The 

S- and G-outputs of all the leftmost modules are merged into the OR gates S 

and G, respectively. The outputs of gates Sand G along with the E-output of 

the root I-module provide the final result in coded form, as specified in Fig.2-1. 

when the processing has been completed. On the other hand, these outputs are. 

merged into another OR ga.te C, which was 0 before processing and signifies the 

completion of processing by emitting a 1. Thus as soon as the output of gate C 

bec9mes 1, information of the relative size of A and B is re&dy. From the design 

it is clear now that the I-hot code of the P- and I-modules avoi& the dela.y 

ha.zard, which might cause false completion signal and a premature erroneous 

result. The logic complexity is a. linear function of n, i.e., 2n • 1 p. and J. 

modules and three added OR gates. The fan·in to and fan·out from the p. and 

J~module are not a problem, and the fan~in to the OR gates S (and G) and C 

are (log n) + 1 and 3, respectively, which is not a problem either, except for 

very large n. 

The key issue which facilitates the design is that the flow table of the bina.ry 

comparator has 'trap' rows, i.e. , once the system enters into the state S or G, 

corresponding to a 'trap' row, it will be 'trapped' in that state, independent of 

the inputs. The design is applieable in general to other logic functions with trap 

rows in their flow tables. 
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3 Delay analysis 

In this section we analyze the average delay of the binary comparator designed 

in the previous section. .A88ume that the dela.y through either a P- or an 

1- module is d and that n, the number of bit positions of A and D, is a power of 

. 2' 2, I.e. , n - . Label the levels of the tree circuit from the P-modules (leaves) 

to the root I-module as 1 to k+l. 

For each bit position there are 4 possible bit configurations and so there are 4D 

configurations of inputs. AMign a uniform proba.bility distribution to the 

configurations, i.e., each configuratioD has a. probability measure 1/4D. 

We fint compute Si l the number of configurations which generate completion 

signals exactly at level i, i - 1 •... ,k+1. The leftmost 2i-l bits of A and B are 

involved in generating completion signals at level i, and the remaining (n • 2~1) 

bits are arbitrary, which correspond to 4D • 2~1 configurations. For i-t, only one 

bit position of A and B is involved; the other n·1 bits are arbitrary. Hence SI ,... 

2·4D- 1• For i>l, the leftmost 2i-2 bits must generate ESG = 100 (equal), and the 

other 2i-2 bits of the 2~1 involved bits must generate ESG """" 010 or 001 (smaller 

than or greater than), since otherwise the completion :!Iignal would be generated 

either before or after the i·th level. The 2i-2 bi~ generating ESG == 100 

correspond to 22i-2 configurations. 
. . ~2 ~2 

The other 21-2 bits correspond to (42 _ 22 ) 

confi&urationa, since the total number of configurations lS 42i-2, among which 22i-2 

correspond to ESG - 100. Thus for i> 1: 

1-2 i-I 
_ 4' (2"' - 2"' ). 

The average delay through P- and J·modules (in unit d) 



HI 

D - ( 51 + l: i 5, l/4' .-
k+l 

= ( 2'4,-1 + l: i 4' (2",>2 _ 2"';-1) l/4' .-, 

00 

< 2"1 + l: i (2"';-' _ 2",>1) .-, 

00 

= Z-1 + 1 + l: 2"2i-1 .-, 

. 2i-1 

.2" 

00 

.- 1 + 2"1 + Z-2 + Z-4 + z-' + l: 2"2i . 

. -. 

Since 

D < 1 + 2"1 + 2"' + 2"' + 2"" + ~112 

88 
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< 1.8187. 

If double rail inpu~ of A and B are available, then (rom the P- and I-module 

logic expressions, it is obvious that d is 2 AND or OR ga.te delaya, whenever we 

use two level logic. Therefore, the average delay through the P- and I-modules is 

3.6374 gate delay. Including the delay of the OR gates, which generate the 

completion signal and the final result, the time duration of processing ranges from 

4-to 2(log n) + 4 ga.te delay, with the average Jess than 5.6374. gate delay. If 

only single rail inputs of A and B &re available, then we have to a.dd in one 

more inverter delay. 

We have assumed that the input configurations have a uniform distribution. 

However, in different implementation environments, the probability distributions 

might be different. Thus in certain cases, the average computing time might be 

larger than the value derived here. This is particularly true when the equality of 

A and B, the worst case for the computation delay, occurs with relatively large 

frequency. 

The number of input3 to the OR gates S (and G) is (log n) + I. Let r be the 

gate f&D·in. Then for (log n) + 1 S r, i.e., n S 21'-1, this will not cause any 

problem. For very large n, such that (log n) + 1 > r, i.e., D > 21'-1, the 

completion circuit could be implemented by a tree type multi-level gate network. 

This would introduce an additional delay approximately log/,.Iog n). On the other 

hand, to implement this tree type gate network, approximately 2{(log n) - 1}/(r 

- 1) OR gates are required. 
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