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Abstract
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Magnetic Resonance Imaging (MRI) is an important diagnostic tool for imaging soft tissue
without the use of ionizing radiation. Moreover, through advanced signal processing, MRI can
provide more than just anatomical information, such as estimates of tissue-specific physical
properties.

Signal processing lies at the very core of the MRI process, which involves input design,
information encoding, image reconstruction, and advanced filtering. Based on signal modeling
and estimation, it is possible to further improve the images, reduce artifacts, mitigate noise, and
obtain quantitative tissue information.

In quantitative MRI, different physical quantities are estimated from a set of collected
images. The optimization problems solved are typically nonlinear, and require intelligent and
application-specific algorithms to avoid suboptimal local minima. This thesis presents several
methods for efficiently solving different parameter estimation problems in MRI, such as multi-
component T2 relaxometry, temporal phase correction of complex-valued data, and minimizing
banding artifacts due to field inhomogeneity. The performance of the proposed algorithms
is evaluated using both simulation and in-vivo data. The results show improvements over
previous approaches, while maintaining a relatively low computational complexity. Using new
and improved estimation methods enables better tissue characterization and diagnosis.

Furthermore, a sequence design problem is treated, where the radio-frequency excitation
is optimized to minimize image artifacts when using amplifiers of limited quality. In turn,
obtaining higher fidelity images enables improved diagnosis, and can increase the estimation
accuracy in quantitative MRI.
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Glossary and Notation

Abbreviations
BIC Bayesian Information Criterion
bSSFP balanced Steady-State Free Precession
BLUE Best Linear Unbiased Estimator
CRB Cramér-Rao Bound
EASI Exponential Analysis via System Identification
FFT Fast Fourier Transform
FID Free Induction Decay
FOS Feasibility-based Order Selection
FOV Field Of View
GLS Generalized Least Squares
GN Gauss-Newton
GPU Graphics Processing Unit
IQML Iterative Quadratic Maximum Likelihood
i.i.d. Independent and Identically Distributed
LASSO Least Absolute Shrinkage and Selection Operator
LCQP Linearly Constrained Quadratic Program
LM Levenberg-Marquardt
LORE Linearization for Off-Resonance Estimation
LP Linear Program
LS Least Squares
MACO Magnitude-Constrained Cyclic Optimization
MC Monte Carlo
ML Maximum Likelihood
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MSE Mean Square Error
MT Magnetization Transfer
MWF Myelin Water Fraction
NLS Nonlinear Least Squares
NNLS Non-Negative Least Squares

xi



NSA Number of Signal Averages
qMRI quantitative Magnetic Resonance Imaging
QP Quadratic Program
rMSE root Mean Square Error
RSD Relative Standard Deviation
PDF Probability Distribution Function
PRF Proton Resonance Frequency
SAR Specific Absorption Rate
SM Steiglitz-McBride
SNR Signal-to-Noise Ratio
SPICE Sparse Covariance-Based Estimation
TE Echo Time (variable)
TPC Temporal Phase Correction
TR Repetition Time (variable)
TV Total Variation
WELPE Weighted Linear Phase Estimation

Notation
a, b, . . . boldface lower case letters are used for vectors,

for example, a = [a1, a2, · · · ]T
A, B, . . . boldface upper case (capital) letters are used for

matrices
A, a, α, . . . non-bold letters are generally used to denote

scalars

Â, â, â, α̂, . . . a hat, ·̂, is used to denote an estimate
I the identity matrix (of unspecified dimension)
In the n× n identity matrix
0,1 the vector of all zeros or ones, respectively
(·)T vector or matrix transpose
(·)* complex conjugate, or for vectors and matrices,

the conjugate transpose
i the imaginary unit,

√
−1, unless otherwise spec-

ified
R

n×m the real-valued n×m-dimensional matrix space
R

n the real-valued n-dimensional vector space (R is
used for n = 1)

C
n×m the complex-valued n × m-dimensional matrix

space
C

n the complex-valued n-dimensional vector space
(C is used for n = 1)

Z the set if integer numbers
Re{·} real part of a complex number
Im{·} imaginary part of a complex number
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arg(·) phase of a complex number
diag(·) diagonal; diag(a) means the matrix with the

vector a on the diagonal and zeros everywhere
else, and diag(A) means the vector containing
the elements on the diagonal of the matrix A

bdiag
(
{Ap}Pp=1

)
block diagonal matrix with P blocks, and the
matrix Ap in block p (the matrices may have
different sizes)

tr(·) trace of a matrix
vec(·) columnwise vectorized version of a matrix
ln(·) natural logarithm
mod(a, b) modulo operation with dividend a and divisor

b, with the result defined to be positive
L(·) the likelihood function
q−1 unit delay operator, q−1s(k) = s(k − 1)
{xk}Kk=1 a set of K elements xk
p(x|y) probability distribution function of the variable

x, conditioned on y
Rice(η, σ) the Rice distribution with parameters η and σ
∼ distributed as; e.g., x ∼ N (µ,R) means that

x is Gaussian distributed with mean µ and co-
variance matrix R

⊗ the Kronecker product

, defined as equal to
∈ belongs to; e.g., a ∈ C

n means that a is an
n-dimensional complex-valued vector, and A ∈
R

n×m means that A is a real-valued m×n ma-
trix

∇ gradient operator
∇2 Laplacian operator
| · | magnitude, or in the case of vectors, element-

wise magnitude

‖ · ‖p Lp-norm; ‖a‖p =
(
∑

j |aj |p
)1/p

‖ · ‖ L2-norm (Euclidian norm)
‖ · ‖W L2-norm (Euclidian norm) weighted by the ma-

trix W
‖ · ‖F Frobenius norm of a matrix
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1

Chapter 1
Introduction

Magnetic Resonance Imaging (MRI) is an important diagnostic tool for
imaging soft tissue without the use of ionizing radiation. Furthermore,
signal processing lies at the very core of the imaging process. These two
factors make the interdisciplinary topic of signal processing for MRI
especially interesting, as there are many diverse problems that can be
tackled from experiment design to image processing. This chapter de-
scribes the contribution of the thesis, and provides an outline of the
structure, including an overview of the treated signal processing prob-
lems.

1.1 Contribution
The contribution of this thesis is mainly in quantitative MRI (qMRI),
which is the field of MRI signal processing where different physical quan-
tities are estimated from measured data. Beyond that, one input design
problem is included, where the excitation is optimized with the aim of
minimizing image artifacts, and in turn, improving diagnosis, or increas-
ing the estimation accuracy in qMRI.

The theme throughout the thesis is optimization, with the goal of
finding efficient algorithms for obtaining the desired quantities. Typ-
ically, the estimation problems arising in MRI are nonlinear and non-
convex, meaning that approximations or problem reformulations are
often needed to make estimation tractable. As a result of this, the
algorithms developed are in many ways application specific.

A set of interesting problems has been treated, and in each case, the
goal has been to analyze the problem and derive new efficient algorithms
for estimation. The work has also involved model development, and
validation on data from human subjects. More specific details on the
contribution of this thesis is given in the next section.



2 Introduction

1.2 Thesis outline
The thesis consists of two parts. The first is a basic introduction to
the field of MRI, including magnetic resonance (MR) physics, the imag-
ing process, and the MR scanner. The points of intersection between
signal processing and MRI are described, with focus on modeling and
parameter estimation for qMRI. Finally, some background to the signal
processing techniques used in the thesis, such as, maximum likelihood
estimation and image filtering, is given. In the second part, a few specific
signal processing problems in MRI are presented. The overall concern
is to find efficient estimation algorithms for these typically nonlinear
problems. A brief summary of each chapter in Part II is given below,
including references to the corresponding papers.

Chapter 4: Off-resonance mapping and banding removal

Banding artifacts causing signal loss and obstructing diagnosis is a ma-
jor problem for the otherwise efficient bSSFP protocol in MRI. A fast
two-step algorithm for 1) estimating the unknowns in the bSSFP sig-
nal model from multiple phase-cycled acquisitions, and 2) reconstruct-
ing band-free images, is presented. The first step, Linearization for
Off-Resonance Estimation (LORE), approximately solves the nonlinear
problem by a robust linear approach. The second step applies a Gauss-
Newton algorithm (GN), initialized by LORE, to minimize the nonlinear
least squares criterion. The full algorithm is named LORE-GN. By de-
riving the Cramér-Rao bound it is shown that LORE-GN is statistically
efficient; and moreover, that simultaneous estimation of T1 and T2 from
phase-cycled bSSFP is difficult, since the variance is bound to be high
at common SNR values. Using simulated, phantom, and in-vivo data,
the band-reduction capabilities of LORE-GN are illustrated, and com-
pared to other techniques, such as the sum-of-squares. It is shown that
LORE-GN is successfully able to minimize banding artifacts in bSSFP
where other methods fail, for example, at high field strengths. This
chapter is based on papers I and II.

Chapter 5: Multi-component T2 relaxometry and
myelin-water imaging

Models based on a sum of damped exponentials occur in many applica-
tions, particularly in multi-component T2 relaxometry. The problem of
estimating the relaxation parameters and the corresponding amplitudes
is known to be difficult, especially as the number of components in-
creases. In this chapter, a parameter estimation algorithm called EASI-
SM is compared to the non-negative least squares (NNLS) spectrum
approach commonly used in the context of MRI. The performance of
the two algorithms is evaluated via simulation using the Cramér-Rao
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bound. Furthermore, the algorithms are applied to in-vivo brain multi-
echo spin-echo dataset, containing 32 images, to estimate the myelin
water fraction and the most significant T2 relaxation time. EASI-SM
is shown to have superior performance when estimating the parameters
of multiple relaxation components in simulation, and in vivo, it results
in a lower variance of the T2 point estimates. It provides an efficient
and user-parameter-free alternative to NNLS, and gives a new way of
estimating the spatial variations of myelin in the brain. This chapter is
based on paper III.

Chapter 6: Edge-preserving denoising of T2 estimates

Estimating the transverse relaxation time, T2, from magnitude spin echo
images is a common problem in MRI. The standard approach is to use
voxelwise estimates; however, noise in the data can be a problem when
only two images are available. By imposing inter-voxel information it
is possible to reduce the variance of the T2 estimates, but this typically
compromises the details in image, especially at tissue boundaries. By
developing intelligent algorithms that use data from several pixels, the
estimation performance can improved without affecting tissue contrast.
An optimal formulation of the global T2 estimation problem is nonlin-
ear, and typically time consuming to solve. Here, two fast methods to
reduce the variance of the T2 estimates are presented: 1) a simple local
least squares method, and 2) a total variation based approach that can
be cast as a linear program. The two approaches are evaluated using
both simulated and in-vivo data. It is shown that the variance of the
proposed T2 estimates is smaller than the pixelwise estimates, and that
the contrast is preserved. This chapter is based on paper IV.

Chapter 7: Temporal phase correction

Estimation of the transverse relaxation time, T2, from multi-echo spin-
echo images is usually performed using the magnitude of the noisy data,
and a least squares (LS) approach. The noise in these magnitude im-
ages is Rice distributed, which can lead to a considerable bias in the
LS-based T2 estimates. One way to avoid this bias problem is to esti-
mate a real-valued and Gaussian distributed dataset from the complex-
valued data, rather than using the magnitude. In this chapter, two
algorithms for phase correction, which can be used to generate real-
valued data suitable for LS-based parameter estimation approaches, are
proposed. The first is a Weighted Linear Phase Estimation algorithm,
abbreviated as WELPE. This method provides an improvement over a
previously published algorithm, while simplifying the estimation proce-
dure and extending it to support multi-coil input. The second method is
a maximum likelihood estimator of the true decaying signal magnitude,
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which can be efficiently implemented when the phase variation is linear
in time. The performance of the algorithms is demonstrated via Monte
Carlo simulations, by comparing the accuracy of the estimated decays.
Furthermore, it is shown that using one of the proposed algorithms en-
ables more accurate T2 estimates in multi-component T2 relaxometry,
compared to when using magnitude data. The practical feasibility of
WELPE is illustrated by applying it to a 32-echo in-vivo brain dataset.
This chapter is based on paper V.

Chapter 8: Sequence design for excitation

When using amplifiers of limited quality, signal distortion can be a prob-
lem, which in turn can result in image artifacts. Here, an algorithm
for sequence design with magnitude constraints is presented. Such se-
quences can, for example, be used to achieve the desired excitation pat-
tern in parallel MRI, when several low-cost amplifiers are used. The for-
mulated non-convex design optimization criterion is minimized locally
by means of a cyclic algorithm, consisting of two simple algebraic sub-
steps. Since the proposed algorithm truly minimizes the criterion, the
obtained sequence designs are guaranteed to improve upon the estimates
provided by a previous method, which is based on the heuristic prin-
ciple of the Iterative Quadratic Maximum Likelihood algorithm. The
performance of the proposed algorithm is illustrated in two numerical
examples. This chapter is based on paper VI.

Chapter 9: Magnetic resonance thermometry

Measuring the temperature using MRI has applications in thermal ther-
apy and metabolism research. In tissue containing both fat and water
resonances it is possible to obtain an absolute measure of the temper-
ature through parametric modeling. The fat resonance is used as a
reference to determine the absolute water resonance frequency, which is
linearly related to the temperature of the tissue. In this chapter, the
feasibility of using this method to estimate the absolute temperature
in fat tissue is investigated. Using the Cramér-Rao bound, it is shown
that the highest obtainable accuracy at common SNR is too low for the
application in mind, when using a 1.5 T scanner. However, increasing
the field strength can improve the bound significantly. Moreover, it is
shown that the choice of sampling interval is important to avoid signal
cancellation. It is concluded that to make proton resonance frequency-
based temperature mapping feasible, a high SNR is typically needed.
This chapter is based on paper VII.
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1.3 Future work
There are still many open signal processing problems in MRI, and many
current techniques that could be optimized and further developed using
methods similar to those presented in this thesis.

Array processing has relatively recently been getting more attention
in the MR community. Processing of MRI data from multiple receive
coils enables significant improvements in image quality, reduction in
hardware costs, or speedup of the imaging process. The flexibility pro-
vided by trading off these three strengths makes efficient methods for
multi-coil signal processing valuable, both for research and clinical use.
For example, methods like sensitivity encoding (SENSE) enable a sig-
nificant acquisition speedup [97]. The method is based on the fact that
the receive coils used have slightly different properties. Given accurate
measurements of each coil’s sensitivity profile in space, the gathered in-
formation can be combined into one image, reducing the noise, or in
the case of acquisition speedup, removing the aliasing. The SENSE ap-
proach has since been refined and extended in several ways [71, 98], and
inspired other approaches [60, 21], but the main drawback of SENSE
remains, namely that it requires the coil sensitivities to be known. Mea-
suring the coil sensitivities takes time, and as they change over time,
this is typically done at the beginning of every scan session, accelerat-
ing the acquisition of the following images. Developing algorithms to
make the best use of these multi-image datasets, either for speed, image
quality, or estimation accuracy, is still a major topic for the future.

To reduce the acquisition time further, compressed sensing can be
used, where a fraction of the data samples are collected, without com-
promising the image quality or the diagnostic capabilities [83]. By col-
lecting fewer samples, the time a patient spends in the scanner can
be reduced; however, the image reconstruction problem becomes more
complicated and requires advanced signal processing algorithms. Com-
pressed sensing is one of the hottest research topics in MRI today, an
will most likely only grow in the years to come.

Previously, many algorithms for qMRI were developed for single coil
data, and furthermore, the compressive sensing and image reconstruc-
tion was often treated separately from the parameter estimation prob-
lem. Attempts to integrate parallel MRI and compressive sensing with
qMRI, to fully take advantage of both the data and the problem struc-
ture, will lead to many interesting and challenging estimation problems
in the future; and by developing efficient algorithms to solve these prob-
lems, much is to be gained, in terms of estimation quality and acquisition
speedup.





Part I:
Introduction to MRI and signal processing
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Chapter 2
MR physics and imaging

This chapter provides a friendly introduction to MR physics, the imag-
ing process, and the MR scanner. The discussion is based on my un-
derstanding of the field, and is by no means complete. For a more
extensive description of the topic, the reader is referred to, for example,
[89, 62, 9, 132, 63], and the references therein.

2.1 Nuclear magnetic resonance
MRI typically utilizes the magnetic moments of hydrogen nuclei, or pro-
tons; but it is also possible to image based on other substances, such
as phosphorus. As the human body consists of a large proportion of
water molecules, fat, and other organic molecules, all containing hydro-
gen, proton-based imaging is particularly useful to obtain soft tissue
contrast.

When a proton is placed in an external magnetic field of strength B0,
its magnetic moment µ aligns with the direction of the field. The size
of the magnetization depends on the field strength, which is measured
in Tesla (T). By applying a radio frequency (RF) pulse, it is possible to
excite the protons, effectively making the magnetization flip a certain
angle, α, relative to the B0 field, see Fig. 2.1. After the pulse, the mag-
netic moment of the proton rotates freely around the B0 field according
to the Larmor precession law, and eventually returns to its equilibrium
position through a process called relaxation, see Fig. 2.2. The changes
in the magnetic field during the relaxation can be captured by receiver
coils, which produces a free induction decay (FID) signal. The reso-
nance, that is, the frequency at which the protons can absorb energy, is
called the Larmor frequency, and it is proportional to the local magnetic
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Table 2.1: Approximate proton densities in percent, and relaxation times T1
and T2 in milliseconds, for different tissues at B0 = 1.5 T, as stated in [132].

Tissue PD T1 [ms] T2 [ms]
White matter 70 780 90
Gray matter 85 920 100
Fat 100 260 80
Cerebrospinal fluid 100 > 4000 > 2000

field strength, that is

ω = −γB0, (2.1)

where γ is a constant called the gyromagnetic ratio. Note that γ depends
on the nuclei imaged, and for protons γ ≈ 42.58 MHz/Tesla, which
implies that the precession about magnetic field vector B is clockwise.

The relaxation of the magnetization in a small volume element (voxel)
has two components: the first describes the exponential recovery of the
longitudinal magnetization and is denoted by the time constant T1, the
second describes the transverse relaxation, which is due to the loss of
phase coherence between protons in the voxel, and is denoted by T2.
Using the fact that the proton density (PD) and relaxation times depend
on the tissue, it is possible to obtain contrast. It should be noted that
the absolute relaxation times also depend on B0; however, the physical
principles are the same regardless of the field strength. The approximate
PD, T1, and T2 values for different tissue types at B0 = 1.5 T is shown
in Table 2.1.

The equations that govern the macroscopic behavior of a magnetic
moment in an external magnetic field are called the Bloch equations,
and are given by

dMx(t)

dt
= γ(My(t)Bz(t)−Mz(t)By(t))−

Mx(t)

T2
,

dMy(t)

dt
= γ(Mz(t)Bx(t)−Mx(t)Bz(t))−

My(t)

T2
,

dMz(t)

dt
= γ(Mx(t)By(t)−My(t)Bx(t))−

Mz(t)−M0

T1
,

(2.2)

where the components Mx,y,z(t) and Bx,y,z(t), describe the time evolu-
tion in R

3 of magnetization and the external magnetic field, respectively,
and M0 is the equilibrium magnetization, which depends on the proton
density. Often, the transverse components are represented by a single
complex-valued quantity, that is,Mxy =Mx+iMy and Bxy = Bx+iBy,
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Figure 2.1: Flip of the magnetic moment µ by an angle α relative to the
static magnetic field B0.
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Figure 2.2: The relaxation and precession of a magnetic moment µ in a static
magnetic field B0, after excitation.
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which enables a more compact form of (2.2):

dMxy(t)

dt
= −iγ(Mxy(t)Bz(t)−Mz(t)Bxy(t))−

Mxy(t)

T2
,

dMz(t)

dt
= i

γ

2
(Mxy(t)B

*
xy(t)−M*

xy(t)Bxy(t))−
Mz(t)−M0

T1
,

(2.3)

where the ∗ indicates the complex conjugate. These Bloch equations are
nonlinear and coupled, and solving them for arbitrary magnetic field
changes can be difficult. However, the solution for a static magnetic
field Bz(t) = B0 (Bx = By = 0) is easily obtained as

Mxy(t) =Mxy(0)e
−iω0t−t/T2 , (2.4)

Mz(t) =M0(1− e−t/T1) +Mz(0)e
−t/T1 , (2.5)

and this type of behavior was illustrated in Fig. 2.2. Ideally, the mea-
sured FID in the xy-plane decays exponentially with a time constant T2
that only depends on the tissue present on the current voxel; in practice,
however, inhomogeneities in B0 will cause additional decoherence, effec-
tively shortening T2. The observed FID decay rate is therefore denoted
T *
2 , where the star should not be confused with the complex conjugate.

For a deviation ∆B0 from the ideal field strength B0, we can write the
following implicit expression for T *

2 :

1

T *
2

=
1

T2
+ γ∆B0, (2.6)

which implies that T *
2 ≤ T2. Even deviations in the order of one percent

can have a significant impact on the decay time, especially when the
T2 decay is slow. To counter this rapid signal decay, different pulse
sequences or excitation schemes can be used, as is discussed in Section
2.2.3.

As the basal rotation frequency ω0 is known, it is possible to introduce
a rotating frame of reference, which simplifies the Bloch equations as
well as the description of the excitation. This formalism will be used
in the following, effectively removing ω0 from all equations, and where
applicable, only modeling the off-resonance frequency.

2.2 The imaging process

2.2.1 Excitation

To extract information regarding the subject under study, excitation
is needed. An RF pulse is used to excite the sample and rotate the
magnetic moments, or spins, relative to the B0 field. There are many
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application-specific RF pulses, but this introduction will mainly cover
the basic pulse shapes and their uses.

The RF pulses can be designed to flip the magnetization to different
angles, but it is also possible to use several consecutive pulses of dif-
ferent types. The spin-echo experiment is a simple example where two
excitation pulses are used. The first excites the spins, while the next
pulse refocuses the spins to generate a so called echo. This technique is
used to counter imperfections in the system, and reduce the resulting
artifacts in the images. For more details on the spin-echo sequence, see
Section 2.2.3.

For 2D imaging, the excitation is typically in the form of sinc pulses,
sinc(x) = sin(πx)/πx, which are designed to be narrowband. The idea
is to excite a specific range of frequencies and get a clear slice profile,
and for this, the box-shaped spectrum of the sinc function is useful.
In practice, the sinc pulse shape needs to be truncated or windowed,
giving a non-ideal spectrum, as shown in Fig. 2.3. In turn, this leads to
a non-ideal flip of the in-slice protons, but also excitation leakage into
adjacent slices, so called cross talk.

Parallel excitation using several transmitter coils can be used to
achieve higher fidelity in the excitation profiles. By dividing the load
on several units, the need to transmit high quality signals is reduced,
adding robustness to the excitation while enabling the use of low-cost
amplifiers. Moreover, the range of usable excitation signals is increased,
as the protons are affected by the net frequency content of the magnetic
field.

It also is possible to design RF pulses for a specific application, tak-
ing time limitations and other physical constraints into account. The
resulting optimization problems are typically nonlinear, and can require
intelligent algorithms to solve. For example, the Shinnar-Le Roux al-
gorithm can be used to design pulses with specific spectral profiles [93].
Input design is a broad topic in signal processing which is discussed more
in Section 3.1.3, and a specific design problem is treated in Chapter 8.

Rectangular pulses are also used in some cases, particularly in 3D
encoding when no slice selection is required. Usually, some type of win-
dowing is needed, as realizing a rectangular pulse is difficult in practice.
The problem lies in creating a pulse with sufficient bandwidth to excite
all the frequencies of interest, which in turn requires the transmitted sig-
nal to be short in time, according to the time-bandwidth product. As
there is only an upper limit to the duration of the excitation in clinical
practice, the 3D sequences can typically generate higher quality images
than 2D sequences, within a given time frame.
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Figure 2.3: a) A sinc-type RF pulse and its truncated version, and b) the
corresponding normalized spectra.

2.2.2 Encoding and gradients

To acquire 3D information regarding the anatomy of the scanned sub-
ject, the data must be encoded in space. This can be achieved by
actively changing the magnetic fields while transmitting one or several
excitation pulses. The encoding can either be done in a number of 2D
slices, or directly in 3D. Here, we will focus on 2D Fourier encoding
with slice selection, which is the classical approach. Initially, a gradient
magnetic field across the z-direction is applied during excitation from a
narrow-band pulse. According to (2.1), this linear gradient will cause
planes orthogonal to the z-axis to have different resonance frequencies.
A narrow-band signal can therefore excite a specific slice along the z-
axis, see Fig. 2.4. Following that, a gradient across the y-direction is
applied for a limited time period, to create a linear offset of the phases
of all spins along the y-axis; this is called phase encoding. Lastly, a read-
out gradient across the x-direction is applied while recording the signal.
This step is called frequency encoding as the spins across the x-direction
will have different frequencies during the data collection. After waiting
for the system to return to equilibrium, the experiment is repeated with
different phase gradients to obtain 2D information. The time between
experiments is denoted TR, and is called the repetition time. The spatial
phase and frequency distribution of the spins after a single 2D encod-
ing step, is illustrated in Fig. 2.5. To collect 3D information with this
approach, several slices are collected. For direct 3D image acquisition,
the phase encoding is performed along two spatial dimensions.

With the encoding scheme outlined above, the phase of a spin at
location (x, y), at time t′ during the readout gradient Gx, and for a
phase-encoding gradient Gy applied for τ seconds, can be expressed as

φ(t′, τ) = γGxxt
′ + γGyyτ, (2.7)
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Figure 2.4: In 2D imaging, a narrowband excitation pulse is used to flip the
magnetization of a certain slice in the 3D subject, as the resonance frequency
depends on the field strength.

where the phase has been demodulated with the known Larmor fre-
quency ω0. In practice, Gy is varied rather than τ , but to make the
description more intuitive, we will assume that τ is the variable here.
In sum, t′ represents the time index during each readout across the x-
dimension, and τ is the time index for each phase-encoding step along
the y-dimension. The received time-domain signal is a superposition of
the signals from all the spins in the slice, and can be written as

S(t′, τ) =

∫∫

ρ(x, y)eiγ(Gxxt
′+Gyyτ)dxdy, (2.8)

where ρ(x, y) corresponds to the PD at the spatial location (x, y). By
defining kx = −γGxt

′ and ky = −γGyτ , we can write (2.8) as

S(kx, ky) =

∫∫

ρ(x, y)e−i(kxx+kyy)dxdy, (2.9)

which is a 2D Fourier transform of the image ρ(x, y) in terms of the
wave numbers kx and ky. This encoding ensures that all spins have
different sets of {kx, ky}, and therefore we can reconstruct a spatial
image of the subject by a simple inverse Fourier transformation, which
can be efficiently computed using the Fast Fourier Transform (FFT).
For 3D encoding with two phase encoding steps, an inverse 3D Fourier
transform is used. The wave number notation used in (2.9) brings us to
the concept of k-space, the image Fourier domain. In general, we can
write the received signal as

S(t) =

∫

ρ(x)e−ik(t)·xdx, (2.10)

where k(t) can be seen as an arbitrary k-space trajectory in time. This
formalism enables us to think of many other ways of obtaining data. By
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Figure 2.5: Illustration of the achieved phase and frequency distribution in
space, after a single 2D-encoding step. Each voxel has a different frequency
and phase pair.

changing the gradient fields, k(t) can trace out almost any curve in k-
space. In fact, there are endless possibilities of how to combine gradients
and RF pulses, which makes MRI remarkably versatile. In the scenario
described above, the readouts are in the form of straight lines from left
to right along kx, and the phase encoding can, for example, start from
negative ky and advance with equal steps to positive ky, by changing τ
or Gy in each acquisition. A few examples of k-space trajectories are
given in Section 2.2.3.

From the above description of the data collection, the scan time can
be expressed as

Scan time = TR×Ny ×NSA, (2.11)

where Ny is the number of phase-encoding steps (in the y-direction),
NSA is the number of signal averages (collected images), and TR is
the time between two consecutive readouts, which is long enough to
accommodate both signal decay and necessary k-space traveling. The
number of samples in the x-direction does not influence the scan time,
as this readout time is much shorter than TR.

There are also a wide range of correction gradients that are often used
to minimize the effects of imperfect hardware, physical phenomena such
as eddy currents, and motion of the subject. For example, spoiler or
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crusher gradients can be used to eliminate residual signal remaining
at the end of each excitation cycle, which could otherwise cause the
signal to eventually saturate at zero. This is accomplished by using the
slice-selection gradient to dephase the spins before the next repetition.
The spoiler gradients enable the use of a shorter TR, and therefore a
shorter scan time, as there is no need to wait for the magnetization
to naturally return to its equilibrium. Although many of the other
correction gradients are important to avoid image artifacts, their details
are beyond the scope of this discussion.

2.2.3 Pulse sequences and contrast
The acquisition scheme, or the pulse sequence, is usually visualized in a
timing diagram. An example of the previously mentioned spin-echo se-
quence is shown in Fig. 2.6. The timing diagram shows when RF pulses
and gradients are applied, as well as when a signal or echo is produced
and sampled. By the use of timing diagrams it is easy to illustrate
differences between acquisition schemes, and schematically understand
how each sequence works.

Regardless of the sequence, an acquired image will have a combination
of contrast from PD, T1 and T2 (or T *

2 ). By modifying the sequence,
that is, when and how the magnetization is flipped, it is possible to make
one of these contrasts dominate. There is wide range of contrasts that
can be achieved, and depending on the application, one can be more
useful than the other. Because of this, many pulse sequences have been
designed to generate a certain type of contrast, and in the following,
three basic sequence types are presented.

As previously mentioned, an echo is sometimes formed to cancel sys-
tem imperfections, but it also gives time for the spatial encoding to take
place. In the basic spin echo sequence, the first pulse flips the magne-
tization into the xy-plane, and a second pulse is applied TE/2 seconds
later, flipping the magnetization 180∘. The decay resulting from de-
phasing due to field inhomogeneity will be reversed by the 180∘ pulse,
and after another TE/2 seconds, the spins will refocus, giving an echo
which is sampled. One spin echo collects data from a line in k-space, and
after a time period TR, the sequence is repeated with different phase en-
codings until a sufficient number of k-space samples has been acquired.
By this method, the extra dephasing effect observed in practical FIDs,
characterized by T *

2 , can be avoided, to obtain an image whose contrast
reflects the T2-values of the tissue, so called T2 weighting. Because of
this, the spin echo typically provides high quality images; however, the
sequence is associated with a long scan time.

Another basic pulse sequence is the gradient echo. It is similar to
the spin echo except that no refocusing RF pulse is used. Instead,
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Figure 2.6: A schematic timing diagram for a typical spin echo, showing the
RF pulses, gradients applied, and the echo and repetition times TE and TR,
and the readout.

Table 2.2: Relationship between sequence parameters and contrast for the
gradient echo.

Weighting: T1 T *
2 PD

TE Short Long Short
TR Short Long Long
α Large Small Small

two gradients of opposite polarity are used to dephase and rephase the
spins, giving an echo. This does not cancel the dephasing due to field
inhomogeneity, and unlike the spin echo, the signal decays with time
constant T *

2 . The gradient echo can be varied by changing the sequence
parameters: TE, TR, and the flip angle of the RF pulse, α. Table
2.2 summarizes the approximate relationship between these parameters
and the obtained image weighting, and as can be seen, all main types of
contrasts can be achieved. Because the gradient echo only uses a single
RF pulse and supports small α:s, it is possible to use a shorter TE and
TR, enabling rapid imaging.

The final basic pulse-sequence type is the inversion-recovery sequence.
It is mainly used for T1-weighted imaging, but can also be designed to
generate T2 predominance. Inversion recovery is basically a spin echo
with an initial 180∘ setup pulse. Flipping the equilibrium magnetization
180∘ will direct it along the negative z-axis, with no transverse compo-
nent. According to (2.5), it will start relaxing along the z-axis with a
rate dictated by T1, through the origin, back to the positive equilib-
rium M0. After a certain time, called the inversion time, a spin echo is
typically performed, but there are also other alternatives. By changing
this inversion time based on the expected T1 for a certain tissue type,
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the spin echo can be performed when the magnetization of this tissue is
zero, effectively canceling its contribution to the signal. This is mainly
used the achieve fat suppression or fluid attenuation in the resulting
images.

Multi-slice methods can be used to improve the efficiency of otherwise
slow sequences, such as the spin echo. Particularly, in sequences with
long TR, significant time is spent waiting for the longitudinal magneti-
zation to relax. By exciting and recording other slices during this wait,
the protocol can be made more efficient.

Another option to improve the efficiency of the standard spin-echo
and gradient-echo sequences is to use multi-echo techniques. In the
spin-echo case, the initial echo is followed by a sequence of refocusing
pulses, each giving a new smaller echo that is recorded. In this manner,
several images can be acquired within the same scan time as a single
image with the basic approach. A schematic view of the recorded signals,
including the T2 and T *

2 decay, is shown in Fig. 2.7. Another multi-echo
sequence is the echo-planar gradient echo, for which the entire k-space
can be sampled during one TR. This is accomplished by successively
applying rephasing gradients and alternating the polarity of the readout
gradient. The fast scan time enables the capture of rapid physiological
processes, such as cardiac motion; however, due to the long readout,
the amount of signal decay is not identical for all lines in k-space. This
means that the image will have hybrid T *

2 weighting.
The basic sequences often use a Cartesian sampling of k-space, like

Fourier encoding, where consecutive lines are collected giving a uniform
rectangular grid. This approach requires repeated travel in k-space with-
out collecting any data, for example, to get back to the left side and
start a new readout. The idea of echo-planar imaging is to traverse
the k-space more efficiently, but still on a Cartesian grid. Figure 2.8
illustrates the k-space trajectories for Fourier and echo planar imaging.
It should be noted that, as there is a limit to how fast the k-space can
be traversed, different means of obtaining the same samples can lead
to different results. This is mainly due to hardware imperfections and
signal decay during the acquisition, and these two aspects should be
taken into consideration when designing a pulse sequence.

There are also a wide range of trajectories that do not sample the k-
space on a uniform grid; for example, it is possible to use a rectangular
grid with varying density. In k-space, the central values correspond to
the low frequency content, that is, mainly the image contrast; while
the outer regions are high frequency details. Looking at an image in
k-space, it is clear that most of the energy is located around the center,
as is shown in Fig. 2.9, which would support a denser sampling in this
region. The spiral sequences typically have this property, as well as
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Figure 2.7: The signal from a multi-echo spin-echo sequence, showing the
T2 and T *

2 decay. The sinusoids indicate RF excitation in the form of 180∘
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Figure 2.8: Example of two Cartesian k-space trajectories: a) Fourier, and b)
echo planar sampling. Dashed lines indicate traveling in the k-space without
sampling, and the red dots indicate sampling points.

radial sampling, and Fig. 2.10 shows an example of two such nonuniform
k-space trajectories.

Finally, more advanced techniques such as steady-state free preces-
sion (SSFP), which is a type of gradient echo, or diffusion weighted
sequences, which provides a different type of contrast, are also avail-
able. In steady-state imaging, a series of RF pulses and subsequent
relaxations eventually lead to an equilibrium of the magnetization from
one repetition to the next. This is useful for rapid acquisitions, as there
is no need to wait for full T1 or T2 recovery before the next pulse is
applied. In the balanced SSFP sequence (bSSFP), the goal is to pre-
serve as much magnetization as possible by using balanced gradients
that reduces the dephasing during each repetition. This leads to high
SNR and fast scans, but the method is sensitive to imperfections in the
static magnetic field. The obtained signal depends on T1, T2, TE, TR,
and α; and the images typically have a T1/T2-type contrast.
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a) b)

Figure 2.9: a) Example of the magnitude of a brain image, and b) the mag-
nitude of the corresponding k-space.

2.2.4 Reconstruction

If k-space is sampled on a sufficiently dense uniform rectangular grid,
the simplest type of image reconstruction, the inverse discrete Fourier
transform, can be applied to obtain the sought image. In the Fourier
encoding case, the density of the grid corresponds to the field of view
(FOV), that is, size of the imaged area. To avoid aliasing, the spacing
of k-space samples must be smaller that the inverse of the FOV, that is
∆k < 1/FOV. The extent of the grid, or the k-space area covered, will
determine the resolution of the reconstructed image.

When the sampling is nonuniform, the standard inverse Fourier trans-
form cannot be used. There are two possibilities, either the data is in-
terpolated giving a uniform grid, or a nonlinear reconstruction problem
needs to be solved. In MRI, the standard approach is to use the nonuni-
form fast Fourier transform (NUFFT), which makes use of an efficient
algorithm to compute the transform [44]. However, the general recon-
struction problem is non-convex, and developing algorithms to find the
optimal solution is a signal processing problem.

In parallel MRI, the final reconstructed image is based on data col-
lected from several parallel coils. This enables speedup of any pulse
sequence, effectively widening the their applicability. The main idea is
to reduce the number of collected k-space samples, in particular, the
number of phase-encoding steps, as the scan time is typically propor-
tional to this quantity, as was shown in (2.11). This can be achieved
in several ways, for example, by collecting every other line in k-space.
Undersampling in the phase-encode direction leads to aliasing, similar



22 MR physics and imaging

ky

kxa)

ky

kxb)

Figure 2.10: Example of two nonuniform k-space trajectories: a) spiral, and
b) radial sampling. The red dots indicate sampling points.

to what is shown in Fig. 2.11; however, using data collected by several
individual coils, it is possible to remove the aliasing and reconstruct the
full image [21].

Another approach is to use sparse signal processing to reconstruct the
image from a single set of undersampled data. These compressed sensing
techniques enable a significant acquisition speedup, often at virtually no
loss in image quality [83]. The basic idea is to use a domain in which the
image is sparsely represented, and regularize the reconstruction problem
to avoid aliasing. Again, the problem is non-convex, and therefore the
reconstruction is often only an approximation of the true optimum, and
in some cases, it can even fail. The sparse reconstruction problem is
a challenge for signal processing, especially when it is combined with
parameter estimation along the lines of Section 2.3.

2.2.5 Image quality and time

Signal-to-noise ratio

The main objective in MRI is to acquire high-SNR images, with suf-
ficient resolution, in a short scan time. However, for a given pulse
sequence and hardware, it is only possible to trade one of the above
properties for the other, according to the simplified SNR equation [63]:

SNR ∝ (voxel volume)
√

acquisition time . (2.12)

The background of this equation will be outlined in the following, to-
gether with hardware-related means of improving SNR. It should, how-
ever, be noted that image artifacts due to, for example, hardware im-
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Figure 2.11: Example of the aliasing occurring when collecting every other
line in the phase-encode direction.

perfections will also affect the images and the effective SNR. This topic
is discussed in the next section.

Even though (2.12) is rather restrictive, there are still several ways in
which the acquisition can be adapted to the application at hand, giving
priority to the more crucial properties. Overall, the SNR depends on
the following factors:

• Scan time
• Resolution
• Number of acquisitions
• Scan parameters (TE, TR, and α)
• Magnetic field strength
• Transmit and receive system

The reasons for prioritizing a quick scan are both financial and practical.
For example, motion during the scan can be reduced with a fast scan,
and some rapid physiological processes require fast imaging to capture
the relevant information. But the scan time is also important for the
patient throughput, and to manage costs for the equipment and its
maintenance. Furthermore, with more time it is possible to collect k-
space samples from a larger area to get a higher resolution, or to collect
several images and perform averaging to increase the SNR. On the other
hand, with an increased voxel size, that is, lower resolution, more spins
will contribute to the signal in each voxel, and hence, the SNR will
increase.

As mentioned in Section 2.2.3, the scan parameters will have a major
impact on the signal. In general, a shorter TE will improve the SNR,
as the signal has less time to decay. Also a larger flip angle will lead to
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a higher SNR if the signal is measured in the xy-plane. For example,
the rapid T *

2 decay of the gradient-echo signal results in a lower SNR
compared to the spin echo. Moreover, using a short TR leaves little time
for T1 recovery, which may saturate the signal, resulting in a lower SNR
when large flip angles are used. By applying spoiler gradients, giving a
so called spoiled gradient echo, the saturation problems can be avoided,
which restores the SNR.

Using a higher field strength increases the SNR, as the excited mag-
netization, and hence the observed signal, is larger. However, it also
comes with a few downsides, as is discussed in the next section.

The MR scanner can use different coils depending on the application,
and therefore, the choice of coil can effect the SNR without increasing
the scan time. Ideally, the coil should be placed close to the imaged area
to obtain a high SNR, and there are several coils available to achieve this,
for example, volume coils or surface coils. Other options include coil
arrays, where several coils together collect data to image a certain area.
Each coil is associated with a matrix that describes its spatial sensitivity,
and therefore, using high-quality coils can increase the SNR further.
Furthermore, it is possible to adjust the receiver-coil bandwidth, which
corresponds to the range of frequencies captured during the readout
gradient. A higher bandwidth means that more information can be
collected in a single readout, which speeds up the acquisition. However,
the thermal noise power in the coil is proportional to the bandwidth,
meaning that increasing the bandwidth will also increase the noise level.

Image artifacts
Sequences with long scan times, like the standard spin echo, are sensitive
to motion during the scan. Motion artifacts are a big problem in MRI,
and can lead to severely degraded image quality. Even if the patient
under study is keeping all limbs still during the scan, cardiac motion,
as well as blood flow, would still be present. Also respiratory motion
can be a problem, especially when the imaging is not fast enough to be
performed in a breath hold. The resulting images can suffer from both
blurring and ghosting, depending on which part of the k-space was col-
lected during the motion. Sequences can be designed to be less sensitive
to motion, mainly by shortening the acquisition time. The echo-planar
sequence is an example of a fast sequence, which significantly reduces
the risk of motion artifacts.

For 2D encoding, the in-band slice profile is never perfectly flat, mean-
ing that the achieved flip angle will vary across the slice. This can lead to
image artifacts, and particularly, it is a problem for qMRI, where a con-
stant and known flip angle is often assumed to simplify the model and
enable efficient parameter estimation. An additional problem is the po-
tential leakage that can occur between slices. If the RF partially excites
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neighboring slices, the resulting images will be distorted. To counter
this, it is possible to use an inter-slice gap, which minimizes the cross
talk, but also leads to loss of information as some parts of the subject
are not sampled. Cross talk is particularly problematic for multi-slice
sequences, where several neighboring slices can be intentionally excited.

Gibbs ringing is another common type of artifact, which manifests
as oscillations in the image magnitude adjacent to abrupt intensity
changes; for example between air and tissue. The ringing is most sig-
nificant close to tissue boundaries, and decays when moving outwards.
Collecting more high frequency samples is the only way to reduce this
artifact, as it is intrinsic to the Fourier series for a signal containing
a jump discontinuity. In fact, the ringing does not go to zero as the
frequency approaches infinity, meaning that there is no way to fully
eliminate the Gibbs phenomenon. However, the visual impact in im-
ages will be unnoticeable when a sufficient number of k-space samples
are collected. Gibbs ringing is illustrated in Fig. 2.12, which shows a
phantom image reconstructed with, and without, the high frequency k-
space samples, as well as the difference between the two images, which
was included to highlight the ringing pattern.

Apart from increasing Gibbs ringing, decreasing the resolution also
increases the risk of partial volume effects, which occur when two or
several tissue types are present in a single voxel. As a result, the ac-
quired signal is described by several decay constants, which in turn can
lead to image artifacts, or complicate parameter estimation.

The proton resonance frequency (PRF) depends on the external field,
but also on the local molecular environment, which can shield the mag-
netic field to a varying extent. For example, protons bound to fat and
water have slightly different resonance frequencies, called a chemical
shift. This shift can be useful in imaging to separate components with
different molecular structure, or to measure the temperature using MRI,
as is done in Chapter 9, but can also cause artifacts due to misregistra-
tion in space along the readout direction, and signal cancellation. By
increasing the magnitude of the readout gradient, and bandwidth of the
receiver, the relative size of the chemical frequency shift can be made
small compared to the k-space sampling interval, thus leading to a small
errors in the spatial registration.

With higher field strengths, it becomes increasingly difficult to con-
struct a homogeneous magnetic field, which can lead to artifacts. Fur-
thermore, problems that arise in the interfaces between tissues with
different magnetic susceptibility are also magnified in a higher field.
Artifacts due to inhomogeneity of the static field are a major problem
for some sequences. In SSFP, off-resonance excitation can lead to a sig-
nificant loss in the signal magnitude, resulting in dark bands in some
parts of the image, as is illustrated in Fig. 2.13. Moreover, as described
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a) b) c)

Figure 2.12: a) Phantom image showing ringing due to the Gibbs phe-
nomenon, b) the same image with more high frequency k-space samples col-
lected, and c) the difference between the two previous images, to highlight the
ringing pattern.

by Faraday’s law, a varying magnetic field will induce a current in a con-
ductor, which in turn will generate a magnetic field. Therefore, small
loop currents in the structure of the MR scanner, or eddy currents, cause
errors in the applied fields. The effects of eddy currents are most sig-
nificant at high field strengths, and when using sequences with rapidly
changing magnetic gradients; and they can result in a wide range of ar-
tifacts ranging from blurring to spatial misregistration [1]. To counter
these problems, it is possible to use both actively and passively shielded
coils, or to compensate for the eddy currents in the pulse sequence [116].
These eddy currents may also occur within the subject which is a prob-
lem for patient safety as they can lead to tissue heating or involuntary
nerve stimulation, see Section 2.4.2.

2.3 Data Modeling and Quantitative MRI
In qMRI, the goal is typically to estimate some physical quantity, such
as T1 or T2, or to reduce image artifacts, given a set of images or k-space
datasets [24]. Using the Bloch equations given by (2.3), it is possible
to derive various closed form expressions for the resulting signals, de-
pending on the pulse sequence used. These parametric models can in
turn be fitted to data, to obtain estimates of the model parameters. By
visualizing the estimates as a function of space, additional anatomic,
chemical, physical, or functional information can be gained; alterna-
tively, the estimates can be used to improve the collected images by
eliminating the effects of the modeled artifacts. Signal processing, and
particularly estimation theory, plays an important role in qMRI when
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Figure 2.13: Phantom image showing banding artifacts due to inhomo-
geneities in the static B0 field, when using a SSFP sequence.

trying to estimate the model parameters and their uncertainties, and
more details on this topic are given in Section 3.1.

The model structure can vary dramatically depending on the pulse
sequence and the parameters of interest, but typically the resulting esti-
mation problem is nonlinear. To enable efficient optimization, the mod-
els are sometimes reduced or simplified, effectively making assumptions
on the unknown parameters. This will introduce bias in the estimates,
but this bias might be relatively small compared to the reduction in
variance. For example, the flip angle set by the pulse sequence is often
assumed to be achieved in the subject, an assumption that does not
hold in practice. Depending on the model, this assumption can either
have an insignificant effect on the fitting, or it can fully compromise
the results. In practice, all models are approximate, as it is not possi-
ble to model everything; nor is it generally feasible to collect the data
needed to accurately estimate all parameters in a complicated model.
The challenge is to find a model that is good enough for the application
at hand.

Performing the spin-echo experiment with different echo times pro-
vides samples of the T2 decay curve in the image domain. The intensity
at echo time t, for each voxel in the image, can according to (2.4) be
described by the following signal model:

s(t) = ρe−t/T2 . (2.13)

Using several datasets with different echo times, we can estimate the
decay rate T2 in every voxel to generate a T2 map, a problem which
is treated in Chapter 6. Similarly, the spin-echo inversion-recovery se-
quence results in the following voxelwise complex-valued model versus
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the inversion time t [6]:

s̃(t) = a+ be−t/T1 , (2.14)

where a, b ∈ C, which can be used to estimate a T1 map. Quantification
of T1 and T2 gives valuable tissue information used in a wide range of
applications [87]. For example, such relaxation maps can be used to
detect tumors, which have been shown to possess longer T1 decay times
in general. Also, neurodegenerative diseases such as multiple sclerosis
affect the overall relaxation times in the brain [119].

Other quantitative imaging techniques include diffusion MRI, func-
tional MRI, magnetization transfer, and fat and water imaging. In
diffusion MRI, the diffusion coefficient, or even the multi-dimensional
diffusion tensor, is estimated from data [7]. This gives information re-
garding water mobility, which in turn can identify swelling as a result of
a stroke. The goal in functional MRI is to detect neuron activation based
on the local blood oxygen level. Often, linear models are used to detect
the small metabolic variations that result from different stimuli [34]. In
magnetization transfer, the exchange of magnetization between hydro-
gen bound to large molecules and more mobile hydrogen is modeled and
estimated to reveal details of the chemical structure [68]. Finally, fat
and water imaging is a technique where the chemical shift between fat
and water-bound hydrogen is estimated to be able to separate the two
types of tissue in post-processing [8].

Modeling with the aim of artifact reduction includes both motion
correction and field mapping. By modeling the effects of motion on
the k-space samples, it is possible to correct for some of the resulting
artifacts by post-processing. Another alternative is to measure the mo-
tion and use this information to perform more advanced correction [33].
Field mapping, that is, estimating the achieved static and RF magnetic
fields in space, does not directly reveal any information regarding the
subject under study; however, having accurate estimates of the prac-
tical fields enables significant improvement of the images. The result
can facilitate diagnosis, or be used to obtain higher accuracy when esti-
mating tissue characteristics [113]. The images can be improved either
by post-processing, taking the field knowledge into account, or by cal-
ibrating the fields prior to the imaging to obtain the desired flip angle
and spatial registration. In Chapter 4, the problem of reducing field
inhomogeneity artifacts in bSSFP images is treated.

Modeling the noise is also of interest to obtain accurate estimates.
Mainly, the noise properties depend on the type of data used. The
k-space data can de accurately modeled as independent and Gaussian
distributed, and for linear reconstruction, these properties are transfered
to the image domain. Using magnitude images, however, makes the
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samples Rice distributed, which can complicate the estimation. This
topic is discussed further in Section 3.1.1.

2.4 MRI scan

2.4.1 Hardware

The hardware needed to perform an MRI scan is technically advanced,
and expensive to both purchase and run. The scanner mainly consists of
a large magnet, which together with smaller shim coils is used to create
a homogeneous static field B0. Commonly, the magnets used are liquid-
helium-cooled superconducting electromagnets, which provide high field
strengths and good stability. Other parts of the scanner include gra-
dient coils to accurately alter the field strength in space for encoding,
transmitter coils to generate the RF excitation, receiver coils to mea-
sure the magnetic resonance, amplifiers, a moving bed, and computers
for controlling the device and processing the collected signals. An ex-
ample of a 1.5 T Philips scanner is shown in Fig. 2.14. Apart from
the built in body coil, it is possible to choose from a set of different
external coils, depending on the application. For example, surface coils,
bird-cage head coils, or arrays of small coils can be used.

The field strength is typically in the range of 1.5 T to 7 T, but magnets
over 20 T have been evaluated in research and animal studies [107]. The
switching performance of the gradient coils is also limited for a given
scanner, effectively limiting the type of sequences that can be used.

The scanner is typically kept in a Faraday-cage-like room, to avoid
leakage of the generated electromagnetic fields, and to provide shield-
ing from external disturbances. However, the signals generated by the
scanner are relatively weak and do not cause much interference.

2.4.2 Safety issues

MRI does not use ionizing radiation, and there are no known side effects
of being scanned. However, there are a few limitation due to patient
safety. For example, the use varying magnetic fields can lead to tis-
sue heating or involuntary nerve stimulation, due to the induced eddy
currents. This particularly applies to fast sequences and steady state
imaging, where the gradients are switched at a high rate. The heat-
ing and nerve stimulation effects have to be taken into account when
designing a clinical acquisition protocol, to make sure the set specific
absorption rate (SAR) limits are met, where SAR measures the rate at
which energy is absorbed by the human body when exposed to an RF
field.
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Figure 2.14: A 1.5 T Philips Ingenia MRI scanner. Image courtesy of Philips
Healthcare.

Another risk involve ferromagnetic metal objects that are acciden-
tally brought into the vicinity of the scanner. The strong magnetic field
can rapidly accelerate rather large objects to high velocities, potentially
putting patients, or anyone in its path, at risk. Different metallic im-
plants and other foreign metal objects can also pose problems. Particu-
larly, electronic devices such as pacemakers, insulin pumps, and neuro-
stimulation systems, can cause a health hazard during the MRI exam,
if the radiologist is left unaware. However, most orthopedic and neuro-
logical implants are not ferromagnetic, and therefore do not pose any
danger to the patient, although they might cause susceptibility artifacts
in the resulting images [132].

The scanner coil is typically made to be rather narrow to maintain a
homogeneous field, and therefore, the physical space inside the scanner
is limited. Moreover, in the presence of strong magnetic field gradients
the coils try to move against the scanner structure, resulting in loud
vibrations that make hearing protection essential. As a consequence,
claustrophobia or other types of anxiety symptoms, can be a risk during
the scan. There are both wide bore and open scanners that can alleviate
these problems, while enabling larger patients to be scanned, but these
are relatively uncommon.
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The cryogenic liquid used to cool the superconducting electromagnet
is not in itself toxic; however, in the event of a involuntary shut down of
the magnet the helium will start to boil, and in the absence of proper
ventilation, there is a risk for asphyxiation. Although shut downs of this
kind are uncommon, extra safety measures are usually in place, such as
oxygen monitors, pressure valves, and fans, to make sure the helium gas
is efficiently evacuated.

Contrast agents are sometimes administered prior to the scan, to ef-
ficiently reduce the T1 relaxation time of the affected tissues. Unlike
when performing an x-ray, the Gadolinium-based contrast liquids typi-
cally used do not contain iodine, and comes with a lower risk for allergic
reactions. However, all contrast agents are, to some extent, toxic, and
both intravenous and oral administration comes with some risk of side
effects [48].
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Chapter 3
Information processing

3.1 Signal processing
In the following, some background to the algorithms developed in this
thesis is given. Signal processing is a broad subject, and the scope is by
no means to give a full description of the topic, but only to highlight
some signal processing concepts that are particularly useful in MRI. For
more details on the topic, see for example [72, 129, 105].

3.1.1 Parameter estimation

Estimation theory is a sub-field of signal processing to which paramet-
ric methods and parameter estimation belong. The goal is to find the
numerical values of the parameters based on some model of the obser-
vations. The solution is typically obtained as the optimal value of some
optimization problem, but a wide range of heuristic approaches also
exist, both application specific and more general in scope. The most
common approach is the least squares (LS) method, where the para-
meters giving the smallest sum of squared model errors are chosen, that
is

θ̂ = argmin
θ

N∑

n=1

|y(tn)− g(tn,θ)|2 , (3.1)

where y(t) is the data, and we have a measurement model given by

y(tn) = g(tn,θ) + v(tn), (3.2)

where g(tn,θ) is the model parameterized by the vector θ, and v(tn) is
the measurement noise.

LS is actually the maximum likelihood (ML) estimator if the noise is
independent, identically distributed (i.i.d.), and Gaussian. More gener-
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ally, the ML problem can be formulated as

θ̂ML = argmax
θ

L(y,θ), (3.3)

where L is the likelihood function, that is, the joint probability density
of all observations y, given parameters θ. Often, the more convenient
log-likelihood is used, and assuming that the measurements are i.i.d.,
we can write

lnL(y,θ) =
N∑

n=1

ln p(yn|θ), (3.4)

where p(yn|θ) is the probability density function for each yn, conditioned
on θ, and ln(·) is the natural logarithm. The ML estimator possesses
several important asymptotic properties that hold when the number of
samples tends to infinity, namely: consistency, normality, and efficiency.
Consistency means that with a sufficiently large number of samples, it is
possible to find the true parameter values with arbitrary precision. Fur-
thermore, under some regularity conditions, the errors will in the limit
be normally (Gaussian) distributed. Finally, the estimator achieves the
Cramér-Rao bound (see Section 3.1.1), which means that there is no
other consistent estimator with a lower asymptotic mean squared error
(MSE).

The ML problem consists of finding the parameter vector θ that max-
imizes the likelihood of the measurements y. There is no closed-form
solution to this problem in general, although in specific scenarios, it
might be possible to find one. An example of this is the linear Gaussian
case, which reduces to linear LS. In matrix form, we can write a linear
LS problem as

θ̂ = argmin
θ

‖y −Aθ‖2 , (3.5)

where A is a matrix of known regressors, and the problem has a closed
form solution given by

θ̂ = (A*A)−1A*y. (3.6)

For a nonlinear model, however, numerical methods of optimization
are needed to minimize the nonlinear LS (NLS) criterion. The same
applies to the more general ML estimator, which provides a great deal of
flexibility in the problem formulation. Regrettably, using this flexibility
can lead to a rather involved non-convex criterion function, which makes
finding the optimal solution increasingly problematic. Because of this,
approximate and suboptimal solutions to the general ML problem in
(3.3) are often used, for example, by applying the simple linear LS
method to non-Gaussian data.
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Generalized LS (GLS) can by used to accommodate a wider class
of distributions, with correlation between the observations and varying
noise levels. Assuming that the regressors are independent of the noise,
the criterion involves a weighting matrix given by the inverse of the
noise covariance matrix, that is

θ̂ = argmin
θ

‖y −Aθ‖2
W
, (3.7)

where

W = E
{

(v − E{v}) (v − E{v})T
}−1

, (3.8)

and E{·} denotes the expected value. The weighting matrix is effectively
whitening the errors, so that the Gauss-Markov theorem applies. Hence,
the GLS estimator is the best linear unbiased estimator (BLUE), and
when the noise is Gaussian, it is ML. In practice, the covariance matrix
of the noise is unknown, and needs to be estimated or approximated
using prior information. This can, for example, be achieved by starting
from ordinary LS, and using the resulting residuals to find an estimate
of the covariance matrix. This estimate can then be inserted into (3.7)
to generate new estimates and the corresponding covariance matrix, en-
abling an iterative refinement process. Note, however, that the method
requires some assumptions on the noise properties to enable estimation
of the covariance matrix. Clearly, a full matrix of independent elements
cannot be estimated from a single measurement vector y.

Further variants of LS include additional terms in the criterion to
regularize the problem, such as, Tikhonov regularization, where a L2-
norm penalty is used. For the linear case, the problem can be expressed
as

θ̂ = argmin
θ

‖y −Aθ‖2 + ‖Rθ‖2 , (3.9)

whereR ∈ R
P×M is a regularization matrix. For anyR with full column

rank, there is a closed form solution to the problem, which is given by

θ̂ = (A*A+R*R)−1A*y. (3.10)

This means that (3.9) will have a unique solution, even if (3.5) is un-
derdetermined.

The regularization is effectively imposing some prior information re-
garding the model parameters, for example, that parameter vector is
small in norm (for which R = λI, and λ > 0). For more general types
of regularization, such as penalties based on the L1-norm or nonlinear
functions, no closed form solution exists, and more details on this topic
are to be found in Section 3.1.2.
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The Cramér-Rao bound

The Cramér-Rao bound (CRB) is a lower bound on the covariance ma-
trix of the parameter estimates, for any unbiased estimator, given the
model [72, 122]. It captures both how the sampling times affect the
estimation errors, as well as how the errors correlate, and relates to the
amount of information regarding the parameters that is expected in the
data. It should be noted that the CRB is a lower bound that might
not be achievable; however, if a specific unbiased estimation algorithm
achieves the bound, it is statistically efficient.

The Fisher information matrix (FIM) provides the sought information
measure, and in general, it can be derived from the formula

F = E

{(
∂ ln(L(y,θ))

∂θ

)T(
∂ ln(L(y,θ))

∂θ

)}

, (3.11)

where again, L(y,θ) is the likelihood function. Taking the inverse of
the FIM gives the CRB matrix

CCRB(θ) = F−1(θ), (3.12)

which provides a bound on the covariance matrix of the parameters:

cov{θ̂} ≥ CCRB(θ). (3.13)

Specifically, the j:th diagonal element of CCRB, cjj , gives bounds on the

mean square error (MSE) of the corresponding estimate θ̂j , assuming
it is unbiased. This provides a benchmark for the statistical perfor-
mance of various estimators. Geometrically, the CRB matrix defines an
uncertainty ellipsoid in the parameter space to which θ belongs, and
the diagonal elements correspond to uncertainty projected onto each
parameter axis.

Under the assumption of zero-mean i.i.d. circular complex-Gaussian
noise of variance σ2, the FIM is given by the Slepian-Bangs formula
[122]:

FGauss(θ) =
2

σ2
Re

{(
∂g(θ)

∂θ

)*(
∂g(θ)

∂θ

)}

, (3.14)

where g(θ) = [g(θ, t1), . . . , g(θ, tN )]T is the signal model vectorized over
time, and ∂g/∂θ is the Jacobian matrix of the vector-valued function
g(θ), given by

∂g(θ)

∂θ
=






∂g1
∂θ1

· · · ∂g1
∂θM

...
. . .

...
∂gN
∂θ1

· · · ∂gN
∂θM




 . (3.15)
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In the real-valued case, this reduces to

FGauss(θ) =
1

σ2

(
∂g(θ)

∂θ

)T(
∂g(θ)

∂θ

)

. (3.16)

Both (3.14) and (3.16) are easily computed and straightforward to use,
while computing the FIM in a more general case can be difficult.

Apart from determining the statistical efficiency of different para-
meter estimation algorithms, the CRB is useful in experiment design.
It is possible to minimize the CRB for a given set of parameters with
respect to the sampling times, or other choices made during the data
collection, to enable improved results. In MRI, this can be used to
optimize pulse sequences by appropriately choosing TE, TR, and α,
based on the CRB, or more fundamentally, to ensure identifiability of
the model parameters for a given acquisition protocol. This topic is
discussed further in Section 3.1.3.

Noise distributions

As mentioned, the noise in complex-valued MRI data is accurately
approximated by a zero-mean i.i.d. circular complex-Gaussian, which
means that each sample can be modeled as

y = g(θ) + v(σ), (3.17)

where g(θ) is the signal (or expected value of y) which parameterized
by θ, and v(σ) is the independent noise which is described by the PDF
[95]

pG(z|σ) =
1

2πσ2
e−

|z|2

2σ2 , (3.18)

for some complex-valued variable z. Given the model in (3.17), the
ML estimator of θ can easily be derived, and is given by LS. However,
magnitude images are often used in practice, in which case each sample
can be modeled as an observation, y, of a Rice-distributed stochastic
variable SR parameterized by |g(θ)| and σ [26, 112], that is

y = YR ∼ Rice(|g(θ)|, σ). (3.19)

The Rician PDF is given by

pR (x | η, σ) = x

σ2
e

−(x2+η2)

2σ2 I0

(xη

σ2

)

, (3.20)

where I0 is the modified Bessel function of the first kind and order zero.
For integers n, these Bessel functions can be defined by

In(z) =
1

π

∫ π

0

ez cos(ξ) cos(nξ)dξ. (3.21)
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Figure 3.1: Examples of the Rice distribution for different values of η, and a
fixed σ = 1.

For the complex-valued Gaussian model in (3.17), the magnitude would
be distributed according to (3.20), where η corresponds to the magni-
tude of the signal component, |g(θ)|, and σ corresponds to the standard
deviation of the noise in both the real and imaginary part. The PDF
in (3.20) results from projecting the mass of (3.18) to the positive real
axis along concentric circles, as these circles correspond to the same
magnitude. A few examples of the Rician distribution for different η
and σ = 1, are shown in Fig. 3.1. As can be seen, the distribution is
significantly different from the Gaussian when η ≤ σ.

The variance of a Rice-distributed variable SR is given by the expres-
sion [110]

E
{

(SR − E{SR})2
}

= 2σ2 + η2 − πσ2

2
L2
1/2

(

− η2

2σ2

)

, (3.22)

while the mean is found to be

E{SR} = σ

√
π

2
L1/2

(

− η2

2σ2

)

, (3.23)

where L1/2(·) is a Laguerre function of order 1/2, which can be expressed
in terms of the modified Bessel functions according to

L1/2(x) = ex/2
[

(1− x) I0

(

−x
2

)

− xI1

(

−x
2

)]

. (3.24)

The noise is no longer independent and additive, as both the mean
and the variance depend on |g(θ)|. However, the sample model can be
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Figure 3.2: The relative difference between the mean and variance for the
Rice distribution and the Gaussian distribution, versus the SNR.

written in the same form as (3.17):

|y| = |g(θ)|+ ṽ(|g(θ)|, σ), (3.25)

where the noise term ṽ now depends on the signal magnitude. The Ri-
cian noise complicates the model, which makes estimation of the para-
meters θ more difficult. However, as the SNR increases, that is, |g(θ)|
becomes large compared to σ, the Rician mean and variance converge to-
wards their Gaussian counterparts, as is shown in Fig. 3.2. This reduces
the need to model the data as Rice distributed in high SNR applications,
and enables approximate ML estimation using LS.

3.1.2 Optimization
In numerical optimization, the goal is to select the best parameters val-
ues with respect to a given objective, subject to some constraints. Usu-
ally, the problem is formulated as a minimization or maximization of
some function of the parameters, the optimization criterion. Depending
on the structure of this function, the problem can be convex (or con-
cave for maximization), meaning that there is a unique minimum. A
problem of this type can typically be efficiently solved. For example,
the linear LS problem is convex, and in the unconstrained case there is
a closed form solution, which was given in (3.6). Non-convex problems,
on the other hand, may have multiple stationary points and many lo-
cal optima, meaning that there is typically no closed form solution, nor
is it generally possible to find a numerical minimization method that
obtains the optimal value within a reasonable time frame. For exam-
ple, exhaustive methods can always find the global optimum in theory,
but as the computational complexity grows rapidly with the number of
parameters, such approaches are commonly intractable in practice.

The optimization problems that arise in qMRI are often non-convex.
In specific cases, it might be possible to find the global optimum with
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high probability, but many times a proof of optimality cannot be given.
There are a few ways to sidestep this problem, for example by relax-
ing the criterion or the constraints and solving a closely related convex
problem, or by designing an efficient approximation algorithm that is
essentially closed form, that is, does not rely on non-convex optimiza-
tion. In Chapter 5, an approximate algorithm is used to estimate the
parameters of multiple exponential decays, which is a non-convex prob-
lem.

Even when the problem to be solved is convex, the vast amount of
data usually obtained in MRI can be an issue. To make an algorithm
useful in a practical MR setting it must be fast to execute, preferably
without requiring special hardware.

Convex problems

The commonly used linear LS approach with linear constraints leads to
a convex quadratic program (QP), which can be formulated as

minimize
x

1

2
xTQx+ cTx

subject to Bx ≤ b
, (3.26)

where Q ∈ R
M×M is a positive definite symmetric matrix, B ∈ R

P×M

is the constraint matrix, and c ∈ R
M×1, b ∈ R

P×1 are vectors. The
matrix Q and the vector c are easily obtained from (3.5), by expanding
the criterion:

‖y −Aθ‖2 = ‖y‖2 + θTATAθ − 2yTAθ, (3.27)

where the problem has been assumed to be real-valued. By identifying
θ with x, and omitting ‖y‖2 since it is a positive constant independent
of the optimization variable, we obtain Q = ATA and c = ATy.

Even though QP solvers are relatively efficient, finding the optimal
value can be quite time consuming when the problem size is in the
order of 100,000 parameters. Such large problems are not uncommon in
qMRI, for example, when simultaneously estimating several parameters
per voxel in a 256 × 256 image. By replacing the L2 norm used in the
LS criterion with an L1 norm, the problem can be cast in the form of a
linear program:

minimize
x

dTx

subject to Cx ≤ h
, (3.28)

which typically supports larger problem sizes within a fixed set of hard-
ware and time frame constraints. Using an L1-norm fitting term is
common in applications with outliers, as large residuals are less penal-
ized compared to when using a squared term. In fact, L1-norm fitting is
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the ML estimator in the case of Laplacian noise [23]. However, as men-
tioned in Section 3.1.1, the LS method is often used even when the noise
is not Gaussian, due to its simplicity. Therefore, the L1 norm could be
another a sub-optimal alternative, used to reduce the computation time
for large estimation problems.

Many regularized versions of linear L1 and L2 minimization problems
are convex, for example, the Tikhonov regularization in (3.9). In par-
ticular, L1-norm regularization can be used to obtain sparse estimates,
that is, a parameter vector containing only a few nonzero elements, as
will be discussed next.

Sparse methods
The original problem in sparse estimation is to find a vector θ with at
most J nonzero elements, which minimizes an LS fitting criterion, that
is

minimize
x

‖y −Aθ‖2

subject to ‖Rθ‖0 ≤ J
, (3.29)

for some regularization matrix R. However, the L0 pseudo-norm makes
this problem non-convex. By convex relaxation, we replace the L0 norm
by the L1 norm, which can be shown to induce sparsity, and formulate
the regularized problem:

minimize
θ

‖y −Aθ‖2 + λ‖Rθ‖1, (3.30)

which can be solved efficiently. The main problem of this so called
LASSO (least absolute shrinkage and selection operator) approach is
that the λ has to be chosen somehow. There are several methods for
this available in the literature, for example, the cross-validation ap-
proach [64]. But there are also user-parameter free sparse estimation
algorithms, such as SPICE (sparse iterative covariance-based estima-
tion). Actually, SPICE has been proven to be identical to square-root
LASSO with λ = 1, that is, to solve the problem [3]:

minimize
r

‖y −Ar‖+ ‖r‖1. (3.31)

Sparse methods for solving problems with both linear and nonlin-
ear parameters are particularly interesting. A simple example of the
technique is given in the following, where a sinusoidal model of the form

y(t) =
M∑

m=1

rm sin(ωmt) + v(t), (3.32)

where v(t) is a Gaussian noise, is assumed. Both the number of sinusoids
M , and the parameters {rm, ωm}Mm=1 are unknown, and need to be
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estimated. Although simple in structure, the LS problem

minimize
{rm,ωm}M

m=1

N∑

t=1

∣
∣
∣
∣
∣
y(t)−

M∑

m=1

rm sin(ωmt)

∣
∣
∣
∣
∣

2

(3.33)

is highly nonlinear and multimodal, making it a difficult task to find the
optimum solution by a general iterative minimization method. More-
over, the problem would have to be solved for each M , and a choice
between the resulting candidate solutions would have to be made. With
the sparse approach, we assume an interval of potential ω-values and
sample it on a grid in K points, giving a set of frequencies {ω̃k}Kk=1.
The corresponding sinusoids provide us with a basis, and the remaining
problem in vector form, becomes

minimize
r

‖y −Ar‖2, (3.34)

where r ∈ R
K×1 is the vector of amplitudes with K � M , and A can

be written as

A =








sin(ω̃1) · · · sin(ω̃K)
sin(2ω̃1) · · · sin(2ω̃K)

...
...

sin(Nω̃1) · · · sin(Nω̃K)







. (3.35)

The problem is often underdetermined, meaning that K > N , giving
an infinite number of solutions to (3.34). However, even in the overde-
termined case, for which there is a unique solution to the problem, the
LS-estimated vector r̂ is unlikely to be sparse in the presence of noise.
By solving a regularized problem similar to (3.30):

minimize
r

‖y −Ar‖2 + λ‖r‖1, (3.36)

where λ is suitably chosen, sparsity will be promoted, giving an estimate
r̂ with relatively few nonzero elements. These elements correspond to
a set of ω̂:s, and the number of nonzeroes provides an estimate of M .
The above approach can be used for any model that has a mixture of
linear and a few nonlinear parameters. However, when there are several
nonlinear parameters to be gridded, the matrix dimensions grow rapidly,
often making the columns of A significantly correlated.

Optimization algorithms

Large-scale optimization problems are often solved by efficient interior-
point methods, although other alternatives are also available, such as
the simplex method for LPs, gradient methods, and variants of the
augmented Lagrangian method [28]. The interior-point methods often
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use a barrier function to enforce the constrains, cf. [73]. Given a general
optimization problem of the form:

minimize
x

f(x)

subject to cp(x) ≥ 0

p = 1, . . . , P

, (3.37)

we can define the barrier function as

B(x, ν) = f(x)− ν
P∑

p=1

ln(cp(x)). (3.38)

For ν > 0, any active constraint would lead to an infinite value of B,
and hence the minimum of the barrier function fulfills the constraints. If
we let ν converge to zero, the minimum of B should approach a solution
of (3.37). An iterative minimization, for example, based on Newton’s
method, is performed to find the optimum value. In general, the Newton
method tries to find a stationary point of a function f by iterating the
following equation:

xk+1 = xk − µ [Hf(xk)]
−1∇f(xk), (3.39)

where H is the Hessian operator (the Hessian of f(xk) is assumed to
exist), ∇ is the gradient operator, µ > 0 is the step size, and k ≥ 0
is the iteration number. The method can easily be derived from the
second-order Taylor expansion of f around xk:

f(xk +∆x) ≈ f(xk) + ∆xT∇f(xk) +
1

2
∆xTHf(xk)∆x, (3.40)

which after differentiation with respect to ∆x, and setting the derivative
to zero, gives

∇f(xk) +Hf(xk)∆x = 0. (3.41)

By rearranging and defining the next iterate as xk+1 = xk + ∆x, we
arrive at (3.39) for µ = 1. Effectively, Newton’s method approximates
the criterion surface with a quadratic function around xk, and takes the
minimum of this quadratic as the next estimate xk+1. The iterations
can be shown to converge to a stationary point of the criterion [28].

When the iterates are sufficiently close to the optimum, Newton’s
method converges quadratically. This is typically much faster than the
simple gradient descent method, where each iteration makes a step along
the negative gradient of the function in the current point. This can be
explained by the occurrence of second-order derivative, in the form of the
Hessian, in Newton’s method, making it a second-order method, while
gradient descent is a first-order method. It can be difficult to obtain
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an analytical expression for the Hessian, and numerical methods can be
too expensive computationally, in which case approximate quasi-Newton
methods can be applied. These methods use the gradient to estimate
the Hessian matrix, or its inverse, and can provide faster convergence in
terms of computation time, compared to the full Newton method, while
outperforming the gradient descent.

In practice, the explicit inverse of the Hessian in (3.39) is never com-
puted, but rather a system of linear equations in solved. If the Hessian is
close to singular, problems with convergence can arise. An approach to
alleviate this problem is to modify the Hessian and make it nonsingular.
For example, the Levenberg-Marquardt algorithm uses an approximate
Hessian, and adds a diagonal loading ρI to stabilize the matrix. By
adjusting the value of ρ during the iterations, the algorithm effectively
alternates between Newton and gradient descent. This can be useful to
stabilize the standard Newton method when the Hessian is noninforma-
tive.

Initialization

In nonlinear and multi-modal optimization, finding the global optimum
is the main problem. Given a smooth criterion surface, an iterative
minimization approach will typically converge to a local minimum close
to the starting point. To ensure that the found local minimum is also
global, an initialization point in the attraction domain of the global
minimum needs to be supplied to the minimization algorithm. Either,
an initial guess of the parameters can be obtained from knowledge of the
problem, or other prior information, or some means of estimating the
initial values is needed. By initializing a nonlinear minimization using
an approximate, convex or closed form, solution, it is often possible to
get close to the optimal parameters, although it can be hard to prove
that they are in fact optimal in a practical situation. A few common
techniques for this are: linearization, where a linear LS problem is solved
to find an approximation; subspace methods, where the structure of the
problem leads to a matrix with specific eigenvalues; basis expansion,
where the nonlinearity is linearly parameterized in terms of a set of
nonlinear functions; and the sparse methods previously mentioned.

3.1.3 Input and experiment design

This topic concerns the design of input signals to obtain the most infor-
mative output. Many applications, such as communication and radar,
use signal design to find sequences with good correlation properties, but
it is also of great interest in system identification where design criteria
based on the MSE of the parameters can be used.
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In MRI, one problem is to design signals with specific spectral pro-
files, providing excitation of a specific slice in space while minimizing
artifacts; another is to optimize the sequence parameters, for example,
to maximize the SNR.

There are several physical limitations to RF design, for example, the
hardware used to transmit the signal. The design problem is usually cast
as an optimization problem. Often, this problem is nonlinear, and one
can only hope to find a local optimum. However, since the local optima
typically correspond to a different signals with similar properties, it
is possible to obtain a set of candidate designs by repeatedly solving
the problem with different initializations. Then, the best signal can
be chosen, for example, based on the criterion value, or best in some
other non-optimized respect, given that there are several signals with
sufficiently low criterion values.

For qMRI, the first step is to establish identifiability, that is, to en-
sure that a given set of images is sufficient to uniquely estimate the
parameters of the signal model. This can usually be done by analyzing
the structure of the problem, or by examining the rank of the CRB ma-
trix. A separate problem is to optimize the pulse sequence parameters,
such as TE, TR, and α, with the aim of minimizing the variance of the
estimated parameters. Given a model, as well as the expected set of
parameters, one can compute the CRB as a function of TE, TR, and α,
which will provide a hyper-surface that bounds the optimal estimation
performance. Minimizing the bound enables improvement of the results,
although the actual performance depends on the estimation algorithm
used, and whether or not it can achieve the bound in practice.

3.2 Image processing
This section presents a few concepts from image processing that have
been useful when developing the estimation algorithms presented in this
thesis. For a more general description of the topic, see for example [55].

3.2.1 Image filtering

One of the first image processing examples that usually comes to mind
is image denoising. This is typically performed by filtering or smooth-
ing the image across the spatial dimensions, but denoising can also be
performed in the frequency domain. The main problem in MRI is that
the contrast between tissues, and the fine details of the image, need to
be largely preserved during the filtering.
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Smoothing and sharpening

Smoothing is mainly used for denoising images. There are numerous
ways of smoothing an image, the simplest being averaging, which is
performed in some local region around each voxel of the image. As an
extension, it is possible to perform a weighted average, giving a linear
filter of the form

fk,p(B) =
r∑

m=−r

r∑

n=−r

wm,nbk+m,p+n, (3.42)

where fk,p(B) is the filtered voxel of the image B with index k, p, the
constant r is the size of the filter in space (e.g. r = 1 gives a 3 × 3
region), and {wm,n} is a set of weights that together sum to unity. The
weights can be chosen in many ways, leading to different filters. One
alternative is to obtain the weights from a sampled Gaussian kernel:

wm,n =
1

2πσ2
e−

m2+n2

2σ2 , (3.43)

for which the region r in (3.42) is theoretically infinite, and σ determines
the spatial extent of the filter. In practice, the kernel can be truncated
with good approximation, as the exponential function rapidly decays to
zero. In addition to noise reduction, all linear filtering approaches lead
to unwanted blurring of the images, to some extent.

Another common method is median filtering, which works in a man-
ner similar to the averaging filter, but instead assigns the median value
of the surrounding voxels to the center voxel. This filter is nonlinear and
usually results in less blurring than the linear filter, for a given filter size.
Particularly, impulse noise, or salt-and-pepper noise, which consists of
sparse but large errors, can be efficiently reduced by this method. There
are also more advanced nonlinear approaches to smoothing that attempt
to preserve the edges in the image, such as the bilateral or guided filter
[127, 66].

Smoothing is often performed by averaging, and sharpening can be
obtained by the inverse operation, that is, instead of summing the data,
it is differentiated. Differentiation emphasizes the sharp variations, such
as edges in the image, but also the noise. This can be used for edge
enhancement using both the first and second-order differences. The
discrete five-point Laplacian, given by

∇2bk,p = bk−1,p + bk+1,p + bk,p−1 + bk,p+1 − 4bk,p, (3.44)

will produce an image highlighting rapid changes, and by adding the
filtered image to the original image data, a new sharpened image is
produced. Another alternative is to use a filter based on the magnitude
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of the gradient, which is a nonlinear filter that achieves a result similar
to that of the Laplacian filter [55].

As mentioned, the differentiation also amplifies the noise, making
the sharpening process sensitive to disturbances. In MRI, the problem
consists of preserving edge detail while minimizing the noise. Intuitively,
somehow combining the properties of smoothing and sharpening could
be fruitful in an attempt to achieve this goal. Total-variation-based
methods is one class of algorithms that attempt to solve this problem,
and they are discussed in more detail in the following.

Fourier domain filtering

Smoothing and sharpening can also be performed in the frequency do-
main, where the previously mentioned spatial filters would correspond
to low-pass or high-pass filters in frequency. In MRI, artifacts due to
errors in the data collection can often be identified and mitigated in the
frequency domain. This follows from the fact that the data is collected in
k-space, and sample outliers are easily distinguished from the expected
frequency content. For example, periodic disturbances and ripple arti-
facts can often be eliminated by nulling the corresponding frequencies
in k-space. The inverse Fourier transform then generates a filtered im-
age where the disturbances are suppressed. The impact on the overall
image quality is typically minor if the frequency is high enough, as the
corresponding k-space samples are generally small. Close to the center
of k-space, where the bulk of the image energy is located, it might be
favorable to replace the erroneous data points rather than nulling them.
This can be performed by averaging over some local region, or using
the symmetry properties of the transform to mirror samples in k-space.
In sum, simple post-processing of the k-space samples can provide a
significant improvement of the data quality.

Total variation techniques

Total variation (TV) refers to estimation methods where the algorithms
themselves are allowed to distribute a predefined amount of uncertainty
based on a given criterion. By doing so, it is possible to obtain denois-
ing of the resulting estimates without smoothing the tissue boundaries
and image details. The main idea is that noisy measurements have a
relatively high total variation, in some sense, compared to the noise-
free signal. For example, one can formulate a regularized LS filtering
problem in 1D as

minimize
x

‖y − x‖2 + λV (x), (3.45)

where V (x) ≥ 0 is a measure of the variation, and λ determines the
total amount of variation allowed. The problem can be equivalently
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formulated as a constrained minimization where V (x) ≤ ε, for some
ε > 0, which explicitly bounds V (x). By finding a signal x that is close
to y but has a lower V (x), it is possible to denoise the measurements.
It is straightforward to extend the method to two or more dimensions,
which is useful in image processing.

More generally, LS TV typically leads to an optimization problem of
the form

minimize
x

‖y − g(x)‖2 + λV (x), (3.46)

where g(x) is a vector-valued function of the parameters x. The crite-
rion in (3.46) could, for example, represent a simple linear LS estimation
problem, with smoothness imposed on the result. Using this formalism,
it is possible to go beyond denoising, and perform image deconvolution,
reconstruction, and inpainting [11, 22, 31].

A simple measure of the variation of a vector x that leads to a convex
problem if g(x) is linear, is given by

V (x) =

M−1∑

m=1

|xm+1 − xm| = ‖D1x‖1, (3.47)

where D1 is the first-order difference matrix. The measure in (3.47)
is of L1-norm type, which enables denoising of MR images where the
tissue boundaries are largely preserved. As mentioned, the L1 norm
will promote sparsity of the first-order differences, or equivalently, that
the denoised image x̂ is piecewise constant, which is usually a good
approximation. An L2-norm regularization, on the other hand, would
smooth over the edges, leaving an image with less detail. Total-variation
denoising of T2 estimates based on the L1-norm is used in Chapter 6.

In practice, the choice of V (x) depends on the prior knowledge of the
problem; however, if the resulting optimization problem is non-convex,
it can be difficult to solve. To get reliable performance, it is preferable to
formulate a convex problem, as this gives a well defined result for a given
λ that does not depend on the minimization procedure. Given a choice
of V (x), the problem of choosing λ (or equivalently ε) remains, and a
suitable value for this parameter is essential to reduce the noise without
corrupting the underlying information. This can, for example, be done
based on an estimate of the noise level, or by using cross validation [54].

3.2.2 Phase unwrapping

Complex-valued MRI data contains phase information. This informa-
tion can be used in clinical applications, such as MR angiography [43],
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Figure 3.3: An illustration of the phase wrapping that occurs from (3.48).

but the phase can also be a nuisance parameter, arising due to field in-
homogeneity. The measured complex number in each voxel has a phase
φ defined on the interval (−π, π], which means that a true phase outside
this interval will be wrapped according to

φwrapped = w(φ) , arg(eiφ) = mod(φ+ π, 2π)− π, (3.48)

where arg(·) is the argument of a complex number, and mod(a, b) is
the modulo operation with dividend a and divisor b, where the result
is defined to be positive. An example of a wrapped linear phase is
shown in Fig. 3.3. The wrapping problem arises as it is not possible to
separate a phase φ from φ + k2π, k ∈ Z, based on a single complex
number. However, using additional information such as a sequence of
measurements, it may be possible to unwrap the phase. In MRI, the
assumption that the phase varies smoothly in space or time makes it
possible to track phase increments, detect wraps that occur, and unwrap
these to obtain a better representation of the underlying physics.

Under the assumption of smoothness, the phase unwrapping problem
for 1D sequences is relatively straightforward, and consists of eliminating
jumps in the phase larger than approximately 2π. The procedure may
differ in details, but the simplest approach is to add or subtract 2π to
samples differing by more than 2πk from the previous sample in the
sequence. The constant k ∈ [0.5, 1] enables unwrapping in the presence
of minor noise, and is typically chosen based on the SNR; however,
in Gaussian noise there is always a non-zero probability of erroneous
unwrapping. The described unwrapping procedure follows from the fact
that the derivative (where defined) of the wrapped phase is equal to
the derivative of the true phase, given that the derivative of the true
phase is less than π everywhere [70]. From this property, it can be
seen that integrating the derivative of the wrapped phase will result in
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unwrapping. This can be generalized to the sampled case by computing
the first-order differences and wrapping the result to be in the interval
(−π, π]. However, the differentiation will amplify the high frequency
disturbances in the data, making this approach sensitive to noise.

It should be noted that when the SNR decreases, the phase infor-
mation rapidly deteriorates. This is intuitively clear, as the noise can
almost arbitrarily shift the angle of a vector if the amplitude is small
enough. With random angular fluctuations in the interval (−π, π], it is
impossible to perform successful phase unwrapping with the heuristic
approach above. However, by applying more sophisticated model-based
parametric methods it is still possible to obtain a smooth estimate of
the unwrapped phase. Parametric methods generally require some prior
knowledge to set the model structure. Moreover, even for a given model
structure, it can be problematic to estimate the parameters. For exam-
ple, using the wrapping function defined in (3.48), we can construct the
problem

minimize
θ

‖φwrapped − w (ψ(θ)) ‖2, (3.49)

where ψ(θ) is some predefined phase function depending on the para-
meter vector θ, and wrapping function w(·) acts on its argument ele-
mentwise. This problem is nonlinear, and might be intractable. Fur-
thermore, the standard LS approach is only optimal if the phase noise
is i.i.d. Gaussian, which does not hold when the phases are obtained
from -complex-Gaussian distributed samples. The criterion surface cor-
responding to (3.49) typically has erratic behavior and multiple local
minima. A simple example is shown in Fig. 3.4, where the phase varies
linearly over the dimension under study d, that is, ψn(θ) = θ1dn + θ2,
for a set of known values {dn}Nn=1. Clearly, the chance of finding the
global optimum using a local minimization approach is small, although
applying a brute-force method could be an option if it can be executed
within the given time constraints. It should also be noted that not much
is to be gained from using samples where the phase information is close
to zero, and any estimation algorithm using the phase as input should
take this fact into account.

An alternative is to estimate the phase based on the complex-valued
data directly:

minimize
θ,a

‖y − a� eiψ(θ)‖2, (3.50)

where a ∈ R
+ is the vector of positive signal amplitudes, and � is the

Hadamard product. The advantage of this approach is that the LS
estimates of the parameters are ML in Gaussian noise. As no structure
of a is assumed, we can substitute its LS estimate â = Re

{
y � e−iψ(θ)

}
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into (3.50) to obtain

minimize
θ

∥
∥
∥y − Re

{

y � e−iψ(θ)
}

� eiψ(θ)
∥
∥
∥

2

, (3.51)

or equivalently

minimize
θ

∥
∥
∥Im

{

y � e−iψ(θ)
}∥
∥
∥

2

. (3.52)

It should be noted that there is an ambiguity between the sign of each
a and a shift of the corresponding ψ by π. However, the smoothness of
the function ψ(θ) will ensure that all elements of the LS estimate of a
are of the same sign, which makes this ambiguity easy to resolve.

At first glance, the criterion in (3.52) might seem odd; however, mini-
mizing the imaginary part of the rotated data makes sense, as the phase
is defined relative to the real axis. If the phase function ψ(θ) fully ex-
plains the phase of the data, the corresponding rotated measurements
should have a zero imaginary component. From this reasoning, it is
easy to see that maximizing the real part is also equivalent to (3.52).
Similarly to (3.49), the obtained criterion surface is relatively complex,
even for a linear phase function.

If we normalize the amplitudes of the data to unity and omit the
amplitude variable a, we can express (3.50) as

minimize
θ

∥
∥
∥eiφ − eiψ(θ)

∥
∥
∥

2

, (3.53)

where φ is the phase of the data. By expanding the criterion:
∥
∥
∥eiφ − eiψ(θ)

∥
∥
∥

2

=
(

eiφ − eiψ(θ)
)* (

eiφ − eiψ(θ)
)

(3.54)

= 2
(
N − 1T cos (φ−ψ(θ))

)
, (3.55)

where N is the number of samples, and introducing the second-order
Taylor approximation of cos(x) around zero:

cos(x) = 1− x2

2
+O(x4), (3.56)

the criterion transforms into a sum of squares of the phase errors, and
we arrive at the wrapped LS problem given by (3.49). It should be noted
that normalizing the data affects the noise properties, and therefore, the
estimates obtained from (3.49) can be biased. By introducing a weight
matrix W = diag

(
|y|2

)
, where the magnitude is taken elementwise, we

can take the varying SNR into account, giving the criterion
∥
∥
∥eiφ − eiψ(θ)

∥
∥
∥

2

W

= 2
(
‖y‖2 − (|y|2)T cos (φ−ψ(θ))

)
(3.57)

=
∥
∥
∥y − |y| � eiψ(θ)

∥
∥
∥ , (3.58)
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Figure 3.4: The LS phase unwrapping criterion of (3.49) for a simple linear
phase model ψn(θ) = θ1dn + θ2, and no noise, versus the optimization para-
meters θ1 and θ2. The location of the global minimum is indicated by the red
circle.

which gives a higher weight to the phase errors corresponding to sam-
ples with large magnitude. As seen from (3.58), the same expression is
obtained by setting â = |y| in (3.50), which is a reasonable, although
suboptimal, estimate of a. Again, the expression can be simplified us-
ing the Taylor-series expansion of cos(·), but this also introduces the
wrapping function in (3.48). A parametric temporal phase-unwrapping
approach is presented in Chapter 7.

Many parametric approaches suffer from nonlinearity, which is why
heuristic methods are often used in practice. In 1D unwrapping, the
starting point of the simple nonparametric phase unwrapping approach,
described below equation (3.48), can only offset the unwrapped phase
by a constant. Either a reference point is predefined, meaning that this
constant is known, or the point of reference is arbitrary, in which case
the constant can be omitted. Therefore, the result of 1D phase unwrap-
ping is essentially unique. In two or more dimensions, the result of the
phase unwrapping will depend on the starting point, or points, meaning
that there is no unique solution (up to a constant). This is related to
the fact that the unwrapping is done relative to another sample, and in
higher dimensions, choosing this reference sample can be done in many
ways. Moreover, starting from a sample with poor SNR can propagate
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Figure 3.5: a) The wrapped phase of an in-vivo brain image, and b) the
resulting unwrapped phase using the quality-guided flood-fill approach. The
noisy background was masked in both images.

more errors, compared to using a high SNR starting point. There are
many algorithms for multi-dimensional phase unwrapping available in
the literature, cf. [49] for the details on several 2D methods, including
both global and local unwrapping. Some algorithms are based on op-
timization, while others use heuristics such as branch cuts or network
flow. A simple idea is to estimate the phase quality and start from a
high quality sample, then propagate outwards, each time unwrapping
the neighbor with highest phase quality. This approach is often called
quality-guided flood-fill phase unwrapping. It allows for multiple start-
ing points and can be generalized to higher dimensions, however, these
options will not be considered here. There are several ways of defin-
ing a quality measure, for example, the standard deviation of the local
phase derivative can be used. The first-order differences across both
the x and y-direction are computed, and at voxel (k, p), the standard
deviation of the differences across the four adjoining voxels (k − 1, p),
(k+1, p), (k, p− 1), and (k, p+1) are computed for each direction, and
added together. The resulting matrix contains estimates of the local
variation of the phase in each pixel. A low variation implies a high-
quality phase measure, and by unwrapping the these pixels first, the
errors in the resulting 2D phase map can be suppressed. The quality-
guided flood-fill method performs well for relatively high SNR, but does
not guarantee that the result is free of discontinuities. Moreover, if the
true phase variations are so large that they approach the wrapping lim-
its, the smoothness assumption is invalid and the method may fail. An
example of successful unwrapping of the phase of an in-vivo brain image
using the quality-guided flood-fill approach is shown in Fig. 3.5.





Part II:
Signal processing problems in MRI
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Chapter 4
Off-resonance mapping and banding

removal

4.1 Introduction
One of the challenges of MRI is to acquire an image with high SNR in
a short scan time, and for this the balanced steady-state free precession
(bSSFP) sequence has proven to be of great interest. The main draw-
back of bSSFP is due to off-resonance effects, typically manifesting as
banding artifacts [5, 143]. These artifacts are of major concern, espe-
cially at high field strengths. Off-resonance effects can lead to signal
losses in parts of the image, and techniques for improving image quality
are necessary.

When several acquisitions are made with different phase increments
of the RF excitation, the resulting images can be combined to mini-
mize these off-resonance artifacts. Commonly, two or four phase-cycled
acquisitions are used as a compromise between performance and scan
time. Several image-based techniques have been previously proposed,
such as sum-of-squares, where the square root of the sum of the squared
magnitude of the images is used; or maximum-intensity, where the max-
imum magnitude over all images is combined into one image [5]. These
methods can in some cases give insufficient banding suppression; for ex-
ample, when using small flip angles where the passband in the bSSFP
signal profile is not flat [5]. Additionally, these techniques do not provide
estimates of the model parameters, which can be of interest in qMRI.

Recent works have applied parameter estimation techniques to reduce
banding artifacts in bSSFP. The principle is to use a signal model and
estimate a parameter that is independent of the off-resonance. This
estimate is then used as the band-free image. In [136], the authors treat
the special case occurring when setting the echo time, TE, to zero and
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acquiring data with a specific choice of phase increments. Then, the
off-resonance effects can be removed using an analytical solution named
the cross-solution. The resulting image will, however, have a different
contrast compared to the original images. This is due to the fact that the
parameter estimated relates to the original images through a function
depending on both T1 and T2. The approach is also sub-optimal in the
least squares sense, since it is derived with the assumption of no noise.
This causes problems when the SNR is low, leading to poor estimates.
Furthermore, the method does not provide estimates of all unknown
parameters in the model equation and cannot be directly generalized to
more than four phase-cycled images.

The approach suggested in [104] is to identify some of the unknown
model parameters while assuming the others to be constant. Keeping
the relaxation parameters constant makes the estimates less reliable,
since in practice, the true values can vary significantly over an image.
The approach is based on a manually initialized Levenberg-Marquardt
(LM) nonlinear minimization algorithm applied to magnitude data. The
use of magnitude data makes the estimation less tractable from a mathe-
matical viewpoint, due to the non-differentiability of the absolute value.
Furthermore, as discussed in Section 3.1.1, it changes the noise proper-
ties from a Gaussian distribution to a Rician distribution, making the
NLS criterion sub-optimal (biased).

Another characteristic of bSSFP is the T2/T1-weighted image con-
trast and the subsequent difficulty to sensitize the signal to T1 or T2
alone. There are various techniques to estimate T2 from bSSFP data
[41, 10]. One popular technique is the DESPOT2, which was introduced
in [41], and later improved to account for off-resonance effects [38]. The
DESPOT2 method has the drawback that it needs a T1 estimate ob-
tained prior to the T2 estimation, which requires the acquisition of an
additional dataset. In [92] an outline of a method for simultaneous
estimation of T1 and T2 from bSSFP data was proposed. The method
is evaluated using 12 images, which is more than what is needed for
DESPOT2, and no accuracy analysis has so far been presented for this
technique. Both aforementioned methods [38, 92] utilize a variable flip
angle in combination with phase cycling.

There are also methods for T1 estimation as well as simultaneous
estimation of T1 and T2, using inversion recovery bSSFP [106, 108].
However, neither of these methods take off-resonance effects into ac-
count. Furthermore, it is shown that in the presence of off-resonances,
the method in [108] can suffer from significant bias.

In this chapter, we first describe a parameter estimation algorithm for
the phase-cycled bSSFP signal model with the aim of reducing banding
artifacts. We use complex-valued data to estimate all unknown para-
meters in a model derived from [45]. From the parameter estimates
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we can reconstruct band-free images with bSSFP-like contrast. As a
first step, we derive a fast and robust linear method based on least
squares to approximately solve the estimation problem. This eliminates
the need for user-defined parameters, such as manual initialization. In
the second step, we fine tune the estimates using a nonlinear iterative
minimization algorithm. The obtained estimates can then be used to
reconstruct band-free images. The proposed algorithm can be applied
to datasets regardless of the used echo time (TE) and repetition time
(TR); does not rely on any prior assumption on the flip angle (α); and
can be used with any number of phase-cycled images larger than or
equal to three. Here, we will focus on four-image datasets, since they
enable the parameter estimation approach, and generally provide better
banding suppression compared to using two images. We then proceed to
generalize the algorithm to simultaneously estimate T1 and T2 and the
equilibrium magnetization including coil sensitivity (KM0) from phase-
cycled data. We derive the CRB for the bSSFP model to determine
the statistical efficiency of the proposed algorithm, as well as the max-
imum theoretical accuracy we can expect when estimating T1 and T2
simultaneously, using phase-cycled bSSFP.

4.2 Theory

4.2.1 Signal model

In bSSFP imaging, the complex signal, S, at an arbitrary voxel of the
n:th phase-cycled image can be modeled as [45, 79]

Sn = KMe−
TE
T2 eiΩTE 1− ae−i(Ω+∆Ωn)TR

1− b cos [(Ω +∆Ωn)TR]
+ vn, (4.1)

where we have the following definitions:

M = iM0
(1− E1) sinα

1− E1 cosα− (E1 − cosα)E2
2

,

a = E2,

b = E2
1− E1 − E1 cosα+ cosα

1− E1 cosα− (E1 − cosα)E2
2

.

(4.2)

Furthermore, E1 = e−TR/T1 , E2 = e−TR/T2 , K is the complex-valued
coil sensitivity, M0 the equilibrium magnetization, T1 and T2 are the
longitudinal and transverse relaxation times, respectively, α is the flip
angle, ∆ΩnTR the user-controlled phase increment, TE the echo time,
and TR the repetition time. We also define the joint variable KM0,
which describes the equilibrium magnetization perturbed by the coil
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sensitivity. The off resonance corresponds to Ω = 2πγ∆B0 = 2πfOR,
where γ is the gyromagnetic ratio, ∆B0 is the effective deviation from
the ideal static magnetic field strength, including both tissue suscepti-
bility and inhomogeneities, and fOR is the corresponding off-resonance
frequency. Finally, vn denotes the noise, which is assumed to be i.i.d.
complex-Gaussian distributed.

If the data is acquired by changing the center frequency, which mimics
phase cycling, an extra shift of ∆Ωn is added in the first exponential
term of (4.1), giving

S̃n = KMe−
TE
T2 ei(Ω+∆Ωn)TE

1− ae−i(Ω+∆Ωn)TR

1− b cos [(Ω +∆Ωn)TR]
+ vn. (4.3)

This model will not be used here, but as will be shown in the following,
it is straightforward to modify the algorithms presented in this chapter
to handle center-frequency shifting.

There are five real-valued unknown parameters in (4.1) and (4.2)
that can be estimated: Ω, Re{KM0} , Im{KM0} , T1, and T2. The
parameters assumed to be known are: ∆Ωn, α, TE, and TR; however,
as will be shown next, α does not have to be known for reconstructing
band-free images, but only to get explicit estimates of KM0 and T1.

We introduce the following variables:

S0 = KMe−TE/T2 , θ = ΩTR,
∆θn = ∆ΩnTR, θn = θ +∆θn.

(4.4)

This enables us to rewrite the voxelwise signal model in (4.1) as

Sn = S0e
iθTE/TR 1− ae−iθn

1− b cos θn
+ vn = gn(u) + vn, (4.5)

where gn(u) is the noise-free data model of the n:th phase-cycled image,
and the vector of new unknown model parameters is denoted by u =
[θ, Re{S0} , Im{S0} , a, b]T. Acquiring images with different phase
increments ∆θn allows us to estimate the unknown model parameters
of (4.5). Using these parameters, we can reconstruct a band-free image
from the model. It can be noted that α does not explicitly occur in
(4.5), and hence, no prior information regarding the flip angle is needed
when using (4.5) for band reduction.

Even though the phase increments can be arbitrary, using four im-
ages (N = 4) with the phase increments ∆θ = [0, π/2, π, 3π/2]

T
is

common practice and will therefore be considered here as well. It is pos-
sible to optimize the phase increments in some sense, especially if some
prior information is available. However, a preliminary study [15] showed
that the gain from doing so is small, assuming no prior knowledge, and
therefore, this option will not pursued further here.
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4.2.2 Derivation of the signal model

The model in (4.1) can be derived from the Bloch equations (2.3). The
following derivation was inspired by [45], but generalized to account
for an arbitrary echo time TE, and to accommodate the use of phase
cycling.

Assume that we have a right-handed coordinate system with the z-
axis along the static magnetic field B0. The magnetization vector (M)
immediately before the kth RF pulse is related to that after by a simple
rotation of −α. Assuming that the pulse is along the x-axis, we have

M(kTR+) = Rx(−α)M(kTR−), (4.6)

where the matrix

Rx(−α) =





1 0 0
0 cosα sinα
0 − sinα cosα



 , (4.7)

describes a rotation around the x-axis. Furthermore, we have defined
M(t±) = limτ→t± M(τ). With linear phase cycling, the phase of the
pulse will be incremented by the same phase for each repetition. Intro-
ducing a coordinate system which aligns with the RF phase at each exci-
tation, we can still express the flips as rotations around the x-axis. Dur-
ing each TR, free precession causes the magnetization to rotate about
the z-axis, and relaxation causes an exponential recovery towards ther-
mal equilibrium (M0). When using a discretely rotating frame that
rotates with the linear phase increment, an additional rotation about
the z-axis (equal and opposite the phase increment) is introduced. Us-
ing the same type of rotation matrix defined in (4.6), but now properly
modified to give a rotation around the z-axis, we get the following ex-
pression:

M((k + 1)TR−) =

Rz(ΩTR)Rz(∆ΩTR)D(TR)M(kTR+) + (1− E1)M0, (4.8)

where D(t) = diag
(
[e−t/T2 , e−t/T2 , e−t/T1 ]

)
is a damping matrix, E1 =

e−TR/T1 , M0 = [0, 0, M0]
T is the equilibrium magnetization directed

along the z-axis, Ω = 2πγ∆B0 corresponds to the off-resonance fre-
quency in radians per second, and ∆ΩTR is the user-controlled phase
increment of the RF pulse.

Substituting (4.8) into (4.6) and using the fact that M((k+1)TR+) =
M(kTR+) at steady-state, the resulting system of equations can be
solved to obtain M(TR+), where the arbitrary integer k has been omit-
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ted to simplify the notation. The solution is

M(TR+) = (I−Rx(−α)Rz(ΩTR)Rz(∆ΩTR)D(TR))
−1×

(1− E1)Rx(−α)M0. (4.9)

At the echo time TE, the free precession has rotated the magnetization
in the transverse plane by an angle 2πγB0TE = ΩTE under decay from
the initial M(TR+). This can be expressed as

M(TE) = Rz(ΩTE)D(TE)M(TR+). (4.10)

Note that there is no accumulation of phase due to the rotation of
the frame, since the frame rotates in discrete steps just before each
excitation.

We are only interested in the transverse component of (4.10). Ex-
pressing it as a complex number Sn = Mx(TE) + iMy(TE) and simpli-
fying, we get

Sn =Me−
TE
T2 eiΩTE 1− ae−i(Ω+∆Ωn)TR

1− b cos [(Ω +∆Ωn)TR]
, (4.11)

where we have defined

M = iM0
(1− E1) sinα

1− E1 cosα− (E1 − cosα)E2
2

,

a = E2,

b =
E2(1− E1)(1 + cosα)

1− E1 cosα− (E1 − cosα)E2
2

,

(4.12)

and E2 = e−TR/T2 . Including a coil sensitivity K and a multiplicative
constant, we arrive at the expression in (4.1).

4.2.3 The Cramér-Rao bound

For the model in (4.5) the Jacobian vector in the FIM of (3.14) is given
by

∂gn(u)

∂u
=

eiθ
TE
TR

1− ae−iθn

1− b cos(θn)











S0

(

i ae−iθn

1−ae−iθn
− b sin(θn)

1−b cos(θn)
+ i TETR

)

1
i

S0
e−iθn

1−ae−iθn

S0
cos(θn)

(1−b cos(θn))











T

. (4.13)
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The CRB matrix CCRB is then obtained through (3.12).
Additionally, we derived the CRB with respect to uo = [θ, Re{KM0} ,

Im{KM0} , T1, T2]T, using Matlab’s Symbolic Math Toolbox. This
was done to draw conclusions about the initial estimation problem based
on the model in (4.1).

4.2.4 The LORE-GN algorithm

To estimate the unknown parameters and remove the off-resonance ar-
tifacts, we propose a two-step algorithm. The first step is named Lin-
earization for Off-Resonance Estimation (LORE). The second step is
a Gauss-Newton (GN) nonlinear search, hence we name the full algo-
rithm LORE-GN. In the first step we rewrite the model in (4.5) so that
it becomes linear in the unknown parameters, by making use of an over-
parameterization. This enables the application of ordinary linear least
squares (LS), which is both fast and robust. However, the resulting esti-
mates will be biased in general. In the following step, the final estimates
are obtained using GN, initialized with the LORE estimates. This re-
moves any bias and makes the estimates NLS optimal, which under the
assumption of identically distributed Gaussian noise is the maximum
likelihood (ML) estimate.

From the estimates of S0 ∈ C and a, b, θ ∈ R it is possible to recover
the original parameters uo by successively inverting the equations for a
and b in (4.2), and substituting the results. We have

Ê1 =
â(1 + cosα− âb̂ cosα)− b̂

â(1 + cosα− âb̂)− b̂ cosα
,

Ê2 = â,

(4.14)

which in turn can be used to compute the estimates:

T̂1 = −TR/ log(Ê1),

T̂2 = −TR/ log(Ê2),

ˆKM0 = Ŝ0
1− Ê1 cosα− (Ê1 − cosα)Ê2

2

ie−TE/T̂2(1− Ê1) sinα
.

(4.15)

From (4.15) it is clear that T2 can be estimated without any knowledge
of the flip angle α. However, to obtain KM0 and T1, an estimate of
α is needed. Assuming a constant flip angle will introduce errors since
the effective flip can vary significantly over the image. For example,
the T1 dependence on α can be quite sensitive, and a small error in the
flip angle can lead to significant changes in the estimated T1. Several
techniques for estimating the flip angle (B1 mapping) are available in
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the literature, see for example [36, 137, 103]. Furthermore, since M0 is
ideally real-valued, the phase of K can also be obtained, giving a partial
separation of the two variables.

Step 1: Parameter estimation using LORE
For the LORE algorithm, we introduce the following complex-valued
parameters:

η = S0e
iθTE/TR,

β = S0ae
iθ(TE/TR−1),

ζ = beiθ.

(4.16)

Note the slight over-parameterization with six real-valued parameters
as opposed to five in (4.5). This enables us to rewrite the noise-free
part of (4.5) as

Sn =
η − βe−i∆θn

1− Re{ζei∆θn} . (4.17)

If center-frequency shifting is used instead of phase cycling, we can use
the identity Sn = S̃ne

−i∆θnTE/TR, which follows from (4.1), (4.3), and
(4.4). Multiplying the samples S̃n with the known factor e−i∆θnTE/TR

enables direct use of (4.17) and the following algorithm, in conjunction
with frequency-shifted data.

To simplify the notation we introduce the subscripts r and i to denote
the real and imaginary part, respectively. Multiplying both sides by the
denominator we can now express (4.17) in linear form:

Sn [1− ζr cos∆θn + ζi sin∆θn] = η − βe−i∆θn . (4.18)

Furthermore, the noise is amplified by at most a factor of two from this
operation, since it can be shown that 0 ≤ b ≤ 1, which, in turn, implies
that |1− ζr cos∆θn + ζi sin∆θn| ≤ 2. Moving the unknown variables
to the right hand side and gathering the real and imaginary parts of Sn

separately in a vector yn = [Sr,n Si,n]
T
, we can write (4.18) in matrix

form:

yn =











1 0
0 1

− cos(∆θn) sin(∆θn)
− sin(∆θn) − cos(∆θn)
Sr,n cos(∆θn) Si,n cos(∆θn)
−Sr,n sin(∆θn) −Si,n sin(∆θn)











T

︸ ︷︷ ︸

An











ηr
ηi
βr
βi
ζr
ζi











︸ ︷︷ ︸

x

. (4.19)

By stacking all measurements in a vector y = [y1 · · · yN ]
T
, and con-

structing the matrix A =
[
AT

1 · · · AT
N

]T
, where N is the number of
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phase-cycled images, we obtain a model of the form y = Ax. Using
(3.6), the LS estimate of x is readily found as:

x̂ = (ATA)−1ATy. (4.20)

The estimates of the sought parameters in (4.5) can then be obtained
as

θ̂ = − arg
(

β̂/η̂
)

,

â = |β̂/η̂|,
b̂ = |ζ̂|,
Ŝ0 = η̂e−iθ̂TE/TR,

(4.21)

where arg(·) denotes the phase of a complex number. The information
in ζ regarding the off-resonance is not used since ζ can be small in mag-
nitude, leading to unreliable estimates of θ. While LORE can provide
accurate estimates, they are sub-optimal in the NLS sense, as the noise
enters the regressor matrix A through the measured data Sn. To tackle
this, the LORE estimates can be used as an initial guess for the next
step.

Step 2: Fine tuning using Gauss-Newton
We propose to use a Gauss-Newton iterative method to truly minimize
the NLS and further improve the results. GN is chosen since it is simple,
computationally efficient, and has fast convergence [114]. However, this
minimization method is unconstrained, so any physical constraints on
the parameters cannot be taken into account. Given a good initial
estimate, here provided by LORE, GN converges to the correct global
optimum with high probability. This is what distinguishes LORE-GN
from other general nonlinear methods.

The NLS criterion is given by

L(u) =
N∑

n=1

|Sn − gn(u)|2. (4.22)

Letting r denote the residual vector, according to

r =

[
Re{S}
Im{S}

]

−
[
Re{g(u)}
Im{g(u)}

]

, (4.23)

the update formula for GN with the search direction pk is

uk+1 =uk + cpk = uk + c(JT
k Jk)

−1JT
k rk, (4.24)

where Jk = J(u)
∣
∣
u=uk

is the Jacobian matrix evaluated at the cur-

rent point in the parameter space uk. In the same manner, we de-
rived the GN algorithm with respect to the original model parameters
uo = [θ, Re{KM0} , Im{KM0} , T1, T2]T.



66 Off-resonance mapping and banding removal

The step length c is chosen by back-tracking so that the Armijo con-
dition is fulfilled, that is, c = 2−m, where m is the smallest non-negative
integer that fulfills

L(uk+1) ≤ L(uk)− µcrTk Jk(J
T
k Jk)

−1JT
k rk, (4.25)

and µ ∈ [0, 1] is a constant [90]. The second term of the right-hand-
side of (4.25) is proportional to both the step length and the directional
derivative of the criterion along the search direction, and it is used to
enforce a sufficient decrease in the criterion. Similarly, if the function
changes rapidly along the search direction, the step will be made smaller.
A stopping condition based on the norm of the gradient ‖JT

k rk‖ was
used. In the following, µ was set to 0.5 and the stopping condition to
‖JT

k rk‖ < 10−8.
The obtained estimates can then be used to reconstruct band-free

images with bSSFP contrast by using the model in (4.5), setting θ = 0,
and letting ∆θ be any constant value. When considering the explicit
parameter estimates, however, phase wrapping and nonphysical optima
can cause ambiguities. These problems are treated in the next section.

The Matlab code for the algorithm is available for general use at:
https://github.com/AAAArcus/LORE-GN

4.2.5 Post-processing

By analyzing the model, a few interesting properties can be seen. The
following equation holds:

S0e
iθTE/TR 1− ae−iθn

1− b cos θn
=

S0e
∓iπTE/TRei(θ±π)TE/TR 1 + ae−i(θn±π)

1 + b cos(θn ± π)
. (4.26)

This means that for a set of optimal parameters a, b, θ, and S0, the
NLS criterion will have another global optimum at ã = −a, b̃ = −b,
θ̃ = θ ± π, and S̃0 = S0e

∓iπTE/TR. It can be shown that a and b are
positive, and hence, we can remove the resulting non-physical minima.
It should be noted that LORE provides a, b ≥ 0 by design, and does
not suffer from this ambiguity; however, GN is unconstrained and could
potentially estimate negative a and b. In practice, if a minimization
algorithm is initialized close to a feasible optimum, this is unlikely to

https://github.com/AAAArcus/LORE-GN
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occur. Furthermore, we have

S0e
i(θ+2πk)TE/TR 1− ae−i(θn+2πk)

1− b cos(θn + 2πk)
=

S0e
i2πkTE/TReiθTE/TR 1− ae−iθn

1− b cos θn
, ∀k ∈ Z, (4.27)

that is, a shift of θ by 2πk is equivalent to a phase shift of S0 by
2πkTE/TR. The estimate of θ is confined in the interval (−π, π]
(wrapped phase), meaning that if the true θ is outside of our estimation
interval, we will obtain the wrong phase of S0. The number of possible
S0 estimates is the smallest integer k for which kTE/TR is an integer,
which could be a large number. In practice, however, the phase will only
wrap a few times, since it is proportional to the deviation of the static
magnetic field B0, and the number of solutions will be further limited
by this fact. It is important to realize that the magnitude signal is not
affected by (4.26) and (4.27), and hence, the post-processing step is not
needed for band reduction. The problems only arise when estimating
the absolute off-resonance and a complex-valued S0, in which case phase
unwrapping is needed to get consistent estimates. By assuming that θ is
close to zero in the center of the image, which can be obtained through
proper shimming, we can unwrap the estimated phase to obtain k in
(4.27) in each voxel, and then compensate our S0 estimates according
to

Ŝ0u = Ŝ0e
−i2πkTE/TR. (4.28)

Given that proper shimming has indeed been ensured, we obtain the
true estimate of S0. Phase unwrapping in two or three dimensions is
a common problem in MRI, and there are several methods available
in the literature, see for example [32] for a review. Here, a Matlab

implementation of the quality-guided 2D phase-unwrapping algorithm
was used [49], see Section 3.2.2 for more details.

The two correction steps, that is (4.26) and phase unwrapping to-
gether with (4.28), constitute the post-processing step, which can be
used to avoid some local minima of the criterion function in (4.22).

4.3 Methods

4.3.1 Simulations and the CRB

Simulations were performed with the following parameters:

T1 = 675 ms, T2 = 75 ms, KM0 = 1
α = 30∘, TR = 5 ms, TE = 2.5 ms.

(4.29)
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These parameters were chosen as a representative case targeting brain
white matter at 1.5 T, and they were the basis of all simulations unless
stated otherwise.

The simulated data was generated by adding i.i.d. circular complex-
Gaussian noise of appropriate variance σ2 to the model gn(u) in (4.5).
The variance was chosen to achieve a certain SNR as defined by

SNR =

∑N
n=1 |gn(u)|
Nσ

, (4.30)

which is the common definition of SNR in the MRI community [89].
The root mean square error (rMSE) of the parameter estimates is

defined as

rMSE(ẑ) =

√
√
√
√ 1

M

M∑

m=1

|ẑm − z|2, (4.31)

where ẑm is the parameter estimate in simulation m, z is the true para-
meter value, and M is the number of simulations.

The simulations and calculations were performed in Matlab on an
HP desktop computer with a 2.8 GHz Intel Core i7 860 quad-core pro-
cessor and 16GB RAM. All computation times were measured when
running a single thread.

Monte Carlo simulations provided the rMSE of the parameter esti-
mates. The performance of the proposed algorithm was compared to
1) the LM algorithm suggested by Santini and Scheffler [104], 2) LM
with our suggested post-processing step (LMpost), and 3) the optimum
performance given by the CRB. The standard Matlab LM implemen-
tation in the function “lsqnonlin” was utilized. The estimates obtained
with LORE were also included in the comparison to illustrate the accu-
racy of this linear approximation algorithm, and hence, the accuracy of
the initial estimates used by GN. The cross-solution proposed in [136]
is not included here, as it does not estimate the model parameters.

To illustrate the CRB of T1 and T2, the minimum SNR needed to
obtain a 5% relative standard deviation (RSD) in the estimates was
calculated. The RSD was defined as the CRB standard deviation of
the parameter estimate, relative to the true parameter value, that is
for parameter j in the CRB matrix CCRB, RSDj =

√

[CCRB]jj/uj .
Numerical simulations were performed for true parameter values in the
ranges T1 = 100− 3000 ms and T2 = 5− 200 ms.

4.3.2 Phantom and in-vivo data

A phantom and an in-vivo brain dataset was acquired using a 1.5 T
scanner (GE Healthcare, Milwaukee, WI). Each dataset consisted of
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four complex-valued 3D bSSFP images with linear phase increments of
0, π/2, π, and 3π/2. The scan parameters were: FOV = 24× 24× 16
cm3, matrix size = 128× 128× 32, TR = 5 ms, TE = 2.5 ms, α = 30∘.
The phantom dataset was included since the banding artifacts remain-
ing after the processing are easily visualized when the ideal intensity
is uniform. For demonstration purposes, in order to induce more sig-
nificant banding artifacts in the phantom and the in-vivo datasets, the
automatic shimming was disabled at 1.5 T. The estimated average SNR
was 170 and 33 for the phantom and in vivo data, respectively.

Similarly, an in-vivo brain dataset was acquired using a 7 T system
(GE Healthcare). The scan parameters were as follows: FOV = 20 ×
20 × 16 cm3, matrix size = 200 × 200 × 160, TR = 10 ms, TE = 5
ms, α = 10∘. High-order shimming was used to achieve best-possible
field homogeneity. The estimated average SNR was 11. This dataset was
included to show that the proposed method can be applied to higher field
strengths, where banding artifacts are typically more significant. Also,
the low flip angles used at high field strengths due to specific absorption
rate (SAR) constraints give a non-flat passband in the bSSFP profile,
which is problematic for many of the competing approaches. The longer
TR for the 7 T dataset is motivated by the application in [139], where
phase-cycled bSSFP at 7 T is used for high resolution imaging of the
hippocampus.

Before running the LORE-GN algorithm, the data was masked to
remove the background, thereby reducing the computation time. This
was done by thresholding the sum-of-squares image and masking voxels
with intensity below a certain percentage of the maximum value, in this
case 15% for 1.5 T, and 6% for 7 T. The resulting number of computed
voxels was 9467, 22712, and 22844, for the 1.5 T phantom, 1.5 T in vivo,
and 7 T in vivo data, respectively.

Here we reconstructed the images at ∆θ = π/2 to be able to compare
directly with one of the original phase-cycled images. This corresponds
to the image closest to maximum SNR reconstruction for both white and
gray matter. Since the computed reconstructions, as well as the the
collected phase-cycled images, are complex-valued, the corresponding
magnitudes were used when displaying the images.

4.4 Results

4.4.1 Simulations and the CRB
The results of the Monte Carlo simulations, based on 10000 noise real-
izations, are shown in Fig. 4.1. As can be seen, the LORE-GN algorithm
is efficient when estimating the parameters of (4.1) given an SNR above
5, as it achieves the CRB; and furthermore, LORE alone has compara-
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c) â.
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Figure 4.1: rMSE vs. SNR for the parameter estimates of a) θ̂ (degrees),

b) Ŝ0, c) â, and d) b̂, using the different methods, and the associated CRB.
The results are based on 10000 Monte Carlo simulations. The true values were
θ = 0, S0 = 0.1207i, a = 0.9355, and b = 0.4356.

ble performance in this case. SNRs below 5 have been excluded since
the variance is bound to be high, which would generally not result in
useful estimates.

Indirect estimates of T1, T2 and KM0 can be obtained from (4.15),
and the corresponding performance is shown in Fig. 4.2. In these fig-
ures, outliers have been removed at the lower SNR values. This was
done by omitting estimates with an absolute distance larger than 20
CRB standard deviations from the true value. The reason for removing
outliers is that single large values, caused by a noise realization leading
to singularity, can have a great impact on the rMSE values, but these
cases are easily detected and removed. The estimates in Fig. 4.2 have
a rather high variance in general, and an SNR above 50 is needed to
achieve the CRB for T1 and T2.

Figures 4.3a and 4.3b show how the SNR needed for accurate T1 and
T2 estimation varies for different true values of T1 and T2. It can be seen
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b) T̂2.
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Figure 4.2: rMSE vs. SNR for the indirect parameter estimates of a) T1, b)
T2, and c) KM0, using the different methods, and the associated CRB. The
results are based on 10000 Monte Carlo simulations. The true values were
T1 = 675 ms, T2 = 75 ms, and KM0 = 1.
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that the minimum required SNR is generally quite high. For example,
an SNR of roughly 72 is needed to estimate the relaxation parameters
of white matter and gray matter in the brain with 5% RSD.

4.4.2 Phantom example

Four phase-cycled images from a central slice of a 1.5 T 3D phantom
dataset, all showing some degree of banding, are shown in Fig. 4.4a. The
LORE-GN reconstructed image at ∆θ = π/2 is shown in Fig. 4.4b, to-
gether with the sum-of-squares, maximum-intensity, and cross-solution
images in Figs. 4.4c, 4.4d, and 4.4e, respectively. The proposed method
results in an image showing no bands, while in the sum-of-squares
and maximum-intensity images, some artifacts still remain. The cross-
solution gives a uniform image, but has an intensity corresponding to
the parameter S0. The off-resonance frequency estimated by LORE-
GN is shown in Fig. 4.4f. For comparison, the off-resonance was also
estimated using two gradient-echo images with TE = 4 and 5 ms, re-
spectively, and computing the field map from the phase difference of
these images as is described in [9]. The result is shown in Fig. 4.4g.
As can be seen, LORE-GN provides a smooth low noise estimate that
corresponds well with the gradient echo based technique.

4.4.3 In-vivo examples

The phase-cycled images from a central slice of the 1.5 T 3D in-vivo
dataset are shown in Fig. 4.5a. LORE-GN was applied to estimate the
model parameters. The reconstructed image at ∆θ = π/2 is shown in
Fig. 4.5b, together with the sum-of-squares, maximum-intensity and
cross-solution images in Figs. 4.5c, 4.5d and 4.5e, respectively. As
expected, banding artifacts are more subtle than in the phantom ex-
periments. By scaling and subtracting the sum-of-squares, maximum-
intensity and cross-solution images from the LORE-GN estimate, the
differences can be visualized more clearly. These images are shown
in Figs. 4.5f, 4.5g and 4.5h, respectively. Sum-of-squares shows some
nonuniformity compared to the proposed estimate, while the maximum-
intensity and cross-solution approaches give a similar level of uniformity.
Using any constant initialization of LM seemed to give estimation errors
in some parts of the image, leading to defects in the reconstruction. An
example of this is shown in Fig. 4.6, where the upper right corner of
the image has been zoomed in to visualize the problem more clearly.
The image was reconstructed at ∆θ = π/2, similarly to Fig. 4.5b. In
Fig. 4.7, additional LORE-GN reconstructions at different ∆θ for the
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a) Estimating T1.
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Figure 4.3: SNR needed to achieve a standard deviation equal to 5% of the
true value of the parameters a) T1, and b) T2. The values for T2 > T1 are
excluded (gray) and the SNR range is saturated at a maximum of 400.
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a) Phase-cycled images.

b) LORE-GN. c) Sum-of-squares. d) Maximum-
intensity.

e) Cross-solution.
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Figure 4.4: a) 1.5 T phantom dataset of four images with phase increments
0, π/2, π, 3π/2, b) the reconstructed image with ∆θ = π/2, c) the sum-of-
squares image, d) the maximum-intensity image, e) the cross-solution estimate,
f) the estimated off-resonance frequency, and g) the reference off-resonance
frequency. LORE-GN and the cross-solution show a uniform intensity, while
bands still remain in the sum-of-squares and maximum-intensity images. The
estimated average SNR of the data was 170. The automatic shimming was
disabled to induce more significant banding artifacts. Each image in b)–e) is
displayed with the same scale as the original images in a), and all images have
been cropped prior to display.
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Table 4.1: Average Matlab run times in seconds for the different methods
and the 1.5 T datasets.

Dataset
Phantom In vivo

LORE 1.5 3.6
LORE-GN 16 40
LM 122 245
LMpost 123 247

1.5 T in-vivo data of 4.5a are shown. As can be seen, the SNR and
contrast vary depending on the reconstruction.

Four phase-cycled images from a central slice of the 7 T 3D in-vivo
dataset are shown in Fig. 4.8a. Here LORE was used alone to esti-
mate the parameters, due to the relatively low SNR. The reason for
this will be further explained in the discussion. In Fig. 4.8b the recon-
structed image at ∆θ = π/2 is shown, together with the sum-of-squares,
maximum-intensity and cross-solution images in Figs. 4.8c, 4.8d and
4.8e, respectively. No banding can be seen with LORE at this low flip
angle, while sum-of-squares and maximum-intensity do not fully sup-
press the bands, as indicated by the arrows. The cross-solution method
has problems due to the low SNR, and the resulting image is severely
degraded.

4.4.4 Run times

The run times for the phantom and the in-vivo data are shown in Table
4.1. The current implementation of LORE-GN is approximately 7 times
faster than using LM with a fixed initialization. It can also be seen that
LORE accounts for less than 10% of the LORE-GN run time, providing
a speedup factor of approximately 80 compared to LM. The algebraic
post-processing used in LMpost has an insignificant impact on the run
time.

4.5 Discussion
The fast linear algorithm LORE is the main contribution in this chapter.
In many cases, LORE provides accurate estimates on its own, but it
can also be used to initialize a nonlinear algorithm minimizing the NLS
criterion. By adding post-processing steps we can also separate between
the several optima that are inherent to the model, to obtain consistent
parameter estimates. Using these estimates, we can reconstruct band-
free images through the model in (4.5). As mentioned in 4.2.4, the
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a) Phase-cycled images.

b) LORE-GN. c) Sum-of-squares. d) Maximum-
intensity.

e) Cross-solution.

f) Difference image
c)−b)

g) Difference image
d)−b)

h) Difference image
e)−b)

Figure 4.5: a) 1.5 T in-vivo brain dataset of four images with phase increments
0, π/2, π, 3π/2; b) the reconstructed image with ∆θ = π/2; c) the sum-
of-squares image; d) the maximum-intensity image; e) the estimate obtained
with the cross-solution. The relative difference between the proposed estimate
and: f) sum-of-squares, g) maximum-intensity, and h) cross-solution; where
the difference in average intensity has been removed, shows that some bands
remain in the sum-of-squares image. The estimated average SNR was 33. The
automatic shimming was disabled to induce more significant banding artifacts.
Each image in b)–e) is displayed with the same scale as the original images in
a).
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Figure 4.6: A zoomed-in example of the ∆θ = π/2 reconstruction from LM
with constant initialization when applied to the 1.5 T in-vivo data of Fig. 4.5a.
The reconstruction has defects due to convergence issues of the LM algorithm.

reconstructed data is the ML estimate of the true signal, under the
Gaussian assumption, and is hence minimally distorted by noise.

4.5.1 Simulations and the CRB

The case shown in Fig. 4.1 was chosen to illustrate when LM fails due
to wrong initialization of θ. This leads LM into an ambiguous optimum,
which is the reason for the poor performance where the rMSE is high
and remains constant when increasing the SNR. The suggested post-
processing mostly corrects for this, however, noise minima can occur at
low SNR, making the initialization increasingly important. This can be
seen in Fig. 4.1 as an increased rMSE for all parameters when using
LMpost compared to LORE-GN at low SNR.

LORE and LORE-GN show robustness at low SNR while the other
methods sometimes give outliers. This is, for example, seen in Fig. 4.1d
where the LORE rMSE is even slightly below the CRB at low SNR. This
is possible due to the biased estimates provided by LORE. However,
the problem gets quite sensitive at low SNR when only four phase-
cycled images are used, which can lead to outliers. For LORE-GN,
this is mainly a problem when estimating T1, T2 and KM0, which is
why outliers were removed when generating Fig. 4.2. It can be seen
in Fig. 4.2 that the rMSEs at low SNR are typically higher for LORE-
GN than LORE. This can be explained, as GN involves the inversion
of a matrix, and for high noise levels, this matrix could potentially be
close-to-singular. Therefore, it is advisable to use LORE alone in these
cases, or to apply a gradient-based method instead of GN, which does
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∆θ = 0 ∆θ = π/4

∆θ = 3π/4 ∆θ = π

Figure 4.7: Reconstructions with different ∆θ using the LORE-GN estimates
obtained from the 1.5 T in-vivo dataset of Fig. 4.5a. Each image is displayed
in a different scale to make the median intensity comparable. As can be seen,
the contrast and SNR of the reconstruction depend on ∆θ.
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a) Phase-cycled images.

b) LORE. c) Sum-of-squares. d) Maximum-
intensity.

e) Cross-solution.

f) LORE
(zoomed-in).

g) Sum-of-squares
(zoomed-in).

h) Maximum-
intensity

(zoomed-in).

i) Cross-solution
(zoomed-in).

Figure 4.8: a) 7 T in-vivo brain dataset of four images with phase increments
0, π/2, π, 3π/2; b) the LORE reconstructed image with ∆θ = π/2; c) the sum-
of-squares image; d) the maximum-intensity image; e) the estimate obtained
with the cross-solution. f)–i) shows zoomed-in versions of b)–e), focusing on
the top left part of the image. The proposed method shows no banding artifacts
while the sum-of-squares and maximum-intensity have some remaining bands
as indicated by the arrows. The cross-solution fails due to the low SNR, which
was estimated to be 11. A high-order shim was used to achieve the best-possible
field homogeneity. Each image in b)–i) is displayed with the same scale as the
original images in a).
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not involve any matrix inversion. However, LORE-GN is advantageous
at higher SNR due to its ML formulation.

The difference in signal power and the conditioning of the model are
the two major contributors to the variations in Figs. 4.3a and 4.3b for
different values of T1 and T2. As can be seen, the SNR required to
accurately estimate T1 and T2 from a set of four phase-cycled bSSFP
images is rather high. This means that using purely phase-cycled bSSFP
to simultaneously estimate T1 and T2 is not a viable approach. It is
therefore of little use to derive a method that is efficient at lower SNR.
Figure 4.3b indicates that it is easier to estimate T2 than T1 in the
region of short T2 values. However, achieving high SNR is harder for
short T2 species. In practice the noise variance will be fixed and the
signal magnitude will vary over the image, in this case the decrease in
SNR will contribute to an increased CRB at short T2. It should be
noted that the difficulty to estimate T1 and T2 explicitly does not affect
the quality of the image reconstruction, since these estimates are not
used in (4.5).

4.5.2 Phantom example

For the phantom data, the proposed method, Fig. 4.4b, has a clear
advantage compared to the sum-of-squares and maximum-intensity im-
ages, as shown in Figs. 4.4c and 4.4d. The cross-solution, Fig. 4.4e,
provides a uniform intensity similar to the proposed approach. How-
ever, since the cross-solution assumes TE = 0, it is not strictly valid in
this case, and therefore, it provides a biased estimate with a different
contrast.

It can also be noted that LORE-GN provides an accurate estimate of
the off-resonance, Fig. 4.4f, when comparing to the reference field map
in Fig. 4.4g. Field map estimation is an application in its own, and
several methods are described in the literature, see for example [46, 75].
Since LORE provides an efficient estimate of the off-resonance, and a
rather low variance even at an SNR of 10, it could be a useful method
for B0 field mapping.

4.5.3 In-vivo examples

The main difference when using highly structured in-vivo images, as
opposed to the phantom dataset, is the partial volume effects at tissue
borders. As can be seen in Fig. 4.5b, the reconstructed image using
the LORE-GN estimates seem to have a level of detail similar to the
sum-of-squares and maximum-intensity images of Figs. 4.5c and 4.5d,
respectively. The reconstructed image shows no bands as opposed to the
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sum-of-squares. The banding is further highlighted by the difference
image in Fig. 4.5f. However, no clear advantage in terms of banding
artifacts can be seen when compared to maximum-intensity and cross-
solution, as can be seen in Figs. 4.5g and 4.5h, respectively. Since the
contrast, for example between white and gray matter, varies for different
phase increments, the maximum-intensity will not provide the largest
possible contrast. With the proposed approach, several images with
different phase increments ∆θ can be reconstructed. There is a trade-off
between contrast and SNR in the resulting images; however, by choosing
the optimal ∆θ, it is possible to obtain both a higher contrast and
SNR compared to maximum-intensity, while getting similar or superior
band reduction. The reconstructions in Fig. 4.7 show that significantly
different contrasts and SNRs can be obtained, and in the end, the SNR
defines the extent to which these images can be used. For example,
∆θ = 0 gives a low SNR, while theoretically, this corresponds to the
image with the maximum contrast between gray and white matter.

As can be seen in Fig. 4.6, LM with fixed initialization does not
converge properly, leading to defects in the reconstructed image. These
defects are due to local minima caused by noise, and adding the post-
processing does not correct for this. Using LORE, however, solves the
problem, which underlines the importance of a proper initialization.

The 7 T dataset shows that the method is applicable at higher field
strengths and low flip angles, as the resulting LORE reconstruction in
Fig. 4.8b gives superior band reduction compared to the sum-of-squares
and maximum-intensity, shown in Figs. 4.8c and 4.8d, respectively. The
low flip angle and the resulting narrow pass band of the bSSFP profile
is the main reason for the incomplete band reduction provided by the
sum-of-squares and maximum-intensity. Furthermore, this low SNR
case gives an example where using LORE alone is favorable, as GN can
suffer from stability problems. As can be seen, the LORE reconstruction
does not suffer from the low SNR artifacts present in the cross-solution
estimate shown in Fig. 4.8e.

4.5.4 Run times

LORE-GN is fast due to its simplicity and the few GN iterations needed
to converge when the initial value is close to the optimum, as was seen
in Table 4.1. The initial value is provided by LORE, which due to its
linear formulation is more computationally efficient than the nonlinear
counterparts. The run times are approximately a factor of two longer for
all algorithms when applied to in-vivo data, compared to the phantom.
This can be explained by the difference in SNR. The exact computation
time will also depend on the implementation, and optimizations in this
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respect are possible. For example a C implementation would signifi-
cantly reduce the computation time compared to running the code in a
Matlab environment. Furthermore, because of the voxelwise compu-
tations, all algorithms can be parallelized on multi-core computers to
significantly decrease total run time.

4.5.5 Limitations

One limitation of the current method is that magnetization transfer
(MT) is not taken into account. Determining the impact of MT is
beyond the scope of this discussion. The effects could be modeled, but
adding MT parameters will increase the complexity of the model [51];
and it is unlikely that LORE could be generalized to this case, since
it is specific to the model presented here. Furthermore, the number of
images would have to be increased, leading to a longer acquisition time.

Imperfections in the slice profile can be the source of poor estima-
tion, especially for 2D datasets. The flip angle is here assumed to be
a constant in each voxel; however, in practice the flip angle may vary,
and if the constant approximation is poor this can make the model in-
valid. Here we have only used 3D acquisitions in which the slice profile
is approximately constant for the slice of interest. Finally, the model
does not take partial volume effects into account, but no problems were
observed when applying LORE-GN to the in-vivo images.

4.6 Conclusion
We have successfully minimized off-resonance effects in bSSFP. The
LORE-GN algorithm is designed to be general, and can be applied to
any phase-cycled bSSFP datasets with three or more images, regardless
of TE and TR. For band removal and off-resonance estimation, the flip
angle does not have to be known, and the method provides uniform re-
constructed images even at low flip angles, where other techniques often
fail. The fast linear estimator LORE is user-parameter free, which in
turn makes the method simple to use and robust, and it provides rather
accurate estimates. Adding a nonlinear optimization step, we can effi-
ciently minimize the NLS and provide reconstructed images with opti-
mal SNR in the ML sense, under the assumption of Gaussian noise. We
have also demonstrated that it is inherently difficult to explicitly esti-
mate T1 and T2 from pure phase-cycled bSSFP, as the obtained variance
is bound to be high at common SNR.
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Chapter 5
Multi-component T2 relaxometry

and myelin-water imaging

5.1 Introduction
Relaxometry provides quantitative tissue characterization and is useful
in many branches of MRI [126, 87]. Commonly, a single exponential
decay is assumed [17, 112, 26], but the data analyzed often consist of
a continuous spectrum of decays with several significant components
[135]. In cases with high SNR and several images, it is possible to esti-
mate more than one decaying component, using a model that consists of
a sum of damped exponentials. This model is commonly used in multi-
component T2 relaxometry based on spin echo data, but there are also
other methods based on, for example, steady-state data [40, 78, 39, 140].
There are several practical applications that utilize the multi-component
T2 parameter estimates, such as: quantification of myelin in the brain
by the myelin water fraction (MWF) [27, 81, 88, 85, 91, 131, 47, 84],
with potential future use in Multiple-Sclerosis treatment; and charac-
terization of breast tissue [56], cartilage [100, 141], and skeletal muscle
[102]. Moreover, multi-component exponential fitting is important for
T2 relaxometry in general, as the single-exponential model can lead to
significant bias of the T2 estimates when the underlying data originate
from several decaying components [135].

In the brain, a varying number of exponential components is expected,
depending on the type of tissue. Typically, two to four significant com-
ponents are present, and need to be estimated to compute the MWF.
To facilitate the estimation, a multi-echo spin-echo sequence is used to
sample the T2 decay curve in time.

Several parameter estimation techniques for the sum-of-exponentials
model are available in the literature, cf. [69]. The problem has been
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shown to be difficult [29, 57], as the components are typically strongly
correlated, and therefore, methods with high sensitivity are needed for
accurate estimation. For this purpose, the parametric methods offer
superior performance compared to their nonparametric counterparts.

The parametric methods are often based on minimizing the least
squares (LS) criterion, due to its well established statistical properties.
However, for the exponential estimation problem, the resulting nonlin-
ear minimization is typically difficult due to local minima and ill con-
ditioning [53, 109, 120]. Considering the maximum likelihood estimator
may further complicate the optimization, making the global minimiza-
tion of the criterion function intractable. There are three problems to
be tackled: 1) a good initialization is needed for the minimization; 2)
given the initialization, the minimization method needs to converge to
an acceptable solution, without getting stuck in local minima; and 3)
the number of exponential components in the data has to be estimated.

There are several methods for obtaining an initial guess of the para-
meters available; for example, the total-least-squares-based Prony al-
gorithm [77], used in [25], or the subspace-based method used in [61].
However, these methods have varying performance, and can sometimes
provide poor initial values. Furthermore, even with reasonable initial
values, many minimization approaches can converge to suboptimal sta-
tionary points due to the ill-conditioning of the problem. Finally, many
methods for order selection rely on user choices, for example, by setting
an input parameter. This makes them more difficult to use in practice,
and can also cause systematic errors.

The commonly used non-negative least squares (NNLS) spectrum ap-
proach [133, 81, 85, 91, 47, 102], circumvents the numerical problems of
1) and 2) above by gridding the nonlinear parameters. This results in a
constrained linear LS problem for estimating the amplitude spectrum.
Furthermore, the issue in 3) can be partially avoided by determining
the order from the number of peaks in the spectrum. However, NNLS
requires interaction with the user to set the grid and the regularization
parameter controlling the smoothness of the spectrum. The parameter
estimator EASI-SM (Exponential Analysis via System Identification us-
ing Steiglitz-McBride), recently studied in [120], is user-parameter free,
and avoids spurious local minima and the numerical problems men-
tioned above by reparameterizing the model. Furthermore, by adding
an information-based order selection method [123], the number of com-
ponents is automatically estimated.

In this work, we analyze the performance of NNLS compared to EASI-
SM; derive a performance measure based on the minimum achievable
variance of the parameter estimates, as given by the CRB; and show that
the NNLS is less efficient than EASI-SM when applied to simulated brain
data. As an experimental example, the MWF is estimated by applying
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the two algorithms to a multi-echo spin-echo dataset with 32 in-vivo
brain images to obtain T2 estimates. The MWF then is obtained by
computing the amount of the myelin water component (T2 ≈ 20−30 ms)
in relation to the total amount of all components, including, for example,
intra- and extra-cellular water (T2 ≈ 80 − 100 ms), and cerebrospinal
fluid (T2 > 1000 ms) [81, 84, 134].

5.2 Theory

5.2.1 Signal model

Due to local tissue variations, the observed signal from a single voxel,
denoted s̄(t), can be modeled as a continuous distribution of T2 relax-
ation times:

s̄(t) =

∫ ∞

0

p(T2)e
−t/T2 dT2, (5.1)

where the distribution p(T2) describes the amplitude corresponding to
each T2 value. Typically, this distribution captures a peak widening
compared to an idealistic discrete set of T2 values. The widening is due
to local variations in the tissue under study, and should not be confused
with an uncertainty in T2.

To enable a parametric approach, p(T2) in (5.1) will have to be pa-
rameterized. However, even for a low dimensional parameterization of
the T2 distribution, the estimation problem becomes ill conditioned due
to the fact that the data is rather insensitive to the width of the peak.
This is illustrated in Fig. 5.1, where a discrete exponential was used
to approximate data generated by the continuous model in (5.1), for
a single peak around T2 = 80 ms. As can be seen, the relative model
error over time (the magnitude of the error between the continuous and
discrete model data, divided by the continuous model data) is smaller
than the relative noise standard deviation (standard deviation divided
by the continuous model data) even at a relatively high SNR of 200 (see
the SNR definition in (5.3)). This suggests that a discrete component
model [2, 25, 42, 102], will often provide sufficient accuracy. Therefore,
we propose to model the intensity over time in a single voxel as

s(tn) =
M∑

m=1

cme
−tn/T2m + w(tn)

= g(θ, tn) + w(tn), n = 0, . . . , N − 1, (5.2)

whereM is the number of discrete exponential components, cm and T2m
are the amplitude and relaxation time of component m, respectively,
w(tn) is the noise, tn is the n:th sampling time instant, and N is the
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total number of samples. Furthermore, we introduce the noise-free signal
model g(θ, tn), and the corresponding vector of model parameters, θ =
[c1, . . . , cM , T21, . . . , T2M ]T.

In the MRI application, the model in (5.2) is typically the result of
taking the magnitude of a complex-valued signal, therefore the distri-
bution of w(tn) is not strictly Gaussian, but Rice distributed. At high
SNR, the Gaussian noise assumption holds reasonably well, and enforc-
ing it typically only leads to a small bias in the resulting estimates.
However, if the tail of the decay is heavily sampled or the SNR is low,
the Rician noise can lead to bias when using LS, and could even cause
false detection of slow components [12]. When complex-valued datasets
are available, the phase correction methods presented in [12] and [19]
could be used to generate Gaussian-distributed real-valued decay data,
which would alleviate these two problems; and in the case when only
magnitude data is available, one alternative is to estimate a baseline in
the data to reduce the bias and the occurrence of spurious components
[133]. Therefore, the noise in (5.2), {w(tn)}N−1

n=0 , is here modeled as
independent and Gaussian distributed with zero mean and variance σ2.

Throughout this chapter, the following SNR definition will be used:

SNR =

∑N−1
n=0 |g(θ, tn)|

Nσ
, (5.3)

that is, the mean intensity of the signal over the noise standard devi-
ation. This is the standard SNR definition for MR images, however,
here it is used in the time domain. Note that this SNR has a signifi-
cant dependence on T2, as opposed to using only the first image of the
dataset.

Assuming uniform sampling with sampling interval ∆t, we can re-
parameterize the model as

sn =
M∑

m=1

cmλ
n
m + wn, n = 0, . . . , N − 1, (5.4)

where we have defined λm = e−∆t/T2m , sn = s(tn), and wn = w(tn). If
t0 6= 0, we can define c′m = cme

−t0/T2m , but in the following the prime
is omitted for ease of notation. By stacking the samples into a vector
s = [s0, . . . , sN−1]

T, and defining the Vandermonde matrix

V =








1 . . . 1
λ1 . . . λM
...

...

λN−1
1 . . . λN−1

M







, (5.5)

we obtain the model in matrix form:

s = Vc+w. (5.6)
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Figure 5.1: a) A T2 distribution with one peak centered at 80 ms, and the
corresponding discrete component (normalized), and b) the relative model error
versus time when approximating the continuous data generated by (5.1) using
a discrete exponential at T2 = 80 ms generated by (5.2), together with the
relative noise standard deviation at SNR = 200.

5.2.2 Cramér-Rao Bound

For the discrete component model in (5.2), at any given sampling time
tn, we have the Jacobian vector

∂g(θ, tn)

∂θ
=







{
∂g(θ,tn)

∂cm

}M

m=1
{

∂g(θ,tn)
∂T2m

}M

m=1







T

=






{
e−tn/T2m

}M

m=1

{

cm
tn
T 2
2m
e−tn/T2m

}M

m=1






T

. (5.7)

Substituting (5.7) into (3.16), and using (3.12), gives the CRB matrix
CCRB. The CRB is used in the next section to define a benchmark
performance measure at various SNR.
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5.2.3 Estimation algorithms

The estimation problem is usually formulated as a LS fitting, although
other formulations are possible [69, 112, 26, 61]. By using (5.4) we get

minimize
{cm,λm}M

m=1

N−1∑

n=0

(

sn −
M∑

m=1

cmλ
n
m

)2

, (5.8)

which is a highly nonlinear problem. Under the assumption of Gaussian
noise, (5.8) gives the maximum likelihood estimates of {cm, λm}Mm=1;
however, solving the problem by finding the global minimum is rather
difficult in general.

EASI-SM

This method is based on the Steiglitz-McBride (SM) algorithm [118,
124], originally suggested for estimating the parameters of linear sys-
tems. It was introduced for the purpose of estimating the parameters
of sum-of-exponential models in [120]. It approximates the LS solution,
while avoiding some of the drawbacks associated with minimizing non-
linear functions, like getting stuck in spurious local minima. A more
detailed analysis of the convergence properties of SM is given in, for
example, [124].

The data can be viewed as the impulse response of a discrete-time
linear system. Let the polynomials

A(q−1) = 1 + a1q
−1 + . . .+ aMq

−M , (5.9)

B(q−1) = b0 + b1q
−1 + . . .+ bM−1q

−M+1, (5.10)

be defined through

B(q−1)

A(q−1)
=

M∑

m=1

cm
1− λmq−1

, (5.11)

where q−1 is the unit delay operator, that is, q−1sn = sn−1. By using
this polynomial parameterization, we can rewrite the problem in (5.8)
as

minimize
{am}M

m=1,{bm}M−1
m=0

N−1∑

n=0

(

sn − B(q−1)

A(q−1)
un

)2

, (5.12)

where un, is a unit impulse, that is, un = 1 for n = 0 and zero otherwise
(n = 1, . . . , N − 1), and the quotient of B(q−1) and A(q−1) represents
a linear dynamical system, or a filter. The SM algorithm for approxi-
mately solving the problem in (5.12) can be described as follows. Let

Â(q−1) be an estimate of A(q−1) (to start we set Â(q−1) = 1); compute
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Algorithm 5.1: Matlab implementation of EASI-SM

1: Inputs: 3D image matrix: ‘im’
model order: ‘M’
sampling interval: ‘dt’
number of iterations: ‘maxIter’

2: for each voxel do
3: Extract time signal vector ‘s’ from 3D matrix ‘im’
4: [b, a] = stmcb(s, M-1, M, maxIter);
5: [c hat, lambda hat] = residue(b, a);
6: T2 hat=−dt./log(lambda hat);
7: end for

new estimates of A(q−1) and B(q−1) by solving the linear LS problem:

minimize
{am}M

m=1,{bm}M−1
m=0

N−1∑

n=0

[

A(q−1)

[

1

Â(q−1)

]

sn

−B(q−1)

[

1

Â(q−1)

]

un

]2

. (5.13)

Next, use the so-obtained updated estimate of A(q−1) as Â(q−1) and
recompute the solution to (5.13). Iterate until some predefined stopping

criterion is met. Estimates {λ̂m}Mm=1, and hence {T̂2m}Mm=1, can then

be obtained by computing the roots of the polynomial Â(q−1), while
{ĉm}Mm=1 are given by the residues:

ĉm = (1− λ̂mq
−1)

B̂(q−1)

Â(q−1)

∣
∣
∣
∣
∣
q=λ̂m

. (5.14)

It should be noted that there is no guarantee that the estimates
{λ̂m}Mm=1 satisfy 0 < λ̂m < 1, or that they are even real-valued. How-
ever, practically, this is not a problem at sufficiently high SNR and a
properly chosen model order, as there is no frequency component in the
real-valued data.

As is shown in Algorithm 5.1, the method is easily implemented in
Matlab using the existing functions stmcb() and residue(). The
Matlab code for the algorithms presented below is available at:
https://github.com/AAAArcus/multiT2

EASI-SM Order selection

For the in-vivo data, the number of components varies on a voxel basis,
and their true number is unknown. Therefore, a method of automatic

https://github.com/AAAArcus/multiT2
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order selection is needed for EASI-SM. Two methods have been con-
sidered, one based on the Bayesian Information Criterion (BIC), and
a heuristic approach trying to enforce the physical constraints on the
parameters by selecting the appropriate order.

Using BIC, the LS criterion is modified to include a penalty on the
model order M [123, 122]:

minimize
M, {cm,λm}M

m=1

N log





N−1∑

n=0

(

sn −
M∑

m=1

cmλ
n
m

)2


+ 2M log(N). (5.15)

This problem is approximately solved by EASI-SM for different values
of M up to some maximum order Mmax, and the solution providing the
minimum criterion value is chosen. In this way, only components that
are statistically motivated by the data are included, which promotes
parsimony and suppresses spurious estimates due to the noise.

The heuristic method starts at order Mmax, and reduces the order
until all parameters satisfy their physical bounds, that is, cm > 0 and
T2m > 0 for all m = 1, . . . ,M . This procedure can be intuitively moti-
vated, but it does not possess the statistical properties of BIC. We call
this method the Feasibility-based Order Selection (FOS).

MWF estimation via EASI-SM

The MWF is computed as

MWF =
∑

m, such that:
T2min<T2m<T2max

cm

/
∑

m

cm , (5.16)

where [T2min, T2max] is the interval containing the myelin water com-
ponent. Therefore, for the application of T2 estimation considered here,
estimating the amplitude of the myelin water component is of main im-
portance. The sum of all amplitudes, occurring in the denominator of
(5.16), is significantly easier to estimate, as it does not depend on the
T2 values of the corresponding components.

Since the problem is ill conditioned, different models yield similar
fits to the data. In particular, when a slowly decaying component is
present in a dataset with few samples, it is often possible to accurately
model the signal using a combination of faster components. This may
cause problems for EASI-SM if the slow component is not captured
adequately, as this can lead to significant bias in the faster decays, such
as the myelin water component. Moreover, as previously mentioned,
using magnitude data can in some cases cause detection of spurious
slowly decaying components, due to the offset in the tail of the decay
introduced by the Rician noise. This offset can be reduced by including
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a unknown baseline constant in the estimation. This type of approach
was discussed in [133] for NNLS, and in fact, the NNLS implementation
in this chapter is implicitly using a baseline component in the form of
a very slowly decaying exponential included in the T2 grid.

EASI-SM can be modified to explicitly account for a constant baseline
in the data, corresponding to a slow decay on the current time scale.
The LS criterion in (5.12) can then be rewritten as

minimize
{am}M−1

m=1 ,{bm}M−2
m=0

N−1∑

n=0

(

sn − k − B(q−1)

A(q−1)
un

)2

, (5.17)

where the total model order M now also includes the constant k. For a
fixed k, an approximation of the LS estimate can be obtained by SM,
as before; while for fixed A(q−1) and B(q−1), an estimate of k is readily
obtained as

k̂ =
1

N

N−1∑

n=0

(

sn − B(q−1)

A(q−1)
un

)

, (5.18)

that is, the mean of the residuals without the constant term. The mod-
ified algorithm can be summarized as follows: given an initial guess for
k (e.g. k = 0), run SM to update A(q−1) and B(q−1), then update k
using (5.18), and iterate these two steps until convergence. By using
this modification, it is possible to significantly reduce the bias of the
myelin water component in cases with low SNR and few samples.

Non-Negative Least Squares (NNLS)

This approach was proposed in [133], and is based on gridding the non-
linear parameter (T2) and solving for the amplitudes using LS with a
non-negativity constraint. Thus NNLS implicitly assumes that there is
an exponential component at every point of the grid, with an unknown,
possibly zero, magnitude. The resulting, typically underdetermined,
problem can be formulated as

minimize
c̃

‖s− Ṽc̃‖2

subject to c̃ ≥ 0
, (5.19)

where Ṽ ∈ R
N×P is a Vandermonde matrix similar to V in (5.6), and

c̃ ∈ R
P×1 is the vector of corresponding amplitudes, and P is the num-

ber of grid points. Due to the structure of the problem and the positivity
constraint, solving (5.19) produces a sparse vector of amplitudes, with
most elements equal to zero, that can be viewed as a spectrum, or distri-
bution, of the damping time constants. However, due to the noise and
the fact that the problem is ill-conditioned, a single exponential com-
ponent in the data can be accurately fitted by several closely spaced
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exponentials with nonzero amplitudes. To avoid this issue, and reduce
the variance of the estimates by improving the conditioning of the prob-
lem, a regularization term penalizing the first-order differences of the
vector c̃ is commonly used, leading to a smoothing of the spectrum.
The resulting problem can be written as

minimize
c̃

‖s− Ṽc̃‖2 + ρ‖Rc̃‖2

subject to c̃ ≥ 0
, (5.20)

where ρ is a regularization parameter that needs to be set by the user,
and

R =








1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1








P−1×P

. (5.21)

To be able to compare the NNLS estimates with the true parameter
values in the simulations, point estimates {ĉm, T̂2m}Mm=1 are needed.
By determining the T2 values of the peaks in the spectrum, and re-
estimating the corresponding amplitudes {cm}Mm=1 by LS, estimates of
{cm, T2m}Mm=1 can be obtained. When the number of peaks in the spec-
trum exceedsM , the subset ofM peaks giving the best fit to the data is
chosen as the final estimates. We will refer to this procedure as subset
selection. Note that, in simulation, this subset selection method might
give an advantage to NNLS, as it will enforce the correct model order.

It should be noted that the discrete unregularized spectrum given by
the solution of (5.19), is more easily compared to discrete estimates pro-
vided by EASI-SM; however, the central values of the smooth peaks in
the regularized NNLS are typically provides better estimates. Further-
more, at typical SNR, regularized NNLS provides no accurate informa-
tion regarding the amplitude distribution apart from the peak locations
(central values), as the continuous distribution of amplitudes is solely
due to the regularization, which in turn is controlled by a user para-
meter.

5.2.4 Evaluating the parameter estimates

Due to the fact that the ordering of the parameters is arbitrary, there is
an ambiguity in the model that complicates the simulations and MSE
evaluations. If a component known to exist in the data fails to be
estimated, which effectively leads to a lower order M , the estimated
parameters can be matched to wrong true values, giving an increased
MSE. To avoid this problem, a component-wise metric based on the
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CRB is defined by the fraction of estimates {ĉm, T̂2m} falling within an
uncertainty region Rm in the {c, T}-plane, for different noise realiza-
tions. More specifically, we use the detection rate Dr as a performance
measure, defined as the fraction of realizations where M components
are estimated within their corresponding uncertainty regions. Similarly,
we can define Dr for detecting M̃ < M components, to illustrate each
method’s ability for partial detection. The uncertainty regions are de-
fined using the CRB as follows:

Rm =
{

ĉm, T̂2m : |cm − ĉm| < 3σcm ∧ |T2m − T̂2m| < 3σT2m

}

, (5.22)

where the standard deviations σT2m
and σcm are obtained from the

corresponding diagonal elements of the matrix CCRB. However, at low
SNR the CRB can be rather large, causing the above rectangles to
overlap. This overlap indicates a fundamental resolution problem, yet
it would give a fictitiously high Dr at low SNR. To prevent this from
happening, we restrict the size of the regions to be maximally ±60% of
the true parameter values, giving a fixed rectangle size at low SNR.

The detection rate Dr measures the statistical performance of the
estimators by comparing them to fundamental variance limits: at lower
SNR it shows the fraction of estimates that are practically acceptable;
while at high SNR, it shows the fraction that matches the statistical
benchmark given by the CRB. This performance measure is based on
the discrete component model of (5.2), but can also be applied to data
generated by the continuous model of (5.1) to give an indication of
performance even in this under-modeled case. However, since the as-
sumptions made in the derivation of the CRB are not strictly valid in
the latter case, statistical efficiency cannot be assessed.

5.3 Methods

5.3.1 Simulation

Monte Carlo (MC) simulations with different noise realizations were
performed to compute Dr for the two methods. Data containing three
exponential components was generated, using both the continuous and
the discrete component model, given by (5.1) and (5.2), respectively.
The parameters used for the discrete model were

T2 = [20, 80, 200] ms,

c = [0.4, 1, 0.2],
(5.23)

inspired by previous research [81, 131]. For the continuous model, the c
values were normally distributed around the above T2 values with vari-
ances 9, 36, and 4 ms, respectively. The signal was then normalized
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to the same total energy as for the discrete case, i.e. the area of each
continuous peak corresponds to the height of the discrete component.
The used continuous and discrete T2 distributions are shown in Fig. 5.2,
where the continuous distribution has been normalized to unit ampli-
tude to enable clear visualization. Complex-valued Gaussian noise with
variance 2σ2 (i.e. variance σ2 for both the real- and imaginary parts)
was added to achieve the appropriate SNR, as defined by (5.3). Then,
the magnitude was computed to generate Rice-distributed data, aimed
at mimicking the in-vivo images. The variance of the magnitude data
will then be approximately σ2 at high SNR.

In this three-component example, N = 48 samples with sampling
interval ∆t = 10 ms, were generated within the chosen SNR range:
40− 300. This range was chosen to enable reliable detection of all three
components, while including practical SNR values. The SNR of the in-
vivo data was estimated to be 70, and therefore, SNR = 40 was deemed
to be well within the practical range. Reliable estimation at even lower
SNR values requires the use of a lower model order. For the EASI-SM
order selection methods, Mmax = 4 was used as reasonable upper limit
of the model order for the given range of SNRs. For NNLS, 500 grid
points uniformly spaced on a logarithmic scale from 4 - 5000 ms, were
used. By using this nonuniform grid, the number of grid points can be
reduced compared to a uniform grid, without sacrificing accuracy, as the
variance of T̂2 naturally increases for larger T2 values. The use of 500
grid points is motivated by statistical analysis, where it is important that
the grid is dense compared to the expected spread in the estimates for
the investigated range of SNRs. Using a sparser grid caused significant
performance loss, in terms of Dr, at higher SNR; however, in situations
with low SNR, fewer grid points can be considered with only a minor
performance loss. No negative consequences were observed from using
this dense grid, however, increasing the number of grid points further
can eventually lead to numerical problems.

5.3.2 Data Acquisition

The in-vivo data was collected at the McConnell Brain Imaging Centre
of McGill University, using a 1.5T Sonata scanner (Siemens Health-
care, Erlangen, Germany) with a single-channel head coil. A single-
slice multi-echo spin-echo sequence with nonselective composite refo-
cusing pulses [84] and a crusher gradient scheme [96] was used. Acqui-
sition parameters: 32 echoes, first echo time TE = 10 ms, echo spacing
∆TE = 10 ms, TR = 3000 ms, FOV = 22 × 22 cm, slice thickness =
5 mm, matrix = 256 × 128, NSA = 1. The subject was a 24-year-old
healthy female volunteer, scanned with approval from the Ethics Com-
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Figure 5.2: Normalized distributions of the amplitudes c over T2, for both
the discrete and continuous models used in the simulations. The area of the
continuous peaks correspond to the height of the discrete stems.

mittee of the Montreal Neurological Institute. The total scan time was
26 minutes.

5.4 Results

5.4.1 Simulation

To illustrate the performance measure Dr associated with the estimates
produced by the EASI-SM and NNLS algorithms, 200 MC simulations
were performed at SNR = 150 and 70. Here, ρ = 0.05 was used as
described in the next paragraph. The obtained estimates, plotted in
the {c, T}-plane, are shown in Fig. 5.3, together with the true values,
and the uncertainty regions. For EASI-SM, most estimates fall within
the corresponding uncertainty regions at both SNRs, which corresponds
to a high Dr, while the NNLS estimates are generally more spread out.
The number of components for EASI-SM was automatically detected by
FOS; while for NNLS the three most significant peaks (the true value)
in the NNLS spectrum were chosen by the subset-selection method de-
scribed in 5.2.3, to generate the point estimates.

To find a suitable value for ρ in the regularized NNLS, MC simulations
were performed at different SNRs and for a range of ρ values. For
each value of ρ considered, Dr was computed, and the results for data
generated by the discrete and continuous model, at SNR = 100, are
shown in Fig. 5.4. The corresponding detection rates for one and two
components were also included, and plotted in an accumulated area plot.
In this way, both the proportions of each type of detection, as well as the
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probability of detecting, for example, at least two components, is shown.
As can be seen, the variation in Dr with respect to ρ is similar for both
models. For a wide range of SNRs (not shown), setting ρ = 0.05 gave
an increased performance for detecting all components compared to no
regularization; therefore, this value was used in the Dr simulations. For
reference, this value of ρ gave 1% average increase in the χ2 error of the
NNLS fitting, compared to using no regularization. Note that choosing
ρ to optimize Dr is not possible in practice, and therefore, this approach
provides a rather unfair comparison to EASI-SM, in the sense that it
favors NNLS.

The Dr obtained from 5000 MC simulations using, both the discrete
and continuous data models, is shown in Fig. 5.5. As can be seen, EASI-
SM can estimate two or three components in 95% of the realizations for
an SNR above 70, while to detect all three components in 95% of the
cases, an SNR around 200 is needed. This holds for both the discrete
and continuous data. NNLS, on the other hand, estimates all three
components only in approximately 60% of the realizations at SNR =
200. At the lowest SNR of 40, the performance of the two algorithms is
similar, but the 3-component detection rate of EASI-SM increases more
rapidly than for NNLS as the SNR improves.

To illustrate the performance of EASI-SM for the application of MWF
estimation, 32 images with a constant MWF were simulated at an SNR
of 70, similar to the in-vivo dataset used in the next section. The data
was generated by the continuous model of (5.1) using the parameters
in (5.23). The results obtained using EASI-SM and NNLS are shown
in Fig. 5.6. For this short and relatively low SNR dataset, the baseline
estimation approach described around (5.17) was used with EASI-SM.
This baseline can capture both very slowly decaying components, whose
relaxation time is hard to estimate with high accuracy, and the bias in-
troduced by the Rician noise in the magnitude data. For the regularized
NNLS, ρ was chosen to give a 1% increase of the χ2 fitting term in the
criterion, as is commonly done in vivo [2]. The corresponding bias,
standard deviation and MSE of the estimated MWFs are listed in Ta-
ble 5.1. As can be seen, the EASI-SM method has a slightly higher bias
in this example, but the lower standard deviation gives a smaller MSE.
Furthermore, the order selection methods, FOS and BIC, estimated the
model order to be three in 93% and 94% of the cases, respectively; in the
remaining cases the order was estimated to be four (not shown here).

5.4.2 In-vivo

Images from the in-vivo dataset at echo times 10, 50, 100, and 200 ms,
are shown in Fig. 5.7. As can be seen, there is a flow artifact causing a
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Figure 5.3: Estimates obtained with NNLS (ρ = 0.05) and EASI-SM in 200
Monte Carlo simulations at, a) SNR = 150, and b) SNR = 70, along with the
corresponding uncertainty regions given by three CRB standard deviations,
illustrating the metric used to determine the performance of the investigated
algorithms. The true parameter values are indicated by the three stars.

Table 5.1: Bias, standard deviation, and root mean square error of the esti-
mated MWF for the methods in Fig. 5.6.

Method Bias Std rMSE
EASI-SM BIC 0.284 0.026 0.042
EASI-SM FOS 0.283 0.025 0.042
NNLS (ρ = 0.15) 0.274 0.044 0.050
NNLS (ρ = 0) 0.280 0.077 0.083
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Figure 5.4: NNLS detection rate at SNR = 100 based on 5000 MC simula-
tions, versus the regularization parameter ρ for a) discrete components, and
b) continuously distributed components. The corresponding detection rates
for one and two components are also shown accumulatively, to indicate the
probability of detecting, for example, at least two components.
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Figure 5.5: Detection rate Dr of the exponential components versus SNR,
for a) EASI-SM, and b) NNLS (ρ = 0.05), using the discrete model; and the
corresponding Dr for the continuous model in c) and d), respectively.
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Figure 5.6: Estimated MWF for simulated data using: a) the proposed EASI-
SM method with BIC order selection, b) EASI-SM with feasibility-based order
selection (FOS), c) NNLS method with regularization (ρ = 0.15), and d) NNLS
without regularization (ρ = 0). The EASI-SM method estimated a baseline in
the data. The true value of the MWF was 0.25, and SNR = 70.
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horizontal line of deviating values in the center of the image; however,
this defect is not essential for the analysis of the methods, and can
therefore be disregarded. The average SNR of the dataset was estimated
to be approximately 70, by computing the ratio of signal energy to the
estimated Gaussian noise standard deviation in the signal-leakage-free
background voxels. To reduce the computation time, the low signal
background voxels outside the brain were masked prior to applying the
algorithms, by excluding background voxels below 20% of the maximum
intensity voxel, and the skull.

Using the EASI-SM estimates, the MWF was computed using (5.16).
For the NNLS, the estimated spectrum was integrated over the T2 inter-
val of interest, as in previous works; however, using the corresponding
point estimates gave similar results (not shown here). The MWF maps
estimated by EASI-SM, using both BIC and FOS for order selection,
and by NNLS with ρ = 0.1 and ρ = 0 (no regularization), are shown
in Fig. 5.8. Again, ρ was chosen to give a 1% increase of the χ2 fitting
term in the criterion. As can be seen, EASI-SM generally yields more
spatially concentrated MWF estimates compared to NNLS. The differ-
ence between using EASI-SM with BIC or FOS is minor. The MWF
estimates from NNLS using ρ = 0 where also filtered spatially, using
a 3 × 3 Gaussian filter with σ = 0.5, and compared to the estimates
obtained with NNLS using ρ = 0.1. The results are shown in Fig. 5.9,
and indicate that the regularized method provide MWF estimates that
are visually similar to a spatially smoothed version of the unregularized
estimates.

To illustrate the T2 estimation performance in vivo, T2 maps were
generated showing the relaxation time corresponding to the component
with the highest estimated amplitude, in each voxel. The results ob-
tained with EASI-SM using BIC and FOS, and NNLS with and without
regularization, are shown in Fig. 5.11. As can be seen, the overall T2
values obtained with EASI-SM and NNLS are similar, but the noise
levels in the maps are different. The average T2 values, and the corre-
sponding standard deviations, in the two 10×10 voxel regions indicated
in Fig. 5.11 were approximately 74(3.7) ms and 92(3.5) ms for EASI-SM
with BIC, and 74(7.2) ms and 94(6.3) ms for regularized NNLS. As a
reference, the single component T2 estimates, as well as the estimates
obtained using a single exponential together with a constant baseline,
were computed, and are shown in Fig. 5.12. As can be seen, using
a single component leads to significantly longer T2 relaxation times in
some parts of the image, while the estimates obtained when including a
baseline are closer to the multi-component estimates of Fig. 5.11.

The estimated EASI-SM model order for each voxel using BIC and
FOS is shown in Fig. 5.10, along with the histograms that indicate the
relative frequency of each order. As can be seen, regions where the model
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a) b)

c) d)
Figure 5.7: Magnitude brain data used for MWF estimation, with an echo
spacing of ∆t = 10 ms. Echo time: a) 10 ms, b) 50 ms, c) 100 ms, and d) 200
ms.

order was estimated to be three corresponds well to parts of the brain
with a high estimated MWF. Furthermore, BIC typically estimates a
higher order than FOS, but the extra components are relatively small,
and as shown, the impact on the MWF is minor.

5.5 Discussion

5.5.1 Simulation

For NNLS, the maximum detection rate of all three components oc-
curred when ρ was small. Using a larger ρ causes problems for detec-
tion as it introduces bias, and in the worst case, can even make well
separated peaks in the spectrum merge into one. The ρ parameter was
introduced in [133] to reduce the occurrence of multiple closely spaced
spurious components, as well as the variance of the estimates. How-
ever, for explicit parameter estimation, the gain from regularization is
relatively small compared to setting ρ = 0 and choosing a subset of the
peaks in the spectrum based on the model fit. Furthermore, when using
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Figure 5.8: Estimated MWF for the in-vivo brain dataset using: a) the pro-
posed EASI-SM method with BIC order selection, b) EASI-SM with feasibility-
based order selection (FOS), c) NNLS method with regularization (ρ = 0.1),
and d) NNLS without regularization (ρ = 0). The EASI-SM method estimated
a baseline in the data.
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Figure 5.9: a) Gaussian filtered version of the MWF estimates obtained using
NNLS without regularization (see Fig. 5.8c), compared to the regularized NNLS
method (ρ = 0.1) from Fig. 5.8d. The images have been cropped from clarity.
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Figure 5.10: a) The estimated order for each voxel of the in-vivo data using
EASI-SM with BIC (left), and FOS (right), together with the corresponding
relative frequency of each order for b) BIC, and c) FOS.
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Figure 5.11: Estimated in-vivo T2 maps corresponding to the most significant
decaying component in each voxel, using: a) EASI-SM with BIC order selection,
b) EASI-SM with FOS, c) NNLS with regularization (ρ = 0.1), and d) NNLS
without regularization (ρ = 0). The average T2 values and the corresponding
standard deviations in the indicated regions were: a) 74.0(3.7) ms and 92.4(3.5)
ms, and c) 73.7(7.2) ms and 93.0(6.3) ms. The EASI-SM method estimated a
baseline in the data.
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Figure 5.12: Estimated in-vivo T2 maps using: a) a single exponential compo-
nent, and b) a single exponential component together with a baseline constant.
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regularization, the problem of choosing a suitable ρ for a given dataset
remains to be properly solved.

The NNLS has suboptimal performance when compared the CRB, as
was indicated by the performance measure Dr in Fig. 5.5. EASI-SM,
on the other hand, has a detection rate that improves monotonically as
the SNR increases, and even at low SNR it provides a slightly higher
detection rate compared to NNLS. Moreover, for the discrete component
data, EASI-SM achieves the CRB for all components at high SNR, which
is implicit by the fact that Dr for all three components approaches
its theoretical maximum. NNLS is not able to efficiently estimate the
parameters at any of the investigated SNRs, and at higher SNR the
performance has virtually saturated. The slight decrease in Dr that
NNLS experiences at high SNR is both due to the use of a relatively
large ρ for this SNR, and the T2 grid being too sparse compared to the
variance of the estimates. A denser grid and less regularization could
partially cancel this effect (assuming that the need for making these
selections could somehow be determined). Furthermore, NNLS has a
rather high Dr for two components at low SNR. This can be explained
by the constraints being active. More precisely, since T̂2 is fixed on a
limited grid, and the amplitudes are positive by construction, there is a
limited amount of freedom in the estimates. This, in combination with
the large uncertainty regions not taking the positivity of the parameters
into account, can cause a high Dr at low SNR for a constrained method,
such as NNLS. As SNR increases, however, the 2-component Dr goes
down as the uncertainty regions shrink faster than the speed at which
the NNLS estimates improve.

The model error associated with using a discrete model to estimate
the continuous data leads to some bias, but this has only a small impact
on the detection rate, as was shown in Fig. 5.5. This indicates that the
discrete model, and the associated methods, are useful even in this case.

The estimate of the order, given by the number of peaks in the NNLS
spectrum, can be useful as no separate order selection is needed. How-
ever, it can also be a drawback when more peaks than what is physically
motivated are found, since there is no reliable way of deciding which ones
should be retained. The BIC order selection sometimes includes infea-
sible estimates, for example, complex-valued T2 values, which lead to
oscillations in the model. The corresponding amplitudes are, however,
small in general, as the oscillations are due to fitting the noise. Because
of this, EASI-SM with BIC generally achieves better fitting compared
to FOS, but the extra parameter estimates are typically of no practical
interest. FOS eliminates complex-valued estimates, and therefore usu-
ally results in a lower estimated order, as was shown in Fig. 5.10. It is
possible to combine these methods and choose the best feasible model
based on BIC.
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For the simulated MWF example in Fig. 5.6, EASI-SM showed su-
perior performance. However, in simulations it is sometimes possible
to choose the NNLS regularization parameter, using knowledge of the
true signal, to obtain improved results. The problem is how to make
this decision in a practical setting, where the true signal parameters
are unknown. Moreover, some simulated examples indicated that using
a seemingly large value of ρ lead to heavily distorted estimates of the
amplitude distribution compared to the true one, but nevertheless re-
sulted in good estimates when computing the MWF using (5.16). It is,
however, unclear why NNLS would work in such cases, and exploring
it further is beyond the scope of this discussion. However, it should
be noted that small perturbations of the true parameters can lead to
significant changes in both the minimum MSE and the corresponding
optimal ρ.

5.5.2 In-vivo

The 32 image in-vivo dataset is not of high enough SNR to reliably es-
timate three exponential components, as was done in the simulations.
However, as was discussed in 5.2.3, accurate estimation of all compo-
nents is not necessary to obtain good estimates of the MWF. The regu-
larized NNLS gives a smoother MWF compared to the point estimate-
based NNLS approach (ρ = 0), and the variance of the estimates is
significantly reduced for this relatively low SNR dataset. This can be
expected, since the estimated spectrum itself is smoother. For example,
a component with T2 = 60 ms can leak energy into the [15, 50] ms range
solely due to the regularization used when estimating the spectrum.
This can give a false increase of the MWF, as the true value T2 = 60
ms would not normally pertain to myelin water. In turn, this leads to
more voxels with small MWFs. It was also noted that the regularized
NNLS provided MWF estimates similar to a spatially smoothed version
of the MWF map obtained by unregularized NNLS, which could be seen
from Fig. 5.9. This could indicate a problem with regularized NNLS, as
a loss of detail in the final image, similar to a Gaussian smoothing, is
typically not desired.

Generally speaking, the EASI-SM with baseline estimation provides
similar estimates to NNLS. However, the MWFmap estimated by EASI-
SM, as displayed in Fig. 5.8, appears to show a more concentrated dis-
tribution of myelin in the brain, and a lower noise floor. This is shown as
a large proportion of the EASI-SM estimates being identically equal to
zero, while the NNLS approach has many scattered estimates through-
out the brain with an MWF close to zero. A potential reason for this
could be that NNLS is actually detecting myelin water in the gray mat-
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ter. However, these low concentrations are difficult to detect given the
current image SNR, and since there is no clear structure in the NNLS
gray matter estimates, these non-zero values could also be caused by
the noise. When comparing to previous research in [91] and [81], simi-
lar experimental setups lead to maximum MWFs around 0.10 and 0.20,
respectively; the latter value agrees well with the estimates presented
herein.

As was seen in Fig. 5.11, the noise levels in the EASI-SM-based T2
maps are lower than in the NNLS counterparts, leading to a more clear
image of the gray and white matter. Furthermore, the computed stan-
dard deviation of the T2 estimates in the two indicated square regions,
reflecting the noise level, is almost a factor of two higher for NNLS com-
pared to EASI-SM. This mirrors the T2 estimation results obtained in
simulation, listed in Table 5.1. Overall, the T2 maps presented herein
are significantly different from the one obtained using a single exponen-
tial fit, supporting the claim that single-component T2 relaxometry can
lead to significant bias in the resulting estimates, in vivo. The in-vivo
T2 estimation performance of EASI-SM reflects the results obtained in
simulation, which indicates that method is practically applicable, and
that the simulations made are relevant to evaluate the algorithms.

5.6 Conclusion
The user-parameter free EASI-SM algorithm generally showed superior
parameter estimation performance in simulations, when compared to
NNLS. At low SNR, however, both methods have similar troubles to
estimate all three components in the simulated example, which is ex-
plained by the intrinsic difficulty of the problem, and reflected by a high
CRB. For the in-vivo application of estimating the MWF in brain tissue,
the images resulting from EASI-SM with baseline estimation are similar
to those obtained with the regularized NNLS; however, EASI-SM gave
a more concentrated distribution of myelin water, and an apparently
lower noise level. The lower noise level was also observed in the EASI-
SM in-vivo T2 maps. We believe that using two independent methods
and obtaining similar results can increase the confidence in the MWF
estimates, and provide a useful cross-check.
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Chapter 6
Edge-preserving denoising of T2

estimates

6.1 Introduction
Quantitative MRI has brought new ways of imaging based on tissue spe-
cific physical quantities, such as mapping the longitudinal and transverse
relaxation times. One standard approach to estimate T2 is to acquire
several images at different echo times using the spin echo sequence; and
then fit a decaying exponential to the magnitude data in each voxel indi-
vidually [30]. The magnitude images are Rice distributed meaning that
the LS estimate will be suboptimal. A few suggestions of how to solve
this problem are available in the literature [111, 130], where the authors
apply maximum likelihood (ML) methods taking the Rice distribution
into account. To further denoise the images or the resulting estimates,
techniques like total variation (TV) regularization can be used [74]. The
idea is to penalize the total variation in the image, usually quantified
by the L1 norm of some first order difference measure. The resulting
estimates tend to be piecewise constant, which is often a good approx-
imation. However, more gradual changes can also be present in the
images, which can lead to artifacts. The authors in [74] present a total
generalized variation regularization that can be used for image denoising
while suppressing these so called staircase artifacts. Solving the opti-
mization problem resulting from a TV based approach can, however, be
nonlinear and relatively time consuming, and the authors of [74] propose
an implementation on a graphics processing unit (GPU). Given that the
algorithm can be parallelized efficiently, a GPU implementation gives
a significant decrease in computation time; however, this comes at the
cost of usability and ease of implementation. Furthermore, the TV-
based methods usually come with user parameters that might have to
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be chosen iteratively, meaning that the optimization would have to be
performed several times.

In this chapter we treat the T2 estimation problem when only two
magnitude images are available, in which case the noise can be a major
problem. Applying advanced statistical methods to account for the
Rice distributed noise is not likely to be fruitful when only two samples
are available in each voxel, especially as the ML properties only hold
asymptotically. Moreover, at common signal-to-noise ratios (SNR) the
Rice distribution will be accurately approximated by a Gaussian. We
focus on the problem of variance reduction of the T2 estimates. The
idea is to improve the estimates by using inter-voxel information in the
images, while preserving the contrast between tissues. We propose two
methods: 1) a fast local LS method which is easy to implement, and
2) a more general TV based method that can be cast as an LP. Due
to the efficiency of solving LPs, this approach is computationally more
efficient than the standard TV. Both methods provide an intuitive way
to choose the user parameters. We then compare the performance and
computation time of the proposed methods to the voxelwise counterpart.

6.2 Theory

6.2.1 Signal model

Here, we solve the estimation problem using magnitude data, which
is typical for spin echo T2 estimation. The resulting data samples are
Rice distributed with a PDF given by (3.20). The data at an arbitrary
voxel can be modeled as an observation of a Rice distributed stochastic
variable parameterized by ρ, T2, tn, and σ:

sR(tn) = SR(ρ, T2, σ, tn) ∼ Rice(f(ρ, T2, tn), σ), (6.1)

where according to (3.19), f(ρ, T2, tn) = ρe−tn/T2 is a model for the
magnitude signal, and tn < tn+1, ∀n are the echo times of the images.

The SNR is defined as SNR = (s1 + s2)/2σ, which is the definition
commonly used in MRI. The reason for avoiding the root mean square
SNR definition here is because it will give less weight to the second
sample of the damped signal. At an SNR larger than 20 dB, the Rice
distribution is accurately approximated by a Gaussian, as was shown
in Fig. 3.2, meaning that least squares (LS) will be close to maximum
likelihood. We can then approximately model the data as

s(tn) = ρe−tn/T2 + v(tn), (6.2)

where v(tn) is i.i.d Gaussian noise. Due to the high complexity associ-
ated with using a Rician distribution compared to the accuracy gained,
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we propose to use the Gaussian approximation model of (6.2) in all
voxels containing signal.

By assuming that there is no noise, the transverse relaxation time T2
can be estimated from (6.2) by simple algebra. Given that ρ and T2 are
positive and real-valued, we have

λ ,
s(t2)

s(t1)
= e(t1−t2)/T2 , (6.3)

T̂2 = (t1 − t2)/ ln (λ) . (6.4)

By applying (6.4) for each voxel p, we can estimate T2 in an entire image.
We will refer to this method as the voxelwise approach. The variable ρ
in (6.2) represents the initial magnetization which is proportional to the

proton density. Using the found T̂2, an estimate of ρ can be obtained
by LS.

The estimate in (6.4) is actually the NLS estimate, obtained by solv-
ing the problem

minimize
ρ,T2

2∑

n=1

(

sn − ρe−tn/T2

)2

, (6.5)

where we have denoted sn = s(tn) for ease of notation. This can be
seen by inserting the LS estimate of ρ into (6.5) to obtain

minimize
T2
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, (6.6)

which can be factored into

minimize
T2

∣
∣
∣
∣
∣

e−
t1+t2

T2

e−
2t1
T2 + e−

2t2
T2

∣
∣
∣
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2(

1 +
1

λ2

)

|s2 − λs1|2 , (6.7)

where λ ≥ 0 was defined in (6.3). Since s1 ≥ 0 and s2 ≥ 0, there is

always a λ such that |s2 − λs1|2 = 0, hence we can state the equivalent
problem

minimize
λ

(s2 − λs1)
2, (6.8)

which clearly has the solution in (6.4). The expression in (6.8) can also
be obtained by construction of the annihilating filter G(z) = 1− λq−1,
where q−1 is the backward time shift operator, which gives the output
y = s2−λs1+ v2−λv1. Furthermore, the annihilating filter shows that
by using the formulation in (6.8), the noise will be amplified by a factor
|1− λq−1| ≤ 2, since 0 ≤ λ ≤ 1. This will be of interest in Section 6.3,
when generalizing this problem to cover several voxels.
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6.2.2 Noise variance estimation

To estimate the standard deviation of the Gaussian noise σ from the
signal free background of the images, the Rayleigh distribution is used,
which is a special case of the Rician distribution in (3.20) when the
magnitude of the signal component η is equal to zero. The maximum
likelihood estimate of σ is [111]

σ̂ =

√
1

4Nb

∑

p∈Rb

(s21p + s22p) , (6.9)

where Rb is the set of all background voxels and Nb is its cardinality.
Similarly, we will denote the cardinality of any set Rx as Nx. Note that
the corresponding voxels in both images are used, since σ is assumed
to be constant. In practice the voxels containing signal are separated
from the noise only background by thresholding the first image and
keeping voxels above a fixed percentage of the maximum intensity. This
procedure defines the set Rb in (6.9), as well as the set of signal voxels
Rs used in the proposed algorithms.

6.2.3 The Cramér-Rao bound

Using the Rician probability distribution defined in (3.20), we can write
the likelihood function of the samples s1 and s2 as

L(s1, s2, ρ, T2) =
2∏

n=1

pR(sn|f(ρ, T2, tn), σ). (6.10)

Substituting (6.10) into (3.11), we obtain the FIM, which is a relatively
complicated expression. As opposed to the Gaussian CRB, evaluating
the Rician CRB is numerically unstable, and as far as the authors know,
an analytical expression is not available. The difference between the
Gaussian and Rician CRBs for the T2 parameter is illustrated in Fig. 6.1.
The Rician CRB is initially higher than the Gaussian counterpart, but
as the SNR increases they approach each other. Because of this, the
Gaussian CRB will be used in the following as a lower bound and a
high SNR approximation, of the true CRB.

6.3 Method
By using the definition in (6.3), we can express the problem in (6.8) in
matrix form by stacking the data from each image in column vectors sn:

minimize
λ

‖s2 − diag(s1)λ‖22, (6.11)
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Figure 6.1: Difference between Gaussian and Rician CRB for the special case
ρ = 1, T2 = 70 ms, t = [21, 100]T ms

where diag(v) is a square matrix with the elements of v along its diag-
onal.

The problem in (6.11) is redundant in its current form, since there
is no coupling between the voxels, meaning that we can solve the prob-
lem for each voxel using (6.4). However, if a smoothness constraint is
imposed on the estimates, the voxels will be coupled and an optimiza-
tion formulation becomes vital. In the following, two different coupling
approaches and the corresponding estimation algorithms are presented.
The goal is to preserve the contrast between different types of tissue,
while reducing the MSE of the estimates.

6.3.1 Local Least Squares approach

A simple method to reduce the variance is to assume that locally over
a small region around the voxel of interest, the value of T2 is constant.
By using this assumption the estimate of λ in (6.8) can be obtained
by linear LS over this region. Here we will avoid smoothing across
tissue borders by detecting sudden large changes in the voxelwise T2
estimates obtained from (6.4). Based on this information we adjust the
neighborhood region Rp used in LS (see below). The algorithm then
estimates λ, and hence T2, assigns this estimate to the center voxel only,
and then moves to the next voxel. We call this method the localLS.

We can formulate the problem in each region Rp, identified by the
center voxel p, as

minimize
λp

∑

j∈Rp

(s2j − λps1j)
2, ∀p ∈ Rs, (6.12)
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Figure 6.2: Example of the smoothing region Rp at a border voxel p of the
signal-containing voxels Rs. The voxels marked j = 1 . . . 4 are the set of unique
coupling voxels that are neighbors to p, while the crossed out voxels are outside
Rs and will not be used.

where Rs is the set of all voxels containing signal. Denoting the vector
of neighborhood data points by s1p and s2p we get

λ̂p =
sT1ps2p

sT1ps1p
, T̂2p = − t2 − t1

ln(λ̂p)
. (6.13)

The region Rp is initially defined as the intersection of Rs and the 8
voxels surrounding voxel p; however, to eliminate constraints occurring
more than once, only four neighbors are needed. The coupling scheme
used, as well as the intersection with Rs, is illustrated in Fig. 6.2. The
voxelwise estimates are then computed and checked for feasibility, that
is 0 < T2 < ∞, and any infeasible voxels are removed from Rp. If
the center voxel is infeasible, it is initially set to the median value of
the feasible surrounding estimates. The outlier removal procedure then
further limits the set Rp. This is done by computing the CRB of T2 us-
ing the center voxel as the true value and the estimated noise standard
deviation from (6.9). The CRB gives a lower bound on the parameter
standard deviation, which is used as an estimate of the variation in the
current area. Any voxel T2 estimate further away than kLSσ from the
center T2 estimate is considered an outlier. The threshold kLS is a user
parameter that will be discussed further in Section 6.4. It is straight-
forward to choose a different size of the surrounding neighborhood than
the 3x3 voxels used here, but a preliminary study showed no clear gain
in doing so, and therefore it is here kept constant and not discussed
further.

The problem stated in (6.12) is not equivalent to the NLS as in the
voxelwise case (6.4). This is due to the re-parameterization using λ
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instead of T2. By expressing the NLS for the region Rp in vector form,
where r(T2p) = [e−t1/T2p e−t2/T2p ]T and s̃j = [s1j s2j ]

T, we get

minimize
ρj ,T2p

∑

j

‖s̃j − ρjr(T2p)‖22. (6.14)

By LS we have that for each j

ρj(T2p) =
rT(T2p)̃sj

rT(T2p)r(T2p)
. (6.15)

Substituting this into (6.14) we can rewrite the NLS criterion as

minimize
T2p

∑

j∈Rp

s̃Tj

(

I − r(T2p)r
T(T2p)

rT(T2p)r(T2p)

)

s̃j , (6.16)

or by introducing

A(T2p) = I − r(T2p)r
T(T2p)

rT(T2p)r(T2p)
, (6.17)

S =

[
s11 s12 . . . s1Np

s21 s22 . . . s2Np

]

, (6.18)

we get
minimize

T2p

tr
(
STA(T2p)S

)
. (6.19)

By using the estimates obtained form (6.13) as an initial guess, a nonlin-
ear minimization method can be applied to solve the problem in (6.14)
and obtain the NLS estimate of T2 in the region Rp. The method
obtained by adding this NLS tuning step is abbreviated as the lo-
calNLS. For implementation, A can be precomputed on a given grid.
Also, since the trace is invariant under cyclic permutations, that is,
tr(STA(T2p)S) = tr

(
A(T2p)SS

T
)
, where the later is only a 2x2 matrix,

it is possible to reduce number of flops, and the computation time.

6.3.2 L1 Total Variation approach

In this approach we suggest imposing a global smoothing criterion such
that each estimate of T2 is close to the neighboring estimates. The prob-
lem is typically formulated as a quadratic fitting with a total variation
constraint based on the L1 norm. However, this leads to a quadratic
program, which can be quite demanding to solve for the problem size at
hand. Therefore we propose to use a L1-norm fitting, leading to an LP
that can be efficiently solved. Furthermore, we formulate the problem
as a minimization of the total variation, subject to a bound on the L1
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norm of the error. Using this formulation, the right hand side of the
constraint can be estimated by applying the Cauchy-Schwarz inequality
to the error vector ε:

‖ε‖1 = 1T|ε| ≤ ‖ε‖2‖1‖2 = σ̂Ns, (6.20)

where the last equality holds if the errors have zero mean. The problem
can then be formulated as

minimize
λ

∑

p∈Rs

∑

j∈Rp

|λp − λj |

subject to ‖s2 − diag(s1)λ‖1 ≤ kTVσ̂Ns

0 < λ < 1

, (6.21)

where 0 and 1 are the column vectors of appropriate length containing
zeros and ones, respectively, and λ is the vector of all λp ∈ Rs. The
proportionality constant kTV is a user parameter that will be discussed
further in Section 6.4. The use of the L1 norm allows for piecewise
smoothness, and does not penalize sudden jumps in the estimate as
severely as the L2 norm. We also require that T2 is positive and finite,
corresponding to 0 < λ < 1. It is possible to set stricter bounds on T2
using prior information, but this option will not be pursued here. By
introducing two new variables w and z, we can write the problem in
(6.21) as

minimize
λ,z,w

1Tz

subject to − z ≤
(
bdiag

(
{1Np

}Pp=1

)
−B

)
λ ≤ z

−w ≤ s2 − diag(s1)λ ≤ w

1Tw ≤ kTVσNs

0 < λ < 1

, (6.22)

where the B matrix specifies the unique neighbors of each voxel, and
bdiag

(
{1Np

}Pp=1

)
is the block diagonal matrix with P blocks, and the

vector 1Np
of length Np in block p. The problem in (6.22) is an LP [28],

and solving it for λ gives the variance reduced estimates of T2. We call
this method L1TV.

6.4 Results

6.4.1 Simulations

Empirically, it can be shown that the optimal echo times for estimating
T2, in terms of the CRB, can be accurately described by the equation
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t2 = 1.1T2 + t1. This relies on the Gaussian assumption, and hence,
only holds approximately for high SNR. In practice, the true T2 is not
known and will vary over the image, but the tissue of interest can still
provide an approximate expected T2. In terms of actual CRB values,
choosing t1 as low as possible is favorable, which can be expected since
the signal decays in time.

A simulated dataset with Rician noise was created to be able to quan-
titatively compare the performance of the proposed methods to the vox-
elwise approach. The echo times were t1 = 21 ms and t2 = 100 ms,
chosen to mimic the in-vivo data in Section 6.4.2. A range of T2 values
from 50 ms to 300 ms, and several types of T2 variations: smooth gra-
dients, large and small abrupt changes, fine detail and larger constant
areas, were included in the dataset; while ρ was kept constant, as it only
affects the SNR. The two raw data images are shown in Fig. 6.3. The
total mean square error (MSE) was computed for different values of the
user parameters kLS and kTV, and is shown in Fig. 6.4. As can be seen
the MSE is minimized for kLS > 2.5 in the localLS method, and L1TV
has a clear minimum around kTV = 0.8. The results were similar for dif-
ferent SNRs, although a small variation could be seen. As a compromise
between visual appearance, bias, and MSE, default values of kLS = 2
and kTV = 0.5 were set for the localLS and L1TV respectively. It can
also be seen from Fig. 6.4 that the localNLS has similar performance to
localLS. Visually the results where indistinguishable and the localNLS
will therefore not be studied in the following.

The T2 estimates obtained from localLS and L1TV using the found
values of kLS and kTV, are shown in Fig. 6.5. The localLS and L1TV
have similar performance in terms of MSE, and show a clear reduction
in the variance. However, the L1TV has a slight problem resolving the
thin bright lines on the dark background compared to localLS. The error
histograms for each method are shown in Fig. 6.6. As can be seen, the
errors are generally smaller for L1TV than for localLS, even though the
total MSE is slightly higher. This can be explained by a few larger
errors that are not shown in the histogram, which have a significant
impact on the MSE.

6.4.2 In-vivo data

Two spin echo images of a brain at echo times t1 = 21 ms and t2 = 100
ms where acquired using a 1.5 T scanner. The average image SNR
was 31 dB, meaning that the Gaussian assumption should be valid.
By employing the user parameters suggested from the simulations, the
T2 estimates were calculated using the proposed methods, localLS and
L1TV, and compared to the voxelwise approach. The results are shown
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a) b)
Figure 6.3: The two simulated raw data Rice distributed magnitude images,
a) t1 = 21 ms, b) t2 = 100 ms. Average SNR = 30 dB.

0 1 2 3 4
102

103

104

kLS, kTV

M
S

E
(T

2)

 

 
localLS
localNLS
L1TV
Pixelwise

Figure 6.4: The average MSE of the T2 estimates for the simulated data
versus the parameters kLS and kTV that controls the smoothness enforced.

in Fig. 6.7. The images are truncated at 200 ms to make the results in
the target (lower) range of T2 values more clear. Again, both the localLS
and L1TV show a clear reduction in the variance without compromising
contrast. Visually there is no clear gain in using the L1TV compared to
the simpler localLS approach; however, looking at the zoomed-in images
in Fig. 6.8, some minor differences can be seen. Only minor staircase
artifacts can be seen in the L1TV estimates for the chosen degree of
smoothing. By examining the absolute difference between the estimates
obtained by the proposed methods and voxelwise approach, shown in
Fig. 6.9, it can be seen that the localLS has a more uniform noise reduc-
tion, indicated by the low amount of structure in the difference image.
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Figure 6.5: Estimates of T2 obtained by: a) localLS (MSE = 172), b) L1TV
(MSE = 209), and c) voxelwise (MSE = 652), together with d) the true values.

The relative difference of the LS estimates compared to the NLS (not
shown here) were less than 1% in over 99 % of the voxels. This indi-
cates that the LS gives a good approximation of the NLS, and the extra
computational burden involved in obtaining the NLS estimates is not
motivated.

The MOSEK linear program solver was run through Matlab on a
Intel Core i7 860 system at 2.93 GHz and with 16 GB of memory. The
average run times for the different methods when applied to the brain
data (25800 voxels) were 2.3 s for the localLS and 27.5 s for L1TV, while
the voxelwise approach is instant.

6.5 Conclusions
We have proposed two methods that can be used to reduce the vari-
ance of the T2 estimates obtained from two spin echo images, without
compromising the resolution at tissue boundaries. Both localLS and
L1TV include a way of choosing the user parameters, kLS and kTV, re-



120 Edge-preserving denoising of T2 estimates

−50 −25 0 25 50
0

200

400

600

800

Error in T2 estimate

Fr
eq

ue
nc

y

Figure 6.6: Overlay histograms for the errors in the T2 estimates from Fig. 6.5
using: L1TV (solid), localLS (medium), and voxelwise approach (light).
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Figure 6.7: Estimates of T2 obtained by: a) localLS, b) L1TV, and c) voxel-
wise approach.
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Figure 6.8: Zoomed in version of Fig. 6.7 for a) localLS, b) L1TV, and c)
voxelwise approach, showing more detail in the white matter T2 estimates and
the tissue contrast.
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Figure 6.9: Absolute difference between the T2 estimates obtained by the
voxelwise approach and a) localLS, b) L1TV.

spectively, and automatically adapt to the local image conditions. The
L1TV approach decides what is considered to be an outlier based on
the whole image, not just the center voxel versus the surrounding as
in LS. Furthermore, L1TV is set in a more general optimization frame-
work. The localLS algorithm, on the other hand, is easy to use, compu-
tationally efficient, and generally gives similar or superior performance
compared to L1TV. It is also easy to implement and memory efficient
enough to be generally applicable for T2 estimation on any standard
computer.
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Chapter 7
Temporal phase correction

7.1 Introduction
The magnitude images commonly used for T2 relaxometry are Rice dis-
tributed [67], which means that the LS parameter estimates will be
suboptimal. A few suggestions on how to solve this sub-optimality prob-
lem are available in the literature [111, 130], where the authors apply
ML methods, taking the Rice distribution into account; however, these
approaches are nonlinear and rather involved, which complicates the
implementation and can lead to convergence problems. To make the
problem more tractable, many algorithms for T2 estimation are based
on minimizing the LS criterion; however, it has been suggested that LS-
based approaches can lead to tissue mischaracterization caused by the
Rician noise [12].

In this chapter, we present two methods that, based on complex-
valued data, compute Gaussian-distributed real-valued images, which
can be used in LS-based T2 estimation without inflicting any bias. By
splitting the problem into two parts: one of phase correction to obtain
an estimate of the underlying magnitude decay, and another of estimat-
ing the relaxation components, the highly nonlinear Rician estimation
problem is avoided. Moreover, this enables increased accuracy when
using the non-negative least squares (NNLS) algorithm [84, 80], or the
method called Exponential Analysis via System Identification based on
Steiglitz-McBride (EASI-SM), for multi-component T2 estimation [120].
It should be noted that the phase correction methods presented herein
can be used for other problems than T2 relaxometry, as only the phase
of the data is modeled; however, this option will not be considered here.

A method for temporal phase correction (TPC) has been proposed
in [12], where the phase of the signal in an arbitrary voxel is fitted by
two fourth-order polynomials using weighted LS. The estimated phase
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is then removed from the data, effectively projecting the signal onto the
real axis. However, the TPC method does not make the best use of the
data, and can be both simplified and generalized. Moreover, no sim-
ulations were performed in [12] to show the statistical performance of
TPC. The main drawbacks of TPC from a signal processing perspective
are: 1) the data is split into two parts to counter any even/odd-echo
oscillations, which effectively reduces the number of samples used for
estimation; 2) a suboptimal weighting based on the echo number is ap-
plied when solving the LS problem, which can be problematic, particu-
larly for nonuniform echo spacing; and 3) estimating the parameters of
high-order polynomials, such as the two fourth-order polynomials used
in TPC, is rather sensitive to noise when only a few samples are avail-
able, which can lead to spurious oscillations in the phase. Typically, a
simpler description of the phase is sufficient.

Another approach, that was applied in [4], estimates the signal decay
and the noise properties from the magnitude images, and uses this in-
formation to transform the magnitude data into a Gaussian signal that
can be used for T2 estimation. This method is shown to improve the T2
estimates when only the magnitude images are available.

The aim is to statistically improve upon the method in [12], gener-
alize it to any linearly parameterized phase function, and extend it to
multi-coil data. The first method proposed makes use of all the avail-
able samples to fit a single function to the phase of the data by weighted
linear LS. The weights are chosen based on the magnitude of the mea-
sured signal, which directly relates to the variance of the phase noise.
Using these weights in the LS problem corresponds to an approximation
of the BLUE [114]. Moreover, the number of parameters can be chosen
based on the observed variations in the data, or other prior informa-
tion, avoiding the potential over fitting associated with always using a
fourth-order polynomial. The alternating phase phenomenon described
in [12], which causes the phase to change sign from echo to echo, can
be absorbed into the known parts of the equations. Doing so simplifies
the algorithm, and makes it more robust compared to splitting the data
into even and odd echoes, and performing separate phase estimation for
each of these datasets. The resulting method is called Weighted Linear
Phase Estimation (WELPE).

Furthermore, we present a ML estimator of the true magnitude decay.
This results in a nonlinear problem; however, when the phase changes
linearly with time, the ML estimator can be efficiently implemented us-
ing the FFT. This case is of particular interest, as linear phase variations
were observed in the in-vivo data used both in this chapter and in [12].

In the following, we compare the phase-correction performance of
WELPE, ML, and TPC using simulated data; and illustrate the differ-
ence in accuracy when estimating multiple T2 components using phase
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corrected data and magnitude data. Furthermore, WELPE is applied
to a multi-echo spin-echo dataset comprising 32 in-vivo brain images, to
evaluate the practical feasibility of the algorithm. As the focus of this
chapter is to compare phase correction methods, and not approaches to
estimate the model parameters, only EASI-SM will be used for para-
meter estimation. This simplifies the bias comparison, as EASI-SM
estimates discrete components rather than a continuous spectrum of T2
values as, for example, NNLS does.

The chapter is structured as follows: In the next section the signal
and noise models are presented. Section 7.3 contains details on the two
algorithms proposed, while Section 7.4 describes the simulation and data
acquisition procedure. The estimation results for both simulated and
in-vivo data are shown in Section 7.5, and the discussion of the results
follows in Section 7.6. Finally, some concluding remarks are found in
Section 7.7.

7.2 Theory

7.2.1 Signal model

For a multi-echo spin-echo acquisition, the received time domain signal
from coil j, in an arbitrary voxel, can be modeled as a sum of complex
exponentials:

s̃j(tn) = kje
iP (tn)

M∑

m=1

cme
−tn/T2m + ε̃j(tn) (7.1)

= g̃j(tn) + ε̃j(tn), n = 1, . . . , N,

where kj ∈ C is the coil sensitivity, M is the number of exponential
components, cm ∈ R+ and T2m ∈ R+ are the amplitude and relax-
ation time of component m, respectively, P (tn) is a function describing
the phase change over time, ε̃j(tn) is zero-mean i.i.d. complex-Gaussian
noise with variance 2σ2 (i.e. σ2 in both the real- and imaginary part),
tn is the sampling time relative to excitation, and N is the number
of samples (echoes). It is important to note that the factor eiP (tn) is
common to all damped exponentials in a voxel, and all coils, as this
phase is mainly attributed to field inhomogeneity and drift [67]. It is
also possible to model the signal using a continuous distribution of T2
values [76], rather than the discrete sum of components in (7.1). The
phase-correction algorithms presented herein can be used with either of
these models; however, to keep the description concise, the continuous
model will not be considered here.

As mentioned, the magnitude data commonly used in T2 relaxometry
is Rice distributed, and can de described by the PDF given in (3.20).
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However, by estimating the phase function P (t) in (7.1), including the
constant phase contribution from the coil, and removing it from the
data, the real part of the resulting signal can be modeled as

sj(tn) = |kj |
M∑

m=1

cme
−tn/T2m + εj(tn) (7.2)

= gj(tn) + εj(tn),

where now, εj(tn) is a Gaussian distributed noise with variance σ2.
Unlike the magnitude data, sj(tn) is suitable for use in any LS-based
method, like NNLS or EASI-SM, without causing bias problems. In the
next section two methods for estimating gj(tn) from complex-valued
data are suggested. These estimated samples will be Gaussian distribu-
ted, and can hence be described by the model in (7.2).

Here, P (tn) is assumed to be linearly parameterized, that is

P (tn) = p0 +

Q
∑

q=1

pqψq(tn), (7.3)

where {ψq(tn)}Qq=1 are a set of predefined basis functions, Q is the order
of the basis expansion, and p0 captures any constant phase offset in the
data. A wide class of phase variations are described by this parameteri-
zation, which should enable general use. For example, ψq(tn) = tqn gives
the set of polynomials of order Q, as used in [12] with Q = 4. In most
cases, using a polynomial basis is sufficient, for example when no other
assumption than smoothness of the phase can be made. Therefore, this
is the general recommendation; however, given some prior information
on the expected phase variation, other basis functions could be useful.

The SNR is defined as

SNR =

∑N
n=1 g(tn)

Nσ
, (7.4)

that is, the mean intensity of the signal over the noise standard devia-
tion. This is the common SNR definition for MR images; however, here
it is used across the echoes.

7.3 Methods

7.3.1 WELPE

The unwrapped angle of the model in (7.1) is given by

aj(tn) = argu(s̃j(tn)) = P (tn) + φj + vj(tn), (7.5)
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where argu(·) is the argument of a complex number, unwrapped across
time, φj is the phase of the coil sensitivity kj , and vj(tn) is uncorrelated
noise with time dependent variance. The unwrapping is performed by
the simple heuristic method in 3.2.2. Note that φj can be absorbed into
p0, giving the coil dependent parameter p0j = p0+φj . The phase noise,
vj(tn), in (7.5) is random and cannot be unwrapped, therefore, vj(tn)
will be wrapped-normal distributed rather than normal distributed [86].

Constructing the BLUE estimator of {pq}Qq=0 from (7.5) only requires
knowledge of the variance of vj(tn) for each tn, independent of the dis-
tribution [114]; however, BLUE assumes that the noise is zero mean,
which does not hold for the wrapped-normal distribution at low SNR.
It is possible to make use of circular statistics to avoid this problem, cf.
[86], but for practical purposes it will be sufficient to use the variance
of vj(tn) to obtain an approximation of the BLUE.

Using (7.3), the model in (7.5) can be rewritten as

aj(tn) =
[
1 ψ1(tn) . . . ψQ(tn)

]








p0j
p1
...
pQ







+ vj(tn). (7.6)

As only one parameter depends on the coil index j, there is a benefit
in using the data from all coils to simultaneously estimate the model
parameters. Using Nc coils, this reduces the number of unknowns to
(Nc +Q), compared to (Nc +QNc) when solving the problem for each
coil separately; a significant decrease, particularly when Q > 1.

By stacking the time samples and the basis functions into vectors, we
can define aj = [aj(t1), . . . , aj(tN )]T, vj = [vj(t1), . . . , vj(tN )]T, and
Ψq = [ψq(t1), . . . , ψq(tN )]T, to obtain the multi-coil matrix model:

a =








1 0 · · · 0 Ψ1 · · · ΨQ

0 1
. . .

...
...

...
...

. . .
. . . 0

...
...

0 · · · 0 1 Ψ1 · · · ΨQ



















p01
...

p0Nc

p1
...
pQ












+ v

= Rθ + v, (7.7)

where a = [aT1 , . . . , aTNc
]T, v = [vT

1 , . . . , vT
Nc

]T, R ∈ R
NNc×(Nc+Q),

and 0,1 ∈ R
N×1 are column vectors with all elements equal to zero or

one, respectively. By construction, the corresponding estimation prob-
lem is linear in θ, and by introducing weights proportional to the inverse
of the variance of each sample, we can obtain the BLUE estimate of θ
[114].
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A full derivation of the variance of the samples, and hence the weights,
is mathematically rather involved and not particularly useful in practice;
however, to provide some guidance for how to choose the weights, we
rewrite (7.1) as

s̃ = ei(P+φ)
(
g + |ε|eiβ

)
, (7.8)

where β is a uniformly distributed random phase, and the dependence
on j and tn has been dropped for notational convenience. As the phase
P + φ is to be estimated, the disturbing phase is given by arg(g +
|ε|eiβ). It can be shown that, for high SNR, this phase disturbance
can be approximated as v ≈ Re{ε} /g, and hence, the variance becomes
var(v) ≈ σ2/g2 [128]. Therefore, the BLUE weights at high SNR can
be approximated as

w*(tn) = g2(tn), (7.9)

where the constant σ2 has been omitted as it has no effect on the BLUE.
However, as g(tn) is not known, we propose to use the magnitude of the
noisy data from each coil j to approximate the quantity in (7.9), that is

wj(tn) = |s̃j(tn)|2. (7.10)

For details on the accuracy of this approximation, particularly at lower
SNR, see Section 7.5.

The weighted LS solution can now be written as

θ̂ = (RTWR)−1RTWa, (7.11)

and the weight matrix W is given by

W = diag
(
[wT

1 , . . . , w
T
Nc

]
)
, (7.12)

where wj = [wj(t1), . . . , wj(tN )]T, and diag(x) is a diagonal matrix
with the elements of the vector x along the diagonal.

If the data is collected in a manner that yields alternating phases,
as was the case in [12], this is easily detected and compensated for
by conjugating every other sample of the data prior to running the
estimation method. This procedure does not alter the noise properties,
and is in fact equivalent to including the alternating sign in the model.

Next, the estimated phase function is removed from the measured
data, giving an estimate of the true signal magnitude:

ĝj = Re
{

diag(s̃j)e
−iRj θ̂j

}

, j = 1, . . . , Nc, (7.13)

where Rj θ̂j is the estimated phase function corresponding to coil ele-
ment j, s̃j = [s̃j(t1), . . . , s̃j(tN )]T, and gj = [gj(t1), . . . , gj(tN )]T.

The phases of the low-SNR samples cannot be successfully unwrapped
as these are practically noise. This unwrapping problem occurs when
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Algorithm 7.1: Summary of WELPE for phase correction

1: Inputs: Complex-valued data: {s̃(tn)}Nn=1

Sampling times: {tn}Nn=1

model order: Q ≥ 1
Basis functions: {ψq(tn)}Qq=1

2: Construct the matrix in (7.7)
3: for each voxel do
4: Compute the unwrapped angle of the data (7.5)
5: Construct the matrix in (7.12)
6: Compute the WELPE parameter estimates (7.11)
7: Project data to the real axis (7.13)
8: end for

the noise intensity is of the same order of magnitude as the signal.
In WELPE, this corresponds to a very small weight in the criterion,
meaning that the impact on estimation is typically negligible. Moreover,
unwrapping the phase noise does not affect the noise properties, and
therefore, phase unwrapping can generally be applied to the full dataset
without effecting the outcome of the estimation procedure.

The order of the basis expansion, Q, and the basis functions, {ψq}Qq=1,
can be chosen based on the data, and as mentioned, the set of polyno-
mials of first or second order is often sufficient. It is also possible to
choose Q automatically on a voxel basis by utilizing an order selection
method, for example, the Bayesian Information Criterion [123]. This is,
however, beyond the scope of our discussion.

The fitting performance of WELPE depends on the SNR, the model
order, and the choice of basis functions. For low-order polynomials the
phase function can be accurately estimated at rather low SNR values.
In particular, WELPE typically works at a much lower SNR than what
is required for the application of multi-component T2 estimation [2, 57].

The estimation and phase correction procedure is summarized in Al-
gorithm 7.1.

7.3.2 Maximum likelihood estimator

When only one coil is used, it is possible to derive a special form of the
ML estimator of g(tn). This method can also be used when multiple
coil images have been combined into one image using a method that
preserves the data model. For example, taking the mean of the complex-
valued images across the coils, or combining the data corresponding to
the maximum intensity voxels across the coils into one image, preserves
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the model in (7.1), while the sum-of-squares approach does not have
this property.

To derive the ML estimator, the true signal magnitude, g(tn) ∈ R+ is
seen as a time varying amplitude, that is, no model of g(tn) is assumed.
By rewriting (7.1) as

s̃(tn) = g(tn)e
iP (tn) + ε̃(tn), (7.14)

where the coil index j has been dropped, and the coil-sensitivity para-
meters have been absorbed into g(tn) and P (t), the NLS estimates of
g(tn) and P (tn) can be obtained by minimizing the criterion function

L =
N∑

n=1

∣
∣
∣s̃(tn)− g(tn)e

iP (tn)
∣
∣
∣

2

=

N∑

n=1

{

|s̃(tn)|2 +
[

g(tn)− Re
{

e−iP (tn)s̃(tn)
}]2

−
[

Re
{

e−iP (tn)s̃(tn)
}]2

}

, (7.15)

where the second equality follows from expanding and completing the
square. Estimates obtained by globally minimizing (7.15) are ML under

the assumption of Gaussian noise. Given {p̂q}Qq=0 and the corresponding

function estimate P̂ (tn), the estimate of g(tn) is immediately found to
be

ĝ(tn) = Re
{

e−iP̂ (tn)s̃(tn)
}

. (7.16)

By substituting (7.16) into (7.15), it can be seen that the NLS estimate

of {pq}Qq=0 can be obtained by maximizing the following function:

L̃ = 2
N∑

n=1

[

Re
{

e−iP (tn)s̃(tn)
}]2

. (7.17)

Using the fact that for any complex number z:

[Re{z}]2 =
1

2
[|z|2 +Re

{
z2
}
], (7.18)

we can rewrite (7.17) as

L̃ =
N∑

n=1

[

|s̃(tn)|2 +Re
{

e−2iP (tn)s̃2(tn)
}]

= const. + |h(p1, . . . , pQ)| cos (arg(h(p1, . . . , pQ))− 2p0) , (7.19)
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where we have defined

h(p1, . . . , pQ) =
N∑

n=1

s̃2(tn) exp

(

−2i

Q
∑

q=1

pqΨq(tn)

)

. (7.20)

It now follows directly that the maximum with respect to p0 is given by

p̂0 =
1

2
arg(h(p̂1, . . . , p̂Q)) , (7.21)

where the estimates of {pq}Qq=1 are

{p̂q}Qq=1 = argmax
{pq}

Q
q=1

|h(p1, . . . , pQ)|. (7.22)

By computing {p̂q}Qq=1 from (7.22), and back-substituting into (7.21) to
obtain p0, (7.16) can be used to obtain the ML estimate of g(tn). Note
that this approach does not require phase unwrapping, nor is there a
need to use a potentially sub-optimal weighting in the criterion.

For Q = 1, finding a solution to (7.22) is a one-dimensional problem,
and the maximization can be performed by brute force search on a grid
of potential p1 values. Moreover, when the phase function P (tn) can be
modeled as a linear function of tn, that is

P (tn) = p0 + p1tn, (7.23)

the expression in (7.20) is similar to a discrete Fourier transform, and
for uniform echo spacing Ts, (7.22) can be efficiently implemented using
the FFT:

p̂1 =
1

2Ts
argmax
f∈[0, 2π]

∣
∣FFTK{s̃2(tn)}

∣
∣ , (7.24)

where f corresponds to the normalized frequency in the transform, and
K is the number of evaluated frequencies. Typically, K ≈ 10N (rounded
to the closest power of two) provides sufficient accuracy in practical
applications. For nonuniform echo times, the corresponding nonuniform
FFT can be used, cf. [44]; alternatively, it is possible to precompute a
nonuniform Fourier matrix based on grid of p1 values, and use this
matrix at each voxel.

For higher orders of the phase function, that is Q ≥ 2, the estimates
in (7.22) can be obtained by nonlinear maximization, given proper ini-
tialization; however, in such a case we can only expect convergence to
a local maximum of |h(p1, . . . , pQ)|, and hence, the obtained estimates
may be suboptimal.

Matlab implementations of both WELPE and the ML algorithm are
available at:
https://github.com/AAAArcus/PhaseCorrection.

https://github.com/AAAArcus/PhaseCorrection
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7.4 Simulation and Data Acquisition
As the phase variation observed in the in-vivo data was approximately
linear over time (see Section 7.5), the simulations will focus on this sce-
nario. Inspired by [12], Monte Carlo (MC) simulations were performed
at SNR = 70, using datasets with 48 samples and linear alternating
phase, where the first 32 echoes were spaced by 10 ms, and the follow-
ing 16 by 50 ms. However, to enable reliable estimation of more than
two T2 components at SNR = 70, 128 echoes, uniformly spaced by 10
ms, were used in the T2 estimation example. The data was generated
using the model in (7.1), and complex-valued Gaussian white noise of
variance 2σ2 was added to achieve the appropriate SNR, as defined by
(7.4). To enable direct comparison with TPC, only a single coil was
simulated, and the coil sensitivity k was set to unity (without loss of
generality). Furthermore, to obtain a high accuracy of the sample means
and variances, 10000 MC simulations were performed in all examples.

The chosen parameter set used to generate the data in the simulation
examples was

T2 = [20, 80, 200] ms,

c = [0.4, 1, 0.1].
(7.25)

Single slice, multi-echo spin-echo in-vivo brain data was collected at
Uppsala University Hospital using a 1.5 T Philips scanner equipped
with a 8 element Sense headcoil. For an echo spacing of 10 ms and
TR = 2200, 32 images with echo times ranging from 10 ms to 320 ms,
were acquired. No averaging was used. An imaging matrix of 240× 188
voxels was used to obtain a resolution of 1× 1× 5 mm. The total scan
time was 7 minutes and 11 seconds.

7.5 Results

7.5.1 Simulation

To illustrate the accuracy of the proposed WELPE weights, given by
(7.10), the variance of the phase noise was empirically approximated by
the means of MC simulation. Noisy datasets were generated using the
model parameters in (7.25), and the variance of the phase at each sam-
pling instance was computed. The corresponding weights are shown in
Fig. 7.1, along with the high SNR approximation, g2(tn), and the pro-
posed square magnitude of a noisy samples given by (7.10). The 1/n
weights used in TPC [12] were also included for comparison. As can be
seen, the empirical weights are relatively well approximated by the pro-
posed weights in this example (note the logarithmic scale). Moreover,
(7.10) provides a better approximation to the empirical weights than
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Table 7.1: Root mean square errors (rMSE) of the {T2m}3m=1 estimates using
magnitude, WELPE and TPC data, computed from 10000 MC simulations.
The simulated data consisted of 128 echoes with uniform spacing of 10 ms, and
SNR = 70.

rMSE [ms]

Method T21 T22 T23

Magnitude 1.1 4.9 87.0

WELPE 0.5 1.6 13.3

TPC 1.2 3.6 16.4

g2(tn) at later samples, that is, at lower SNR. TPC, on the other hand,
gives a relatively low weight to the initial, most informative, samples,
and too high weight to the noisy samples at the end of the decay.

An example of a simulated dataset with linear alternating phase is
shown in Fig. 7.2, in terms of the magnitude and phase of the noisy
data. The generated data closely resembles the measurements from a
white matter voxel shown in [12]. As can be seen, the phase information
is very noisy when the signal magnitude is low, even though the true
phase is linear and alternating.

To show the statistical improvement associated with using WELPE
or ML, compared to TPC, when estimating the true magnitude decay,
MC simulations were performed. The average of the estimated phase-
corrected signals are shown in Fig. 7.3. As can be seen, both WELPE
and ML are on the average close to the true noise-free magnitude decay,
while TPC gives a signal that is more similar to the magnitude of the
noisy data.

To illustrate the multi-component T2 estimation performance based
on WELPE, TPC, and magnitude data, MC simulations were performed
using the parameters in (7.25). The root mean square errors (rMSE) of
the T2 estimates, obtained using EASI-SM on the different datasets, are
listed in Table 7.1. As can be seen, the WELPE phase-corrected data
provides the highest parameter estimation accuracy, followed by TPC,
and the magnitude data. The estimates from the first 200 MC simula-
tions, plotted in the {c, T}-plane, are shown in Fig. 7.4, together with
the true parameter values. As can be seen, using the magnitude data
causes a bias in the estimates, particularly for the slowest T2 compo-
nent. TPC reduces this bias, but the estimates are slightly more spread
out compared to when using the data corrected by WELPE. Moreover,
TPC leads to a few outliers in the parameter estimates, shown as squares
clearly separated from the main cluster of estimates. ML provided sim-
ilar results to WELPE, but was omitted from Fig. 7.4 for clarity.
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Figure 7.1: An example of the LS weights given by the inverse of the vari-
ance of the phase (approximate BLUE weights), the proposed weights obtained
directly from the data, and the TPC weights given by the inverse of the echo
number.

7.5.2 In-vivo

To reduce the computation time, the collected in-vivo images were ini-
tially masked by excluding voxels below 20% of the maximum intensity
voxel. This masked region corresponds to the low signal background
of the images, mainly located outside of the skull. The magnitude
and phase of the 80 ms echo from the collected 32 echo dataset is
shown in Fig. 7.5, together with the estimated magnitude and phase
using WELPE, and the corresponding difference images (|s̃| − ĝ and

arg(s̃)− P̂ ). As can be seen, the magnitude image and the WELPE cor-
rected data are close to one another. Moreover, the phase is accurately
modeled as no major structure remains in the difference image, and a
clear denoising effect is observed in the estimated phase image. An ex-
ample of the WELPE fitting of the phase for a single voxel is shown in
Fig. 7.6. The phase initially varies approximately linearly, while as the
signal magnitude decays, the phase noise grows larger, leading to a more
random behavior. Because of the weighting in the criterion, WELPE is
able to fit to the initial linear trend, while effectively disregarding the
heavily distorted samples from the later echoes.

In Fig. 7.7, a histogram of the imaginary part of the phase corrected
image from Fig. 7.5 is shown. As can be seen, the samples are ap-
proximately Gaussian distributed with zero mean and a relatively small
standard deviation.
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Figure 7.2: a) Magnitude and b) phase [rad] over time, for a simulated noisy
dataset where the true phase is linear and alternating.

7.5.3 Computational details

The computational burden of the considered methods varies depending
on the settings and the implementation; however, we can still give an in-
dication of the run times to be expected. The computation times for all
methods when performing 10000 MC simulations on a single processor
thread using an Intel i7 860 at 2.93 GHz, are shown in Table 7.2. The
simulated data consisted of 128 echoes with uniform spacing of 10 ms,
similar to the example in Table 7.1. A uniform sampling was used to be
able to show the computational performance of the ML estimator based
on the FFT implementation. WELPE is the fastest method, running
approximately twice as fast as TPC. ML has a slightly longer runtime
than WELPE for K = 1024, but is still more computationally efficient
than TPC in this case.

7.6 Discussion

7.6.1 Simulation

The proposed weights used in the WELPE criterion are data adaptive,
provide a good approximation of the empirical BLUE weights, are easily
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Figure 7.3: The average estimated magnitude decay ĝ(tn) from 10000 MC
simulations for WELPE, ML, TPC, and the magnitude data, compared to the
true decay g(tn).

Table 7.2: Matlab run times in seconds for phase correcting 10000 datasets
using WELPE, ML, and TPC, at different SNRs.

SNR

Method 50 70 150

WELPE 1.2 1.2 1.2

ML (K = 1024) 1.9 1.9 1.8

TPC 2.8 2.7 2.7

computed, and lead to superior statistical performance compared to the
1/n weights used in TPC.

The simulated data with linear and alternating phase displayed in
Fig. 7.2 showed that a linear phase model, rather than a fourth-order
polynomial, would have been more suitable to model the phase of the
data in [12]. This motivates both WELPE, which has the option to
choose the number of parameters used to model the phase based on the
data, and the ML method, which provides a simple FFT-based solution
for the case of linear phase variations.

As was seen in Fig. 7.3, the TPC data is on the average more simi-
lar to the magnitude data, in this example with non-uniformly spaced
echoes. This is partially due to the suboptimal weights used, which
puts too high weight to the noisy samples at the end of the decay. The
data adaptive weights used by WELPE, on the other hand, provide an
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Figure 7.4: Estimates of c and T2 from 200 MC simulations, obtained by
applying EASI-SM to phase-corrected data generated by WELPE and TPC,
as well as to the magnitude of the noisy data. The true parameter values are
indicated by the stars. The estimates correspond to the first 200 realizations
of the simulations in Table 7.1.

accurate estimate of the true signal magnitude. The jump discontinuity
shown in the last two samples of the TPC estimate in Fig. 7.3 is due
to robustness issues in the phase fitting. The two fourth-order polyno-
mials used in TPC usually fits the initial linear phase, where the SNR
is high, quite well. However, as a consequence of the high order model,
several extreme points of the polynomials are placed in the low SNR
region, essentially fitting to the noise. This can cause rapid variations
in the estimated phase function, and in turn, can lead to an increase in
the bias. Thresholding the data and removing samples below a certain
SNR from the fitting procedure, as was suggested in [12], eliminates the
discontinuity of TPC in Fig. 7.3, but overall makes the estimated decay
curve more similar to the magnitude data (not shown here).

As was shown in Fig. 7.4, using the magnitude of the noisy data and
an LS-based approach can lead to a significant bias in the T2 estimates,
and therefore, mischaracterization of the tissue. This can be expected,
as the Rician noise will effectively raise the tail of the decay curve,
which is interpreted as a slower decay. By applying WELPE to cor-
rect the phase, however, the data becomes Gaussian distributed, which
eliminates the bias problem. The TPC approach also improves the T2
estimation significantly, but results in a higher rMSE than WELPE, and
occasionally causes outliers in the estimates. The outliers are partially
due to the robustness issues in the polynomial fitting mentioned above,
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Figure 7.5: a) Magnitude, and b) phase [rad] at echo time 80 ms of the single
slice in-vivo dataset; and the estimated c) magnitude, and d) phase, provided
by WELPE, together with the error in e) magnitude (amplified by a factor of
1000), and f) phase (amplified by a factor of 100).
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Figure 7.6: Phase [rad] over time for a single voxel of the in-vivo dataset
together with the linear fit provided by WELPE.
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Figure 7.7: Distribution of imaginary part of the phase corrected image at
echo time 80 ms.

which for some noise realizations can lead to poor estimates of the true
phase function.

7.6.2 In-vivo

For the collected 32 echo in-vivo dataset, WELPE is able to accurately
model the phase in the whole image, and provides an estimate of the
true magnitude decay that is close to the magnitude of the noisy data for
high SNR, as was shown in Fig. 7.5. Figure 7.6 showed that the linear fit
to the phase variation in time was a relatively accurate approximation,
and that it would be hard to motivate the fitting of a higher order phase
function in this example.
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The histogram in Fig. 7.7, showed that the imaginary part of the data
after phase correction is small and approximately Gaussian distributed.
This would be expected in the case of successful phase correction, and
indicates that WELPE is able to project a large proportion of the signal
energy to the real axis, leaving mainly noise in the imaginary part.

7.6.3 Computational details

Since TPC requires two systems of equations to be solved and the results
recombined, the computation times for WELPE are typically lower. The
FFT implementation of the ML estimator is also fast for K ≈ 10N ,
which provides reasonable accuracy. Note that it is possible to trade
off computation time and accuracy by setting the number of evaluation
points, K, in the FFT.

7.7 Conclusion
Two methods for phase correction have been presented, and through
simulations, the algorithms have been shown to be useful for avoiding
bias in multi-component T2 estimation by accurately estimating the
true magnitude decay. WELPE is statistically sound and is easy to
implement; moreover it works with multi-coil data, general sampling
schemes, and a wide range of phase functions. The ML estimator is
optimal, and does not require phase unwrapping or weighting of the
criterion. Moreover, it can be rather efficiently implemented for linear
phase variations in time; however, in the general case, finding the ML
estimates is computationally more intensive than using WELPE.
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Chapter 8
Sequence design for excitation

8.1 Introduction
Sequence, or waveform, design aims to generate sequences with specific
desired properties, such as a certain spectral content, or good correla-
tion properties. There is a wide range of applications, for example, in
communications, active sensing, and MRI [52, 65, 62]. Typically, the
signal to be designed is characterized by means of an optimization prob-
lem. Solving the problem globally can be difficult when the criterion is
non-convex; however, in some cases a local minimization algorithm is
sufficient to find a good solution. Indeed, different local optima corre-
spond to possible candidates for a signal, and since the problem is usu-
ally solved offline, it is possible to generate several signals and choose
the best among these based on the criterion.

In this chapter, we derive a cyclic algorithm that locally solves a
class of sequence design problems where a constraint on the magnitude
of the designed complex-valued signal is enforced. This formulation has
applications in MRI [59], but could also apply to other fields where low-
cost amplifiers are used. Typically, such amplifiers are single stage and
are not equipped with feedback control [35]. This can cause nonlinear
distortion of the signal when there are rapid variations in the magnitude
[94]. By penalizing such variations in the design, the resulting sequences
can be amplified and transmitted with higher fidelity.

8.2 Problem formulation
In general terms, the criterion to be minimized can be formulated as

f(x) = ‖d−Ax‖2W + λ‖R|x|‖2, (8.1)



142 Sequence design for excitation

where d ∈ C
M is the desired signal, x ∈ C

N is the signal to be de-
signed, A ∈ C

M×N and R ∈ C
P×N are arbitrary linear transformation

matrices, and W ∈ C
M×M is a positive semidefinite weighting matrix.

The regularization term contains a magnitude vector, which makes this
function non-convex in general. The minimization of (8.1) with respect
to x can be done in several ways; however, for large problems it is nec-
essary to find an efficient method with low computational complexity.
The algorithm used in [59] is similar to the heuristic Iterative Quadratic
Maximum Likelihood (IQML) algorithm and is not guaranteed to con-
verge, nor is it a true minimization algorithm for the criterion [121].
However, IQML does typically converge to a vector fairly close to a
minimizer of the stated criterion.

For the criterion in (8.1) the IQML algorithm can be described as
follows. The vector x can be elementwise partitioned into its magnitude
and phase as

xk = |xk|eiφk , k = 1 . . . N. (8.2)

By stacking the phases {φk}Nk=1 into a vector φ, we can form a criterion
function:

g(x,φ) = ‖d−Ax‖2W + λ‖Rdiag(e−iφ)x‖2, (8.3)

where we have defined e−iφ = [e−iφ1 , . . . , e−iφN ]T for notational con-
venience, and diag(e−iφ) is a square matrix with the elements of e−iφ

along its diagonal. Under the constraint that φ = arg(x), where the
argument is taken elementwise, we have g(x,φ) = f(x); however, by
relaxing this constraint and keeping φ fixed, the minimization of (8.3)
with respect to x becomes quadratic. After solving for x, the phases
can be updated as φ = arg(x). These two steps are then iterated until
some predefined stopping condition is satisfied.

Since IQML is not a minimizer of (8.1), it does not get stuck in
local minima in the same way as a true minimization algorithm does.
This property, together with the observation that IQML often converges
rather rapidly, makes IQML a potential candidate for initialization of
the local minimization algorithm described in Section 8.3.1. However,
when there is no optimal vector xopt such that Axopt is close enough to
d, IQML tends to have poor performance, and in the worst case, might
not converge. An example of this type of behavior is shown in Section
8.5.

In [59], IQML is initialized by φ = 0, meaning that the first opti-
mization step consists of solving the following least-squares problem:

minimize
x

‖d−Ax‖2W + λ‖Rx‖2. (8.4)

The solution to the complex-valued smoothing problem above provides
a reasonably good initialization for the non-convex problem in (8.1).
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8.3 Magnitude-Constrained Cyclic Optimization
(MACO)

8.3.1 Description of the Algorithm
Using (8.2), and defining zk = |xk| ≥ 0, we can re-write the problem of
minimizing (8.1) as

minimize
z,φ

∥
∥
∥
∥
∥
d−

N∑

k=1

akzke
iφk

∥
∥
∥
∥
∥

2

W

+ λ‖Rz‖2

subject to z ≥ 0

, (8.5)

where ak is the k:th column of A. Assuming z and {φk}k ̸=p are given,
let

dp = d−
N∑

k=1
k ̸=p

akzke
iφk , (8.6)

and observe that

‖dp − apzpe
iφp‖2W + λ‖Rz‖2 =

= ‖dp‖2W + z2p‖ap‖2W + λ‖Rz‖2 − 2Re
{
zpe

−iφpa*pWdp

}

= −2zp|a*pWdp| cos(arg(a*pWdp)− φp) + C, (8.7)

where the constant term C is independent of φp. Then it follows that
the φp that minimizes the criterion in (8.5) is

φ̂p = arg(a*pWdp), (8.8)

for each p. By cycling through the entire φ vector we obtain an updated
estimate, φ̂, for the next iteration.

Once the phase vector is updated, we have to solve the minimization
problem in (8.5) with respect to z ≥ 0 for a fixed φ = φ̂. Similarly
to the approach above for {φk}, it is possible to determine the {zk}
one-by-one. First, we rewrite the criterion in (8.5) as

∥
∥
∥
∥

[
d
0

]

−
[
Adiag(eiφ)

−
√
λR

]

z

∥
∥
∥
∥

2

W̃

, ‖c−Bz‖2
W̃
, (8.9)

where

W̃ =

[
W 0
0 IP

]

, (8.10)

and IP is the identity matrix of size P × P . If we assume that φ and
{zk}k ̸=p are given, and define

cp = c−
N∑

k=1
k ̸=p

bkẑk, (8.11)
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Algorithm 8.1: MACO Sequence Design

1: Input: A,R,d,W, λ, initial guess of z
2: repeat
3: Step 1:
4: for all p do
5: Compute dp using (8.6)

6: Compute φ̂p using (8.8)
7: end for
8: Step 2:
9: for all p do

10: Compute cp using (8.11)
11: Compute ẑp using (8.13)
12: end for
13: until convergence
14: Output: Compute x̂ from ẑ and φ̂ using (8.2)

we can write (8.9) as

‖cp − bpzp‖2W̃ = ‖cp‖W̃ + z2p‖bp‖2W̃ − 2zp Re
{

b*
pW̃cp

}

= const. + ‖bp‖2W̃



zp −
Re
{

b*
pW̃cp

}

‖bp‖2
W̃





2

, (8.12)

where bp is the p:th column of B, and the constant term is indepen-
dent of zp. The minimizer ẑp ≥ 0 of (8.12) has the following simple
expression:

ẑp =







Re
{

b*
pW̃cp

}

‖bp‖2
W̃

if Re
{

b*
pW̃cp

}

> 0

0 otherwise

. (8.13)

This can be used to update ẑ, element by element, in the same manner as
for φ̂. By iterating the two steps, (8.8) and (8.13), the criterion function
in (8.5) will decrease monotonically, as each step minimizes a part of
the criterion. Since the criterion is bounded from below, it follows that
the algorithm will converge to a local minimum. The proposed MACO
algorithm is summarized in Algorithm 8.1.

The MACO algorithm can be initialized in several ways. A good guess
is, typically, provided by solving (8.4). The other option considered
here is to initialize the algorithm by IQML, given that it has converged
properly. By using the estimate obtained from IQML as initialization,
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MACO is guaranteed to perform at least as well, while taking advantage
of IQMLs potential ability to avoid some local minima.

It should be noted that the problem of minimizing (8.9) with respect
to z ≥ 0 is a linearly constrained quadratic program (LCQP), which can
typically be solved rather efficiently by, for example, interior-point meth-
ods [28]. We denote the corresponding method MACO-LCQP. However,
for large dimensions it might be favorable to determine the {zk} one-
by-one, as was done above.

The computations in (8.6) and (8.11) can be performed recursively
to reduce the computational burden. We have

dp = d−
N∑

k=1
k ̸=p

ake
iφkzk = d−Ax+ apxp, (8.14)

where xp is the current estimate. After obtaining the updated estimate
x̂p we can express the next residual as

dp+1 = dp − apx̂p + ap+1xp+1. (8.15)

Because of this, d − Ax only has to be computed once; although,
to prevent accumulating numerical errors in the recursion, a full re-
computation of the residual can be done at each step of Algorithm 8.1.
A similar recursion holds for cp.

8.3.2 Note on convergence
One interesting property is that the optimal phases φ? are independent
of z ≥ 0 when A*WA is diagonal. This can be shown by inserting the
polar form of x from (8.2) into (8.1) and expanding. We then obtain
the following criterion to be minimized with respect to φ:

f̃(z,φ) = [e−iφ]TZ*A*WAZeiφ − 2Re
{
d*WAZeiφ

}
, (8.16)

where Z = diag(z), and the terms that are constant with respect to
φ have been omitted. If A*WA is diagonal, the φ:s in the first term
cancel, and reminiscent of (8.7), the remaining term can be written as

− 2

N∑

k=1

zk cos (arg(a
*
kWd)− φk) , (8.17)

which decouples for all k. Therefore, the minimizer of (8.1) with respect
to φ, for a diagonal A*WA, is given by

φ? = arg(A*Wd). (8.18)

Moreover, using (8.8) to solve for {φk}Nk=1 converges in one step, and
given that the remaining problem for z is solved by an LCQP, the op-
timum is reached instantly.
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8.4 Application to MRI
In MRI, the problem is to design sequences used to excite, or tip, the
magnetic field vector in a certain region of a subject. Typically, such ex-
citation pulses have rapidly varying magnitudes [71, 142]. As mentioned,
the low-cost amplifiers commonly used in parallel MRI can distort these
signals, leading to artifacts in the resulting images. Therefore, the prob-
lem consists of finding a signal with smooth magnitude, while trying to
maintain the desired excitation pattern. The multi-coil problem can be
stated as follows [59]:

argmin
{xj}

Nc
j=1

∥
∥
∥
∥
∥
∥

d−
Nc∑

j=1

diag(sj)Ãxj

∥
∥
∥
∥
∥
∥

2

W

+ λ

∥
∥
∥
∥
∥
∥

Nc∑

j=1

R̃|xj |

∥
∥
∥
∥
∥
∥

2

, (8.19)

where Nc is the number of parallel transmit channels in the coil array,
sj ∈ C

M is the vectorized spatial sensitivity of coil j, and xj is the
corresponding complex-valued signal to be designed. By stacking the
Nc signal vectors in one vector x = [xT

1 · · · xT
Nc

]T, and defining the

matrices A = [diag(s1)Ã · · · diag(sNc
)Ã], and R = INc

⊗ R̃, where
⊗ is the Kronecker product, we get the problem in the same form as
(8.1). The desired signal d is in this case a vectorized multi-dimensional
excitation pattern in space. The matrixA corresponds to a Fourier-type
matrix that captures the, possibly nonuniform, sampling trajectory in
k-space over time. The regularization matrix R can, for example, be
determined by using a linear approximation of the filtering occurring in
the amplifier, and computing the expected distortion filter. However,
this requires knowledge of, or direct measurements from, the amplifier
used. The distortion of the amplifiers used in [59] was shown to be fairly
accurately modeled by a first-order difference filter, that is

R =








1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1








N−1×N

, (8.20)

which is the approximation we will consider here. For a more detailed
explanation of how one can achieve a multi-dimensional excitation pat-
tern in space from one or several scalar time series, see for example
[138].
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8.5 Numerical examples

8.5.1 Example 1: A simple design

Let W and A in (8.1) be identity matrices, then the optimal phases can
be obtained in closed form as φ = arg(d), by making use of (8.18). The
resulting LCQP for z can be written as follows

minimize
z

‖|d| − z‖2 + λ‖Rz‖2

subject to z ≥ 0
. (8.21)

Since the globally optimal solution of (8.21) can be computed, this
special case can be used as benchmark to compare the IQML and MACO
algorithms. In this example, N = 100 and λ = 1 was used. Each element
in d and the initialization x0, was generated from uniform distributions
for both the phase (between 0 and 2π) and the magnitude (between 0
and 1), and the elements of R ∈ R

100×100 were drawn from a zero-mean
Gaussian distribution with unit variance.

Monte Carlo simulations were performed by generating 1000 random
initializations, and using these to start each algorithm. The problem
parameters, d and R were kept fixed in all simulations. The resulting
mean criterion as a function of the iteration number is shown in Fig. 8.1,
together with the spread in terms of two standard deviations. As can be
seen, the proposed method converges to the optimal solution in less than
20 iterations for all initializations, while IQML does not converge at all.
Even the initialization given by (8.4) resulted in a similar behavior (not
shown here). This indicates that IQML will have poor performance
in some cases, which is a partial motivation for the local minimization
algorithm presented herein.

8.5.2 Example 2: An MRI design

To make this example easy to follow, we will consider the problem with
a fully sampled rectangular grid in k-space, no weighting, and a single
transmitter coil. Furthermore, λ = 10, and the desired 2D excitation
pattern, D ∈ R

32×32, is a 10×10 square passband with unit magnitude,
centered in space, as shown in Fig. 8.3a. In 2D, the problem can be
formulated as

argmin
X

∥
∥D− FXFT

∥
∥
2

F
+ λ ‖R|vec(X)|‖2 , (8.22)

where ‖ · ‖F denotes the Frobenius norm, F ∈ C
32×32 is a inverse dis-

crete Fourier transform matrix, and vec(·) is the columnwise vectorizing
operator. By letting x = vec(X) ∈ C

1024, d = vec(D) ∈ R
1024, and

A = F⊗F ∈ C
1024×1024, we can re-write the problem in the same form
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Figure 8.1: The mean criterion for IQML and MACO versus the number
of iterations, when applied to the simple design problem of (8.21) using 1000
random initializations. The light and dark gray fields show the spread of the
criterion (±2σ) for IQML and MACO, respectively.

as (8.19). Here, A*A becomes diagonal, and as was shown in Section
8.3.2, the optimal phase vector φ? will therefore be independent of z. As
a consequence, MACO-LCQP will reach the optimum in one iteration.
Here, the LCQP was solved by MOSEK. Again, it should be noted that
solving an LCQP might become intractable for large problems, in which
case the elementwise update approach is preferable.

MACO, MACO-LCQP, and IQML were used to find the solution to
the problem in (8.22). The initial guess for all algorithms was obtained
by solving the least-squares problem in (8.4). The convergence in terms
of the criterion function versus the number of iterations is shown in
Fig. 8.2. The magnitudes of the excitation patterns obtained after 30
iterations are shown in Fig. 8.3b–d. The resulting stopband and pass-
band ripples, together with the sub-criteria for the fit (first term of
(8.1)) and the magnitude smoothing (second term of (8.1)), are listed
in Table 8.1. The stopband and passband ripples were defined as the
maximum magnitude deviation from the desired excitation pattern in
the respective areas.

In this example, the regularization is easier to handle than in the
first example, and IQML converges. MACO-LCQP converges in one
iteration, as expected, while the standard MACO has a slightly slower
convergence rate. The time until convergence, with a tolerance of 10−6,
was 1041 s, 40 s, and 4 s, for IQML, MACO, and MACO-LCQP, respec-
tively. At iteration 30, MACO closely approximates the MACO-LCQP
solution, while IQML provides a smoother estimate with both lower fit
and higher ripple values.
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Figure 8.2: Comparison of the criterion for IQML, MACO, and MACO-LCQP
versus the number of iterations, when applied to the MRI example.

Table 8.1: Ripples and sub-criteria at iteration 30 for the different methods
when applied to the MRI example.

MACO MACO-LCQP IQML
Passband ripple 0.56 0.53 0.60
Stopband ripple 0.56 0.57 0.75
Fit-term 26.9 26.7 35.9
Smoothness-term 1.10 1.11 1.04

For smaller values of λ, that is, less smoothness imposed, IQML might
outperform MACO for a given initialization as it does not get stuck in lo-
cal minima. However, IQML would typically be used to initialize MACO
in these cases, and therefore an improvement can still be expected.

8.6 Conclusion
We have derived a simple algorithm with low computational complex-
ity, for solving LS problems with magnitude constraints. The proposed
MACO algorithm does not suffer from the potential convergence prob-
lems of IQML, and can further improve the results from IQML by truly
minimizing the design criterion. The algorithm is useful for designing
RF pulse excitation sequences in parallel MRI, which can be transmitted
without compromising signal fidelity in the amplifier stage.
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Figure 8.3: a) The desired excitation pattern for the MRI example. Excitation
patterns corresponding to the sequences designed by: b) IQML, c) MACO, and
d) MACO-LCQP, obtained after 30 iterations.
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Chapter 9
Magnetic resonance thermometry

9.1 Introduction
The proton resonance frequency (PRF) generally depends on the local
molecular bonds, and for the hydrogen found in water, this frequency
varies with temperature. By detecting the resonance frequency of hydro-
gen in water, the relative temperature distribution can be determined by
a linear relation [82]. However, the absolute water resonance frequency
cannot be estimated directly, due to an unknown static magnetic field
inhomogeneity. Here, fat-bound hydrogen is used as a reference, as its
frequency is largely independent of the temperature, enabling noninva-
sive absolute temperature mapping in three dimensions, through MRI.

Separating the water and fat contributions in an image can improve
diagnosis, and is useful to quantify the amount of fatty tissue and es-
timate its distribution. In fat-water separation, the amplitudes of the
resonances are of main interest, given that the frequency separation is
known [99]. In the present application we are interested in estimating
the frequency separation of the fat and water signals, which further
complicates the problem. The PRF-based fat referenced approach is
one out of several methods of absolute MR thermometry, cf. [101, 58].

MR thermometry can be used to monitor tissue temperature, which
for example can be used to guide thermal therapy [37, 125]. Another
application is to detect the activation of brown adipose tissue, which in
turn is related to metabolism [50]. Studying this activation could be
important when developing future treatments for obesity.

The fat signal contains several resonances depending on the inter-
nal bonds in the fat molecules, but the methylene peak is the most
significant. The water-bound protons, on the other hand, correspond
to a single resonance. Figure 9.1 shows an example of the theoretical
signal spectrum from a simulated tissue containing equal proportions
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Figure 9.1: Example of the theoretical spectrum of a received signal from one
voxel, including a frequency offset caused by field inhomogeneity. The multiple
smaller peaks originate from fat.

of fat and water. By modeling this signal, nonlinear estimation meth-
ods can be used to find the parameters, and hence the temperature.
A fat-referenced parametric-modeling approach has been previously at-
tempted with different models, both in the time and frequency-domain
[82, 117].

The contribution of this chapter is to: i) extend the model in [82]
to include multiple fat resonances, ii) analyze the Cramér-Rao bound
with respect to the experimental setup, particularly in fat tissue, and
iii) discuss identifiability and parameter estimation. We illustrate cer-
tain problems and limitations, both from a physical and a theoretical
point of view. The main focus is temperature mapping in fat (adipose)
tissue, which to our knowledge has not been explicitly treated in the
literature before. Previous analyses have been performed for cases that
do not reflect the typical fat/water distribution found in fat tissue [115].
The goal is to answer fundamental questions regarding feasibility and
experiment design, which is essential before attempting to develop more
efficient algorithms for estimation.

9.2 Signal model
The time-domain model for the signal in each voxel is given by

s(t) =

(

ρwe
−νwteiωwt + ρfe

−νft
R∑

r=1

αre
iωrt

)

eiω0t + v(t)

=f(θ, t) + v(t), (9.1)
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where ρw, ρf are the complex-valued water and fat amplitudes; νw, νf
are the water and fat damping factors, corresponding to 1/T *

2 ; ωw

is the water resonance frequency; {ωr, αr}Rr=1 is the set of fat reso-
nance frequencies, and the corresponding relative amplitudes; and ω0

is the frequency shift caused by the magnetic field inhomogeneity ∆B0.
Furthermore, (9.1) defines the noise-free signal model f(θ, t), where
θ = [Re{ρw} , Im{ρw} , νw, ωw, Re{ρf} , Im{ρf} , νf , ω0]

T is the vec-
tor of unknown real-valued model parameters, and v(t) is i.i.d. complex-
Gaussian noise. The resonance frequencies, and hence the spectrum, de-
pend linearly on the applied static magnetic field B0 according to (2.1).
Ideally, the fat and water components should be in phase, but due to
system imperfections their phases are modeled independently through
ρw, ρf .

The parameters {ωr, αr}Rr=1 are considered known, giving a prede-
fined fat profile that can be moved spectrally and scaled. The ampli-
tudes αr are normalized to achieve

∑

r αr = 1. To simplify the notation
we introduce the known complex-valued function F (t) describing the fat
resonance profile:

F (t) =
R∑

r=1

αre
iωrt. (9.2)

The absolute water resonance frequency can be mapped to tempera-
ture by a linear mapping:

T = aωw + b, (9.3)

where a and b are assumed known. Using the calibration in [82] at
B0 = 1.5 T, the constants a = −0.244∘C/(rad/s) and b = 499.7∘C are
obtained. It should be noted that this calibration implicitly depends on
the static field strength B0; in fact a ∝ 1/B0. This means that increas-
ing the field strength will improve the conditioning of the temperature
calculation, something which will be discussed further in Section 9.6.1.

The measured signal modeled by (9.1) consists of damped complex-
valued exponentials, and therefore, the instantaneous signal to noise
ratio (SNR) will decrease over time. This makes it difficult to define
SNR in a reasonable way. In the following we use the SNR definition

SNR =

N∑

n=1
|f(θ, tn)|2

Nσ2
, (9.4)

where σ is the noise standard deviation and N is the number of samples.
This definition represents the total amount of information in the data,
but it will also be strongly dependent on the damping factors νw, νf .
This means that simulations at constant SNR can be hard to interpret
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when changing the parameters. In practice, the noise level is constant,
and in the following we want to compare effects of changing model
parameters that also influence the average signal power. Therefore, a
given value of the SNR will correspond a fixed noise level, based on a set
of predefined parameters, unless stated otherwise. For measured data,
the noise variance can be estimated from the image background, where
no tissue is present. Furthermore, the signal power can be estimated
using the power of the noisy data and the noise power.

Other definitions of SNR could also be considered, given that they
provide a straightforward method for estimating the SNR from data.
For example, defining a separate SNR for the water and fat signals could
be useful in simulation, since high enough signals from both resonances
are needed for accurate estimation, as discussed in the next section.
However, to achieve the same goal, we will in the following refer to the
total SNR and the corresponding proportions of water and fat.

9.3 Practical considerations
Estimation of ωw and ω0 requires that both the water and fat resonances
are nonzero. In the case with no water present, ω0 can be estimated but
no information regarding ωw is available. In the case of no fat present,
ωw and ω0 cannot be separated since they occur additively, hence we
cannot get an absolute measure of ωw, which is the sought quantity.

In practice, most tissue types contain a large proportion of either
water or fat. For example, fat tissue typically contains about 3-5%
water (in terms of the resonance amplitude), and normal muscle tissue
contains virtually no fat at all. Because of this, fat referenced MR
thermometry cannot be used in all tissue types. There are, nonetheless,
tissue types where both water and fat are present to greater extent, such
as bone marrow [117], but henceforth we will focus on fat tissue, which
represents a difficult case with low water content.

For the problem at hand, we can define the performance in terms of
standard deviations of the parameter estimates. To accurately detect
natural variations in the body temperature a standard deviation of at
most 0.1∘C is likely to be needed, while for guiding thermal therapy, a
standard deviation of 1∘C might be sufficient.

Extending the scan time generally enables a higher SNR, as discussed
in 2.2.5; however, the maximum total scan time will be limited in prac-
tice. Here we assume that there is a maximum scan time allowed, but
this time will vary depending on the application. Furthermore, the MRI
scanner used can limit the choice of sampling intervals, and will define
the static magnetic field strength B0.
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9.4 The Cramér-Rao Bound
Under the model assumption of Gaussian noise, the FIM is conveniently
given by (3.14), which only requires the Jacobian with respect to the
model parameter vector θ, to be computed. Performing the differentia-
tion gives the Jacobian vector

∂f(θ, t)

∂θ
=















e(−νw+i(ωw+ω0))t

ie(−νw+i(ωw+ω0))t

−ρwte(−νw+i(ωw+ω0))t

iρwte
(−νw+i(ωw+ω0))t

F (t)e(−νf+iω0)t

iF (t)e(−νf+iω0)t

−ρftF (t)e(−νf+iω0)t

iteiω0t(ρwe
(−νw+iωw)t + ρfF (t)e

−νft)















. (9.5)

The CRB matrix CCRB is then obtained through (3.12). The analyti-
cal expression of the CRB matrix is hard to analyze, and we therefore
resort to numerical analysis. For MR thermometry, the variance of the
temperature estimate is of most importance, and henceforth, the CRB
will refer to the bound on T̂ .

9.5 Experimental setup
As a representative case for fat tissue the following true parameters were
chosen for B0 = 1.5 T (unless stated otherwise):

ωw = 1887 rad/s, ω0 = 241 rad/s,
ρw = 0.05eiπ/4, ρf = 0.95e2iπ/9,
νw = 35, νf = 20.

(9.6)

The frequencies are given relative to the demodulation performed at
the receiver. The numerical values of the initial phases are not essential
for the analysis, and have been chosen arbitrarily. Note, however, that
there is a small phase difference between the water and fat components,
which represents a deviation from the ideal scenario. The assumed
experimental setup was: SNR = 25 dB, B0 = 1.5 T and N = 32 samples
at tk = t0+ k∆t, k = 0, . . . , N − 1, where the sampling interval is ∆t =
3.5 ms and t0 = 2.4 ms. The parameters of the fat profile, defined by
(9.2), are given in Table 9.1, and the corresponding theoretical spectrum
of the signal, specified by (9.6), is shown in Fig. 9.2. As can be seen,
the water resonance is relatively small, and is comparable in size to the
less significant fat resonances.
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Figure 9.2: The theoretical spectrum of the received signal from fat-tissue,
based on the simulated parameters in (9.6).

Table 9.1: Parameters of the fat profile defined by (9.2).

r αr ωr (rad/s)
1 0.0834 361.3
2 0.6581 521.9
3 0.0556 638.4
4 0.0592 815.0
5 0.0556 903.4
6 0.0060 1112.1
7 0.0186 1626.1
8 0.0186 1706.4
9 0.0093 2091.8
10 0.0356 2131.9

9.6 Results and discussion

9.6.1 Simulation

A plot of the CRB of the temperature estimates, for different relative
water and fat contents and constant noise variance, is shown in Fig. 9.3.
As can be seen, the lower bound approaches infinity as either the water
or fat content goes to zero. This is expected since both components are
needed for absolute temperature estimation. For approximately equal
amounts of fat and water, the CRB is minimal, however, this fat/water
distribution is uncommon in practice. The minimum CRB is slightly
shifted towards higher water content due to the more rapid damping of
this component, as indicated in (9.6). For fat tissue containing 5% water
and 95% fat, the minimum standard deviation is significantly increased,
making the corresponding estimates less reliable.
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Figure 9.3: The CRB of the temperature (standard deviation) for different
proportions of water and fat (|ρw|, |ρf |) at a fixed noise variance (at |ρw| = 0.05
and |ρf | = 0.95, SNR = 25 dB). The other parameters were kept fixed according
to the representative case.

The CRB is only weakly dependent on the true values of the fre-
quencies ωw, ω0 (not shown here); however, as shown in Fig. 9.4, the
CRBs dependence on the two damping factors is more significant. As
can be seen, the water damping factor νw has a large influence on the
obtainable performance in this fat-tissue example, while the dependence
on νf is weaker. This can be expected, since a higher damping of the
water signal will effectively reduce the information in an already weak
signal. Since the fat signal is large, the effect of more rapid damping
is relatively small. The chosen representative case, given by (9.6), is
just one out of many possible scenarios, with vastly different CRB of
the temperature estimates; however, as can be seen from Fig. 9.4, the
problem is difficult for a wide range of νw and νf , and not only for the
chosen default parameters. If the field inhomogeneity ∆B0 can be kept
low by tuning the hardware, the damping of the water component νw
will be slow, effectively improving the SNR for the small water compo-
nent. However, even in the best case shown in Fig. 9.4, that is, νw = 0.5
and νf = 10, the CRB is 0.32 ∘C, which is relatively high for detecting
natural temperature variations in the body. Furthermore, this scenario
is not practical, as it would correspond to the decay rates for free water
and fat in a perfectly homogeneous field. The main bottleneck for the
CRB is the low amplitude of the water component, and this cannot be
changed by improving the hardware.

The CRB of the temperature estimate versus SNR, using a 1.5 T, 3
T, and 7 T (B0) scanner, is shown in Fig. 9.5. Increasing the magnetic
field scales the spectrum of the signal and gives a larger spectral sepa-
ration between the resonances. However, this only mildly influences the
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Figure 9.4: The CRB of the temperature (standard deviation) for different
damping factors νw and νf at a fixed noise variance corresponding to SNR = 25
dB using the parameters in (9.6).

CRB of ωw. Increasing the frequency of the received signal, however,
leads to a higher frequency sensitivity, as a given frequency error will
have a larger impact on the model fit. Moreover, increasing B0 also
improves the conditioning of the temperature transformation given by
(9.3), as calibration coefficients depend on the field strength. This sig-

nificantly lowers the CRB of T̂ for a given SNR, but in practice, the SNR
would also improve by increasing B0, providing an additional boost in
estimation performance.

For a uniform sampling interval ∆t, the corresponding optimal num-
ber of samples can be studied with respect to the CRB. In general, opti-
mizing the sampling times with respect to the CRB requires knowledge
of the true system. However, some overall properties are common to all
choices of model parameters. Figure 9.6 shows how the bound depends
on the sampling interval for the parameter set given in (9.6), assuming
a fixed number of samples (N = 32). As can be seen, the bound sig-
nificantly increases for some choices of ∆t. This can be explained by
aliasing causing signal cancellation. In fact, the increased bound occurs
when 2π/∆t is approximately equal to the frequency spacing between
the water resonance and the largest fat resonance (at 1.5 T). In the
case of a single fat resonance, this particular choice of sampling interval
would cause the two aliased resonance frequencies to coincide, indepen-
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Figure 9.5: CRB of the temperature (standard deviation) for different static
magnetic field strengths B0, versus SNR.

dent of ω0 and the other model parameters. It should be noted that
although the variance increases in this case, the separation of the peaks
is still possible, as there are several fat peaks as well as different damp-
ing factors of the water and fat components. In practice, the frequency
spacing is approximately known, so the corresponding range of sampling
intervals can be avoided.

Given a desired range of sampling intervals, the best sampling strat-
egy for lowering the CRB within a predefined time frame can be exam-
ined; decreasing ∆t and getting more samples or decreasing the number
of samples and applying averaging to increase the SNR. The results are
of course data dependent, but can still illustrate the usefulness of such
optimizations. The CRB as a function of both ∆t and N with com-
pensation for the averaging that can be applied if the acquisition time
is reduced, is shown in Fig. 9.7. The zeroed-out region (black) does
not comply with the time limit of original sequence, and is therefore
not of interest. Averaging cannot be done over non-integer numbers of
experiments, which accounts for the banded structure in Fig. 9.7. It can
be seen that maintaining the initial sampling interval ∆t = 3.5 ms and
averaging over two acquisitions of 16 samples is preferable, compared
to using 32 samples in one acquisition. This can be explained by the
fact that the signal samples later in the sequence carry less informa-
tion due to the damping. Figure 9.7 also shows that using a shorter
sampling interval, if possible in practice, can lower the CRB. However,
a minimal sampling interval is not desired in general, since the total
acquisition time would be too short to capture the relevant frequencies,
which again increases the CRB. It should be noted that the gain from
optimizing the sampling scheme subject to a fixed total scan time is
relatively small, but any means of improving the estimates are essential
to make fat tissue temperature mapping practically feasible.
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Figure 9.8: Temperature estimates for a phantom image consisting of two
cartons of whipping cream at different temperatures, each lowered in a box of
water. The averages were 24.5(0.63)∘C (left), and 60.1(0.93)∘C (right), while
the true temperature was measured to be 21∘C (left), and 55∘C (right). The
noise in the water region of the image should be disregarded, as this region is
not identifiable.

9.6.2 Phantom data

To show the validity and practical use of fat referenced absolute MR
thermometry, the temperatures in a collected phantom image were es-
timated. The NLS criterion was minimized voxelwise, by a properly
initialized Gauss-Newton algorithm. The phantom contained two car-
tons of whipping cream (40% fat weight) at different temperatures (left:
21∘C, right: 55∘C), each lowered in a box of water. The data consisted
of N = 32 samples with a sampling interval of ∆t = 3.0 ms, acquired
with a 1.5 T scanner. The estimated average SNR was 26.4 dB. The
temperature map is shown in Fig. 9.8. Using the calibration from [82]
the corresponding estimates were 24.5∘C and 60.1∘C when averaged
over the interior of the two cartons, respectively. The corresponding
standard deviations were 0.63∘C and 0.93∘C which is higher than what
is expected from the CRB, assuming similar decay constants as in the
simulations; but the obtained variance is significantly lower than what
is expected in fat tissue. The bias is likely due to imperfect calibra-
tion. It should be noted that the water surrounding the cream phantom
does not enable unique identification of the parameters, which causes
the partially noisy appearance of Fig. 9.8. The smooth sections of the
background are due to imposed constraints on the estimates ww.
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9.7 Conclusions
There are fundamental limitations that make fat-referenced PRF-based
temperature estimation difficult, the main reason being that it requires
a detectable signal from both fat and water. In fat tissue, methods for
obtaining high SNR are needed to enable the use of a 1.5 T scanner, due
to the low water content. Applying higher field strengths can signifi-
cantly improve the estimation performance, given that the homogeneity
of the static B0 field is not compromised which could otherwise increase
the damping. In general, the problem of temperature estimation in fat
tissue is sensitive to the assumptions made. An accurate model with
multiple fat peaks is needed to separate the small water component from
the fat, but this model also relies on calibration. Application specific op-
timization of the sampling scheme is possible but provides a relatively
small gain. It is, however, important to avoid specific choices of the
sampling interval to prevent signal cancellation due to aliasing. Intelli-
gent estimation algorithms that utilizes as much of the available prior
information as possible can help to provide high precision estimates of
the absolute temperature, but the potential model mismatch can induce
bias, which in turn can be a problem in some applications.
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[85] B. Mädler, S. A. Drabycz, S. H. Kolind, K. P. Whittall, and A. L.
MacKay. Is diffusion anisotropy an accurate monitor of myelination?
Correlation of multicomponent T2 relaxation and diffusion tensor
anisotropy in human brain. Magnetic Resonance Imaging, 26(7):874 –
888, 2008.

[86] K. V. Mardia and P. E. Jupp. Directional Statistics, volume 494. John
Wiley & Sons, Chichester, UK, 2009.

[87] H.-L. Margaret Cheng, N. Stikov, N. R. Ghugre, and G. A. Wright.
Practical medical applications of quantitative MR relaxometry. Journal
of Magnetic Resonance Imaging, 36(4):805–824, 2012.



References 169

[88] C. R. McCreary, T. A. Bjarnason, V. Skihar, J. R. Mitchell, V. W.
Yong, and J. F. Dunn. Multiexponential T2 and magnetization transfer
MRI of demyelination and remyelination in murine spinal cord.
Neuroimage, 45(4):1173 – 1182, 2009.

[89] D. Nishimura. Principles of Magnetic Resonance Imaging. Stanford
University, Stanford, CA, USA, 1996.

[90] J. Nocedal and S. J. Wright. Numerical Optimization. Springer,
NewYork, NY, USA, 1999.

[91] J. Oh, E. T. Han, D. Pelletier, and S. J. Nelson. Measurement of in vivo
multi-component T2 relaxation times for brain tissue using multi-slice T2
prep at 1.5 and 3 T. Magnetic Resonance Imaging, 24(1):33–43, 2006.

[92] M. Ott, M. Blaimer, P. Ehses, P. M. Jakob, and F. Breuer. Phase
sensitive PC-bSSFP: simultaneous quantification of T1, T2 and spin
density M0. In Proc. 20th Annual Meeting of ISMRM, page 2387,
Melbourne, Australia, 2012.

[93] J. Pauly, P. Le Roux, D. Nishimura, and A. Macovski. Parameter
relations for the Shinnar-Le Roux selective excitation pulse design
algorithm. IEEE Transactions on Medical Imaging, 10(1):53–65, 1991.

[94] J. C. Pedro and S. A. Maas. A comparative overview of microwave and
wireless power-amplifier behavioral modeling approaches. IEEE
Transactions on Microwave Theory and Techniques, 53(4):1150–1163,
2005.

[95] B. Picinbono. Second-order complex random vectors and normal
distributions. IEEE Transactions on Signal Processing,
44(10):2637–2640, 1996.

[96] C. S. Poon and R. M. Henkelman. Practical T2 quantitation for clinical
applications. Journal of Magnetic Resonance Imaging, 2(5):541–553,
1992.

[97] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger.
SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in
Medicine, 42(5):952–962, 1999.

[98] S. Ramani and J. Fessler. Parallel MR image reconstruction using
augmented Lagrangian methods. IEEE Transactions on Medical
Imaging, 30(3):694–706, March 2011.

[99] S. B. Reeder, A. R. Pineda, Z. Wen, A. Shimakawa, H. Yu, J. H.
Brittain, G. E. Gold, C. H. Beaulieu, and N. J. Pelc. Iterative
decomposition of water and fat with echo asymmetry and least-squares
estimation (IDEAL): Application with fast spin-echo imaging. Magnetic
Resonance in Medicine, 54(3):636–644, 2005.

[100] D. A. Reiter, P.-C. Lin, K. W. Fishbein, and R. G. Spencer.
Multicomponent T2 relaxation analysis in cartilage. Magnetic
Resonance in Medicine, 61(4):803–809, 2009.

[101] V. Rieke and K. Butts Pauly. MR thermometry. Journal of Magnetic
Resonance Imaging, 27(2):376–390, 2008.

[102] G. Saab, R. T. Thompson, and G. D. Marsh. Multicomponent T2
relaxation of in vivo skeletal muscle. Magnetic Resonance in Medicine,
42(1):150–157, 1999.



170 References

[103] L. I. Sacolick, F. Wiesinger, I. Hancu, and M. W. Vogel. B1 mapping by
Bloch-Siegert shift. Magnetic Resonance in Medicine, 63(5):1315–1322,
2010.

[104] F. Santini and K. Scheffler. Reconstruction and frequency mapping with
phase-cycled bSSFP. In Proc. 18th Annual Meeting of ISMRM, page
3089, Stockholm, Sweden, 2010.

[105] L. Scharf and C. Demeure. Statistical Signal Processing: Detection,
Estimation, and Time Series Analysis. Addison-Wesley series in
electrical and computer engineering: Digital Signal Processing.
Addison-Wesley Publishing Company, Reading, MA, USA, 1991.

[106] K. Scheffler and J. Hennig. T1 quantification with inversion recovery
TrueFISP. Magnetic Resonance in Medicine, 45(4):720–723, 2001.

[107] V. D. Schepkin, F. C. Bejarano, T. Morgan, S. Gower-Winter,
M. Ozambela, and C. W. Levenson. In vivo magnetic resonance imaging
of sodium and diffusion in rat glioma at 21.1 T. Magnetic Resonance in
Medicine, 67(4):1159–1166, 2012.

[108] P. Schmitt, M. A. Griswold, P. M. Jakob, M. Kotas, V. Gulani,
M. Flentje, and A. Haase. Inversion recovery TrueFISP: Quantification
of T1, T2, and spin density. Magnetic Resonance in Medicine,
51(4):661–667, 2004.

[109] G. Seber and C. Wild. Nonlinear Regression. Wiley Series in
Probability and Statistics. Wiley, Hoboken, NJ, USA, 2003.

[110] J. Sijbers, A. den Dekker, P. Scheunders, and D. Van Dyck.
Maximum-likelihood estimation of Rician distribution parameters.
IEEE Transactions on Medical Imaging, 17(3):357–361, 1998.

[111] J. Sijbers, A. J. den Dekker, E. Raman, and D. Van Dyck. Parameter
estimation from magnitude MR images. International Journal of
Imaging Systems and Technology, 10(2):109–114, 1999.

[112] J. Sijbers, A. J. den Dekker, M. Verhoye, E. Raman, and D. Van Dyck.
Optimal estimation of T2 maps from magnitude MR images. Proc. of
SPIE Medical Imaging, 3338:384–390, 1998.

[113] J. G. Sled and G. B. Pike. Correction for B1 and B0 variations in
quantitative T2 measurements using MRI. Magnetic Resonance in
Medicine, 43(4):589–593, 2000.
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Sammanfattning p̊a svenska

Nedan följer en kort sammanfattning av avhandlingen, som p̊a svenska
f̊ar titeln ”Bidrag till signalbehandling för magnetresonanstomografi”.

Magnetresonanstomografi (MRT) kan användas för att avbilda mjuka
vävnader utan joniserande str̊alning, och är ett viktigt verktyg för medi-
cinsk diagnos. Utöver anatomi kan man ocks̊a f̊anga meta/-bol/-ism och
diffusion av olika molekyler, samt mäta temperatur i tre dimensioner och
indikera aktivering av hjärnan.

Signalbehandling är en centralt många av de steg som behövs för
att skapa en MR bild, och används i allt fr̊an design av excitation
och kodning av spatiell information, till att rekonstruera en bild fr̊an
uppmätta data och utföra bildbehandling. Dessutom kan man genom
avancerad signalbehandling förbättra bilderna ytterligare, ta bort ar-
tifakter, och till och med ta fram information bortom bilderna i sig.
Detta är det huvudsakliga ämnet i denna avhandling. Inom kvanti-
tativ MRT är målet vanligen att skatta fysikaliska parametrar baserat
p̊a ett flertal insamlade bilder. De resulterande optimeringsproblemen
är ofta olinjära vilket kräver smarta och specialdesignade algoritmer
för att undvika suboptimala lösningar och lokala minimum. I denna
avhandling presenteras flera algoritmer av detta slag som löser olika pa-
rameterskattningsproblem, antingen för att skatta fysikaliska storheter,
eller för att minimera artifakter och hantera brus i bilderna. Med hjälp
av dessa skattningar kan man karaktärisera vävnad p̊a ett bättre sätt,
vilket leder till bättre förutsättningar för diagnos. Dessutom behandlas
ett designproblem, med målet att finna excitationssekvenser som min-
imerar artifakter när man använder förstärkare med begränsad kvalité.
Detta leder i sin tur till bättre bilder för diagnos och kan även minska
skattningsfelet vid kvantitativ MRT.

Först ges en introduktion till fysiken bakom MRT och hur en bild
skapas samt en genom/-g̊ang av n̊agra användbara begrepp inom sig-
nalbehandling. Resterande kapitel behandlar mer specifika signalbe-
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handlingsproblem inom MRT, som att ta bort bandartifakter, skatta
tidskonstanter för exponentiellt avtagande, kompensera för fasfel, des-
igna excitation och mäta temperatur. En sammanfattning av respektive
problem följer nedan.

Signalförsluts i form av bandartifakter kan skymma detaljer i MR
bilder och försv̊ara diagnos. Dessa artifakter är ett vanligt problem
för den annars effektiva bSSFP-sekvensen. I kapitel 4 presenteras en
snabb tv̊astegsalgoritm för att 1) estimera de okända parametrarna
i bSSFP-signalmodellen baserat p̊a flera insamlade bilder med olika
fasinkrement, och 2) rekonstruera ett bandfritt resultat. Det första
steget, kallat LORE (Linearization of off-resonance estimation), löser
det olinjära problemet approximativt genom en robust linjär metod. I
det andra steget används Gauss-Newton, med LORE-estimaten som ini-
tialisering, för att minimera det ursprungliga kriteriet. Hela algoritmen
kallas LORE-GN. Genom att härleda Cramér-Rao-gränsen (CRB) visas
att LORE-GN är statistiskt effektiv; och vidare att det är teoretiskt
sv̊art att simultant skatta T1 och T2 fr̊an bSSFP-data, genom att CRB
är högt vid normala signal-brus-förh̊allanden. Med hjälp av simulerat,
fantom, och in-vivo data, s̊a p̊avisas LORE-GNs bandreduktionsegen-
skaper jämfört med andra vanliga metoder, s̊a som ”summan av kvadra-
terna”. LORE-GN minimerar effektivt bandartifakter i bSSFP där an-
dra metoder misslyckas, till exempel vid hög fältstyrka.

Modeller baserade p̊a en summa av dämpade exponentialer förekom-
mer i många tillämpningar, och specifikt vid skattning av multipla T2-
komponenter. Problemet med att uppskatta relaxationsparametrar och
motsvarande amplituder är känt för att vara sv̊art, speciellt när antalet
komponenter ökar. I kapitel 5 jämförs en nyligen presenterad parameter-
skattningsalgoritm, kallad EASI-SM, med den positiva minstakvadrat-
metoden för att skatta T2-spektrum (NNLS), som vanligen används
inom MR-fältet. Prestandan hos de tv̊a algoritmerna utvärderas via
simulering med hjälp av Cramér-Rao-gränsen. Dessutom appliceras al-
goritmerna p̊a in-vivo hjärndata med 32 spinneko-bilder, för att upp-
skatta myelin-vattenfraktionen och den mest signifikanta T2-komponen-
ten. I simulering ger EASI-SM bättre parameterskattningsprestanda
jämfört med NNLS, och resulterar dessutom i en lägre varians av T2-
estimaten in vivo. EASI-SM är ett effektivt och parameterfritt alterna-
tiv till NNLS, och ger ett nytt sätt att uppskatta variationer av myelin
i hjärnan.

Att skatta den transversella relaxationstiden, T2, fr̊an magnituden
av flera spinn-ekobilder är ett vanligt problem inom kvantitativ MRT.
Standardmetoden är att använda pixelvisa estimat, dock kan dessa vara
ganska brusiga d̊a endast tv̊a bilder finns att tillg̊a. Genom att använda
information fr̊an närliggande pixlar är det möjligt att minska variansen i
skattningarna, men detta försämrar vanligtvis detaljrikedomen i bilden,
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särskilt vid vävnadsgränser. I kapitel 6, presenteras tv̊a snabba metoder
för att minska variansen av T2-estimaten utan att p̊averka kontrasten
mellan vävnader. Metoderna använder en suboptimal formulering av
problemet d̊a en optimal lösning skulle vara för tidskrävande i prak-
tiken. Den första metoden är en enkel lokal minstakvadratbaserad
lösning, medan den andra bygger p̊a global optimering över hela bilden,
med begränsningar p̊a totala variationen i de resulterande estimaten.
B̊ada dessa metoder utvärderas med hjälp av simulerat- och in-vivo-
data. Resultaten visar att variansen av estimaten för de föreslagna T2-
skattningsmetoderna är mindre än för standardmetoden, och att kon-
trasten bevaras.

Bruset i de magnitudbilder som vanligen används vid skattning av
den transversella relaxationstiden är Rice-fördelat, vilket kan leda till
ett betydande systematiskt fel när minstakvadratmetorder används. Ett
sätt att undvika dessa problem är att skatta ett reellt och Gaussiskt
fördelat dataset fr̊an komplexa data, istället än att använda magnitu-
den. I kapitel 7 presenteras tv̊a algoritmer för faskorrigering som kan
användas för att generera reella data som lämpar sig för LS-baserade
parameterskattningsmetoder. Den första kallas WELPE, och beräknar
ett fasestimat genom en viktad linjär metod. WELPE ger en förbättring
jämfört med en tidigare publicerad algoritm, samtidigt som den fören-
klar skattningsförfarandet och kan hantera data fr̊an flera mottagarspo-
lar. I varje bildelement anpassar algoritmen en linjärt parametriserad
funktion till fasen av flera spinn-ekobilder, och utifr̊an den skattade
fasen projiceras datat p̊a den reella axeln. Den andra algoritmen är
en maximum likelihood-metod som estimerar den sanna avklingande
signalmagnituden, och som kan implementeras effektivt när fasvaria-
tionen är linjär i tiden. Prestandan hos algoritmerna demonstreras via
Monte Carlo-simuleringar, genom att jämföra noggrannheten hos de up-
pskattade tidskonstanterna. Vidare visas att de föreslagna algoritmerna
möjliggör mer exakta T2-skattningar, genom att de minskar det system-
atiska felet vid skattning av flera T2-komponenter jämfört mot när man
använder magnituddata. WELPE tillämpas ocks̊a p̊a ett dataset med
32 ekon av en in-vivo-hjärna för att visa att algoritmen ocks̊a fungerar
i ett praktiskt scenario.

Vid användning av l̊agkostnadsförstärkare med begränsad kvalitet
kan signaldistorsion kan vara ett problem vid excitationen, vilket i sin
tur kan resultera i bildartefakter. I kapitel 8 presenteras en algoritm för
att designa excitation d̊a man har begränsningar p̊a signalens magnitud.
S̊adana sekvenser kan till exempel användas för att uppn̊a önskat excita-
tionsmönster i frekvensdomän samtidigt som man utnyttjar flera spolar
med budgetförstärkare. Det resulterande icke-konvexa optimeringskri-
teriet minimeras lokalt med hjälp av en cyklisk algoritm som best̊ar av
tv̊a enkla algebraiska delsteg. Eftersom den föreslagna algoritmen min-
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imerar det faktiska kriteriet s̊a är de erh̊allna sekvenserna garanterat
bättre än de skattningar som erh̊alls fr̊an en tidigare publicerad algo-
ritm, som bygger p̊a den heuristiska principen av iterativ kvadratisk
maximum likelihood. Prestandan för den föreslagna algoritmen illustr-
eras i tv̊a numeriska exempel, där den ocks̊a jämförs med den tidigare
föreslagna metoden.
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