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Abstract

This thesis contributes to three research areas in software security, namely
security requirements and intrusion prevention via static analysis and run-
time detection.

We have investigated current practice in security requirements by do-
ing a field study of eleven requirement specifications on IT systems. The
conclusion is that security requirements are poorly specified due to three
things: inconsistency in the selection of requirements, inconsistency in level
of detail, and almost no requirements on standard security solutions. A
follow-up interview study addressed the reasons for the inconsistencies and
the impact of poor security requirements. It shows that the projects had
relied heavily on in-house security competence and that mature producers
of software compensate for poor requirements in general but not in the case
of security and privacy requirements specific to the customer domain.

Further, we have investigated the effectiveness of five publicly available
static analysis tools for security. The test results show high rates of false
positives for the tools building on lexical analysis and low rates of true
positives for the tools building on syntactical and semantical analysis. As a
first step toward a more effective and generic solution we propose decorated
dependence graphs as a way of modeling and pattern matching security
properties of code. The models can be used to characterize both good and
bad programming practice as well as visually explain code properties to
programmers. We have implemented a prototype tool that demonstrates
how such models can be used to detect integer input validation flaws.

Finally, we investigated the effectiveness of publicly available tools for
runtime prevention of buffer overflow attacks. Our initial comparison showed
that the best tool as of 2003 was effective against only 50 % of the attacks
and there were six attack forms which none of the tools could handle. A
follow-up study includes the release of a buffer overflow testbed which cov-
ers 850 attack forms. Our evaluation results show that the most popular,
publicly available countermeasures cannot prevent all of these buffer over-
flow attack forms.

This work has been supported by the National Graduate School in Com-
puter Science (CUGS) commissioned by the Swedish government and the
board of education.
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Populärvetenskaplig beskrivning

Samhällen och människor har blivit beroende av datorer och mjukvara. I
takt med att allt större värden och allt mer viktig information hanteras i
persondatorer och p̊a Internet s̊a ökar risken för allvarlig IT-brottslighet.
För tjugo år sedan spreds s̊a kallade datorvirus med disketter och gjorde
skada genom att radera eller förstöra information och programvara. Idag
genomförs intr̊ang via Internet i syfte att stjäla information, pengar eller
att utkämpa cyberkrig.

Intr̊ang i datorer sker ofta genom att utnyttja konstruktionsfel i pro-
gramvara. Programmerare tänker inte alltid p̊a att en illasinnad människa
kan vilja“knäcka”hans eller hennes system. Ett vanligt exempel är s̊a kallad
SQL-injektion. Vi tänker oss ett program för inloggning som tar emot an-
vändarnamn och lösenord. Ett vanligt användarnamn skulle kunna vara
“johnwilander”. Om nu programmeraren inte p̊a ett korrekt sätt tar hand
om användarnamn som ser ut s̊a här “johnwilander’ OR 1=1--” s̊a kan
en elak användare radera hela databasen eller hämta all lagrad lösenords-
information. Det kan se enkelt ut men just SQL-injektion är den vanligaste
formen av intr̊ang p̊a Internet idag (seWeb-Hacking-Incident-Database fr̊an
organisationen WASC).

S̊adana konstruktionsfel och utnyttjandet av dem ing̊ar i ämnesomr̊adet
mjukvarusäkerhet. Den här doktorsavhandlingen ger bidrag till tre omr̊a-
den inom mjukvarusäkerhet:

1. Hur ställer man krav p̊a bra mjukvarusäkerhet?

2. Kan vi hjälpa programmerare att upptäcka konstruktionsfel?

3. Kan vi göra datorprogram mer motst̊andskraftiga utan att behöva
rätta till alla konstruktionsfel?

Vi har undersökt r̊adande praxis inom kravställning av säkerhet
genom att granska elva kravspecifikationer inom svensk offentlig upp-
handling av IT-system. V̊ar slutsats var att säkerhetskraven var under-
m̊aliga och att det främst beror p̊a tre saker: osammanhängande val av
krav, osammanhängande detaljniv̊a i de krav som ställs och nästan inga
krav p̊a standardlösningar. Granskningen följdes upp med intervjuer där
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vi undersökte orsakerna till de undermåliga kraven och konsekvenserna för
säkerheten. Bristfälliga krav berodde i stor utsträckning p̊a att man som
beställare förlitat sig p̊a intern kompetens istället för att anlita experter
p̊a respektive omr̊ade. Det visade sig dock att etablerade leverantörer av
IT-system kompenserar för bristfälliga krav i allmänhet. Det ing̊ar i en
professionell leverans. Men n̊agon s̊adan räddning verkar inte finnas när
verksamheten har speciella krav p̊a säkerhet och personlig integritet, till
exempel inom sjukv̊ard. Där måste verksamheten själv förklara och ställa
krav för att slutprodukten ska f̊a god säkerhet.

Vidare s̊a har vi utvärderat fem fritt tillgängliga verktyg för
säkerhetsanalys av programkod. V̊ara resultat visar p̊a höga niv̊aer
av falsklarm i verktyg som gör analys p̊a s̊a kallad lexikalisk niv̊a samt
många missade säkerhetsproblem i verktyg som gör en djupare analys p̊a
s̊a kallad syntaktisk eller semantisk niv̊a. I ett steg mot ett bättre sätt
att analysera programkod s̊a föresl̊ar vi s̊a kallade dekorerade
beroendegrafer. Med s̊adana kan man b̊ade skapa modeller av säkerhets-
egenskaper och sen söka i programkod för att se om egenskaperna finns
eller saknas. Beroendegrafer kan representera b̊ade god och d̊alig program-
meringspraxis. God praxis m̊aste finnas med för att programkoden ska
anses vara säker medan d̊alig praxis inte f̊ar finnas med. Det var viktigt att
hitta ett sätt att representera b̊ade god och d̊alig praxis eftersom det finns
närmast oändligt m̊anga sätt att avvika fr̊an god praxis och likaledes när-
mast oändligt m̊anga sätt att undvika d̊alig praxis. Vi har implementerat
ett prototypverktyg där vi visar att beroendegrafer kan användas för att
upptäcka bristande kontroll av inkommande heltal. S̊adana brister har ut-
nyttjats för att exempelvis köpa ett negativt antal varor (-10 bokhyllor eller
-100 Ericssonaktier) och som resultat f̊a en utbetalning.

Slutligen s̊a har vi utvärderat fritt tillgängliga verktyg för förhin-
drande av s̊a kallade buffer overflow-attacker under drift. V̊ar
första studie visade att det bästa verktyget år 2003 bara förhindrade hälften
av v̊ara attackformer och att sex attackformer inte förhindrades av n̊agot
verktyg alls. En uppföljande studie utvärderade verktyg tillgängliga år
2011 med hjälp av 850 varianter av buffer overflow-attacker. Även denna
g̊ang kunde vi visa att inte alla attackformer förhindras. V̊ar testbädd med
850 attackformer är släppt som fri mjukvara.
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Chapter 1

Introduction

“To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak
computers, programming became a mild problem, and now we
have gigantic computers, programming has become an equally
gigantic problem. In this sense the electronic industry has not
solved a single problem, it has only created them, it has created
the problem of using its products.”

—Edsger W.Dijkstra, The Humble Programmer [1]

1.1 Background and Motivation

Computer software products are among the most complex artifacts, if
not the most complex artifacts mankind has created (see Dijkstra’s quote
above). Securing those artifacts against intelligent attackers who try to
exploit flaws in software design and construct is a great challenge too.

This thesis contributes to the research field of software security. Soft-
ware as an artifact meant to interact with its environment including hu-
mans. Security in the sense of withstanding active intrusion attempts
against benign software.

1



1.1. Background and Motivation

1.1.1 Software Vulnerabilities

Software can be intentionally malicious such as malicious viruses (programs
that replicate and spread from one computer to another and cause harm to
infected ones), trojans (malicious programs that masquerade as benign) and
software containing logic bombs (malicious functions set off when specified
conditions are met).

However, attacks against computer systems are not limited to inten-
tionally malicious software. Benign software can contain vulnerabilities
and such vulnerabilities can be exploited to make the benign software do
malicious things. A successful exploit is often called an intrusion.

Vulnerabilities can be responsibly reported by first creating a so called
CVE Identifier—a unique, common identifier for a publicly known informa-
tion security vulnerability [2]. Identifiers are created by CVE Numbering
Authorities for acknowledged vulnerabilities. Larger software vendors typ-
ically handle identifiers for their own products. Some of these participating
vendors are Apple, Oracle, Ubuntu Linux, Microsoft, Google, and IBM [3].

The National Institute of Standards and Technology (NIST) has a sta-
tistical database over reported software vulnerabilities with a publicly ac-
cessible search interface [4]. Two specific types of vulnerabilities are of
specific interest in the context of this thesis, namely buffer overflows and
format string vulnerabilities in software written in the programming lan-
guage C. The statistics for Buffer Errors and Format String Vulnerabilities
are shown in Figure 1.1 and Figure 1.2.

Reported software vulnerabilities due to buffer errors have increased
significantly since 2002. Their percentage of the total number of reported
vulnerabilities has also increased from 1–4 % between 2002 and 2006 to
10–16 % between 2008 and 2012 [4]. These statistics are in stark contrast
to the statistics from CERT that Wagner et al used to show that buffer
overflows represented 50 % of all reported vulnerabilities in 1999 [5]. We
have not investigated if there are significant differences in how the two
statistics were produced. Still, up to 16 % of all reported vulnerabilities is
a significant number.

The reported format string vulnerabilities peaked between 2007 and
2009 but have never reached 0.5 % of the total [4]. Our experience is that
format string vulnerabilities are less prevalent, easier to fix, and harder
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Figure 1.1: Buffer Errors 2002–2012 according to vulnerability statistics
from the NIST National Vulnerability Database.

to exploit than buffer overflow vulnerabilities. Nevertheless format string
vulnerabilities are still being used for exploitation such as the Corona iOS
Jailbreak Tool [6].

1.1.2 Avoiding Software Intrusions

Intrusion attempts or attacks are made by malicious users or attackers
against victims. A victim can be either a machine holding valuable assets
or another human computer user. Securing software against intrusions calls
for anti-intrusion techniques as defined by Halme and Bauer [7]. We have
taken the liberty of adapting and reproducing Halme and Bauer’s figure
showing anti-intrusion approaches (see Figure 1.3).
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Figure 1.2: Format string vulnerabilities 2002–2012 according to vul-
nerability statistics from the NIST National Vulnerability Database.

Preempt —strike offensively against likely threat agents prior to an in-
trusion attempt. May affect innocents.

Prevention —severely handicap the likelihood of a particular intrusion’s
success. In the context of this thesis prevention involves software
with protection built-in and pre-release reports to programmers about
likely vulnerabilities.

Deter —increase the necessary effort for an intrusion to succeed, increase
the risk associated with an attempt, and/or devalue the perceived
gain that would come with success.

Deflect —leads an intruder to believe that he or she has succeeded in
an intrusion attempt, whereas in fact the intrusion was redirected to
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Actively

countermeasure

Figure 1.3: Anti-Intrusion Approaches. Intrusions can be stopped in at
least six ways—preemption, prevention, deterrence, deflection, detection,
and by active countermeasures as the intrusion attempt is carried out. The
figure is a slightly adapted version from Halme and Bauer’s anti-intrusion
techniques.

where harm is minimized.

Detect —discriminate intrusion attempts and intrusion preparation from
normal activity and alert the operations. Detection can also be done
in a post mortem analysis.

Actively countermeasure —counter an intrusion as it is being at-
tempted.

1.2 Research Objectives

There are many ways to achieve more secure software. Microsoft’s Security
Development Lifecycle (SDL) defines seven phases where security enhanc-
ing activities and technologies apply [8]:

1. Training

2. Requirements
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3. Design

4. Implementation

5. Verification

6. Release

7. Response

Further things can be done in an even wider scope. Programming lan-
guages can be constructed with security primitives which allow program-
mers to express security properties of the system they are writing—so called
security-typed languages, a part of language-based security [9, 10]. Oper-
ating systems and deployment platforms can be hardened and secured both
in construction and configuration.

Our research objectives have been on the Requirements and Implemen-
tation phases of Microsoft’s SDL and on hardening of the runtime environ-
ment for software applications.

1.2.1 Eliciting and Specifying Security Requirements

A software product owner or an organization purchasing software needs to
convey any security requirements they have to the producer of the software.
Functional security requirements such as authentication and authorization
are well-known to experienced software users and are thus likely to be
specified in the software requirements, at least on a high level.

However, non-functional security requirements such as the absence of
known security vulnerability types or the properties of a certain encryption
algorithm are not visible to software users nor are they part of general IT
knowledge. Therefore such security requirements will likely not be specified
by a product owner or purchaser of software. In the case of a successful
attack the product owner might express that non-functional security re-
quirements were implicit. The producer in turn might respond that secu-
rity measures—functional as well as non-functional—cost time and money,
and that the product owner has to be explicit if such time and money is to
be spent.
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1.2.2 Implementation

Software development in general is hard. Developing reasonably secure
software is even harder. Programmers need training as well as a proper
toolbox to tackle all the challenges in software development—for instance
performance, maintainability, scalability, availability, and security.

Security vulnerabilities in software often boil down to implementation
flaws. For example side effects are ignored or unrecognized, APIs are used
in unintended ways, user input is not properly validated against the right
data model, or data is used without proper context adjustments.

Programming tools such as integrated development environments, con-
tinuous integration servers, static analysis, and API defaults all have to
help developers implement more secure systems.

1.2.3 Hardening the Runtime Environment

Security vulnerabilities in software will keep escaping even the best of devel-
opers and security-oriented tools. One of the reasons is legacy software—
most software reliant organizations have a significant amount of software
developed before certain vulnerability types were known and preventive
tools were in place. Another reason is the evolving knowledge of how soft-
ware can be exploited. A third reason is the general impossibility of bug
free software.

Therefore we need to have hardened and monitored runtime environ-
ments. Software in deployment can be attacked. If an attack occurs the
software should try to protect itself, for instance by doing integrity checks
on its state and terminating execution if integrity violations are found.
Further, software in deployment needs to be monitored for abnormal or
malicious behavior.

1.2.4 Problems Addressed by This Thesis

How are Secure Software Requirements Currently Specified?

We need more information on how industry handles security requirements
today to be able to move forward in that part of the security development
lifecycle. Are stakeholders such as product owners and project leaders
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aware of security? Do they focus on functional as well as non-functional
security requirements in their elicitation processes? If there are deficiencies,
how do they impact the security of implemented systems?

How Can Static Analysis Help Developers Implement Secure
Software?

Compile-time developer feedback from static analysis tools have many ben-
efits. The analysis can be automated, it does not require a dedicated testing
environment, it does not need complex test data generation to be able to
analyse the complete code base, and problem reports can be mapped to
exact lines of code.

Several static analysis tools for security have been developed both in
academia and industry. How effective are they in finding real security
vulnerabilities? How usable is their output to developers? Can they be
made to report on both presence of bad programming practice and absence
of good programming practice?

Can Runtime Protection Solve the Buffer Overflow Problem?

Buffer overflows have plagued C/C++ software for decades. It is an im-
portant field of software security. Several protection mechanisms have been
presented and implemented in both academia and industry. How effective
are they against the various kinds of buffer overflow attacks? Can we mea-
sure them in a repeatable way?
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1.3 Contributions and Overview of Papers

The following sections summarizes of our research contributions categorized
into Specification, Implementation, and Execution of secure software. The
contributions are also clearly connected to their respective papers.

1.3.1 Specification of Secure Software

Our contributions to specification of secure software are in empirical field
studies of requirements engineering practice for security.

Field-Study of Practice in Security Requirements Engineering

In 2005 and 2007 we published two closely related papers on industry prac-
tice in security requirements engineering. The first of these papers pre-
sented a field study of eleven software projects including e-business, health
care and military applications. We categorized the security requirements
as functional and non-functional and found that 76 % of the security re-
quirements are functional despite security being a popular example of non-
functional aspects of software.

The overall conclusion was that security requirements are poorly spec-
ified due to three things: inconsistency in the selection of requirements,
inconsistency in level of detail, and almost no requirements on standard
security solutions. This work was done jointly with Jens Gustavsson and
is presented in Paper A.

Interview Study on the Impact of Security Requirements Engi-
neering Practice

As mentioned above we published two closely related papers in 2005 and
2007. The second of these papers addressed two important questions which
remained open since the first study; what are the reasons for the require-
ments inconsistencies, and what is the impact of such poor security require-
ments?

We performed in-depth interviews with three of the customers from
the previous study. The interviews showed that mature producers of soft-
ware (in this case IBM, Cap Gemini, and WM-Data) fulfill unspecified
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but reasonable requirements in areas within their expertise, namely soft-
ware engineering. An example of this kind of over-delivery was found to
be software maintainability requirements. But in the case of unspecified
security and privacy requirements specific to the customer domain, such
over-delivery was not found. In all three cases the neglect or underspecifi-
cation of domain-specific requirements had led to security and/or privacy
flaws in the systems. Our conclusion is that special focus needs to be put on
domain-specific security and privacy needs when eliciting customer require-
ments. This is also joint work with Jens Gustavsson and it is presented in
Paper B.

1.3.2 Implementation of Secure Software

Our contributions to implementation of secure software are in the area of
compile-time analysis of source code and reporting and visualizing potential
security vulnerabilities back to the programmer.

Static Analysis Testbed and Tool Evaluation

In 2002 we published a static testbed of 44 function calls in C implementing
safe and unsafe testcases for buffer overflow and format string vulnerabil-
ities. The testbed was used to empirically compare five publicly available
tools for static analysis. We believe this to be “the first systematic bench-
marking study concerning static analysis for security” as stated by Johns
and Jodeit [11]. The work is presented in Paper C.

Modeling and Visualizing Security Properties of Code

In 2005 we published two closely related papers on a formalism for mod-
eling, visualizing, and pattern matching security properties of code. This
section covers our contributions from the first of those papers.

The paper discusses modeling security properties, including what we call
the dual modeling problem. Security vulnerabilities can manifest themselves
as presence of bad programming practice or absence of good programming
practice. Thus, when reasoning about security properties of code we need to
model both. As an example we show 1) a model of correct input validation
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where its absence implies a potential security vulnerability, and 2) a model
of incorrect multiple freeing of the same memory where its presence implies
a potential security vulnerability.

We propose dependence graphs decorated with type and range informa-
tion as a generic way of modeling security properties of code. These models
can be used to characterize both good and bad programming practice.

Continuing, we exploit the absence of good programming practice to
produce potentially infinite models of bad programming practice. These
model variations can be used to rank the severity of potential vulnerabili-
ties. This work is presented in Paper D.

Pattern Matching Security Properties of Code

As mentioned above, in 2005 we published two closely related papers on a
formalism for modeling, visualizing, and pattern matching security proper-
ties of code. This section covers our contributions from the second of those
papers.

The paper reports on our proof of concept implementation of pattern
matching security properties of code using dependence graphs. The graph
models of the programs were built with Grammatech’s tool CodeSurfer [12].
The tool is called GraphMatch and it can detect integer input validation
flaws.

GraphMatch performed well on our synthesized micro benchmarks
whereas real-life applications posed a harder problem. We checked wu-ftpd
2.6-4 which consists of approximately 20 KLOCs and produces a depen-
dency graph with approximately 130,000 vertices. An analysis for integer
input validation flaws took 15 hours on a 2.66 GHz Pentium 4. Graph-
Match produced three warnings, two false positives and one true positive.
The implementation work was done by Pia F̊ak and published as her Mas-
ter’s thesis, supervised by Wilander and Kamkar [13]. The GraphMatch
work is presented in Paper E.

1.3.3 Execution of Secure Software

Our contributions to the execution of secure software are in the area of
runtime buffer overflow prevention.
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Runtime Buffer Overflow Prevention Testbed and Tool Evalua-
tion

In 2003 we published a runtime testbed of 20 working buffer overflow at-
tacks. The testbed was used to empirically compare four publicly available
tools for runtime intrusion prevention and showed that the best tool was
effective against only 50 % of the attacks and that there were six attack
forms which none of the tools could handle.

We believe this to be the first systematic benchmarking study concern-
ing runtime analysis for security since earlier studies either did not do
testing at all or did not take a structured approach (see Related Work in
Section 6). This testbed has been used to demonstrate subsequent progress
in the field [14, 15, 16, 17, 18, 19] and the outcome of our evaluation was
used to motivate further preventive research [20, 21, 22, 23]. Microsoft Re-
search ported the testbed to Windows for internal purposes and Silberman
and Johnson presented the testbed at Black Hat USA 2004 [24]. This work
is presented in Paper F.

In 2011 we revisited the topic with a new runtime testbed of 850 work-
ing buffer overflows named RIPE, Runtime Intrusion Prevention Evaluator.
It was released as free software and we used it to evaluate more recent pro-
tection tools and techniques such as ProPolice, LibsafePlus+TIED, CRED,
and Ubuntu 9.10 with non-executable memory and stack protection. The
RIPE study was joint work with Nick Nikiforakis and Yves Younan at
Katholieke Universiteit Leuven. A previous version of RIPE was imple-
mented by Pontus Viking and published as his Master’s thesis, supervised
by Wilander and Kamkar [25]. The RIPE work is presented in Paper G.
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1.4 List of Publications

This thesis comprises the following published, peer-reviewed1 papers.

A Comparison of Publicly Available Tools for Static Intrusion
Prevention by John Wilander and Mariam Kamkar. In the Proceedings of
the 7th Nordic Workshop on Secure IT Systems (Nordsec 2002), November
7-8, 2002, in Karlstad, Sweden.

A Comparison of Publicly Available Tools for Dynamic Buffer
Overflow Prevention by John Wilander and Mariam Kamkar. In the
Proceedings of the 10th Network and Distributed System Security Sympo-
sium (NDSS’03), February 5-7, 2003, in San Diego, California.

Security Requirements—A Field Study of Current Practice by
John Wilander and Jens Gustavsson. In the E-Proceedings of the Sympo-
sium on Requirements Engineering for Information Security (SREIS 2005),
August 29, 2005, in Paris, France.

Modeling and Visualizing Security Properties of Code using De-
pendence Graphs by John Wilander. In the Proceedings of the 5th
Conference on Software Engineering Research and Practice in Sweden
(SERPS’05), October 20-21, 2005, in Väster̊as, Sweden.

Pattern Matching Security Properties of Code using Dependence
Graphs by John Wilander and Pia F̊ak. In the Proceedings of the 1st
International Workshop on Code Based Software Security Assessments
(CoBaSSA 2005), November 7, 2005, in Pittsburgh, Pennsylvania, USA.

The Impact of Neglecting Domain-Specific Security and Privacy
Requirements by John Wilander and Jens Gustavsson. In the Proceed-
ings of the 12th Nordic Workshop on Secure IT Systems (Nordsec 2007),

1SERPS is a national conference on software engineering research and CoBaSSA is
a workshop for early work. Our two papers published there were indeed peer-reviewed
but with a high acceptance rate. The acceptance rates for the other conferences were
all 25 % or below.
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October 11-12, 2007, in Reykjav́ık, Iceland.

RIPE: Runtime Intrusion Prevention Evaluator by John Wilander,
Nick Nikiforakis, Yves Younan, Mariam Kamkar and Wouter Joosen. In
the Proceedings of the 27th Annual Computer Security Applications Con-
ference (ACSAC 2011), December 5-9, 2011, in Orlando, Florida.



Chapter 2

Research Methodology

We have used four methods in our research—document inspection, quali-
tative interviews with transcription, synthesized micro benchmarking, and
proof of concept verification.

2.1 Document Inspection

We chose to do document inspection in our field study of current practice
of security requirements engineering. Requirement specifications used for
public procurement by the Swedish Government or local authorities are
public documents. We inspected eleven requirements specifications of IT
systems being built 2003 through 2005 trying to find all instances of se-
curity requirements. The inspection consisted of both a manual read and
computer-aided search for keywords.

The main reason for basing our study on document inspection was avail-
ability. Retrieving the documents required no specific permissions, negoti-
ations, or agreements. Making contact with each project asking for further
material might have skewed the results for certain projects compared to
projects where we did not get further information.

15



2.2. Qualitative Interviews with Transcription

2.1.1 Limitations

First, we only had access to the specifications in formal, written form. If
they were in fact augmented by explanations, meetings, and email conversa-
tion we did not cover that in our analysis. However, public procurement is a
formal process and requirements specifications should be complete to allow
for fair competition among bidders. In our subsequent interview studies we
did not get the impression that our analysis of the written specifications
gave an incomplete picture. Refinements had been done but only after a
supplier had been appointed.

Second, the choice of keywords to look for was limited by our experience
and knowledge in the fields of security and privacy. Although we took a
broad approach (for instance including logging in general as a security
requirement) we may have missed security requirements simply because we
didn’t understand that certain requirements were related to security.

Finally, we did not make use of any formal process for document in-
spection such as Fagan inspection [26]. While a formal inspection process
would have given rigor to our work we were not inspecting the documents
for flaws, rather browsing for security and privacy requirements with a
broad perspective.

2.2 Qualitative Interviews with Transcrip-
tion

In our study “The Impact of Neglecting Domain-Specific Security and Pri-
vacy Requirements” (Paper B) we carried out three qualitative interviews
with customer project leaders. The goals were to investigate the impact
of the requirements deficiencies we found in the previous study (Paper A)
and verify the hypotheses we had of their causes. The interviews were
semi-structured with a pre-defined set of questions but allowing for new
questions to be brought up during the interview [27]. Interviewees had full
freedom to formulate their answers. The interviews were recorded and later
transcribed verbatim to allow for analysis, including cross-referencing for
consistency.
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2.2.1 Limitations

The first and foremost limitation of our interviews is their number. With
only three interviews you cannot draw general conclusions. However, our
goal was to test our hypotheses from the previous study which used docu-
ment inspection. By picking the top three from the previous study in terms
of security requirements quality we set an upper bound on our analysis, i.e.
the other systems were unlikely to show substantially better results when
verified against our hypotheses.

Second, structured interviews [27] with exactly the same questions in the
same order would have allowed for a detailed comparison between the three
interviews. We opted out of a structured approach out of three reasons:

• A detailed comparison would not allow us to draw general conclu-
sions given we only carried out three interviews. Not even interviews
with all eleven projects from the previous study would have allowed
for a proper comparison since the projects were so diverse in scope,
size, and requirements quality. Furthermore, we had a hard time
scheduling even the three since the project managers were busy.

• We did not know the knowledge level of the interviewees in advance
which means it would have been risky to decide on a given level
of abstraction and detail. In the worst case interview one and two
would have gone well and then the third would not have provided any
valuable answers.

• We wanted to ask questions on specific security requirements specified
by each project and the difference in the three projects would not have
allowed a question-by-question comparison except for a set of general
questions.

In hindsight a combined approach would probably have been better—one
fully structured part and one semi-structured part. The structured part
could have focused on questions that can be compared between projects
such as “Have you had security incidents since your first release? If so,
how many?” and “Would you consider security and privacy requirements
simple, fairly simple, hard, or very hard to specify?”.
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Third, there is a possibility that our interviewees were negatively af-
fected by the recording. We cannot know if they would have answered our
questions differently with out being recorded. This issue was discussed in
advance and we concluded that the possibility to transcribe all interviews
would allow for a more careful analysis as opposed to just taking notes, and
that this outweighed the potential drawbacks. We did not want to record
in secrecy since all the terms had to be clear for the interviewees to accept
the publishing of the results.

Finally, all quotes in the paper have been translated into English since
the interviews and transcriptions were carried out in Swedish. Nuances and
details always run the risk of being lost in translation, especially since it
was carried out by the authors, not professional translators. However, our
analysis of the interviews was all done in Swedish and only the last step,
quoting the interviewees was translated.

2.3 Synthesized Micro Benchmarking

In all three of our comparative studies of intrusion prevention tools (Papers
C, F, and G) we’ve used synthesized micro benchmarking suites built from
small, deliberately vulnerable snippets of code. Others have used real-world
benchmarks (see Related Work, Section 3.1.1) and a third option is to use
educational applications [11].

The benefits of using micro benchmarks such as ours have been dis-
cussed by Johns and Jodeit [11]. First, they can be fine-grained meaning
that even detailed differences can be evaluated. Second, they allow for full
coverage of vulnerability classes, for instance via combinatorial space ex-
ploration. Third, tests that fail for a certain tool can easily be modified to
investigate the cause of the failure. Fourth, micro benchmarks provide a
controlled environment where researchers have a high confidence in the real
number of vulnerabilities present as opposed to real-life code with a few
published vulnerabilities but no knowledge of the real number. Finally, the
relative small size of micro benchmark suites makes analysis of test results
much more feasible.
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2.3.1 Limitations

The drawbacks of micro benchmarks have been explained in several of the
surveys covered in Related Work, Section 3.1. First, micro benchmarks
do not test the tools’ abilities to handle real-life code and real-life code’s
complexities such as build scripts, meta programming, and linking to non-
standard libraries. Second, they do not test the scalability and usefulness of
the tools on real-life code. Finally, they do not give convincing answers as
to whether a certain tool would have found vulnerabilities that are known
to have been in production.

2.4 Proof of Concept Verification

We used a proof of concept implementation to verify the our proposed
formalism for pattern matching security properties of code—System De-
pendency Graphs decorated with type conversion information. While only
pattern matching for one type of vulnerability the implementation gave
us hands-on experience on usefulness and scalability of a straight-forward
implementation.

The main reasons we did a proof of concept verification were to a) in-
vestigate the feasibility of the analysis in terms of execution time, and b)
testing the relevance of our input validation model by checking the ex-
ploitability of any model mismatches we found in real-life code.

2.4.1 Limitations

First, a common limitation of proof of concept verifications, also applicable
to our study, is the lack of availability to the research community. All
too often the source code and build scripts are kept secret. This was also
the case of our GraphMatch tool. In hindsight it would have served the
research community much better to release the code. But at the time we
had planned to continue working on the tool. We could release it today
but that would require us making sure it builds and runs on a currently
available system. Our results could have been reproduced and verified if
we had published the code.
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Second, our tool most likely contains bugs that affected the outcome of
our verification. Perhaps the system under analysis (Sendmail) contained
several security bugs of the type GraphMatch was looking for but they
remained undetected because of a bug of our own. This could have been
investigated with a synthesized micro benchmark such as the ones described
in Section 2.3.

Finally, our proof of concept verification was not compared to other
approaches in terms of effectiveness or efficiency. At the time, we were
not aware of any publicly available tool trying to solve the same problem.
However, we could have done such comparison ourselves given the results
from GraphMatch, i.e. we could have investigated which other analysis
methods could have found the same bugs GraphMatch found, only more
effectively and/or efficiently.



Chapter 3

Related Work

Each of the papers included in this thesis includes references to previous
work related to the problems addressed in that particular paper. This
presentation of related work includes more recent work in the areas of
compile-time intrusion prevention and security requirements engineering
where a lot of research has been done since our most recent publications in
2005 and 2007 respectively.

3.1 Compile-Time Intrusion Prevention

Compile-time intrusion prevention tools try to prevent attacks by find-
ing security vulnerabilities in the source code so that programmers can
remove them. Removing all security bugs from a program is considered
infeasible which makes the compile-time solution incomplete [28]. The two
main drawbacks of this approach are that someone has to keep an updated
database over programming flaws or best practice to analyze or check for,
and since the tools only detect vulnerabilities the user has to fix the prob-
lem.
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3.1.1 Static Analysis

Several steps forward have been taken since our comparative study of static
analysis tools for security in 2002.

Static analysis for security has become an established business with
companies such as HP (formerly Fortify), Coverity, IBM (formerly Ounce
Labs), Veracode, and GrammaTech. The business term is Static Appli-
cation Security Testing, SAST. A fairly complete collection of available
SAST tools can be found on the NIST web page for Source Code Security
Analyzers [29].

Many of the recent static analysis studies and techniques have been
targeted towards mainstream object-oriented languages such as Java and
C#, and web applications including languages like PHP and JavaScript.
However, this section is limited to static analysis of C, for the purpose
of finding buffer overflow and format string attacks or for the purpose of
evaluating existing tools. The limitation is due to the scope of this thesis.

NIST’s Static Analysis Tool Exposition

The National Institute of Standards and Technology (NIST) has published
three comparative studies on static analysis tools for security called Static
Analysis Tool Exposition, SATE. The most recent one at the time of writing
this thesis was carried out in 2010 and published in 2011, called SATE 2010
[30].

SATE 2010 covers a C/C++ track and a Java track. SATE 2010 used
a set of programs and among them a set of CVE-selected test cases from
the CVE database [31] (CVE stands for Common Vulnerabilities and Ex-
posures). The CVE-selected test cases were pairs of programs: an older,
vulnerable version with publicly reported vulnerabilities (CVEs) and a fixed
version, that is, a newer version where some or all of the CVEs were fixed.
For the CVE-selected test cases, they focused on tool warnings that corre-
sponded with the CVEs.

The C/C++ track covered three systems—Dovecot secure IMAP
and POP3 server (⇡200 KLOCS), Wireshark network protocol analyzer
(⇡1,600 KLOCS), and Google Chrome web browser (⇡4,000 KLOCS). For
C/C++ the following static analysis tools participated; Concordia Univer-
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sity MARFCAT, Coverity Static Analysis for C/C++, Cppcheck, Gram-
matech CodeSonar, LDRA Testbed, Red Lizard Software Goanna, Seoul
National University Sparrow, and Veracode SecurityReview.

Selected subsets of tool reports were analyzed and compared. Three
types of selection were done—Random, Related to manual findings by ex-
perts, and Related to CVEs.

Correctness of reports were categorized in True security weakness, True
quality weakness, True but insignificant weakness, Weakness status un-
known, and Not a weakness. All of these categories had clear criteria and
decision processes.

508 buffer-related warnings and 153 input validation warnings were re-
ported for the C/C++ systems (in total there were seven security cate-
gories). For what the SATE team call “well known and well studied cate-
gories” such as buffer-related security flaws the overlap of tool reports was
higher. The security reports for the Dovecot system had a 50 % overlap
in total. As for the CVE-selected test cases the tools had problems finding
them and a summary of Chrome’s nine CVEs provides some explanations
such as an assertion that aborts in debug mode confusing the tools.

No explicit results per tool were published in the paper since the purpose
was not to find ”the best” tool.

Further Surveys of Static Analysis Tools

Tevis and Hamilton presented a theoretical survey of 13 static analysis
tools aimed at security—BOON, CodeWizard, FlawFinder, Illuma, ITS4,
LDRA, MOPS, PC-Lint, PSCAN, RATS, Splint, UNO, and WebInspect
[32]. Several of these tools were covered in our empirical survey, see Pa-
per C. Tevis and Hamilton argue that the deeper issue of insecure code
lies in imperative programming and that a paradigm shift towards func-
tional programming techniques could hold the key to removing software
vulnerabilities altogether.

Zitser et al published an empirical survey of static analysis tools run
on vulnerable and patched versions of open source systems BIND, WU-
FTPD, and Sendmail [33]. The vulnerable versions contained 14 known
exploitable buffer overflows. The analysis tools evaluated were ARCHER,
BOON, PolySpace, Splint, and UNO. True and false positives were found
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to be:

• PolySpace: 87 % true positives, 50 % false positives

• Splint: 57 % true positives, 43 % false positives

• BOON: 5 % true positives, 5 % false positives

• ARCHER: 1 % true positives, 0 % false positives

• Uno: No warnings concerning buffer overflows

Chess and McGraw wrote a short theoretical review of static analysis
for security, covering the tools BOON, CQual, xg++, Eau Claire, MOPS,
and Spint [34]. Their main focus is on important properties of such tools
such as ease of use and completeness of rule sets.

Kratkiewicz did her Masters Thesis work on evaluating static analy-
sis tools against a buffer overflow testbed [35] and the work was also pub-
lished in a paper together with Lippmann [36]. 291 small C programs
called test cases were used to evaluate five static analysis tools—ARCHER,
BOON, PolySpace, Splint, and Uno. Interestingly that’s the same lineup as
Zitser et al used a year before. Kratkiewicz and Lippmann’s results were:

• PolySpace: 99.7 % true positives, 2.4 % false positives

• Splint: 56.4 % true positives, 12 % false positives

• BOON: 0.7 % true positives, 0 % false positives

• ARCHER: 90.7 % true positives, 0 % false positives

• Uno: 51.9 % true positives, 0 % false positives

Interestingly only true positives for PolySpace and Splint match well or
fairly well between the Zitser et al and Kratkiewicz and Lippmann studies.
All the other results differ heavily. Kratkiewicz and Lippmann comments
on this—“Good performance on test cases (at least on the test cases within
the tool design goals) is a necessary but not sufficient condition for good
performance on actual code.” It should be noted that Lippmann is one of
the co-authors of the Zitser et al paper.
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Zheng et al analyzed the effectiveness of static analysis tools by looking
at vendor tests and customer-reported failures for three large-scale network
service software systems at Nortel Networks [37]. Three tools were used—
FlexeLint, Reasoning’s Illuma, and Klocwork’s inForce. The tools were
not compared. On the contrary the authors based most of their analysis on
the output of FlexeLint since it had the highest number of reported faults
and the greatest fault variety. Zheng et al concluded that static analysis
tools are effective at identifying code-level defects such as assignment and
checking faults and an affordable means of software fault detection. How-
ever, other techniques such as manual inspection is needed to detect more
complex, functional, and algorithmic faults.

Michaud and Carbone published a technical report called “Practical
verification & safeguard tools for C/C++” [38]. Their study did not only
cover static analysis tools but in that category they did empirical evalua-
tions of the tools PolySpace, Coverity Prevent, Grammatech CodeSonar,
and Klocwork K7. They augmented an existing open source program with
synthesized defects—“synthetic tests”—and they used an existing numerical
analysis application known to be buggy and badly designed—“production
code tests”. In the category most closely related to our study—“Overrun
and Underrun Faults” in synthetic tests—the results were:

• PolySpace: 55.6 % true positives, 37.5 % false positives

• Coverity: 55.6 % true positives, 0 % false positives

• CodeSonar: 55.6 % true positives, 0 % false positives

• Klocwork K7: 77.8 % true positives, 0 % false positives

As for the production code tests Michaud and Carbone could not get good
results for any of the tools under evaluation. They suspect low-quality code
such as the numerical analysis application they used is too hard to analyze
for the tools, but could not prove that was the case. The poor results made
the authors uncertain of their test setup and thus they never published the
exact results of the production code tests.

Baca et al evaluated the static analysis tool Coverity Prevent for
cost reduction in industrial software engineering [39]. Three C++ soft-
ware products, proprietary telecom and open source were used as testbed.
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The paper makes no distinction between security or non-security issues in
false positives which means the outcome cannot really be compared with
similar studies. The security-related results were:

• Product A, 600 KLOCs: 37.5 % true positives out of 8 known issues,
82 new true positives, and 22.1 % false positives (both security and
non-security)

• Product B, 500 KLOCs: 28.6 % true positives out of 7 known issues,
5 new true positives, and 5.3 % false positives (both security and
non-security)

• Product C, 50 KLOCs: 25 % true positives out of 8 known issues, 7
new true positives, and 6 % false positives (both security and non-
security)

The authors’ primary goal was to measure potential cost reduction and the
results showed that on average 17 % could be saved if static analysis tools
were used.

Kupsch and Miller published an evaluation of manual versus auto-
mated security assessments [40]. The system under study was Condor, a
workload management system for compute-intensive jobs. Condor is writ-
ten in C. The static analysis tools used were Coverity Prevent and Fortify
SCA. 15 serious security flaws were found by manual inspection. 6 of these
were found by Fortify and only one by Coverity. The two tools did report
thousands of potential defects but the authors could not find any severe
security flaws among them except the ones already found in manual inspec-
tion.

Johns and Jodeit have developed a methodology for evaluating or
surveying security-targeted static analysis tools [11]. Their choice of a micro
benchmark approach was based on Chess and West’s four criteria—Quality
of the analysis, Implemented trade-offs between precision and scalability,
Set of known vulnerability types, and Usability of the tool [41].

In their implemented setup they have every testcase in a separate, ded-
icated application containing either a true vulnerability or a crafted false
positive. These testcases are made into executable units by being forged
with a host program. All testcases for a given programming language share
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the same host program. False positives due to the host program’s code are
eliminated by an analysis of the host program itself plus a diff. The host
program contains all the infrastructure required by the testcases, for in-
stance a simple TCP server that reads untrusted network data and passes
it to the testcases.

Testcases fall into one of three categories—Vulnerability class coverage
(e.g. does the tool check for buffer overflows?), Language feature coverage
(e.g. does the tool still distinguish between safe and unsafe buffer access
when combined with advanced scoping rules?), and Control- and data-flows
(e.g. will loop invariants be considered when checking the data flow from
a source to a sink?).

Non-disclosure agreements prohibited Johns and Jodeit to publish em-
pirical results from commercial static analysis tools. However, they came
to some general results, two of which are relevant our scope:

• Tools tend to favor soundness over low false positive rates

• Tools checking C code did well warning for double free() and null

dereferences but had significant problems with non-trivial integer
overflow vulnerabilities

An overview of true and false positives for all the empirical studies above
together with our’s from 2002 is presented in Figure 3.1.

Real-World Versus Synthesized Comparisons

In 2008 Emanuelsson and Nilsson published a comparative study of
industrial static analysis tools [42]. They compare the effectiveness and
efficiency of the tools PolySpace, Coverity, and Klocwork on industrial
software at the digital communications company Ericsson.

While not focused only on security a number of their results are inter-
esting given the approach we took with a synthesized testbed in our 2002
comparative study (Paper C), namely:

• The rate of false negatives, i.e. actual bugs missed, is very difficult
to estimate given that the total number of bugs is unknown.



3.1. Compile-Time Intrusion Prevention

W
ila
nd
er
,
K
am

ka
r

Z
it
se
r
et

al

K
ra
tk
ie
w
ic
z,
L
ip
pm

an
n

M
ic
ha
ud
,
C
ar
b
on
e

B
ac
a
et

al

Flawfinder True pos. 96 %
False pos. 71 %

ITS4 True pos. 91 %
False pos. 52 %

RATS True pos. 83 %
False pos. 67 %

Splint True pos. 30 % 57 % 56.4 %
False pos. 19 % 43 % 12 %

BOON True pos. 27 % 5 % 0.7 %
False pos. 31 % 5 % 0 %

PolySpace True pos. 87 % 99.7 % 55.6 %
False pos. 50 % 2.4 % 37.5 %

ARCHER True pos. 1 % 90.7 %
False pos. 0 % 0 %

Uno True pos. 51.9 %
False pos. 0 %

Coverity True pos. 55.6 % 30.4 %*
False pos. 0 %

CodeSonar True pos. 55.6 %
False pos. 0 %

Klocwork True pos. 77.8 %
False pos. 0 %

Table 3.1: Overview of five comparative studies on static analysis tools for
security. Upper percentage in each cell gives the true positive rate. Below
is the false positive rate. *Average from analysis of three systems.

• Different tools analyzing the same codebase typically had a low over-
lap in reported bugs, both true and false positives. For one piece of
software Klocwork reported 32 defects including 10 false positives,
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Coverity reported 16 defects including one false positive, and only
three defects overlapped between the reports.

• In two cases of analyzing software with known bugs none of the tools
found any of them.

These results show the importance of not only evaluating tools on real-
world code but also on synthesized testbeds, i.e. controlled environments.
We’ve taken the approach of implementing controlled testbeds in three of
our studies, see Papers C, F, and G.

Buffer Overflow and Format String Attack Prevention

Our comparative study from 2002 covered static analysis tools trying to
prevent buffer overflows and format string attacks (Paper C). Additionally,
our proposed new formalism for modeling and pattern matching security
properties of code was built up on dependency graphs and GrammaTech’s
tool CodeSurfer (Papers D and E). This makes our research very closely
related to Nagy and Mancoridis’ research on static analysis with de-
pendency graphs and CodeSurfer to find buffer overflow and format string
flaws [43]. Nagy and Mancoridis also introduce interesting metrics on how
to prioritize reported flaws, an important issue that we addressed too in
our paper on modeling security properties of code, Paper D.

Their analysis of code takes the following approach:

1. Define all I/O system calls as sources of potentially malicious input
(henceforth user input). Formally 28 functions from the C standard
library and parameters to the program’s main function.

2. Perform dataflow analysis to determine where user input can reach.
The union of all reachable paths defines the code to analyze.

3. Calculate two metrics for ranking output in developer feedback—
coverage and distance. Coverage is defined as the percentage of a
function’s statements that handle user input. Distance is defined as
the shortest path of dependency graph nodes between the source of
user input and the start of the given function. Such dataflow paths
are built up of re-assignments and modifications of user input.
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4. Use a fault detection mechanism similar to Livshits and Lam’s IPSSA
technique (see Paper D) and pattern matching of known sinks to
detect potential buffer overflows and format string flaws. strcpy and
sprintf are examples of buffer overflow sinks, and the printf family
of functions are the natural format string sinks.

5. Use control dependencies to detect if there’s a conditional statement
checking the size of the user input before copying it to a buffer. Such
a conditional will be deemed as avoiding the buffer overflow. This is
the same basic approach we use in Paper E but without the ranking
metric of the various ways such input validation can go wrong.

They analyzed 12 security critical open source products comprising over
800 KLOCs. Out of these they gave extra focus on the largest piece of
software, the Pidgin chat client with its 230 KLOCs. The total input
coverage of the Pidgin code was 10.56% and the longest shortest path
from source to sink was 100 graph nodes. One flaw was detected, a buffer
overflow where the name of the user’s home directory could overflow a 128
character sized buffer.

Graph Reachability

In 2008 Scholz et al introduced a static analysis technique for comput-
ing user input dependencies [44]. They use both data and control flow
dependencies in an augmented Static Single Assignment form.

Inter-procedural dependencies are handled in one of two ways—call-
insensitive (less precise but fast) and call-sensitive (more precise but
slower). In the call-insensitive case the whole program under analysis is
modeled in a single reachability graph. In the call-sensitive case the pro-
gram’s call graph is split into strongly connected components containing
functions that potentially call each other recursively, reachability is com-
puted for each such component, and summary functions are marked as user
input dependent if they use tainted arguments, globals, or results of tainted
functions.

They have implemented their approach using a low-level virtual machine
for C. A configuration file specifies which globals, arguments, and results
of functions that are user input dependent.
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In their empirical evaluation they analyze nine C programs—sendmail,
httpd, perlbmk, vortex, pppd, sshd, mailx, zoneadmd, and mail. In the
case of call-sensitive analysis the percentage of user input dependent code
varied between 77.7 % for httpd and 42.1 % for pppd. This is interesting
comparing to Nagy and Mancoridis’ results presented in Section 3.1.1.

The results as to finding real security bugs are not presented in the
paper.

3.1.2 Model Checking

Model checking is a technique for automatically verifying correctness prop-
erties of finite-state systems (brief introduction on Wikipedia [45]). The
technique was pioneered by Edmund M. Clarke, E. Allen Emerson,
and Joseph Sifakis and earned them the 2007 Turing Award [46].

Software model checking is used for verifying software correctness and
needs both a formal model of the software and of its specification. Such
formal models can be built using well-known abstractions, for instance
abstract syntax trees [47]. Software model checking may fail to prove or
disprove a given system property due to undecidability problems such as
the famous halting problem.

Model Checking Versus Static Analysis

Engler and Musuvathi presented their experiences on static analysis ver-
sus software model checking in an invited paper at VMCAI 2004 [48]. Ac-
cording to their studies model checking did not find more bugs in software
than static analysis. Specifically, checking FLASH cache coherence proto-
col code was four times as effective with static analysis in terms of found
bugs. They conclude that a major challenge of software model checking is
to correctly and completely model the environment in which the software
to be checked operates.

Model Checking Securty Protocols

Model checking has been used extensively to verify security protocols such
as key exchange protocols. The attacks in scope for such model checking in-
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clude man-in-the-middle (attacker imposing between two communicating
parties), reflection (exploiting protocol symmetry by bouncing messages
back), oracle (trick an honest agent into revealing information), replay
(attacker reusing earlier messages), and interleave (exploiting overlaps be-
tween two or more protocol runs) [49].

Early work on using model checking for security protocols was done
by Mitchell et al in 1997 when they analyzed the Needham-Schroeder
protocol, variants of Kerberos, and the faulty TMN protocol [50].

Model Checking Code Security

Chen and Wagner have designed a model checking tool called MOPS
which checks for security bugs that can be described in terms of temporal
safety properties, i.e. ordering constraints [51]. MOPS is briefly presented
in Paper D.

In 2005 Schwarz et al presented the results of model checking the
entire Red Hat Linux 9 distribution for security violations using MOPS [47].
The scope was 60 million lines of code and they discovered 108 exploitable
bugs.

Ku et al developed and published a buffer overflow benchmark for soft-
ware model checking [52]. It consists of 298 code fragments produced from
22 vulnerabilities and corresponding patches in 12 open source programs.
They could only find one publicly available model checker that soundly
models C arrays—SatAbs. Buffer sizes were limited to 1 and 2 for the sake
of reasonable execution time. At buffer size 1 SatAbs found an overflow in
71.4 % of the testcases.

3.2 Security Requirements Engineering

There’s a vast amount of research done in the area of security requirements
engineering since our latest publication in 2007. New methods, formalisms,
categorizations, and cross-cutting studies continue to get published. How-
ever, this section focuses on empirical studies of requirements engineering
practice for security since that is the topic of our Paper A and B.
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3.2.1 Eliciting, Analyzing, and Documenting Security
Requirements in Practice

Elahi et al have carried out an interview study to collect how businesses
elicit, analyze, and document security requirements in practice. 400 soft-
ware professionals, mostly programmers, from 237 firms in China (both
Chinese and international) where asked 18 multiple choice questions via a
web-based survey. 374 of them took part.

The goals of the study were to discover in which development stages
security was considered, the approach to elicitation, modeling, and docu-
mentation, knowledge sources exercised, and how risk assessment was done.

Several of their findings were interesting:

• 55 % had received security training during education and 27 % in
their professional life. Only 17 % had no security training at all.

• 48 % use security standards or guidelines such as ISO 17799, Common
Criteria, and SANS guides.

• Only 9 % said they explicitly documented security requirements while
59 % said they consider security requirements implicitly. 31 % did
not elicit security requirements at all.

• 88 % stated that security may lead to trade-offs, most often conflicting
with performance, efficiency, or specific features.

• 82 % said they analyze security risks and when given the choice of
various metrics or scales over 80 % picked a scale with low granularity
(low/medium/high or 1-9).

• A statistical analysis showed no correlation between the respondents
roles and their approach to security requirements elicitation.

3.2.2 A Survey of Security Requirements Methodolo-
gies

Tøndel et al published a literature survey on security requirements
methodology covering both academic publications and popular books writ-
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ten by industry practitioners [53]. They conclude that no common agree-
ment exists on what a security requirement is. According to Tøndel et al
the approaches under study . . .

• don’t agree on if and how requirements should state concrete security
measures;

• provide different levels of detail as to how to perform the tasks; and

• require different levels of expert knowledge.

Product owners and project leaders are often unaware of what expertise
is needed to properly elicit and specify security requirements as shown in
our empirical research (see Papers A and B). Tøndel et al show that even
a chosen method will not solve that problem. Further research has to be
done on what security requirements are and how they should be elicited
and specified.



Chapter 4

Reflections

Much has happened during the ten years that have passed since our first
empirical experiments on buffer overflow prevention. Software is by no
means becoming less important for mankind. On the contrary, more and
more of our societies and lives are dependent on working software. Ad-
ditionally, the global inter-connection between computers has become yet
another foundation for much of what we use software for.

New types of software vulnerabilities have been discovered during these
years, for instance clickjacking [54]. Others have grown from discussions
in the security community to worldwide problems, for instance cross-site
scripting, first published in a CERT advisory February 2000 [55] and now
in second place on OWASP Top 10 of security risks in web applications
[56].

4.1 Static Analysis

Since 2002, static analysis tools for security has become a full-blown in-
dustry with several tool vendors and business acquisitions by enterprises
like IBM and HP. Many software developing organizations now use static
analysis for the purpose of software security. Looking back at our research
efforts in 2002-2005 we see that industry has favored few false positives
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over few false negatives and that software vulnerabilities are still mostly
reported as text rather than in some visualized form.

Our proposal to use dependency graphs is still valid in terms of modeling
good and bad programming practice. However, it remains an open question
if it is an efficient formalism for scanning code. Especially considering the
difficulty of building system-wide dependency graphs for applications with
a client written in one language (e.g. JavaScript) and a server system
written in another or several other languages (e.g. Java, SQL, and Cobol).

4.2 Security Requirements

In our experience, security requirements practice is still based on top lists
of vulnerabilities and the knowledge among developers rather than among
product owners. The significant change that we have seen is the rise of
software security compliance requirements, notably in the Payment Card
Industry Data Security Standard (PCI DSS) [57], and in security breach
notification laws. Most of U.S. states have breach notification laws [58] and
the European Union has one in the Directive on Privacy and Electronic
Communications [59].

Another development in security requirements is so called threat mod-
eling, popularized by the Microsoft book Security Development Lifecycle
[8] and wider in scope than Bruce Schneier’s Attack Trees [60]. Threat
modeling is a structured, iterative process for assessing security threats
to applications and systems based on their security objectives (see Figure
4.1). Identified threats are mapped to suspected vulnerabilities. In its pure
form threat modeling does not cover countermeasures and thus not detailed
security requirements. However, both the identification of security objec-
tives and the identified threats and vulnerabilities tie in with the work on
security requirements.

Looking back at our empirical study on current practice in security
requirements it is clear that industry has not decided to send all IT project
leaders and product owners to security training. Nor have they developed a
standard set of security requirements to pick from. Instead security (outside
compliance) is mostly handled by security experts and developers who take
pride in writing robust, secure software.
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Figure 4.1: Iterative Threat Modeling. Image recreated from the Mi-
crosoft Developer Network article on threat modeling web applications [61].

Additionally, we’ve experienced a tendency towards business develop-
ers not wanting secure software per se. Rather, they want attackers and
criminals to go away, either to jail or just quit doing their evil deeds. If
they can not get rid of the attackers, only then does software security and
its investments make sense. There is an important lesson to be learned
from this. In all parts of society there has to be a balance between crime
rates and reasonable crime protection and awareness. If cybercrime keeps
increasing indefinitely, the Internet and computer-based business will be
left to vigilantes and security pros which is far from where we want to be.
Where to draw the line and get the right balance is an open question.
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4.3 Runtime Intrusion Prevention

Systems protecting themselves, or runtime intrusion prevention, continues
to be a very active area of research. There is an ongoing race between such
protection and intrusive techniques. For instance a so called stack smashing
buffer overflow attack has become almost impossible if the target system has
current countermeasures such as non-executable memory, a randomized 64-
bit address space, stack integrity checks, application sandboxing etc. But
almost every assumption of the stack smash attack has been challenged
since Aleph One’s seminal paper “Smashing the Stack for Fun and Profit”
back in 1996 [62].

Perhaps the most notable disruption was caused by Hovav Shacham’s
introduction of return-oriented programming (ROP) in 2007 [63]. Sud-
denly an attacker did not need to a) inject attack code, b) execute code in
non-executable memory segments, and c) enforce a malicious call to a libc
function. In the years since, several publications have suggested counter-
measures and in 2012 Vasilis Pappas from Columbia University published
his ROP protection called kBouncer [64] with which he won Microsoft’s
BlueHat Prize 2012 of USD 200,000 [65]. The BlueHat Prize is awarded to
the most “novel runtime mitigation technology solution that is capable of
preventing the exploitation of memory safety vulnerabilities”.

This shows how the discussion on first full disclosure and then respon-
sible disclosure has come full circle and the security community is now
invited to compete for the best intrusion prevention technologies, and not
only collecting bug bounties.

Our research in runtime intrusion prevention has been focused on
language-level deficiencies (e.g. no buffer bounds checking in standard C).
In parallel there has been research on runtime intrusion prevention where
application and even business logic is taken into consideration, for instance
in the OWASP AppSensor project [66]. One of their ideas is to apply basic
integrity checks of incoming parameters to a web application by validating
the number of parameters, the allowed characters in input fields, and the
allowed values of enumerations (e.g. drop-down lists). Such checks makes
it much harder to exploit vulnerabilities deeper in the application just like
non-executable memory and canary values have made buffer overflow at-
tacks harder.
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4.4 Thoughts on the Future of Intrusion Pre-
vention

Intrusion prevention has come far, especially in protecting memory safety
in operating systems. But attacks against applications are not decreasing.
It is our belief that lack of data modeling and lack of support for data
modeling lies at the heart of the software security problem.

So much of the data transferred between systems and humans is mod-
eled by basic datatypes, primarily strings. Very seldom do these pieces of
data mean just “any string”. Instead they are part of a business or or-
ganizational data domain with quite specific meanings such as last name,
medication, or search criteria. Our failure to model what is and what is
not a human name or the name of a medication opens up for malicious
injection of commands, code, syntactic errors, semantic errors, and even
random data. Proper data modeling is hard, but to make an application
withstand the input of “any string” while maintaining a secure state is
arguably harder.

The lack of data modeling manifests itself by the prevalence of parsers,
encoding, and decoding. As soon as data arrives at a platform (e.g. a
web browser), a client, or a server it has to be interpreted. This often
means parsing strings, decoding strings, and encoding strings. So while
the data might have had a specific, well-defined meaning at its origin, it
is flattened out into a general string during transit and the meaning has
to be resurrected upon arrival. Protecting string parsing, encoding, and
decoding from malicious manipulation is hard but all too often left to the
application programmer. If we instead could support programmers with
tools for end-to-end data modeling we would stand a much better chance
against attackers.
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Abstract

The number of security flaws in software is a costly problem. In 2004
more than ten new security vulnerabilities were found in commercial and
open source software every day. More accurate and consistent security re-
quirements could be a driving force towards more secure software. In a
field study of eleven software projects including e-business, health care and
military applications we have documented current practice in security re-
quirements. The overall conclusion is that security requirements are poorly
specified due to three things: inconsistency in the selection of requirements,
inconsistency in level of detail, and almost no requirements on standard se-
curity solutions. We show how the requirements could have been enhanced
by using the ISO/IEC standard for security management.

Keywords: security requirements, non-functional requirements

1 Introduction

According to statistics from CERT Coordination Center, CERT/CC, in
year 2004 more than ten new security vulnerabilities were reported per
day in commercial and open source software [67]. In addition, the 2004 E-
Crime Watch Survey respondents say that e-crime cost their organizations
approximately $666 million in 2003 [68].

1This work has been supported by the national computer graduate school in computer
science (CUGS) commissioned by the Swedish government and the board of education,
Vinnova 2GAP (Second Generation Application Provisioning), and EU EASYCOMP
(Easy Composition in Future Generation Component Systems).



2. Security Requirements

For consumers of software the security of the products they use relies
heavily on the security requirements specified for the products. If these
requirements are poorly specified there is nothing saying that the producers
will strive for security. Instead, costs and time will be focused on meeting
the other requirements, and security issues may be left for maintenance in
the infamous penetrate and patch manner [69].

To build more secure software, accurate and consistent security require-
ments must be specified. We have investigated current practice by do-
ing a field study of eleven requirement specifications on IT systems being
built 2003 through 2005. To evaluate the outcome we have looked into
documentation of security requirements from the requirements engineering
community as well as from the security community. Requirements found
in the specifications have been categorized into security areas and divided
into functional, non-functional, and assurance requirements. The ISO/IEC
standard for security management has been used as an example of how a
standard could help to specify better security requirements.

The rest of this paper is organized as follows. In Section 2 we look at
how security requirements have been defined within the requirements engi-
neering community and the security community. Next, Section 3 discusses
security testing to verify that security requirements have been met. Section
4 presents and discusses our field study of eleven requirements specifications
and what they specify in terms of security. Finally, Section 5 concludes our
work.

2 Security Requirements

A subgroup of software requirements is security requirements. A lot of work
and research has been done to define and standardize security requirements,
especially by military organizations. Here we look at (examples of) how
security requirements are defined within the requirements engineering (RE)
community and the security community.
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2.1 From a RE Point of View

Within requirements engineering security is often conceived as a non-
functional requirement along with such aspects as performance and reli-
ability, and is generally considered hard to manage [70, 71, 72, 73].

There are several (partially overlapping) definitions of functional and
non-functional requirements. The one used in this paper is based on the
IEEE definition [74], Thayer and Thayer’s glossary [75], extended by Burge
and Brown [70].

Functional Requirement. A functional requirement (FR) defines some-
thing the system must do, capturing the nature of the interaction between
the component and its environment. A FR must be testable, which means
it is possible to demonstrate that the requirement has been met by a test
case resulting in pass or fail [70, 74].

Non-Functional Requirement. A non-functional requirement (NFR) is
a software requirement that describes not what the software will do, but
how the software will do it. NFRs restrict the manner in which the system
should accomplish its function. NFRs tend to be general and concern the
whole system, not just some parts [70, 75].

In their paper on the future of software engineering Premkumar De-
vanbu and Stuart Stubblebine discuss security requirements. They define
them as:

Security Requirement. A security requirement is a manifestation of a
high-level organizational policy into the detailed requirements of a specific
system [73].

2.2 From a Security Point of View

One of the seminal documents on security requirements is the Common
Criteria, or CC. The CC is a standard and is meant to be used as the basis
for evaluation of security properties of IT systems [76].

“The CC will permit comparability between the results of inde-
pendent security evaluations. It does so by providing a common
set of requirements for the security functions of IT products and
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systems and for assurance measures applied to them during a
security evaluation.”

Following the CC standard, consumers of software produce a Protection
Profile that identifies desired security properties of a product. The Protec-
tion Profile is a list of security requirements. Producers on the other hand
create a Security Target that identifies the security-relevant properties of
the software. A Security Target can meet one or more Protection Profiles.
CC distinguishes between two types of security requirements—functional
and assurance:

Security Functional Requirement (CC). Security functional compo-
nents express security requirements intended to counter threats in the as-
sumed operating environment. These requirements describe security prop-
erties that users can detect by direct interaction with the system (i.e. in-
puts, outputs) or by the system’s response to stimulus.

Security Assurance Requirement (CC). Requiring assurance means
requiring active investigation which is a process requirement. Active inves-
tigation is an evaluation of the IT system in order to determine its security
properties.
Common Criteria lists what can be done in terms of assurance through
evaluation. We highlight a few things here to give an example of what
these requirements can look like:

• Analysis and checking of process(es) and procedure(s);

• checking that process(es) and procedure(s) are being applied;

• analysis of functional tests developed and the results provided;

• independent functional testing; and

• penetration testing.

Another relevant standard is the ISO/IEC 17799 Information technology—
Code of practice for information security management [77]. The section
on “Systems development and maintenance” includes ten pages specifying
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requirements and explaining considerations for techniques such as input
validation, encryption, and security of system files.

The ISO/IEC standard does not discuss functional, non-functional, or
assurance requirements as such.

3 Security Testing

Traditional

bugs

Required Functionality Real Functionality

Security

bugs

Figure 1: Finding security bugs through testing often means testing for
side-effects and functionality outside the requirement specification.

Closely related to requirements is testing. If something is considered a
requirement there needs to be some way to verify that it has been met.
This can be done with testing where the outcome is pass or fail.

“Traditional” bugs are deviations from the requirement specification,
either by doing B when supposed to do A, or by only doing B when supposed
to do A and B.

Thompson andWhittaker write about running test cases to find security
bugs [78]. Such bugs often differ from traditional bugs by being hidden in
side effects. Finding security bugs means finding out what the system also
does, apart from the specified functionality. Thompson and Whittaker’s
Venn diagram shows this (see Figure 1).

Requirements on absence of side effects are typically non-functional.
Specifying what the system must not do clearly restricts in what way the
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functional requirements can be fulfilled. Moreover, requirements on test-
ing of side effects are not only non-functional but also a kind of security
assurance requirement.

This stresses that we need non-functional requirements, and specifically
security assurance requirements to specify more secure systems. As we will
see later such requirements are rare in current practice (see Section 4).

4 Field Study of Eleven Requirements Spec-
ifications

We have studied eleven requirements specifications of IT systems being
built 2003 through 2005. In this section we first present an overview of se-
curity areas found in the specifications, and an overview of the systems and
organizations that have written the specifications. Next, we present both
a summarized and a detailed categorization of all security requirements
found. The categorization is done into security areas and into functional,
non-functional, and assurance requirements. Finally, we discuss the out-
come and reflect on potential shortcomings in the material.

On an abstract level we have categorized the security requirements into
well-known security areas. A full description along with examples for each
category can be found in Internet security glossaries [79, 80].

4.1 Systems in the Field Study

In our study we have taken advantage of the fact that all requirement
specifications used for public procurement by Swedish Government or local
authorities are public documents. The authorities are also required by law
to publish their requests for tenders, and all such requests are categorized
depending on the type of products or services bought. The categorization
is called Common Procurement Vocabulary (CPV), which is a European
standard [81].

We used a commercial database to find“Computer and related services”
purchases made by Swedish Government or local authorities from January
2003 to June 2004 [82]. In Table 1 you find a summary of all security
requirements found. Here is a brief description of the systems studied:
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Access Control/Roles 1 11 6 5 8 5 4 5 3 3

Attack Detection 2 4 3

Backup 5 9 2 2 2

Digital Signatures 1 1 1 1 2 1

Encryption 4 1 1

Integration 2 1

Logging 9 3 1 11 1 5 8 1

Login 5 3 3 8 2 2 1 2

Privacy 2 1

Authentication 2 4 2 1

Availability 1 3 1 6 4 3 1

Design/Implementation 1 6 1

Physical Security 6

Risk Analysis 1

Security Management 2 2

Security Testing 1

Table 1: Overview of security requirements on eleven IT systems being
built during 2003-2005. The double horizontal line divides the requirement
categories into mostly functional (above) and mostly non-functional (be-
low). Figures tell how many requirements were found in each category.

Billing (City of Jönköping). A billing system for drinking water, sewage,
and garbage collection.

Accounting (Cities of Dalsland). System for handling ledgers, accounting,
and budgets for five cities in the province of Dalsland.

Salary/Staff 1 (The cities of Kinda, Ödeshög, Boxholm, and Ydre). Sys-
tem for administration of salaries and staff within the cities.

Salary/Staff 2 (The cities of Stenungsund and Tjörn) System for admin-
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istration of salaries and staff within the cities.

E-Business (The cities of Skövde, Falköping, Karlsborg, Mariestad, Tibro,
Tidaholm, and Hjo). System for electronic trade and business including
billing.

Defense Materiel (Swedish Defence Materiel Administration). Web-
based marketplace for consulting services to the Swedish Armed Forces.

Medical Advice (The Federation of County Councils). System for man-
aging medical advice by phone on a national level. Redirection of calls,
queue management, work-flow management, medical documentation, and
statistics.

Health Care 1 (Stockholm County Council). Integration platform to
support personal medical information following patients between various
health care organizations.

Health Care 2 (The city of Lomma). System for event handling in health
care including personal medical records.

Highway Tolls (The City of Stockholm’s Executive Office). Equipment,
systems and services for handling environmental fees for all vehicles entering
the city of Stockholm.

Hazmat (Swedish Maritime Administration). Ship reporting system man-
aging mandatory reporting of hazardous goods, arrival, departure, and gen-
erated waste in accordance with EU directives.

4.2 Detailed Categorization of Security Requirements

In tables 2, 3, 4, 5, and 6 we present the complete list of security require-
ments found in the specifications. The list is divided into security areas and
every requirement is categorized as functional, non-functional, or security
assurance (subcategory of non-functional). The numbers in the table are
the number of requirements found for each subcategory. For instance the
“E-Business” system has four specific requirements on access control per
person (see Table 2).

The security areas are conventional but the categorization relies on the
fact that the authors of the specifications know how the various terms differ,
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Access Control/Roles

- per person (FR) 1 4 3 2 4 3 2 1 1

- per group (FR) 1 1 1 2 2 1 1 1

- one person many roles (FR) 1 1 1

- file access r/w/x (FR) 6 2 1 4 2 1

- role-based GUI (FR) 1

Attack Detection

- intrusion detection (FR) 1 2 1

- fraud detection (FR) 2

- antivirus (FR) 1 2

Backup

- in general (FR) 1 4 1

- automatic (FR) 3 2 1 1

- time interval (FR) 1 1

- durability (NFR) 2

- data versioning (FR) 2

- done run-time (FR) 1

Table 2: Detailed categorization of mostly functional security requirements
on eleven IT systems being built during 2003-2005. (FR) means functional,
(NFR) means non-functional.

for instance the difference between access control, authorization and login
where we have found similar requirements in all categories.

It is important to note that these are the requirements found in the
specifications, thus not a complete list of possible security requirements.
For a complete list we refer to published standards such as Common Criteria
[76] and ISO/IEC standard for security management [77].
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Digital Signatures

- in general (FR) 1 1 1

- use of standard (NFR) 1 1

- use of PKI (FR) 1

- for data origin (FR) 1

Encryption

- use of standard (NFR) 1 1

- during login (FR) 1

- filesystem (FR) 1 1

- network traffic (FR) 1

Integration

- with firewall (FR) 1

- with anti-virus (FR) 1

- with external PKI (FR) 1

Logging

- in general (FR) 6 1 1 1 1 1

- automatic (FR) 3 3

- what info to be logged (FR) 3 2 8 2

- log not changeable (FR) 1 2 2 1

- tool for log analysis (FR) 1

Table 3: (Continued) Detailed categorization of mostly functional security
requirements on eleven IT systems being built during 2003-2005. (FR)
means functional, (NFR) means non-functional.

4.3 Discussion

Data from the field study show that—(1) Security requirements are poorly
specified, and (2) The security requirements specified are mostly functional.
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Login

- username, password (FR) 2 1 1 1

- password change (FR) 2 1 1 2 1

- smart card (FR) 1

- Single Sign-On (FR) 1 1 1 1 1

- automatic logout (FR) 1 1 1 1

- non-guessable passwords (FR) 1

- resticted login attempts (FR) 1

- inactivate old accounts (FR) 1

- password re-use (FR) 1

Privacy

- anonymity (FR) 1

- classification (FR)

Table 4: (Continued) Detailed categorization of mostly functional security
requirements on eleven IT systems being built during 2003-2005. (FR)
means functional, (NFR) means non-functional.

Security Requirements are Poorly Specified

To support the conclusion that the security requirements are poorly speci-
fied we highlight three things:

1. Inconsistent selection of security requirements

2. Inconsistent level of detail

3. Security standards are not required

Inconsistent Selection of Security Requirements. In several of the
specifications studied we note that some relevant security areas are fairly
well specified whereas other are completely left out. Typically, a need for
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Authentication

- use of standard (NFR) 3 1

- per person (NFR) 1

- per system/entity (NFR) 1 1

- smart card (FR) 1

- biometrics (FR) 1

Availability

- 24h/day, 7 days/week (NFR) 1 1 1 1

- precentage uptime (NFR) 1 1 2

- redundant power and net (NFR) 2 3 1

- redundant data (NFR) 3 1

- automatic restart (FR) 1

Design/Implementation

- compartmentalize (NFR) 1

- input validation (NFR) 1

- output validation (NFR) 1

- referential integrity (NFR) 1 1

- file integrity (NFR) 2

- fault tolerant interfaces (NFR) 1

Table 5: Detailed categorization of mostly non-functional security require-
ments on eleven IT systems being built during 2003-2005. (FR) means
functional, (NFR) means non-functional, and (SAR) means security assur-
ance (subcategory of non-functional).

security has been expressed with detailed functional security requirements
whereas non-functional requirements are left out. This may lead to security
problems (see Section 3).

Examples of such inconsistencies can be seen in access control/roles
where all systems have requirements (two referring to standard) which in-
dicates that restricted access is important. At the same time only three
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Physical Security

- in general (NFR) 1

- fire (NFR) 2

- water/moist (NFR) 1

- physical intrusion (NFR) 2

Risk Analysis

- fraud risk (SAR) 1

Security Management

- use of ISO/IEC standard (SAR) 2 2

Security Testing

- availability, stress test (SAR) 1

Table 6: (Continued) Detailed categorization of mostly non-functional se-
curity requirements on eleven IT systems being built during 2003-2005.
(FR) means functional, (NFR) means non-functional, and (SAR) means
security assurance (subcategory of non-functional).

specifications require some kind of encryption of data communication and
only two specifications require physical security including restricted physi-
cal access.

Inconsistent Level of Detail. Some security requirements have a high
level of detail whereas others in the same specification are only specified on
a general level. This might indicate that the organizations specifying the
security requirements rely heavily on local competence and not standards.

We call this phenomenon local heroes—for instance, there might be
someone who knows very much about backup systems and thus the spec-
ifications on backup become detailed and fairly complete. But in other
security areas the organization does not have an expert, which leads to
under-specified requirements in that area.
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This phenomenon can be seen in for instance the “E-Business” system
where the requirements on logging are very detailed (eight requirements on
what info to be logged) and at the same time digital signatures are specified
as “The system should be able to handle the use of electronic signatures”
with no further details.

In the specification of “Salary/Staff 1” we find detailed requirements
on backup (automation, durability, and run-time backup), while in the
same specification the lone requirement on digital signatures is“The system
should handle electronic signatures and interfaces to PKI cards etc”.

Security Standards are Not Required. Many security areas have well-
known and rigorously reviewed standards such as encryption and access
control policies. The specifications studied very seldom require these stan-
dards to be followed. Instead the requirements specified leaves to designers
and implementers to choose or even invent the technology to be used. Such
an ad-hoc approach to security is known to lead to problems [69].

None of the specifications explicitly requires a standard policy for ac-
cess control. In the case of digital signatures two out of six specifications
explicitly require a standard solution. And for the area attack detection
no publicly known system is required which means the producer can im-
plement his/her own anti-virus software etc.

Security Requirements are Mostly Functional

As mentioned in Section 2.1, security is often conceived as a non-functional
requirement, and as such it is known to be hard to manage. However, our
study shows that in more than 75% (164 out of 216) of the cases, security
requirements boil down to functional requirements. This transformation of
abstract non-functional requirements into concrete functional requirements
is known and resembles Chung et al’s technique of“refining initial high-level
goals to detailed concrete goals” [71].

However, the kind of non-functional security assurance requirements
discussed in Section 3 are left out in almost all cases—we identified 6 such
requirements out of 216. The security areas risk analysis, standardized se-
curity management, and security testing were categorized as security assur-
ance. The overall distribution of requirements is; CC’s security functional
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requirements divided into functional (76%) and non-functional (21%), and
last CC’s security assurance requirements as non-functional (3%).

Security Requirements Absent

A natural question is—what security requirements are left out in the spec-
ifications studied? Since we decided to list only the requirements present
in at least one specification, a comparison with a more complete list would
indicate what could be gained. A fair comparison can be made in terms
of level of detail. If a security requirement is specified it is unlikely that it
has been deliberately under-specified.

To make such a comparison we have chosen two security areas, digital
signatures and logging, and listed what the ISO/IEC standard for security
management specifies. The reason for choosing this standard was that
“Health Care 1” and “Highway Tolls” require that standard to be used.

In the case of the “E-Business” system the requirement on digital sig-
natures was formulated as: “The system should be able to handle the use
of electronic signatures”. Reading the ISO/IEC standard we find detailed
information on what to consider when requiring digital signatures:

• Protection of confidentiality of signature keys

• Protection of integrity of public key

• Quality of signature algorithm

• Bit-length of keys

• Signature keys should differ from keys for encryption

• Assure proper legal binding of the signatures

Logging is specified without standards in seven of the studied projects and
specified by referral to standards in two of the projects. If we look at
the seven projects with no referral to external documents, the ISO/IEC
standard again provides requirements left out in the specifications:

• Separation of users logged and reviewers of the log
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• Protection against de-activation

• Policy for who can change what to be logged

• Protection against logging media being exhausted

The subcategory “what info to be logged” can be further broken down into
specific pieces of information. Three out of the seven projects above have
specific requirements in what information to be logged. From the ISO/IEC
standard we get the following list of left out requirements:

• User IDs

• Date and time of log-on and log-off

• Terminal ID and location

• Successful and rejected system access attempts and data access at-
tempts

• Archiving of logs

4.4 Possible Shortcomings

There are possible shortcomings to our study. First, we want to stress that
we do not have access to any kind of risk analysis documents underlying
the security requirements specified. Therefore we cannot know if certain
security areas have been left out because of deliberate decisions or because
of lack of information or knowledge. As a consequence we do not judge the
requirements as good or bad, but rather analyze the consistency and the
use of standards.

Some of the requirements found in the specifications studied were hard
to categorize in a clear way, mostly due to the diversity in definitions of
non-functional requirements. Therefore the categorization should not in all
cases be interpreted as a given fact.

Using requirement specifications made for public procurement in Swe-
den for our field study is a decision made primarily because of the avail-
ability of them. Commercial entities tend to have little interest in making
their requirement specifications available for research. This limited scope
affects the validity of the study.
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5 Conclusions

We conclude that current practice in security requirements is poor. Our
field study shows that security is mainly treated as a functional aspect
composed of security features such as login, backup, and access control.
Requirements on how to secure systems through assurance measures are
left out. Nonetheless, all systems studied have some form of security re-
quirements and most of them have detailed requirements at least in certain
security areas. This shows that security is not neglected as such.

The RE community often conceives security as a non-functional require-
ment and thus generally hard to manage. Our study shows that security
requirements are both functional and non-functional. In the functional case
they represent abstract security features broken down into concrete func-
tional requirements. In the non-functional case they are either restrictions
on design and implementation, or requirements on assurance measures such
as security testing.

Following standards and not relying on local competence would make
management of security functional requirements no harder than other func-
tional requirements. Thus security requirements being hard to manage
mainly holds for security assurance requirements.
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Abstract

In a previous field study of eleven software projects including e-business,
health care and military applications we documented current practice in
security requirements. The overall conclusion of the study was that se-
curity requirements are poorly and inconsistently specified. However, two
important questions remained open; what are the reasons for the inconsis-
tencies, and what is the impact of such poor security requirements? In this
paper we seek the answers by performing in-depth interviews with three
of the customers from the previous study. The interviews show that ma-
ture producers of software (in this case IBM, Cap Gemini, and WM-Data)
compensate for poor requirements in areas within their expertise, namely
software engineering. But in the case of security and privacy requirements
specific to the customer domain, such compensation is not found. In all
three cases this has led to security and/or privacy flaws in the systems. Our
conclusion is that special focus needs to be put on domain-specific security
and privacy needs when eliciting customer requirements.

Keywords: security and privacy requirements, requirements engineering

1This work has been supported by the national computer graduate school in computer
science (CUGS) commissioned by the Swedish government and the board of education.



1. Introduction

1 Introduction

The security (confidentiality, integrity, availability) and privacy properties
of custom-made software relies heavily on the requirements specified by the
customers. If the requirements are poorly specified there is no guarantee
that the producers of the software will strive for security.

Security and privacy (henceforth grouped as security where possible)
are often conceived as non-functional requirements [70, 71, 72, 73], which
are generally hard to manage. But our previous field study on requirements
on eleven systems showed that more than 75 % of security requirements
found in specifications are in fact functional [83]. We concluded that cus-
tomers are generally better at specifying functional requirements including
functional parts of security. Therefore the hard part of specifying security
lies in the truly non-functional aspects such as security processes, security
testing, and security evaluation. Section 3 in this paper briefly presents the
results of the previous field study.

The outcome of the field study led us to a few hypotheses as to why
security requirements are poorly specified, and what the impact of such
poor requirements would be. We present these hypotheses in Section 4.
To verify the hypotheses we conducted in-depth interviews with customer
project leaders from three of the systems in the previous study. Section
5 summarizes the outcome of these interviews. The answers confirmed
most of our hypotheses and the discussion can be found in Section 6. In
Section 8 we draw the conclusion that customers and producers of software
should put special focus on domain-specific privacy needs when eliciting
requirements for security critical systems.

2 Terminology

Software systems and stakeholders described in this paper include cus-
tomers that have needs, typically specified as software requirements. The
customers buy systems from software producers who fulfill requirements
and deliver systems. In our frame of reference, customers are not necessar-
ily IT-experts, but rather experts within their own domains such as health
care processes or traffic and infrastructure. A few terms we use need to be
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defined:

Requirement. A requirement is a specification of what the customer
needs to be implemented during system development—a description
of how the system should behave, or of a system property or attribute
[84].

Unspecified need. An unspecified need is a left-out requirement—the
customer needs a certain function or system behavior but has so far
failed to express this need as a requirement.

Over-delivery. An over-delivery is performed when a producer fulfills
more than the customer has explicitly required, typically when the
producer fulfills the customer’s unspecified needs.

Local hero. A local hero is a person with expert knowledge in a subset of
a field that is wrongly consulted as an expert in the field in general.
An example could be a person with much experience in how to set up
and and effectively manage security logging. By others that person
could very well be consulted as an expert in system security in general,
being the “local security hero”.

3 Previous Study

In 2005 we published a field study of current practice covering eleven re-
quirements specifications on IT systems being built 2003–2005 [83]. All
specifications were made for public procurement in Sweden, in compliance
with EU procurement directives. This choice was made primarily because
of the public availability of the specifications. The study covered:

• Five systems for billing, accounting, salary, and e-business

• Three health care systems

• One system for defense materiel

• One system for reporting hazardous materials
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• One system for managing highway tolls

Requirements found in the specifications were categorized into security
areas and divided into functional and non-functional requirements (for de-
tails on how this was done see the original paper [83]). Table 1 contains
an overview of all security requirements we found. Note that requirements
not present in any of the studied specifications are not in the table, thus
no rows with zero requirements. The overall conclusion was that security
requirements were poorly specified due to three things: inconsistency in
the selection of requirements, inconsistency in level of detail, and almost
no requirements on standard security solutions.

4 Hypotheses

The outcome of the field study lead us to four general hypotheses about
the delivered systems. These were our hypotheses:

4.1 Security Requirements Incomplete

In our previous study we did not have access to any risk analysis docu-
ments, nor did we speak with the people involved—we just studied the
requirements specifications as such. Therefore we could not know if certain
security requirements had been left out because of deliberate decisions or
because of lack of information or knowledge. As a consequence we did not
judge the requirements specifications as complete or incomplete, but rather
analyzed consistency and the use of standards. However, our hypothesis
was that the security requirements were indeed incomplete or underspeci-
fied.

4.2 Lack of Risk Analysis

In several of the specifications studied we noted that some security require-
ments were fairly well specified whereas related ones were completely left
out. Examples of such inconsistencies could be seen in access control/roles
where all systems had requirements indicating that restricted access was
important. At the same time only three out of eleven specifications required
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Access Control/Roles 1 11 6 5 8 5 4 5 3 3
Attack Detection 2 4 3
Backup 5 9 2 2 2
Digital Signatures 1 1 1 1 2 1
Encryption 4 1 1
Integration 2 1
Logging 9 3 1 11 1 5 8 1
Login 5 3 3 8 2 2 1 2
Privacy 2 1

Authentication 2 4 2 1
Availability 1 3 1 6 4 3 1
Design/Implementation 1 6 1
Physical Security 6
Risk Analysis 1
Security Management 2 2
Security Testing 1

Table 1: Overview of previous study—security requirements on eleven IT
systems built 2003-2005. The double horizontal line divides the require-
ment categories into mostly functional (above) and mostly non-functional
(below). Numbers tell how many requirements were found in each category.

some kind of encryption of data communication and only two specifications
had requirements on restricted physical access.

Our hypothesis was that the specifications had not been preceded by
risk analyzes. Such analyzes should have identified a greater variety of
threats against important assets, and thus resulted in more consistent re-
quirements.



5. Interviews

4.3 Heavy Trust in Local Heroes

Some security requirements had a high level of detail whereas others in
the same specification were only specified on a general level. This might
indicate that the organizations specifying the security requirements relied
heavily on local competence and not standards. Such local competence
tends to be strong in certain areas and weak in others. We call this the
local heroes phenomenon.

Such inconsistent levels of detail could for instance be seen in the “E-
Business” system where the requirements on logging were very detailed
(eight requirements on what info to be logged) and at the same time digital
signatures were specified as “The system should be able to handle the use
of electronic signatures” with no further details.

Our hypothesis was that the studied organizations had relied heavily
on local heroes.

4.4 Systems Insecure

Considering the three previous hypotheses we arrived at an overall hypoth-
esis that the delivered systems were insecure, and that this had manifested
itself as security flaws and insecure operation.

5 Interviews

To verify our hypotheses we conducted interviews with the customers be-
hind three of the requirements specifications, namely Health Care 1, High-
way Tolls, and Medical Advice. Before we present the actual interviews we
describe our methodology, scope, and potential shortcomings.

5.1 Methodology and Scope

We conducted oral, open-question interviews with the customer project
leaders. The interviews lasted 1-2 hours and were recorded and transcribed
(approximately 30 pages of text per interview) to allow for an accurate,
qualitative analysis. We chose to interview the project leaders since they
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had a good overview of the requirements process, of the systems and of
relations with the producers.

The three systems were chosen specifically because they were all security
and privacy critical, they were fairly large, and they represented three inter-
esting categories—a standard system with configuration (Health Care 1),
a combination of standard components and development (Highway Tolls),
and one system completely built from scratch (Medical Advice). Further,
these systems had some of the best security requirements in the previous
study (in the case of the Highway Tolls system there were proper references
to security standards) which hopefully would work as an upper bound on
our analysis, i.e. the other systems were unlikely to show substantially
better results when verified against our hypotheses.

The systems were built by WM-data (Swedish company with 9.000 em-
ployees, now part of LogicaCMG), IBM, and Cap Gemini. We have chosen
not say which company delivered which system, and the customers asked
us not to publish man hours or code size since such figures were considered
business secrets.

5.2 Potential Shortcomings

We have based our studies on requirements specifications made for public
procurement in Sweden—a choice made primarily because of the availabil-
ity of them. Commercial entities tend to have little interest in making
their requirements specifications available for research. This limited scope
affects the validity of the study.

A potential problem was the project leaders’ technical competence but
apart from a few unanswered questions this was never an obstacle. The
interview analysis is qualitative and thus subject to the authors’ interpre-
tation. All customer quotes presented are translated by the authors.

5.3 Systems

Brief presentations of the systems studied:

Health Care 1 (Customer: Stockholm County Council). Integration plat-
form to support personal medical information following nearly two million
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patients between various health care organizations. This system is a stan-
dard system with only minor new development, and is maintained and run
by the producer.

Highway Tolls (Customer: Swedish Road Administration). Equipment,
software and services for handling environmental fees for all vehicles en-
tering the city of Stockholm. This system is a combination of standard
components and new development, and is maintained and run by the pro-
ducer.

Medical Advice (Customer: The Federation of County Councils). System
for managing medical advice by phone on a national level. It handles
redirection of calls, queue management, work-flow management, medical
documentation, and statistics. This system was built from scratch for the
customer, and is maintained and run by the producer.

5.4 Interview Health Care 1 System

Outcome of the interview with the Health Care 1 project leaders:

Security a critical requirement. The customer considers security to
be a critical factor in the system since it contains patient information. A
general risk analysis was used to drive parts of the requirements elicitation
process, but no specific focus was put on security risks according to what
the customer remembers.

Security logs checked by producer. The logs are managed by the
producer and any incidents are discussed on a monthly meeting. Since
the producer owns the auditing process we asked the customer if they had
confidence in the producer telling them of incidents—”We think so. That’s
a question of conscience!” But what if the producer detects a vulnerability,
patches it, but never investigates if the vulnerability was ever exploited?
“That’s not unlikely. But we’re going to hire a security manager that will
perform audits of security maintenance.”

Security management standard not implemented. The requirements
specification referred to the ISO/IEC 17799 standard for security manage-
ment [77] but the customer admits it has not been implemented yet—
“Unfortunately I don’t think so.”
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Vague requirement on separation. Regarding confidentiality the spec-
ification stated that “It should be possible to separate different types of
information both logically and in terms of security.” When asked if they
have a clear picture of what was meant the customer replied “No ... Surely,
that requirement must have sparked a lot of questions. But I would imagine
it refers to privacy categorization of patient information.”

Vague requirement on encryption. The health care system was re-
quired to “... have functions for protecting the information in the database,
for instance through encryption.” The customer did not specify what kind
of encryption or even that it has to be a standard cryptographic algorithm.
So we asked if standard encryption was delivered—“Yes, I think so. They’ve
been talking ... a lot of three letter abbreviations ... It’s ongoing. We had
a lot of discussions regarding this and it became an issue of negotiation in
the end.” Here the producer covered up for a poorly specified requirement.

Local heroes phenomenon confirmed. Contrary to the vague specifi-
cation on encryption the customer had requirements on input and output
validation which must be considered being on a low technical level. When
asked if this was a manifestation of the local heroes phenomenon they
replied “Yes, I think so. We know their names too.”

Automatic recovery requirement not fulfilled. The specification con-
tained a requirement on automatic recovery—“The system should automat-
ically handle errors and restart functions and processes.” The customer ad-
mitted that the requirement was vague, and utterly impossible to fulfill if
all errors were to be handled automatically. But an incident with a faulty
load balancer had revealed that the requirement was not even fulfilled to a
basic level. The system had gone down and not restarted.

Need for specific handling of protected identities unfulfilled. Af-
ter delivery the customer had realized that the system lacked support for
handling personal information for patients with protected identities. They
considered this a severe flaw. The privacy of such patients introduces a
whole new dimension to access control and to date it is not clear if and
how such functionality can be introduced.

Summary. The customer feels that the producer of the health care system
is mature and has fulfilled most of the fairly well specified security require-
ments. Vague requirements have been costly both in terms of money and
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time. The lack of support for handling personal information for patients
with protected identities is a clear case of a domain-specific need not spec-
ified as a requirement by the customer and not fulfilled by the producer.

5.5 Interview Highway Tolls System

Outcome of the interview with the Highway Tolls project leader:

Security requirements very high. The customer considers the“security
requirements very high” for the highway toll system, and thus a risk anal-
ysis has been performed both before initial release and during the current
development iteration.

Logging features missing. The system logs are continuously checked
but “there are deficiencies”. The deficiency turned out to be a disability
to log what information is accessed in the system—only modifications are
logged. This means that employees could violate both confidentiality (e.g.
checking when and where cash transports leave and enter the city) and
privacy (e.g. systematically checking people’s movements in the city area)
without being noticed.

The customer considers this a serious flaw due to an incomplete re-
quirements specification and risk analysis. It was clearly a domain-specific
need and if the customer had the chance to re-write the requirements they
say they would have hired third-party experts to identify such needs and
specify them as requirements.

Security incident despite penetration testing. No penetration testing
was explicitly required but was performed by the producer anyway, which is
a clear case of over-delivery. The pentest reported an insecurely configured
server within the system. But the server was never reconfigured and was
later successfully abused in a spam attack. Apart from that the customer
does not know of any security incidents, but they are “... not sure the
maintainer tells us everything”.

Security management standard implemented. The requirements
specification referred to the ISO/IEC 17799 standard for security man-
agement [77] and the customer feels it has been implemented.

Fraud analysis requirement forgotten. The customer required a holis-
tic risk analysis of potential frauds but does not recall that such an analysis
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has been done. We asked if they did not know they had required a fraud
analysis and customer responded “No, that seems to be the truth”.

Summary. The customer feels that the producer of the highway toll sys-
tem is mature and has fulfilled some of their unspecified needs, i.e.needs
not part of the requirements specification. Despite this, security problems
have surfaced (e.g. logging), mostly due to unspecified security and privacy
needs understood or noted by the producer.

5.6 Interview Medical Advice System

Outcome of the interview with the Medical Advice project leader:

Security requirements high. The customer considers the security re-
quirements high “since the system handles medical records”. Several laws
restrict the handling of such information. Despite this, no risk analysis
was performed. Instead the customer relied on in-house experience and
competence.

Log analysis process undefined. The specification contains five differ-
ent requirements on logging. But when asked about processes and routines
for checking the logs the customer replied “We don’t know. That aspect is
not taken care of.” It might be that the producer checks the logs—“Perhaps.
We hope so.” When asked if the producer knows what security and privacy
issues to check for in the logs the customer replied “To be honest, I don’t
think we’ve discussed such security processes. But I expect the producers
to tell us if something happens.”

Protection of logs forgotten. The specifications contained a require-
ment stating that “... the logs shall be protected against manipulation.”
When asked if this requirement has been met the customer replied they “...
don’t have a clue”.

Vague logging requirement. The specification said that “... sensitive
information shall be logged and protected from manipulation.” What ’sen-
sitive information’ means is never specified. The customer agrees “... that
the requirement is vague. It has been made more concrete during project
iterations.” But such iterative refinements can “... become a time and
money discussion” according to the customer.
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No known security incidents. We asked the customer if they have had
any security incidents so far—“No, I don’t think so.”

Deliberately no security standard. In the customer’s view it was valid
to specify the security requirements without using security standards. One
person, admittedly a local hero, was responsible for security—“He has not
brought up standards as a possibility. He knows standards and legislations
and thus I believe he processed the issue himself and chose not to point
toward standards.” But when the lack of requirements on physical security
(fire, theft etc.) was brought up, the customer admitted that some security
issues have been overlooked. “If we would have had a standard those areas
would have been covered.” To integrate standards into the requirements
the customer says they would have needed help from a third party.

No security testing. No security tests apart from stress testing of avail-
ability were required or performed. “But it would have been nice” the
customer commented.

Summary. The customer admits that proper measures to ensure secu-
rity and privacy in the system have not been taken. Questions regarding
processes for continuous log analysis revealed that such aspects had not
been thought of before, and that the privacy needs had not been properly
specified as requirements. The firm belief in their local hero had obvious
disadvantages.

5.7 Results on General Security Requirements

In all cases the customers have had higher security and privacy needs than
their requirements specifications reflected. They have relied heavily on
their producers to handle technical security. In cases where security re-
quirements were specified they were often vague or incomplete, which had
led to negotiations and minor disputes. Also worth noting is that all three
customers had security requirements that were either not implemented by
the producers or forgotten by themselves. Despite this, the customers were
mostly satisfied with the general security of the delivered systems.
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5.8 Results on Domain-Specific Security Require-
ments

In all three cases the customers have had problems with domain-specific
privacy concerns:

• Health Care 1: No support for handling patients with protected iden-
tities.

• Highway Tolls: No logging of accesses to privacy sensitive vehicle
data.

• Medical Advice: No process for checking or protecting security logs
although the system handles privacy sensitive patient data.

Part of their privacy needs were not expressed as requirements and were
not fulfilled by the producers. Our impression was that the customers had
not realized in what ways the systems could viola te privacy until after
delivery.

6 Discussion

According to our own experience, effective methods and so called “best
practices” for software security are more and more becoming part of gen-
eral software engineering expertise. Therefore, relying on the producers
to deliver security despite vague or left-out requirements is not all bad.
Besides, some security requirements can be fulfilled with commercial off-
the-shelf products engineered by security specialized vendors, in which case
the customer most likely gets much more security features than specified.

In two of the three cases (Health Care 1 and Highway Tolls) the pro-
ducers delivered more security than required by the specifications. We call
this phenomenon over-delivery. When asked about over-delivery, the cus-
tomers said that the producers were “mature” and did not want to deliver
an insecure system. But the customers raised doubts as to whether some
over-delivered parts, such as documentation and defined processes, were
actually considered intellectual property of the producers. In the third case
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Customer

Expertise

Producer Expertise

Needs specified

and fulfilled

Needs not specified

but fulfilled

Needs not specified

and not fulfilled

Needs specified

but not fulfilled

Figure 1: Quadrant diagram visualizing the separation between customer
and producer expertise, and its consequences for customer needs. When
producer and customer understand each other they end up in quadrant one
(north east). When a certain need is not specified as a requirement by the
customer and not noted by the producer they end up in quadrant three
(south west).

(Medical Advice) the customer often had had to re-negotiate to compensate
for poor initial requirements.

All three customers had had problems with domain-specific privacy con-
cerns, and the nature of the problems suggests that privacy needs are es-
pecially prone to being domain-specific. The customers themselves did not
know they had such needs or did not realize in what ways the systems
could violate privacy. Contrary to unspecified but more technical security
needs, the producers did not over-deliver. A reasonable explanation for this
would be that the producers did not know there were such needs within
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the domains the systems were being built for.
We tried to visualize the separation of domain knowledge and its conse-

quences in terms of fulfilled and unfulfilled needs in a quadrant diagram (see
Figure 1). The customers agreed that this was a relevant model of reality
and that they had experience from all four quadrants in the projects.

6.1 Verification of Hypotheses

Our hypotheses (see Section 4) were verified against the interview outcome:

• Security requirements incomplete. All three customers admitted
that their requirements specifications contained vague, inconsistent
and incomplete security requirements.

• Risk analyzes performed. Two of the systems had performed
at least some kind of risk analysis (unspecified which kind). Thus
the poorly specified requirements were not clearly due to lack of risk
assessment.

• Local heroes phenomenon confirmed. All three customers had
relied heavily on so called local heroes and could actually name them.
Nevertheless, there was an understanding that third-party consul-
tants would probably have mitigated the problems with vague and
unspecified needs.

• Systems partly insecure. Only one of the systems had had a
known security incident, but none of the customers had a defined
process for investigating if any security incidents occurred. Two of
the systems had serious privacy flaws that had to be fixed in future
versions.

6.2 Validation Against Maintainability Requirements

We conducted a parallel study on another non-functional requirement cat-
egory, namely maintainability. The full results of that study is still to be
published, but the material allowed us to do a comparative validation of
our results on security and privacy requirements.
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Customer

Expertise

Producer Expertise

Maintainability

Security

Privacy

Figure 2: Quadrant diagram visualizing producer expertise within three
non-functional requirements categories. Producers typically fulfill unspec-
ified maintainability needs but not unspecified privacy needs.

Compared to security there seems to be a much higher degree of over-
delivery in maintainability. One of the reasons for this is that maintain-
ability requirements such as system documentation, regression test suits,
and coding standards typically are general, i.e. not specific to the cus-
tomer domain. Therefore they are part of the producer expertise and is
a potential candidate for over-delivery—a mature producer doesn’t skip
documentation just because the customer failed to require it.

We can place the three non-functional requirements categories in an-
other quadrant diagram (see Figure 2). Maintainability needs are part of
general software engineering, (technical) security needs are more and more
becoming part of software engineering, whereas privacy needs do not seem
to be part of the software engineering domain yet.
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7 Related Work

Several research studies have investigated security and privacy requirements
(presented below). Unfortunately most of them treat the underlying prob-
lem as based on experience or as anecdotal. We hope to fill that gap, but
our studies are of course related.

Alderson discusses the fact that vague or underspecified requirements
(defined by him as false requirements) often express real customer needs
[85]. His findings support that requirements specifications often leave out
or fail to properly specify customer needs.

Anderson gives an example where a British bank system did not log
customer address changes and a clerk abused the system by changing a
chosen customer’s address to her own, issuing a new ATM card and PIN,
and then changing the address back [86]. This was possible since the bank’s
clerks had privileges to change both customer addresses and issue new ATM
cards. A risk analysis would have had to include people with domain-
specific knowledge of privileges and procedures at the bank to detect this
security threat.

McDermott and Fox note that the security engineering process is com-
plex and hard to understand even for skilled software engineers [87]. As
an example they mention theoretical models for RBAC. This supports our
conclusion that domain-specific needs will not be covered by software en-
gineers even though they are skilled and have the best intentions.

Alexander shows by example that complex requirements problems can
only be solved by the “combined domain knowledge and skill of the stake-
holders” [88]. This pinpoints the fact that only the combination of various
domain expertises can cover all the customer needs and formulate them as
requirements.

Firesmith, Sindre, and Opdahl have shown that security and privacy
requirements are often similar or exactly the same across various systems,
at least when compared on an abstract, goal-oriented level [89, 90, 91].
This suggests that typical security requirements can be listed and reused
in future projects (potentially in a refined form). To prove their point they
provide examples of such reusable requirements.

Firesmith et al’s results potentially conflict with ours since they seem-
ingly suggest that there are no domain-specific security or privacy require-
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ments. But, as they note themselves, careful elicitation is necessary to be
able to choose among the reusable requirements. And as mentioned, their
reusable requirements are all on an abstract, goal-oriented level, and thus
need to be refined to comply with the customer’s domain-specific needs.

Liu, Yu, Mylopoulos, and Cysnerios have presented a framework for
modeling security and privacy requirements using the agent-oriented i*
language [92, 93, 94]. Traditionally, i* iteratively models actors, actor
goals, and actor dependencies. In the context of security and privacy they
add models of the counterpart, i.e. attackers, attacker goals, vulnerabilities,
and countermeasures.

Use cases, introduced by Jacobson [95], have been used to model (mostly
functional) requirements for long, for instance within RUP [96]. But
security and privacy are often conceived as non-functional requirements
[70, 71, 72, 73] and therefore not suited for use cases [97]. To elicit such
requirements McDermott and Fox proposed abuse cases, which model in-
teractions between systems and one or more actors, where the results of
the interactions are harmful to systems, actors, or system stakeholders [87].
Very similar to abuse cases are misuse cases [88, 98, 97], abuse frames [99],
and anti-requirements [100]. Since abuse/misuse cases identify and model
threats they have much in common with threat modeling [101]. But threat
modeling involves analysis of data flow and is therefore typically carried
out later when there is a high-level design of the system.

8 Conclusions

Current practice in security requirements is in many ways poor. Customers
tend to rely on local competence to specify security and privacy require-
ments, and tend to rely on the software producers to cover up for unspecified
requirements.

Mature software producers seem to cover up fairly well for unspecified
requirements that are part of the general software engineering domain. But
our in-depth interviews with customer representatives show a severe impact
of neglecting the specifics of the customer domain in eliciting security and
privacy requirements. Unspecified requirements specific to the customer
domain are unlikely be fulfilled by software engineers even though the en-
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gineers are skilled and have the best intentions.
According to our results, privacy requirements seem especially prone

to being domain-specific. All three customers we interviewed had privacy
needs that were never specified as requirements and never fulfilled by their
producers. Customers need to cooperate with both producers and domain
experts such as security specialists to be able to identify their needs and
formulate them as requirements. Only the combination of various domain
expertises has the potential to cover all the customer needs. This cooper-
ation could be performed within the scope of risk analyzes.

9 Acknowledgments

We would like to sincerely thank the previewers of this paper and of course
our interview participants.





Paper C

87





A Comparison of Publicly Available Tools for Static
Intrusion Prevention. Published in the Proceedings of the
7th Nordic Workshop on Secure IT Systems, 2002. The layout
is modified.





91

A Comparison of Publicly

Available Tools for Static

Intrusion Prevention1

John Wilander and Mariam Kamkar

Dept. of Computer and Information Science
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Abstract

The size and complexity of today’s software systems is growing, increasing
the number of bugs and thus the possibility of security vulnerabilities. Two
common attacks against such vulnerabilities are buffer overflow and format
string attacks. In this paper we implement a testbed of 44 function calls
in C to empirically compare five publicly available tools for static analysis
aiming to stop these attacks. The results show very high rates of false
positives for the tools building on lexical analysis and very low rates of
true positives for the tools building on syntactical and semantical analysis.

Keywords: security intrusions, intrusion prevention, static analysis, secu-
rity testing, buffer overflow, format string attack

1 Introduction

As our software systems are growing larger and more complex the amount
of bugs increase. Many of these bugs constitute security vulnerabilities.

1This work has been supported by the national computer graduate school in computer
science (CUGS) commissioned by the Swedish government and the board of education.



1. Introduction

According to statistics from CERT Coordination Center at Carnegie Mellon
University the number of reported security vulnerabilities in software has
increased with nearly 500% in two years [102].

Now there is good news and bad news. The good news is that there
is lots of information out there on how these security vulnerabilities occur,
how the attacks against them work and most importantly how they can be
avoided. The bad news is that this information apparently does not lead
to less vulnerabilities. The same mistakes are made over and over again
which for instance is shown in the statistics for the infamous buffer overflow
vulnerability. David Wagner et al from University of California at Berkeley
show that buffer overflows alone stand for about 50% of the vulnerabilities
reported by CERT [5]. Equally dangerous is the format string vulnerability
which was publicly unknown until 2000.

In the middle of January 2002 the discussion about responsibility for
security intrusions took an interesting turn. The US National Academies
released a prepublication recommending policy-makers to create laws that
would hold companies accountable for security breaches resulting from vul-
nerable products [103] which got global media attention [104, 105]. So far,
only the intruder can be charged in court. In the future software com-
panies may be charged for not preventing intrusions. This stresses the
importance of helping software engineers to produce more secure software.
Automated development and testing tools aimed for security could be one
of the solutions for this growing problem.

A good starting point would be tools that can be applied directly to the
source code and solve or warn about security vulnerabilities. This means
trying to solve the problems in the implementation and testing phase. Ap-
plying security related methodologies throughout the whole development
cycle would most probably be more effective, but given the amount of ex-
isting software, the strive for modular design reusing software components,
and the time it would take to educate software engineers in secure analy-
sis and design, we argue that security tools trying to clean up vulnerable
source code are necessary. A further discussion on this issue can be found
in the January/February 2002 issue of IEEE Software [106].

In this paper we investigate the effectiveness of five publicly available
static intrusion prevention tools—namely the security testing tools ITS4,
Flawfinder, RATS, Splint and BOON. Our approach has been to first get
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an in-depth understanding of how buffer overflow and format string attacks
work and from this knowledge build up a testbed with identified security
bugs. We then make an empirical test with our testbed. This work is a
follow-up of John Wilander’s Master’s Thesis [107].

The rest of the paper is organized as follows. Section 2 describes process
memory management in UNIX and how buffer overflow and format string
attacks work. Here we define our testbed of 23 vulnerable functions in C.
Section 3 presents the concept of intrusion prevention and describes the
techniques used in the five analyzed tools. Section 4 presents our empiri-
cal comparison of the tools’ effectiveness against the previously described
vulnerabilities. Related work is presented in section 5. Finally section 6
contains our conclusions.

2 Attacks and Vulnerabilities

The analysis of intrusions in this paper concerns a subset of all violations
of security policies that would constitute a security intrusion according
definitions in for example the Internet Security Glossary [80]. In our context
an intrusion or a successful attack aims for changing the flow of control,
letting the attacker execute arbitrary code. Software security bugs, or
vulnerabilities, allowing these kind of intrusions are considered the worst
possible since “arbitrary code” often means starting a new shell. This shell
will have the same access rights to the system as the process attacked. If
the process had root access, so will the attacker in his or her new shell,
leaving the whole system open for any kind of manipulation.

2.1 Changing the Flow of Control

Changing the flow of control and executing arbitrary code involves two
steps for an attacker:

1. Injecting attack code or attack parameters into some memory struc-
ture (e.g. a buffer) of the vulnerable process.

2. Abusing some vulnerable function writing to memory of the process
to alter data that controls execution flow.



2. Attacks and Vulnerabilities

Attack code could mean assembly code for starting a shell (less than 100
bytes space will do) whereas attack parameters are used as input to code
already existing in the vulnerable process, for example using the parameter
"/bin/sh" as input to the system() library function would start a shell.

Our biggest concern is step two—redirecting control flow by writing to
memory. That is the hard part and the possibility of changing the flow of
control in this way is the most unlikely condition of the two to hold. The
possibility of injecting attack code or attack parameters is higher since it
does not necessarily have to violate any rules or restrictions of the program.

Changing flow of control is made by altering a code pointer. A code
pointer is basically a value which gives the program counter a new memory
address to start executing code at. If a code pointer can be made to point
to attack code the program is vulnerable. The most popular code pointer
to target is the return address on the stack. But programmer defined
function pointers, so called longjmp buffers, and the old base pointer are
equally effective targets of attack.

2.2 Buffer Overflow Attacks

Buffer overflow attacks are the most common security intrusion attack [5,
108] and has been extensively analyzed and described in several papers and
on-line documents [62, 109, 110, 111]. Buffers, wherever they are allocated
in memory, may be overflown with too much data if there is no check to
ensure that the data being written into the buffer actually fits there. When
too much data is written into a buffer the extra data will “spill over” into
the adjacent memory structure, effectively overwriting anything that was
stored there before. This can be abused to overwrite a code pointer and
change the flow of control.

The most common buffer overflow attack is shown in the simplified
example below. A local buffer allocated on the stack is overflown with
’A’s and eventually the return address is overwritten, in this case with the
address 0xbffff740.
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Local buffer AAAAAAAA

AAAAAAAA

Old base pointer AAAAAAAA

Return address 0xbffff740

Arguments Arguments

Figure 1: A buffer overflow overwriting the return address.

If an attacker can supply the input to the buffer he or she can design
the data to redirect the return address to his or her attack code.

2.3 Buffer Overflow Vulnerabilities

So how come there is no check whether the data fits into the destination
buffer? The problem is that several of ANSI C’s standard library functions
rely on the programmer to do the checking, which they often do not. Many
of these functions are powerful for handling strings and thus popular. More
secure versions have in some cases been implemented but are not always
known by programmers. There are lists of these dangerous C functions
often involved in published buffer overflows [112, 113, 69]. From these lists
we have chosen to take the fifteen functions considered most risky into our
testbed:

1. gets() 9. sprintf()

2. cuserid() 10. strcat()

3. scanf() 11. strcpy()

4. fscanf() 12. streadd()

5. sscanf() 13. strecpy()

6. vscanf() 14. vsprintf()

7. vsscanf() 15. strtrns()

8. vfscanf()

This list is not exhaustive but should provide useful test data for our
comparison of the tools.
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2.4 Format String Attacks

22nd of June 2000 the first format string attack was published [114]. Com-
ments in the exploit source code dates to the 15th of October 1999. Until
then this whole category of security bugs was publicly unknown. Since
then format string attacks have been acknowledged for being as dangerous
as buffer overflow attacks. They are described in an extensive article by
Team Teso [115] and also in a shorter article by Tim Newsham [116].

String functions in ANSI C often handle so called format strings. They
allow for dynamic composition or formatting of strings using conversion
specifications starting with the character % and ending with a conversion
specifier. Each conversion specification results in fetching zero or more
subsequent arguments.

Let’s say a part of a program looks like this:

void print_function_1(char *string) {

printf("%s", string); }

A call to print_func_1() would print the string argument passed. The
same functionality could (seemingly) be achieved with somewhat simpler
code:

void print_function_2(char *string) {

printf(string); }

Using the function argument string directly will still print the argu-
ment passed to print_function_2(). But what if we call print_func-
tion_2() with a string containing conversion specifications, for example
print_function_2("%d%d%d%d")? Then printf() will interpret the string
as a format string and in this case assume that there are four integers stored
on the stack and thus pop four times four bytes of stack memory and print
the values stored there. So if programmers take this shortcut when us-
ing format string functions, the possibility arises for an attacker to inject
conversion specifications that will be evaluated.

Now, considering the conversion specifier %n things get dangerous. %n

will cause the format string function to pop four bytes of the stack and
use that value as a memory pointer for storing the number of characters so
far in the format string (i.e. the number of characters before %n.). So by
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injecting a format string containing %n an attacker can write data into the
process’ memory.

If an attacker is able to provide the format string to a an ANSI C format
function in part or as a whole a format string vulnerability is present. By
combining the various conversion specifications and making use of the fact
that the format string itself is stored on the stack we can view and write
on arbitrary memory addresses.

2.5 Format String Vulnerabilities

While the scanf()-family is involved in numerous of buffer overflow ex-
ploits [117] the format string attacks published concern the printf()-
family of format string functions [115, 118]. For that reason our test only
concerns the latter subset of the ANSI C format functions. So we add an-
other eight function calls to our testbed (sprintf() and vsprintf() are
used differently here than in the buffer overflow case):

16. printf() 20. vprintf()

17. fprintf() 21. vfprintf()

18. sprintf() 22. vsprintf()

19. snprintf() 23. vsnprintf()

3 Intrusion Prevention

There are several ways of trying to prohibit intrusions. Halme and Bauer
present a taxonomy of anti-intrusion techniques called AINT [7] where
they define:

Intrusion prevention. Precludes or severely handicaps the likelihood of
a particular intrusion’s success.

We divide intrusion prevention into static intrusion prevention and dy-
namic intrusion prevention. In this section we will first describe the dif-
ferences between these two categories. Secondly, we describe five publicly
available tools for static intrusion prevention, describe shortly how they
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work, and in the end compare their effectiveness against vulnerabilities de-
scribed in section 2.2. This is not a complete survey of static intrusion
prevention tools, rather a subset with the following constraints:

• Tools used in the testing phase of the software.

• Tools that require no altering of source code to detect security vul-
nerabilities.

• Tools that are implemented and publicly available, not system specific
tools.

Our motivation for this is to evaluate and compare tools that could eas-
ily and quickly be introduced to software developers and increase software
quality from a security point of view.

3.1 Dynamic Intrusion Prevention

The dynamic or run-time intrusion prevention approach is to change the
run-time environment or system functionality making vulnerable programs
harmless or at least less vulnerable. This means that in an ordinary envi-
ronment the program would still be vulnerable (the security bugs are still
there) but in the new, more secure environment those same vulnerabilities
cannot be exploited in the same way—it protects known targets from at-
tacks. Their general weakness lies in the fact that the protection schemes
all depend on how bugs are known to be exploited today, but they do not
get rid of the actual bugs. Whenever an attacker has figured out a new at-
tack target reachable with the same security bug, these dynamic solutions
often stand defenseless. On the other hand they will be effective against
exploitation of any new bugs aiming for the same target.

3.2 Static Intrusion Prevention

Static intrusion prevention tries to prevent attacks by finding the secu-
rity vulnerabilities in the source code so that the programmer can remove
them. Removing all security bugs from a program is considered infeasi-
ble [28] which makes the static solution incomplete. Nevertheless, remov-
ing bugs known to be exploitable brings down the likelihood of successful
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attacks against all possible security targets in the software. Static intru-
sion prevention removes the attackers tools, the security bugs. The two
main drawbacks of this approach is that someone has to keep an updated
database over programming flaws to test for, and since the tools only detect
vulnerabilities the user has to know how to fix the problem once a warning
has been issued. In this paper we have chosen to focus on five publicly
available tools for static intrusion prevention.

3.3 ITS4

In late 2000 researchers at Reliable Software Technologies, now Cigital,
presented a static analysis tool for detecting security vulnerabilities in C
and C++ code—It’s the Software Stupid! Security Scanner or ITS4 for
short [113]. The tool does a lexical analysis building a token stream of
the code. Then the tokens are matched with known vulnerable functions
in a database. The reason for not performing a deeper analysis with the
help of syntactic analysis (parsing) is that such an analysis cannot be made
on the fly during programming. ITS4 is built to give developers support
while coding, highlighting potential security problems as they are written.
Parsing also suffers from being build dependent, not always covering the
whole source code because of pre-processor conditionals.

When writing their paper the vulnerability database contained 131 po-
tential vulnerabilities including problems with race conditions (not included
in this paper, for reference see article by Bishop and Dilger [119]) and
buffer overflows. Pseudo random functions are also considered risky since
they’re often used wrongly in security-critical applications. An entry in the
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database consists of:

• A brief description of the problem

• A high-level description of how to code around the problem.

• A grading of the vulnerability on the scale NO_RISK, LOW_RISK,
MODERATE_RISK, RISKY, VERY_RISKY, MOST_RISKY.

• An indication of what type of analysis to perform whenever the func-
tion is found.

• Whether or not the function can retrieve input from an external
source such as a file or a network connection.

ITS4 has a modular design which allows for integration in various devel-
opment environments by replacing its front-end or back-end. In fact that
was one of the design goals for ITS4. For the moment it only supports
integration with GNU Emacs.

The ITS4 security tool is available for download on the Internet.
http://www.cigital.com/its4/

3.4 Flawfinder and Rats

Two new security testing tools where released in May 2001—Flawfinder
developed by David A. Wheeler [120] and Rough Auditing Tool for Security
(RATS) developed by Secure Software Solutions [121]. They both scan
source code on the lexical level, searching for security bugs. Their solutions
are very similar to ITS4. When it was noticed that the two teams where
developing similar tools they decided on a common release date and on
trying to combine the two tools into one in the future.

Just as ITS4 Flawfinder works by using a built-in database of C/C++
functions with well-known problems, such as buffer overflow risks, format
string problems, race conditions, and more. The tool produces a list of
potential vulnerabilities sorted by risk. This risk level depends not only on
the function, but on the values of the parameters of the function. For ex-
ample, constant strings are considered less risky than fully variable strings.
The Flawfinder 0.19 vulnerability database contains 55 C security bugs.
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RATS scans not only C and C++ code but also Perl, PHP and Python
source code and flags common security bugs such as buffer overflows and
race conditions. Just as Flawfinder and ITS4, RATS has a database of
vulnerabilities and sorts found security bugs by risk. The RATS 1.3 vul-
nerability database contains 102 C security bugs.

Both these security testing tools are invoked from a shell with source
code as input. They traverse the code and produce output with risk grading
and short descriptions of the potential problems.

The security tools Flawfinder and RATS are available for download on
the Internet.

http://www.dwheeler.com/flawfinder/

http://www.securesw.com/rats/

3.5 Splint

The next static analysis tool we describe is LCLint implemented by David
Evans et al [122, 123]. The name and some of its functionality originates
from a popular static analysis tool for C called Lint released in the seventies
[124]. LCLint has later been enhanced to search for security specific bugs
[28] and the first of January 2002 LCLint got the name Secure Programming
Lint or Splint for short.

The Splint approach is to use programmer provided semantic comments,
so called annotations, to perform static analysis on the syntactic level,
making use of the program’s parse tree. This means that the tool has a
much better chance of differentiating between correct and incorrect use of
functions than the tools working on the lexical level.

The annotations specify function constraints in the program—what a
function requires and ensures. Here is a simplified example from the anno-
tated library standard.h in the Splint package:

char *strcpy (char *s1, char *s2)

/*@requires maxSet(s1) >= maxRead(s2) @*/

/*@ensures maxRead(s1) == maxRead (s2) @*/

The requires clause specifies that buffer s1 must be big enough to
hold all characters readable from buffer s2. The ensures clause says that,
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upon return, the length of buffer s1 is equal to the length of buffer s2. If
a program contains a call to strcpy() with a destination buffer s1 smaller
than the source buffer s2, a buffer overflow vulnerability is present and
Splint should report the bug.

To detect bugs the constraints in the annotations have to be resolved.
Low level constraints are first generated at the subexpression level (i.e. they
are not defined by annotations). Then statement constraints are generated
by cojoining these subexpression constraints, assuming that two different
subexpressions cannot change the same data. The generated constraints
are then matched with the annotated constraints to determine if the latter
hold. If they do not Splint issues a warning.

Note that we will not add any annotations to our test source code since
that would be a violation of the second testing constraint defined in section
3. We rely fully on Splint’s annotated libraries to make a fair comparison.

The Splint security tool is available for download on the Internet.
http://www.splint.org/

3.6 BOON

David Wagner et al presented a tool in 2000 describing aiming for detecting
buffer overflow vulnerabilities in C code [5]. In July 2002 their tool, or
rather working prototype, was publicly released under the name BOON
which stands for Buffer Overrun detectiON. Under the assumption that
most buffer overflows are in string buffers they model string variables (i.e.
the string buffers) as two properties—the allocated size, and the number
of bytes currently in use. Then all string functions are modeled in terms of
their effects on these two properties of the string variable. The constraints
are solved and matched to detect inconsistencies similarly to Splint.

Before analyzing the source code you have to use the C preprocessor on
it to expand all macros and #include’s. Then BOON parses the code and
reports any detected vulnerabilities as belonging to one of three categories,
namely “Almost certainly a buffer overflow”, “Possibly a buffer overflow”
and “Slight chance of a buffer overflow”. The user needs to go check the
source code by hand and see whether it is a real buffer overflow or not.
Note that BOON does not detect format string vulnerabilities and is thus
not tested for that.
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The BOON security tool is available for download on the Internet.
http://www.cs.berkeley.edu/~daw/boon/

3.7 Other Static Solutions

There are several other approaches to static intrusion prevention. The
area connects to general software testing which provides a broad range of
potential methodologies.

A tool yet to be published is Czech by Jose Nazario [125]. Czech is a C
source code checking tool that will do full out static analysis and variable
tainting.

Software Fault Injection

A technique originally used in hardware testing called fault injection has
also been used to find errors in software [126]. This has been used for
security testing. By injecting faults, the system being tested is forced into
an anomalous state during execution and the effects on system security is
observed and evaluated.

Anup Ghosh et al implemented a prototype tool called Fault Injection
Security Tool, or FIST for short [127]. The tool shows promising results
but preparations of the source code have to be made by hand which means
that the process is not automated. Also FIST is not available for download
so we have excluded it from our analysis.

Also Wenliang Du and Aditya Mathur have done research on software
fault injection for security testing [128]. They inject faults from the environ-
ment of the application, i.e. anomalous user input, erroneous environment
variables and so on. In their paper they describe a methodology not yet
implemented. Therefore their approach is not part of our analysis.

Constraint-Based Testing

Umesh Shankar et al from University of California at Berkeley present an
interesting solution to finding format string vulnerabilities [129]. They add
a new C type qualifier called tainted to tag data that has originated from
an untrustworthy source. Then they set up typing rules so that tainted
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data will be propagated, keeping its tag. If tainted data is used as a format
string the tester is warned of the possible vulnerability. Sadly, we did not
manage to get their tool to report any vulnerabilities with the supplied
annotated library functions.

4 Comparison of Static Intrusion Prevention
Tools

Our testbed contains 20 vulnerable functions chosen from ITS4’s vulnera-
bility database (category RISKY to MOST_RISKY), Secure programming for
Linux and UNIX HOWTO [112], and the whole [fvsn]printf()-family
(see section 2.3 and 2.5 for a complete list). We do not claim that this test
suite is perfectly fair, nor complete. But the sources from where we have
chosen the vulnerabilities seem reasonable and the test result will at least
provide us with an interesting comparison. Our 20 vulnerable functions
are used in 13 safe buffer writings, 15 unsafe buffer writings, 8 safe format
string calls and 8 unsafe format string calls, in total 44 function calls. We
did not go into complex constructs to implement the safe function calls,
rather a straight forward solution. An example of the difference between
safe and unsafe calls is shown below:

char buffer[BUFSIZE];

if(strlen(input_string)<BUFSIZE)

strcpy(buffer, input_string); /* Safe */

strcpy(buffer, input_string); /* Unsafe */

Overall results from our tests is presented in table 1 and detailed results
are presented in table 2. The source code in short form can be found in
Appendix A. The exact source code and the print-outs from the various
testing tools can be found on our homepage:

http://www.ida.liu.se/~johwi
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Flawf. ITS4 RATS Splint BOON *

True Positives 22 (96%) 21 (91%) 19 (83%) 7 (30%) 4 (27%)

False Positives 15 (71%) 11 (52%) 14 (67%) 4 (19%) 4 (31%)

True Negatives 6 (29%) 10 (48%) 7 (33%) 17 (81%) 9 (69%)

False Negatives 1 (4%) 2 (9%) 4 (17%) 16 (70%) 11 (73%)

Table 1: Overall effectiveness and accuracy of static intrusion prevention.
“Positive” means a warning was issued, “Negative” means no warning was
issued. In total 44 function calls, 23 unsafe and 21 safe. * BOON only
tested with buffer overflow vulnerabilities.

4.1 Observations and Conclusions

As you would think all three lexical testing tools ITS4, Flawfinder and
RATS, perform about the same on the true positive side. After all, a great
part of our tested vulnerabilities where found in their databases or in pub-
lications connected to them, as stated before. But they differ considerably
on the false positives where ITS4 is best.

For security aware programmers with knowledge of how buffer overflow
and format string attacks work these tools can be very helpful. They will
most probably get minor testing output, be able to sort out what is im-
portant and most importantly know how to solve the reported problems.
For less experienced programmers the output might be too large and since
the tools give no instructions on how to solve the problems they will need
some other form of help.

Quite interesting is that Splint and BOON finds so few bugs. We con-
tacted Splint author David Larochelle concerning this and he responded
that the undetected bugs where not considered a serious threat since they
are known to the security community and easily found with the UNIX com-
mand grep. We disagree with him—why not detect as many security bugs
as possible? And why not help the developers that are not aware of the
security vulnerabilities coming from misuse of several C functions?

Splint is the only tool that can distinguish between safe and unsafe calls
to strcat() and strcpy(). This implicates that Splint has a good possi-
bility to accurately detect security bugs with a low rate of false positives,
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Vulnerable Flawf. ITS4 RATS Splint BOON
Function T F T F T F T F T F

gets() 1 - 1 - 1 - 1 - 1 -

scanf() 1 0 1 0 1 1 0 0 0 0

fscanf() 1 0 1 0 1 1 0 0 0 0

sscanf() 1 0 1 0 1 1 0 0 0 0

vscanf() 1 0 1 0 1 1 0 0 0 0

vsscanf() 1 0 1 0 1 1 0 0 0 0

vfscanf() 1 0 1 0 1 1 0 0 0 0

cuserid() 0 - 1 - 1 - 0 - 0 -

sprintf() 1 1 1 0 1 1 0 0 1 1

strcat() 1 1 1 1 1 1 1 0 1 1

strcpy() 1 1 1 1 1 1 1 0 1 1

streadd() 1 1 1 1 1 0 0 0 0 0

strecpy() 1 1 1 1 1 0 0 0 0 0

vsprintf() 1 1 1 0 1 1 1 1 0 0

strtrns() 1 1 1 1 1 0 0 0 0 0

printf() 1 1 1 1 1 1 1 1 - -

fprintf() 1 1 1 1 1 1 1 1 - -

sprintf() 1 1 1 1 1 1 1 1 - -

snprintf() 1 1 1 1 0 0 0 0 - -

vprintf() 1 1 0 0 0 0 0 0 - -

vfprintf() 1 1 0 0 0 0 0 0 - -

vsprintf() 1 1 1 1 1 1 0 0 - -

vsnprintf() 1 1 1 1 0 0 0 0 - -

Table 2: Detailed effectiveness and accuracy of intrusion prevention. T = 1
means an unsafe call was found (a true positive), F = 1 means a safe
function call was deemed unsafe (a false positive). “-” means no such test
is possible.

just as you would think considering its deeper analysis of the code.

The general feeling we get after running the constraint-based testing
tools is that they are still in some kind of a prototype state. Splint has
been around under the name LCLint for some time and is used for general
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syntactical and semantical testing. But the security part needs to be com-
pleted. BOON is published as a prototype and should of course be judged
as such.

None of the tools has high enough true positives combined with low
enough false positives. Our conclusion is that none of them can really give
the programmer peace of mind. And combining their output would be
tedious.

5 Related Work

We have found one comparative study made of static intrusion prevention
tools—”Source Code Scanners for Better Code” [130] by Jose Nazario. He
compares the result from ITS4, Flawfinder and RATS when testing a part
of the source code for OpenLDAP known to be vulnerable. It only contains
one call to one of our 23 vulnerable functions—vsprintf(). No test for
false positives is done either.

A study with another focus but relating to ours is “A Comparison of
Static Analysis and Fault Injection Techniques for Developing Robust Sys-
tem Services” by Broadwell and Ong [131]. They investigate the strengths
of static analysis versus software fault injection in finding errors in several
large software packages such as Apache and MySQL. In static analysis they
use ITS4 to find race conditions and BOON to find buffer overflows.

6 Conclusions

We have shown that the current state of static intrusion prevention tools
is not satisfying. Tools building on lexical analysis produce too many false
positives leading to manual work, and tools building on deeper analysis on
syntactical and semantical level produce too many false negatives leading
to security risks. Thus the main usage for these tools would be as sup-
port during development and code auditing, not as a substitute for manual
debugging and testing.
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Modeling and Visualizing Security Properties of Code
using Dependence Graphs. Published in the Proceedings
of the Fifth Conference on Software Engineering Research and
Practice in Sweden, 2005. The layout is modified.

Errata. During the defense of John Wilander’s licentiate thesis
the opponent Dr. Andrei Sabelfeld pointed out an erroneous
statement in this paper. In Section 4.1 it is stated that “...
correct input validation is both a liveness property (...) and a
safety property.” This is not true. Correct input validation is
solely a safety property since execution can be halted before a
sensitive use of unvalidated input.
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Modeling and Visualizing

Security Properties of Code

using Dependence Graphs1

John Wilander
Dept. of Computer and Information Science

Linköpings universitet
johwi@ida.liu.se

Abstract

In this paper we discuss the problem of modeling security properties, in-
cluding what we call the dual modeling problem, and ranking of potential
vulnerabilities. The discussion is based on the results of a brief survey of
eight existing static analysis tools and our own experience. We propose
dependence graphs decorated with type and range information as a generic
way of modeling security properties of code. These models can be used
to characterize both good and bad programming practice as shown by our
examples. They can also be used to visually explain code properties to
the programmer. Finally, they can be used for pattern matching in static
security analysis of code.

Keywords: security properties; dependence graphs; static analysis

1 Introduction

According to statistics from CERT Coordination Center, CERT/CC, in
year 2004 more than ten new security vulnerabilities were reported per
day in commercial and open source software [67]. In addition, the 2004 E-
Crime Watch Survey respondents say that e-crime cost their organizations

1This work has been supported by the national computer graduate school in computer
science (CUGS) commissioned by the Swedish government and the board of education.



1. Introduction

approximately $666 million in 2003 [68]. One way of countermeasuring
these problems is using security tools to find the vulnerabilities already
during software development.

In recent years a lot of research has been done in the field of static
analysis for security testing. This research has resulted in several tools
and prototypes based on various techniques, models and user involvement.
Some of them are publicly available, some are not.

In November 2002 we published a comparative study of five tools pub-
licly available at the time [132]. We used micro benchmarks and our study
showed that tools performing lexical analysis produced a lot of false posi-
tives (52% to 71%), while syntactical and semantical analysis had problems
with too many false negatives (70% to 73%). The latter mainly due to poor
vulnerability databases, not the underlying techniques.

Since then many more tools have been developed. Although the research
behind these tools and prototypes is often excellent and the empirical re-
sults are promising, it is not evident if and how the techniques can be
combined to solve several security problems at once. They all focus on one
or two categories of security properties each and make use of quite differ-
ent system models, methods of analysis, and also require different amounts
of user or programmer involvement. Further, to our knowledge there is
no thorough study of the problems in modeling security properties that
underlie static analysis.

1.1 Paper Overview

In Section 2 we present related work by doing a brief survey of eight existing
static analysis tools performing syntactical and semantical static analysis
to check security properties. A summary defines the problems we want to
solve.

Graph models of security properties in code as a mean for visual com-
munication with programmers is discussed in Section 3. Section 4 provides
a definition and discussion of the dual modeling problem in the context of
security properties in code. Criteria for severity ranking of security vulner-
abilities are listed in Section 5.

In Section 6 we propose a generic modeling formalism for code secu-
rity properties covering control-flow, data-flow, type and range informa-
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tion. Models of two security vulnerability types—integer flaws and double
free() are explained in Section 7 and serve as examples of how the mod-
eling formalism can be used.

Sections 8 and 9 discuss future work and provide our conclusions.

2 Survey of Static Analysis Tools

Static analysis tools try to prevent attacks by finding the security vulner-
abilities in the source code so that the programmer can remove them.

The two main drawbacks of this approach is that someone has to keep
an updated database over programming flaws to test for, and since the tools
only detect vulnerabilities the user has to know how to fix the problem. This
paper tries to address these two drawbacks by proposing a way to model
security properties of code that allows for both effective static analysis and
visual communication with the programmer.

Several tools perform a deep analysis on a syntactical and semantical
level. We have found eight such tools, all analyzing C code—Splint, BOON,
CQual, Metal/xgcc, MOPS, IPSSA, Mjolnir, and Eau Claire. As some of
these tools are still being developed and some are not even available as
prototypes we do not know to what extent they are used in practice.

2.1 Splint

Secure Programming Lint or Splint was implemented by David Larochelle
and David Evans [28].

Their approach is to use programmer provided semantic comments, so
called annotations, to perform static analysis, making use of the program’s
parse tree. The annotations specify function constraints in the program—
what a function requires and ensures.

Low level constraints are first generated at the subexpression level (i.e.
they are not defined by annotations). Then statement constraints are gen-
erated by co-joining these subexpression constraints, assuming that two
different subexpressions cannot change the same data. The generated con-
straints are then matched with the annotated constraints to determine if
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Table 1: Overview of static analysis tools checking C code for various
security properties (cont.). “Intra” and “Inter” = intra- or interprocedural
analysis, “Alias” = data aliasing, “Ptr” = pointer analysis, “Type” = type
and type conversion information, and “Annot” = code annotations.

Control-flow Data-flow Annot
Tool Intra Inter Intra Inter Alias Ptr Type
Splint x x x x
BOON x x
Cqual x x x x
MOPS x x
Metal/
xgcc

x x x x

IPSSA x x x x x x x
Mjolnir x x x x x
Eau
Claire

x x x x

the latter hold. Splint only performs intraprocedural data-flow analysis,
and the control-flow analysis is limited.

2.2 BOON

David Wagner et al presented Buffer Overrun detectiON, or BOON, aiming
for detection of buffer overflow vulnerabilities [5]. In July 2002 a prototype
was publicly released under the name . Under the assumption that most
buffer overflows are in string buffers they model string variables (i.e. the
string buffers) as abstract data types consisting of the allocated size and
the number of bytes currently in use. Then all string functions are modeled
in terms of their effects on these two properties. Analysis is carried out by
solving integer range constraints.

BOON reports any detected vulnerabilities as belonging to one of three
categories, namely “Almost certainly a buffer overflow”, “Possibly a buffer
overflow” and “Slight chance of a buffer overflow”.
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2.3 Cqual

The tool Cqual uses constraint-based type inference [133]. It traverses the
program’s abstract syntax tree and generates constraints that capture the
relations between type qualifiers. A solution to the constraints gives a
valid assignment of type qualifiers to the variables in the program. If the
constraints have no solution, then there is a potential bug.

Umesh Shankar et al have used Cqual to find format string vulnerabil-
ities [129]. They add a new C type qualifier called tainted to tag data that
has originated from an untrustworthy source (Cqual requires the user to
manually tag untrustworthy data sources). Then they set up typing rules
so that tainted data will be propagated, keeping its tag. If tainted data is
used as a format string the tester is warned.

The same tainted functionality was used by Chen et al to statically find
implicit type cast errors constituting security vulnerabilities [134]. Johnson
and Wagner are using Cqual to check for insecure pointer handling between
kernel and user-space in Linux [135].

2.4 Metal and xgcc

Ashcraft and Engler have done security research in the area of meta-level
compilation. With their compiler extension xgcc and extension language
Metal they have statically analyzed code for input validation errors on
integer variables [136]. C programs are modeled as control-flow graphs and
are analyzed path by path.

By formulating rules in Metal they check that integer values coming
from untrusted sources are bounds checked before they are used in any
sensitive function. The security bugs found are unvalidated integers used
in pointer arithmetic, and integer overflows. Memory management errors
(malloc()/free()) were also found but not substantially analyzed.

Potential bugs found are ranked by properties such as local vs global
scope, distance in lines of code, and non-aliased vs aliased variables.
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2.5 MOPS

Chen and Wagner have designed a static analysis tool called MOPS which
checks ordering constraints [51]. Some security bugs can be described in
terms of temporal safety properties. MOPS specifically checks dropping
of privileges and race conditions in file accesses. C programs are modeled
as push-down automata, and the security properties are modeled as finite
state automata. Security models can be combined into complex security
properties.

No data-flow, pointer, or aliasing analysis is done, which is justifiable
since only temporal properties are checked.

2.6 IPSSA

Livshits and Lam have defined and used an extended intermediate form for
finding buffer overflow and format string bugs [137]. Their program model
builds on static single assignment (SSA) form—an intermediate code rep-
resentation that separates values operated on from the locations they are
stored in which is very useful in for instance optimization [138]. The ex-
tension, called IPSSA, provides interprocedural definition-use information
with indirect memory accesses via pointers. It can then be used to perform
static analysis that handles pointer and aliasing analysis. Security prop-
erties are modeled using a “small special-purpose language designed for
the purpose”. While technical details of this special-purpose language are
lacking their empirical results are very promising, especially the low rate
of false positives. Their solution was chosen to be unsound for scalability
reasons.

2.7 Mjolnir

Weber et al have presented a tool called Mjolnir which makes use of depen-
dence graphs and constraint solving to find buffer overflows in C code [139].
They represent buffers with the same range variables used in BOON (see
Section 2.2), build system dependence graphs, decorate them with range
constraints based on the semantics of C string library functions, and finally
solve the constraint sets.
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Table 2: Overview of static analysis tools checking C code for various
security properties. The program models are control-flow graph (CFG),
abstract syntax tree (AST), push-down automata (PDA), parse tree (PST),
static single assignment (SSA), system dependence graph (SDG), guarded
commands (GC).

Program model
Tool CFG AST PDA PST SSA SDG GC
Splint x
BOON x
Cqual x
MOPS x
Metal/xgcc x
IPSSA x
Mjolnir x
Eau Claire x

To decorate the dependence graphs they traverse the program bottom-
up and generate summary nodes containing the constraints of the current
function and all its callees.

Weber et al do not clearly state how safety constraints are generated,
but we assume they generate them only for statically allocated buffers.
They provide both control-flow insensitive and control-flow sensitive con-
straint generation. Although global variables normally are handled in de-
pendence graphs (see Section 6.1) they are not handled by Mjolnir. No
pointer analysis is done.

2.8 Eau Claire

In spring 2002 Brian Chess presented his tool Eau Claire [140]. The tool
translates C code into so called guarded commands, enhanced with excep-
tions, assertions, assume statements, and erroneous states. Vulnerabilities
are modeled using the ESC/Modula2 specification language where you de-
fine what a function requires, modifies, and ensures.
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Table 3: (Continued) Overview of static analysis tools checking C code
for various security properties. The property models are constraint based
(CB), finite state automata (FSA), “Metal” (MET), ESC/Modula2 specifi-
cation language (ESC), and other, special purpose modeling (OTH).

Security property model
Tool CSB FSA MET ESC OTH
Splint x
BOON x
Cqual x
MOPS x
Metal/xgcc x
IPSSA x
Mjolnir x
Eau Claire x

Eau Claire then augments guarded commands with the specifications.
The outcome is a set of verification conditions which are processed by an
automatic theorem prover to find potential violations.

Shortcomings of Eau Claire’s static analysis are the conservative ap-
proach to pointer dereferences (it assumes that any two pointers of the
same type may reference the same location) and references into structures
and unions. Type-based vulnerabilities are not targeted by Eau Claire
[141].

2.9 Summary

Tables 1, 2, and 3 summarize the properties and features of the tools above.

We conclude that several categories of security properties can be stati-
cally checked but there is need of a generic solution. The first step toward
such a solution is to define a modeling formalism that both covers all nec-
essary aspects and allows for static analysis.

Two other key issues are that such a solution has to allow for effective
feedback to the programmers who have to fix the security problems, and
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it has to support intuitive modeling of new security properties for effective
updates of the database. None of the tools presented above have any other
kind of input or feedback than text.

We require that the modeling formalism can:

• visually communicate with programmers who model or fix security
problems in code (Section 3);

• model several types of security properties (Section 4);

• rank the severity of potential flaws (Section 5); and

• take into account data-flow, control-flow, type and range information,
and combinations thereof (Section 6).

3 The Need for Visual Models

As mentioned in Section 2 the two main drawbacks of static analysis tools
are that someone has to keep an updated database over programming flaws
to test for, and since the tools only detect vulnerabilities the user has to
know how to fix the problem.

Current tools such as the ones briefly presented in Section 2 use textual
models of security properties in their databases to give textual feedback to
the user. For example Splint gives output in the following manner:

bounds.c:9: Possible out-of-bounds store:

strcpy(str, tmp)

Unable to resolve constraint:

requires maxSet(str @ bounds.c:9) >=

maxRead(getenv("MYENV") @ bounds.c:7)

needed to satisfy precondition:

requires maxSet(str @ bounds.c:9) >=

maxRead(tmp @ bounds.c:9)

derived from strcpy precondition: requires

maxSet(<parameter 1>) >=

maxRead(<parameter 2>)

Just as call graphs and and flow graphs can help programmers under-
stand code in general (Grammatech’s tool “CodeSurfer” is a perfect exam-
ple [12]), visual models and graph representations of security properties
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can help to understand and fix security flaws. Especially when the flaws
include interprocedural data- and control-flow dependencies.

4 The Dual Modeling Problem

A common issue in security modeling is what we call the dual modeling prob-
lem—the problem of modeling malicious or benign things. When modeling
security properties of code we need both kinds—models of bad program-
ming practice, and models of good programming practice.

In a seminal paper from 1977 Leslie Lamport describes a formalism
closely related to the dual modeling problem—a property stating that noth-
ing bad happens during execution is called a safety property, and a property
stating that something good (eventually) happens during execution is called
a liveness property [142].

Typical for a safety property is that we can detect a property viola-
tion between one execution step and another. During execution we can
look ahead and see if the next execution step will take us into a bad state
and in such a case raise an alarm or terminate execution. All run-time
security measures such as intrusion detection systems and anti-virus appli-
cations detect safety properties—they either try to match with known bad
behavior, or they monitor for deviations from good behavior.

In the case of a liveness property we can only detect property viola-
tions at termination since during execution, we never know whether the
good thing will eventually happen or not. Fulfilling the liveness property
could potentially be the last execution step before termination. Therefore
we cannot rely on run-time monitoring to countermeasure security vulner-
abilities that are violations of liveness properties. Static methods, on the
contrary, can look into the “future” by following possible execution paths
all the way to termination, and try check if a program satisfies a liveness
property.

However, models of good or bad programming practice do not corre-
spond directly to safety and liveness properties. Instead they can be a
combination of safety and liveness as explained in Section 4.1 and 4.2.

A comprehensive discussion on this fundamental difference between
safety and liveness security properties can be found in Schneider’s paper
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“Enforceable Security Policies” [143].

4.1 Modeling Good Security Properties

Some security properties of code are typically described as “If you do A
you must do B”. These properties are best modeled as good programming
practice—”do like this”.

An example is input validation of integers. When an integer can be
affected by input from users, files, the network et cetera it has to be val-
idated before affecting any memory pointer via type-casting, array refer-
ences, pointer arithmetic, or the like. Otherwise the pointer may reference
unintended memory areas leading to arbitrary behavior or even full com-
promise of the process.

While being a model of good programming practice correct input valida-
tion is both a liveness property (external input must eventually be validated
assuming it will be used sometime), and a safety property (no sensitive use
of external input without validation).

4.2 Modeling Bad Security Properties

Some security problems are typically described as “If you do A then you
must not do B”. Such properties are best modeled as bad programming
practice—”do not do like this”.

An example of such a problem is the double free() vulnerability. Free-
ing the same memory chunk twice or more may open up for heap corruption
attacks.

Trying to model all possible benign ways of freeing memory is infeasi-
ble since that would be the same as building complete models of all well-
behaved programs using free(). A model of a bug, however, covers all
cases. The absence of multiple free() is a safety property.

5 Ranking of Potential Vulnerabilities

Engler and Musuvathi have clearly pointed out the problem of reporting
huge amounts of potential bugs as the result of static analysis and model
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checking—“It’s not enough to find a lot of bugs. (...) What users really
want is to find the 5-10 bugs that really matter ...” [144]. Based on our
knowledge and experience on static analysis we propose using the following
information from the analysis to generate severity ranking:

• Pointer analysis is a hard problem to solve accurately and thus the
risk for false positives increases with the amount of such analysis.
Therefore we propose that the more pointer analysis involved in find-
ing a flaw, the lower the ranking.

• Aliasing is another problem in static analysis. Because of potential
inaccuracy in the analysis we therefore propose that the more aliasing
involved in finding a flaw, the lower the ranking.

• Interprocedural control-flow may result in infeasible execution paths
being analyzed. Again, because of potential inaccuracy in the anal-
ysis, flaws involving interprocedural analysis are ranked lower than
intraprocedural ones.

• Flaws involving implicit events are ranked higher than explicit ones
since implicity imposes a higher risk for unintended behavior. An
example of this is implicit versus explicit type-casts.

5.1 Using the Dual Model for Ranking

In some cases we can make use of modeling both good and bad program-
ming practice. If we have reached a concise description of a property in one
distinct model, the dual of that model often explodes into several cases.

For instance, in the case of implicit type-casting and integer signedness
vulnerabilities a model of good programming practice is to validate the
integer and to have no implicit type-casts at any use points (this example
is explained in detailed in Section 7.1).

The dual of this model contains several ways of violating the property.
Various narrowing type-casts and missing validation points can be com-
bined. The benefit of exploding the dual and creating all these models is
that we can possibly rank them in terms of severity. Perhaps a certain vio-
lation is definitely a security vulnerability, whereas another violation only
might be vulnerable.
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6 A More Generic Modeling Formalism

To meet the requirements listed in Section 2.9 we propose decorated depen-
dence graphs as a more generic formalism for visualizing and modeling se-
curity properties, and performing static analysis. We here present intrapro-
cedural and interprocedural dependence graphs, decorated with range and
type information. We end the section with a view on possible analysis
techniques.

6.1 Program Dependence Graphs

Dependence graphs were first presented by Ottenstein and Ottenstein as
an intraprocedural intermediate form—the program dependence graph, or
PDG [145]. While originally generated for procedural languages such as
C, algorithms generating dependence graphs for object oriented languages
exist, e.g. Java [146]

A dependence graph is an intermediate representation of code where
vertices represent statements and predicates (henceforth called program
points), and edges represent control- and data-flow dependence. This means
that only necessary temporal constraints are encoded in the graph—it does
not include a complete control-flow graph.

A program point B is control dependent on another program point A,
if A controls whether B is executed or not. Formally A is the first program
point not post-dominated byB when traversing the control-flow graph back-
ward from B. Informally we can say that program point A is a conditional
and B is executed in only one of A’s outgoing paths.

A program point B is data dependent on a program point A if some
variable x is defined in A and later used in B without any new defines in-
between. Data dependence can also be in form of definition order. Figure
1 shows a small C function with its corresponding program dependence
graph.

6.2 System Dependence Graphs

The interprocedural version, called system dependence graph, or SDG, was
presented by Horwitz et al [147]. To generate the SDG we need to encode



6. A More Generic Modeling Formalism

void func() {

int sum=0, i=1;

while(i<11) {

sum=sum+i;

i=i+1; }

printf("%d\n",sum);

print("%d\n",i); }

entry func()

sum=0i=1 while(i<11) printf(sum)printf(i)

sum=sum+ii=i+1

Figure 1: A small C function (left) with its corresponding program depen-
dence graph (right). Solid arrows represent control-flow dependence, dotted
arrows represent data-flow dependence. All dependencies are transitive (if
A ! B and B ! C then A ! C).

data- and control-flow dependence between procedures which includes for-
mal and actual parameters, formal and actual return values, and global
variables.

A procedure call from procedure A to procedure B is modeled with a
call vertex in A, an entry vertex in B, and an interprocedural control de-
pendence edge between them. Parameters are handled with actual-in and
actual-out vertices in A, formal-in and formal-out vertices in B, and inter-
procedural data dependence edges connecting them. Temporary variables
are used for parameter passing by value-result.

If a procedure uses a global variable, it is treated as a (hidden) input pa-
rameter, and is encoded as additional actual-in and formal-in vertices. For
further information on summary edges for avoiding calling context prob-
lems see the original paper [147].

6.3 Range Constraints in SDGs

Weber et al have used decorated SDGs to statically detect buffer overflow
vulnerabilities [139]. The graph is augmented with range constraint in-
formation for string buffers. Each PDG contains a summary vertex with
range constraints of the procedure and all its callees.
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void copy(char *src) {

char dst[10];

strcpy(dst, src); }

The PDG for the code to the left would have
a range constraint node summary node say-
ing Len(src) ✓ Len(dst).

6.4 Type Information in SDGs

Several so called narrowing integral type-casts have constituted security
vulnerabilities. Chen et al have studied this category of security bugs and
summarized the insecure conversions [134].

We propose that the original SDGs be decorated with type information,
specifically implicit type conversions. Type conversion information should
belong to edges in the SDG since it is the data-flow between two program
points that can include such a conversion, and a program point can be
data-flow dependent on several others. See Figure 5 and 5 for examples of
this decoration.

6.5 Static Analysis Using SDGs

Dependence graphs were designed to allow for deep analysis of code. They
are the underlying structure for program slicing and chopping and are used
for optimization [148].

A program slice is the parts of a program that can affect the value of a
chosen program point, the slicing criterion.

Static slicing, invented by Weiser [149], was defined as a reachability
problem in PDGs by Ottenstein and Ottenstein [145]. Interprocedural
slices can be computed in a similar way in SDGs.

The combination of two (or more) program points, potentially a point
with (malicious) user input, and a point with a vulnerability, allows for pro-
gram chopping—a technique presented by Reps et al [150]. When chopping
we want to know how some source points affect some target points.

Slices and chops of programs can help with understanding the cause of
a vulnerability since they show exactly what parts of the program affect
the execution of the vulnerable program point. The richness of program
information found in SDGs together with slicing, chopping, type inference
and range analysis means it covers all the features of the tools surveyed
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void func1(char *dest, char *src,

int len) {

if(len<MAX)

memcpy(dest, scr, len); }

Figure 2: Implicit type-cast flaw
(len casted to unsigned int in the call
to memcpy()).

void func2(unsigned int size) {

char *buf =

(char *) malloc(size+1);

}

Figure 3: Integer overflow flaw
(adding one to size may cause
overflow).

in Section 2 and provides visual communication with the user via a graph
representation of the original code.

7 Modeling Security Properties

In this section we show how four security properties can be modeled in
terms of decorated dependence graphs. We show the use of dual models
both for benign and malicious properties, and ranking of potential flaws.
Our proposed formalism is not limited to these properties; they simply
serve as examples.

In the graphs all edges represent interprocedural transitive
dependence—solid arrows for control-flow, and dotted arrows for
data-flow.

7.1 Integer Flaws

Handling integers may seem harmless and straight forward. But several
security vulnerabilities prove this a difficult area. The problems mostly
arise when integers are used as memory offsets, in pointer arithmetic, and
when the integer representation changes from signed to unsigned or vice
versa. For proper input validation in such sensitive cases, two crucial steps
need to be taken; (1) validate integral variables so that narrowing type-
casts do not lead to unintended behavior, and (2) validate upper and lower
bounds of user affected integral variables before they are used in memory
references and calculations.
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We are now able to encode the first
correct code pattern in terms of
our decorated dependence graphs (see
Fig. 4). The nodes are program
points where “ext input” means ex-
ternal input, “def” means a variable
is defined, “val” means a variable is
validated, and “use”means a variable
is used. The input has to be validated
before it is used which means that the
use point has to be control dependent
on the validation point.
Modeling of validation points is ab-
stracted away from these models. Us-
ing range constraints is a feasible way
of doing this [136].

ext input

def

val

use

Figure 4: Correct code pat-
tern for integer input valida-
tion.

Deviations from this good programming practice, i.e. integer security
bugs, have been studied by Blexim [151], Howard [152], and Ashcraft and
Engler [136] and we here briefly present the bug types they have identified:

Integer Signedness Errors.

Integer signedness errors can arise both due to implicit type-casting and
insufficient validation. In Fig. 2 the signed integer len can be negative and
as such pass the (inadequate) validation point. When calling memcpy() an
implicit narrowing type-cast to size_t (unsigned integer) occurs which will
convert a negative integer to a huge positive integer, possibly overflowing
the destination buffer dest.

Integer Overflow/Underflow.

When an unsigned integer has reached the maximum value it can represent,
an increment to that integer will make it wrap around and become zero.
Decrementing an unsigned integer below zero will result in the maximum
value.
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use a

ext input a

def a

narrowing

 type-cast

use b

ext input b

def b

ext input c

def c

val c

use c

narrowing

 type-cast

ext input d

def d

val d

use d

Figure 5: Four out of eight incorrect graph patterns for integer validation.
The nodes are program points representing external input (ext input), def-
inition of a variable (def), validation of the variable (val), and use of the
variable (use). The proposed severity ranking from left to right is explained
in Section 7.2.

ext input e

def e

val e

use e

narrowing

 type-cast

ext input f

def f

val f

narrowing

 type-cast

use f

ext input g

def g

val g

narrowing

 type-cast I

use g

narrowing

 type-cast II

ext input h

def h

val h

narrowing

 type-cast I

use h

narrowing

 type-cast I

Figure 6: (Cont.) Four out of eight incorrect graph patterns for integer
validation. The nodes are program points representing external input (ext
input), definition of a variable (def), validation of the variable (val), and
use of the variable (use). “narrowing type-cast I” and “narrowing type-cast
II”means two different type-casts. The proposed severity ranking from left
to right is explained in Section 7.2.
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In Fig. 3 the intent is to allocate the requested memory plus space for
a null terminator. If size was the maximum unsigned integer possible,
adding one will make it wrap around and call malloc() with zero as argu-
ment. The return value in such a case is either a null pointer or a non-null
pointer that must not be used. Dereferencing such a non-null pointer may
allow for heap corruption.

Integer Input Validation.

When an integer can be affected by input from users, files, network et cetera
it has to be validated before affecting any memory pointer via type-casting,
array references, pointer arithmetic, or the like. Otherwise the pointer may
reference unintended memory areas leading to arbitrary behavior or even
full compromise of the process.

7.2 Modeling Integer Flaws

To allow for severity ranking we can encode the dual to the correct code
pattern, ending up with a collection of incorrect code patterns, i.e. models
of bad programming practice (see Fig. 5 and 6). Using the ranking rule for
implicity (see Section 5) we rank the incorrect code patterns in descending
order as follows:

1. Missing validation and narrowing type-cast

2. Missing validation but no narrowing type-cast

3. Use not control dependent on validation and narrowing type-cast

4. Use not control dependent on validation but no narrowing type-cast

5. Narrowing type-cast on either validation or use (two graphs in Fig.
6)

6. Different narrowing type-casts on validation and use

7. Same narrowing type-casts on validation and use
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char *buf = (char *) malloc(SIZE);

...

free(buf);

...

free(buf);

call free() 1

ptr_in_1=buf ptr_in_2=buf

call free() 2

Figure 7: Incorrect code pattern for free() and the corresponding depen-
dence graph. If there had been a new call to malloc() in-between the two
calls to free() there would not have been a data dependency edge between
the first call to free() and the second pointer to buf in the graph.

7.3 The Double free() Flaw

Often “normal” bugs turn out to be tools for attackers. This is the case
of double free. To allocate heap memory, the program calls malloc() and
gets a pointer to the allocated memory as return value. When the program
is done using the memory it has to be released, which is done with a call
to free().

To keep track of which parts of heap memory are allocated and which are
free, the operating system has to store information. For scalability reasons
this information is stored together with each allocated chunk of memory;
it is stored “in-band”. When memory is freed the in-band information is
used to relink the memory chunk with the list of free memory.

Normally, attempting to free the same memory twice or more will lead
to undefined behavior, often a segmentation fault. But if an attacker can
change the memory in between two calls to free() he or she can inject
false in-band information and potentially compromise the process.

This is an example of a model of a bad security property (see Fig. 7).
We show in Fig. 8 and 9 why the double free has to be modeled as a bad
security property. The bad model contains the good one. Thus we cannot
say a piece of code is secure simply because we have pattern matched a
good use of free(); we also have to look for bad use of free().
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7.4 Modeling External Input

Knowing which data sources not to trust is not obvious. Still, many bugs
become security vulnerabilities because the user can affect data input. The
solution is system and API specific. Environment variables are considered
untrustworthy sources [153], and Ashcraft and Engler add another three
categories—System calls, routines that copy data from user space, and
network data [136]. In modeling security properties these sources of so
called tainted data will all be considered as nodes of external input and
analyzed via transitive data dependencies.

8 Future Work

Finding the modeling formalism is the first step toward a single tool able
to check for several security properties. We are right now implementing a
prototype tool called GraphMatch that uses dependence graphs to check
security properties [13]. The prototype currently finds interprocedural in-
put validation flaws. Apart from modeling other security properties and
checking them with real-life code, we plan to investigate scalability and
accuracy issues of the analysis, and also evaluate dependency graphs as
a visual aid in secure programming. Empirical studies will be made to
evaluate the heuristic ranking of potential vulnerabilities.

9 Conclusions

We have shown that there is a need for a generic formalism both for de-
scription of security properties and for static checking of these properties.
In addition we believe that visual support is needed to effectively com-
municate with programmers. System dependence graphs decorated with
range constraints and type conversion information can serve that purpose.
Dependence graphs are well-known in the static analysis and compiler com-
munities and are able to model the diversity of security properties, covering
both safety and liveness properties of code, as shown by our examples.
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Pattern Matching Security

Properties of Code using

Dependence Graphs1
John Wilander and Pia F̊ak, {johwi, x05piafa}@ida.liu.se

Dept. of Computer and Information Science, Linköpings universitet

Abstract

In recent years researchers have presented several tools for statically check-
ing security properties of C code. But they all (currently) focus on one or
two categories of security properties each. We have proposed dependence
graphs decorated with type-cast and range information as a more generic
formalism allowing both for visual communication with the programmer
and static analysis checking several security properties at once. Our pro-
totype tool GraphMatch currently checks code for input validation flaws.
But several research questions are still open. Most importantly we need
to address the complexity of our algorithm for pattern matching graphs,
the accuracy of our security models, and the generality of our formalism.
Other questions regard the impact of security property visualization and
heuristics for ranking of potential flaws found.

Keywords: security properties; dependence graphs; static analysis

1 Introduction

In November 2002 we published a comparative study of five static analysis
tools checking C code for buffer overflows and format string vulnerabilities
[132]. We used micro benchmarks and our study showed that tools perform-
ing lexical analysis produced a lot of false positives (52% to 71%), while

1This work has been supported by the national computer graduate school in computer
science (CUGS) commissioned by the Swedish government and the board of education.
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syntactical and semantical analysis had problems with too many false nega-
tives (70% to 73%). The latter mainly due to poor vulnerability databases,
not the underlying techniques.

Since then many more tools have been developed [136, 51, 140, 137,
133, 139]. The research behind these tools and prototypes is excellent and
the empirical results are promising, but it is not evident if and how the
techniques can be combined to solve several security problems at once.
They all (currently) focus on one or two categories of security properties
each and make use of quite different system models, methods of analysis,
and also require different amounts of user involvement. In our studies of
the modeling formalisms used in the tools we identified a specific problem
in modeling security properties of code—the dual modeling problem.

Some security problems are typically described as“If you do A you must
do B”(e.g. input validation). Such properties are best modeled as good pro-
gramming practice—“do like this”. Other security problems are described
as “If you do A then you must not do B” (e.g. double free). Such properties
are best modeled as bad programming practice—“do not do like this”. For
a formalism to be able to cover the great variety of security properties it
needs to be able to model both good and bad programming practice. The
dual modeling problem is closely related to safety and liveness properties
of code [142].

A drawback of static analysis tools in general is that they only detect
vulnerabilities and therefore the user has to know how to patch the code.
The aforementioned tools only offer textual information about analysis re-
sults. We believe visual information can be helpful for programmers.

Engler and Musuvathi have pointed out the problem of reporting huge
amounts of potential bugs as the result of static analysis and model
checking—“It’s not enough to find a lot of bugs. (...) What users re-
ally want is to find the 5-10 bugs that really matter ...” [144]. Therefore
we believe it is necessary to automatically rank the bugs reported from a
security analysis tool.

Our research goal is to implement a tool that can:

• check several types of security properties;

• visually communicate with programmers; and
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use a

ext input a

def a

narrowing

 type-cast

use b

ext input b

def b

ext input c

def c

val c

use c

narrowing

 type-cast

ext input d

def d

val d

use d

Figure 1: First four out of eight incorrect graph patterns for integer
validation. The nodes are program points representing external input (ext
input), definition of a variable (def), validation of the variable (val), and
use of the variable (use). Severity ranking from left to right stretching from
validation point absent to validation but execution not necessarily passing
the validation node.

• rank the severity of potential flaws.

1.1 Paper Overview

In Section 2 we present decorated dependence graphs as a generic modeling
formalism for code security properties covering control-flow, data-flow, type
and range information. Models of two security vulnerability types—integer
flaws and double free() are shown in Section 3 and 4. Section 5 and 6
briefly explain the implementation of our prototype tool and present our
initial results. Finally, Section 7 covers future work and open research
questions.

2 Dependence Graphs

We have proposed decorated dependence graphs as a more generic formal-
ism for visualizing security properties, and performing static analysis of C



2. Dependence Graphs

ext input e

def e

val e

use e

narrowing

 type-cast

ext input f

def f

val f

narrowing

 type-cast

use f

ext input g

def g

val g

narrowing

 type-cast I

use g

narrowing

 type-cast II

ext input h

def h

val h

narrowing

 type-cast I

use h

narrowing

 type-cast I

Figure 2: (Cont.) Last four out of eight incorrect graph patterns for integer
validation. The nodes are program points representing external input (ext
input), definition of a variable (def), validation of the variable (val), and
use of the variable (use). “narrowing type-cast I” and “narrowing type-
cast II” means two different type-casts. Severity ranking from left to right
stretching from narrowing type-cast only before use and not in validation
to validation with implicit narrowing type-casts.

code [154].

Dependence graphs were first presented by Ottenstein and Ottenstein as
an intraprocedural intermediate form—the program dependence graph, or
PDG [145]. Vertices represent statements and predicates (program points),
and edges represent control- and data-flow dependence. A program point B
is control dependent on another program point A, if A controls whether B is
executed or not. A program point B is data dependent on a program point
A if some variable x is defined in A and later used in B without any new de-
fines in-between. This means that only necessary temporal constraints are
encoded in the graph—it does not include a complete control-flow graph.
The interprocedural version, called system dependence graph, or SDG, was
presented by Horwitz et al [147]. Dependence graphs were designed to allow
for deep analysis of code. They are the underlying structure for program
slicing [149].
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Several so called narrowing integral type-casts have constituted security
vulnerabilities. Chen et al have studied this category of security bugs
and summarized the insecure conversions [134]. To detect such flaws we
decorate the original SDGs be with type information, specifically implicit
type conversions. Type conversion information belongs to edges in the SDG
since it is the data-flow between two program points that can include such
a conversion, and a program point can be data-flow dependent on several
others.

Weber et al have used SDGs decorated with range constraint infor-
mation for string buffers to statically detect buffer overflow vulnerabilities
[139]. We will use this technique to check both buffer and integer ranges.

3 Integer Flaws

Several security vulnerabilities prove that handling integers is difficult. The
problems mostly arise when integers are used as memory offsets, in pointer
arithmetic, and/or when the integer representation changes from signed to
unsigned or vice versa [136, 151, 152]. For proper input validation in such
sensitive cases, two crucial steps need to be taken; (1) validate integral
variables so that narrowing type-casts do not lead to unintended behavior,
and (2) validate upper and lower bounds of user affected integral variables
before they are used in memory references and calculations.
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ext input

def

val

use

Figure 4:
Correct code pattern for inte-
ger input validation.

The graph to the left is an exam-
ple of a model of good programming
practice—correct integer input vali-
dation. The integer has to be vali-
dated before it is used which means
that the use point (use) has to be con-
trol dependent on the validation point
(val), and both use point and valida-
tion point have to be data dependent
on the input without narrowing type-
casts. Modeling of validation points
is abstracted away from these mod-
els. Using range constraints is a fea-
sible way of doing this [136].

To allow for severity ranking of reported flaws we can encode the dual
to the correct code pattern, ending up with a collection of incorrect code
patterns, i.e. models of bad programming practice (see Fig. 1 and 2).

How to model external input is not obvious. Still, many bugs become
security vulnerabilities because the user can affect data input. The solu-
tion is system and API specific. Apart from file accesses and command
line arguments we have followed the pointers by Wheeler who mentions
Environment variables as untrustworthy sources [153], and Ashcraft and
Engler who add another three categories—System calls, routines that copy
data from user space, and network data [136].

4 The Double free() Flaw

To allocate heap memory, a C program calls malloc() and gets a pointer
to the allocated memory as return value. When the program is done using
the memory it has to be released, which is done with a call to free(). To
keep track of which parts of heap memory are allocated and which are free,



5. Tool Implementation

the operating system has to store information. For scalability reasons this
information is stored together with each allocated chunk of memory; it is
stored “in-band”. When memory is freed the in-band information is used
to relink the memory chunk with the list of free memory.

Normally, attempting to free the same memory twice or more will lead
to undefined behavior, often a segmentation fault. But if an attacker can
change the memory in between two calls to free() he or she can inject
false in-band information and potentially compromise the process.

This is an example of bad programming practice. We show in Fig. 3
why the double free has to be modeled as a bad security property. The
bad model contains the good one. If we ignore one of the calls to free()

we have a match for correct usage of free(). Thus we cannot say a piece
of code is secure simply because we have pattern matched a good use of
free(), we also have to look for bad use of free().

5 Tool Implementation

We have implemented a prototype tool called GraphMatch that performs
pattern matching using dependence graphs. We build graph models of the
programs with Grammatech’s tool CodeSurfer [12]. Currently GraphMatch
can detect integer input validation flaws by following a straight forward
algorithm (compare with vertex labels in Fig. 4):

1. Begin at some external input vertex (ext input)

2. Follow transitive data-flow to match definitions (def)

(a) Follow data-flow to all sensitive uses (use)

(b) Follow data-flow to all validations (val)

3. Check that all the sensitive uses from 2(a) are control-dependent on
some validation in 2(b)

If some part of the program model deviates from the model of correct
integer input validation it is reported as a potential flaw. This algorithm
has a complexity of O(E⇤V h), where E and V are the number of edges and
vertices in the program model, and h is the depth of the security property
model.
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6 Initial Results

The GraphMatch prototype performs well on our synthesized micro bench-
marks whereas real-life applications pose a harder problem. We checked
wu-ftpd 2.6-4 which consists of approx. 20.000 lines of code and produces
a dependency graph with approx. 130.000 vertices. An analysis for integer
input validation flaws took 15h on a 2.66 GHz Pentium 4. GraphMatch pro-
duced three warnings, two false positives and one true positive. The false
positives were due to inaccuracy of our “sensitive use” model. The true
positive was clearly a missing input validation but didn’t seem exploitable.

7 Future Work

Defining the modeling formalism was the first step toward a single tool
able to check for several security properties. Apart from modeling other
security properties and checking them with real-life code, we have several
open research questions to address:

Complexity. Not too surprisingly, our initial results show that our graph
matching has high complexity. It might be that dependence graph
matching can be reduced to the subgraph isomorphism problem which
is shown to be NP-complete [155]. Even so, we will investigate how
heuristic trade-offs leading to unsoundness and/or incompleteness can
affect practical performance.

Accuracy. How much does the inevitable inaccuracy of the underlying
program analysis affect the accuracy of our pattern matching?

Generality. Are dependency graphs suitable for modeling a great variety
of security properties of code? Are they suitable for analysis of other
languages than procedural ones such as C?

Usability. Can visualization of code properties with dependence graphs
help the programmers fix vulnerable code? Can it help in secure
programming education?

Heuristic Ranking. Can we find effective heuristics for ranking of po-
tential security bugs found through analysis?
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Model Updates. Will our security property database be fairly static or
will it need continuous updates with new flavors of the security prop-
erties?
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A Comparison of Publicly

Available Tools for Dynamic

Buffer Overflow Prevention1
John Wilander and Mariam Kamkar

Dept. of Computer and Information Science, Linköpings universitet
{johwi, marka}@ida.liu.se

Abstract

The size and complexity of software systems is growing, increasing the num-
ber of bugs. Many of these bugs constitute security vulnerabilities. Most
common of these bugs is the buffer overflow vulnerability. In this paper
we implement a testbed of 20 different buffer overflow attacks, and use it
to compare four publicly available tools for dynamic intrusion prevention
aiming to stop buffer overflows. The tools are compared empirically and
theoretically. The best tool is effective against only 50% of the attacks and
there are six attack forms which none of the tools can handle.
Keywords: security intrusion; buffer overflow; intrusion prevention; dy-
namic analysis

1 Introduction

The size and complexity of software systems is growing, increasing the num-
ber of bugs. According to statistics from Coordination Center at Carnegie
Mellon University, CERT, the number of reported vulnerabilities in soft-
ware has increased with nearly 500% in two years [102] as shown in figure
1.

Now there is good news and bad news. The good news is that there
is lots of information available on how these security vulnerabilities occur,

1This work has been supported by the national computer graduate school in computer
science (CUGS) commissioned by the Swedish government and the board of education.
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Figure 1: Software vulnerabilities reported to CERT 1995–2001.

how the attacks against them work, and most importantly how they can
be avoided. The bad news is that this information apparently does not
lead to fewer vulnerabilities. The same mistakes are made over and over
again which, for instance, is shown in the statistics for the infamous buffer
overflow vulnerability. David Wagner et al from University of California
at Berkeley show that buffer overflows stand for about 50% of the vulner-
abilities reported by CERT [5].

In the middle of January 2002 the discussion about responsibility for
security intrusions took a new turn. The US National Academies released
a prepublication recommending that policy-makers create laws that would
hold companies accountable for security breaches resulting from vulnera-
ble products [103], which received global media attention [104, 105]. So
far, only the intruder can be charged in court. In the future, software
companies may be charged for not preventing intrusions. This stresses the
importance of helping software engineers to produce more secure software.
Automated development and testing tools aimed for security could be one
of the solutions for this growing problem.

One starting point would, or could be tools that can be applied di-
rectly to the source code and solve or warn about security vulnerabilities.
This means trying to solve the problems in the implementation and testing



157

phase. Applying security related methodologies throughout the whole de-
velopment cycle would most likely be more effective, but given the amount
of existing software (“legacy code”), the desire for modular design using
software components programmed earlier, and the time it would take to
educate software engineers in secure analysis and design, we argue that
security tools that aim to clean up vulnerable source code are necessary. A
further discussion of this issue can be found in the January/February 2002
issue of IEEE Software [106].

In this paper we investigate the effectiveness of four publicly available
tools for dynamic prevention of buffer overflow attacks–namely the GCC
compiler patches StackGuard, Stack Shield, and ProPolice, and the security
library Libsafe/Libverify. Our approach has been to first develop an in-
depth understanding of how buffer overflow attacks work and from this
knowledge build a testbed with all the identified attack forms. Then the
four tools are compared theoretically and empirically with the testbed. This
work is a follow-up of John Wilander’s Master’s Thesis “Security Intrusions
and Intrusion Prevention” [107].

1.1 Scope

We have tested publicly available tools for run-time prevention of buffer
overflow attacks. The tools all apply to C source code, but using them
requires no modifications of the source code. We do not consider approaches
that use system specific features, modified kernels, or require the user to
install separate run-time security components. The twenty buffer overflows
represent a sample of the potential instances of buffer overflow attacks and
not on the likelihood of a specific attack using the sample instance.

1.2 Paper Overview

The rest of the paper is organized as follows. Section 2 describes pro-
cess memory management in UNIX and how buffer overflow attacks work.
Section 3 presents the concept of intrusion prevention and describes the
techniques used in the four analyzed tools. Section 4 defines our testbed
of twenty attack forms and presents our theoretical and empirical com-
parison of the tools’ effectiveness against the previously described attack
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forms. Section 5 describes the common shortcomings of current dynamic
intrusion prevention. Finally sections 6 and 7 present related work and our
conclusions.

2 Attack Methods

The analysis of intrusions in this paper concerns a subset of all violations
of security policies that would constitute a security intrusion according to
definitions in, for example, the Internet Security Glossary [80]. In our con-
text an intrusion or a successful attack aims to change the flow of control,
letting the attacker execute arbitrary code. We consider this class of vul-
nerabilities the worst possible since “arbitrary code” often means starting a
new shell. This shell will have the same access rights to the system as the
process attacked. If the process had root access, so will the attacker in the
new shell, leaving the whole system open for any kind of manipulation.

2.1 Changing the Flow of Control

Changing the flow of control and executing arbitrary code involves two
steps for an attacker:

1. Injecting attack code or attack parameters into some memory struc-
ture (e.g. a buffer) of the vulnerable process.

2. Abusing some vulnerable function that writes to memory of the pro-
cess to alter data that controls execution flow.

Attack code could mean assembly code for starting a shell (less than 100
bytes of space will do) whereas attack parameters are used as input to code
already existing in the vulnerable process, for example using the parameter
"/bin/sh" as input to the system() library function would start a shell.

Our biggest concern is step two—redirecting control flow by writing to
memory. That is the hard part and the possibility of changing the flow of
control in this way is the most unlikely condition of the two to hold. The
possibility of injecting attack code or attack parameters is higher since it
does not necessarily have to violate any rules or restrictions of the program.
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Changing the flow of control occurs by altering a code pointer. A code
pointer is basically a value which gives the program counter a new memory
address to start executing code at. If a code pointer can be made to point
to attack code the program is vulnerable. The most popular target is the
return address on the stack. But programmer defined function pointers
and so called longjmp buffers are equally effective targets of attack.

2.2 Memory Layout in UNIX

To get a picture of the memory layout of processes in UNIX we can look
at two simplified models (for a complete description see “Memory Layout
in Program Execution” by Frederick Giasson [156]). Each process has a
(partial) memory layout as in the figure below:

High address Stack
#

"

Heap
BSS segment
Data segment

Low address Text segment

Figure 2: Memory layout of a UNIX process.

The machine code is stored in the text segment and constants, argu-
ments, and variables defined by the programmer are stored in the other
memory areas. A small C-program shows this (the comments show where
each piece of data is stored in process memory):

static int GLOBAL_CONST = 1; // Data segment

static int global_var; // BSS segment

// argc & argv on stack, local

int main(argc **argv[]) {

int local_dynamic_var; // Stack

static int local_static_var; // BSS segment

int *buf_ptr=(int *)malloc(32); // Heap
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... }

For each function call a new stack frame is set up on top of the stack.
It contains the return address, the calling function’s base pointer, locally
declared variables, and more. When the function ends, the return address
instructs the processor where to continue executing code and the stored
base pointer gives the offset for the stack frame to use.

Lower address
Local variables

Old base pointer
Return address
Arguments

Higher address

Figure 3: The UNIX stack frame.

2.3 Attack Targets

As stated above the target for a successful change of control flow is a code
pointer. There are three types of code pointers to attack [157]. But Hiroaki
Etoh and Kunikazu Yoda propose using the old base pointer as an attack
target [158]. We have implemented their proposed attack form and proven
that the old base pointer is just as dangerous a target as the return address
(see section 2.4 and 4). So we have four attack targets:

1. The return address, allocated on the stack.

2. The old base pointer, allocated on the stack.

3. Function pointers, allocated on the heap, in the BSS or data segment,
or on the stack either as a local variable or as a parameter.

4. Longjmp buffers, allocated on the heap, in the BSS or data segment,
or on the stack either as a local variable or as a parameter.

A function pointer in C is declared as int (*func_ptr) (char), in
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this example a pointer to a function taking a char as input and returns an
int. It points to executable code.

Longjmp in C allows the programmer to explicitly jump back to func-
tions, not going through the chain of return addresses. Let’s say function A
first calls setjmp(), then calls function B which in turn calls function C. If
C now calls longjmp() the control is directly transferred back to function
A, popping both C’s and B’s stack frames of the stack.

2.4 Buffer Overflow Attacks

Buffer overflow attacks are the most common security intrusion attack [5,
108] and have been extensively analyzed and described in several papers and
on-line documents [62, 109, 110, 111]. Buffers, wherever they are allocated
in memory, may be overflown with too much data if there is no check to
ensure that the data being written into the buffer actually fits there. When
too much data is written into a buffer the extra data will “spill over” into
the adjacent memory structure, effectively overwriting anything that was
stored there before. This can be abused to overwrite a code pointer and
change the flow of control either by directly overflowing the code pointer or
by first overflowing another pointer and redirect that pointer to the code
pointer.

The most common buffer overflow attack is shown in the simplified
example below. A local buffer allocated on the stack is overflown with
’A’s and eventually the return address is overwritten, in this case with the
address 0xbffff740.

Local buffer AAAAAAAA

AAAAAAAA

Old base pointer AAAAAAAA

Return address 0xbffff740

Arguments Arguments

Figure 4: A buffer overflow overwriting the return address.
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If an attacker can supply the input to the buffer he or she can design
the data to redirect the return address to his or her attack code.

The second attack target, the old base pointer, can be abused by build-
ing a fake stack frame with a return address pointing to attack code and
then overflow the buffer to overwrite the old base pointer with the address
of this fake stack frame. Upon return, control will be passed to the fake
stack frame which immediately returns again redirecting flow of control to
the attack code.

The third attack target is function pointers. If the function pointer is
redirected to the attack code the attack will be executed when the function
pointer is used.

The fourth and last attack target is longjmp buffers. They contain the
environment data required to resume execution from the point setjmp()
was called. This environment data includes a base pointer and a program
counter. If the program counter is redirected to attack code the attack will
be executed when longjmp() is called.

Combining all these buffer overflow techniques, locations in memory and
attack targets leaves us with no less than twenty attack forms. They are
all listed in section 4 and constitute our testbed for testing of the intrusion
prevention tools.

3 Intrusion Prevention

There are several ways of trying to prohibit intrusions. Halme and Bauer
present a taxonomy of anti-intrusion techniques called AINT [7] where
they define:

Intrusion prevention. Precludes or severely handicaps the likelihood of
a particular intrusion’s success.

We divide intrusion prevention into static intrusion prevention and dy-
namic intrusion prevention. In this section we will first describe the dif-
ferences between these two categories. Secondly, we describe four publicly
available tools for dynamic intrusion prevention, describe shortly how they
work, and in the end compare their effectiveness against the intrusions
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and vulnerabilities described in section 2.4. This is not a complete sur-
vey of intrusion prevention techniques, rather a subset with the following
constraints:

• Techniques used in the implementation phase of the software.

• Techniques that require no altering of source code to disarm security
vulnerabilities.

• Techniques that are generic, implemented and publicly available, not
prototypes or system specific tools.

Our motivation for this is to evaluate and compare tools that could eas-
ily and quickly be introduced to software developers and increase software
quality from a security point of view.

3.1 Static Intrusion Prevention

Static intrusion prevention tries to prevent attacks by finding the security
bugs in the source code so that the programmer can remove them. Re-
moving all security bugs from a program is considered infeasible [28] which
makes the static solution incomplete. Nevertheless, removing bugs known
to be exploitable brings down the likelihood of successful attacks against all
possible targets. Static intrusion prevention removes the attacker’s method
of entry, the security bugs. The two main drawbacks of this approach is
that someone has to keep an updated database of programming flaws to
test for, and since the tools only detect vulnerabilities the user has to know
how to fix the problem once a warning has been issued.

3.2 Dynamic Intrusion Prevention

The dynamic or run-time intrusion prevention approach is to change the
run-time environment or system functionality making vulnerable programs
harmless, or at least less vulnerable. This means that in an ordinary envi-
ronment the program would still be vulnerable (the security bugs are still
there) but in the new, more secure environment those same vulnerabili-
ties cannot be exploited in the same way—it protects known targets from
attacks.
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Dynamic intrusion prevention, as we will see, often ends up becoming an
intrusion detection system building on program and/or environment spe-
cific solutions, terminating execution in case of an attack. The techniques
are often complete in the way that they can provably secure the targets
they are designed to protect (one proof can be found in a paper by Chiueh
and Hsu [159]) and will produce no false positives. Their general weakness
lies in the fact that they all try to solve known security problems, i.e. how
bugs are known to be exploited today, while not getting rid of the actual
bugs in the programs. Whenever an attacker has figured out a new way
of exploiting a bug, these dynamic solutions often stand defenseless. On
the other hand they will be effective against exploitation of any new bugs
using the same attack method.

3.3 StackGuard

The StackGuard compiler invented and implemented by Crispin Cowan et
al [160] is perhaps the most well referenced of the current dynamic intrusion
prevention techniques. It is designed for detecting and stopping stack-based
buffer overflows targeting the return address.

The StackGuard Concept

The key idea behind StackGuard is that buffer overflow attacks overwrite
everything on their way towards their target. In the case of a buffer over-
flow on the stack targeting the return address, the attacker has to fill the
buffer, then overwrite any other local variables below (i.e. on higher stack
addresses), then overwrite the old base pointer until it finally reaches the re-
turn address. If we place a dummy value in between the return address and
the stack data above, and then check whether this value has been overwrit-
ten or not before we allow the return address to be used, we could detect
this kind of attack and possibly prevent it. The inventors have chosen to
call this dummy value the canary.
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Lower address
Local variables

Old base pointer
Canary value
Return address
Arguments

Higher address

Figure 5: The StackGuard stack frame.

A potentially successful attack against such a system would be to some-
how leave the canary intact while changing the return address, either by
overwriting the canary with its correct value and thus not changing it, or by
overwriting the return address through a pointer, not touching the canary.
To solve the first problem, two canary versions have been suggested—firstly
the random canary which consists of a random 32-bit value calculated at
run-time, and secondly the terminator canary which consists of all four
kinds of string termination sequences, namely Null, Carriage Return, -1
and Line Feed. In the random canary case the attacker has to guess, or
somehow retrieve, the random value at run-time. In the terminator canary
case the attacker has to input all the termination sequences to keep the
canary intact during the overflow. This is not possible since the string
function receiving the input will terminate on one of the sequences.

Note that these techniques only stop overflow attacks that overwrite
everything along the stack, not general attacks against the return address.
The attacker can still abuse a pointer, making it point at the return address
and writing a new address to that memory position. This shortcoming of
StackGuard was discovered by Mariusz Woloszyn, alias “Emsi” and pre-
sented by Bulba and Kil3er [161]. The StackGuard team has addressed
this problem by not only saving the canary value but the XOR of the ca-
nary and the correct return address. In this way an abused return address
with an intact canary preceding it would still be detected since the XOR of
the canary and the return address has changed. If the XOR scheme is used
the canary has to be random since the terminator canary XORed with an
address would not terminate strings anymore.
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Random Canaries Unsupported

While testing StackGuard we noticed that the compiler did not respond to
the flag set for random canary. We e-mailed Crispin Cowan and according
to him: “There is only one threat that the XOR canary defeats, and the
terminator canary does not: Emsi’s attack. However, if you have a vul-
nerability that enables you to deploy Emsi’s attack, then you have many
other targets to attack besides function return address values. Therefore,
we dropped support for random canaries [162]”. We agree that the return
address is not the only attack target but it is the most popular and un-
like function pointers and longjmp buffers, the return address is always
present. According to Cowan’s e-mail and a WireX paper a better solution
is on its way called PointGuard which will protect the integrity of pointers
in general with the same kind of canary solution [157]. This implies that
PointGuard will protect against all attack forms overflowing pointers (See
attack forms 3a–f and 4a–f in section 4).

StackGuard is available for download at http://www.immunix.org/.

3.4 Stack Shield

Stack Shield is a compiler patch for GCC made by Vendicator [163]. In
the current version 0.7 it implements three types of protection, two against
overwriting of the return address (both can be used at the same time) and
one against overwriting of function pointers.

Global Ret Stack

The Global Ret Stack protection of the return address is the default choice
for Stack Shield. It is a separate stack for storing the return addresses
of functions called during execution. The stack is a global array of 32-bit
entries. Whenever a function call is made, the return address being pushed
onto the normal stack is at the same time copied into the Global Ret Stack
array. When the function returns, the return address on the normal stack is
replaced by the copy on the Global Ret Stack. If an attacker had overwrit-
ten the return address in one way or another the attack would be stopped
without terminating the process execution. Note that no comparison is
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made between the return address on the stack and the copy on the Global
Ret Stack. This means only prevention and no detection of an attack. The
Global Ret Stack has by default 256 entries which limits the nesting depth
to 256 protected function calls. Further function calls will be unprotected
but execute normally.

Ret Range Check

A somewhat simpler but faster version of Stack Shield’s protection of return
addresses is the Ret Range Check. It uses a global variable to store the
return address of the current function. Before returning, the return address
on the stack is compared with the stored copy in the global variable. If
there is a difference the execution is halted. Note that the Ret Range Check
can detect an attack as opposed to the Global Ret Stack described above.

Protection of Function Pointers

Stack Shield also aims to protect function pointers from being overwritten.
The idea is that function pointers normally should point into the text seg-
ment of the process’ memory. That’s where the programmer is likely to
have implemented the functions to point at. If the process can ensure that
no function pointer is allowed to point into other parts of memory than the
text segment, it will be impossible for an attacker to make it point at code
injected into the process, since injection of data only can be done into the
data segment, the BSS segment, the heap, or the stack.

Stack Shield adds checking code before all function calls that make use
of function pointers. A global variable is then declared in the data segment
and its address is used as a boundary value. The checking function ensures
that any function pointer about to be dereferenced points to memory below
the address of the global boundary variable. If it points above the boundary
the process is terminated. This protection will give false positives if the
programmer has intended to use dynamically allocated function pointers.

Stack Shield is available for download at http://www.angelfire.com/
- sk/stackshield/.
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3.5 ProPolice

Hiroaki Etoh and Kunikazu Yoda from IBM Research in Tokyo have imple-
mented the perhaps most sophisticated compiler protection called ProPolice
[158].

The ProPolice Concept

Etoh’s and Yoda’s GCC patch ProPolice borrows the main idea from Stack-
Guard (see section 3.3)—they use canary values to detect attacks on the
stack. The novelty is the protection of stack allocated variables by rear-
ranging the local variables so that char buffers always are allocated at the
bottom, next to the old base pointer, where they cannot be overflown to
harm any other local variables.

Building a Safe Stack Frame

After a program has been compiled with ProPolice the stack frame of func-
tions look like that shown in figure 6.

Lower address
Local variables
and pointers

Local char buffers

Guard value
Old base pointer
Return address
Arguments

Higher address

Figure 6: The ProPolice stack frame.

No matter in what order local variables, pointers, and buffers are de-
clared by the programmer, they are rearranged in stack memory to reflect
the structure shown above. In this way we know that local char buffers
can only be overflown to harm each other, the old base pointer and below.
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Function Vulnerability
strcpy(char *dest, const char *src) May overflow dest

strcat(char *dest, const char *src) May overflow dest

getwd(char *buf) May overflow buf

gets(char *s) May overflow s

[vf]scanf(const char *format, ...) May overflow arguments
realpath(char *path, char resolved_path[]) May overflow path

[v]sprintf(char *str, const char *format, ...) May overflow str

Table 1: Vulnerable C functions that Libsafe adds protection to.

No variables can be attacked unless they are part of a char buffer. And
by placing the canary which they call the guard between these buffers and
the old base pointer all attacks outside the char buffer segment will be
detected. When an attack is detected the process is terminated.

When testing ProPolice we noticed some irregularities in when and was
not the buffer overflow protection was included. It seems like small char
buffers (e.g. 5 bytes) confuse ProPolice, causing it to skip the protection
even if the user has set the protector flag. This gives the overall impression
maybe that ProPolice is somewhat unstable.

ProPolice is available for download at http://www.trl.ibm.com/-

projects/security/ssp/.

3.6 Libsafe and Libverify

Another defense against buffer overflows presented by Arash Baratloo et al
[117] is Libsafe. This tool actually provides a combination of static and dy-
namic intrusion prevention. Statically it patches library functions in C that
constitute potential buffer overflow vulnerabilities. A range check is made
before the actual function call which ensures that the return address and
the base pointer cannot be overwritten. Further protection has been pro-
vided [164] with Libverify using a similar dynamic approach to StackGuard
(see Section 3.3).
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Libsafe

The key idea behind Libsafe is to estimate a safe boundary for buffers on
the stack at run-time and then check this boundary before any vulnerable
function is allowed to write to the buffer. Vulnerable functions they consider
to be the ones in table 1 below.

As a boundary value Libsafe uses the old base pointer pushed onto the
stack after the return address. No local variable should be allowed to ex-
pand further down the stack than the beginning of the old base pointer. In
this way a stack-based buffer overflow cannot overwrite the return address.

Lower address
Local variables

Boundary address Old base pointer
Return address
Arguments

Higher address

Figure 7: The Libsafe stack frame.

This boundary is enforced by overloading the functions in table 1 with
wrapping functions. These wrappers first compute the length of the input
as well as the allowed buffer size (i.e. from the buffer’s starting point to
the old base pointer) and then performs a boundary check. If the input
is within the boundary the original functionality is carried out. If not the
wrapper writes an alert to the system’s log file and then halts the program.
Observe that overflows within the local variables on the stack, such as
function pointers, are not stopped.

Libverify

Libverify is an enhancement of Libsafe, implementing return address verifi-
cation similar to StackGuard. But since this is a library it does not require
recompilation of the software. As with Libsafe the library is pre-loaded and
linked to any program running on the system.
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The key idea behind Libverify is to alter all functions in a process so
that the first thing done in every function is to copy the return address
onto a canary stack located on the heap, and the last thing done before
returning is to verify the return address by comparing it with the address
saved on the canary stack. If the return address is still correct the process
is allowed to continue executing. But if the return address does not match
the saved copy, execution is halted and a security alert is raised. Libverify
does not protect the integrity of the canary stack. They propose protecting
it with mprotect() as in RAD (see section 3.7) but as in the RAD case
this will most probably impose a very serious performance penalty [159].

To be able to do this, Libverify has to rearrange the code quite a bit.
First each function is copied whole to the heap (requires executable heap)
where it can be altered. Then the saving and verifying of the return address
is injected into each function by overwriting the first instruction with a call
to wrapper_entry and all return instructions with a call to wrapper_exit.
The need for copying the code to the heap is due to the Intel CPU archi-
tecture. On other platforms this could be solved without copying the code
[164].

Libverify is needed to give a more complete protection of the return ad-
dress since Libsafe only addresses standard C library functions (as pointed
out by Istvan Simon [165]). With Libsafe vulnerabilities could still occur
where the programmer has implemented his/her own memory handling.

Libsafe and Libverify are available for download at http://www.-

research.avayalabs.com/project/libsafe/.

3.7 Other Dynamic Solutions

The dynamic intrusion prevention techniques presented above are not the
only ones. Other researchers have had similar ideas and implemented al-
ternatives.

Tzi-cker Chiueh and Fu-Hau Hsu from State University of New York at
Stony Brook have presented a compiler patch for protection of the return
address [159]. They call their GCC patch Return Address Defender, or
RAD for short. The key idea behind RAD is quite similar to the return
address protection of Stack Shield described in Section 3.4. Every time a
function call is made and a new stack frame is created, RAD stores a copy
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of the new return address. When a function returns, the return address
about to be dereferenced is first checked against its copy. RAD is not
publicly available.

The GCC patch StackGhost [166] by Mike Frantzen and Mike Shuey
makes use of system specific features of the Sun Sparc Station to imple-
ment a sophisticated protection of the return address. They propose both
XORing a random value with the return address (as StackGuard) as well
as keeping a separate return address stack (as Stack Shield, RAD and Lib-
verify). They also suggest using cryptographic methods instead of XOR to
enhance security.

CCured and Cyclone are two recent research projects aiming to signifi-
cantly enhance type and bounds checking in C. They both use a combina-
tion of static analysis and run-time checks.

CCured [167, 168] is an extension of the C programming language that
distinguishes between various kinds of pointers depending on their usage.
The purpose of this distinction is to be able to prevent improper usage of
pointers and thus to guarantee that programs do not access memory areas
they shouldn’t access. CCured will change C programs slightly so that they
are type safe. CCured does not change code that does not use pointers or
arrays.

Cyclone [169] is a C dialect that prevents safety violations such as buffer
overflows, dangling pointers, and format string attacks by ruling out certain
parts of ANSI C and replacing them with safer versions. For instance
setjmp() and longjmp() are unsupported (in some cases exceptions are
used instead). Also pointer arithmetic is restricted. An average of 10%
of the lines of code have to be changed when porting programs from C to
Cyclone.

Richard Jones and Paul Kelly 1997 presented a GCC compiler patch
in which they implemented run-time bounds checking of variables [170].
For each declared storage pointer they keep an entry in a table where the
base and limit of the storage is kept. Before any pointer arithmetic or
pointer dereferencing is made, the base and limit is checked in the table.
While not explicitly aimed for security, this technique would effectively stop
all kinds of buffer overflow attacks. Sadly their solution suffered both from
performance penalties of more than 400 %, as well as incompatibilities with
real-world programs (according to Crispin Cowan et al [171]). Because of



173

the bad performance and compatibility we considered Jones’ and Kelly’s
solution less interesting for software development and excluded it from our
test.

It is also possible to have support for dynamic intrusion prevention in
the operating system. A popular idea is the non-executable stack. This
would make injection of attack code into the stack useless. But there are
many ways around this protection. A few examples include using code al-
ready linked into the program from libraries (for instance calling system()

with the parameter "/bin/sh"), injecting the attack code into other mem-
ory structures such as environment variables, or by exploiting buffer over-
flows on the heap or in the BSS/data segment. The Linux kernel patch
from the Openwall Project is publicly available and implements a non-
executable stack as well as protection against attacks using library func-
tions [172]. Since it is a kernel patch it is up to the user and not the
producer of software to install it. Therefore we did not include it in our
test.

David Wagner and Drew Dean have presented an interesting approach
for intrusion detection that relates to the functionality of the tools de-
scribed in this paper [173]. They model the program’s correct execution
behavior via static analysis of the source code, building up callgraphs or
even equivalent context-free languages defining the set of possible system
call traces. Then these models are used for run-time monitoring of execu-
tion. Any deviation from the defined ’good’ behavior will make the model
enter an unaccepting state and trigger the intrusion alarm. As the metric
for precision in intrusion detection they propose the branching factor of the
model. A low branching factor means that the attacker has few choices of
what to do next if he or she wants to evade detection.

4 Comparison of the Tools

Here we define our testbed of twenty buffer overflow attack forms and then
present the outcome of our empirical and theoretical comparison of the
tools from section 3.2.

We define an attack form as a combination of a technique, a location,
and an attack target. As described in section 2.3 we have identified two
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Attacks Attacks Attacks Abnormal
Development Tool prevented halted missed behavior

StackGuard
Terminator Canary

0 (0%) 3 (15%) 16 (80%) 1 (5%)

Stack Shield
Global Ret Stack

5 (25%) 0 (0%) 14 (70%) 1 (5%)

Stack Shield
Range Ret Check

0 (0%) 0 (0%) 17 (85%) 3 (15%)

Stack Shield
Global & Range

6 (30%) 0 (0%) 14 (70%) 0 (0%)

ProPolice 8 (40%) 2 (10%) 9 (45%) 1 (5%)

Libsafe and Libverify 0 (0%) 4 (20%) 15 (75%) 1 (5%)

Table 2: Empirical test of dynamic intrusion prevention tools. 20 attack
forms tested. “Prevented” means that the process execution is unharmed.
“Halted” means that the attack is detected but the process is terminated.

techniques, two types of location and four attack targets:

Techniques. Either we overflow the buffer all the way to the attack target
or we overflow the buffer to redirect a pointer to the target.

Locations. The types of location for the buffer overflow are the stack or
the heap/BSS/data segment.

Attack Targets. We have four targets—the return address, the old base
pointer, function pointers, and longjmp buffers. The last two can be
either variables or function parameters.

Considering all practically possible combinations gives us the twenty
attack forms listed below.

1. Buffer overflow on the stack all the way to the target:

(a) Return address

(b) Old base pointer

(c) Function pointer as local variable
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(d) Function pointer as parameter

(e) Longjmp buffer as local variable

(f) Longjmp buffer as function parameter

2. Buffer overflow on the heap/BSS/data all the way to the target:

(a) Function pointer

(b) Longjmp buffer

3. Buffer overflow of a pointer on the stack and then pointing at target:

(a) Return address

(b) Base pointer

(c) Function pointer as variable

(d) Function pointer as function parameter

(e) Longjmp buffer as variable

(f) Longjmp buffer as function parameter

4. Buffer overflow of a pointer on the heap/BSS/data and then pointing
at target:

(a) Return address

(b) Base pointer

(c) Function pointer as variable

(d) Function pointer as function parameter

(e) Longjmp buffer as variable

(f) Longjmp buffer as function parameter

Note that we do not consider differences in the likelihood of certain at-
tack forms being possible, nor current statistics on which attack forms are
most popular. However, we have observed that most of the dynamic intru-
sion prevention tools focus on the protection of the return address. Bulba
and Kil3r did not present any real-life examples of their attack forms that



4. Comparison of the Tools

Attacks Attacks Attacks
Development Tool prevented halted missed

StackGuard Terminator Canary 0 (0%) 4 (20%) 16 (80%)

StackGuard Random XOR Canary 0 (0%) 6 (30%) 14 (70%)

Stack Shield Global Ret Stack 6 (30%) 7 (35%) 7 (35%)

Stack Shield Range Ret Check 0 (0%) 10 (50%) 10 (50%)

Stack Shield Global & Range 6 (30%) 7 (35%) 7 (35%)

ProPolice 8 (40%) 3 (15%) 9 (45%)

Libsafe and Libverify 0 (0%) 6 (30%) 14 (70%)

Table 3: Theoretical comparison of dynamic intrusion prevention tools.
20 attack forms used. “Prevented” means that the process execution is
unharmed. “Halted” means that the attack is detected but the process is
terminated.

defeated StackGuard and Stack Shield. Also the Immunix operating sys-
tem (Linux hardened with StackGuard and more) came in second place at
the Defcon “Capture the Flag” competition where nearly 100 crackers and
security experts tried to compromise the competing systems [174]. This
implies that the tools presented here are effective against many of the cur-
rently used attack forms. The question is: will this change as soon as this
kind of protection is wide spread?

Also worth noting is that just because an attack form is prevented or
halted does not mean that the very same buffer overflow can not be abused
in another attack form. All of these attack forms have been implemented
on the Linux platform and the source code is available from our homepage:
http://www.ida.liu.se/~johwi.

To set up the test, the source code was compiled with StackGuard,
Stack Shield, or ProPolice, or linked with Libsafe/Libverify. The overall
results are shown in table 2. We also made a theoretical comparison to
investigate the potential of the ideas and concepts used in the tools. The
overall results of the theoretical analysis are shown in table 3. For details
of the tests see appendix B and C.

Most interesting in the overall test results is that the most effective tool,
namely ProPolice, is able to prevent only 50% of the attack forms. Buffer
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overflows on the heap/BSS/data targeting function pointers or longjmp
buffers are not prevented or halted by any of the tools, which means that
a combination of all techniques built into one tool would still miss 30% of
the attack forms.

This however does not comply with the result from the theoretical com-
parison. Stack Shield was not able to protect function pointers as stated
by Vendicator. Another difference is the abnormal behavior of StackGuard
and Stack Shield when confronted with a fake stack frame in the BSS seg-
ment.

These poor results are all evidence of the weakness in dynamic intrusion
prevention discussed in section 3.2, the tested tools all aim to protect known
attack targets. The return address has been a popular target and therefore
all tools are fairly effective in protecting it.

Worth noting is that StackGuard halts attacks against the old base
pointer although that was not mentioned as an explicit design goal.

Only ProPolice and Stack Shield offer real intrusion prevention—the
other tools are more or less intrusion detection systems. But still the general
behavior of all these tools is termination of process execution during attack.

5 Common Shortcomings

There are several shortcomings worth discussing. We have identified four
generic problems worth highlighting, especially when considering future
research in this area.

5.1 Denial of Service Attacks

Since three out of four tools terminate execution upon detecting an attack
they actually offer more of intrusion detection than intrusion prevention.
More important is that the vulnerabilities still allow for Denial of Service
attacks. Terminating a web service process is a common goal in security
attacks. Process termination results in a much less serious attack but will
still be a security issue.
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5.2 Storage Protection

Canaries or separate return address stacks have to be protected from at-
tacks. If the canary template or the stored copy of the return address can
be tampered with, the protection is fooled. Only StackGuard with the
terminator canary offers protection in this sense. The other tools have no
protection implemented and the performance penalty of such protection
can be very serious—up to 200 times [159].

5.3 Recompilation of Code

The three compiler patches have the common shortcoming of demanding
recompilation of all code to provide protection. For software vendors ship-
ping new products this is a natural thing but for running operating systems
and legacy systems this is a serious drawback. Libsafe/Libverify offers a
much more convenient solution in this sense. The StackGuard and ProPo-
lice teams have addressed this issue by offering protected versions of Linux
and FreeBSD.

5.4 Limited Nesting Depth

When keeping a separate stack with copies of return addresses, the nesting
depth of the process is limited. Only Vendicator, author of Stack Shield,
discusses this issue but offers no real solution to the problem.

6 Related Work

Three other studies of defenses against buffer overflow attacks have been
made.

In late 2000 Crispin Cowan et al published their paper “Buffer Over-
flows: Attacks and Defenses for the Vulnerability of the Decade” [157].
They implicitly discuss several of our attack forms but leave out the old
base pointer as an attack target. Comparison of defenses is broader con-
sidering also operating system patches, choice of programming language
and code auditing but there is only a theoretical analysis, no compara-
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tive testing is done. Also the only dynamic tools discussed are their own
StackGuard and their forthcoming PointGuard.

Only a month later Istvan Simon published his paper “A Comparative
Analysis of Methods of Defense against Buffer Overflow Attacks” [165].
It discusses pros and cons with operating system patches, StackGuard,
Libsafe, and similar solutions. The major drawback in his analysis is the
lack of categorization of buffer overflow attack forms (only three of our
attack forms are explicitly mentioned) and any structured comparison of
the tool’s effectiveness. No testing is done.

In March 2002 Pierre-Alain Fayolle and Vincent Glaume published their
lengthy report “A Buffer Overflow Study, Attacks & Defenses” [175]. They
describe and compare Libsafe with a non-executable stack and an intrusion
detection system. Tests are performed for two of our twenty attack forms.
No proper categorization of buffer overflow attack forms is made or used
for testing.

7 Conclusions

There are several run-time techniques for stopping the most common of
security intrusion attack—the buffer overflow. But we have shown that
none of these can handle the diverse forms of attacks known today. In
practice at best 40% of the attack forms were prevented and another 10%
detected and halted, leaving 50% of the attacks still at large. Combining
all the techniques in theory would still leave us with nearly a third of the
attack forms missed. In our opinion this is due to the general weakness of
the dynamic intrusion prevention solution—the tools all aim at protecting
known attack targets, not all targets. Nevertheless these tools and the
ideas they are built on are effective against many security attacks that
harm software users today.
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Linköpings universitet
mariam.kamkar@liu.se

Wouter Joosen
K. U. Leuven

Belgium
wouter.joosen@cs.kuleuven.be

Abstract

Despite the plethora of research done in code injection countermeasures,
buffer overflows still plague modern software. In 2003, Wilander and
Kamkar published a comparative evaluation on runtime buffer overflow pre-
vention technologies using a testbed of 20 attack forms and demonstrated
that the best prevention tool missed 50% of the attack forms. Since then,
many new prevention tools have been presented using that testbed to show
that they performed better, not missing any of the attack forms. At the
same time though, there have been major developments in the ways of
buffer overflow exploitation.

In this paper we present RIPE, an extension of Wilander’s and Kamkar’s
testbed which covers 850 attack forms. The main purpose of RIPE is to
provide a standard way of testing the coverage of a defense mechanism
against buffer overflows. In order to test RIPE we use it to empirically
evaluate some of the newer prevention techniques. Our results show that
the most popular, publicly available countermeasures cannot prevent all
of RIPE’s buffer overflow attack forms. ProPolice misses 60%, Libsafe-
Plus+TIED misses 23%, CRED misses 21%, and Ubuntu 9.10 with non-
executable memory and stack protection misses 11%.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive software;
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D.2.8 [Software Engineering]: Metrics—Product metric

1 Introduction

Buffer overflows are probably the single most well-known exploitation tech-
nique in the history of computer security. The ability to take control of
the execution flow of a process by overwriting adjacent data, first received
world-wide attention through the Morris worm [176] and since then has
been used as the exploitation mechanism in most of the well-known worms
(e.g. CodeRed [177] and SQLSlammer [178]) as well as in countless attacks
against popular software. Due to the severity and popularity of this at-
tack, researchers have produced a significant amount of papers describing
techniques which can, among others, detect, defend, stop and heal buffer-
overflows at all possible stages of a program’s lifetime. A small number of
these suggested techniques have reached production level, by being included
in popular programming frameworks and operating systems.

Despite the amount of research conducted in the area of buffer overflows
in specific, and code injection techniques in general, modern software is still
plagued by buffer-overflows which are discovered, almost weekly, in one of
the many popular software products. At the time of this writing, the US-
CERT [179] reports that 14 buffer-overflow vulnerabilities have been found
in 2011, many of which are in products of Microsoft, Adobe and Google.
This shows that the problem of buffer overflows is far from resolved and
that researchers in both academia and industry should focus their efforts
in creating countermeasures that can eventually be part of real running
systems.

While there are standard ways to measure the performance overhead of
a buffer overflow countermeasure, such as the SPEC CPU [180] and Olden
benchmarks, there is no standard way of testing and comparing the defense
coverage of any given countermeasure.

In 2003, Wilander and Kamkar [181] published a comparative evaluation
on runtime buffer overflow prevention using a testbed of 20 attack forms
and demonstrated that the best prevention tool missed 50% of the attack
forms. That testbed has been used to demonstrate the effectiveness of
subsequent tools and techniques [14, 15, 16, 17, 18, 19] and the outcome
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of the 2003 evaluation was used to motivate further preventive research
[20, 21, 22, 23].

We believe that many of the attack techniques tested by that testbed
are now outdated and thus a perfect “score” of a protection countermeasure
against them is of limited value.

In this paper we introduce RIPE—Runtime Intrusion Prevention Eval-
uator—which comprises of 850 buffer overflow attack forms. The main
purpose of RIPE is to quantify the protection coverage of any given counter-
measure by performing a wide range of buffer-overflow attacks and record-
ing their success or failure. The tool is released as free software (see Section
10 for availability) in an attempt to standardize the comparison between
countermeasures and to further support research on code-injection coun-
termeasures. In order to test the applicability and usability of the RIPE
testbed, we tested it against buffer overflow countermeasures that the au-
thors have made publicly available or that were kindly provided to us.

This paper and the release of the RIPE testbed provides the following
research contributions:

1. Implementation of the combinatorial set of buffer overflow attack
forms built on 4 locations of buffers in memory, 16 target code point-
ers, 2 overflow techniques, 5 variants of attack code being executed,
and 10 functions being abused. In total, 850 working attack forms.

2. Empirical evaluation of publicly available buffer overflow countermea-
sures using canaries, boundary checking, copying and checking target
data, library wrapping, and non-executable memory.

3. Open source, fully documented testbed code and driver engine for
evaluation and reporting.

The rest of this paper is structured as follows: The RIPE testbed is
described in Sections 2 and 3. Section 4 gives an overview of buffer overflow
prevention techniques. Our evaluation setup is explained in Section 5 and
the results are presented in Section 6. Section 7 contains related work.
Finally, Section 8 describes future work and we conclude in Section 9.
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2 The RIPE Buffer Overflow Testbed

The RIPE (Runtime Intrusion Prevention Evaluator) testbed has a back-
end built in C and a frontend built in Python. The backend or “attack
generator” of RIPE lets the user dynamically specify which type of buffer
overflow she wants to test. For instance:

./ripe_attack_generator -f strcpy -t direct -l stack

-c ret -i nonop

... will perform the standard stack smashing attack abusing the strcpy()
function to overflow a buffer on the stack all the way to the return pointer,
redirecting it to injected attack code without a NOP sled. As another
example:

./ripe_attack_generator -f sscanf -t indirect -l heap

-c funcptrstackparam -i returnintolibc

... will abuse the sscanf() function to perform an overflow of a buffer
located on the heap, overwrite a general pointer and make it point to
a function pointer parameter (indirect attack), and redirect that function
pointer to return-into-libc attack code. In the next sections, we will present
RIPE’s dimensions, which are essentially all the user-configurable param-
eters of an attack. Then we’ll enumerate all the parameters that build up
the combined 850 attack forms.

2.1 Testbed Dimensions

Wilander and Kamkar’s testbed (hereafter refered to as the “NDSS’03
testbed”) had three dimensions all of which are included in the new RIPE
testbed too; location of buffer in memory, target code pointer, and overflow
technique - Fig 4.1(a).

The new RIPE testbed has five dimensions including extended versions
of the original three. The additions are attack code and function abused -
Fig 4.1(b).
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Figure 1: The difference of dimensions supported by the NDSS’03 testbed
and RIPE

2.2 Dimension 1: Location

The first testbed dimension is the memory location of the buffer to be over-
flowed. Both the NDSS’03 testbed and RIPE support four buffer locations;
Stack, Heap, BSS, and Data segment.

2.3 Dimension 2: Target Code Pointer

The second testbed dimension is the target code pointer, i.e. the code
pointer to redirect towards the attack code. RIPE supports the following
target code pointers:

• Return address: The address stored by a function in order to return
to the appropriate offset of the caller

• Old base pointer : The previous contents of the EBP register, which is
used to reference function arguments and local variables

• Function pointers : Generic function pointers allowing programmers
to dynamically call different functions from the same code

• Longjmp buffers: Setjmp/longjmp is a technique which allows pro-
grammers to easily jump back to a predefined point in their code (see
Sec. 3.2).
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• Vulnerable Structs: Structs which group a buffer and a function
pointer and can be abused by attackers to overflow from one to the
other (see Sec. 3.3).

With the exception of the Return Address and the Old base pointer
targets that are Stack-specific, all other targets are allocated on all available
data segments of a process, i.e. on the Stack (both as local variables and
function arguments), on the Heap and on the Data/BSS segment.

2.4 Dimension 3: Overflow Technique

The third testbed dimension is overflow technique. Both the NDSS’03
testbed and RIPE support Direct and Indirect overflowing techniques. In
direct techniques, the target is adjacent to the overflowed buffer or can
be reached by sequentially overflowing from the buffer. On the other
hand, indirect overflowing makes use of generic pointers in a two-step ap-
proach. First the generic pointer is overflowed with the address of the target
and then at a later dereference, the target is overwritten with attacker-
controlled data. This technique was originally introduced by Bulba and
Kil3r [161] as a way to bypass the StackGuard countermeasure. A pointer
before the StackGuard canary was used to overwrite the return-address
while maintaining the integrity of the canary.

2.5 Dimension 4: Attack Code

The fourth testbed dimension is new for RIPE – attack code. A user
running the testbed can choose between attack code that spawns a shell
on the vulnerable machine or attack code that creates a file in a specific
directory. The former can be used when trying out individual attacks and
the latter is used by the front-end part of RIPE which exhaustively tries
all available attack combinations and then reports the full results. The
variations of these two shellcodes are presented in the following list:

• Shellcode without NOP sled : This option can be useful in testing the
accuracy of attacks as well as challenge countermeasures that rely on
the detection of specific code patterns (such as the presence of a set
of 0x90 bytes (NOP)) in the process’ address space.
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• Shellcode with NOP sled : This is the most-used form of shellcode
that prepends the attacker’s functionality with a set of NO-Operation
instructions to improve the attacker’s chances of correctly redirecting
the execution-flow of the program into his injected code.

• Shellcode with polymorphic NOP sled : In this case, the NOP sled
is not the standard set of 0x90 bytes but a set of instructions that
can be executed without affecting the correctness of the actual attack
code. As with the first variation, countermeasures that over-rely in
the presence of standardized NOP-sleds will have difficulty countering
such attacks. Akritidis et al. [182] conducted a study where, among
others, they showed how obfuscation and encryption can be used by
attackers to evade Network Intrusion Detection Systems (NIDS).

• Return-into-libc: Return-into-libc are attacks where the attacker does
not inject new code in the process’ address space but rather uses ex-
isting functions to perform his attack, for instance using the system

libc-function to execute an interactive shell. This attack was essen-
tially a natural evolution for attackers, when countermeasures that
disallowed execution from writable memory pages, e.g. Data Execu-
tion Prevention (DEP) andW�X, became popular in modern operat-
ing systems. RIPE uses system() for the spawning of an interactive
shell and creat() for creating new files.

• Return-Oriented Programming (ROP): Return-oriented program-
ming [63] is the most recent way of carrying-out exploitation, once
an attacker has achieved control of the execution flow. ROP is a gen-
eralization of Return-into-libc where now an attacker can use chunks
of functionality from existing code (gadgets) and combine them to
create new functionality. While we have implemented a ROP attack
in our testbed, we haven’t yet implemented stack-pivoting techniques
and thus we can only trigger such an attack when we control the con-
tents of the existing stack, as is the case in a stack-smashing attack.

2.6 Dimension 5: Function Abused

The fifth and final testbed dimension is also new for RIPE – function
abused. A user can choose to perform the buffer overflow with memcpy(),
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strcpy(), strncpy(), sprintf(), snprintf(), strcat(), strncat(),
sscanf(), fscanf(), and also with “homebrew”, a loop-based equivalent
of memcpy.

The n-containing functions are designed to take the target buffer size
into account which should prevent buffer overflows. The size however, is
provided by the developer (static or calculated) and thus a miscalculation
can cancel-out the protection offered by these functions. Known caveats
include the fact that parameter n means total buffer size for strncpy()

but remaining buffer space for strncat() [183], and if n is undefined for
instance because of a NULL value in the length calculation strncpy() will
allow for buffer overflow as shown in CVE-2009-4035 [184]:

line1 = getNext(line); // May return NULL

if ((n = line1 - line) > 255) {

n = 255;

}

strncpy(buf, line, n); // n undef or < 0

3 Building Payloads

RIPE’s attack generator dynamically builds the specified payload and per-
forms the attack on itself, i.e., the code contains all the required vulnerable
buffers and pointers as well as the logic for offsets, attack code and over-
flows.

Figure 4.2(a) shows the payload of a direct overflow with injected code,
and Figure 4.2(b) shows an indirect overflow using an intermediate pointer
to target the code pointer.

3.1 Fake Stack Frame

The old base pointer is pushed on the stack immediately above the return
address and is a possible target code pointer. The overflow redirects the
base pointer towards an injected fake stack frame with a fake return pointer
pointing to the attack code - Fig. 4.3(a).
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NOP sled, (shell code bytes back to u
simple or  or NOP sled or l
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(a) Direct Attack

Optional Attack code Padded Address N
NOP sled, (shell code bytes back to u
simple or  or NOP sled or l
polymorph  create file) attack code l

Vulnerable Other variables General
buffer pointer

Target code
pointer

(b) Indirect Attack

Figure 2: A direct and an indirect overflow payload with injected attack
code

3.2 Longjmp Buffer

Longjmp in C allows the programmer to explicitly jump back to functions,
not going through the chain of return addresses. Consider a program where
function A first calls setjmp(), then calls function B which in turn calls
function C. If C now calls longjmp() the control is directly transferred back
to function A, popping both C’s and B’s stack frames of the stack. Longjmp
buffers contain the environment data required to resume execution from the
point setjmp() was called. This environment data includes a base pointer
and a program counter. If the program counter is redirected to attack code
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Optional Attack code Fake Address N
NOP sled, (shell code stack to fake u
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(a) Fake Stack Frame

Optional Attack code Address
NOP sled, (shell code back to
simple or  or NOP sled or
polymorph  create file) attack code

Vulnerable Other Function
buffer variables pointer

Struct

(b) Overflowed struct

Figure 3: An attack where a fake stack frame (with an attacker-controlled
return address) is created and an overflow of a function pointer from within
the same struct

the attack will be executed when longjmp() is called.

3.3 Struct With Function Pointer

A struct containing a buffer and a function pointer can allow for an in-
ternal buffer overflow attack within the struct since there is no reordering
of variables to make the code pointer unreachable from the buffer, nor are
there any canary values between the buffer and the target code pointer -
Fig 4.3(b). Such structs have been previously discussed by Zhivich et al
[185].
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4 Runtime Buffer Overflow Prevention

The research in countering buffer overflow attacks at runtime has gone
in several directions. We have identified six general categories or tech-
niques, namely canary-based, boundary checking, copying and checking
target data, encrypted instruction addresses, library wrappers, and non-
executable and randomized memory. Our evaluation covers all but en-
crypted instruction addresses since we were not able to locate a publicly-
available countermeasure performing such operations.

4.1 Canary-Based Tools

This technique was invented by Cowan et al [160] and prevents buffer over-
flows by adding a canary value to sensitive memory regions. The canary’s
integrity is checked before the sensitive memory is used. If the canary has
been changed the sensitive memory may have been corrupted and the pro-
gram is typically terminated. Other tools have adopted the canary, for
instance detection of heap-based overflows targeting malloc linked lists by
Robertson et al [22], Microsoft’s /GC compiler flag [186], and stack pro-
tection with ProPolice by Etoh et al [158]. ProPolice is covered in our
empirical evaluation and is presented in more detail in Sec. 5.1.

4.2 Boundary Checking Tools

Standard C and C++ do not have runtime bounds checking unlike newer
languages such as Java and C#. This is one of the fundamental design
decisions that make buffer overflow attacks possible. Researchers have
implemented variants of C compilers that include boundary checking in
binaries.

In 1997 Jones and Kelly presented a GCC compiler patch in which
they implemented runtime bounds checking of variables [170]. Sadly their
solution suffered from performance penalties of more than 400%, as well as
incompatibility with real-world programs [171]. Ruwase and Lam continued
Jones’ and Kelly’s work and have implemented a GCC patch called“CRED”
[18]. CRED is covered in our empirical evaluation and is presented in
section 5.5.
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4.3 Tools Copying and Checking Target Data

StackShield [163] and Libverify [164] were the first buffer overflow preven-
tion tools that used the technique of storing copies of return addresses on
a separate stack. When a function returned, its stored return address is
checked against the copy on the separate stack. If the addresses differed
either the correct address was copied back or execution was halted. Stack-
Shield is a compiler patch whereas Libverify patched the code during load.
Both StackShield and Libverify are covered in our empirical evaluation and
are presented in section 5.2 and 5.3.

Chiueh and Hsu [159] presented a compiler patch called RAD in 2001.
It used a separate stack to keep copies of return addresses similar to Stack-
Shield. Smirnov and Chiueh have continued the work and implemented
a more complex GCC patch called DIRA [187]. Apart from the separate
stack with copies of return addresses, DIRA keeps copies of function pointer
values in a special buffer.Nebenzahl and Wool [188] have developed a tech-
nique for instrumenting Windows binaries at install-time with a separate
stack for copies of return addresses.

4.4 Library Wrappers

Buffer overflow prevention through library wrappers was originally done
by Baratloo, Singh, and Tsai, and their tool was called Libsafe [117]. It
patches library functions in C that constitute potential buffer overflow vul-
nerabilities. In the patched functions a range check is made before the
actual function call. As a boundary value Libsafe uses the old base pointer
pushed onto the stack after the return address.

Avijit, Gupta and Gupta continued the work by Baratloo et al by im-
plementing LibsafePlus and TIED [189, 190]. Their system collects and
stores information about the sizes of both stack and heap buffers. This
information is then used at runtime to ensure that no character buffers are
written past their limit. Libsafe, LibsafePlus, and TIED are all covered in
our empirical evaluation and are presented in more detail in Sections 5.3,
5.4.
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4.5 Non-Executable and Randomized Memory

The Linux kernel patch from the Openwall Project was the first to imple-
ment a non-executable stack [172]. Not allowing execution of code stored
on the stack effectively stops execution of attack code injected on the stack
and on the heap. In some cases, researchers have been able to circumvent
this countermeasure by abusing certain traits of a program, e.g. convinc-
ing the Just-in-time compiler of ActionScript in Macromedia Flash to place
attacker-code in their writable and executable memory pages [191].

Two more recent kernel patches that deny execution both on the stack
and on the heap are PaX [192] and ExecShield [193]. They also randomize
address offsets from the base of memory locations, called Address Space
Layout Randomization, to further countermeasure buffer overflow attacks.
DieHard [194] and its continuation DieHarder [195] are memory alloca-
tors which randomize the location of heap objects on the heap and re-
quire larger-than-needed address spaces to ensure probabilistic safety. Even
though DieHard is publicly available we could not include it in our eval-
uation since RIPE is a process that attacks itself calculating the needed
offsets from within its source code (see Sec. 8). This means, that RIPE
would “unfairly” de-randomize DieHard and successfully perform all of the
attacks.

5 Empirical Evaluation Setup

We have used RIPE to evaluate a number of preventive tools and techniques
designed to counter buffer overflow attacks, namely ProPolice (canary-
based), CRED (boundary checking), StackShield and Libverify (copying
and checking target data), Libsafe, LibsafePlus, LibsafePlus+TIED (li-
brary wrappers), and PAE and XD (non-executable memory).

The theoretical number of attack forms produced by multiplying all the
choices is 3,840 (4 locations * 16 target code pointers * 2 techniques * 3
variants of attack code without NOP sled variations * 10 functions being
abused). However, that number incorporates 2,990 practically impossible
attack forms. For instance it’s not possible to perform a direct buffer
overflow all the way from the BSS segment to the stack since the stack
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is not writable for a BSS segment variable. Thus, the number of working
attack forms is 850. In the empirical evaluation we have left out the three
NOP versions and only executed with one (the simple NOP sled). Since
none of the protection tools or techniques evaluated tries to detect NOP
sleds per se including them would not change the results of the current
analysis. Nevertheless RIPE supports three different NOP sled settings for
attack code.

5.1 ProPolice

Hiroaki Etoh and Kunikazu Yoda from IBM Research in Tokyo have imple-
mented a compiler protection called ProPolice [158]. It borrows the main
idea from StackGuard—canary, or guard values to detect attacks on the
stack. The guard is placed between the buffers and the old base pointer
meaning it protects both the return pointer and the old base-pointer from
direct overflows. In addition to the guard, ProPolice rearranges the local
stack variables so that char buffers always are allocated at the bottom,
next to the canary, where they cannot harm any other local variables if
overflowed. Non-char buffer variables can only be attacked if they are part
of a struct that also contains a buffer.

5.2 StackShield

StackShield is a compiler patch for GCC made by Vendicator [163]. In
the current version 0.7 it implements three types of protection, two against
overwriting of the return address (both can be used at the same time) and
one against overwriting of function pointers.

Global Ret Stack

The Global Ret Stack protection of the return address is the default choice
for StackShield. It is a separate stack for storing the return addresses of
functions called during execution. The stack is a global array of 32-bit
entries. Whenever a function call is made, the return address being pushed
onto the normal stack is at the same time copied into the Global Ret Stack
array. When the function returns, the return address on the normal stack is
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replaced by the copy on the Global Ret Stack. If an attacker had overwrit-
ten the return address in one way or another the attack would be stopped
without terminating the process execution. Note that no comparison is
made between the return address on the stack and the copy on the Global
Ret Stack allowing the countermeasure to prevent but not to detect buffer
overflows (and possible corruption of data due to them). The Global Ret
Stack has by default 256 entries which limits the nesting depth to 256 pro-
tected function calls. Further function calls will be unprotected but execute
normally.

Ret Range Check

A somewhat simpler but faster version of StackShield’s protection of return
addresses is the Ret Range Check. It uses a global variable to store the
return address of the current function. Before returning, the return address
on the stack is compared with the stored copy in the global variable. If
there is a difference the execution is halted. Note that the Ret Range Check
can detect an attack as opposed to the Global Ret Stack described above.

Protection of Function Pointers

StackShield also aims to protect function pointers from being overwrit-
ten. The idea is that function pointers normally should point into the text
segment of the process’ memory where the programmer is likely to have
implemented the functions to point at. If the process can ensure that no
function pointer is allowed to point into other parts of memory than the
text segment, it will be impossible for an attacker to make it point at code
injected into the process, since injection of data only can be done into the
stack, the heap, the BSS, or the data segment.

StackShield adds checking code before all function calls that make use
of function pointers. A global variable is then declared in the data segment
and its address is used as a boundary value. The checking function ensures
that any function pointer about to be dereferenced points to memory below
the address of the global boundary variable. If it points above the boundary
the process is terminated. This protection will give false positives if the
program uses dynamically allocated function pointers.
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5.3 Libsafe and Libverify

Another defense against buffer overflows presented by Arash Baratloo et
al [117] is Libsafe. This tool actually provides a combination of static and
dynamic intrusion prevention. Statically it patches library functions in C
that constitute potential buffer overflow vulnerabilities. A range check is
made before the actual function call which ensures that the return address
and the base pointer cannot be overwritten. Further protection has been
provided [164] with Libverify using a similar dynamic approach to Stack-
Guard.

Libsafe

The key idea behind Libsafe is to estimate a safe boundary for buffers on
the stack at run-time and then check this boundary before any vulnerable
function is allowed to write to the buffer.

As a boundary value Libsafe uses the old base pointer pushed onto the
stack after the return address. No local variable should be allowed to ex-
pand further down the stack than the beginning of the old base pointer. In
this way a stack-based buffer overflow cannot overwrite the return address.
This boundary is enforced by overloading strcpy(), strcat(), getwd(),
gets(), [vf]scanf(), realpath(), and [v]sprintf() with wrapping func-
tions. These wrappers first compute the length of the input as well as the
allowed buffer size (i.e. from the buffer’s starting point to the old base
pointer) and then performs a boundary check. If the input is within the
boundary the original functionality is carried out. If not the wrapper writes
an alert to the system’s log file and then halts the program. Observe that
overflows within the local variables on the stack, such as function pointers,
are not stopped.

Libverify

Libverify is an enhancement of Libsafe, implementing return address ver-
ification similar to StackShield. However, since this is a library it does
not require recompilation of the software. As with Libsafe the library is
pre-loaded and linked to any program running on the system. The key idea
behind Libverify is to alter all functions in a process so that the first thing
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done in every function is to copy the return address onto a canary stack
located on the heap, and the last thing done before returning is to verify
the return address by comparing it with the address saved on the canary
stack. If the return address is still correct the process is allowed to con-
tinue executing. However, if the return address does not match the saved
copy, execution is halted and a security alert is raised. Libverify does not
protect the integrity of the canary stack. They propose protecting it with
mprotect() like Return Address Defender, RAD [159]. However, as in the
RAD case this will most probably impose a serious performance penalty.

To be able to do this, Libverify has to transform the code of a given
program. First each function is copied whole to the heap (requires exe-
cutable heap) where it can be altered. Then the saving and verifying of
the return address is injected into each function by overwriting the first
instruction with a call to wrapper_entry and all return instructions with
a call to wrapper_exit. The need for copying the code to the heap is due
to the Intel CPU architecture. On other platforms this could be solved
without copying the code [164]. Libverify is needed to give a more com-
plete protection of the return address since Libsafe only addresses standard
C library functions (as pointed out by Istvan Simon [165]). With Libsafe
vulnerabilities could still occur where the programmer has implemented
his/her own memory handling.

5.4 LibsafePlus and TIED

Avijit, Gupta and Gupta continued the work by Baratloo et al by imple-
menting LibsafePlus and TIED [189, 190]. TIED collects static information
and LibsafePlus collects dynamic information about the sizes of stack and
heap buffers. This information is used runtime to ensure that no character
buffers are written past their limit.

Static buffer sizes are collected compile-time by exploiting debugging
information produced by a specific compiler option. Dynamic buffer size
information is collected runtime by interception of calls to malloc() and
free(). Finally, the original technique with wrappers for dynamically
linked libraries handling strings is used to check the bounds. Their main
contributions are a more precise boundary check of stack buffers than the
previous solution, and a boundary check of heap buffers.
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5.5 CRED

Ruwase and Lam continued Jones’ and Kelly’s boundary checking work and
have implemented a GCC patch called “CRED”, C Range Error Detector
[18]. Their goals were for the runtime checks to impose less overhead and
provide better compatibility. To enhance performance they only perform
boundary checks on string buffers since they consider such buffers the most
likely ones vulnerable to security attacks. With such a restriction most of
the programs they tested suffered less than 26 % overhead. Worst case was
a string-intensive email program which suffered 130 % overhead.

Compatibility was solved by storing out-of-bounds pointer values in so
called out-of-bounds objects. If pointer arithmetics using the out-of-bounds
pointer results in an in-bounds address the pointer is sanitized. All variables
with a memory range such as arrays and structs get an associated referent
object that keeps of pointer arithmetic and bounds. Pointer operations
that reference memory outside the referent object are illegal. CRED allows
out-of-bounds references to be part of arithmetic as long as the resulting
access is within bounds.

5.6 Non-Executable Memory and Stack Protector
(Ubuntu 9.10)

We have evaluated the buffer overflow prevention techniques used in
Ubuntu 9.10 “Karmic” [196] which has several security features [197] rele-
vant to buffer overflow prevention.

ASLR

Ubuntu 9.10 has five ASLR (Address Space Layout Randomization) fea-
tures, four enabled by default—Stack ASLR, Libs/mmap ASLR, Exec
ASLR, brk ASLR, and VDSO ASLR [197].

The fundamentals of defeating ASLR have been studied by Schacham et
al [198]. Attackers may reduce the entropy present in a randomized address
space by leaking information via format string attacks [199], buffer over-
reads [200] or covering multiple bits of entropy per attack by using heap
spraying, introduced by Hassell and Permeh [201]. RIPE does not use brute
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force, information leakage, or heap spraying to circumvent ASLR. While
such attack methods are interesting, RIPE currently focusses on evaluating
countermeasures performing attack detection or active prevention, not on
countermeasures making attacks harder. RIPE calculates its offsets and
target addresses at runtime and thus has information available after ran-
domization. The effects of this decision are discussed in detail in Section 8.

Non-Executable Memory

Most modern CPUs protect against executing non-executable memory re-
gions (heap, stack, etc), known either as Non-eXecute (NX) or eXecute-
Disable (XD) [202]. This protection reduces the areas an attacker can
use to perform arbitrary code execution. It requires that the kernel uses
PAE, Physical Address Extension. Ubuntu 9.10, partially emulates this
protection for processors lacking NX when running on a 32bit kernel. Our
evaluation runs where performed on a machine with an Intel Core 2 Duo
processor with XD support enabled.

Stack Protector (ProPolice)

Ubuntu 9.10 ships with a patched gcc using -fstack-protector by default.
This protection is ProPolice, presented in section 5.1. RIPE was compiled
with this gcc for the Ubuntu 9.10 evaluation.

6 Empirical Evaluation Results

In this section, we present the summary of our empirical evaluation of the
protection tools and techniques presented in section 5. We then continue
with detailed evaluation results for the top four. Full log files and test
results will be published online when the study is presented. The summary
of the empirical evaluation is presented in table 1. Our base-case is Ubuntu
6.06, a Linux distribution released in 2006 with no countermeasures against
code-injection attacks.
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6.1 Details for ProPolice

ProPolice is totally focused on protecting the stack and is successful in
doing so for direct, stack-based buffer overflows except for structs with a
buffer and function pointer. Also indirect, stack-based attacks are pre-
vented because of the re-arranging of character buffers.

On the heap, BSS, and data segment ProPolice does not add any pro-
tective countermeasures so direct or indirect, heap/BSS/data-based attacks
targeting any of the code pointers and abusing any of the functions will be
successful. Indirect, heap/BSS/data-based attacks against longjmp buffers
as stack variables or function parameters were not fully stable and thus
categorized as partly successful.

6.2 Details for LibsafePlus + TIED

Libsafe’s basic protection scheme is wrapping library functions (see list in
section 5.3. This means that the only stable, successful attack forms were
the ones abusing memcpy() and RIPE’s “homebrew” memcpy equivalent
since they are not wrapped.

Direct and indirect, stack/heap/BSS/data-based attacks targeting all
code pointers are successful as long as they abuse memcpy() or RIPE’s
“homebrew” memcpy equivalent.

snprintf(), sscanf(), strncpy(), strncat(), sscanf(), strcpy(),
strcat(), fscanf(), and sprintf() all were successfully abused a few
times and therefore categorized as partly successful. Those partly suc-
cessful attacks forms were spread across almost all other variables—direct
and indirect, stack/BSS/data segment, injected code and return-into-libc
and targeting return pointer, longjmp buffers, function pointers, old base
pointer and structs.

6.3 Details for CRED

CRED fails to prevent direct and indirect, stack/BSS/data-based over-
flows toward function pointers, longjmp buffers, and structs for the library
functions sprintf(), snprintf(), sscanf(), and fscanf(). The attacks
against structs are also successful for memcpy() and homebrew memcpy
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equivalent and are the only attacks successful from buffers on the heap.
The exception to the above is indirect attacks from the BSS and data
segments targeting a longjmp buffer as stack variable. There was some
instability in those attacks and therefore they were categorized as partly
successful.

6.4 Details for Non-Executable Memory and Stack
Protector (Ubuntu 9.10)

Ubuntu 9.10 with non-executable memory and stack protection scored the
best in our evaluation. All attack forms that involved the injection of new
code in a process’ address space failed, due to the policy that a memory
page can be either writable, or executable but not both. Also, any attack
against the return address of a function was blocked due to the presence
of a canary and the re-ordering of variables done by ProPolice. Strackx et.
al [200] have shown cases where an attack against the stack is possible even
in the presence of canary-based countermeasures, however we decided not
to include such an attack in the current version.

All struct attack forms were successful meaning all locations and all
abused functions worked, verifying the limitations of ProPolice. Addition-
ally all direct attacks against function pointers on the heap and the data
segment were successful. Indirect attacks against the old base pointer works
in general on the heap, BSS, and data segment for memcpy(), strcpy(),
strncpy(), sprintf(), snprintf(), strcat(), strncat(), sscanf(),
fscanf(), and homebrew memcpy equivalent. But there were some in-
stability for 10 of those combinations.

6.5 A Note on Evaluation of StackShield

The testbed execution for StackShield strangely claims only 1810 impossi-
ble attack forms whereas all the others say 2990. We figure this is because
of StackShield’s transformations and have manually removed the missing
1180 impossible attack forms from StackShields failed attacks since success-
ful and partly successful attacks are obviously possible. If in fact Stack-
Shield’s transformation makes 1180 extra attack forms possible, that means
an increased attack surface and not enhanced protection.
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6.6 Potential Shortcomings

Synthesized vs Real-World Code Testbeds

RIPE is a synthesized testbed, deliberately vulnerable, and a program with
the sole purpose of conducting attacks against itself and recording their
success or failure. Compared to real-world code testbeds, RIPE offers no
evaluation of scalability, complexity, or performance. We see merits in both
approaches—the main one for synthesized testbeds being the possibility to
enumerate and combine attack forms to provide good coverage.

False Negatives and Result Manipulation

The kind of evaluation RIPE provides is susceptible to both false negatives
and manipulation. An evaluated tool can prevent RIPE’s implementation
of a given attack form but still allow for exploitations of such attack forms
in general. RIPE only provides one vulnerability and matching payload for
each of the 850 attack forms, whereas in theory there are infinite variations
of both. Such a case could be interpreted as a false negative. Therefore,
evaluation results should be interpreted as an upper bound on the pre-
ventive effectiveness for the RIPE attack forms—there might be further
successful attack forms among the 850.

Further more, researchers could inspect or observe the specifics of how
RIPE implements certain attack forms and adjust their countermeasures to
prevent exactly those attacks. While this could be based on bad intentions
and effectively be result manipulation, it doesn’t have to be. Such RIPE-
specific prevention might evolve over time when fine tuning to give good
evaluation results. Therefore, care has to be taken when comparing RIPE
evaluation outcomes between countermeasures. We believe that it is in
every researcher’s own interest to use RIPE to evaluate fairly and since
RIPE is free software any necessary testbed augments can be implemented
and published.
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7 Related Work

Pincus and Baker present an overview of recent advances in exploitation of
buffer overflows [203]. Their main conclusion is that often heard assump-
tions about buffer overflows are not true—buffer overflows do not all inject
code, do not all target the return address, and do not all abuse buffers on
the stack. The article briefly discusses (1) injection of attack parameters
instead of attack code, (2) attacks targeting function pointers, data point-
ers, exception handlers, and pointers to virtual function tables in C++,
and (3) heap-based overflows.

Michael Zhivich et al published “Dynamic Buffer Overflow Detection”
in 2005 [185]. They use a collection of 55 small, synthesized C programs
that contain buffer overflows to evaluate. They have several“dimensions” in
their testbed. They differentiate between discrete overflows of up to 8 bytes
of memory, and continuous overflows resulting from multiple consecutive
writes. They have several buffer types—char, int, float, func *, and
char * and they are spread in the same four memory locations as we
have; stack, heap, BSS, and data segment. They have buffers in struct,
array, union, and array of structs. Lib functions they abuse are (f)gets,
(fs)scanf, fread, fwrite, sprintf, str(n)cpy, str(n)cat, and memcpy.
An attack is judged as prevented if it’s detected or if a segmentation fault
occurs. The top performing tools in their study are Insure++, CCured and
CRED. They also evaluate the tools against approximately 100 line models
of fourteen historic vulnerabilities in bind, sendmail, and wu-ftpd. CCured,
CRED, and TinyCC came out on top, detecting about 90% of the overflows.
Unfortunately their testbed is not available which means their study cannot
be repeated and their test cases cannot be used for future evaluations. Also
they do not try all possible attack combinations nor publish exactly which
buffer overflows worked and which didn’t. In contrast, RIPE is meant to
be a publicly available evaluator which researchers can use to report and
compare the coverage of their security mechanisms against a large but well-
defined set of real-world attacks.
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8 Future Work

As mentioned in previous sections, RIPE is a process that attacks itself
and then checks the success or failure of the launched attacks. Due to
the fact that the attack code is part of the vulnerable process, any coun-
termeasures relying on the secrecy of memory locations are defeated since
RIPE has access to the addresses of both the overflowing buffer and the
target. RIPE could be extended with a save/load offsets feature allowing
offsets from one execution to be used in a subsequent run. This would al-
low the evaluation of countermeasures that rely on memory randomization
such as ASLR or DieHard [194] and DieHarder [195]. Heap spraying and
information leakage attacks could also be added to “assist” an attacker in
de-randomizing certain countermeasures. We are also currently consider-
ing the addition of non-control data attacks [204] which would allow for
evaluation of countermeasures such as data space randomization[205] and
ValueGuard [206].

9 Conclusions

Even though hundreds of papers have been published on the problem of
buffer overflows and code injection attacks, modern software still is plagued
by improper checking of user input attesting to the fact that this is still
an open research problem. In this paper we presented RIPE, a Runtime
Intrusion Prevention Evaluator which executes a total of 850 buffer-overflow
attacks against popular defense mechanisms. The main purpose of RIPE is
to provide a freely available testbed which developers of defense mechanisms
can use to quantify the security coverage of their proposals and compare
themselves against previous work using a well-defined and real-world set of
attacks.
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Initial parts of the testbed extensions were built by Pontus Viking as
part of his Master’s Thesis [25].
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paper, especially Martin Johns.

10 Availability

RIPE is free software released under the MIT licence and available on
GitHub: https://github.com/johnwilander/RIPE
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Appendix A

Static Testbed for
Intrusion Prevention
Tools

In this appendix we have included the 44 function calls used to compare
publicly available tools for static intrusion prevention. To shorten it down
we have only included the interesting parts.

#define BUFSIZE 9

static char static_global_buffer = ’A’;

static char global_buffer[BUFSIZE];

/***** Buffer Overflow Vulnerabilities *****/

pointer = gets(buffer); /* Unsafe */

scanf("%8s", buffer_safe); /* Safe */

scanf("%s", buffer_unsafe); /* Unsafe */

fscanf(fopen(file_name, "w"), "%8s", buffer_safe); /* Safe */

fscanf(fopen(file_name, "w"), "%s", buffer_unsafe); /* Unsafe */

sscanf(input_string, "%8s", buffer_safe); /* Safe */
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sscanf(input_string, "%s", buffer_unsafe); /* Unsafe */

if(choice==0) vscanf("%8s", arglist); /* Safe */

else vscanf("%s", arglist); /* Unsafe */

if(choice==0) vsscanf(input_string, "%8s", arglist); /* Safe */

else vsscanf(input_string, "%s", arglist); /* Unsafe */

if(choice==0)

vfscanf(fopen(file_name, "w"), "%8s", arglist); /* Safe */

else

vfscanf(fopen(file_name, "w"), "%s", arglist); /* Unsafe */

sprintf(buffer_safe, "%8s", input_string); /* Safe */

sprintf(buffer_unsafe, "%s", input_string); /* Unsafe */

if(strlen(input_string)<BUFSIZE)

strcat(buffer_safe, input_string); /* Safe */

strcat(buffer_unsafe, input_string); /* Unsafe */

if(strlen(input_string)<BUFSIZE)

strcpy(buffer_safe, input_string); /* Safe */

strcpy(buffer_unsafe, input_string); /* Unsafe */

cuserid(buffer_unsafe); /* Unsafe */

if(choice==0) vsprintf (buffer_safe, "%8s", arglist); /* Safe */

else vsprintf (buffer_unsafe, "%s", arglist); /* Unsafe */

res = streadd(buffer_safe, "a", ""); /* Safe */

res = streadd(buffer_unsafe, input_string, ""); /* Unsafe */

res = strecpy(buffer_safe, "a", ""); /* Safe */

res = strecpy(buffer_unsafe, input_string, ""); /* Unsafe */

res = strtrns("a", "a", "A", buffer_safe); /* Safe */

res = strtrns(input_string, "a", "A", buffer_unsafe); /* Unsafe */

/***** Format String Vulnerabilities *****/

printf(&static_global_buffer); /* Safe */

printf(global_buffer); /* Unsafe */

fprintf(stdout, &static_global_buffer); /* Safe */

fprintf(stdout, global_buffer); /* Unsafe */
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char local_buffer[BUFSIZE];

/* Safe */

sprintf(local_buffer, &static_global_buffer, input_string);

/* Unsafe */

sprintf(local_buffer, global_buffer, input_string);

char local_buffer[BUFSIZE];

/* Safe */

snprintf(local_buffer, BUFSIZE, &static_global_buffer, input_string);

/* Unsafe */

snprintf(local_buffer, BUFSIZE, global_buffer, input_string);

if(choice==0) vprintf(&static_global_buffer, arglist); /* Safe */

else vprintf(global_buffer, arglist); /* Unsafe */

if(choice==0) /* Safe */

vfprintf(stdout, &static_global_buffer, arglist);

else /* Unsafe */

vfprintf(stdout, global_buffer, arglist);

char local_buffer[BUFSIZE];

if(choice==0) /* Safe */

vsprintf(local_buffer, &static_global_buffer, arglist);

else /* Unsafe */

vsprintf(local_buffer, global_buffer, arglist);

char local_buffer[BUFSIZE];

if(choice==0) /* Safe */

vsnprintf(local_buffer, BUFSIZE, &static_global_buffer, arglist);

else /* Unsafe */

vsnprintf(local_buffer, BUFSIZE, global_buffer, arglist);





Appendix B

Empirical Test of
Dynamic Buffer Overflow
Prevention

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Missed

Stack Shield Range Ret Check Abnormal Missed Missed

Stack Shield Global & Range Prevented Prevented Missed

ProPolice Halted Halted Prevented

Libsafe and Libverify Halted Halted Missed

Table 1: Prevention of buffer overflow on the stack all the way to
the target.
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Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

Stack Shield Global Ret Stack Missed Missed Missed

Stack Shield Range Ret Check Missed Missed Missed

Stack Shield Global & Range Missed Missed Missed

ProPolice Abnormal Prevented Missed

Libsafe and Libverify Halted Missed Halted

Table 2: (Continued) Prevention of buffer overflow on the stack
all the way to the target.

Attack Target Func Ptr Longjmp Buf
Development Tool Variable Variable

StackGuard Terminator Canary Missed Missed

Stack Shield Global Ret Stack Missed Missed

Stack Shield Range Ret Check Missed Missed

Stack Shield Global & Range Missed Missed

ProPolice Missed Missed

Libsafe and Libverify Missed Missed

Table 3: Prevention of buffer overflow on the heap/BSS/data all
the way to the target.

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Missed

Stack Shield Range Ret Check Abnormal Missed Missed

Stack Shield Global & Range Prevented Prevented Missed

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Missed Abnormal Missed

Table 4: Prevention of buffer overflow of pointer on the stack and
then pointing at target.
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Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

Stack Shield Global Ret Stack Missed Missed Missed

Stack Shield Range Ret Check Missed Missed Missed

Stack Shield Global & Range Missed Missed Missed

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Missed Missed Missed

Table 5: (Continued) Prevention of buffer overflow of pointer on
the stack and then pointing at target.

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Abnormal Missed

Stack Shield Global Ret Stack Prevented Abnormal Missed

Stack Shield Range Ret Check Abnormal Missed Missed

Stack Shield Global & Range Prevented Prevented Missed

ProPolice Missed Missed Missed

Libsafe and Libverify Missed Missed Missed

Table 6: Prevention of buffer overflow of a pointer on the
heap/BSS/data and then pointing at target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

Stack Shield Global Ret Stack Missed Missed Missed

Stack Shield Range Ret Check Missed Missed Missed

Stack Shield Global & Range Missed Missed Missed

ProPolice Missed Missed Missed

Libsafe and Libverify Missed Missed Missed

Table 7: (Continued) Prevention of buffer overflow of a pointer on
the heap/BSS/data and then pointing at target.





Appendix C

Theoretical Test of
Dynamic Buffer Overflow
Prevention

Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Halted Halted Missed

StackGuard Random XOR Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Halted

Stack Shield Range Ret Check Halted Missed Halted

Stack Shield Global & Range Prevented Prevented Halted

ProPolice Halted Halted Prevented

Libsafe and Libverify Halted Halted Missed

Table 1: Prevention of buffer overflow on the stack all the way to
the target.
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Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

StackGuard Random XOR Canary Missed Missed Missed

Stack Shield Global Ret Stack Halted Missed Missed

Stack Shield Range Ret Check Halted Missed Missed

Stack Shield Global & Range Halted Missed Missed

ProPolice Missed Halted Missed

Libsafe and Libverify Halted Missed Halted

Table 2: (Continued) Prevention of buffer overflow on the stack
all the way to the target.

Attack Target Func Ptr Longjmp Buf
Development Tool Variable Variable

StackGuard Terminator Canary Missed Missed

StackGuard Random XOR Canary Missed Missed

Stack Shield Global Ret Stack Missed Missed

Stack Shield Range Ret Check Missed Missed

Stack Shield Global & Range Missed Missed

ProPolice Missed Missed

Libsafe and Libverify Missed Missed

Table 3: Prevention of buffer overflow on the heap/BSS/data all
the way to the target.
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Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Halted Missed

StackGuard Random XOR Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Halted

Stack Shield Range Ret Check Halted Missed Halted

Stack Shield Global & Range Prevented Prevented Halted

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Halted Halted Missed

Table 4: Prevention of buffer overflow of pointer on the stack and
then pointing at target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

StackGuard Random XOR Canary Missed Missed Missed

Stack Shield Global Ret Stack Halted Missed Missed

Stack Shield Range Ret Check Halted Missed Missed

Stack Shield Global & Range Halted Missed Missed

ProPolice Prevented Prevented Prevented

Libsafe and Libverify Missed Missed Missed

Table 5: (Continued) Prevention of buffer overflow of pointer on
the stack and then pointing at target.



Attack Target Return Old Base Func Ptr
Development Tool address Pointer Variable

StackGuard Terminator Canary Missed Halted Missed

StackGuard Random XOR Canary Halted Halted Missed

Stack Shield Global Ret Stack Prevented Prevented Halted

Stack Shield Range Ret Check Halted Halted Halted

Stack Shield Global & Range Prevented Prevented Halted

ProPolice Missed Halted Missed

Libsafe and Libverify Halted Halted Missed

Table 6: Prevention of buffer overflow of a pointer on the
heap/BSS/data and then pointing at target.

Attack Target Func Ptr Longjmp Buf Longjmp Buf
Development Tool Parameter Variable Parameter

StackGuard Terminator Canary Missed Missed Missed

StackGuard Random XOR Canary Missed Missed Missed

Stack Shield Global Ret Stack Halted Missed Missed

Stack Shield Range Ret Check Halted Missed Missed

Stack Shield Global & Range Halted Missed Missed

ProPolice Missed Missed Missed

Libsafe and Libverify Missed Missed Missed

Table 7: (Continued) Prevention of buffer overflow of a pointer on
the heap/BSS/data and then pointing at target.



Appendix D

Terminology

Specific terminology used in each of our chapters is presented in those
chapters respectively. Additionally this thesis makes use of the following
general terminology.

Security. The term security in computer science is related to Computer
Security and Information Security. The objective of computer and
information security is to protect computer services or sensitive infor-
mation from data theft (ensure Confidentiality), data corruption (en-
sure Integrity), denial of service (ensure Availability) but also uphold
data authenticity (ensure Non-Repudiation) and traceability (allow
for Auditing). In this thesis we mostly refer to security in the sense
of withstanding active intrusion attempts against benign software.

Software Security or Secure Software. We use the terms secure soft-
ware and software security to denote software that has gone through
some kind of security audit or test and has no known security vul-
nerabilities. However, there is no absolutely secure software since
new software vulnerability types are being discovered continuously.
“Secure to the best of our knowledge” would be a more accurate de-
scription. Some use the term securish to point out the absence of
absolute security.
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Security Vulnerability. A piece of software has a security vulnerability
when an attacker can violate the software’s security by using an attack
vector. An attack vector can be malicious user input that alters or
adds to the normal execution of the software but also a side channel
such as measuring time, power consumption, or radiation.

Intrusion. An intrusion into benign software is made when a vulnerability
is exploited to make the benign software do malicious things that
violates its security.

KLOC. KLOC is short for kilo lines of code, or thousand lines of code.
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