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Summary.

(1) The measurements of Shaw and Butler of the partial pressures of water
and ethyl alcohol in solutions containing lithium chloride have been extended
to solutions containing 2 and 4 mols. per cent. of ethyl aleohol.

(2) A discussion is given of the thermodynamics of salting out. It is
pointed out that the salting out is properly measured, not by the change of
the activity of the non-electrolyte produced by the salt, but by the difference
between this quantity and the normal effect, which is defined.

(3) The partial free energies of transfer of lithium chloride from water to
alecoholic solutions have been calculated from the partial pressures of water
and alcohol. The variation is approximately linear with the molar fraction
of alcohol.
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Introduction.

In a previous paperf (Part 1I of this series) an attempt was made to treat
from a general point of view the problem of a single disease in a population
which consisted of three categories of people—namely, never infected, sick
and recovered—and in which the infectivity of the disease was a function of the
period of illness, whilst the susceptibility of a recovered person was a function
of the period which had elapsed since the time of his recovery. New individuals
entering the population either by birth or by immigration naturally entered
the category of the never infected which for convenience we called ** virgins.”
It was pointed out that the results obtained were subject to two important
limitations : (1) that the disease under consideration was the only cause of

t ¢ Proc. Roy. Soc.,” A, vol. 138, p. 55, (1932).
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death, and (2) that the age of the individuals did not affect their infectivity,
susceptibility or reproductiveness.

It is the purpose of the present paper to remove the first of these limitations
by the introduction of constant non-specific death rates, which for the sake
of generality are assumed to be different for virgins, sick, and recovered. It
may be stated at once that the introduction of this additional factor produces
surprisingly little change in the general nature of the results previously obtained,
and that the conclusions of the previous paper hold with very little modifica-

odion.

§ In the previous paper the results were first of all worked out for constant
‘gnfectivity, recovery and death rates, and the more general problem, in which
XPhese rates were variable, was thereafter considered. The algebra for constant
f\coeﬁicients was relatively very simple. It is now found, however, that with
The introduction of non-specific death rates, the simple case increases in com-
gglexity relatively much more than does the general case, so that the advantage
oof treating it separately largely disappears. In particular, whereas the various
g-xpressmns for steady state levels previously came out explicitly as fairly
Zleple functions of the constant coefficients, they are now dependent on a
"Somewhat complicated quadratic equation. On the other hand the equations
gwhich refer to the case with variable rates, although they now contain a few
'gxtra terms, remain qualitatively similar in type to those previously obtained,
Eand the same method of treatment leads at once to identical or closely similar
a‘esults We shall not therefore, in the present communication, treat in detail
Tthe case of constant rates but only give some of the main results. It may be
Smentioned, however, that the general equations have been checked at the
gvm'ious points by the introduction of constant rates, and comparison has been
_cd:made between the formule so obtained and those found when constant rates
Lwere used throughout.

S Asin the previous paper the equations which describe the progress of small
gvariations about the steady state are formulated, but their fuller discussion
Rhas at present been reserved.

It will be recalled that in Part IT a number of special cases were discussed
either because they had some special practical importance, or because they
exhibited peculiarities from the mathematical point of view. With the intro-
duction of non-specific death rates, a number of new special cases requiring
detailed consideration came to light. To appreciate the relationship between
all these cases it became necessary to adopt a scheme of classification, which
although multiplying the total number of special cases considerably, made

own
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their treatment much simpler, and except in two instances only very brief
discussion was required. The five special cases of Part 1I are readily accom-
modated in the new scheme.

A question of some practical importance is the effect upon the size of the
population, the number of sick, and the relative incidence of the disease, of
changes in the various parameters which characterize either the population
or the disease. These points were investigated to some extent in the previous
paper, but are more fully considered in the present communication both in
connection with the general case, and with a number of the special cases
referred to above. The results obtained are not always in accordance with
expectation.

General Case.

General Equations.—A detailed description of the population under dis-
cussion will be found on pages 59 and 63 of the previous paper (Part II). The
nomenclature and notation previously adopted remains unaltered, and to
economize space will not be explained again here. The new death rates, which
are now introduced, are denoted by 7, = and p for virgins, recovered persons,
and sick, respectively, so that certain equations in Part IT have to be modified.
For convenience of reference the same numbers are used to denote the equations,
an asterisk being added where alteration has been necessary. In the case of
equations which do not correspond to numbers in Part II, index numbers
consecutive to those in that paper have been employed. It is to be noted that
the variables employed refer throughout to population densities, but if the
area be considered as fixed, the population size may be employed in place
of the less usual conception of population density.

Equations (15), (16), and (17) become

| =T, — T (15%)
9 e (16%)
d_’ + ™ = U, vt:

g_ity + py = v, — W, — U, (17*)

equations (19) to (27) remain unaltered.
To express u,, in terms of u, we have the equation

ou A

u“ -+ T = — u“f (t) =y nu“, (28*)
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whence ;
VR e JolTu=n1471an (32%)
In a similar manner it can be shown that
Vg = Ve e—jz(lo,+tlo.+9)tlo" (29*)

f)= r kv, ¢N¢d0, where N,= e'ﬁ"v’*“a'”"“" (30%)

S = J‘” Kw,_odd,  where K,=%kN, (31)
Q 0

SBy equation (19),

é ‘ [f(r—x JHFN gy (33%)
D JO

Bso

g{) u‘-, = “‘-7e._jn[j‘l—‘r—rf)mlf-mlclf’ (37*)
oob =u, F({t—n= 1), where F(t—1,17)= e’ﬂ”“"’*""’s*""“‘, (38%)
=

v@ence by equation (20)

c == j F@t— = 7)u._,d~. (39)
£ 0

2

]

'gEquatlona (40) to (45) remain formally unaltered

=Equations for Steady State—In finding the conditions for a steady state
c?rtain modifications are necessary.

“Clearly

§ L+D+pN= N (i + do + p) e~ fo e+t dp+0 e gg I (46%)
éﬂe as before b e It

§ U= pX 4+ uX + vY + m. (47)

ﬁxe other relations in equations (47), (48) and (49) no longer hold.
BBy (33*)

Q ety | J.a e~.|‘:|[;'.t“A')'Fi](lA'd-A,

)
but

f @ =KY, (50)
whence

X =T o@remian

= = F (51%*)
KV+=
VOL. OXL1.—A. "
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By (39)

But
and

hence

thus

As previously

Also

where

Thus

As before

W. O. Kermack and A. G. McKendrick.

X=UrF(t-—'r, %) d.

0

T
F(t—r~, T) = e—jolf(t—r+£lm$+wm¢ }

(@) = @V,

r F{—r)dr= r e~Jo@Voptmie dr,
0

0

=F(V),
X = UF (V).

Y=NV, U=LV and X=LVF(V)

~

V =0VG (V) T,

V)= G@—= 7ds

V=XKV and W=DV.

From these relations it follows that

U =LYV,
V=LV (1 —=F)
V=_KVU

KV + 7
W =DV, >
;T

KV 4=
X = LFV,
Y:=NV. 3

(52)

(53%)
(54)
(65)-(57)

(58) (in part)

(59%)

(58%)

(60) and (61)

(62%)
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The condition for a steady state of the total population is by equstlons
(15%), (16*) and (17%)
U=W+nX+1rX+pY,

whence after substituting the above values of X,X,Yand W,

& _ (D +nLF 4 oN) (KV +7)
K
3311: by equation (47),
S U=m+pX + pX + Y,

va:ence, on substitution,
_ (m+ uLEV + wNV) KV +7)
KV+7—¢

rg/ on 09 Au

tA[)Cont:inuing these two expressions for U, we have, for the steady state, V
é‘iren by

@(V)—LF{;L 7..__{,_7‘(@‘- n”-}-vN D— pN-{—m—{—(u’ —)(D"‘PN)

3 KV KV

= (65)*
BAlso the total number of individuals is

Q

o

S n=X+X+Y,

o

S D + =LF + oN :

- = + LFV + NV,

=

g e 2

£ —h Al o) i ry W (64%)F
B

ho]

a

OWe shall now consider the nature of the real positive roots of equation (65%),
&dweshallassume that & > 7, and p > .
QClearly as V0,0 (V) >+ . Itisalso obvious by inspection that © (V)
decreases, as V increases. Thus the equation © (V) =0 will have one real
positive root or no real positive roots, according as @ (V)y_, , is negative or
positive.
Clearly

O(V)y o, ={LF(p —7m) + W — D — oN}y 4 -

1 [Erratum: Equation (64) of Part IT should read n = !l:: + (LF 4+ N) VJ.

H 2
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As in Part II, p. 70, we shall assume that w; has the following properties.

1t is equal to zero between t = 0 and 1 — g, it increases monotonically, and

it has a constant value  when t > . Then

F= ‘-t e " dr + fe*‘wﬁwwﬁ dt + j"’ e~ W1yt r=m)l=nr gp (67%)
. n

<0

((where as before ﬁ, = -’., o di\),

\ 0 J

_ 1 — e—me Wi W, e e~ ¥V, +wn)
+M—e)e +—¢Vm+n,
(where 5 is some value of = between € and 7).
Thus
SR et ol
1
and
OV)voe=(p—mLE =" L N_D_N. (68%)
KL

Therefore © (V) =0 has no real root if D 4 pN — N — (u—=) L (1—e™)
K

18 negative, and has one real root if this expression is positive. If it is zero
then there is a root V = .
Thus the sufficient conditions that there should be one and only one real

positive root are
2>, T

e o (103)
D+pN—vN—(y.-—1r)LT>O.

The third condition may also be written in the form
1-L—wW—(p-mLE= >,

It may be remarked that these conditions although sufficient are not

necessary. When e is zero the third condition becomes Iﬁ)+ p>v, and

in the case of constant coefficients this gives d 4 p > v. This means that the
total deaths amongst the sick are greater than the births among the sick, and
this is clearly necessary to balance the excess of births over deaths in the
healthy, if a steady state is to be maintained.
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As has been remarked in the introduction, we do not propose to give the
detailed working for the case with constant coefficients. It may, however,
be shown either by working from first principles, or by using equation (65%),
calculating all the terms in it for constant coefficients, and substituting
V =Y (d + I + p), that Y is given by the quadratic
q

k%(d-{-p—v) Y2 —kk _‘lm_i_((_‘—ﬁ)z(d‘f"?) - W(d+k9“") + (u _n)l_c’_ Y

—nfm + @ —F) @ +1+0)=0. (104

S The quadratic has one real positive and one real negative root if p > =,

gnd d 4+ p > v. On account of the complicated nature of the quadratie, it
ppens that it is in some respects easier to deal with the general case than

<ith this very special case of constant coefficients.

% Effect of Variations of Parameters on Steady State.—Having assumed that the

fhree conditions found above are satisfied, we shall now investigate the varia-

%?on of the absolute rate of incidence of the disease V, and of the proportional
an
-gate of incidence T = :—:, with changes in the immigration, birth and death

A2
Fafes.

& From equation (65*) we have

22

>

§ 26 20

2 oV . om oV om

% m-—@, ﬁ——@' ete. (105)
£ ov oV

S0 99_1 9 _D4oN+LsF_1—L(—xF)

£ om V' o KV KV :

= (106)
he ® _ 1y 0 _x ©  1—L(1—=F)

o a oy ) a—— > a—_—— == -

E ® v ™ KV

&nd = -

oSl 7 e T ) Y PO (ﬁ—a}a_F

&
=

oF e ®Vwrtw) dE
—=—§ PR e it P

or 0

and is therefore negative ; and, by (15*)
X =U—-V
=m+ X + pX +vY —KVX  (by (47) and (60) ),
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hence
XmV—u+m—m+¢X+w

which is a positive quantity, so that
: . B KV—u+7= (108)
is necessarily positive,

Thus 00)/om, 00/dp, 00/0p and 00 /dv are each positive, whilse 20 /o7
and 00 /0 are negative. As p is contained in the expressions N, L, D, F, etc.,
the value of 90/dp does not seem to be unambiguously either positive or

negative.
Further
3@)__ ,f 7 (p— {l—L(l—-vtF)}(p.—n)
LF {p—n+ 2T } d s , (109)

and must be negative since F is positive, and F’ is negative.

Hence 0V/om, 6V /op, 0V /op, and 0V /ov are each positive, whilst oV /on
and 0V /ox are negative.

[The sign of ¢V /op may be either positive or negative. It may readily be
shown that if p. =7 and p=m, 00/0p is negative, whilst if x> 7, p >,
v =0 and [, = 0, 00 /0p is positive.]

Let T = V/n, so that, as before, 100T is the percentage rate of incidence of
fresh cases of the disease, then

i X Y
TV VY
=1=00 =) IR R, (110)
KV
and 19T _ —{1—LQA—nF} o nLF it
T 3V Rv? +‘F+T{v' ()

Since F’ is negative, 0T/0V is positive.

Consequently as T does not contain m, 1z, u, v or = except implicitly in V,
oT /om, 0T |/dp, 0T /0p and 8T /0v are positive, whilst 0T /0% is negative.

The variation of T with = requires further consideration.

o1 _om arov
o d'wm  oVorm’
where 9'T/d'n refers to partial differentiation with respect to = directly, and
apart from V.
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Thus ,
. 1
5 o
or_ M| 9= OV
Malis |28, | @8
gV.| ax oV

After substituting in the Jacobean and reducing, we find

o2 TrlWoE Lk
o ZQ[(KVaV( i KV)
ov s
1 —L (1 — =F) L2V +7) n 0F RV — 4=
KVv? KV av KV
__[LF KV+7t8F m 1—LQ1—=nF), OoF
T i %y == — T J (112)

The terms within the curly brackets are readily seen to be negative, whilst
he last term is positive or negative according as

c=(Rr—7)—(n—n), (113)

ocietypublishing.org/ on 09 August 2

; . Hence if m = 0, and ¢ <0, ¢T/or is negative.
& > 0, or if m is not zero, the sign of 8T /¢ is not certain. By considering
Jhbe extreme case w = 0, it may easily be shown that the coefficient of m is
Siot necessarily negative.
; So far we have been investigating the effect on the steady state of the
Slisease of changes in the parameters which characterize the population. It
Bs of interest to find the effects of alterations in the parameters which character-
gze the disease. These are k, ¢, ®,l,and d. Owing to the fact that [ and d
ike p) appear in N it does not seem possible to obtain any simple general
Sesult as to the effect of alteration of these parameters. S
As the factor k enters into the equations for ©@ and T only in the form of K
it is sufficient to investigate 8V /6K and 2T /K.

)
H
Q
-~
o
@
w
-
g
N
@
-~
(=]

el

ST

8 _ _{1—LQ—xF) sid
a‘K K2V (— T:); ( )

and is necessarily negative [or zero if & = 7], hence 2V/2K is negative (or
zero if o = 7).
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Now
or_ T 9T oV
K &K ' 9V K’
A I
8 (=
I ov
®| @ W
N| T W
_T21—L(1—nF) m oF
98 VKM (w+Llogy): (155
ov

which is positive if ¢ = (@ — ®) — (@ — =) is negative or equal to zero. If
o is positive, the sign is ambiguous unless m = 0, in which case 9T /7K is
negative. If m =0 and ¢ = 0, 3T/2K = 0, that is, T is independent of K.

Similarly as ¢ occurs in ® and T only in the form of ® it is sufficient to
investigate 8V /o @ and 9T /0 ®.

30 _ 00 oF
5 — OF 30
= L{p— =+ — 7 55 - (116)

Thus as 9F/o® is negative, 80 /¢ @ is negative, so that 9V/0 ® is negative.
Also

)1 1
LT
T T2| 7O ov
o ® | 50 20
oV | v BV
1 %
a —’1-‘ : fj
 mesF | TF OV
900 26 26
oV T v
T2 oF 1. KV+4=x S
=—®|—w/|" gy +ol- —=F)}|. @
v

Similarly it may readily be shown that 8V/de is negative, and that oT/dw *
is equal to the same expression as the above for aT/?2 ®, except that 0F/dw
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takes the place of oF /0 ®, where F/dw like 9F/0 @ is necessarily negative.
It follows that 8T/2® and @T /0w are positive if ¢ is positive or equal to zero.
If o is negative 9T /6® and 0T /0w are ambiguous in sign unless m is zero, in
which case they are of negative sign. If m is zero and ¢ is zero, 0T /0® and
9T /2w are both zero, It may be noted that if there is a general increase in
infectivity or susceptibility, T will increase provided that o is zero, unless m
is also zero, when T will remain constant. If 5 is not zero the net result would
appear to be ambiguous.

From equations (65%), (110) and (46*) we may obtain T in the form

o
N
S Bep )
< T = Bz :
50 1-L+N@E—%—V) +o LF—'—";
o e L (118)
= T= pF
E B NG o TS =
E" P P v
] 7
é&t is at once evident that if m = 0, and ¢ or L =0, T is independent of K,
4D and o, thus verifying the above somewhat unexpected result. If in addition
% — 7 = v — p, that is if the differences between birth and death rates are
%he same for all three categories—virgin, recovered and sick—then
= E== s 119
T B (119)

s ’_é/royalsoci

:The conclusion that, if & — 7 = p. — = (a condition which, it might be expected
;wﬂl probably be satisfied in many cases), T is independent of the infectivity
gof the disease and of susceptibility to it, is one which would scarcely have been

Fanticipated
§ It is to be noticed that when V is zero, the equation
<
=
= ==l L @+ NV
o
Rhecomes
1
z (120)

In this case X = 1 /K, X =0,and Y = 0. It follows that no endemic disease
can exist in a population which has a density of less than 1/K. This conclusion
may be compared with the result found in the first paper of this series, T viz.,

t ¢ Proc. Roy. Soc.,” A, vol. 105, p. 700 (1927).
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that no epidemic can take place in a non-multlplymg population provided that
the density is less than 1/A. If it be noted that K is essentially equivalent to
A, it is clear that the two results in a general way agree with one another.
Actually the threshold value ny,= X = 1/K can only exist as a steady state
when p =7, If & =7 + ¢, where ¢ is a small quantity, and if m = 0, the
following approximate results are readily found :—

V= — o (121)
K(1—wW-—L&#)
T

¥= . , (122)

K(1—wW—L£E&)
=y

X = > (123)
'n:K(l—vN—LE}

o S (124)
K Re(1—wW—LE)

where

There are two possibilities :—

(1) 1—wWN—L % > 0. In this case, when e is small, V represents the

unique positive solution known to exist, when the three conditions mentioned
above are satisfied. When ¢ tends to 0, V tends to 0, and n tends to 1/K,
so that 1/K does in fact constitute a threshold value for n.

(2) 1 — W —L 2 < 0. In this case, when ¢ is small and positive, the real
= < po

positive root which necessarily exists does not become zero with ¢, so than
¢ — 0 does not imply that V- 0. Tt is, however, true that # is never less than
1/K, so that in this case 1 /i may be regarded as a lower limit to the density of
a population in which there is an endemic disease in a steady state.

Tt is readily found that

|

+ Le [ (R — ®w)edr,  (125)

]_iz{l—vN-—-L-E)"’
T

X+4 =

]
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and therefore must exceed 1/K, provided that ®e, never exceeds K, that is,
as long as those recovered from the disease are not at any stage more liable
to infection than the virgins.

Equations for Variations about Steady State.

The equations relating to the stability of the steady state are as follows :—

S d‘d_?{. 4 a" ik -‘_’,g s 7‘:—27', (74*)
=) i
(@\]
Sl S W (75%)
=) di
Z
(@) ’
CﬁD % =0y —w'y—u'y— py, (76%)
o g
?D ., —_— ’ ’
S u'y = pa’ + px' + vy, (77)
o))
g B
Z o J Li¢'esd8) T (B=w) (78)
_'—D‘ 0
2 _
b v" = i’lt + U", (79)
D)
25 - T L
& v, = TRV + X [ Ko, 000, (B= o) (80)
% A JO
S W= Dwide  (B=w) (81)
§ 0
= : B L £
= y' = [ Nt odb+ [ vo,d0y, (B=w) (82)
Lg JO J0
5 % B _ = =B imo o [ABV=
,.g xl f— j u"_Ae—(K" +")Ad)\_U{ e_(K‘+")'\" ‘ ng ‘_A'_gdﬁdl'd;\
__Q 0 JO JOJO
g e

B Ay, 84*
g - Jn w, A2y (84%)

B B
f)" — (DVU ( (.\),F’ (t— TS T) dT + d)v jl thru,l—‘l d‘f
0

+ 0

+ UG j" O, o d0, (8B)}
0

t In the previous paper a slight omission occurs in equation 85, which should read
as above,
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(B=o). l'where ¥, = e_f"(w“eh) 2
and F(t— 1, v)=—F, [ : r O ¥y se0 BOeog dE,
JOJO
so that F = r F.dx,
v

~ 0

and G =

T -
| (N wpt+m) dE
©, e Jo (Ve dr.—J

v
and

A

z'———U[ F'(t — =, 'r)d'r—{-[
0

Also we have

8 8
F,u, .dv+ [ U, dty . (B = o). (86)
0

0 o

T +040 (1, b dye 4p) d9*
Vo, = oV, e‘]o. (lgrtdy +p) ¢ , (87*)
o) = SRAR e )
I“‘M == ou'oh G_J‘A' L rddisd Vo ] (88*)
= DEA. e~ (KVA7) (¢4+T) (89*)
= F(—T_Tl,l+T+7l) m
ul"l === Ouﬁ ’ ( )
F(—T—1,71)
¢+T 4704, v I
=l eIn i bl (91%*)

Equations (84%), (86), (82), (78), and (79) (using (85) and (80)) with upper
limit § = ¢ +4 T, correspond to the five equations (92) to (96) of the previous
paper.

Special Cases.

So far the problem has been considered in its most general form. In the
previous paper certain particular cases were discussed which appeared to be
of special interest from the practical point of view. With the increased
generality of the results now obtained, the number of special cases to be studied
has naturally increased, and it becomes desirable to classify them according to
some general scheme. It will be noted that in the theory as elaborated above,
the conclusions arrived at depend upon certain relationships between [, p,
v, , ™ and p. It is therefore convenient in the first instance to classify the
special cases according to the values of these six rates. We thus have the
following five cases :—

Case 0 : general case, with conditions £ > 7, p. > 7, and

D+pN—vN;-(1_“—:_—")L(,L—n) >0,
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Casel: p=p,n=m, v=0.
Case2: p=T,p=mand v=op
Case3: p=p=v=nm=n=p=0
Cased: p=p=v=0

It will be seen that the general conditions are satisfied in cases 0, 1, 2 and 3,
and all the above theory holds. Case 4, however, is different in that the
Qconditions (. > 7 and p > 7 are definitely not satisfied, so that the question
Sof the number of steady states in this instance requires special investiga-
Ztion.
% If in the above classes we put m = 0, .., exclude immigration, we have
oanother set of special cases which we shall denote by 0', 1’, 2/, ete. Cases 0’
gand 1" involve no new features and no special comment is necessary, but case
S 18 characterized by the fact that the births balance the deaths from causes
sother than the disease under consideration, so that a steady state cannot
exist unless d; = 0. The same applies to case 3'. Further, case 4’ does not

g

=
éin any condition give a population in which a disease may exist in a steady
Sstate.

It is thus seen that, by considering the values of @, u, v, %, =, p and m, nine
types are obtained of which only one requires special investigation from the
oint of view of the number of steady states which are possible.

It is, however, of special interest to subdivide each type according to the
Znature of the disease, which may be either fatal or non-fatal, and may or may

<=not allow of recovery. Each type therefore gives rise to four varieties, namely :

ypub

societ

//I‘O}./éll

(@) 1, d 0,
() 1=0,d=#0,
(€) 1£0,d=0,
(Dol =10 d=10,

Downloaded from

These will be denoted by 0, 0,, 0, and 0, etc. We have thus 36 different
cases, but, as will be seen, certain of them do not give steady states corre-
gponding to a finite population with endemic disease. For example, 3, is
obviously of this nature, as, by hypothesis, there are no deaths so that the
population necessarily increases continually as the result of immigration. A
steady state is therefore impossible. These cases will be indicated in the
mathematical working by the emergence of values V = 0 or .



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

110 W. O. Kermack and A. G. McKendrick.

The various cases are indicated in the following table, in which, for convenience of
reference, the case numbers used in Part II are given in brackets. Where a blank
occurs no steady state is possible.

1#0,d#0.|1=0,d#0. | 17#0,d=0.| 1 =0,d =0.

Coneral oaBe, M FE/Q ...oovivivmirivstonsionssanses 0 0 0,

General case, 7 = 0........covicevvivinniicianinsinsninns 0’ 0!; Osid 851‘:
_,,_¢=p,7r=w,v=0.m¢0 .................... 1 1 1z 114
F=L"’”="’ v=0,m= ........................ 1’ l'l l'd l'[,x
E:E.#=ﬂ,v=p,m#0 .................... 2 2 et .
p=mp=pv=pm=0 - - — 24 214
p=p=v=m=m=p=0,mz=0 3 (3) 3 (4) - —
£=p=v=g=1r=p=0,m=0 ........ - — 3a (5) 314

=p=y=
f;éo,n;eo,p;éo G ST | 4 4 4, 414

Another contingency may arise, as in cases 2';, 2, 3, and 3';,, in which
the equation for V becomes indeterminate. In these cases the size of the
population cannot alter, so that the total population is fixed by the initial
conditions. A new equation for V has to be obtained by equating the sum of
X, X and Y to this fixed number n. The conditions under which this equation
yields a definite and unique steady state require special investigation. It
is sufficient to examine case 2, as the other three are particular cases of it.
It may be remarked that case 3’, corresponds to case 5 in the previous paper.
In the next two sections we shall therefore investigate the equations for V
relating to cases 4 and 2',. In addition a few remarks will be added in certain
cases in which [ = 0, a condition which makes the equation for V relatively
simple, so that more definite results can be obtained than in the general case.

Case 4.—In case 4, = p =y =0, and m # 0, that is to say there is
immigration but no reproduction. It is obvious that the conditions pu>=
and p > 7 are not satisfied (except when = and = are both zero), so that the
conclusions drawn above for the general case do not necessarily hold. It was
pointed out above that the conditions for a definite and unique steady state
were sufficient but not necessary, so that it’is possible for definite and unique
steady states to exist when these conditions are not satisfied. It happens, as
will be shown below, that with certain assumptions the present special case
is an example of such an exception.

The equation for V is in this case

(KV +7)

VO (V) = — LFr——

— (D +pN) Vtm— 2 (D +pN) =0, (126)
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hence when V is zero, s 1,
VO (V)=—T’"‘+m—%m+pm (127)

But when V is zero
F=j e“'"d'r:=11_r-, (128)
0

hence in the limit (V —0) -
V@(V)———- 1n——(D+pN)

K

N =
S =m— . (129)
N K
@so
2 (VO (Ve = — LBV — (D +¢N) V,
2 = —LV(1 —e™™) —(1 — L) V (above (68*%) ),
5 =—V(l—Le™), (130)
%nt L cannot be greater than unity so that Le~™ < 1, hence
o0
é {VO (V}you + — . (131)
% Thus there will certainly be one real root, and there may be an odd number
§f real roots if m > 7/K, whilst there may be no real roots or an even number
Q
oai m < /K.
2 We shall now find the conditions which will ensure that VO(V) decreases
@onotonically with V.
2 SNV =TV LI BT L T,
= K K
Now
2 KV 7P =&Y +0)F — (t— B F,
@ut
EKV+1:)F= ‘ (KV + 1) e_j"('nulsﬂi . dr

~0

_J"('t-v...,s+-r) 3 d

(®PVe, +m)e 0

T

Do

Il
ey
8

=3

J" (®Vug+m) dE
0 » 1

<L E VK — ®w,)e

0 ¢O),.
K = / K K do,) _[f(@Vest+m de
=14 (g —1)—0{11:(\——mr “1)+ g d,} Pibinlo )™

(132)
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where @, is the value of w, when 7 is zero. We shall temporarily assume that
g is not zero. We shall also assume as in the previous paper that de, /dx is
never negative, and further that ®w, is never greater than K ; that is to say,
that the infectivity of the recovered never decreases, and that it never exceeds
the infectivity of the virgins. 1If these conditions are satisfied the expression

/! K K do
iy = mR R >

is never negative.

We have in the above assumed that w, is not zero. It may, however, easily
be shown by a method similar to that employed in the previous paper (p. 79)
that this assumption is not essential.

If, further, 7 is not less than 7, the term —(z — 7)F will increase with V (or
remain constantly zero) so that F (KV +7) will increase with V. Also the
term (1 — L)V cannot decrease with V, since L < 1, so that —V@(V) increases
with V, or VO(V) decreases with V provided that

 m>F, (133)
w, < % for all values of , (134)
and deo/dx (135)

is never negative.

If these three conditions are satisfied a unique steady state will exist provided
that m > E/-I—i, whilst no steady state in which the disease is endemic will
exist if m <= /I—(. Conditions (133) to (135) imply that the chances of death
of the members of the population from general causes are not decreased by an
attack of the disease ; that the susceptibility after an attack remains steady
or increases monotonically but never exceeds that which exists in the virgin
individual.

We shall now investigate the dependence of V upon m, =, = and p. As
V@(V) constantly decreases with V, provided that the abhove conditions are
satisfied,

ave (V)
is always negative. Also GAY
0-xo __LFr (1 —L))
— VO(V)=1; = VOV — — —
s VO =15 Vo) = — 22— B
and is therefore negative ; \ (136)

25 KV +7) aF
Zyev) = LT Fa s
< VO(V) = = ATSas
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But 1 _
n %F g ,‘ 2 [
0
= | ‘re--[:t wu‘d‘te—" 3 S J.me— "e“L: ek dx
| lo 0
+ rf DV, e=lo R (137)

- = — I + a positive quantity.

S oF . : 0

CTHence F + = —is positive, and consequently — VO(V) is negative.

= on on

z

<Further

N s

= m@m=wmw@+wmw@+wmw@

‘\:D op 3K O oL Op oF 0p°
Now

o0

g oVO(V) LFrx , 1— L)%

Z oK ORI w8
v%ich is positive.
ARo

3 NON) vy BN 1 — Py

s B (VT Z) =), (139)

\ (mrt [T WV piz)
F= J e -|n ¢ dx,
1)

L (=
\-:{ e d,
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g
Ince 1 — nF >0, and 3Vg)L(V) i8 positive (or zero in the particular case
where «, is always zero).
Again .
oF K

which is negative,

As K /2g and cL/0p are negative, whilst 8F /g is zero, VO (V)/3p is always
negative,
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It follows from the above that @V /om is always positive, whilst 8V /ox, eV [ox
and 0V/0p are negative provided that the conditions (133) to (135) are satisfied.
Also since 0T /0V is positive (111), it follows that T /@m is positive, and 9T /o=
is negative. The signs of @T/0r nas 0T /0p appear to be ambiguous.

In this case then, when the conditions (133) to (135) are satisfied and m > E/I_(,
the absolute rate of infection V, and the proportional rate T both increase with
the rate of immigration m, but decrease with increase in the general death rate
(7) of the virgin group. If m < %/K no disease will exist in the community,
so that m = 7/K is the threshold immigration rate.

As regards the dependence of V upon K, ® and o, we find

av;aﬁ(V) = 1% {l —L(L —=F)}, (141)
ovo(V) _ + m =y ¥
e LE(hVJ‘—BaQ, (142)
and 2
Vo (V) _ . = v = oF 143
which are each positive, hence
b oV and Ci
K’ od 0w
are positive,
Also
oT _ —T {1 —L(1 —=F)} (1— Lil — nF) &V + m)— Ln?!g[
K ovey) kv U Kv v g/
oV
(144)
where ¢ reduces in this case to ® — 7, and
—T2 \ I~
g_:f) = Wﬁ'f_ﬁ(-_i%) [0 — L0 —H)} KV +7)
V -—
Lo (KV + x) {l—— L(1— -nF)}J. (145)
KV

T /dw is equal to the same expression as the above for 0T/ ® except that
oF 0w takes the place of 9F/0®, where 9F/dw like 9F/8® is necessarily
negative.
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It follows that 8T/d ® and 3 T/dw are positive, whilst dT/0K is positive if
o is positive or zero, and ambiguous when o is negative (m # 0).

In the special case 4; where [, = 0, that is to say where there is no recovery
from the disease, we have V =m — E/I—i, and all the quantities X, X, etc.,
are given explicitly in terms of the various constants. The results are in
general the same as in case 4, except that the conditions (133) to (135) are now
meaningless, as the constants concerned do not enter into the problem.

o Case 2';.—This case which calls for special consideration refers to a com-
Sunity in which there is a non-fatal disease, but which does not form a com-
getely closed system. Births and deaths from other causes are taking place,
Eﬂt at such a rate as to balance each other, so that the total number of the
gopulation remains constant. Immigration is excluded. The conditions are
=0, p=m, p.=m, v=opand d =0 (whence L 4+ pN =1). The equation
B®r V vanishes completely, and we find that if n =X + X + Y, dn/dt = 0.
%" is thus defined by the equation n = X + X + Y where n is the total
@mber of individuals in the system. Thus
1 —L(1—=F)

"= = + LVF NV, (147)

We have to examine the nature of the roots of this equation. Let

:ps://royalsometypublishl

x(V):%(Kv+n)F+1—;‘-+NV—7;. (148)
B is readily seen that
= X(V)V»w > 00,
Ero
!
8 /(v)\—n)_’!JEFv—-»U‘I‘——lJ—ﬂ
=2 K K
,Eut
=) Tl
2 Fy 0~ J e "dr=1/x,
) 0
as by assumption e, is always finite.
Hence
L 1
L (Vyso—> -+——n———n (149)
K K K

There may thus be an even number of roots if n <C 1 /ﬁ, and there will be
» odd number if n > 1/K. Clearly ny=1/K represents a threshold density
in the same sense as n, =1/ ®w represented a threshold density in case b

I2
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of the previous paper (p. 79), i.c., 3, according to the present system of
classification.

We shall now find the conditions under which y (V) increases monotonically
with V, so that there will be one root or none at all according as » is greater or
less than 1/K

We have shown above (132) that (I_IV + =) F is never negative provided that
dw,/d~ is never negative, and @ w, is never greater than K, that is to say that
the infectivity of the recovered never decreases, and that it never exceeds the
infectivity of the virgins. We have in fact

I K [ K K do) _[ @ve ) g
V)=1 —_—1)= e = jn §°F grme
A=k (o= t) = [ (G 1) + g G} e % ermte

g L)
K

+ NV —n, (160)

and, as the expression within curly brackets within the integral is never negative
on the above assumptions, it is readily seen that y (V) always increases with V.
Thus the equation % (V) = 0 has one and only one real positive root provided
that n > 1 /I—(, whilst if n < 1/K there is no real positive root. When n =1 /I—{
there is only one root namely V = 0.

In case 2';,, t.e., an incurable but non-fatal disease,

f 1\
Y=pin—=] (1561
P I", )

The more general conclusions arrived at above hold, except that the condition
K > ®w, is now meaningless, and therefore unnecessary. The threshold
density n, = I/R exists as before.

Other Special Cases.—As when [, = 0, V can always be expressed explicitly
in terms of the various constants, it is desirable to consider the most general
case of this type, namely 0, We have

p—T
nEX (152)
1— N

Vo

This is certainly positive provided that @ >7, and vN < 1. The latter
condition is the third condition for the existence of a unique steady state
(103), when L is zero. The second condition, namely p > m, becomes meaning-
less, and is therefore unnecessary.
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It is still impossible to determine unambiguously the sign of 9V /dp, but if
v = 0, it may readily be shown that 9V /dp is positive, and 8S/dp is negative,

. A - A
where S = = Y i.e., the proportion of sick. These results may be verified

for constant coefficients, and it may also be shown that in this case the equili-
brium is a stable one.

A few remarks may be added regarding a special group of cases, which are
important in practice but do not require special treatment as no fundamentally
new consideration arises. When permanent and complete immunity is conferred
by an attack of the disease, » = 0, and F = 1/x. The equation for V becomes

m+p._;n-_

N (153)

PN ST

—
.

These cases are closely related to the group in which /; = 0 and are probably
of considerable importance as describing the group of virus diseases in which
immunity appears often to be permanent and complete.

Discussion.

The main results detailed in the above investigation may be summarized
by saying that the existence of a death rate from causes other than the particular
disease which is operating, does not materially alter any of the results obtained
in Part II of this investigation. We have not yet taken into account the effect
of variation in age-constitution, nor have variations in natural immunity been
allowed for.

The chief feature of the systems treated here, and in the previous paper, is
the existence of a steady state, which is unique provided that certain conditions,
which are likely to exist in nature, are satisfied (equation (103), also (133) to
(135) ). This steady state is naturally a function both of the parameters
characteristic of the disease—the infectivity, death and recovery rates—and
of the other parameters which refer more particularly to the population—
the birth rate, the immigration rate, and the non-specific death rates.

The incidence of disease is raised when the immigration or birth rates are
increased (p. 102). This statement holds whether the incidence of disease
is measured by (1) the number of sick Y; (2) the relative number of
sick 8 = Y/n; (3) the incidence rate V; or (4) the relative incidence rate
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T = V/n. Further, the incidence constantly decreases with increase in the
death rate of the virgins, but whereas Y and V decrease with increase in the
death rate of the recovered, the behaviour of 8 and T is more complex and
depends upon the value of ¢ (112). The effect of the non-specific death rate of
the sick (p) is complicated, and obscure.

When we turn to the effect on the incidence of the characteristic features of
the disease (p. 103), the most interesting results are those relating to the effect
of variations in infectivity. It is found that by such an alteration both the
total population and the number of diseased persons in it are changed. For
example, increase in the susceptibility of the virgins, leading to an increase in
K, causes a decrease in the size of the population n, and also a decrease both
of Y and of V. The effect on T and 8 is more complicated and depends upon
the value of ¢ (113). If there is no immigration and ¢ = 0, then change in
susceptibility does not alter T or 8 (p. 105). Likewise Y and V both decrease
with increase in w,, the susceptibility of the recovered, as well as with @
which measures the infectivity of the disease ; whilst the changes undergone
by T and S again depend upon the value of 5. As before, when m = 0, and

- 6=0, T and 8 do not alter with changes in susceptibility or infectivity. It

follows that an increase in infectivity resulting in greater chances of infection
of both virgins and recovered will decrease both V and Y, but will not alter
T and S provided that m = 0 and ¢ = 0. If, however, these latter conditions
are not satisfied, it does not appear possible to predict in a general way what
alteration in T and S will ensue. It is to be noted that the condition ¢ = 0
means that the difference between the birth rate and the non-specific death
rate is the same for virgins as for recovered, a condition which is usually
approximately fulfilled. It is at first sight surprising that in these circum-
stances (m = 0 and ¢ = 0), alterations in infectivity or susceptibility should
be without effect on the relative prevalence of the disease in the community,
but the fact is that the relative prevalence can then be expressed by a formula
which does not involve either K @, or w, (equation (118) ) so that changes in
these parameters do not affect the result.

It will be seen from the above that, other things being equal, decrease in
infectivity or susceptibility is always an advantage since it enables a larger
total population density to exist. If, however, the goal desired is to reduce
the relative disease rate in the community to a minimum, then it is far from
certain that decrease in infectivity or susceptibility of the disease will bring
about the desired result, whilst it would appear certain that the absolute
number of the diseased, as well as the absolute rate of incidence, will actually
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increase as the infectivity or susceptibility falls. There seems, of course,
little doubt that the immediate effect of a reduction in infectivity or suscepti-
bility is to bring about a fall in all these numbers, but the population density
then begins to increase and when a steady state is again reached the increase
is of such a magnitude as to more than compensate for the immediate effects.
It must be emphasized that, when the effect of the variation of a parameter is
considered in the present section, the comparison is between the steady state
which is possible after the parameter has been varied. and that which existed
before the variation took place. We are not concerned with the immediate
effect of the parameter variation on the system, which will temporarily have
been disturbed from a steady state.

It has been shown (p. 105) in the general case that when disease exists in a
community the population density is necessarily greater than 1/K. The
existence of a threshold value in relation to an observed quantity implies that
the process under consideration (e.g.. the existence of disease in a steady state)
may exist whenever the quantity in question exceeds that value, whilst it
cannot exist when the quantity is equal to or less than that value. Let us
consider a system in which the quantity in question is initially below the
threshold. The system may be such that the quantity cannot change its
value, and therefore the process or event to which the threshold refers, can
never under any circumstances occur. A threshold of this nature may be
called a threshold of the first type. On the other hand the system may be such
that. when the magnitude in questionis below the threshold, the system gradually
alters until the threshold is exceeded. The process to which the threshold has
reference may then appear, but it could not possibly have appeared until this
adjustment had taken place. That the magnitude should initially exceed the
threshold value is not then necessary in order that the process should ultimately
exhibit itself, nevertheless the process will not exhibit itself until the magnitude
has exceeded its threshold value. Such a threshold may be called a threshold
of the second type. 1t is clear that the population density 1/K referred to above
is a threshold of the second type, whilst the threshold in case 4 (p. 114) referring
to immigration, and that in case 2, (p. 115) referring to the total population,
are of the first type.

In case 2', the population though not really a closed one is virtually of this
nature, because the births just balance the non-specific deaths, and here a
threshold value (1/K) of the total population exists which is such that no
dizease can occur if the population density is less than this quantity. This
result may be compared with that obtained in case 5 of the second paper of this
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series, that is to say in case 3, in the present classification, where a threshold
value of 1/ ®w was found. This latter case is obtained from case 2', by putting
® . v, T, 7 and p equal to zero, so t_hat one would at first sight expect that the
threshold would continue to be 1/K. However, as there are no births, K,
which refers to the virgins, comes ultimately to have no significance, and the
result shows that under these conditions the threshold alters to 1/ ®ew, which
by hypothesis, is either greater than or equal to 1/K.

In case 4 it is the rate of immigration m which has a threshold value. If
the immigration rate fails to reach the value 7/K then the disease cannot exist
in the community in an endemic form. If = is very small, the threshold value
will also tend to be very low, that is to say, very slow immigration would keep
the disease going, but it would appear that if, as in most cases, non-specific
deaths cannot be absolutely excluded, and if the population density is sufficiently
great, then the threshold immigration rate, though small, will be finite.

In a series of interesting papers Greenwood and Topley and their collabora-
tors* have investigated the progress of disease in communities of mice under
various experimental conditions. Amongst their conclusions they emphasize
the influence on the progress of the infection of immigration of healthy animals
into the community. For examplef “ The sole condition required for the
indefinite propagation of an endemic disease is a continuous immigration of
susceptible individuals.” The conditions of the experiments of these authors
would seem to be approximately represented by case 4 above, as the mice were
not inereasing in number by reproduction, and at the same time were subject
to a certain number of non-specific deaths. Further they come to the con-
clusion that the increase in resistance of exposed animals as compared with
that of fresh individuals, is caused by active immunization as the result of an
attack of the disease, rather than to selection working upon individual differ-
ences originally present. This is accommodated by the condition that ®w
is less than K, which we found it necessary to assume, p. 112. It would there-
fore be expected that a threshold rate of immigration would exist under these
conditions, but their figures do not actually reveal its existence. However,
as shown above, the threshold immigration rate is equal to E/—K, and it is clear
that in their experiments 7 was relatively small (probably about 1 per cent.
per day) so that the threshold immigration rate is probably also quite small.
The lowest rate employed was one mouse in three days, and it is to be noted

* Popley and Wilson * Principles of Bacteriology and Immunity.” vol. 11, p. 767 (1929),
and related papers, especially *J. Hyg.,” vol. 24, p. 45 (1925).

T loc. cit., p. 782,
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that in this experiment, the disease remained practically quiescent for a period

of 70 to 80 days, apart from a small increase in deaths at one point. During

the whole period the size of the population was rising slightly, so that it seems

clear that the rate of immigration was just slightly too high to allow the non-

specific death rate to keep the population at a constant level, and thus to

render a steady state possible. An experiment on a larger scale with a pro-
- portionally smaller immigration rate would probably reveal the existence of a
threshold.

We realize that the discussion of epidemics developed in this and in the
previous papers is at best only a schematic representation of the invasion of a
community by an infective disease, and is far from giving a representation at
< all adequate or complete. The mathematical analysis so far presented may,

August 2022

S however, be regarded as first step in the elucidation of the problem from the
§theoretica.l point of view. The experimental work of Greenwood and Topley
%Dand others gives another complementary method of approach. So far the two
bblineﬁ of attack can be brought into relation with each other only very incom-

pletely, but it is to be hoped that as the experimental material becomes more
_g extensive, and the mathematical investigation becomes more comprehensive,
S+a relatively complete understanding of the processes involved in endemic and
epidemic invasion may emerge.

Summary.

(1) The mathematical investigation of the progress of an infectious disease
in a community of susceptible individuals has been extended to include the
case where members of the community are removed as the result of some general
© cause of death acting according to constant non-specific death rates, as well
as by death from the disease itself. Under the more general conditions here
dealt with the main conclusions arrived at in the previous paper remain
qualitatively unaltered. The limitations which remain are that the suscepti-
bility and the infective power of the individual are supposed to be independent
of his age, and further that specific individual immunity does not exist in the
sense that the part of the population which escapes infection is assumed to be
Just as susceptible as the whole population would have been if it had not been
infected.

(2) In the general case a unique steady state is found to exist provided that
certain relatively simple conditions are satisfied. In the special cases con-
sidered a unique steady state in general exists when these conditions continue
to be satisfied ; but in particular instances, when these conditions are not
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satisfied, unique steady states will exist provided that certain other require-
ments are fulfilled.

(3) Increase of birth rates, in general, increases both the absolute and the
relative prevalence of the disease in its steady state. The effect of increase
in the non-specific death rates is less simple, but has been worked out at some
length.

Decrease in the infectivity of the disease or in the susceptibility of the un-
infected results in an increase in the whole population density as well as in an
increase in the number of infected. The effect upon the relative incidence of
the disease cannot be simply expressed, but it has been worked out in detail
in the text. In the absence of immigration, and with the birth rates and also
the non-specific death rates equal for virgins and recovered, variation in in-
fectivity or susceptibility will not alter the relative incidence of the disease.
The total population, however, will increase with decrease of either of these
two factors, whilst the number of diseased will also increase proportionately.

(4) Two types of threshold values have been encountered. In the first type
the quantity in question must initially exceed the threshold value if the event
or process is to occur in the population. Two examples of this type have been
found, namely, in cases 4 and 2’,. In the second type the quantity in question
need not initially exceed the threshold value, but may gradually change as
the system developes. The event or process to which the threshold refers
can only take place when the threshold value has been exceeded. The total
population density has a threshold value of this second kind with reference to
the existence of steady states.




