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Abstract

The motivation for this thesis was the need for further development of multibody

dynamics simulation packages focused on detailed contact analysis. The three parts

of the thesis make contributions in three different directions:

Part I summarizes the equations, algorithms and design decisions necessary for

dynamics simulation of flexible bodies with moving contacts. The assumed gen-

eral shape function approach is presented. It is expected to be computationally less

expensive than FEM approaches and easier to use than other reduction techniques.

Additionally, the described technique enables studies of the residual stress release

during grinding of flexible bodies. The proposed set of mode shapes was also suc-

cessfully applied for modeling of heat flow.

The overall software system design for a flexible multibody simulation system

SKF BEAST (Bearing Simulation Tool) is presented and the specifics of the flexible

modeling are specially addressed.

An industrial application example is described. It presents results from a case

where the developed system is used for simulation of flexible ring grinding with

material removal.

Part II is motivated by the need to reduce the computation time. The availability

of the new cost-efficient multiprocessor computers triggered the development of the

presented hybrid parallelization framework.

The framework includes a multilevel scheduler implementing work-stealing strat-

egy and two feedback based loop schedulers. The framework is designed to be easily

portable and can be implemented without any system level coding or compiler mod-

ifications.

Part III is motivated by the need for inter-operation with other simulation tools.

A co-simulation framework based on the Transmission Line Modeling (TLM) tech-

nology was developed. The main contribution here is the framework design. This

includes a communication protocol specially developed to support coupling of vari-

able time step differential equations solvers.

The framework enables integration of several different simulation components

into a single time-domain simulation with minimal effort from the simulation

components developers. The framework was successfully used for connecting

MSC.ADAMS and SKF BEAST simulation models. Some of the test runs are

presented in the text.

Throughout the thesis the approach was to present a practitioner’s road-map. The

detailed description of the theoretical results relevant for a real software implemen-

tation is put in focus. The software design decisions are discussed and the results of

real industrial simulations are presented.
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Chapter 1

Thesis Overview

1.1 Introduction

Simulation technology is becoming increasingly important to industry. Modeling

and simulation environments and tools can be seen as virtual test rigs that facilitate

replacement of long and costly experiments on a real test rig with faster, cheaper, and

more detailed investigations using a computer.

Mechanical systems are obvious candidates for simulation for many reasons,

some of them are listed here:

• Building a prototype mechanical system just to test a new design is very expen-

sive and time consuming. Sometimes the manufacturing of a slightly modified

part at a factory or workshop requires several weeks.

• Many new machine designs may prove dangerous to use without simulation

in advance. Therefore, simulation nowadays is a must, e.g. in airplane or car

design.

• Some measurements in a real dynamic system are very difficult or even impos-

sible to perform. However in a simulation all the variables are accessible.

• Tuning the system parameters is much easier to perform in a simulated system

than in a real machine.

• Some particular effects, which in real systems are obscured by some other

phenomena, can be isolated and carefully studied in a simulation. On the other

hand, in other situations such small effects can be completely neglected to

allow more careful study of the main relationships.

The general development of simulation software goes in the direction of sim-

ulation of complete systems with more and more detailed and accurate analysis.

Multi-domain and multi-physics simulations have become the reality. The models
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for control systems, mechanical components, hydraulics, etc, are brought into in-

tegrated simulation environments. At the same time more advanced and accurate

models are becoming available in each particular field.

An industrial simulation system is always the result of interdisciplinary research

where contributions from different fields are integrated into a single generally useful

system. In the case of flexible multibody simulation systems, contributions from

mechanics, numerical analysis, and computer science are necessary. Here, mechanics

provides the mathematical models of physical phenomena in the form of equations;

numerical analysis comes up with the methods and algorithms for solution of the

equations, and computer science gives the design guidelines for efficient and well

structured implementation of the model on a computer.

The motivation for this thesis work is the need for multibody dynamics simulation

tools supporting detailed contact analysis.

Part I of the thesis is primarily motivated by the need for a structural elasticity

model for dynamics simulations with moving contacts on multiple surfaces. Mod-

eling of distortion, due to the initial residual stresses in the surface layer combined

with uneven material removal, is an additional requirement.

Part II is motivated by the need to reduce computation time. The availability of

new cost-efficient multiprocessor computers triggered the development of the pre-

sented hybrid parallelization technique.

The need for inter-operation with other simulation tools has motivated the devel-

opment of the co-simulation framework presented in Part III. The idea is to enable

different tools to model and simulate subsystems (e.g., different parts of a mechanical

product) and develop a framework to allow dynamic information exchange between

these tools.

Throughout this thesis the approach has been to present a practitioner’s road-

map. The detailed description of the theoretical results relevant for a real software

implementation is put in focus. The software design decisions are discussed and the

results of real industrial simulations are presented.

1.2 Contributions

This thesis contributes to techniques and methods for modeling and simulation of

specialized mechanical systems. The techniques have been implemented in the

BEAST (BEAring Simulation Tool) system described in the appendix on page 9 and

evaluated on industrial applications. The three parts of the thesis contribute in three

different directions.

Part I contributes with:

• A new set of deformation mode shapes based on series of mathematical func-

tions. The proposed approach can be efficiently used for flexible dynamics

simulation involving detailed contact analysis.
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• The same set of mode shapes is then successfully used for heat-flow simula-

tion.

• The developed model is currently actively used for industrial projects.

Part I starts by providing a detailed practical introduction into the modeling of flexi-

ble mechanical components using the floating reference frame formulation. Both the

mathematical model and the software design approach are presented. The intention

is to provide the equations in a form suitable for straight-forward software imple-

mentation. A description of the system architecture and software class design is also

provided. Issues specific for flexible multibody systems as compared to systems with

only rigid bodies are specially addressed. The text, therefore, may serve as a guide

for a developer of a flexible multibody simulation system. A reader interested in

stricter mathematical development and proofs would, however, need to consult other

references.

The thesis subsequently focuses on the development of a new set of deformation

mode shapes based on well-known series of mathematical functions. Such mode

shapes are particularly suitable for modeling of flexible rings in grinding simulations.

More generally, the proposed approach can be efficiently used for flexible dynamics

simulation involving detailed contact analysis.

The same set of mode shapes is then successfully used for simulation of heat

flow. This again demonstrates the simplicity of the approach with the general shapes

providing a way to simulate new physical phenomena in a stand-alone tool.

The developed model has been implemented in the BEAST industrial strength

simulation tool at SKF.

Part II presents the work that improves the computational efficiency of the simu-

lation by presenting algorithms that enable the use of shared-memory parallel com-

puters by the simulation code. The contributions are:

• Framework design enabling realization of modern work-stealing scheduling

approaches in the context of implementations using any standard C++ com-

piler.

• Two feedback based dynamic loop scheduling algorithms.

• General guidelines on the use of hybrid, i.e., mixed distributed and shared

memory, parallelization.

The legacy code has previously been parallelized for distributed memory com-

puters. The thesis presents an approach that enables both plain shared-memory par-

allelization of the serial code, and hybrid parallelization of the distributed memory

code.

Two feedback based dynamic loop scheduling algorithms are also presented. Of

the two algorithms one algorithm requires timing data for each loop iteration and is

3



suitable for loops with minimal dependencies between the iterations. If the iterations

have more significant dependencies, the second algorithm, which is a generalization

of the Feedback Guided Dynamic Loop Scheduling (FGDLS) [1] should be used.

The generalized algorithm renders FGDLS suitable for a work-stealing framework

by tracking the time that different processors spend working on the loop.

The described approaches were implemented within the BEAST toolbox and re-

duced wall-clock computation time by 1.8 on a cluster of two-processor SMP nodes

for some real simulation cases. The theoretically maximum improvement in this case

is 2.

Part III describes a coupled simulation framework based on the Transmission Line

Modeling (TLM) technology [7]. The work is focused on co-simulation of mechani-

cal systems.

The main contributions here are:

• TLM based co-simulation framework design.

• A new communication protocol specially developed to support coupling of

variable time step differential equations solvers.

The framework design includes a TLM plugin interface design enabling easy

integration of different simulation tools into the framework.

The framework has been successfully used for connecting MSC.ADAMS [5] and

SKF BEAST simulation tools running coupled sub-models. Some of the test runs are

presented in the text.

1.3 Papers

The papers below cover part of the material presented in this thesis.

• I. Nakhimovski, D. Fritzson, and M. Holgerson. Dynamic Simulation of

Grinding with Flexibility and Material Removal. Proceedings of Multibody

Dynamics in Sweden 2001,

http://www.sm.chalmers.se/MBDSwe Sem01/Pdfs/IakovNakhimovski.pdf,

2001.

• A. Siemers and I. Nakhimovski. RunBeast- Managing Remote Simulations.

Proceedings of SIMS 2001, pages 39–46, 2001.

• A. Siemers, I. Nakhimovski, and D. Fritzson. Meta-modelling of mechanical

systems with transmission line joints in Modelica. Proc. of Modelica Confer-

ence, 2005.
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• M. Holgerson, L.-E. Stacke, and I. Nakhimovski. Cage Temperature Prediction

through Dynamics Simulation. Extended Abstract. STLE Annual Meeting, Las

Vegas, Nevada, 15-19 May, 2005.

• Iakov Nakhimovski and Dag Fritzson. Modeling of Flexible Rings for Grind-

ing Simulation. Multibody Dynamics 2005, Madrid, Spain, 2005. ECCOMAS

Thematic Conference.

• S. Ioannides, L.-E. Stacke, D. Fritzson, and I. Nakhimovski. Multibody rolling

bearing calculcations. World Tribology Congress III, 2005.

• D. Fritzson, J. Ståhl, and I. Nakhimovski. Transmission line co-simulation of

rolling bearing applications. Submitted to Journal of Multibody Dynamics,

2006.

• I. Nakhimovski and D. Fritzson. Hybrid Parallelization of Multibody Simula-

tion with Detailed Contacts. Submitted to EuroPar’06 conference, 2006.

1.4 Work not Published in Papers

The work presented in the following parts of this thesis is not presented in the papers

mentioned in the previous section:

• Chapters 3-5, 8-9, 11, A Practitioners Road-map to Flexible Multibody Simu-

lations.

• Chapter 6, Flexible Body Exchange Formats for Systems Engineering.

• Section 7.5, Reducing the Number of Flexible Shapes.

• Chapter 13, Thermal Analysis with General Shape Functions.

• Chapter 19, Feedback Based Loop Scheduling Strategies.

• Section 24.5 and Chapter 25, Design of TLM Based Coupled Simulation

Framework

• Section 25.1, Supporting Variable Time-step Differential Equations Solvers in

a TLM Co-simulation.

1.5 Conclusions

More detailed discussion of the results of each Part can be found in the corresponding

chapters. Here, we would like to highlight some of them.
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A practical overview of the floating frame of reference formulation constitutes

a large fraction of Part I. We believe that such an overview may be useful for a

developer working on extending legacy rigid body simulation code with the flexible

body model. The discussion of the system design changes is also highly relevant in

this case.

A set of deformation mode shapes utilizing well known series of mathematical

function are proposed as a basis for a modes set. The advantages of using the well

known mathematical functions are calculation efficiency, ease of implementation and

use. The proposed mode set is particularly suitable for simulations involving detailed

contact analysis such as the grinding simulation presented in the thesis. The same

set of mode shapes has been applied for modeling of temperature distribution inside

bodies.

It should, however, be noticed that the general mathematical functions may not

be optimal when complex geometry is involved or if flexible bodies are connected

with ideal joints and not contacts. Therefore, import of reduced standardized finite

element models into the presented flexible multibody framework is supported and

discussed.

Linux clusters of multiprocessor computers are becoming increasingly popular.

Efficient use of such computer architectures is an important problem for many ap-

plications. The hybrid parallelization approach proposed in Part II enables higher

speed-up for some important application cases.

The presented approach utilizes a modern work-stealing strategy developed for

other frameworks [4, 9]. The strategy is modified so that it can be put into a portable

C++ library. This enables incremental parallelization of the legacy code while pro-

viding the features found in more advanced packages.

The developed parallelization approach complemented with the presented feed-

back loop scheduling algorithms may be useful for most time-dependent process

simulation codes. The approach is particularly suited for cases where speedup of

legacy message-passing code is limited by task granularity.

The approach to a coupled simulation framework described in Part III is an ef-

fective solution for the connection of mechanical simulation tools. The discussion

of the communication protocol for variable time step differential equation solvers

should also be interesting for other types of simulations.

1.6 Future Work

Dynamics simulations with detailed analysis of moving contacts involving flexible

bodies with complex geometries and large potential contact surfaces is an open re-

search area. Further research is needed to identify appropriate sets of deformation

shapes.

Both heat transfer and structural deformation models are presented in this thesis.

Simulation of coupled thermo-mechanical processes is a natural continuation of this
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work.

A key issue for successful industrial utilization of an approach in the area of

hybrid parallelization is its transparency for the application user. Therefore, an al-

gorithm for automatic detection of the best parallelization approach to be used for a

particular simulation case and hardware combination seems to be the most important

continuation project.

Supporting tools are necessary to simplify meta-modeling when complex sub-

models are involved in a co-simulation. Such tools should enable faster meta-model

creation and minimize the potential for modeling mistakes.

As TLM approach proved to be useful in different physical domains further ex-

pansion of the supporting framework is an important development. Such expansion

is also necessary to further prove the general applicability of the presented design.
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Appendix: The BEAST Toolbox

BEAST (BEAring Simulation Tool) [3] is a modeling and simulation program devel-

oped at SKF for the simulation of fully three-dimensional mechanical models. It was

originally used to perform simulations of bearing dynamics on any bearing type. The

BEAST tool has made possible studies of internal motions and forces in a bearing

under any given loading condition. The bearing can be put under load in any way

the user required. BEAST can be viewed as a virtual test rig where the user has full

insight into the dynamic behavior of the bearing components.

The toolbox development in terms of design generalization has widened the ap-

plication area of the program. Later versions of BEAST include models of grinding

machines, experimental engines, transmissions, etc. BEAST can now be seen as a

general multibody simulation tool specialized in detailed contact analysis.

Beauty

RunBeast

Out2In

ViewBeast

Animations

Input

Input

Output

Output Input

Output Input

Output
2D plots

Input

Output

BEAST

Figure 1-1: Programs in the BEAST toolbox.

The BEAST toolbox includes a set of tools that are interacting with each other

by means of different kinds of files. Figure 1-1 shows the programs in the toolbox
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and their interactions with the file storage. The tools are:

Beauty is an advanced 3D graphical tool designed for setting up the model and sim-

ulation parameters in the input files and visualizing the output files. Some of

the features of the tool include animating the simulated sequence from differ-

ent viewpoints, visualization of force vectors and surface associated data (such

as pressure distribution). The visual representation of the simulation results

in Beauty in an easily understandable way contributes to a quicker interpre-

tation of the result and popularity of the complete toolbox among the users.

Figure 1-2 shows a snapshot of the Beauty working on an input file for a ball

screw model.

Figure 1-2: A snapshot of the Beauty displaying a ball screw model.

ViewBeast is specially designed for 2D plot presentation and analysis. In addition

to the basic functionality, i.e., curve plotting, different operations on the simu-

lation results are possible. For example, the user can apply Fourier transforms

to a variable or specify his/her own function on several variables.

RunBeast is a remote simulation interface system. Its architecture is described in

[8]. The tool provides a user-friendly interface for submitting a simulation on

a remote computation server which is often a parallel computer.
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BEAST is the main simulation program. It reads in a model specification from input

files, performs the simulation and generates a set of output files containing

the results. Most of the developments of this thesis were realized within the

framework of this tool.

Out2In is a small utility that allows generation of new input files from the simula-

tion output files. In this way the user is given a chance to interrupt the simula-

tion, modify some parameters, and continue the simulation from the moment

where the previous run was terminated. This means that is the results of one

simulation can be used as the initial conditions for another.

From the mathematical point of view the BEAST system solves the simultane-

ous system of Newton-Euler equations of motion for every body in the mechanical

system. The Newton-Euler equations are formulated as second order ordinary dif-

ferential equations (ODEs) on explicit form. The second order differential equations

system is rewritten as a first order system. Typical characteristics of such ODEs

are: mathematical stiffness, very high numerical precision of the solution required

by the application, and computationally expensive evaluation of the derivatives. See

Part I and [6] for more details. The tool uses a modified version of the CVODE [2]

differential equation solver for the numerical solution of the resulting system of equa-

tions. This solver is one of the most well known free implementations of the implicit

backward differentiation formulas (BDF) integration scheme. The most important

features of this solver are:

• A variable order multistep method that requires high continuity of the deriva-

tives.

• Adaptive time step changes based on a local error estimate.

• Efficient use of the solver requires a fast procedure for the system Jacobian

calculation (i.e., the matrix of partial derivatives of the state derivatives with

respect to the state variables).

The original solver has been extended to handle special kinds of Jacobians (block

diagonal with borders and sparse) and to perform a simultaneous RHS and Jacobian

calculation [6].

For the work described in this thesis, the BEAST system has been the assumed

implementation platform. All the ideas for the modeling, the algorithms, and the de-

sign decisions were tried for applicability and usability in this system. Hence we can

say that the system has become a test implementation of the presented approaches.

Its successful industrial usage validates the correctness of the decisions taken.
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Part I

Modeling and Simulation of Flexible

Bodies for Detailed Contact Analysis

in Multibody Systems
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Notation

The notation used throughout the thesis is described below. The section can be used

as a reference when reading the equations presented in the thesis.

The notation used here is both the direct matrix notation of vectors and tensors,

and the vector-dyadic notation. Therefore, the basic quantities and some formulas

are given in both notations. The orthonormal right-handed rectangular Cartesian

coordinate system is used.

For further reading we refer to [15, 13, 18, 14] or other well-known standard

publications.

Variables & basic definitions

A2/1 transformation matrix from coordinate system 1 to system 2.

a a scalar.

~a aiêi a vector or first-order tensor on which vector transformation

rules can be applied.

â a unit vector.

~̃a a 3×3 skew symmetric matrix constructed from the components

of 3-element vector ~a. That is a matrix:

~̃a =





0 −a3 a2

a3 0 −a1

−a2 a1 0





The important properties of a skew symmetric matrix are:

~̃a = −~̃a
T

~a ×~b = ~̃a ·~b

a normally a second-order tensor or matrix, in some cases an array.

[a] aij êiêj a second-order tensor or matrix.

~aT, aT transpose of ~a and a.

14



~a(c) a 3-element vector expressed in component form in coordinate

system ’c’.

~̇a|
c

, ∂~a
∂t

∣

∣

c

time derivative of a vector with respect to coordinate system c.

If no coordinate system is specified then the global inertial coor-

dinate system is assumed.

a = ~b · ~c bjcj (or~b
T · ~c) dot product of two vectors

~a = ~b × ~c cross product of two vectors

~a = b · ~c bijcj êi

a = b · C bijcjkêiêk dot product of two matrices

C1,2 a constant that gives the relative stiffness between object 1 and

object 2.

C ff damping matrix.

Cθθ heat capacity matrix.

c1.ctl1 a control point ctl1 defined in the coordinate system c1.

êi unit base vector in a rectangular Cartesian axis system

e1, e2, e3, e4 Euler parameters

E elastic (Young’s) modulus.

E, Ev matrices of elastic and viscous material constants.

Hθθ, ~Hθ, ~Hext generalized heat flow contributions.

hc heat transfer coefficient.

~F 1,ext a external force refering to object 1

I an identity matrix

J2/1 moment of inertia for object 2 relative to coordinate system 1

~J1, Jkl, J̄kl some of the inertia shape integrals defined by the equations 3-19,

3-20 and 3-23 respectively.

J̄ ee, J̄ ef sub-blocks of complete mass matrix M associated with angular

velocities. The subscipts specify the degrees of freedom (DOF)

corresponding to the particular sub-block. ’e’ the three rotational

DOFs and ’f ’ - nf elastic DOFs.

K ff stiffness matrix.

Kθθ thermal conductivity matrix.

L length or width

~M 1/c a moment relative to the origin of system c refering to object 1

~M 1,ext an external force couple, i.e. moment, refering to object 1
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~M 1,2 a force couple, i.e. moment, refering to object 1 and caused by

interaction with object 2

M complete symmetric mass matrix of a body as used in Newton-

Euler equations.

MRR, M ee, M ff sub-blocks of complete mass matrix M . The subscipts spec-

ify the degrees of freedom (DOF) corresponding to the particular

sub-block. ’R’ specify the three translational DOFs, ’e’ the gen-

eralized rotational DOFs and ’f ’ - nf elastic DOFs. The non-

diagonal blocks of the matrix use mixed subscripts, e.g., MRe

stands for the sub-block defining inertia coupling between the

translational and rotational DOFs.

mi, ρi mass and mass density of object i. The subscript i is omitted if

the discussion clearly indicates a single object.

~pa/b a “point”, i.e. the vector between a and b. If b is a coordinate

system, then it refers to the origin of system b.

~p (b)
f a ”point” vector expressed in the coordinate system b.

(~p (b)
f )k an element of the point vector associated with the axis k. Axes

are named ’x’, ’y’, ’z’ or ’1’, ’2’, ’3’ in different equations as

appropriate in the particular context.

~Q total generalized force tensor as appears on the right hand side

of the Newton-Euler equation defined in 3.4.

( ~Q)R, ( ~Q)α, (~Q)f parts of a generalized force vector corresponding to transla-

tional, rotational and elastic DOFs respectively.

~Qe external generalized force tensor.

~Qv quadratic velocity tensor.

~Qif
generalized force due to internal residual stress release.

~R2/1 the location of the origin of coordinate system 2 relative to the

origin of coordinate system 1

S a shape matrix, that is a 3 ×nf matrix representing the deforma-

tion field of a flexible body. Sk is used to denote the k-th row

of the matrix, that is the row associated with the k-th Cartesian

coordinate axis.

~St a dynamic inertia shape vector defined by the Equation 3-25.

S̄ one of the inertia shape integrals defined by Equation 3-21.

S̄kl nine inertia shape integrals defined by Equation 3-22. The sub-

scripts k and l specify corresponding coordinate axes.

Sθ the space dependent shape functions in thermal equation.
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T(~p,t) temperature distribution as a space and time dependent function.

uk components of the deflection vector ~p (b)
f in the direction of co-

ordinate axis k. Where k is one of (1, 2, 3) or (x, y, z) for a

Cartesian coordinate system and one of (r, φ, z) for a cylindrical

coordinate system.

~xf the tensor of the generalized elastic coordinates of a flexible

body.

V volume.

~v velocity.

W,Ws,We potential energy, strain energy and work of external forces.

~αa/1|
2

angular acceleration of ’a’ relative system 1 differenciated in sys-

tem 2. If no system 2 is specified then system 1 is assumed.

δij Kronecker delta:δij equals one iff i = j and is zero otherwise.

ϕ rotation angle.

ϕ2/1 a first order tensor containing three angles representing the ro-

tation of coordinate system 2 relative to system 1. This tensor

cannot be expressed in a coordinate system.

~Ω2/1 the angular speed of coordinate system 2 relative to coordinate

system 1 .

~ωa/1 the angular speed of “a” relative to coordinate system 1.

ωi i-th vibration mode frequency [radians/second].

~ε elastic strain tensor.

~τ viscose stress tensor.

~σ elastic stress tensor.

λ, µ Lame’s constants.

γ Poisson’s ratio.

~θ infinitesimal rotation angles in Chapter 3.

~θ state variables for the thermal equation in Chapter 13.

Λ diagonal matrix of eigenvalues.
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Chapter 2

Introduction

2.1 Simulation of Flexible Mechanical Components

Historically, two main types of simulation of mechanical systems have dominated:

• Multibody dynamics simulations typically deal with systems of interconnected

rigid bodies. In many cases the connections are limited to idealized joints (e.g.,

revolute, prismatic, etc) and traditional force elements (e.g., spring, damper,

external load). Multiple dynamic contacts are often important parts of the

model and a relatively simple contact model is most often employed for perfor-

mance reasons. Multibody systems are mostly used for time domain dynamics

simulations.

• Finite element tools are mostly used for static and quasi-static (with constant

angular velocities) analysis of systems and components as well as for modal

analysis of structures. They are also used for detailed simulations of very small

and specific parts of a system, e.g., a single contact. Finite element analysis

generally requires more computational effort than multibody analysis for a sin-

gle time instance.

Following the general trend of making more complete simulations, the finite-

element analysis and multibody simulation systems are now exploring each others

domain. Multibody systems now include deformable bodies and more detailed anal-

ysis in the models. At the same time finite element tools are beginning to be used for

more dynamics simulations.

This thesis contributes to this process on the multibody systems side. It discusses

the floating-frame of reference formulation, which is gradually becoming the stan-

dard way to simulate flexible bodies in the context of a multibody simulation. To fur-

ther narrow the field of the research we limit our development to multibody systems

specializing in detailed contact analysis, such as the BEAST (BEAring Simulation

Tool) system [12].
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The aim of Part I is to describe an approach for building a flexible multibody

simulation system as an extension to the existing rigid body system. Therefore, all

aspects of the system development have to be considered. We discuss the neces-

sary mathematical model for deformable bodies simulation, provide some important

numerical algorithms, and suggest an object-oriented design of the computer imple-

mentation.

2.2 Model Requirements

The main objective of Part I is to provide the elastic body model suitable for dynamic

simulations involving multiple moving contacts. The main issue is an efficient model

of the overall structural deformation. Local deformation in a contact is covered by

the contact model discussed in other reports on the BEAST (BEAring Simulation

Tool) and GRIT(GRInding simulation Tool) systems [12, 34, 21].

The model requirements can be subdivided into three equally important groups.

They are: computational performance or efficiency, accuracy, and potential to incor-

porate the analysis requisite for grinding.

• The computational complexity of a flexible system model depends mostly on

the number of state variables used for the flexible body. Hence, an efficient

model should use as few states to describe flexibility as possible. The system

of ODEs (ordinary differential equations) generated in dynamic contact anal-

ysis problems is in most cases mathematically stiff. Commonly used numer-

ical integrators for such systems are multistep variable time step algorithms.

Important consideration for such solvers is the length of the time step in the

integration. Longer time steps mean fewer computations and shorter simula-

tion times. Therefore an efficient flexible body model for the case of moving

contact should not force the numerical solver to take significantly smaller time

steps compared to the same model with rigid components. That is, higher fre-

quencies in the system are expected to be associated with the contact forces

calculations and not the flexible body eigenfrequencies.

• Let us provide a very simple example to illustrate the need for accuracy. In

Figure 2-1 a rotating elastic ring pressed between two plates is shown. From

the physical point of view the radial stiffness of the ring is independent of its

orientation. Hence, assuming the constant force acting on the ring, the elastic

deflection - measured as the distance between the plates - should become con-

stant after some transient process. When simulating this in the time domain, it

is important that we do not introduce vibrations due to modeling or numerical

errors. The situation can get worse for a more complex model where small,

induced vibrations can occasionally resonate with some resonance frequency

of the system leading to completely unrealistic results.
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Figure 2-1: A rotating flexible ring pressed between two plates.

• In the third group of requirements one can mention distortion, due to the initial

residual stresses in the surface layer combined with uneven material removal.

2.3 Related Work

A 3-D FEM model can be used to model flexible bodies. The required procedures are

described in a wide variety of articles and books. References [3, 9] provide extensive

discussions of the methods. However, finite element methods for transient analysis

often suffer from long (days, weeks) computation times, and the radial stiffness com-

puted at the element nodes will slightly differ from the stiffness between the nodes.

This is due to the fact that the deflection between finite element nodes is normally

computed using a low order interpolation scheme. In our simple example described

above, variation in radial stiffness leads to induced non-physical vibration with the

frequency dependent on the number of elements on the circumference of the ring and

rotational speed. Without doubt the effect can be minimized and rendered negligi-

ble by using a large number of finite elements but that would lead to an even longer

computational time. The effects of the discretization errors in dynamic simulations

are discussed in [26].

A commonly used approach to efficiently simulate structural elasticity is to em-

ploy some kind of reduction technique [42, 9, 41, 43] from a detailed finite element

model. Reduction schemes often dramatically decrease the number of state variables

used in dynamic simulation. The reduction is done prior to the simulation using

a FEM-tool. The result of a reduction procedure is a set of assumed displacement

shape functions that is used in the dynamics simulation.

The main challenge of a reduction with mode synthesis is to select a small set
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of superimposed mode shapes that realize acceptable calculation precision for the

simulation. It is one of the most complicated and discussed problems in flexible

multibody simulation (see [11, 30]). The mode shapes are calculated using data from

static load cases and/or cases where load varies with certain frequency superimposed

with eigenshapes. These resulting mode shapes can only be calculated for some

specific boundary conditions, i.e., given attachment or interface nodes. See Section 5

for more discussions.

However, in the case of a moving contact the boundary conditions change dy-

namically. Interaction between any two points of the contacting surfaces is possible.

Hence many nodes on the surfaces have to be marked as interface nodes. A large

number of interface nodes leads to a large number of state variables and makes dy-

namics simulation slower.

The reduced model still has the same vibration problem as the FEM model, due to

the discrete interface nodes on the contact surfaces. The solution is to employ global

shape functions for the interface motion, i.e., control the surface interface nodes by

the shape functions. This can be done directly in the reduction scheme [43], or as a

separate transformation step after a standard reduction with all interface nodes.

These reduced models cannot handle the requirements from the third group men-

tioned above in Section 2.2 well, i.e., non-linear effects due to initial stresses and

material removal.

2.4 Part I Overview

The dynamics equations for the rigid bodies in a multibody system can be defined

in terms of body mass, the inertia tensor, and the forces and torques vectors acting

on the body. Dynamics equations for linear structural systems require definition of

the system mass and stiffness matrices as well as the vector of generalized forces.

Here we summarize the equation of motion for deformable bodies that undergo large

translational and rotational displacements using the floating frame of reference for-

mulation. The set of the inertia shape integrals required for the equations is defined.

These inertia shape integrals, that depend on the assumed displacement field, appear

in the non-linear terms that represent the inertia coupling between the reference mo-

tion and the elastic deformation of the body. Some numerical procedures required to

perform a dynamics simulation involving flexible bodies, including numerical vol-

ume integration and Jacobian matrix evaluation, are also described.

There are several kinds of analyses that are possible for flexible body models but

not rigid body models. We describe three general types of such analysis: free-body

eigenmodes analysis, body deformation under static load and quasi-static conditions.

Results of these kinds of analysis can be used to quickly assert the basic properties of

the flexible body model before running a computationally heavy dynamics simula-

tion. There is also a discussion on a more specialized kind of analysis: ring distortion

due to the residual stress release during grinding.
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We provide some examples that were used to verify the correctness of the math-

ematical model presented.

The main intention of Part I is to provide a complete and possibly compact de-

scription of the equation and procedures necessary to perform a dynamics simula-

tion of a flexible multibody system and some simpler kinds of single body analysis.

The test is therefore system implementation oriented and does not generally cover

the mathematical derivation of the presented equations. The complete derivation of

these equations can be found in most books on flexible dynamics (see [31]).

Part I is structured in the following way. Section Notation provided in the be-

ginning can be used as a reference when reading the equations presented in the rest

of the text. Chapter Introduction then provides an overview of Part I along with

motivations for the mathematical model development.

The mathematical model of an elastic body using the floating frame of reference

formulation and assumed shape function is presented in Chapter 3 where all the im-

portant equations that define the model are listed and explained. Appendix B shows

how the presented equations can be used for modeling a flexible ring.

Using the presented general equations some basic single body analysis types can

be formulated. Three types of such analysis that are important in our target applica-

tion are presented in Chapter 4.

Interfacing Finite Element Analysis (FEA) tools to generate mode shapes for an

elastic body model is an important aspect for flexible multibody codes. Therefore

we continue with two chapters on this subject. Different FEA methods, typical for

the generation of mode shapes, are presented, two common interface formats for

importing FEA data into multibody-dynamics frameworks are considered, and an

example of how such a format can be used.

As we have already mentioned in Section 2.2, detailed contact analysis imposes

some special requirements on the mode shapes in elastic body models. To fulfill these

requirements we propose the use of series of global shape functions, e.g, Fourier se-

ries and Chebyshev polynomials. Chapter 7 describes the motivations and principles

of the approach.

The thesis continues with a presentation of the mean-axis condition for the most

advantageous choice of the floating reference frame for our application.

In the next chapter we get closer to the implementation of the approach in a real

simulation framework. Some design decisions that were made to provide an efficient

user interface for specifying boundary and external loading conditions in simulations

involving flexible bodies are introduced.

Chapter Verification demonstrates the correctness of the selected model for some

theoretical cases.

The system design discussion continues in the next chapter. Here we focus on

system architecture and design for a multibody simulation system that includes flex-

ible components. We specially address the problem of transition from a multibody

system that allows only rigid bodies into the system with both kinds of components.

The chapter on simulation of grinding presents an application example for the
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developed system. The importance of the structural flexibility and its influence on

the simulation results for the particular application are discussed.

We go on by presenting application of the general shape functions approach for

the modeling of dynamic thermal processes. The provided application examples

strengthen the claim of practical importance of the approach. Appendix C demon-

strates the use of the approach for a simple heat transfer problem.

The last two chapters summarize the results of the performed work and discuss

possible directions for the continuation of research and development in this area.
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Chapter 3

Key Equations in Flexible Body

Dynamics

This section introduces the mathematical model of an elastic body using the floating

frame of reference formulation and assumed shape function. The text is strongly

based on the results of [31] and therefore no derivation for the most of the presented

equations is given. The relations that are developed in this chapter and cannot be

found in the reference above are:

• Representation in the different coordinate systems.

• Generalized viscosity forces and damping modeling.

• Generalized external moment.

• Generalized external body load.

• Generalized force from the residual stress release.

• An interpolation method for forces with discontinuities.

• Jacobian calculations.

The intention of this text is to provide the equations necessary for an implemen-

tation of a multibody dynamic simulation package with flexible components. The

derivation of the most common equations is intentionally skipped. A reader inter-

ested in a more complete mathematical development should consult the referenced

book [31] or one of the other papers developing the complete model, e.g., [37, 23].

In the following sections the subscript that normally indicates the body number

will be omitted with the understanding that all vectors and matrices are associated

with some particular single body. Since the equations involve only two coordinate

systems - the global and body ones - one corresponding letter (’g’ or ’b’) will be used

to specify the coordinate system where the vector is expressed or differentiated.
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3.1 Flexible Body Motion and Shape Functions

A rigid body in space has six degrees of freedom that describe the location and ori-

entation of the body with respect to the inertial reference frame. Since the relative

position of two particles within a rigid body is constant the displacement of each of

the particles in space can be uniquely identified from the body position. On the other

hand, modeling of structural deformation requires evaluation of the displacement for

every particle of the body independently. To deal with such problems classical ap-

proximation methods can be employed. The displacement of each point due to elastic

deformation is expressed in terms of a finite number of coordinates:

(~p (b)
f )x ≈ ∑l

k=1 akfk, where fk = fk(~p
(b)

0 )

(~p (b)
f )y ≈ ∑m

k=1 bkgk, where gk = gk(~p
(b)

0 )

(~p (b)
f )z ≈

∑n
k=1 ckhk, where hk = hk(~p

(b)
0 )



















(3-1)

where ~p (b)
f gives the displacement of an arbitrary point that has coordinates ~p (b)

0 in

the undeformed state. The vector of displacement (or deformation vector) ~p (b)
f is

space- and time- dependent. The coefficients ak, bk, and ck are assumed to depend

only on time. The above equations can be written in the following matrix form:

~p (b)
f = S · ~xf (3-2)

where S is the three-rows nf -columns (nf = l +m+n) space coordinate dependent

shape matrix whose elements are the functions fk, gk, and hk; and ~xf is the vector

of elastic coordinates that contains the time dependent coefficients ak, bk, and ck.

The total number of elastic coordinates (which is of course equal to the number of

columns of the shape matrix nf ) should be determined from experience depending

on the simulation accuracy required and the importance of the elasticity effects for

the complete model. The approaches to the selection of the appropriate shapes is

further discussed in Sections 5 and 7.1.

By using the outlined approximations, the global position of an arbitrary point P
of the body can be defined as

~p
(g)

P/g = ~R
(g)

b/g + Ag/b · ~p (b)
P/b (3-3)

where

~R
(g)

b/g defines the origin of the body reference;

Ag/b orthogonal rotation matrix;

~p (b)
P/b is equal to ~p (b)

0 + ~p (b)
f = ~p (b)

0 + S · ~xf and gives the displacement of the point

P in the body coordinate system
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Note that it is generally possible to specify the shape matrix in different coordi-

nate systems and transform it using rotation matrix and normal rules for coordinate

transformation. However, use of the body reference frame enables the most natural

and efficient choice of the shape functions. For this reason the shape matrix is al-

ways assumed to be calculated in the body coordinate system. Hence the coordinate

system needs to be specified for all the tensors in the following sections.

3.2 Rotation of a Material Particle due to Deforma-

tion

In general during the deformation of a body, any element is changed in shape, trans-

lated, and rotated [35]. In order to analyze systems with rotational springs and

dampers it is necessary to be able to calculate the orientation of a material point

in the deformed body. In order to calculate the orientation of a material particle for

the case of large deformations one has to use the properties of the deformation gra-

dient [3]. However for the case of small deformations, where only linear terms are

taken into account, the rotation can be analyzed as infinitesimal. The rotation matrix

that performs the rotation of a particle from the undeformed state to the infinitesi-

mally deformed orientation can be calculated as (see [31]):

Af/0 = I +





0 θz −θy

−θz 0 θx

θy −θx 0



 (3-4)

where I is an identity matrix and (θx, θy, θz) are three small angles corresponding to

the rotations around the three respective coordinate axes. The angles can be calcu-

lated as:





θx

θy

θz



 =
1

2



















∂~p (b)
f,y

∂z
− ∂~p (b)

f,z

∂y

∂~p (b)
f,z

∂x
− ∂~p (b)

f,x

∂z

∂~p (b)
f,x

∂y
− ∂~p (b)

f,y

∂x



















(3-5)

3.3 Using Intermediate Coordinate System

It is sometimes convenient, and/or more efficient, for the numerical solver to observe

the motion of a body in a coordinate system other than the inertial one. For example,

if the simulated body is a part of a complex system and it is desirable to analyze the

body movements from a certain known position in the system. From the mathemat-

ical point of view, this known position is a coordinate system with known motion.

In such a case a special care must be taken when working with time derivatives of
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position and orientation of a body. Below, the transformation rules for taking time

derivatives with respect to different coordinate systems, are given.

To be more specific let us assume that two coordinate systems are involved in the

analysis.

• System ′G′ is the inertial coordinate system where the Newton-Euler equations

are valid.

• System ′B′ is a coordinate system with know motion in ′G′. That is, the po-

sition vector ~RB/G, linear velocity ~̇RB/G |
G

, and linear acceleration ~̈RB/G |
G

as

well as rotation matrix AB/G, relative angular velocity ~ΩB/G and relative an-

gular acceleration ~̇ΩB/G |
G

are known.

Then for a physical vector ~R the following transformation is valid:

~̇R |
G

= ~̇R |
B

+ ~ΩB/G × ~R (3-6)

Applying Equation 3-6 on the relative angular velocity vector shows that the time

derivative is invariant with respect to these two systems:

~̇ΩB/G |
G

= ~̇ΩB/G |
B

+ ~ΩB/G × ~ΩB/G = ~̇ΩB/G |
B

(3-7)

Therefore the coordinate system where differentiation is done can be omitted from

the specification the angular acceleration vector ~̇ΩB/G.

Applying Equation 3-6 twice we arrive to the relation for the second time deriva-

tive:

~̈R |
G

= ~̈R |
B

+ ~̇ΩB/G × ~R + 2~ΩB/G × ~̇R |
B

+ ~ΩB/G × (~ΩB/G × ~R) (3-8)

Now we will consider a body coordinate system ′c′ defined relative to the inter-

mediate coordinate system ′B′. That is the position of the body is defined with the

vector ~Rc/B and its orientation with a rotation matrix Ac/B . Hence the position of

the body in the coordinate system ′G′ is defined as

~Rc/G = ~RB/G + ~Rc/B (3-9)

Then Equation 3-6 leads to the following expression for the linear velocity of the

body:

~̇Rc/G |
G

= ~̇RB/G |
G

+ ~̇Rc/B |
B

+ ~ΩB/G × ~Rc/B (3-10)
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Equation 3-8 gives the transformation for the linear acceleration:

~̈Rc/G |
G

= ~̈RB/G |
G

+ ~̈Rc/B |
B

+ ~̇ΩB/G × ~Rc/B

+ 2~ΩB/G × ~̇Rc/B |
B

+ ~ΩB/G × (~ΩB/G × ~Rc/B)
(3-11)

Similarly, for the angular velocity of the body ~ωc/G and angular acceleration

~αc/G |
G

:

~ωc/G = ~ΩB/G + ~ωc/B (3-12)

~αc/G |
G

= ~̇ωc/G |
G

= ~̇ΩB/G + ~αc/B |
B

+ ~ΩB/G × ~ωc/B (3-13)

Note that the equations above do not specify the coordinate system where the

components of the vectors are expressed. Therefore appropriate transformation ma-

trices (e.g., AB/G, Ac/B) may be necessary to apply to bring all the vectors in the

same coordinate system (e.g., ’B’).

3.4 Generalized Newton-Euler Equation

The generalized Newton-Euler equation for the unconstrained motion of the de-

formable body that undergoes large reference displacement is given by:







MRR Ag/b
~̃S

T

t Ag/bS̄

J̄ ee J̄ ef

symmetric M ff













~̈R
(g)

b/g

~α (b)

~̈xf






=







~Q
(g)

R

~Q
(b)

α

~Qf






(3-14)

Where






~Q
(g)

R

~Q
(b)

α

~Qf






=







( ~Qe)
(g)
R

(~Qe)
(b)
α

( ~Qe)f − K ff · ~xf − C ff · ~̇xf






+







(~Qv)
(g)
R

( ~Qv)
(b)
α

( ~Qv)f






(3-15)

Alternatively using body coordinate system for all vectors:







MRR
~̃S

T

t S̄

J̄ ee J̄ ef

symmetric M ff













~̈R
(b)

b/g

~α (b)

~̈xf






=







~Q
(b)

R

~Q
(b)

α

~Qf






(3-16)

where

~̈Rb/g|
g

is the acceleration of the offset of the body reference coordinates relative to

the global coordinate system.
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~α (b) is the angular acceleration vector of the reference of the deformable body de-

fined in the body coordinate system.

~̈xf second derivative of the vector of time-dependent elastic generalized coordi-

nates of the body ~xf.

Ag/b - orthogonal rotation matrix, which for the case of Euler parameters is defined

as:

Ag/b =





1 − 2(e2)
2 − 2(e3)

2 2(e1e2 − e3e4) 2(e1e3 + e2e4)
2(e1e2 + e3e4) 1 − 2(e1)

2 − 2(e3)
2 2(e2e3 − e1e4)

2(e1e3 − e2e4) 2(e2e3 + e1e4) 1 − 2(e1)
2 − 2(e2)

2



 ,

(3-17)

where e1..4 are the four Euler rotation parameters, defined for the rotation

around vector v̂ = [v̂x, v̂y, v̂z] by angle φ as

e1 = v̂x sin φ
2
, e2 = v̂y sin φ

2
,

e3 = v̂z sin φ
2
, e4 = cos φ

2

}

(3-18)

The other parameters of the equation are the mass matrix, the generalized forces

and quadratic velocity vector. The components of the mass matrix are defined in

the next section, generalized forces are discussed in Section 3.7, and the quadratic

velocity vector that includes the effects of Coriolis and centrifugal forces is defined

in Section 3.6.

The Newton-Euler equation given in this section can be further simplified by

using the shape functions that satisfy mean-axis condition. See Chapter 8 for further

development and an efficient solution approach.

3.5 Mass Matrix

Even though the mass matrix depends on the elastic states, the deformable body

inertia can be defined in terms of a set of constant inertia integrals that depend on the

assumed displacement field.

~J1 =

∫

V

ρ ~p (b)
0 dV (3-19)

Jkl =

∫

V

ρ p
(b)
0,k p

(b)
0,ldV, k, l = 1, 2, 3 (3-20)

S̄ =

∫

V

ρ SdV (3-21)

S̄kl =

∫

V

ρ ST
k SldV, k, l = 1, 2, 3 (3-22)
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J̄kl =

∫

V

ρ p
(b)
0,kSldV, k, l = 1, 2, 3 (3-23)

where

~p (b)
0 is the undeformed position of an arbitrary point on the deformable body;

ρ is the mass density of the body;

V is the volume of the body;

Sk is the k-th row in the body shape matrix S, defined by Equation 3-2.

Note that in the special case of rigid body analysis the shape integrals are given by

Equations 3-19 and 3-20 only.

The mass matrix components now can be defined:

- MRR =
∫

V
ρIdV = mI , where I - is the 3 × 3 identity matrix for the spatial

case, m - mass of the body. For the case of conservation of mass this matrix is

the same for both cases of rigid and deformable bodies.

- ~̃St is given by




0 −St,3 St,2

St,3 0 −St,1

−St,2 St,1 0



 (3-24)

where
~St = [St,1, St,2, St,3]

T = ~J1 + S̄ · ~xf (3-25)

- J̄ ee is a 3 × 3 symmetric matrix with the elements given by

∫

V

ρ











(p
(b)
P/b,2)

2 + (p
(b)
P/b,3)

2 −p
(b)
P/b,2p

(b)
P/b,1 −p

(b)
P/b,3p

(b)
P/b,1

(p
(b)
P/b,1)

2 + (p
(b)
P/b,3)

2 −p
(b)
P/b,3p

(b)
P/b,2

symmetric (p
(b)
P/b,1)

2 + (p
(b)
P/b,2)

2











dV

(3-26)

Let us now show how this matrix can be calculated efficiently by using pre-

calculated inertia shape integrals. First we will analyze the components of the

diagonal elements:
∫

V
ρ[(p

(b)
P/b,k)

2]dV =
∫

V
ρ[(p

(b)
0,k + Sk · ~xf)

2]dV

=
∫

V
ρ[(p

(b)
0,k)

2 + ~xT
f · ST

k · Sk · ~xf + 2 · p(b)
0,k · Sk · ~xf]dV

=
∫

V
ρ(p

(b)
0,k)

2dV + ~xT
f ·

∫

V
ρ[ST

k · Sk]dV · ~xf

+ 2
∫

V
ρ[p

(b)
0,k · Sk]dV · ~xf

= Jkk + 2J̄kk · ~xf + ~xT
f · S̄kk · ~xf

(3-27)
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Using the procedure similar to the one shown above we can come up with the

following compact expressions for the diagonal and non-diagonal members of

J̄ ee:

J̄ee,kk =
∑

l Jll + 2(
∑

l J̄ ll) · ~xf + ~xT
f · (

∑

l S̄ll) · ~xf

J̄ee,kl = −(Jlk + (J̄ lk + J̄kl) · ~xf + ~xT
f · S̄lk · ~xf)

where k, l = 1, 2, 3; l 6= k

(3-28)

Note that for the case of rigid body analysis the elastic coordinates are zero

and so the matrix J̄ ee is constant.

- J̄ ef has three rows defined as follows

J̄ ef =





~xT
f · (S̄23 − S̄32)

~xT
f · (S̄31 − S̄13)

~xT
f · (S̄12 − S̄21)



 +





(J̄23 − J̄32)
(J̄31 − J̄13)
(J̄12 − J̄21)



 (3-29)

- M ff is independent on the generalized coordinates of the body and, therefore,

constant:

M ff = S̄11 + S̄22 + S̄33 (3-30)

3.6 Quadratic Velocity Vector

The quadratic velocity vector can be defined as

~Qv = [(~Qv)
T
R (~Qv)

T
α ( ~Qv)

T
f ]T (3-31)

In the three-dimensional analysis the components of the vector ~Qv are defined as

(~Qv)
(g)
R = −Ag/b · [(ω̃)2S̄t + 2ω̃S̄~̇xf]

(~Qv)α = −~ω (b) × (J̄ ee · ~ω (b)) − ˙̄J ee · ~ω (b) − ~ω (b) × (J̄ ef · ~̇xf)

(~Qv)f = −
∫

V
ρ{ST [(ω̃)2 · ~p (b) + 2 · ω̃ · ~̇p (b)

f ]}dV



















(3-32)

where ~ω (b) is the angular velocity vector defined in the body coordinate system. and

ω̃ is a skew symmetric matrix given by

ω̃ = ~̃ω
(b)

=





0 −ω (b)
3 ω (b)

2

ω (b)
3 0 −ω (b)

1

−ω (b)
2 ω (b)

1 0



 (3-33)

The quadratic velocity vector includes the effect of Coriolis and centrifugal forces as

nonlinear functions of the system generalized coordinates and velocities.
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In order to express ( ~Qv)f in terms of the shape integrals we need to evaluate the

symmetric (ω̃)2 matrix:

(ω̃)2 =





−((ω (b)
3 )2 + (ω (b)

2 )2) ω (b)
1 ω (b)

2 ω (b)
1 ω (b)

3

ω (b)
1 ω (b)

2 −((ω (b)
1 )2 + (ω (b)

3 )2) ω (b)
3 ω (b)

2

ω (b)
1 ω (b)

3 ω (b)
3 ω (b)

2 −((ω (b)
1 )2 + (ω (b)

2 )2)





(3-34)

Hence, (~Qv)f can be given explicitly in terms of the flexible states ~xf and ~̇xf:

( ~Qv)f = −
3

∑

i=1

3
∑

j=1

(ω̃)2
ij(J̄

T
ij + S̄ij · ~xf) − 2 ·

3
∑

i=1

3
∑

j=1

ω̃ijS̄ij~̇xf (3-35)

The last term
∑3

i=1

∑3
j=1 ω̃ijS̄ij~̇xf can be further simplified to

ω (b)
3 (S̄12 − S̄21) · ~̇xf + ω (b)

1 (S̄23 − S̄32) · ~̇xf + ω (b)
2 (S̄31 − S̄13) · ~̇xf (3-36)

3.7 Generalized Forces

3.7.1 Generalized Elastic Forces

The virtual work due to elastic forces can be written as

δWs = −
∫

V

~σT δ~ε dV (3-37)

where ~σ and ~ε are the stress and strain tensors, and δWs is the virtual work of the

elastic forces.

Strain is a dimensionless parameter describing deformation. Strain displacement

relations can be formulated as:

~ε = D~p (b)
f (3-38)

where D is a differential operator defined according to:

εij =
1

2
(ui,j + uj,i +

3
∑

k=1

uk,iuk,j), ui,j =
∂ui

∂xj

, i, j = 1, 2, 3 (3-39)
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or, in case of cylindrical coordinate system with coordinates (r, φ, z) (see [35]):

ε11 = ∂ur
∂r

ε22 = 1
r (

∂uφ

∂φ
+ ur)

ε33 = ∂uz
∂z

ε12 = 1
r (∂ur

∂φ
− uφ) +

∂uφ

∂r

ε13 = ∂ur
∂z

+ ∂uz
∂r

ε23 = 1
r

∂uz
∂φ

+
∂uφ

∂z

(3-40)

For a linear homogeneous isotropic material, the constitutive equations relating

the stress and strains can be written as

~σ = E~ε (3-41)

where ~ε = [ε11, ε22, ε33, ε12, ε13, ε23]
T , ~σ = [σ11, σ22, σ33, σ12, σ13, σ23]

T , and E is the

symmetric matrix of elastic coefficients, defining the material properties.

Substituting Equation 3-41 into Equation 3-37 we can get:

δWs = −~x T
f · K ff · δ~xf (3-42)

where

K ff =

∫

V

(DS)T EDSdV (3-43)

K ff is a symmetric positive semidefinite stiffness matrix associated with the elastic

states of the body. Boundary conditions, discussed in Chapter 8, ensure that the

stiffness matrix becomes positive definite.

Since the virtual work of the elastic forces does not depend on the rigid body

states the corresponding components of the generalized force vector are zero. The

resulting vector is therefore given by:






~Q
(g)

R

~Q
(b)

α

~Qf






=





0
0

−K ff · ~xf



 (3-44)

To complete the description we show how the matrix E can be expressed in terms

of Lame’s constants:

E =

















λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ

















(3-45)
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The Lame’s constants are related to the engineering constants E - Young’s mod-

ulus and γ - Poisson’s ration with the following equations:











E =
µ(3λ + 2µ)

λ + µ

γ = λ
2(λ + µ)











µ = E
2(γ + 1)

λ =
Eγ

(1 − 2γ)(1 + γ)

(3-46)

It is important to mention that the stresses and strains we were describing above

are the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. The most

important observation about these two measures is that the components of the tensors

do not change under rigid body translation and rotation and so they provide a natural

material description for the case of large rigid body motion but small elastic deflec-

tion and strain analysis. The observation is of practical importance since Hook’s law

is applicable only to small strains and because in the particular problems we are in-

terested in the condition of large rigid body motion, accompanied by small strains,

holds.

3.7.2 Generalized Viscosity Forces

We start the description by mentioning a big similarities between the elastic and vis-

cosity forces and the related laws. For instance, for a linear homogeneous isotropic

material, the constitutive equations relating the rate of strain change to the viscosity

stress can be written as

~τ = Ev~̇ε (3-47)

And so following the procedure outlined in the previous subsection we can compute

the damping matrix C ff similarly to the stiffness matrix K ff. However, the material

constants’ matrix Ev is often not so well known for damping and so we will describe

one of the approximation techniques - Rayleigh damping. This damping model is

discussed in more details for the case of finite-element analysis in [3]. The damping

matrix in this case is calculated as:

C ff = α · M ff + β · K ff (3-48)

where α (1/sec) and β (sec) are constants to be determined from two given damping

ratios that correspond to two unequal frequencies of vibration. Assuming that for two

vibration frequencies ω1 and ω2 we know the damping ratios ξ1 and ξ2 respectively

(in fractions of critical damping), the Rayleigh coefficients can be found from the

equations:
{

α + ω2
1 · β = 2 ω1 · ξ1

α + ω2
2 · β = 2 ω2 · ξ2

(3-49)
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ω

”Mass proportional” damping

”Stiffness proportional” damping

ξ

ωmin

ξmin

Figure 3-1: Damping coefficient as a function of frequency.

Similar to the previous section the resulting generalized force vector can be for-

mulated as:






~Q
(g)

R

~Q
(b)

α

~Qf






=





0
0

−C ff · ~̇xf



 (3-50)

Note that given the α and β coefficients one can establish the damping ratio that

is specified at a value of ωi:

ξi =
α + β · ω2

i

2 ωi

(3-51)

The general view of this curve is shown in Figure 3-1.

Simple analysis of this curve tells us that damping coefficient has its minimum

value ξmin =
√

α · β at the frequency ωmin =
√

α/β and that the coefficient grows

linearly for higher and hyperbolically for lower frequencies. In fact, one of the fea-

tures of Rayleigh damping is that the higher modes are considerably more damped

than the lower modes, for which Rayleigh constants have been selected.

The solution of the linear system Equation 3-49 gives the following relations for

the α and β coefficients:











α = 2
ω2

2 − ω2
1

ω1 · ω2 (ξ1 · ω2 − ξ2 · ω1)

β = 2
ω2

2 − ω2
1

(ξ2 · ω2 − ξ1 · ω1)
(3-52)
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When choosing the damping ratios and frequencies it is important to make sure that

the resulting α and β coefficients are positive. The negative value of one of the

coefficients leads to the negative damping ratio for a range of flexible body frequen-

cies. Thus the system will become non-dissipative and generate vibrations during the

simulation.

Since all the parameters used (ξ1, ω1, ξ2 and ω2) are positive the following condi-

tions follow from Equation 3-52 if we assume ω2 > ω1:

{

ξ1 · ω2 − ξ2 · ω1 > 0

ξ2 · ω2 − ξ1 · ω1 > 0
(3-53)

or, alternatively:
ω1

ω2

<
ξ1

ξ2

<
ω2

ω1

(3-54)

In practice, the values of the coefficients are often selected based on the experi-

ence with simulation of similar structures when the results of a simulation were fitted

to the same experimental results. That is the same α and β are used in the analysis

of similar structures. The magnitude of the Rayleigh coefficients is to large extent

determined by the energy dissipation characteristics of the construction, including

the material.

Another use of Rayleigh damping might be to improve the numerical perfor-

mance of the simulation by damping high frequency vibrations outside the frequency

band that the user is interested in. For example, suppose that only one damping ratio

ξe for the first body eigen-frequency ωe is known. Then, it might be reasonable to

select some high frequency ωh that limits the frequency band and set the correspond-

ing damping ration ξh to one thus damping out all the high frequencies. Having the

two damping ratios ξe and ξh for two distinct frequencies the Equation 3-52 can be

used to obtain the α and β coefficients.

3.7.3 Generalized External Forces

The virtual work of all external forces acting on a body can be written in compact

form as

δWe = ~Q
T

e δ~x (3-55)

where ~Qe is the vector of generalized external forces associated with the body gen-

eralized coordinates. In partitioned form, the virtual work can be written as

δWe = [( ~Q
(g)

e )T
R (~Qe)

T
e (~Qe)

T
f ]





δ ~R
(g)

δ~e
δ~xf



 (3-56)

where (~Q
(g)

e )R and (~Qe)e are the generalized forces associated, respectively, with the

translational and rotational coordinates of the selected body reference, and (~Qe)f is
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the vector of generalized forces associated with the elastic generalized coordinates

of the body. Generalized forces may depend on the system’s generalized coordinates

~x, velocities, and on time.

Later in this section in order to provide simpler and more compact equations the

small angles ~θ and actual moments vector (~Qe)α are used instead of generalized

rotational coordinates (Euler parameters) ~e and associated part of the generalized

force ( ~Qe)
T
e . That is we will use:

δWe = [( ~Q
(g)

e )T
R ( ~Qe)

T
α ( ~Qe)

T
f ]







δ ~R
(g)

δ~θ

δ~xf






(3-57)

3.7.4 External Point Force

Let us assume that a force ~F
(g)

= ~F
(g)

(~x, t) acts at point ~p (g) of the deformable

body. The virtual work of this force is defined as

δWe = (~F
(g)

)T δ~p
(g)

P/g (3-58)

where ~p
(g)

P/g is the global position of point P of the deformable body. Let the position

of the point be defined by the vector ~p (g).

~p
(g)

P/g = ~R
(g)

b/g + Ag/b · ~p (b)
P/b (3-59)

where ~p (b)
P/b is the local position of point P with respect to the body coordinate system.

The virtual change δ~p
(g)

P/g is then defined as

δ~p
(g)

P/g = δ ~R
(g)

b/g + ∂
∂~θ

[Ag/b · ~p (b)
P/b ] · δ~θ + Ag/b · S · δ~xf =

δ ~R
(g) − Ag/b · ~̃p

(b)

P/b · δ~θ + Ag/b · S · δ~xf

(3-60)

The vector δ~p
(g)

P/g can be written in a partitioned form as

δ~p
(g)

P/g = [I, −Ag/b · ~̃p
(b)

P/b , Ag/b · S]







δ ~R
(g)

δ~θ
δ~xf






(3-61)

where the shape matrix S is defined at the point P . Thus, the virtual work δWe is

defined as

δWe = (~F
(g)

)T [I, −Ag/b · ~̃p
(b)

P/b , (Ag/b · S)]





δ ~R
(g)

δ~e
δ~xf



 (3-62)

and so the generalized forces in Equation 3-57 can be recognized as

( ~Q
(g)

e )R = ~F
(g)

, (~Qe)α = ~̃p
(b)

P/b · Ab/g · ~F
(g)

, ( ~Qe)f = ST · Ab/g · ~F
(g)

(3-63)

where the facts that ~̃p = −~̃p T and AT
g/b = Ab/g were used to simplify the equations.
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3.7.5 External Point Moment

Let us assume that an external moment ~M = ~M
(g)

(~x, t) is applied at point P of

the deformable body. Let the position of the point be defined by the vector ~p (g). The

virtual work of this moment is defined as

δWe = ( ~M
(g)

)T δ~θ
(g)

(3-64)

where δ~θ
(g)

is a virtual change of the the global orientation of the point P . Since

vector rules apply to the infinitesimal rotations one can write:

δ~θ
(g)

= δ~θ
(g)

r + Ag/b · δ~θ
(b)

f (3-65)

where δ~θ
(g)

r is the virtual change of the reference frame orientation and δ~θ
(b)

f is the

virtual change of the material particle orientation inside the flexible body as defined

in Section 3.2.

In terms of the generalized coordinates the virtual orientation change is then de-

fined as:

δ~θ
(g)

= [0, Ag/b, Ag/b
∂~θ

(b)

f

∂~xf

]







δ ~R
(g)

δ~θ
δ~xf






(3-66)

where
∂~θ

(b)

f

∂~xf
is a 3 × nf matrix calculated by differentiation of Equation 3-5 with

respect to the elastic states:

∂~θ
(b)

f

∂~xf

=
1

2















∂Sy

∂z
− ∂Sz

∂y

∂Sz
∂x

− ∂Sx
∂z

∂Sx
∂y

− ∂Sy

∂x















(3-67)

S = [ST
x , ST

y , ST
z ]T is the shape matrix defined at point P .

Finally the resulting generalized force can be recognized as:

( ~Q
(g)

e )R = 0, ( ~Qe)α = Ab/g · ~M
(g)

, (~Qe)f = (
∂~θ

(b)

f

∂~xf

)T · Ab/g · ~M
(g)

(3-68)

where the fact that AT
g/b = Ab/g was used to simplify the equations.

3.7.6 External Volume Load

In this subsection we will analyze the external loads acting on all of the particles

of the body. The most common cases of such loads are gravity, magnetic and elec-

trostatic forces. For generality we will assume that some load vector ~L with the
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dimension N/m3 (Newton per cubic meter) is acting on each volume particle dV .

For the case of gravity this load is given as ρ · ~g, where ~g is the gravity acceleration

constant vector and ρ is the mass density of the body. Using the equations developed

in Section 3.7.4 and integrating over the volume we can get the components of the

generalized body load ~QL:

( ~QL)R =

∫

V

~L
(g)

dV = ~L
(g)

∫

V

dV = ~L
(g) · V (3-69)

( ~QL)α =

∫

V

[

~̃p
(b) · Ab/g · ~L

(g)
]

dV =

∫

V

[

~̃p
(b)

]

dV ·Ab/g · ~L
(g)

=
1

ρ
~̃St ·Ab/g · ~L

(g)

(3-70)

( ~QL)f =

∫

V

[

ST · Ab/g · ~L
(g)

]

dV =

∫

V

[

ST
]

dV · Ab/g · ~L
(g)

=
1

ρ
S̄ · Ab/g · ~L

(g)

(3-71)

where ~̃St and S̄ were defined in Section 3.5. For the case of the gravity force the

equations can be further simplified considering that m = ρ · V :

( ~Qg)R = m · ~g(g)

( ~Qg)α = ~̃St · Ab/g · ~g(g)

( ~Qg)f = S̄ · Ab/g · ~g(g)

(3-72)

Note that the derivation as presented in this section easily can be generalized for

other kinds of loads that do not depend on the elastic states. That is as long as the

load (force) vector does not depend on the point position within the body one can

sum (or integrate) over the points once at the start up and use the precalculated shape

integrals during the simulation. One useful application of this approach is area load,

where a constant load acts over a surface area.

From the user interface design point of view, the body and area loads rise an issue

of sub-volume and sub-area specification in the input. That is, a simulation tool needs

to provide some means to define the geometry to be integrated. Both for the area and

volume specification two approaches for the user interface design are possible.

Closed boundary A sub-volume can be defined by a set of surfaces and a sub-area

- by a set of curves on the surfaces. User must explicitly define all the bound-

ary surfaces and curves. The boundary must be closed to make integration

possible.

Parametric specification The sub-volume and sub-area can be specified by coordi-

nate or parametric intervals. This approach is essentially a special case of the

closed boundary specification where the boundaries have simple configuration

(planes and strait lines). For some cases, e.g., when the specified sub-volume

is completely inside the body, the parametric specification simplifies the inte-

gration procedures since the integration ranges become constant.
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3.7.7 Generalized Forces from the Internal Stress Release during

Grinding

The structural elasticity model presented in this thesis was incorporated into a grind-

ing simulation tool [21]. One of the special effects that is of interest for this sim-

ulation is the internal stress release during grinding of rings. The internal residual

stresses in the material can be caused by material phase changes in the hardening

process. When stressed material is removed the released stresses result in elastic dis-

tortion of the body. These distortions are especially significant for large rings where

they often cause manufacturing problems and therefore should be incorporated into

the flexible model [6].

The internal stresses do not affect the elastic behavior of the body as long as the

material is intact. When the material is removed they result in additional generalized

force that affects the generalized elastic coordinates but does not influence the rigid

body part of the system. Following the procedure described in Section 3.7.1 we can

get:

~Qif
=

∫

Vg

~σT DSdVg, (3-73)

where the volume integration is done over the material volume Vg that is ground away

during the simulation and ~σ stands for the residual stress tensor.

For simulation purposes it is often possible to assume that all the surface particles

are subjected to the same treatment and only a thin layer of material is removed

during grinding. That is why it is realistic to model the internal stress tensor ~σ as

a constant tensor in the surface layer when the local coordinate system (s) normal

to the surface is used to calculate the strains and stresses. Assuming that a rotation

matrix As/b transforms the body coordinates into the local surface coordinates one

can perform integration of the shape matrix independently:

~Q
(c)

if
= (~σ(s))T

∫

Vg

D(s)(As/bS)dVg (3-74)

Note that for the case of ring grinding where a cylindrical coordinate system (r, φ, z)
is used as the body coordinate system the matrix As/b does not depend on the angle φ.

The problem with the evaluation of the generalized force ~Qif
comes from the

fact that the volume Vg representing the ground material changes with time. In a

simulation the ground surface is described by a mesh. Every node of this mesh keeps

track of the value of the height hg(u, v) ground at the point (u, v) on the surface. The

integration in Equation 3-74 should obviously be performed over this surface mesh.

During a grinding simulation the values hg(u, v) are updated only once for every

ODE solver time step and are kept constant when the solver does trial time steps

during internal solver iterations. It means that the generalized force ~Qif
can also be

evaluated only once per time step and can not be accurately evaluated between the

steps. The values hg(u, v) are accumulated during the simulation run and can not be
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directly computed from the state variables. Therefore the extrapolation procedures

inside the solver can not predict the change of the resulting force. Hence, from

the ODE solver point of view the force changes discontinuously. For high-order

solvers with adaptive time step size, like CVODE [8], force discontinuity results

in convergence problems and shorter time steps, leading to much longer simulation

times.

In order to avoid this discontinuity problem an interpolation procedure was de-

veloped. The procedure is actually general and can be used for smoothing of any

kind of force input that causes numerical problems. The procedure is discussed in

Section 3.7.8

3.7.8 An Interpolation Method for Forces with Discontinuities

Some non-linear effects modeled in dynamic simulations make it impossible, or very

hard, to evaluate the force function at every time instant. See Section 3.7.7 for an

example of such a force. In such cases some extrapolation or interpolation procedure

must be used to provide a continuous force function in time domain. High order ODE

solvers used for dynamic simulations assume high continuity of all the functions in-

volved in the problem. Some experiments done in the BEAST tool show that at least

continuity of the second order time derivatives is needed in order to get reasonably

large time steps in the solution.

The interpolation procedure described here can be used for the forces which are

changing with lower frequencies than some other fast processes in the simulated sys-

tem. The main idea of this procedure is to delay the real force value for a small time

interval and to use cubic interpolation to get a smooth change of the force function

between the current and the delayed values.

Before using the procedure the interpolation time delay parameter δt must be se-

lected. The only requirement on this parameter is to be larger than the maximum

possible time step of the ODE solver. Initial value of the force variable to be interpo-

lated must be given. The initial first and second time derivatives of the variable are

normally assumed to be zero if no other information is available.

The interpolation procedure can be seen as a filter block shown in Figure 3-2.

The only input for the block is the calculated force F c(ti). This value is delayed and

assigned to the variable F f
i which is seen as the expected force value for time t + δt.

So, at every time t, such that ti ≤ t < (ti + δt) the interpolation block is using the

following four variables:

• Force variable current approximating value Fi = F (ti);

• First and second time derivatives Ḟi = Ḟ (ti) and F̈i = F̈ (ti);

• Delayed value of force F f
i .
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Interpolation

between ti and ti + δt
t F (t)

F (ti), Ḟ (ti), F̈ (ti)

F c(ti)

Figure 3-2: Force interpolation as a filter block. A continuous force function F (t) is

generated for the discreet input F c(ti).

F

ti ti+1 ti + δt ti+1 + δtta tb

Fi+1

Fb

F f
i+1

F f
iFaFi

t

Figure 3-3: One dimensional force interpolation. The values of the force variable F
for the time instances ta and tb are calculated using third order interpolation between

Fi and F f
i for Fa and between Fi+1 and F f

i+1 for Fa.
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Having the four parameters above (two values and two derivatives) it is possible to

calculate the approximate value F (t) by using cubic interpolation:

F (t) = Fi(1 − 1
δ3
t

(t − ti)
3) + F f

i
1
δ3
t

(t − ti)
3

+ Ḟi(t − ti)(1 − 1
δ2
t

(t − ti)
2) − F̈i

1
2δt

(t − ti)
2(t − ti − δt)

(3-75)

Note that F (t) is a continuous function which is the essential output of the interpo-

lation block and should be used instead of the discreet values F c(ti).
When the numeric ODE solver has done some iteration and decided the step

size and state variables values for the time ti+1 the force variable value F f
i+1 can be

calculated. In order to move to the next time step and to interpolate the values for

times between ti+1 and ti+2 we need to evaluate Fi+1 = Fx(ti+1) and the derivatives
˙Fi+1 and ¨Fi+1 according to the equations:

Ḟi+1 = −3Fi
(ti+1 − ti)

2

δ3
t

+ 3 F f
i

(ti+1 − ti)
2

δ3
t

+ Ḟi(1 − 3
(ti+1 − ti)

2

δ2
t

+ F̈i(ti+1 − ti)(1 − 3 (ti+1 − ti)
2δt

F̈i+1 = −6 Fi
(ti+1 − ti)

δ3
t

+ 6F f
i

(ti+1 − ti)
δ3
t

− 6 Ḟi
(ti+1 − ti)

δ2
t

+ F̈i(1 − 3(ti+1 − ti)
δt

)

(3-76)

Figure 3-3 shows an interpolation scenario where the ODE solver evaluates one

extra time instance ta between two time step ti and ti+1. The corresponding value

of the force variable Fa is interpolated from Fi, F f
i , Ḟi and F̈i using the procedure

above.

The interpolation procedure described in this section provides continuity of the

second time derivative of the force vector which is sufficient for most cases. It is cer-

tainly possible to achieve higher order continuity by using higher order interpolation

methods.

The interpolation procedure can be applied element-wise to vector variables and

hence can be used for generalized forces’ interpolation.

3.8 Calculating Jacobian

Jacobian computation is an important procedure that influences the efficiency of an

implicit solver. The ODE solver receives the differential equation ~̇z = f(~z, t) that

represents the mechanical system behavior and it requires the partial derivatives ∂
˙~z

∂~z
in order to construct the Jacobian. From the application point of view, knowing that
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~z ≡ {~x,~v} it is convenient to view the partial derivatives as a set of four matrices:







∂~̇x
∂~x

∂~̇x
∂~v

∂~̇v
∂~x

∂~̇v
∂~v







where ~x includes all the translational, rotational and elastic coordinates, and ~v con-

tains all the velocity terms. The blocks in the first row of this matrix (∂~̇x
∂~x

and ∂~̇x
∂~v

)

can be computed analytically. Since for the elastic part ~̇xf ≡ ~vf, the ”elastic” parts

of ∂~̇x
∂~x

are zero and corresponding parts of ∂~̇x
∂~v

are an identity matrix:

∂~̇x

∂~xf

= 0;
∂~̇x

∂~vf

= I

Calculation of the second row blocks (∂~̇v
∂~x

and ∂~̇v
∂~v

) is more complicated and

involves differentiation of the acceleration terms with respect to the state variables.

Let us rewrite the Newton-Euler equations presented in Section 3.4 for some body i:

M i · ~̇v
(b)

i = ~Q
(b)

i (3-77)

Differentiating both parts of the equation by the complete state vector ~z we get:

∂~̇v
(b)

i

∂~z
= M−1

i ·
(

∂ ~Q
(b)

i

∂~z
− ∂M i

∂~z
· ~̇v(b)

i

)

(3-78)

The term involving the mass matrix derivatives introduces the specifics of flexible

body analysis where the mass matrix is not constant. Another property of the elastic

case is the dependency of the generalized force vector ~Q
(b)

i on the elastic states.

Obviously the derivatives of the velocity states are nonzero only when differen-

tiated with respect to the same body states or with respect to the states of a directly

interacting body. In this context interaction means existence of a force acting be-

tween the bodies. Figure 3-4 illustrates the case of a force acting between points

fixed in the material of the elastic bodies i and j. Let us describe the procedure to

calculate partial derivatives of the ~̇vi vector with respect to the states of the both

bodies.

For the application efficiency the most important aspect is to minimize the num-

ber of the force function calculation. This is done by using chain differentiation rules

and using force function only to compute a low-dimensional matrix ∂ ~F

∂ ~∆
(i)

j/i

, where

~∆
(i)

j/i is the relative motion tensor, that includes the distance between the points, rela-

tive orientation and relative velocities of the points including the effects of structural

deformation.
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x

y

x

y

cG

x

y

cbi
cbj

~uf,i ~uf,j

~u0,j
~u0,i

~∆j/i

~Rcbj/cbi

Figure 3-4: A simple force acting between two flexible bodies.

The procedure for calculating ∂
˙~vi

∂~zj

, when i 6= j (mixed sub-Jacobian) differs from

the case i = j.

We will first describe the simpler algorithm that is used for mixed sub-Jacobians.

For this case in Equation 3-78 only the generalized force vector is dependent on zj

and we can immediately write the differentiation chain:

∂~̇vi

∂~zj

=
∂~̇vi

∂ ~Qi/j

·
∂ ~Qi/j

∂~zj

(3-79)

where ~Qi/j is the contribution to the generalized force ~Qi from the force acting on

body i from body j. Note that from the differentiation of Equation 3-77 with respect

to ~Qi/j it follows that the matrix ∂
˙~vi

∂ ~Qi/j

= M−1
i is a constant matrix that needs to be

computed only once.

Continuing the expansion we get:

∂ ~Q
(i)

i/j

∂~zj

=
∂ ~Q

(i)

i/j

∂ ~F
(i)

i/j

·
∂ ~F

(i)

i/j

∂~∆
(i)

j/i

· ∂~∆j/i

∂~zj

(3-80)

The partial derivatives
∂ ~∆

(i)

j/i

∂~zj

reflect both the motion caused by rigid body motion of

the geometry center of body j and the elastic deflection motion of the material point

due to the changes of the elastic states.
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Current implementation uses forward differences to calculate the partial deriva-

tives on the right hand side of Equation 3-80.

Differentiation with respect to the same body state, i.e., the calculation of the

derivatives ∂
˙~vi

∂~zi

, is more complicated for the following two reasons:

• Mass matrix M iis a function of the state tensor ~zi

• Generalized force is a function of both applied force and the state tensor ~zi.

Recall, for instance, from Section 3.7.4 that the generalized external point force

can be written as:

~Qi/j =





~F i/j

(~u0,i + ~uf,i) × ~F i/j

ST (~u0,i) · ~F i/j



 (3-81)

and so the partial derivatives for the elastic states become (all vectors and matrices

are in the body i geometric coordinate system):

∂ ~Qi/j

∂~zi,f

=

















~F i/j

∂~zi,r

S(~u0,i) × ~F i/j + (~u0,i + ~uf,i) ×
∂ ~F i/j

∂~zi,f

ST (~u0,i) ·
∂ ~F i/j

∂~zi,f

















(3-82)

Currently, in order to get a possibly simple implementation we use the following

general rule. Given some general function F (g(z), z) the partial derivatives with

respect to z can be calculated as:

∂F (g(z0), z0)

∂z
=

F (g(z0) +
∂g(z0)

∂z
· δz, z0 + δz) − F (g(z0), z0)

δz
(3-83)

So, having computed
∂ ~F i/j

∂ ~∆j/i

and having functions ~Qi/j(~F i/j,~zf,i) and ~∆j/i(~zi,~zj)

we can construct a function for numerical differentiation that computes
∂ ~Qi/j

~zi,f

. The

pseudo code for the function follows:
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for each component of ~zi,f zk do:

Choose an increment delta for forward differences δz

Calculate:

zF
k = zk + δz, compose ~zF

i

~∆
F

j/i = ∆j/i(~z
F
i ,~zj)

~F
F

i/j =
∂ ~F i/j

∂~∆j/i

· (~∆F

j/i − ~∆
0

j/i) + ~F
0

i/j

~Q
F

i/j = ~Qi/j(~F
F

i/j,~z
F
i )

∂ ~Qi/j

∂~zi,f
= ( ~Q

F

i/j − ~Q
0

i/j)/δz

end for
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Chapter 4

Static, Eigenmode and Quasi-static

Single Body Analysis

Before running a complete multibody dynamic simulation with flexible bodies it is

often useful to perform some simple analysis on a single body model. This analysis

can help answering the question of the required number of deformation shapes for

the particular big simulation case. Note that the presented analysis types are only

meaningful for flexible body models. None of them deals with the rigid body motion

and mass.

Three kinds of single body analysis were implemented in the BEAST system.

They are:

• Static loading. In this analysis some constant (time independent) loads are ap-

plied on the body and body’s deformation in the equilibrium is studied. Since

the loads are static no inertia forces are active in the equilibrium state. The

discussion of this case later in this chapter shows that only the properties of the

stiffness matrix and deformation field can be studied with static loading. Note

that in order to perform static analysis the applied loads must be balanced so

that no rigid body acceleration is necessary to resolve them.

• Eigenmode analysis. Free body eigenfrequencies and eigenmodes are com-

puted in this analysis mode. In case of general shape functions some addi-

tional boundary conditions can be implicitly introduced by the selection of the

shapes. For instance, specifying no (or too few) shape functions in a certain

coordinate direction results in implicit ’fixed-ends’ boundary condition. This

happens since lack of shapes reduces the number of degrees of freedom for the

material particles of the body, often resulting in eigenfrequencies much higher

than anticipated. Eigenmode analysis helps in studying the properties of both

mass and stiffness matrices of the body as well as the properties of the selected

deformation field but does not give any information about the centrifugal forces

acting on the body.
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• Quasi-static analysis. Generally this kind of analysis assumes constant ve-

locity analysis. The most interesting cases are constant angular velocity rev-

olutions around different rotations axes. This analysis helps the study of the

centrifugal forces as well as mass matrix, stiffness matrix and deformation field

of a body.

It must be clearly understood that no time domain integration is required to perform

single body analysis. That makes the analysis much less computationally demand-

ing than complete simulations. Hence, users are strongly recommended to care-

fully study the results of single body analysis before performing the computationally

heavy time domain runs.

The following sections discuss the equations necessary to perform all three kind

of analysis described above. They are all based on the generalized Newton-Euler

equation that was discussed in Section 3.4. The equation with all the vectors and ma-

trices computed in body’s local coordinate system is repeated below for convenience:






MRR
~̃S

T

t S̄

J̄ ee J̄ ef

symmetric M ff













~̈R
(b)

b/g

~α (b)

~̈xf






=







(~Q
(b)

e )R

( ~Qe)α

(~Qe)f − K ff · ~xf − C ff · ~̇xff






+





( ~Qv)R

( ~Qv)α

( ~Qv)f





(4-1)

4.1 Static Loading Cases

The equilibrium equation for the static analysis can be derived from Equation 4-1

by setting all the accelerations and velocities to zero, and further assuming that no

rigid-body motion is required to resolve the loading case. The resulting equation

follows:

0 = ( ~Qe)f − K ff · ~xf (4-2)

This is a linear equation for the elastic state vector that has a unique solution:

~xf = K−1
ff · ( ~Qe)f (4-3)

The generalized external force vector ( ~Qe)f gives the specific of the loading case

and normally stands for superposition of several point forces and body loads. See

Sections 3.7.4 and 3.7.6 for the calculation procedure for these cases.

Typical example static load cases for rings include symmetrical n-point loads and

for beams they are point or distributed loads acting on a simply supported beam.

4.2 Eigenmode Analysis

The eigenmode analysis discussed in this section is limited to the discussion of the

free-vibration equilibrium analysis with damping neglected. More discussions on

eigenmode analysis can be found in [3, 9].
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Since rigid body frequencies (which are always zero for a free body) are not

interesting to analyze, Equation 4-1 reduces to:

M ff · ~̈xf = −K ff · ~xf (4-4)

In vibration analysis it is assumed that the solution of this equation is represented in

the form:

~xf = ~a sin ωt (4-5)

where ~a is a vector with the number of elements equal to the number of degrees

of freedom (or number of elastic coordinates) nf used in the system, t is the time

variable and ω is a constant identified to represent the frequency of vibration (ra-

dians/second) of the vector ~a. In most cases the ~a vector is called eigenmode and

the associated ω constant is called eigenfrequency. Substituting Equation 4-5 into

Equation 4-4 a generalized eigenproblem is obtained, from which ~a and ω must be

determined:

K ff · ~a = ω2M ff · ~a (4-6)

The eigenproblem yields the nf eigensolutions (ω2
i ,~ai), where eigenvectors are M-

orthonormalized, i.e.,:

~aT
i · M ff · ~aj =

{

1, i = j

0, i 6= j
(4-7)

and

0 ≤ ω1 ≤ ω2 ≤ ... ≤ ωnf
(4-8)

The vector ~ai is called the i-th mode shape vector, and ωi is the corresponding vibra-

tion frequency. In order to calculate the positions of material particles for a certain

frequency one just need to substitute the vector A ·~ai (A is an arbitrary real constant)

for ~xf in deflection calculations (Equations 3-2). A typical eigenmode vibration visu-

alisation procedure should repeat this calculations for different values of A obtaining

an eigenvibration animation sequence.

The numerical algorithms for the solution of eigenproblems have attracted large

attention in numerical analysis. Most numerical linear algebra packages include

these algorithms. In case only algorithms for the solution of standard eigenvalue

problem are included in the package it is possible to transform the generalized eigen-

problem into the standard form (see [3] for the discussion).

4.3 Quasi-static Analysis

The quasi-static equilibrium equation is derived from Equation 4-1 by setting the

acceleration vector, the velocity vectors ~̇R
(b)

b/g and ~̇xf, and the external force vectors

to zero. Then for a given, constant angular velocity ω:

0 = −K ff · ~xf + ( ~Qv)f (4-9)
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This linear equation can be used to get approximate solution for the static case. Such

solution is quite accurate for the cases with weak coupling between the elastic de-

formation and quadratic velocity vector, and can be considered satisfactory for most

cases.

To obtain the exact solution it is necessary to recall Equation 3-35:

( ~Qv)f = −
3

∑

i=1

3
∑

j=1

(ω̃)2
ij(J̄

T
ij + S̄ij · ~xf) − 2 ·

3
∑

i=1

3
∑

j=1

ω̃ijS̄ij~̇xf (4-10)

Substituting Equation 4-10 into Equation 4-9 and simplifying, we come to a linear

equation:

(K ff +
3

∑

i=1

3
∑

j=1

(ω̃)2
ijS̄ij) · ~xf = −

3
∑

i=1

3
∑

j=1

(ω̃)2
ijJ̄

T
ij (4-11)

If the equation above is solvable then the solution vector gives the deformation shape

for the analyzed quasi-static situation. Absence of the solution indicates coupling

between the specified rotation and some of the elastic states’ time derivatives ~̇xf. In

such a case no unique general solution exists to the quasi-static problem.
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Chapter 5

Generation of Mode Shapes from

Finite Element Analysis

The majority of the modern simulation tools use a combination of finite element anal-

yses to generate the required shape functions S(~p0). Note that from a general point of

view both linear finite element methods and floating frame of reference formulation

use the same variable separation approach. The space dependent shape functions for

the whole body correspond to the combination of all the local element shape func-

tions in a finite element model. The list of all the node positions and orientations

corresponds to the complete vector of elastic coordinates.

The problem with the finite element representation is the large number of degrees

of freedom in a typical finite element model. The goal of the procedures described

in this section is to reduce the number of DOFs to be used in a multibody simulation

by constructing a transformation matrix V . The process is also called substructur-

ing. Every column in the V matrix gives a combination of motions for all the nodes

in the FE model and in such a way constructs a new deformation shape as a linear

combination of the original FE shapes. Normally the new set of deformation shapes

is the result of FE analysis for some sets of loading conditions. The choice of V

matrix corresponds therefore to the choice of loading conditions that are expected

to be typical for the particular multibody simulation. Such loading conditions are

relatively easy to identify if the flexible component has some fixed attachment points

or interface nodes where the external load is acting. The number of different loading

conditions (hence, number of columns in V ) is always chosen to be as small as pos-

sible to represent the interesting complete deformation shape with desired accuracy.

Most FE calculations start with the assembly of body mass and stiffness matrices

M FEM and KFEM. The corresponding reduced mass and stiffness matrices for a

linear model can then be calculated according to:

M ff = V T M FEMV

K ff = V T KFEMV
(5-1)

In order to recover the motion of all the nodes in the FE model from the reduced set
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of coordinates the following relation can be used:

~xFEM = V ~xf (5-2)

A classification of the different approaches to the reduction of FE models can be

found in [11]. The author identifies four different categories of the reduction methods

depending on the used combinations of loading conditions. This section, instead,

presents the FE analysis types used to generate the shape modes. The presented two

analysis types are the most commonly used.

Eigen-mode Shapes Many approaches suggest using either the eigen-modes of the

free floating struture while others prefer the eigen-analysis with the attachment points

fixed. The problem to be solved can be formulated as a generalized eigen-problem:

M FEMV Λ = KFEMV (5-3)

where Λ is a diagonal matrix containing eigenvalues. In case of fixed attachment

points the rows and columns of the mass and stiffness matrices corresponding to the

interface nodes DOFs are removed from the mass and stiffness matrices.

Particular Modes Particular modes can be generated by specifying specific

boundary conditions. To achieve that the complete set of DOFs associated with the

FE model is subdivided into two parts:

• ~xifc
FEM is associated with the interface nodes;

• ~xint
FEM is associated with the internal nodes.

The most general equation used to specify the load cases for the particular modes

can then be formulated as the following linear equation:

ω2
0M FEM

[

~xifc
FEM

~xint
FEM

]

+ KFEM

[

~xifc
FEM

~xint
FEM

]

+ ~Qext(ω0) = 0 (5-4)

where the unknowns are ~xint
FEM while the values of the interface DOFs ~xifc

FEM and

some additional external load ~Qext(ω0) are assumed. In most cases one load case

is generated per each interface DOF.

An an example, of choice of the vectors ~xifc
FEM, consider the Craig-Bampton

method [10]. The method is implemented, e.g., in ADAMS/Flex. Here in each set

~xifc
FEM only one variable has a unit value while others are set to zero. The method does

not include dynamic excitation analysis, that is the ω0 is assumed to be zero.

A more advanced method, called optimized-substructuring, tries to improve the

quality of the solution by using the responses around the main excitation frequencies

in the multibody simulation. The thesis [11] presents the approach in details.
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Chapter 6

Flexible Body Exchange Formats for

Systems Engineering

6.1 Different Formats for Mode Data

Unfortunately, there is no common standard for the storage of mode data produced

as a result of FE analyses. The two most known industrial formats are MNF (Modal

Neutral File) used by MSC.ADAMS [19] and SID (Standard Input Data) used by

SimPack [32].

MSC.ADAMS MNF The format is proprietary for MSC Software and is used ex-

clusively by ADAMS related packages (ADAMS/View, ADAMS/Flex, etc) [20, 19].

The file can be generated in all the popular FE packages (Nastran, Ansys, ABAQUS,

Marc, I-DEAS). The format is originally designed to keep information about Craig-

Bampton modes, but other kinds of modes can be potentially stored in the same

format as well. Some advanced features of the format are available when it is ex-

ported from Nastran. This is due to the fact that MSC Software owns both Nastran

and ADAMS and active development of an integrated simulation environment is go-

ing on. The toolkit is available for free from the MSC.Software for all the FE tool

developers.

The MNF format was chosen as the most well documented and well supported

for further studies and test implementation in BEAST. Even though the format is

proprietary no big changes from MSC are expected thanks to the support in other

FEA tools from independent developers.

SIMPACK SID files The SID format (Standard Input Data) [39] was proposed as

a standard for data exchange between FEA tools and MBS software packages. It has

advanced optional features for storing information necessary for modeling of second

order effects (geometric stiffening). The format uses frequency response modes for

generating deformation shapes at interfaces. This is a more general loading condition
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when compared to the basic Craig-Bampton method that uses only static deforma-

tion modes. The frequency dependent mode shapes give higher precision in certain

dynamic models.

Unfortunately, only SimPack [32] simulation package from Intec Gmbh utilizes

the format. The FemMBS program is distributed as a part of Simpack toolbox. The

program enables the data exchange with most FE tools (Ansys, Nastran, ABAQUS,

Marc, I-DEEAS, PERMAS). The FemMBS program can be purchased separately

from SimPack. There is a substantial annual license fee for the code.

6.2 Generating MNF

The MSC.ADAMS uses MNF (Modal Neutral File) exchange format to define the

interface with FE software. The MNF file format is not published. Instead, it is

defined by the C and Fortran programming interfaces in the MNF Toolkit. The toolkit

is available for free from the MSC.Software for all the FE tool developers and is

supported by most industrial FEA packages. BEAST is using the toolkit to read the

file and not to modify it.

Within the scope of this project investigation were done to check the possibilities

of MNF files generation in FEA software packages ANSYS and ABAQUS. Those

are the two FEA packages used by SKF engineers.

External FEM consultants were asked to generate MNF files using the MNF

toolkit from ANSYS [2] and ABAQUS [1]. This was done to get an insight into

the user scenario for an expert FE analyst when generating MNF files. Detailed re-

ports were ordered and received on the generation of MNF files from ANSYS. A

more concise report was ordered and received on ABAQUS.

Our experience from those results follows:

1. The interfaces are implemented and easy to use for the classical application of

the methodology: complex geometry with small number of interfaces.

2. Some modifications to the basic FE model are often necessary before a good

component model is created. The modifications concern the creating of aux-

iliary interface nodes used to distribute the load to a group of nodes in the

original model. There is a good manual describing the methods.

3. Most FE analysts lack the experience in the area of creating components for

the multibody simulations. It might take some time for them to become fa-

miliar with the concepts of interface nodes in general and user interfaces to

the MNF toolkit within a particular tool. When this basic difficulty is passed

the generation of MNF files becomes strait forward and does not require much

time.

4. FE-packages lack the ability to retrieve information from an MNF-file. Hence,
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a trivial mistake introduced by an FE tool user is only discovered when a com-

ponent is imported into an MBS framework.

5. The MNF toolkit experience problems when a large number (hundreds) of in-

terface nodes are defined. The difficulties are caused by the necessary large

data sets.

6.3 BEAST-MNF Interface

The MNF toolkit is quite versatile most likely for historical reasons. The BEAST

use of it is limited to the following:

1. All the node coordinates are read. Note that the information might be excessive

since only surface nodes are used for visualization and external loading of the

component. However, availability of all the nodes enables modeling of some

additional effects, e.g., distributed volume loading.

2. Nodal masses are read and used for calculation of necessary integrals over the

component volume. Note that the inertia integrals that may be stored in the

MNF are ignored. This was decided after some experiments demonstrating

that the lumped formulation (nodal masses) is used to generate the integrals.

In such a case using the integrals stored in MNF does not increase accuracy.

An alternative approach to set those integrals by doing a specialized assembly

and reduction over the FE model is not implemented.

3. Information about surface nodes is read and used for visualization. The infor-

mation about finite element types is not available in MNF. The surfaces are

represented with facets and no information about surface curvature is present.

This leads to some visual artifacts when the component is shown in Beast.

4. Interface nodes are identified and marked in the BEAST model. The BEAST

control points are used to represent the interfaces making the model structure

familiar to BEAST users.

6.4 Model Scaling

Additional feature implemented in BEAST is model scaling. The FE models are

often done in non-SI units, which make it necessary to scale the data from the MNF

file with some factor. This is also convenient when the same FE model is used for

the components of identical geometries but different sizes.

Suppose that the model dimensions need to be scaled with a scalar coefficient a.

Let us examine how such a scaling affect different modal data. Note that the M -

orthonormality of the mode shapes needs to be maintained. This is important for the

reasons discussed in Section 8.3.
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Figure 6-1: Housing surface mesh imported into MBS tool.

A naive scaling would just update the mass and stiffness matrices assuming that

mass grows cubically with the scale and stiffness grows linearly:

M a
ff = a3M ff, M ff = I

Ka
ff = aK ff, Kff(i, j) = δi,j ω2

i

(6-1)

where M ff and K ff are the original matrices; δi,j is Kronecker delta, ωi is the fre-

quency of the i-th mode.

The mode shapes are non-dimensional and, therefore, do not require scaling.

However scaling has changed the mass matrix and therefore has broken the orthonor-

mality condition. In order to restore it a normalization coefficient â needs to be in-

troduced:

â = a−1.5 (6-2)

Scaling the original mode shapes with the normalization coefficient we get a set of

orthonormal modes and corresponding matrices for the scaled geometry:

Sâ = âS

M â
ff = 1

a3M a
ff = I

K â
ff = 1

a3Ka
ff = 1

a2K ff

(6-3)

6.5 Simulation example

A FE model of bearing housing was chosen to run a demonstrative example. The

model was processed in ABAQUS and an MNF file was generated. The file was then

imported in a BEAST model and a dynamics simulation was run.
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Figure 6-2: A MBS model with the reduced body. Interface nodes are marked with

coordinate systems at the foundation and in the center.

Figure 6-3: Housing deformation (magnification 1000). Results shown after one

revolution with axial load on the inner ring of DGBB.
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The Figures 6-1, 6-2 and 6-3 present the results of a simulation where an axial

load was applied to the inner ring of a DGBB bearing. The outer ring of the bearing

was attached to the housing. Foundation of the housing was fixed to the ground.

6.6 Summary

There is no common standard for the storage of mode data produced as a result of FE

analyses. However, an implementation in a MBS framework based on the formats

utilized in other tools, e.g, MNF (Modal Neutral File) or SID (Standard Input Data),

is strait forward.

Export of flexible models of components with point interfaces is well established

in simulation industry. The export functionality is implemented in all the popular

FEA tools. The export procedure is automatic, but some modifications to the original

FE model are often necessary (e.g., definition of the interface nodes). Familiarity

with the export functionality among FEA tools users is low. Some specific training

is often necessary.

The exchange file formats are mostly suitable for the components with a few

interface nodes, since large amount of data is required otherwise. The most common

approach is to utilize the Craig-Bampton method [10]. The method is known to work

well for applications with low velocities [11].
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Chapter 7

General Shape Functions

7.1 Motivation

We observed that there is a large class of applications with bodies that are constrained

by surfaces that can have a contact. The essence of these constraints is the need to

have a continuous shape function description for deflection of each of such potential

contact surface.

Having considered the limitations with the reduction techniques we decided to

use the classic approximation method and sets of general functions to approximate

the deflection. Particularly we used Chebyshev polynomials to model deformation in

radial and longitudinal directions and Fourier series for the circumference direction

of rotating bodies. We use the proposed set of functions to describe the deforma-

tion through the material. The use of the well-known analytical functions enables

efficient calculation of deformation shapes. The series are known to be efficient in

approximating smooth functions and we can expect the real deformation shapes to

be smooth and so accurately represented even with low order polynomials and small

number of waves. In [29] it was pointed out that the same deflection solution can

be obtained using different sets of eigenmodes as mode shapes with high accuracy.

Since general functions are able to accurately approximate any set of eigenmodes

this assertion also supports the idea of using general shapes.

The flexible model that employs general shape functions is easy to use since no

interaction with other tools are needed, and the flexibility is controlled by a few input

parameters. An additional attractive feature of the approach is the ability to select

specific elastic degrees of freedom in an easy way and disable the deformations that

are known to be insignificant.

The shape function integrals are automatically calculated at start up since we

have a full geometric description of the body. The integrals may be modified during

the simulation. Thus, it makes it possible to include effects of initial stresses and

material removal.

Since we have a continuous description of the deformation field, we can have

contact or connections anywhere on the body, and there will be no induced vibrations
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due to modeling errors.

Of course, there is a practical limit when this technique is not suitable, i.e., for

components with very little constrained, complex geometry, but those limits are yet

to be found. In such cases standard reduction techniques will be more suitable. We

believe that different complementing methods need to be available within a large

general purpose MBS system.

• For bodies with well defined interfaces the mode shapes should be selected

using eigenmode, static and frequency response analysis as described in [28,

41, 40].

• In the case of small area of potential contact for a body with complicated geom-

etry one should complement the reduction method with the continuous shape

function description for the contacting surface [43].

• For the case of multiple contacting surfaces and relatively simple geometry

the general shape functions approach presented in this thesis should be used.

This is also the only approach known to work in simulations of prestressed

structures during material removal.

7.2 Choice of Shape Functions

For the majority of real-life problems the exact deflection shape functions are not

known and different methods to select shapes that provide the best approximation of

the exact solution are often discussed in the literature. It is also known that differ-

ent sets of functions give approximately the same results when sufficient number of

degrees of freedom is included in the system.

The approach taken in this work was to use series of general functions that are

known to approximate any continuous function. The approach is based on the idea

first suggested in [43] for the representation of interface surface deformation shape

only. In this work the same set of functions was used to represent deformation field

through the entire volume of elastic body.

Specifically, when working in cylindrical coordinate system series of Chebyshev

polynomials were used for the radial and axial directions and Fourier series for the

circumferential direction. That is the deflection shape along certain coordinate direc-

tion k (radial, tangential or axial) is approximated as:

~p
(b)
f,k = uk =

nr,k
∑

ir=0

nφ,k
∑

iφ=0

nz,k
∑

iz=0

x
ir,2iφ,iz
f,k · gir(p0,r) · sin(iφ p0,φ) · giz(p0,z)

+

nr,k
∑

ir=0

nφ,k
∑

iφ=0

nz,k
∑

iz=0

x
ir,2iφ+1,iz
f,k · gir(p0,r) · cos(iφ p0,φ) · giz(p0,z) (7-1)
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Where nr,k, nφ,k, nz,k give the number of functions used in each direction, gj is the

Chebyshev polynomial of order j and ~xf is the vector of elastic coordinates.

For the case of Cartesian coordinates Chebyshev polynomials were used for all

the three coordinate directions. Hence the real deflection shape along certain coordi-

nate direction k (x, y or z) is approximated as:

~p
(b)
f,k = uk =

nx,k
∑

ix=0

ny,k
∑

iy=0

nz,k
∑

iz=0

x
ix,iy ,iz
f,k · gix(p0,x) · giy(p0,y) · giz(p0,z) (7-2)

where nx,k, ny,k, nz,k give the number of polynomials used in each direction.

An important property of the both orthogonal polynomials and Fourier series is

the availability of the recurrent relations providing a way for fast series calculation.

For instance, for the Chebyshev polynomials the relation is given below:







g0(x) = 1
g1(x) = x
gm(x) = 2xgm−1(x) − gm−2(x)

(7-3)

Note that having the recurrent relation for the polynomials we can easily get recurrent

relations for the derivatives of the polynomials as well. These derivatives are required

for the strain and stress calculation. Again using the Chebyshev polynomials as an

example:


















dg0(x)
dx

= 0

dg1(x)
dx

= 1

dgm(x)
dx

= 2(gm−1(x) + x
dgm−1(x)

dx
) − dgm−2(x)

dx

(7-4)

7.3 Special Shape Functions for Solid Bodies in

Cylindrical Coordinates

One problem with the general shape functions concerns the use of cylindrical coor-

dinate system as a body coordinate system, which is quite natural for the bodies with

rotation symmetry. The problem here is the singular point in the centre of the coordi-

nate system. This point is not important for the bodies with no material at the centre

(rings and hollow shafts), but it is unavoidable for the solid bodies (solid shafts).

Let us recall the deflection to strain equations for the cylindrical coordinates in
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Equation 3-40:

ε11 = ∂ur
∂r

ε22 = 1
r (

∂uφ

∂φ
+ ur)

ε33 = ∂uz
∂z

ε12 = 1
r (∂ur

∂φ
− uφ) +

∂uφ

∂r

ε13 = ∂ur
∂z

+ ∂uz
∂r

ε23 = 1
r

∂uz
∂φ

+
∂uφ

∂z

(7-5)

In order for the strain components ε22, ε12 and ε23 to be finite in the centre of the

coordinate system, that is for r = 0, the following equation must be satisfied for any

angle φ ⊂ [0, 2π] and for any cross-section cut z:

∂uφ

∂φ
+ ur = 0

∂ur
∂φ

− uφ = 0

∂uz
∂φ

= 0

(7-6)

From the physical point of view the Equation 7-6 require the continuity of the

displacement functions for every point on the centre line of the body.

In order to realize this constrain both sets of shape functions defined in Equa-

tions 7-1 and 7-2 were used. The cylindrical shape functions were used to describe

the deflection shape of the cross-section and the Cartesian shapes were dedicated to

the central line deflection. That is, the cylindrical shape functions were modified so

that they never result in a deflection of the centre line of the body. This is done by

removing the constant term from the Chebyshev polynomials that have p0,r as an ar-

gument. At the same time the Cartesian shape functions were restricted to the centre

line deflections by removing the dependency of the x and y coordinates thus leaving

only a single polynomial g(p0,z) in the series. The Cartesian shapes were then trans-

formed into the cylindrical coordinates by using ordinal coordinate transformation:





ur

uφ

uz



 =





cos φ sin φ 0
− sin φ cos φ 0

0 0 1



 ·





ux

uy

uz



 (7-7)

7.4 Volume Integration

Volume integrals representing the stiffness, damping and inertia properties of elastic

objects are needed for simulation.
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Z

z1

Figure 7-1: A profile curve used to define a rotation symmetry body.

Here, most work has been done on integration of bodies defined with a rotating

profile curve. Cylindrical system (r, φ, z) is said to be the ’natural’ coordinate system

for such bodies. To define rotating profile body a profile curve (r(u, φ), z(u, φ)) must

be given for any angle φ. The profile curve is defined piecewise and each segment has

a separate parameter u going along the curve. We assume that the curve is continuous

both in value and derivatives within each segment.

The integrals are calculated in the cylindrical space and not in the profile curve

parameters’ space, since the deformation shape functions that we integrate are de-

fined in the physical space and are not related to the boundary parameters’ spaces.

The integration of rotating profile bodies has to be performed in cylindrical co-

ordinates for accuracy reasons. Integration of a rotating profile body, that often has

some kind of rotation symmetry, in Cartesian coordinates gives low accuracy and

asymmetric stiffness matrix which results in non-physical vibrations in simulation

output.

Integration is performed first in the radial direction, then in longitudinal direc-

tion and finally in circumferential direction. There are two basic ideas behind this

ordering. First, we want to put the most varying boundary (radial) into the innermost

integral to simplify the implementation and be able to use high precision integration

scheme for it. Secondly, having integral in circumferential direction as outermost en-

sures the rotational symmetry properties of the resulting matrices. We use extended

Simpson’s (trapezoidal) integration scheme in circumferential direction since it is

known to give good results for periodic functions and we have Fourier series as a

basic set of functions in this direction. Both in radial and longitudinal direction we

use modified Clenshaw-Curtis quadratures [25].

The complete algorithm follows. We will refer to Figure 7.4 to illustrate the
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algorithm. The figure shows a six segments profile curve with four straight and two

curved segments.

1. Select the number of integration points in circumferential direction. The num-

ber of points must be more than the double of the number of waves used in the

shape functions or in geometry deviation in circumferential direction. Integra-

tion bounds are [−π, π].

2. For each angle φ we have a cylindrical sector to integrate. We start by going

through all the segments of the profile curve and evaluating the boundary for

the specified φ. Our purpose is to find minimum and maximum z coordinate

for each segment as well as the edge values between the segments. These

values are used to define integration intervals in z direction. In Figure 7.4 we

would find 3 integration intervals with bounds z0, z1, z2 and z3. In the general

case we might get several non-adjacent integration intervals.

3. For each integration interval in z direction, calculate abscissas and weights ac-

cording to the quadrature formula. The order of integration (number of points)

is double the highest order of polynomial used as a deformation shape in lon-

gitudinal direction. Note that each integration interval is treated separately.

4. We need to go through all the segments once again to find the radii for each

z abscissa detected in the previous step. An ordered list of radii is build for

each abscissa. If the closed volume condition is satisfied then the number of

elements in every radii list will be even for hollow bodies and odd for bodies

with material in the centre of a cross-section. Every pair of radii in the lists

define an integration interval in radial direction and quadrature formula can be

applied again to get the radial abscissas and weights. Note that since we have

split the integration along z axis in intervals the number of integration intervals

in radial direction will be constant within each z interval. In the example,

Figure 7.4, we have just one radial integration interval between z0 and z2 and

two intervals between z2 and z3

Having computed the set of integration points and weights as described above we

can approximate all the required integrals with the weighted sums of function values

computed at the specified points multiplied with the corresponding weights.

There are still some uncertainties regarding the integration process. How does the

complexity of the boundary geometry affects the accuracy of the integrals? How do

we select the optimal number of integration points? Is adaptive strategy necessary?

7.5 Reducing the Number of Flexible States

The series defined by the Equations 7-1 and 7-2 provide a complete mathematical set

of functions suitable for approximation of any continuous deformation shape. How-

ever in a real simulation only some specific deformation shapes determined by the
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flexible body geometry and boundary conditions are present. That is why contribu-

tions of some of the general shape functions to the particular solution are small. By

detecting such shape functions and eliminating the state variables associated with

them we can reduce the number of flexible states for a body and speed up the simula-

tion. Note that this approach is fundamentally different from the traditional reduction

techniques. We do not try to find the most suitable shapes and change the functional

basis, instead we just eliminate some of the shape functions in the complete series.

Let us define a characteristic set of shape vectors to be the set of elastic state vec-

tors corresponding to the deformation shapes typical for the specific simulation. The

characteristic set can be constructed using static, eigenmode, or quasi-static analysis

(see Chapter 4), or using a relatively short trial simulation in the following ways:

Static shapes The state vectors corresponding to the static solutions of a typical

boundary conditions problem should be a part of the characteristic set.

Eigenvectors If the user specifies a frequency band then the eigenvectors corre-

sponding to the free body eigenfrequencies in this band should be included into

the characteristic set. Alternatively a user might want to specify the number of

eigenmodes (e.g., specify that only first three eigenmodes are of interest). In

such a case just the specified number of eigenvectors should be included into

the characteristic set.

Quasi-static shapes In rolling-bearing applications simulation for a certain speci-

fied angular velocity is common task. The solution vectors for the correspond-

ing quasi-static case should be included into the characteristic set.

Trial simulation In a rotating machinery simulations there are often some periodic

processes where the difference between the two periods is relatively small. For

instance, two complete revolutions of the workpiece in a grinding simulation is

an example of such a repetition. In such cases a trial simulation of exactly one

revolution can be run and all the state vectors during this trial simulation can be

recorded into the characteristic set. Note that the vectors generated during the

simulation often correspond to the same shape with different amplitude. Then,

after the reduction, the following revolutions of the machine can be simulated

faster with smaller number of elastic states.

Having selected the state vectors into the characteristic set and for a specified relative

threshold ε (which is an input parameter) the following filtering algorithm should be

applied.

Mark all the elastic states as inactive

for each state vector in the characteristic set
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Calculate the threshold:

xε = ε ·
(

1

nf

nf
∑

i=1

|xf,i|
)

(7-8)

Remove the inactive mark for the elastic states that have the absolute

value larger than xε.

end for

Note that it is assumed that all the shape functions are scaled with the real ge-

ometrical dimensions of the body and therefore all the state variables has the same

dimension (meters) and can be directly compared.

As the result of the algorithm only the states that have very small contributions

to the vector in the characteristic set retain the inactive mark. Those states have

therefore become the candidates for the reduction. The choice of the threshold ε is

normally determined by the anticipated modeling error. That is, if one percent error

is acceptable, then ε can be set to 1e − 2/nf .

Assuming that the contributions of the states with inactive mark are negligible

they can be safely eliminated from the problem. Elimination of an elastic state i
means removal of the i-th element from all the vectors that have a part associated with

the elastic states. Hence the i-th element should be removed from the elastic state

vector ~xf , velocity vector ~̇xf, acceleration vector ~̈xf as well as from the generalized

forces vector ~Qf and precomputed integrals S̄ and J̄kl. Besides the i-th row and i-th
column should be removed from all the matrices associated with the elastic states:

M ff, K ff, C ff and S̄kl.

The technique has not been used in the production runs yet. However, some of

our test runs showed that up to the half of the elastic states generated by the general

functions from Equations 7-1 and 7-2 for the user-specified number of degrees of

freedom can be eliminated later on by using the presented reduction approach. This

is due to the fact that the general interpolation series introduce many shapes that

correspond to very high frequencies for the particular body.
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Chapter 8

Mean-Axis Conditions on the

Reference Frame

8.1 Separation of Elastic and Rigid Body Motion

Modes

Typically in an assumed mode shape method the selected mode shapes always satisfy

some specific boundary conditions. This is not true for the general mathematical

functions used in this work. Thus we have to impose some extra conditions in order

to make the selected set of mode shapes admissible for the problem.

In this thesis the case with no fixed external boundary conditions is considered

- all the bodies have all the degrees of freedom. That means the only condition

imposed on the shape field is the absence of rigid body motion degrees of freedom

in the elastic deformation [28].

In order to understand the importance of this condition consider a small example

in 2D. Suppose that only two deflection functions are selected: ux(x, y) = x
(1)
f py

and uy(x, y) = x
(2)
f px. If we follow the standard procedure for calculating the strain

energy of an object we will get: W (~xf) = µA(x1
f +x2

f )
2 where µ is the Lame material

constant and A - area of the body. The relation means that when x
(1)
f = −x

(2)
f

no strain energy is created. The immediate conclusion that this shape combination

corresponds to the rigid body motion is only partially correct. In Figure 8-1 we

show the changes to a simple square when the shape coefficients are ~xf = [1,−1].
It is obvious that the area of the square grows, for our example it is doubled. The

example shows that the use of general functions without proper condition will not just

slow down the simulation, but can result in some non-physical effects. The discussed

example, for instance, would lead to the ’explosion’ of a body, since the change of

the area doesn’t create any energy and consequently doesn’t provide any stiffness.

The conditions that were chosen to remove the rigid body motion terms from the

deflection functions correspond to elastic body mean-axis condition for the reference

frame. The mean-axis conditions are obtained by minimizing the kinetic energy with
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Figure 8-1: Use of shape functions without boundary conditions.

respect to an observer stationed on the flexible body [28, 29, 37, 23]. The stronger

version of the mean-axis conditions can be formulated in term of the precomputed

integrals (see Section 3.5). The total of six conditions can be partitioned into the

three conditions for the translational degrees of freedom:

~J1 + S̄ · ~xf = 0 (8-1)

And three conditions for the rotational degrees of freedom:





(J̄23 − J̄32)
(J̄31 − J̄13)
(J̄12 − J̄21)



 · ~xf = 0 (8-2)

Note that the conditions effectively attach the reference frame to the mass center

of the body allowing simplifications to the dynamic equations described in Chapter 3.

The mass matrix simplifies to (using body coordinate system for all vectors):

M =





MRR 0 S̄

J̄ ee J̄ ef

symmetric M ff



 (8-3)

And the quadratic velocity term ( ~Qv)R also becomes zero.

Having the mass matrix simplified and noting that from the no mass center motion

condition S̄ ·~̈xf = 0 one can also avoid the inverse of the complete mass matrix when

finding the acceleration tensor from the Newton-Euler equation and get:

~̈R
(b)

m/g = 1
m

~Qr

~α (b) = (J̄ ee − J̄ ef · M−1
ff · J̄T

ef)
−1( ~Qα − J̄ ef · M−1

ff (·~Qf − S̄
T · ~̈R

(b)

m/g))

~̈xf = M−1
ff · (~Qf − J̄

T
ef · α − S̄

T · ~̈R
(b)

m/g)

(8-4)
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Even though the expressions in Equation 8-4 might look more complicated than the

original equation in Section 3.4 one should note that the simplified expression require

inverse only of two matrices: a constant matrix mff and a small 3 × 3 matrix to find

the angular acceleration. Hence the time for the solution of this linear system grows

as O(n2
f ) instead of O(n3

f ) in the original case with full mass matrix.

8.2 Imposing Constraints for Rigid Body Motion

There are several possible approaches to impose boundary conditions discussed ear-

lier in this chapter on the shape functions. The three most popular methods are

mentioned in this section. They are: Lagrange multipliers method, penalty method

and elimination method.

Lagrange multipliers method is very popular in multibody simulation tools [3,

31]. It provides a general way to deal with boundary conditions. In this method

one extra state variable is associated with every boundary condition. These extra

state variables are called Lagrange multipliers. A Lagrange multiplier becomes non-

zero if the boundary condition is active and results in a reaction force that forces

the condition to be satisfied. The drawback of this method is the necessity to have

extra state variables and keep larger mass matrix and force vector. If the number

of constraints is large (comparable to the number of the elastic shape functions) the

number of extra state variables becomes comparable to the total number of elastic

degrees of freedom. That is the size of the system of ODE becomes significantly

larger and makes the simulation slower.

The idea of a penalty approach is to represent each boundary condition as a spring

with very high stiffness Kb [3, 7]. The stiffness matrix of the elastic body and the

force vector are modified to incorporate the effect of this spring. By choosing the

Kb parameter large enough it is possible to get sufficiently accurate solution, i.e., a

solution where the error in boundary condition lies within the numerical tolerance.

The penalty approach is general and simple to implement.

A general linearized boundary condition can be written as:

~B
T · ~xf = b0 (8-5)

where elements of ~B are known constants. In reality, constraints often restrict only

a few variables and so the ~B vector is sparse.

The modified stiffness matrix is given by:

K̄ ff = K ff + Kb · ~B
T · ~B (8-6)

and an extra reaction force vector can be computed as:

~Qb = Kb · b0 · ~B (8-7)
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The large boundary condition spring constant is typically chosen to be several

orders of magnitude higher than the maximum diagonal element of the original stiff-

ness matrix K ff. In this case boundary constraints introduce frequencies that are

much higher than the body’s eigenfrequencies and are in practice completely damped

out when even a small stiffness proportional Rayleigh damping is used.

It must be noted that the introduction of multiple constraints with the penalty

approach results in large diagonal elements of the stiffness matrix. The drawback

of this, according to [7] is the sensitivity of the results to the computational errors.

To avoid this problem the Kb constant should not be set to extremely high values

and double precision arithmetics must be used. In out test runs it was noted that the

numerical error introduced by the penalty constants is several order of magnitude

lower than the general modeling error and other kinds of computational errors.

The elimination method is based on the idea that the set of m boundary conditions

can be used as a set of equations to express the values of some m elastic state vari-

ables as functions of other states of the body. In this case corresponding m degrees

of freedom can be considered as redundant and may be safely removed from the sys-

tem. In general, it is very hard or impossible to determine which degrees of freedom

can be eliminated in a large simulation model. However, use of orthonormalization

procedure described in the next section makes elimination strait-forward for the case

of removing rigid body motion. Since orthonormalization brings some additional

benefits this method was chosen the implementation in the BEAST system.

8.3 Orthonormalization of Deformation Shapes

There are generally two options on how to realize the mean axis conditions. One

approach is to follow the procedures defined in the previous section and enforce the

condition on the pre-selected shape functions (see also [23]). Another, more efficient

approach, is to utilizes the orthonormalization procedure to change the set of shape

functions so, that the mean-axis conditions is always fulfilled.

Generalized eigen-problem for the mass and stiffness matrices can be formulated

as following:

M ffV Λ = K ffV (8-8)

Solving it gives a set of eigen-vectors stored in the columns of matrix V and a

set of eigen-values stored in the diagonal matrix Λ. Recall from the Section 4.2 that

each eigen-value corresponds to an eigen-frequency of the body:

Λ = {δijω
2
i } (8-9)

where δij is Kronecker delta and ωi is the i-th frequency.

The important properties of the solution of a generalized eigen-problem are M -

orthonormality and K-orthogonality of eigenvectors:

V T M ffV = I

V T K ffV = Λ
(8-10)
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If we assume that the original set of shape functions S included the rigid body

motion shapes, then six of the eigen-frequencies ωi in the resulting solution will be

zero. It is then possible to identify the set of eigen-vectors corresponding to the rigid

body motion and remove them from matrix V . Let us call the resulted reduced matrix

V̂ . Note that reduced matrix still satisfy M -orthonormality and K-orthogonality

conditions.

It is now possible to construct a new set of shape functions Ŝ such as:

Ŝ = SV̂ (8-11)

From the Eq 8-10 it follows that the mass matrix corresponding to the new set of

shapes is identity and the stiffness matrix is diagonal:

M̂ ff = I

K̂ ff = {δijω
2
i },

(8-12)

.

Furthermore, if we associate the reference frame of the body with its mass center

then the shape functions Ŝ will automatically satisfy the principles of the mean axis

conditions (see [37]).

As the mean axis conditions are satisfied most of the inertia coupling terms be-

tween the deformation and rigid body translation and rotation vanish:

S̄ = 0
J̄ ef = 0

(8-13)

The only coupling is caused by the dependency of the rotation inertia tensor J̄ ee from

the body deformation.

The equations presented in Sections 3.4-3.6 can then be simplified.

The inertia integrals associate with the mass-center reference frame and the new

set of shape functions are:
~̂
J1 = 0

ˆ̄S = 0

ˆ̄Skl = V T S̄klV

ˆ̄Jkl = J̄klV

(8-14)

The Newton-Euler equation reduces to:





MRR 0 0
J̄ ee 0

symmetric I











~̈R
(b)

cm/g

~α (b)

~̈xf






=







~Q
(b)

R

~Q
(b)

α

~Qf






(8-15)

Additionally the expressions for the quadratic-velocity vector may be simplified

taking into account the J̄ ef block of the new mass matrix is zero.
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It is important to understand that the orthonormalization does not change the

properties of the original discretization, which is done when the set of shape func-

tions is chosen. Any deformation shape that can be represented with the original

shape function S can be represented with the orthonormalized set Ŝ as well. The

result of orthonormalization followed by removal of rigid body related eigen-vectors

is just enforcement of the mean axis condition. One can say that orthonormalization

is used to exclude the part of S that can be descibed with rigid body translation and

rotation.
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Chapter 9

Modeling Ideal Connections with

Control Points

9.1 Control Points and Flexible Bodies

The BEAST system design uses continuous definitions of the complete surface ge-

ometry. No explicit interface nodes are predefined. This is in contrast with most

other tools where some joint attachment points are included in the basic model de-

sign or FEM-based tools where joints and force elements can be connected only to

the finite element mesh nodes.

However ideal joints and force elements are often used in multibody modeling.

The older version the rigid-body subsystem of BEAST allowed such forces to be

introduced in the geometrical centres of the bodies or in a single control point be-

tween the bodies. The user of the system had to translate the combination of forces

and moments acting between two bodies to the bodies geometry centres or the single

control point. Since in the rigid body dynamics the force and moment couple applied

at one point of a body can easily be translated to any other point (including the ge-

ometry centre of the body), this feature provided enough modeling freedom until the

introduction of flexible components.

For a flexible body the relation between the generalized force tensor and applied

force is more complicated (see Section 3.7). That is why we cannot require the user

to translate the force to the body’s geometry centre or any specific coordinate system

by hand. Instead, there must be a method to specify any material particle inside the

body volume as the point where the force vector is applied. The control point design

discussed in this section resolves this problem.

Control points provide a way to specify a particle’s position, orientation and

speed inside a body (relative body geometrical centre), or in the model reference

frame (called cB coordinate system in the BEAST framework). Thus a control point

can be seen as an information data structure consisting of a position vector, orthogo-

nal rotation matrix as well as linear and angular velocity vectors of the particle. These

points can be used to study the elastic deformation of the specified material particle,

74



~pctl1/cg = ~pctl1/base1

ctl2

cg

~pctl2/base2

ctl1
~pctl2/cg = ~pctl1/cg + ~pctl2/base2

Figure 9-1: Control points.

and to apply forces at the specified locations (not only at the geometry centre).

First, the parent system of a control point must be selected. This is the coor-

dinate system where all the output components of the control point are calculated.

Generally, it can be any abstract coordinate frame. The two most common cases are

floating model reference frame and a body geometry centre.

For each control point the following relations are defined:

• ~pctl/parent = ~pbase/parent + ~pctl/base The position of the control point which is

normally written in the output file. Every component of this relation should

be understood as a combinations of position vector, rotation matrix and speed

vectors. The plus operator represents a complete coordinate transformation

(translation, rotation and velocity). The ~pctl/parent tensor provides a common

interface to all the different types of control points described below. Parent

coordinate system (model reference frame or geometry centre of a body) gives

the coordinate system where the output ~p
(parent)
ctl/parent is calculated.

• ~pbase/parent defines the beginning (base coordinate system) for the ~pctl/base ten-

sor introduced by this control point. ~pbase/parent tensor itself can be a control

point making it possible to build ’chains’ of control points. Such chains can be

efficiently used to specify complex motion as shown in the example section of

this chapter.

• ~pctl/base is the relative motion defined by the control point. The specific of this

vector calculation determines the type of the control point (see below).
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The example Figure 9-1 shows two control points defined in a body. Both control

points have body geometry centre as the parent coordinate system. The first control

point ctl1 is defined relative to the body coordinate centre and so the output for it is

equivalent to the ~pctl1/base1. The second control point ctl2 is defined relative to the

first control point thus forming a ’chains’ of two points.

Currently three types of control points are available in BEAST. They are:

Fixed control point. The ~pctl/base tensor for this kind of control point is constant

and so the velocity components are zero. It is semantically identical to a time

dependent control point (see below) with all the time dependent parts set to

zero. Compared to the time dependent control point the fixed control point is

faster to process, requires less input and memory.

Time dependent control point. The components of the ~pctl/base tensor are func-

tions of time. Note that it is impossible to specify both velocity and position

as independent time functions and so user must either prescribe the position

- letting the program to calculate velocity or provide the velocity and let the

program compute the trajectory.

Flexible control point. This type of control points can be used only within flexible

bodies. They provide a mean to examine the deflection of a specific material

particle. Unlike the two other types of control points the flexible control point

does not have any input and it must be the last control point in a chain. That

is it is not allowed to define other control points having the flexible control

point as a base. The ~pctl/base vector is computed by BEAST and gives the

deflection vector and deflecting speed and the output ~pctl/parent tensor specifies

the deflected position of the material point that had ~pbase/parent coordinates in

the undeformed body. In the current implementation we do not calculate the

orientation of the deflected point. Flexible control point define extra output

tensors: strain and stress. They are the second Piola-Kirchhoff stress and

Green-Lagrange strain tensors discussed earlier in Section 3.7.1.

9.2 Boundary and Loading Conditions

Stiffness-dampers, force-moment, and simple parametric bearings can be used to set

the boundary and loading conditions for flexible bodies. The required input is identi-

cal to the one needed to set the conditions for rigid bodies. Special attention however

must be paid to the type of control point where the force is applied. The reason for

that is the different deflections caused by the same force applied to different parts of

a flexible body. If some loading or boundary condition should cause deflections then

it needs to be applied at a flexible control point in the body. If some specific loading

should only influence rigid body motion then it should be applied at a time dependent

or fixed control point.
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9.3 An Example of Control Points Usage

Figure 9-2 shows an example model that uses control points to apply complicated

loading conditions on a flexible ring. The purpose of this model is to force satellite-

like motion of the ring and deform it elliptically in the same time.

Eight control points are used in the model. Four of the points have the model

(reference frame ’cB’) as parent and four others are defined in the ring. In both cases

chains of control points are used. Parent is indicated by the prefix in a control point

name.

The cB.ctl1 point is a time dependent control point that defines a reference frame

with constant translation relative to the cB system and rotation with constant angular

velocity ~ω1. Thus all the control points that follow cB.ctl1 in the chain will rotate

around this control point position. The next control point, cB.ctl2, has cB.ctl1 as the

base system. It is also a time dependent control point with constant translation and

constant velocity rotation given by ~ω2. Both cB.ctl3 and cB.ctl4 are fixed control

points having base system in cB.ctl2. Since they have the same base system an

imaginary line segment between the two points will not change the length but will

follow the satellite-like motion as specified by the velocities ~ω1 and ~ω2. Having

arranged this motion it is now necessary to relate the control points to the material

particles of the ring.

The structure of the control points’ chains used inside the ring is simple. Just two

fixed control points (bR.ctl1 and bR.ctl2) and two flexible control points (bR.ctlf1
and bR.ctlf2) are used. The fixed control points define the positions of the material

particles inside the ring in the undeformed state. The flexible control points that are

based on the respective fixed control points follow the deformation of the ring.

It is shown in Figure 9-2 that flexible control points are connected to the con-

trol points in cB system. This connection can be of different nature. Most often a

combination of springs and dampers is used to prescribe a body motion with certain

stiffness and damping coefficients.

The discussed example shows how a complicated loading condition can be de-

scribed with the control points. It must be noted, however, that some experience is

required from the user in order to understand all the features of the control points and

apply them correctly and efficiently.
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cB

~ω1 ~ω2

bR.cg

bR.ctl1

bR.ctlf1

bR.ctl2

bR.ctlf2

cB.ctl4

cB.ctl3

cB.ctl1
cB.ctl2 bR

Figure 9-2: Specifying loading conditions with control points. Object-oriented nota-

tion is used. The model (reference frame cB) and body bR are the parent objects and

the control points and geometry centre ’cg’ are the child objects.
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Chapter 10

Verification

In order to verify the theory described in this thesis some simple test cases with

known analytical solutions had to be selected. We have chosen to verify the solutions

for the following cases:

1. Static deflection of a simply supported beam.

2. First eigenfrequency of a free beam.

3. Thin ring under symmetric point force load.

4. Eigenfrequencies of a free ring.

10.1 Long Beams

Distributed gravity load mg acts on a simply supported beam (see Figure 10-1). The

value of the maximum deflection of the beam centre in equilibrium can be computed

analytically [45]. For our case (both ends simply supported, distributed load) the

maximum deflection is given:

ymax =
−m g L3

48E I
, (10-1)

where m is the mass of the beam, g - gravity constant, L - length of the beam, E
- Youngs’ modulus, and I - moment of area, which for a round cross-section with

ymax

mg

Figure 10-1: Distributed gravity load acting on a simply supported beam.
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F

F

δ

Rm

∆R

Figure 10-2: Symmetric constant forced acting on a thin ring.

radius r is given by

I =
πr4

4
(10-2)

The error in the model can be measured in percents as

ε =
ymodel − ytheory

ytheory

∗ 100% (10-3)

We were interested to get error below one percent. To get the correct results for

the complete 3D model with volume integration we had to use second order poly-

nomial in radial direction, two-waves in circumferential direction and the 4-th order

polynomial for the axial direction.

Note that the same test cases were verified for the beams with the rectangular

cross-section where Chebyshev polynomials were used all three coordinate direc-

tions.

10.2 A Thin Ring

Two symmetric constant forces act opposite to each other in the plane of the ring.

The forces are applied at the middle of the cross-section one from the top of the

ring downward and other from the bottom of the ring upward (see Figure 10-2).

Theoretical solution for the maximum radial deflection value exists for this load case

and is given by:

δ = 0.0744
FR3

m

E · w · ∆3
R/12

(10-4)
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where F - stands for applied force in radial direction, Rm - medium radius, E -

Young modulus, w - width of the ring cross-section in axial direction, ∆R - thickness

of the cross-section.

Free body eigenfrequencies in the plane of the ring are given by:

f =

√

E · (1 + j2)

ρ · R2
m

(10-5)

where j is used to compute j-th eigenfrequency.

For the verification we used model with second order shapes in radial and axial

directions and Fourier series up to 8-waves on circumference. The error in static

solution became 0.3%, errors in eigenfrequencies up to the 8th in the plane of the

ring were also below 1%. The total number of flexible states used in the model was

460.

Due to the large number of states required for verification at higher eigenfre-

quencies we had to reduce the order of polynomials used in our model. We used only

linear term in radial direction keeping second order in axial direction and extended

Fourier series up to the 30 waves. The total number of elastic coordinates in the

model become 1189. The model resulted in a higher error in static solution (8.6%)

but we were able to calculate up to the 30th eigenfrequecy. The relative error in the

highest eigenfrequecy was 2.5%.

We have to mention that the solution close to the theoretical one for the higher

eigenfrequencies could be achieved only for very thin rings (cross section width of

about 1% of the ring diameter). We believe that the reason for that is the simplifica-

tion used in theoretical approach for thin rings that only allows cross-section rotation.

Such simplifications becomes inaccurate for the higher eigenshapes in thicker rings

and consequently leads to deviations in eigenfrequecies solution.
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Chapter 11

Simulation System Design

In this chapter the software design of the simulation system is discussed. Note that

the class and object diagrams presented in this chapter follow the standard UML

(Unified Modeling Language) notations [24].

11.1 System Overview

In this section a general overview of the system is provided. This overview is quite

general and is applicable to most multibody systems, not only to the BEAST system.

The concepts described in this section do not change when transferring from rigid to

flexible modeling.

The BEAST system uses object-oriented design and programming concepts. The

ideas behind the object-oriented implementation of a multibody simulation system

were developed in a close collaboration with the ObjectMath project [38].

Solver

initialize

Input/outputModel

output data

input data

Simulation

parameters,
model typetime & state

for output
create

state
time,

start time, parameters

RHS, Jacobian

start state

Figure 11-1: Collaboration of components in the simulation system executable. Ar-

rows denote information flow.

The main components of the complete simulation system are shown in Figure 11-

1 and described below:

82



Simulation This component manages the dynamic simulation process. During the

setup phase the class initializes the input/output classes, reads in the model

type and general simulation parameters (such as tolerance, start and end time,

etc). Then the numerical solver is setup and the specific model object is cre-

ated and initialized. As the simulation runs the simulation class monitors the

progress, issuing the commands to calculate the output for some time steps and

to terminate the simulation when the user specified end time is reached or an

error occurs.

Solver This is the numerical ODE solver component of the system which is accessed

through a set of wrapper routines providing interface between the standard

CVODE numerical solver and the system.

Model This is an object created by the Simulation object. This object essentially

defines the multibody system to be simulated. From the mathematical point

of view, its responsibility is just to evaluate the time derivatives of the state

variables during ODE’s RHS (right-hand side) evaluation and Jacobian matrix

for the Newton iterations inside the solver. Note that there is a special mode of

RHS calculation when the data is not returned to the solver but written on the

disk via the input/output classes. The internal structure of a model object will

be discussed later in more detail.

Input/output These objects are responsible for the file I/O interface. They provide

the functionality for reading the simulation parameters and model input data

and for writing the simulation output data.

The differences in the rigid and flexible modeling conceptually affect the Model

object only. However, in a real implementation some details must be checked when

going into flexible modeling. It must be ensured that none of the objects rely on

the constant number of the state variables inside every body in the model. Such an

assumption could be used in a multibody simulation tool with rigid bodies only for

the optimal implementation of different service routines transferring data between the

Model object and other components of the system. Flexible bodies have a variable

number of state variables and therefore can not be handled by such service methods.

11.2 Rigid Body Model Classes

The class diagram of the conceptually most important classes in a multibody model

is shown in Figure 11-2. The explanation of the responsibilities and purpose of each

class follows.

The Model class. The general Model class is inherited by all other model classes.

It is an abstract class providing the interface to any model from other parts of the sys-

tem. The class implements necessary standard operations for data exchange with the
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FML
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Connection
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1..n
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2

2

Contact

Figure 11-2: Rigid Body Model Classes.

numerical solver and with the input/output classes. The child classes of this abstract

class are specific models containing specific sets of bodies and specific connections

between the bodies.

The Body class. This class has attributes, such as inertia characteristics and ma-

terial properties, describing those properties of a physical body that are not depen-

dent on the interactions with other bodies. The methods of this class implement the

Newton-Euler equations.

The Body class is also an abstract class. Specific body classes contain particular

kinds of segments. For instance, a Ring class contains several rotational segments.

The Segment class. Segment is another important abstraction in BEAST. A seg-

ment represent a continuous surface that can get in contact with other surfaces. The

surfaces are normally defined in parametric space (u, v). There are functions eval-

uating the geometric point coordinates in the body coordinate space and functions

that for any point in space can find the (u, v) parameters of the nearest point on the

surface which is an important feature for contact forces calculations. The geometry

of every body in BEAST is defined by a set of segments.
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The Connection class This class is a container class that encapsulates all the ob-

jects acting between two bodies or between a body and an abstract coordinate sys-

tem defined in the model space. The purpose of such a collection is to accumulate

all the forces acting between the two bodies or between the body and the exter-

nal coordinate system. The two child classes represent the two cases that we just

defined. The BBConnection class represents a connection between two bod-

ies and MBConnection class represents a connection from a coordinate system

in model. Only BBConnection class will be discussed later in the text, since

MBConnection can be seen as a simplification of the BBConnection class

(where there are no contacts and motion of one of the bodies is known) .

The CtlPoint class. This class represent a single control point or coordinate system

as discussed in Chapter 9. The position, orientation and speed properties of the point

are provided by the user. The single control point notion provided enough modeling

power for the case of rigid body modeling.

The SD, FML and SPB classes. These classes represent simple force element:

stiffness and damping, force and moment loading, as well as simple-parametric bear-

ing respectively. The SPB is essentially a non-linear kind of spring that is parameter-

ized in the typical bearing terms, such as clearance and radial stiffness.

11.3 Flexible System Design

11.3.1 Limitations of the Rigid Body Model Design

The transition to the flexible body model revealed some limitations of the original

system design. First, the single control point in a connection between two bodies is

not sufficient as we discussed earlier in Chapter 9. Other changes concern the Body

class design that should now implement the equations for the flexible model case and

work with the shape functions. Our design solutions to these problems are presented

in the rest of this section.

11.3.2 Implementation of the Control Point Architecture

Figure 11-3 shows the class diagram that illustrates the more general design suitable

for the flexible case. Comparing to the original design presented in Section 11.2

the most important change is the transfer of the ControlPoint class from the

Connection class to the Body class and generalization of the simple forces into

the PointTie class.

The PointTie class generalizes the concept of a force element acting between

two points. The general characteristic of such a force element is its locality. That
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Figure 11-3: Flexible Body Model Classes.

is, the resulting force and moment at a given time instant depend only on the rela-

tive position, orientation and speeds of the two points that the PointTie connects.

The nature of the points and the state of the bodies are not relevant for such a force

element. The typical example of such force elements are springs and dampers (both

translational and rotational). The PointTie class is therefore an abstract class with

a single abstract method that evaluates the force and moment acting at the connected

points for the specified relative motion of the points and time. The generic class is re-

sponsible for the necessary coordinate transformations and numerical differentiation

of the forces for the Jacobian calculations.

In the context of the BEAST tool, the PointTie abstraction was realized in the

three child classes that correspond to the SD, FML and SPB classes discussed earlier

for the rigid body system in Section 11.2:

• SDPointTie encapsulate the force and moment calculation for general

springs and dampers connecting the specified points.

• FMPointTie generates forces and moments that are pure functions of time

and do not depend on the relative motion of the points.

• SPBPointTie (Simple Parametric Bearing tie) normally used to connect

centres of two bodies that are joined by a bearing. It is essentially a non-

linear kind of spring that is parameterized in the typical bearing terms, such as

clearance and radial stiffness.
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The obvious benefit of the generalization of the simple forces is the ability to

add new kind of force elements in an easier way without concern for the rest of the

system. For instance, a new JournalStaticBRGTie was recently introduced

into the system. The new tie is similar to SPBPointTie, but has a different set of

parameters.

11.3.3 Object-Oriented View of Shape Functions

During a simulation the shape function conceptually only need to provide the follow-

ing output:

• The shape matrix S for any given point in the body coordinate system accord-

ing to Equation 3-2.

• The strain operator DS defined in Section 3.7.1.

Therefore the shape function can be designed as an abstract interface class with only

two methods as described above.

Specific shape functions can actually work in different coordinate systems (i.e.,

cylindrical or Cartesian) and use different kind of evaluations. For the purposes of

this work, two specific classes of the shape functions were defined:

CylShpFunc is the cylindrical shape function implementing the series defined in

Equation 7-1 and the strain operator calculations defined by Equation 3-40.

CartShpFunc is the Cartesian shape function implementing the series in Equa-

tion 7-2 and the differentiation operator according to Equation 3-39.

11.3.4 Flexible Body Class Design

Figure 11-4 shows the class diagram illustrating the design of the body class in the

flexible modeling part of the system.

The most general FlexBody class implements all the time dependent equations

described in Chapter 3 and the analysis on the single flexible body as discussed in

Chapter 4. It cannot, however, be used directly since it relies on the child classes for

the initial calculation of the inertia integrals as well as stiffness and damping matri-

ces. This class actually can be used in the future to interface the shapes and integrals

generated by other systems, e.g., via the data structures defined in the FEMMBS tool

[40].

Note that once the integrals are available all the analysis can be done on the

abstract FlexBody class without accessing the child objects.

The IntFlexBody class defines the initialization step for the FlexBody class with

the volume integration procedures based on weighed integration points. Many nu-

merical integration schemes, including the scheme described in Section 7.4, generate
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Figure 11-4: Flexible Body Classes.

a set of integration points with weights. The initialization procedure of the IntFlex-

Body calculates the integrals defined by Equations 3-19 to 3-23 using such sets of

integration points.

The descendants of the IntFlexBody class are specific body classes where geom-

etry is defined by a set of segments. The responsibility of these classes is to produce

the set of integration points required by the IntFlexBody class. Note that only two

child classes are shown in the class diagram in Figure 11-4 just to provide an exam-

ple of the most simple kinds of bodies. More classes are needed in a real system to

accommodate for the variety of different geometries.

11.4 A Simple Model Example

This section gives a simple example of a specific model consisting of two rings as

depicted in Figure 11-5. Even though the model is very small all the important

elements of larger, more complicated models are present.

The model is called TwoRing. Figure 11-6 presents an object diagram for this

model.

The TwoRing model consists of two bodies: the outer ring bER and the inner

ring bIR. The outer ring is guided relative to the cB system by use of the stiffness

and damping forces cBbER‘SD between the control points cB‘ctl and bER‘ctl.

The rings have a potential contact between the outer segment of the inner ring

bIR‘s1 and the inner segment of the outer ring bER‘s3.
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contact bIRbER‘s1s3

Figure 11-5: A Simple Multibody Model.

11.5 Solution Procedure

As was mentioned in the beginning of this chapter the Model object is responsible

for the evaluation of the RHS vector and Jacobian matrix during the solution of the

system of ODE describing the motion in the multibody system. This section dis-

cusses the mapping of the dynamic equations of motion onto the software classes

and the computations flow between the classes. The differences between the mod-

els with rigid bodies only, and the newer models with flexible bodies, are specially

addressed.

11.5.1 RHS Evaluation

The evaluation starts by transferring the state variable values from the solver to the

objects realizing the Body class. At this point the complete state vector as seen by the

CVODE is decomposed into variables representing the motion: position, orientation

and velocity.

Having the motion state data the Body objects perform the calculations indepen-

dent of the external loading. That includes the terms caused by centrifugal forces and

coordinate system transformations. In the newer system design the motion of all the

ControlPoint objects can also be calculated at this stage.

Th next step is done by the objects of the Connection class. Each

Connection object calculates the relative motion between the two bodies the

object connects. Note that in case of rigid bodies all the forces from the interaction

between the two bodies only depend on the calculated relative motion. Absolute

position and velocity is not important for the interaction force calculations. However,
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Figure 11-6: Object Diagram for a Simple Specific Model.

this is not the case for the flexible body interaction. The resulting force for a flexible

body always depends on the elastic state variables. Therefore it can be said that the

relative motion between to flexible bodies can be described by the relative motion of

the floating reference frames and the elastic state variables of the both bodies.

For the calculated relative motion variables the force elements in the Connection

object and corresponding Contact objects evaluate the forces and moments acting

between the bodies. These forces and moments are transformed to the local coordi-

nate system of every body. Note that transformation to the local coordinate system

for a flexible body includes the evaluation of the elastic part of the generalized force

vector as discussed in Section 3.7. All the (generalized) forces acting between two

bodies are accumulated by the Connection object before they are passed to the Body

objects.

Body objects receive the generalized forces from the Connection object, accumu-

late them, add the contribution from the centrifugal forces calculated earlier, and use

the Newton-Euler equation to calculate the acceleration tensor.

Finally the vector of derivatives is assembled by the Body objects and send to the

numerical solver. The RHS evaluation is completed.

In the case of output RHS evaluation some extra output variables (such as power

dissipation in a contact) may be computed at different stages of the RHS evaluation

algorithm. These variables are then written to the simulation output file.
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11.5.2 Jacobian Evaluation

The Jacobian calculation follows the procedures described in Section 3.8. The use

of chain differentiation rules leads to the clear separation of several stages in the

evaluation where at each stage a different partial derivative used in Equations 3-79

and 3-80 are calculated.

The instances of the Body class are responsible for evaluation of all the partial

derivatives which involve the particular body states. The analytical part of the Ja-

cobian is also evaluated by the objects of Body class. The following matrices are

calculated in a body i: ∂~̇vi

∂ ~Q
(i)

i/j

and
∂ ~Q

(i)

i/j

∂ ~F
(i)

i/j

.

The instances of the Connection class are responsible for the partial differenti-

ation of the forces acting between the bodies with respect to each of the two involved

bodies state variables. These objects are also calculating the mixed sub-Jacobians.

That is, if an object is a Connection between bodies i and j then it is responsible

for the evaluation of the following matrices: ∂~̇vi

∂~zj
,
∂~̇vj

∂~zi
,
∂ ~Q

(i)

i/j

∂~zj
and

∂ ~Q
(j)

j/i

∂~zi
.

The numerical differentiation algorithm with respect to the relative motion vari-

ables is implemented in the Connection class and calculates the most computa-

tionally expensive derivatives ∂ ~F

∂~∆
(i)

j/i

.

Recall that one of the main differences of the flexible body model compared to

the rigid body model is the dependency of the applied force or moment to generalized

force conversion from the flexible body states leading to a more complicated partial

derivatives evaluation. To resolve this problem the the Body class in the flexible case

collaborates with the Connection class to implement the algorithm for the evaluation

of
∂ ~Q

(i)

i/j

~zi,f

described at the end of Section 3.8.

There are also some technical implementation details that need to be mentioned.

The rigid body model uses the same number of states for every body in the model

whereas the number of flexible states varies for different bodies. For the partial

derivatives matrices it leads to the necessity to deal with arbitrary size matrices. The

software developer should therefore carefully consider memory allocation and data

transfer issues.
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Chapter 12

Dynamic Simulation of Grinding

12.1 Overview

The results presented in this chapter were earlier presented in the articles ’Dynamic

Simulation of Grinding with Flexibility and Material Removal’ [21] and ’Modeling

of Flexible Rings for Grinding Simulation’ [22]. The approach presented in this

thesis was used to model the workpiece flexibility. In fact, this was the first industrial

application of the developed technique.

12.2 Need for Grinding Simulation

The grinding process is important in many high precision manufacture industries.

For SKF as a manufacturer of high precision rolling bearings it is about a third of the

total manufacturing cost. Thus, continuous development and research in the grinding

process is needed. The purpose is quality improvement and cost reduction.

For several reasons it is suitable to study the grinding process with simulations.

First, it is very hard or even impossible to measure some characteristics of such a

dynamic process as grinding. Second, most machines cannot be dedicated to research

activities for sufficiently long periods of time.

Simulation of the grinding process requires simultaneous modeling of several

phenomena including:

• Multibody system dynamics. Since the grinding machine is a complex dy-

namic system, a general MBS modeling framework is necessary, in order to

perform the simulation. Detailed and accurate geometric description is needed

to model all the local variation in geometry of un-ground rings, as well as the

geometry changes during grinding.

• Tribological contacts with material removal. The dynamic behaviour of the

grinding machine is primarily determined by the contacts between the work-

piece and parts of the machine (various supports and the grinding wheel).
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Figure 12-1: A model of the grinding machine including most of the parts of the

machine.

Hence detailed contact modeling was necessary. The grinding contact needs

special treatment since it results in material removal from the workpiece, thus

changing the original geometry of the body.

• Elastic deformation. Large forces are applied to the workpiece during grinding

and the structural elastic deformation of thin rings is in the same order of mag-

nitude as instantaneous material removal. Hence in such cases the structural

deformation must be included.

• Distortion. Initial stress distribution in the surface layers in combination with

uneven material removal will cause distortion. The stress distribution is created

by material phase changes in the hardening process.

The examples presented in this chapter are concerned with microcentric grinding.

Microcentric ring grinding is one of the most common grinding processes in SKF and

so the investigations were started with this process. Microcentric arrangement means

that the workpiece (bearing ring) is clamped to the drive plane, e.g., with a magnetic

force, and driven by friction forces. The drive plane centre has a small offset distance

(microcentric) relative to the ring. There are at least two shoes that support the ring

and the microcentric forces are holding the ring in position.

12.3 Grinding Machine Model

A grinding machine is a complex and large system consisting of many components.

One example of a complete model of a grinding machine is shown in Figure 12-1.

However, some parts of the machine can be reduced to a fever number of important
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bodies for which the movements also can be measured and analysed. The models are

used in complete grinding cycle simulations, so efficient computation is essential.

In our example an external ring grinding machine has been modeled. This ma-

chine has few major eigenfrequencies and so a limited number of bodies can accu-

rately describe the dynamic behaviour. A measurement of the dynamic response of

the grinding machine can identify these dominating eigenfrequencies.

The shoe support arrangement is an essential part of the machine. Detailed def-

inition of the geometry of this arrangement is crucial for the correct modeling of

machine dynamics. Even a small deviation can result in malfunction of the arrange-

ment with microcentric forces pushing the simulated ring out of the machine. Shoe

supports are also responsible for some filtering effects that minimise the effect of

certain imperfections of a ring.

It is important to mention that different complexity levels of the model should be

used depending on the purpose of a simulation case. If only the effect of geometrical

filtering is of interest it is enough to use pure kinematics. If instead the machine

stability and chatter are the only interesting phenomena, a pure dynamic analysis is

satisfactory. But if the purpose is to simulate the total grinding cycle and the effects

of machine dynamics on the final output shape, a complete model such as the one

suggested here is necessary.

Further, it is of importance to include the flexibility of the bodies in order to get

accurate results. Flexibility and stress analysis are also very important if effects such

as stress release of internal stresses during grinding are of interest.

One significant difference of our models, compared to what is common in other

grinding simulations [4], is the use of fully three-dimensional structures.

12.4 Modeling Tribological Contacts with Material

Removal

In this section we will outline the most important phenomena that can be observed

in a grinding contact. Consider a rotating solid grinding wheel and a rotating ring.

Both of them have constant but different rotational speeds. There is a rich supply

of cutting fluid (mixture of oil and water) at the contact inlet. Slowly (i.e., without

impact) we move the two rings toward each other. The contact is in a different regime

depending on the gap between the rings:

• The fluid fills the gap. It is the hydrodynamic regime and a pressure is built up

which gives a rolling resistance moment and normal force. However, they are

small due to the low viscosity and large gap.

• With smaller gap the fluid pressure causes some elastic deformation and the

contact is going into the beginning of the elastohydrodynamic (EHL) regime.

Small material damping due to rolling resistance also shows up. However, in

the case with a grinding wheel that have quite a rough surface we will quite
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early get asperity contacts. The load will be shared between the asperities and

the fluid film. The asperity contacts also result in a fast growth of friction

forces.

• The ”gap” becomes negative, i.e., there is an intersection. The elastic deforma-

tion is significant and we are well into the EHL regime. However, due to the

low viscosity the film is very thin and nearly all load is carried by the asperities.

We have large friction forces.

• At a certain load the grains of the grinding wheel have sufficient pressure to

start to cut. The cutting will result in a certain amount of the material removed

and, consequently, surface geometry changes. Three different mechanisms are

active: some viscous rolling resistance with very thin film building up, elastic

deformation, and material removal due to cutting. Each of these phenomena is

a non-linear function of load. Besides, the film build up and material removal

are also non-linear functions of speed.

• With even more negative gap (larger load), the material removal rate is nor-

mally increasing faster than the other parameters, e.g., local deformation and

film thickness.

In a more general dynamic situation the velocities normal to the contact surface must

also be considered. They will result in additional pressure/forces, e.g., viscous damp-

ing, material damping, squeeze film build up, cavitation, etc.

All the physical phenomena mentioned above are modeled and included in the

tribological used contact model.

In the literature one can find two directions regarding grinding contact model-

ing. One direction takes a very detailed look at the cutting of individual grains [44].

However, this is not suitable for dynamic simulations. Another trend is to have quite

simple macroscopic models, in many cases linear, for the material removal [27, 36].

Our approach is on the macroscopic level. However, we include some important

non-linear behaviour in the model to have good correlation to our experimental data.

We also include the EHL part.

12.5 Grinding simulation results

The output from a grinding simulation can be any type of forces and movements.

However, it is the shape of the ground piece that is one of the most important outputs.

The most typical problem encountered in the final product is waviness of the ground

surface. With our simulation tool the shape of the workpiece can be animated for

the entire grinding cycle, and it is possible to see how the shape develops during the

process. Grinding simulation has now been used for a wide range of investigations

and some example studies are presented below.
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Figure 12-2: Microcentric shoe support system. The material removal height is

shown by color.

Chatter

Chatter is a regenerative wave creation on the rings. It interacts with the dynamics

and eigenfrequencies of the machine. A grinding machine that is not stable enough

will produce non-circular, wavy, rings. In Figure 12-2 a snap-shot of a ground ring is

shown. The ring and part of the grinding wheel, as well as the shoe support system,

can be seen. The colours on the ring surface show the waviness of the ring at this

time instance. Another example is shown in Figure 12-3, were the form of the ring

and a FFT analysis of the waviness of the ring is shown. In the beginning of the

grinding cycle small waves starts to grow on the ring. As the grinding continues

these waves becomes bigger and bigger in a regenerative way. It is noticed that the

characteristic wave number is 23. This wave number could be correlated to the first

(lowest) eigenfrequency of the machine.

The simulations also showed that just an increase in the stiffness or the damping

of the machine to a certain level, would make the machine stable. Such a machine

will produce much better, rounder rings. This is an example of how this simula-

tion tool can be used to investigate and improve grinding machines with instability

problems.

Unbalance

It is very hard to get perfect balance of the grinding wheel, even if the grinding

machines have automatic balancing units. If there is a small unbalance this will im-

mediately have an effect on the ring. If the unbalance is too large the waves will

become big and the ring will not be approved. These effects have been investigated

with this simulation tool. It is not only the unbalance itself that is dangerous to the

grinding. The unbalance will create an excitation frequency into the system depend-
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Figure 12-3: The shape of the ring and FFT analysis of ring waviness.
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ing on the speed of the grinding wheel, and if this frequency lies near some of the

eigenfrequencies of the machine, large vibration problems will arise. Thus, it is very

important to avoid an unbalance that is interacting with other wave creating effects.

Geometrical Filtering

The grinding machine that is exemplified here uses a microcentric support system.

For such a system there will be a filtering effect, which means that some waviness

on the ground piece is suppressed, but it also means that another waviness may even

be magnified. These wave numbers are depending on the position of the shoes in the

shoe support system and of the contacting angles of these shoes.

Wave creation on the ring

From these investigations it was seen that the particular machine had three major

effects that affected the waviness on the ground rings. Those were unbalance, eigen-

frequencies and geometrical filtering. It was also seen that it is very critical if any of

these effects are allowed to interact with each other so that they together create the

same wave numbers. Thus it is very important to be able to predict and eliminate

such interaction when the machine and its operating conditions are designed.

Feed rates

Figure 12-4: Material removal height for the models with rigid ring in one case and

flexible ring in the another one.
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Figure 12-5: Deformation and stresses of a ring that is being ground. The deforma-

tion is magnified.

For rings that are not very stiff it is important that the ring flexibility can be

included in the simulations. An example is a set of simulations to find optimum

feed rates for the grinding cycles. In Figure 12-4 the material removal is shown

for a case with drastic difference between a rigid and a flexible ring. When the

grinding wheel is fed toward the ring during grinding a normal force arise between

the workpiece and the grinding wheel. At a certain force level the friction in the

grinding contact overcomes the friction on the drive plane for the rigid ring. The ring

rotation speed starts to grow when the drive plane loses its grip due to the driving

force from the grinding contact. As the ring rotates faster the relative speed in the

grinding contact becomes smaller and the material removal rate goes down. However

when using flexible ring model an extra effect comes into play: the workpiece gets

deformed which means the same feed rate of the grinding wheel results in lower

forces in the grinding contact and it will not accelerate. This example clearly shows

the importance of flexibility in grinding modeling in some cases. In Figure 12-5 the

deformation of a ground ring can be seen (magnified) as well as the effective stresses

that are shown as a colour diagram on the ring surface.

Flexibility is also of great importance when the effects of stress release during

grinding are investigated.
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12.6 Summary

A simulation tool capable of dynamic modeling of the grinding process has been

developed and the author contributed to the development with the implementation of

the structural elasticity model. The process model used in the tool covers most of the

important factors of the grinding process. Completely three-dimensional modeling is

used. All the essential components of a grinding machine are modeled as a multibody

system. Detailed models for the contacts between the workpiece and other parts of

the machine, as well as models for material removal have also been implemented.

The tool enables detailed studies of a complete grinding cycle. It provides an

efficient way to investigate possible optimisation of both the machine design and

grinding process parameters. The tool is now actively used at SKF for parametric

studies of different grinding schemes.
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Chapter 13

Thermal Analysis with General Shape

Functions

The general shape functions approach presented in Chapter 7 can be applied for the

modeling and simulation of other physical processes. In this chapter the approach

is applied to the solution of heat transfer equations. Discussions on the similarities

between the elasticity and heat transfer modeling can be found in several references,

e.g., [3, 16].

13.1 Numerical Solution of Heat Equation

Separation of variables can be used to derive an ODE suitable for transient analysis

of heat flow. That is the temperature distribution over a body can be represented as:

T (~p, t) = Sθ(~p) · ~θ(t) (13-1)

where Sθ are the space dependent shape functions and ~θ are the time dependent

state variables. Following the virtual temperatures approach (see, e.g., [3]) the heat

equation can be written as:

−Kθθ · ~θ − Hθθ · ~θ + ~Hθ + ~Hext = Cθθ · ~̇θ (13-2)

where

• Thermal conductivity matrix Kθθ is computed as:

Kθθ = k

∫

V

(DtSθ)
T DtSθ dV (13-3)

The differential operator Dt represents the temperature gradient evaluation,

which is in 3D Cartesian space is given by space derivatives along each axis:

[ δ
δx

, δ
δy

, δ
δz

].
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• The terms −Hθθ · ~θ + ~Hθ describes convection from the body surfaces into

the surrounding environment, e.g., air:

Hθθ = hc ·
∫

A
S T

θ · Sθ dA

~Hθ = hcTsur

∫

A
S T

θ dA
(13-4)

where the integration is performed over all the surfaces of the body that are

open to the environment with temperature Tsur and hc is the heat transfer co-

efficient.

• The time dependent heat flow due to various effects in contact is given by

generalized heat vector ~Hext:

~Hext =
∑

j

(

∫

Aj

S T
θ hcj∆Tj dA +

∫

Aj

hgenS
T
θ dA) (13-5)

The effects should obviously be computed individually for each contacting

body j. The corresponding contact area is designated Aj . The effects that are

included in the equation above are:

- Heat exchange with the heat transfer coefficient hcj;

- Heat generation hgen (e.g., frictional) at every particular contact point.

• The heat capacity matrix Cθθ is computed as:

Cθθ = ρ · c ·
∫

V

S T
θ · Sθ dV (13-6)

The Equation 13-2 needs to be solved simultaneously with the Newton-Euler

equations describing the dynamics of a mechanical system (see Section 3.4). The

mechanical processes are normally much faster than the thermal ones. That is the

eigenfrequencies associated with the multibody dynamics are normally several or-

ders of magnitude higher than the eigenfrequencies associated with the heat flow.

Therefore, for the two time steps ti and ti+1 used by the ODE solver to resolve the

equations of multibody dynamics one can assume:

~H(ti) ≈ ~H(ti+1) (13-7)

That is the external heat flow change between two time steps is negligibly small.

With such an assumption Equation 13-2 can be solved independently for each body.

If the implicit Euler method is used, then:

~θ(ti+1) = (Cθθ + ∆t(Kθθ + Hr))
−1(Cθθ · ~θ(ti) + ∆t ~H(ti)) (13-8)

where ∆t = ti+1 − ti.
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Figure 13-1: Temperature distribution along a beam after 1 s. Comparison of the

solution with final differences v.s. general shape functions.

Figure 13-2: Temperature at the heated end of a beam. Comparison of the solution

with final differences v.s. general shape functions.

Alternatively in some implementations it might be more convenient to use some

constant time delay δT for the evaluation of the heat vector ~H:

~H = ~H(t − δT ) (13-9)

Since a separate solver is used for the solution of thermal equations and heat

transfer is much slower than the mechanical interactions different time scales can

be used for the two processes. To implement this a thermal acceleration factor was

introduced. The time step ∆t in Equation 13-8 was magnified with this factor.

13.2 An Example of Transient Heat Conduction

As an example the one-dimensional heat conduction in a beam is solved. The beam is

20 mm long and is heated with a constant heat input at one end for 0.5 s and the other
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Figure 13-3: BEAST model of the thermal test rig. Exploded view.

end is held at a constant temperature of 50◦C. A low order (4-th order) shape function

is used. The result is compared to a solution with the finite difference scheme. Even

if the shape functions are simple in this example the results are very similar in the

two cases, see Figures 13-1 and 13-2.

13.3 DGBB Test Rig

Detailed temperature measurements has been performed on a DGBB (deep groove

ball bearing) in a test rig at SKF ERC (Engineering Research Center). The test rig

consists of a test bearing on a shaft supported by two spherical roller bearings (SRB).

The test bearing was a DGBB 6309. The experiments have been used here to verify

the BEAST simulations. The Beast model of the test rig consist of the bearing plus a

shaft and a housing, see Figure 13-3.

Experiments were made under a number of different operating conditions. In

order to verify BEAST, some of these cases were simulated. The BEAST model was

kept on a rather simple level with a low level of calibration. The speed was constant

at 3000 rpm and the load was increased in four steps, when the load increases also

the power from the supporting SRB and the temperature of the air inside the bearing

increase.

The power from the SRB and the two seals was estimated with the SKF General

Catalogue [33]. Half the SRB power loss is assumed to go into the shaft. The losses

from the seals are estimated to totally 60W . The convection factor of the exposed

surfaces of the shaft and the housing is taken from [5] (50W/m2K). The convection

factor of the oil and air mixture inside the bearing is put to 1000W/m2K. In Figure

13-4 a sketch of the applied boundary conditions can be found. The temperature of

the mixture is increasing continuously until it reaches a steady state value for the

actual load case. In BEAST this temperature is set to the steady state temperature.

The simulations where run with a thermal acceleration factor of 10000.
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Figure 13-4: BEAST model of the thermal test rig. Boundary conditions are indi-

cated.

Figure 13-5: Temperature on inner and outer rings from simulation and experiments.
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Figure 13-6: Temperature distribution in the housing and shaft to the left and in the

rings - to the right. Color scales are independent for each body.

The results are presented in Figure 13-5. It can be seen that the major trends

are well described in the simulations but that there are some differences in the ac-

tual temperatures. Note that the input to the simulations were simplified both with

respect to geometry and boundary conditions. For instance, the same thermal bound-

ary conditions are used for many different surfaces. It can clearly be seen form these

simulations that it is possible to get reasonable results with rather simple models and

estimations of the thermal boundary conditions. This is very important because it

means that thermal analysis can be made quite easy within most MBS frameworks.

In Figure 13-6 an example of temperature distribution in the components in the

test rig can be seen. Observe that the color scales are separate for each body.
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Chapter 14

Conclusions

Dynamic equations of motion of flexible bodies when using the floating frame of

reference formulation were presented in this thesis. Some approaches to simplify

these equations by choosing the coordinate system for the solution of the equations

were discussed. The generalized force vector was defined and procedures to calculate

the generalized forces for different kinds of loading were presented. Generalized

elastic forces, generalized viscosity forces (with special focus on Rayleigh damping),

and generalized external force and body load were presented in particular. Special

attention was given to the analysis of the generalized force resulting from the residual

stress release during grinding.

We discussed current industry standard technologies for dynamics simulation

with flexible bodies. A specific example based on the MNF format import was pre-

sented.

A set of assumed mode shapes for modeling deflection of bodies with relatively

simple geometrical shapes in dynamics simulation with contacts was introduced. The

proposed mode shapes use well known series of mathematical function as the basis

for the modes set. The advantage of using the latter functions in terms of calculation

efficiency and ease of use were demonstrated. The necessary boundary conditions

for the proposed mode shapes were discussed and the methods to enforce such were

compared. The ortho-normalization of mode shapes was chosen as the most suitable

approach for the discussed case.

The system design that provides the necessary features to specify the external

boundary and loading conditions was discussed. Some examples were used to

demonstrate how complicated loading conditions can be easily specified using the

proposed design.

Additional analysis types (eigenmode and quasistatic) for flexible bodies that are

normally found only in finite-element packages were discussed. The procedures nec-

essary to perform these types of analysis inside a dynamics simulation tool were

presented.

Finally, some of the single body analysis procedures were used to verify the ac-

curacy of simulations when the proposed set of deformation modes was used. The
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verification also provided an insight on how to select the number of functions in the

function series that are used as the assumed mode shapes.

The approach with general shape functions was applied to the solution of the

heat equation. The provided application examples strengthen the claim of practical

importance of the approach.

The developed model was implemented in a real simulation system. The thesis

describes the system architecture and class design. The issues that are specific for

the flexible multibody systems as compared to the system with only rigid bodies are

specially addressed.

The system has been successfully used in industrial simulation of the grinding

process [21], spindles, geaboxes, and transient heat conduction in bearing applica-

tions [17].
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Chapter 15

Future Work

The operations on a single flexible body with a large number of states requires manip-

ulation of large matrices and vectors. That means the amount of time spent in linear

algebra computations increases quickly. More investigations are needed to improve

the performance of these calculations.

The approach with the general shape functions that include Fourier series and

Chebyshev polynomials proved to be efficient for the grinding simulations. The ques-

tion that remains open is the search for other kinds of general mathematical functions

that might be more suitable for different geometries. The possible candidates include

spline functions and wavelets.

The application of general functions to the modeling of both thermal processes

and structural deformation opens up the possibility for coupled thermo-mechanical

simulations. Further inverstigations are necessary on possible couplings between the

two processes. The fact that thermal processes are significatly slower than mechani-

cal ones should be utilized to simplify the coupling equations.
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Appendix

Shapes Generated by General Functions

This appendix is a supplement to Chapter 7. It provides some basic examples of the

general shape functions deformation modes for the case of a ring structure.

The most general representation of the deformation shape functions used in

BEAST for rotation symmetry bodies can be written as:















uf,r(~u0) =
∑nr,r

i

∑nr,φ

j

∑nr,z

k Polynomial(r0, i) · Fourier(φ0, j) · Polynomial(z0, k)

uf,φ(~u0) =
∑nφ,r

i

∑nφ,φ

j

∑nφ,z

k Polynomial(r0, i) · Fourier(φ0, j) · Polynomial(z0, k)

uf,z(~u0) =
∑nz,r

i

∑nz,φ

j

∑nz,z

k Polynomial(r0, i) · Fourier(φ0, j) · Polynomial(z0, k)

(15-1)

where

• ~u0 vector represents undeformed position of a material point. That is in cylin-

drical coordinates it has components: (r0, φ0, z0).

• ~uf the deflection vector of the material point. The components of this vec-

tor, i.e. uf,r, uf,φ and uf,z, represent deflections in radial, tangential and axial

directions. The resulting position of the material point is obviously: ~u0 + ~uf .

• Polynomial(x, i) generates a Chebyshev polynomial of order i and

Fourier(φ, j) generates sine and cosine pair for the j-th wave.

• nr,r, nr,φ, nr,z, nφ,r, nφ,φ, nφ,z, nz,r, nz,φ and nz,z are the nine parameters of the

shape functions that specify the length of each series.

Examples of pipe deformation shapes that can be represented by the modes de-

fined in Equation 15-1 are shown in Figure 15-1. The following parameters should

be specified to the series in order to enable these shapes:

• (a) Ring expansion/compression is a deflection in radial direction as a function

of radius. Setting nr,r > 0 can give such shapes. Note that for a realistic free

ring radial expansion mode is normally coupled with changes in axial direction

so that ring volume does not change under the deformation. That is why nz,z

parameter should also be set greater then zero for this case.
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a) b)

c) d)

f)e)

Figure 15-1: Examples of deformation shapes. (a) Ring expansion/compression. (b)

Rotation of ring cross-section. (c) Taper like deformation. (d) Ovality mode of a

ring. (e) Pipe torsion. (f) Conical deformation.
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• (b) Rotation of ring cross-section is a result of tangential displacement with

respect to the radius and angle. Setting nφ,r > 0 and nφ,φ > 0 enable such

deformation.

• (c) Taper like deformation can occur when axial deflection is a function of

radius. Set nz,r > 0 to enable it.

• (d) Ovality mode of a ring. To get this mode one should set nr,r > 0, nr,φ >=
2, nφ,r > 0, nφ,φ ≥ 2. In general to simulate m-waves deflection nr,φ and nφ,φ

must be at least equal to m.

• (e) Torsion of a pipe is enabled when both nφ,r and nφ,z are greater then zero.

• (f) Conical deformation shown in the figure is a combination of deformations

enabled by non-zero parameters nr,z and nz,z

To give a real usage example let us assume that we need to simulate a relatively

stiff ring. We only expect ovality mode from it and we don’t expect much deforma-

tions through the cross-section. The minimal reasonable combination of the input

values will be

• nr,r = 1 allow radial expansion/compression

• nr,φ = 2 two waves correspond to the ovality mode

• nr,z = 0 for a narrow ring taper shape is not important

• nφ,r = 1, nφ,φ = 2, nφ,z = 0 - symmetry with radial parameters to get stress-

free central line

• nz,r = 0, nz,φ = 0 - narrow ring has practically no deformation of this kind

• nz,z = 1 - allow axial expansion

The parameters specify a model which is stiffer than the real body but can simulate

the ovality mode and will run fast due to the low number of shapes used.

In practice it is often worthwhile to try different combinations of shape functions

parameters and check the results of single body analysis described in Chapter 4 to se-

lect the minimal number of modes satisfying the particular simulation requirements.
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Appendix B

This  appendix  containes  a  complete  implementation  of  the  algorithm  for  the  computation  of

mass matrix, quadratic velocity vector and generalized forces vector for a flexible ring or shaft

in Matematica. The document itself is developed as a Matematica 4.0 notebook.

Setup code

We start by loading some necessary packages and defining a debug output function.

DeclarePackage�"LinearAlgebra`MatrixManipulation`",

�"AppendRows", "AppendColumns"��;

DEBUG � True;

Clear�DBGPRINT�;

DBGPRINT�m__� :� If�DEBUG, Print�m��;

Lame constants conversion function

The  Lame  function  computes  Lame's  constants  {�,  �}  for  the  given  Young's  modulus  & Poi-

son's ratio

Clear�Lame�;

Lame�Emod_, �_� :�

�Emod � ����1 � 2���� �1 � ���,

Emod � �2��1 � ����;
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Volume integration

The IntVol function computes all the necessary volume integrals as required for 

DynFreeBody:  {mRR, mFF, J, Jkl, Sbar, Sbarkl, Jbarkl, Kp}. The naming conversions follow

the notation used in the report.

The input parameters are:

 Sp - function of (r,�,z) returning the shape matrix 3xN that containes shape tensors for cyllindri-

cal coordinates (ur,u�,uz);

 � - mass density of the body;

 L - length of the body;

 Rm - medium radius of the cross section of the ring or shaft;

 dR - wall thickness of the ring/pipe upto double Rm for a solid body;

 �, � - Lame's material constants

Clear�IntVol�;
IntVol�Sp_, �_, L_, Rm_, dR_, �_, �_� :� Module�

�mRR, mFF, J, Jkl, Sbar, Sbarkl, Jbarkl, Kp, V, m, Sc�,
�� Corresponding shapes in Cartesian system

assuming x � Sin�	�, y � Cos�	� ��
Sc�r_, 	_, z_� :�

	


������
Sin�	� Cos�	� 0

Cos�	� �Sin�	� 0

0 0 1

�

������.Sp�r, 	, z�;

DBGPRINT�Sc�r, 	, z��;
V � �

�
L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

r�r�	�z;

DBGPRINT�"Volume: ", V�;
m � � V;

DBGPRINT�"Mass: ", m�;
J1 � �

�
L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

� �r Sin�	�, r Cos�	�, z� r�r�	�z;
DBGPRINT�"J1: ", J1�;
Jkl �

�
�

L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

� Outer�Times, �r Sin�	�, r Cos�	�, z�,
�r Sin�	�, r Cos�	�, z�� r�r�	�z;

DBGPRINT�"Jkl: ", Jkl�;
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Sbar � �
�

L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

� Sc�r, 	, z� r�r�	�z;
DBGPRINT�"Sbar: ", Sbar�;
Sbarkl � Table��

�
L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

� Outer�Times, Sc�r, 	, z��k�,
Sc�r, 	, z��l�� r�r�	�z, �k, 1, 3�, �l, 1, 3��;

DBGPRINT�"Sbarkl: ", ScientificForm�Sbarkl, 2��;
DBGPRINT�"Symmetry check: Sbarkl�k��

l���Transpose�Sbarkl�l��k�� �� ", Table�
Simplify�Sbarkl�k��l� �� Transpose�Sbarkl�k��l���,
�k, 1, 3�, �l, 1, 3���;

Jbarkl � Table��
�

L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

� �r Sin�	�, r Cos�	�, z��k�
Sc�r, 	, z��l� r�r�	�z, �k, 1, 3�, �l, 1, 3��;

DBGPRINT�"Jbarkl: ", ScientificForm�Jbarkl, 2��;
mRR � m IdentityMatrix�3�;
DBGPRINT�"mRR: ", mRR�;
mFF � �

k�1

3

Sbarkl�k��k�; DBGPRINT�"mFF: ", mFF�;
DSp�r_, 	_, z_� :�

��rSp�r, 	, z��1�,
�	Sp�r, 	, z��2�













































r
�
Sp�r, 	, z��1�








































r
,

�zSp�r, 	, z��3�,
�rSp�r, 	, z��2� �

Sp�r, 	, z��2�








































r
�

�	Sp�r, 	, z��1�













































r
,

�zSp�r, 	, z��2� �
�	Sp�r, 	, z��3�













































r
,

�zSp�r, 	, z��1� � �rSp�r, 	, z��3��;
DBGPRINT�"Polar DS operator: ", DSp�r, 	, z��;

�� Material constant matrix ��
Ec � �

�� � 2 �, �, �, 0, 0, 0�,
��, � � 2 �, �, 0, 0, 0�,
��, �, � � 2 �, 0, 0, 0�,
�0, 0, 0, �, 0, 0�,
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�0, 0, 0, 0, �, 0�,
�0, 0, 0, 0, 0, ��

�;
Kelp�r_, 	_, z_� :�

Transpose�DSp�r, 	, z��.Ec.DSp�r, 	, z�;
Kp � �

�
L





2

L





2 �

0

2 �

�
Rm�

dR







2

Rm�
dR







2

Kelp�r, 	, z� r�r�	�z;
DBGPRINT�"Stiffness matrix: ", Kp�;
Return��mRR, mFF, J, Jkl, Sbar, Sbarkl, Jbarkl, Kp��;

�;

Skew matrix funtion

The utility function SkewMatrix returns the skew matrix for the given vector.

Important properties of the skew matrix are: 

a � b = SkewMatrix[a].b; SkewMatrix[a]= -Transpose[SkewMatrix[a]]

Clear�SkewMatrix�;
SkewMatrix�v_� :�

	


������

0 �v��3�� v��2��
v��3�� 0 �v��1��
�v��2�� v��1�� 0

�

������;

Dynamic inertia calculations

The DynFreeBody function computes the mass matrix and RHS which includes the generalized

forces and quadratic velocity tensors for the given state and precomputed integrals.  The result

is returned as {MM, RHS}. Note that the results are in the body coordinate system.

The required input is: 

      �(3) - angular speed in the body coordinate system;

      xf(n), vxf(n) - flexible states,

      list of integrals as returned from IntVol function

Clear�DynFreeBody�;
DynFreeBody��_, xf_, vxf_, �mRR_, mFF_,

J_, Jkl_, Sbar_, Sbarkl_, Jbarkl_, Kp_�� :�

Module��MM, RHS, St, Stildet, Jbaree, Jbareedot,

Jbaref, �tilde, �t2, Qvr, Qv�, Qvf�,
St � J1 � Sbar.xf;
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DBGPRINT�"St: ", St�;
Stildet � SkewMatrix�St�;
JbareeEq�k_, l_� :� Module���,
If�k � l,

	



�����
i�1

3

�Jkl�i��i�� � Jkl�k��k�
�


����

� 2
	



�����
i�1

3

�Jbarkl�i��i�� � Jbarkl�k��k�
�


����.xf

� xf.
	



�����
i�1

3

�Sbarkl�i��i�� � Sbarkl�k��k�
�


����.xf,

��Jkl�l��k� � �Jbarkl�l��k� � Jbarkl�k��l��.xf �

xf.Sbarkl�l��k�.xf�
�

�;
Jbaree � Table�JbareeEq�k, l�, �k, 1, 3�, �l, 1, 3��;
DBGPRINT�"Jbaree: ", Jbaree�;
Jbareedot � Table�
If�k �� l,

2
	



�����
i�1

3

�Jbarkl�i��i�� � Jbarkl�k��k�
�


����.vxf �

vxf.
	



�����
i�1

3

�Sbarkl�i��i�� � Sbarkl�k��k�
�


����.xf �

xf.
	



�����
i�1

3

�Sbarkl�i��i�� � Sbarkl�k��k�
�


����.vxf,

���Jbarkl�l��k� � Jbarkl�k��l��.vxf �

vxf.Sbarkl�l��k�.xf �

xf.Sbarkl�l��k�.vxf�
�, �k, 1, 3�, �l, 1, 3��;

DBGPRINT�"Jbareedot: ", Jbareedot�;
Jbaref �

�
xf.�Sbarkl�2��3� � Sbarkl�3��2��,
xf.�Sbarkl�3��1� � Sbarkl�1��3��,
xf.�Sbarkl�1��2� � Sbarkl�2��1��

�
� �
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Jbarkl�2��3� � Jbarkl�3��2�,
Jbarkl�3��1� � Jbarkl�1��3�,
Jbarkl�1��2� � Jbarkl�2��1�

�;
DBGPRINT�"Jbaref: ", Jbaref�;
�� The components of the

mass matrix have been computed at this

point. Calculating quadratic velocity. ��
�tilde � SkewMatrix���;
�t2 � �tilde.�tilde;

Qvr � �t2.St � 2 �tilde.Sbar.vxf;

DBGPRINT�"Qvr: ", Qvr�;
Qv� � ����Jbaree.�� � Jbareedot.� � ���Jbaref.vxf�;
DBGPRINT�"Qv�: ", Qv��;
Qvf �

��
i�1

3

�
j�1

3

�t2�i��j� �Jbarkl�i��j� � Sbarkl�i��j�.xf� �

2�
i�1

3

�
j�1

3

�tilde�i��j� Sbarkl�i��j�.vxf;

DBGPRINT�"Qvf: ", Qvf�;
Return��AppendColumns�

AppendRows�mRR, Transpose�Stildet�, Sbar�,
AppendRows�Stildet, Jbaree, Jbaref�, AppendRows�
Transpose�Sbar�, Transpose�Jbaref�, mFF��,

Flatten��Qvr, Qv�, Qvf � Kp.xf����;
�;
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Generalized external force

  GenForce function returns the generalized force tensor for the given cartesian force vector in

the  body  coordinate  system  (Fx,Fy,Fz),  the  undeformed  point  vector  in  the  body  coordinate

system (r,�,z), shape field (Sp(r,�,z) and elastic state vector xf.

Clear�GenForce�;
GenForce��Fx_, Fy_, Fz_�, �r_, 	_, z_�, Sp_, xf_� :�

Module��F, p, M, p2c, Qf�,

p2c�ang_� �

	




������

Sin�ang� Cos�ang� 0

Cos�ang� �Sin�ang� 0

0 0 1

�



������;

Sc�rr_, ang_, zz_� :� p2c�ang�.Sp�rr, ang, zz�;
DBGPRINT�"Cartesian shape: ", Sc�r, 	, z��;
p � �r Sin�	�, r Cos�	�, z� � Sc�r, 	, z�.xf;
DBGPRINT�"Deformed position of p: ", p�;
F � �Fx, Fy, Fz�;
M � p�F; �� moment ��
Qf � Transpose�Sc�r, 	, z��.F; �� elastic part ��
Return�Flatten���Fx, Fy, Fz�, M, Qf���;

�;
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An example use

Clear�Demo�;
Demo�� :�

Module�
�VolIntegrals, Sp, �, L, Router, Rinner, Rm, dR,

Rs, �, �, Emod, �, �, xf, vxf, MM, RHS, GF, acc�,
�� Input parameters ��
Emod � 2.03 1011; �� Young'�s modulus ��
� � 0.29; �� Poison'�s ratio ��
� � 7800; �� mass density ��
Router � 0.1; �� outer ring radius ��
Rinner � 0.9; �� inner ring radius ��

Rm �
�Router � Rinner�















































2
; �� median radius ��

dR � Router � Rinner; �� wall thickness ��
�� shape function scaling parameter ��
Rs � Router;

L � 0.02; �� width of the ring ��
�� convert to Lame constants ��
��, �� � Lame�Emod, ��;
Print�"� � ", �, ", � � ", ��;
�� Assumed shape field ��

Sp�r_, 	_, z_� :�

	




�������

r






Rs

1 0 0

0 0 Cos�2 	� Sin�2 	�
0 0 0 0

�



�������
;

�� Perform volume integration ��
VolIntegrals � IntVol�Sp, �, L, Rm, dR, �, ��;
�� Select angular velocity around

the ring'�s axis ��
� � �0, 0, 1000�;
Print�"Angular velosity: ", ��;
�� assume some initial deflection state ��
xf � ��1. �10�6, 1. �10�6, �2.�10�6, 0�;
Print�"Flex state: ", xf�;
vxf � ��1.�10�3, 1.� 10�3, �2.� 10�3, 0�;
Print�"Flex velosity state: ", vxf�;
�� caclulate the mass

�
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matrix and external load free RHS ��
�MM, RHS� � DynFreeBody��, xf, vxf, VolIntegrals�;
Print�"Mass matrix: ",

ScientificForm�MM, 2� �� MatrixForm�;
Print�"Free body RHS: ", RHS �� MatrixForm�;
�� Symmetric load of 100 Newtons from

top and bottom at the median radius ��
GF � GenForce���100, 0, 0�, �Rm, � �2, 0�, Sp, xf� �

GenForce��100, 0, 0�, �Rm, �� �2, 0�, Sp, xf�;
Print�"Generalized force: ", GF �� MatrixForm�;
RHS �� GF;

�� Calculate acceleration tensor ��
acc � LinearSolve�MM, RHS�;
Print�"Acceleration tensor: ", acc �� MatrixForm�;

�;

Demo��

� � 1.08656�1011, � � 7.86822�1010

�

�

�������

10. r sin��� sin��� cos��� cos�2 �� cos��� sin�2 ��

10. r cos��� cos��� 	cos�2 �� sin��� 	sin��� sin�2 ��

0 0 0 0

�

�

�������

Volume: 	0.0502655

Mass: 	392.071

J1: 	0, 0, 0.


Jkl:
�

�

�������

	80.3745 0 0

0 	80.3745 0

0 0 	0.013069

�

�

�������

Sbar:
�

�

�������

0 0 0 0

0 0 0 0

0 0 0 0

�

�

�������
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Sbarkl:

�

�

�������������������������������������������������������������

�

�

���������������

	8.�103
	1.2�103 0 	5.9�102

	1.2�103
	2.�102 0 	9.8�101

0 0 	9.8�101 0

	5.9�102
	9.8�101 0 	9.8�101

�

�

���������������

�

�

���������������

0 0 	5.9�102 0

0 0 	9.8�101 0

	5.9�102
	9.8�101 0 0

0 0 0 0

�

�

���������������

�

�

�������������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�

�

�������������

�

�

���������������

0 0 	5.9�102 0

0 0 	9.8�101 0

	5.9�102
	9.8�101 0 0

0 0 0 0

�

�

���������������

�

�

���������������

	8.�103
	1.2�103 0 5.9�102

	1.2�103
	2.�102 0 9.8�101

0 0 	9.8�101 0

5.9�102 9.8�101 0 	9.8�101

�

�

���������������

�

�

�������������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�

�

�������������

�

�

�������������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�

�

�������������

�

�

�������������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�

�

�������������

�

�

�������������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�

�

�������������

�

�

�������������������������������������������������������������

Symmetry check: Sbarkl�k��l���Transpose�Sbarkl�l��k�� 	

�

�

�������

True True True

True True True

True True True

�

�

�������

Jbarkl:

�

�

���������

		8.�102, 	1.2�102, 0, 	5.9� 101
 	0, 0, 	5.9�101, 0
 	0, 0, 0, 0


	0, 0, 	5.9� 101, 0
 		8.�102, 	1.2�102, 0, 5.9�101
 	0, 0, 0, 0


	0, 0, 0, 0
 	0, 0, 0, 0
 	0, 0, 0, 0


�

�

���������

mRR:
�

�

�������

	392.071 0 0

0 	392.071 0

0 0 	392.071

�

�

�������

mFF:

�

�

������������

	16074.9 	2378.56 0 0.

	2378.56 	392.071 0 0.

0 0 	196.035 0

0. 0. 0 	196.035

�

�

������������

Polar DS operator:

�

�

�������������������������

10. 0 0 0

10. 1
����
r

	
2 sin�2 ��
��������������������

r

2 cos�2 ��
���������������������

r

0 0 0 0

0 0 	
cos�2 ��
�����������������

r
	

sin�2 ��
�����������������

r

0 0 0 0

0 0 0 0

�

�

�������������������������
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Stiffness matrix:

�

�

���������������

	3.76666�1012
	3.76666�1011 0 0

	3.76666�1011
	7.34513�1010 0 0

0 0 	1.57765�1011 0

0 0 0 	1.57765�1011

�

�

���������������

Angular velosity: 	0, 0, 1000


Flex state: 		1.�10	6, 1.�10	6, 	2.�10	6, 0


Flex velosity state: 		0.001, 0.001, 	0.002, 0


St: 	0., 0., 0.


Jbaree:
�

�

�������

	80.3862 	0.000237854 0.

	0.000237854 	80.3862 0.

0. 0. 	160.746

�

�

�������

Jbareedot:

�

�

�������

1.36962 	0.237852 0.

	0.237852 1.36962 0.

0. 0. 2.73924

�

�

�������

Jbaref:

�

�

�������

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

�

�

�������

Qvr: 	0., 0., 0.


Qv�: 	0., 0., 	2739.24


Qvf: 		1.60748�109, 	2.37854�108, 392.071, 0.
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Mass matrix:

�

�

�����������������������������������������������������

	3.9� 102 0 0 0 0. 0. 0 0 0 0

0 	3.9� 102 0 0. 0 0. 0 0 0 0

0 0 	3.9� 102 0. 0. 0 0 0 0 0

0 0. 0. 	8.�101
	2.4� 10	4 0. 0. 0. 0. 0.

0. 0 0. 	2.4� 10	4
	8.�101 0. 0. 0. 0. 0.

0. 0. 0 0. 0. 	1.6� 102 0. 0. 0. 0.

0 0 0 0. 0. 0. 	1.6� 104
	2.4� 103 0 0.

0 0 0 0. 0. 0. 	2.4� 103
	3.9� 102 0 0.

0 0 0 0. 0. 0. 0 0 	2.� 102 0

0 0 0 0. 0. 0. 0. 0. 0 	2.� 102

�

�

�����������������������������������������������������

Free body RHS:

�

�

�������������������������������������������

0.

0.

0.

0.

0.

	2739.24

	1.61087�109

	2.38157�108

	315138.

0.

�

�

�������������������������������������������

Cartesian shape:
�

�

�������

5. 1. 0. 0.

0. 0. 1. 0.

0. 0. 0. 0.

�

�

�������

Deformed position of p: 	0.499996, 	2.�10	6, 0.


Cartesian shape:
�

�

�������

	5. 	1. 0. 0.

0. 0. 	1. 0.

0. 0. 0. 0.

�

�

�������

Deformed position of p: 		0.499996, 2.�10	6, 0.
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Generalized force:

�

�

�����������������������������������������

0

0

0

0.

0.

	0.0004

	1000.

	200.

0.

0.

�

�

�����������������������������������������

Acceleration tensor:

�

�

�����������������������������������������

0.

0.

0.

0.

0.

17.0408

100941.

	4942.62

1607.56

0.

�

�

�����������������������������������������

Conclusions

Analysing the resulting acceleration vector and the specified shape field and displacements it is

possible to see two main tendencies:

 1. Under the specified condition the ring starts to expand due to centrifugal forces.  We can see

that from the large positive acceleration for the shapes acting uniformaly in radial direction.

 2.  The  elastic  force  pushes  the  disturbed  ring  back  to  be  round.  Note  the  initial  values  and

accelerations for the shapes with angular dependencies.
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Appendx C

Using Shape Functions for Temperature Distribution Problem

The use of the general shape functions will be demonstrated for a simle example. A long balk with the

dimensions (w, h, l) at a constant temrature To is subjected to a heat flow input  q0(t) over the area at

one  end  while  the  other  end  is  put  in  the  environment  with  constant  temperature  Tc.  We analyse  the

temperature flow in the balk using the Ritz procedure.

Let us define the heat input function first:

q0[t_] := If[t < 0, 0, If[t < Ti, q0max, 0]]; 

Ti = 0.5; q0max=10^6;

Plot[q0[t], {t, -0.1, 0.7}]

0.2 0.4 0.6

200000

400000

600000

800000

1�10
6

��Graphics��

Let us assume a 3 D shape matrix representing the temperature distribution

S[x_,y_,z_]:={{1,x,y,z/l,-1+(z/l)^2,(z/l)(-3+ 4 (z/l)^2), 1 

- 8 (z/l)^2 + 8 (z/l)^4}};

Number of state variables

Length[S[x,y,z][[1]]]

7
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Necessary material and interface constants: k, �, c, ht. The complete equation set that we are solving:

-Kt � + Q0 q0(t) - Qt � + Qc = Ct ��/�t

The integrals to be precomputed:

Kel�x_, y_, z_� :�

D�S�x, y, z�, x� � D�S�x, y, z�, y� � D�S�x, y, z�, z�;
Kt � k��

0

l

�
�w�2

w�2
�
�h�2

h�2
Transpose�Kel�x, y, z��.Kel�x, y, z���x��y��z;

Kt �� MatrixForm

�

�

�����������������������������

0 0 0 0 0 0 0

0 h k l w h k l w h k w h k w h k w 0

0 h k l w h k l w h k w h k w h k w 0

0 h k w h k w h k w
���������
l

h k w
���������
l

h k w
���������
l

0

0 h k w h k w h k w
���������
l

4 h k w
������������
3 l

3 h k w
������������

l
32 h k w
��������������
15 l

0 h k w h k w h k w
���������
l

3 h k w
������������

l
69 h k w
��������������

5 l
16 h k w
��������������

l

0 0 0 0 32 h k w
��������������
15 l

16 h k w
��������������

l
2816 h k w
������������������

105 l

�

�

�����������������������������

Ct � � c��
0

l

�
�w�2

w�2
�
�h�2

h�2
Transpose�S�x, y, z��.S�x, y, z���x��y��z;

Ct �� MatrixForm

�

�

��������������������������������������

c h l w � 0 0 1
����
2
c h l w � �

2
����
3
c h l w � �

1
����
2
c h l w � �

1
������
15

c h l w �

0 1
������
12

c h3 l w � 0 0 0 0 0

0 0 1
������
12

c h l w3 � 0 0 0 0

1
����
2
c h l w � 0 0 1

����
3
c h l w � �

1
����
4
c h l w � �

1
����
5
c h l w � �

1
����
6
c h l w �

�
2
����
3
c h l w � 0 0 �

1
����
4
c h l w �

8
������
15

c h l w �
5
������
12

c h l w � �
2
������
35

c h l w �

�
1
����
2
c h l w � 0 0 �

1
����
5
c h l w �

5
������
12

c h l w �
17
������
35

c h l w �
1
����
6
c h l w �

�
1
������
15

c h l w � 0 0 �
1
����
6
c h l w � �

2
������
35

c h l w �
1
����
6
c h l w �

31
������
63

c h l w �

�

�

��������������������������������������

Q0 � �
�w�2

w�2
�
�h�2

h�2
Transpose�S�x, y, 0����x��y;

Transpose�Q0� �� MatrixForm

� h w 0 0 0 �h w 0 h w �
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Qt � ht��
�w�2

w�2
�
�h�2

h�2
Transpose�S�x, y, l��.S�x, y, l���x��y;

Qt �� MatrixForm

�

�

��������������������������

h ht w 0 0 h ht w 0 h ht w h ht w

0 1
�����

12
h3 ht w 0 0 0 0 0

0 0 1
�����

12
h ht w3 0 0 0 0

h ht w 0 0 h ht w 0 h ht w h ht w

0 0 0 0 0 0 0

h ht w 0 0 h ht w 0 h ht w h ht w

h ht w 0 0 h ht w 0 h ht w h ht w

�

�

��������������������������

Qc � ht Tc��
�w�2

w�2
�
�h�2

h�2
Transpose�S�x, y, l����x��y;

Transpose�Qc� �� MatrixForm

� h ht Tc w 0 0 h ht Tc w 0 h ht Tc w h ht Tc w�

Setting the parameters:

l=0.02; h = 0.01; w = 0.01;

To = 50; Tc = 50;

k = 36; �=7800; c=460; ht=10^6;

Tstart = 0;

Tend = 1;

Kt;Q0;Qt;Qc;Ct;

Initial values for the state variables:

�0=Table[0,{i,Length[S[x,y,z][[1]]]}];

�0[[1]] = To;

�0

	50, 0, 0, 0, 0, 0, 0
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Solving differential equation (-Kt � + Q0 q0(t) + Qt � - Qc = Ct ��/�t) using simple method

�t=0.001;

t = Tstart;

�=�0;

Tleft={};

While[t < Tend,

�=N[�+�t(LinearSolve[Ct,-Kt.�+ Q0 q0[t] - Qt.� + Qc])];

t=t+�t;

Tleft=Append[Tleft,S[0,0,0].�];

];

�

		�406.283
, 	113.855
, 	113.855
,

	360.507
, 	�517.77
, 	128.107
, 	�32.315



Final temprature distribution on the cenral line:

Plot[S[0,0,z].�,{z,0,l},PlotRange->{40,100}];

0.005 0.01 0.015 0.02

50
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70

80
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           Temperature at the left end of the balk as a function of time.

ListPlot[Flatten[Tleft]]

200 400 600 800 1000
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90

100

110

120

��Graphics��

Concluson

The complete procedure necessary for a transient heat transfer simulation has been presented. The small

number of shape functions limits the accuracy of the results. This is particularly noticable on the plot of

the temperature distribution over the balk at end of the simulation. Here the low order of the approxima-

tion  results  in  non-monotonous  distribution  curve  as  the  selected  temperature  shapes  cannot  ideally

resolve the boundary conditions. The general qualitative behaviour is however captured correctly.
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Part II

Hybrid Parallelization of Multibody

Simulation with Detailed Contacts
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Chapter 16

Introduction

16.1 Parallelization of Multibody Dynamics Simula-

tions

The work presented in this thesis is focused on the problems rising in parallelization

of multibody dynamics simulation codes with advanced analysis of contacts. Multi-

body dynamic simulation packages are designed to perform transient simulation of

mechanical systems. The major players on the market are MSC.ADAMS[20], LMS’s

Virtual.Lab Motion[18] and SimPack from INTEC GmbH [25].

In this thesis we focus on the parallelization of SKF’s proprietary bearing simu-

lation framework BEAST (see Chapter 1).

The toolbox development in terms of design generalization has widened the ap-

plication area of the program. Later versions of BEAST include models of grinding

machines, experimental engines, gear transmissions, etc. BEAST can now be seen

as a general multibody simulation tool specialized in detailed contact analysis.

The most computationally expensive part of BEAST can be described with the

Algorithm 16-1. We can see that essentially three potentially parallel nested loops

are used. The outer loops of the BEAST code (over pairs of bodies and contacts)

were earlier parallelized by using SPMD style programming with message-passing

by means of PVM/MPI libraries [9, 10]. However, the innermost loop over the con-

tact slices had never been parallelized before. This is due to the tight coupling be-

tween the slices of a single contact that result in very irregular data access patterns

rendering the distributed memory parallelization infeasible.

The distributed memory parallelization works efficiently for most models. Un-

fortunately, there are cases where the computations attributed to a single contact

dominate an entire simulation run. One particular example is the simulation of an

SRB (Spherical Roller Bearing) bearing presented in Section 20.

For such situations a more fine grained approach needs to be developed. The

additional driving force for the presented work was the availability of a cluster of

high-performance SMP computers as well as expectations for the appearance of sim-

136



Algorithm 16-1 Pseudocode for the computationally expensive part of BEAST

for each time step ti in serial do

Obtain system state from ODE solver

for each pair of bodies do

Compute relative motion between the bodies.

for each contact between the two bodies do

Initialize local output variables.

Perform a rough estimation of contact size (boxing).

for each slice of the contacting surfaces do

Construct the grid and refine if needed.

end for

for each slice of the contact do

Integrate the contact (tribological calculations).

Accumulate output.

end for

Finalization of contact calculations.

end for

Accumulate output.

end for

Send state derivatives to ODE solver

end for

ilar hardware in the near future.

The important requirement for the parallelization approach was strait-forward

application to the legacy simulation code. This forced the choice of standard C++ to

be the implementation language. Support of any compliant standard C++ compiler

was also essential.

16.2 Utilizing Clusters of Shared Memory Computers

During the last decade shared memory machines have become much more cost ef-

fective. Assuming a fixed price, we can also note that the size of a parallel machine

or a cluster counted as the number of processor nodes has grown as well. Already

today we have a cluster of 48 two-way SMPs running at SKF. One can expect that

a cluster with 4-processor nodes will be available in the near future. Multiprocessor

professional workstations are also on their way to users of high-end simulation tools.

Simultaneous multi-threading technology [7] is promising even more - possibly vir-

tual - processors per-box in the coming years. Therefore the problem of effective use

of computers with shared memory becomes more and more important.

An application can use shared memory machines and clusters of such machines

in several ways:
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• Rely on efficient implementations of PVM/MPI libraries.

• Implement a hybrid parallelization approach.

• Use pure shared memory execution (on a single SMP node).

• Use virtual shared memory programming.

Parallel programs using explicit message passing with a PVM/MPI library can obvi-

ously run on shared memory computers. Shared memory contributes to faster com-

munication between processes within each node since data is not sent over the net-

work but copied inside the local memory. This approach is attractive since legacy

schedulers and other software can be used directly without any modifications. Un-

fortunately, there are some problems with such a system design.

The dynamic nature of the contact analysis calculation makes it very hard to

predict which data is needed by a processor. On the other hand, network latency

forces us to use larger messages to amortize the fixed part of the transferring cost

over many bytes. Therefore, more data than necessary is sent between processors

when explicit message-passing is used.

Another problem is the possible task granularity. With message-passing approach

only relatively coarse grain tasks are feasible. Low level loops with many dependen-

cies between iterations (e.g., different slices of the same contact) are very hard to

separate. On a cluster with many nodes the largest task very soon becomes a bottle-

neck. For some of the cases we see that task granularity limits the maximum speedup

to be between 1.7 and 4.

The existing schedulers for the message-passing code views the parallel computer

as symmetric. However, a processor normally has shorter communication latency and

larger bandwidth for messages sent to other processors in the same node than for the

messages to the processors in other nodes. This difference is currently not taken into

account. A more advanced scheduler might therefore gain some advantage by using a

more detailed model for the communication hardware. This will not, however, solve

the problem of the task granularity.

Multithreading is also advantageous if we consider processors with simultaneous

multithreading. Such processors are most efficient when using different threads and

not separate processes due to the shared cache and other resources of the virtual

sub-processors.

Hybrid or dual-level parallelization that explicitly uses message-passing for com-

munication between the nodes and a shared memory approach within the nodes is the

second alternative to consider. The top level scheduler then works as before but as-

signs groups of tasks to compute nodes and not to individual processors. A single

PVM/MPI process is run on each node. Each such process executes several concur-

rent computation threads within a node.

This may result in better load balancing and raise the potential for parallel ex-

ecution since smaller tasks (e.g., different slices of a single contact) can be run in
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parallel. The hybrid approach also simplifies the scheduling of the message passing

part of the problem. Two reasons contribute to this simplicity:

• Scheduling is done for nodes and not processors. Therefore the scheduling

problem is reduced.

• There is no need to consider differences in the communication speeds between

the processors belonging to the same and to different nodes.

This approach is probably most feasible for larger clusters where task granularity

is the limiting factor for achieving good speed up. Simulation problems with much

data sent between the processes can be candidates as well. The benefit here comes

from explicit and more efficient shared memory communications.

The pure shared memory programming approach can be used on multiproces-

sor workstations. A shared memory scheduler operating on the complete problem

can achieve almost ideal load balancing using dynamic methods for scheduling fine

grain tasks. The shared memory approach can also take into account data layout in

the memory and optimize locality. Note, however, that excessive synchronization

and various cache effects may lead to low parallel efficiency of the shared memory

approach.

A virtual shared memory assumes existence of a run-time system that guarantees

a common and coherent view on the memory from all the nodes. Even though such

systems exist they still require very careful data partitioning when programming, in

order to achieve acceptable performance.
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Chapter 17

Applicability of Shared Memory and

Hybrid Parallelization

At this point we would like to discuss some articles on hybrid parallelization pub-

lished during the last few years. Some of them report that using hybrid parallelization

degrades the performance as compared to pure message passing. Fortunately, there

are also reports indicating success in application of hybrid parallelization strategies.

Our intention is to survey the previous work and identify the general parallelization

strategies that may be applicable for most applications.

Most of the authors of the papers mentioned below rely on the OpenMP standard

[2] for the shared memory parallelization. OpenMP advertises the incremental par-

allelization approach - only some computationally expensive loops are parallelized

and rest of the code stays intact. Unfortunately, it soon became obvious that the naive

use of OpenMP to create a hybrid parallel code from an already parallel application

does not provide performance improvements.

The authors of [5] tried to implement OpenMP parallelization in NAS bench-

marks. They found out that a unified MPI approach is better for most of the bench-

marks. The hybrid approach becomes better only when fast processors make the

communication performance significant and the level of parallelization is sufficient.

In [13] a hybrid approach was tried for a discrete element modeling simulation.

The authors observed that their hybrid implementation was not efficient enough to

outperform pure message-passing on an SMP cluster. The authors mention a large

overhead for multi-threaded parallelization at fine grain level most likely due to ex-

cessive synchronizations and cache effects. This overhead is not very critical when

running on a single SMP machine, but it makes hybrid implementation slower than

the pure MPI one on a larger cluster. Another important consideration in the paper

is the potential to decrease multithreading overhead, which would however require

significant code restructuring.

The authors of [1] tried to analyze the sources of performance differences in

OpenMP and MPI codes. They found out that basically no difference is attributable

to the way the two models exchange data between processors. However, there were
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interesting differences in individual code sections. It was found that the OpenMP

version incurs more code overhead (e.g., the code executes more instructions) than

the MPI version, which becomes more critical as the number of processors grows.

Similar conclusions were made by the authors in [24]. The results for their test

applications indicated that shared memory parallelization can achieve about half the

parallel efficiency of MPI in most cases, while being competitive in some others.

A hybrid strategy could show only a small performance advantage over pure MPI

in some cases. The authors explain such results by the tradeoffs between the two

approaches. While shared-memory programming can potentially reduce the intra-

process communications compared to MPI, it often has additional overhead of ex-

plicit synchronizations. The authors also mention increased code complexity as a

disadvantage of the hybrid approach. This was true for the NBODY application pre-

sented in the paper.

The authors concluded the paper stating that a pure MPI implementation is a more

effective strategy than hybrid programming on SMP clusters. It should however be

noticed that only a small cluster was used for the test runs.

An analysis of different hybrid parallelization strategies together with a survey

and an in-depth study of shared memory programming with OpenMP vs message-

passing programming with MPI can be found in [16]. The authors demonstrated

that careful program analysis followed by data layout restructuring is needed for

an efficient OpenMP program. Only with this strong programming effort OpenMP

program will become competitive with its MPI counterpart. The authors report that

the naive loop level OpenMP is simply not competitive and, currently, only SPMD

style programming can provide good performance consistently. The authors of [6]

came to the same conclusions regarding the data layout rearrangement. They also

proposed extra data locality directives for OpenMP to facilitate data redistribution

between threads.

Summarizing the results presented in the papers noticed above one can list the

cases where hybrid parallelization is likely not to be efficient:

• Pure substitution of communication strategy from message-passing to shared

memory does not improve performance.

• Cases where coarse-grain distributed memory parallelism can efficiently utilize

all the available processors.

• Naive fine-grain loop parallelization does not normally improve the perfor-

mance.

The reasons behind inefficiency are additional synchronization overhead and cache

utilization issues.

Despite such strong arguments against shared memory parallelization some cases

are still open for efficient hybrid approaches. We believe that the presented results do

not discredit the idea of hybrid parallelization per se, but rather raise the question of

applicability of the approach to the particular architecture and software combination.
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The situation that will be further explored in this paper occurs when the number

of processors available for a parallel application is higher than the maximum speedup

reachable by a message-passing algorithm due to task granularity. The granularity

can become the limiting factor either due to a really large number of processors or

due to some application specific issues.

The following few references present some examples of such applications. The

authors of [8] showed the feasibility of hybrid parallelization for the solution of CFD

problems. In this case thread level parallelism facilitates a specific refinement algo-

rithm which is hard to parallelize with traditional message-passing.

One of the first successful uses of hybrid parallelization was presented in [12].

For the presented algorithm pure OpenMP outperforms pure MPI on a single node.

Across entire cluster of SMP nodes, the hybrid MPI/OpenMP implementation out-

performs pure MPI.

Another important advantage of the hybrid approach when applied to large clus-

ters has been demonstrated in [15]. The authors used a hybrid approach to map

a large molecular dynamics simulation on an IBM pSeries 690 cluster with 1024

processors. Such a simulation would not be possible at all without the hybrid paral-

lelization approach.

In a more general context the designers of ARMI communication library [23]

found the need to exploit finer grain parallelism than what the message-passing pro-

gramming style is suitable for. They showed that hybrid parallelization can yield

advantages in some cases.

Let us now come back to the problems around parallelization of multibody dy-

namics simulation codes with advanced analysis of contacts. The case when the

computations attributed to a single contact dominate an entire simulation run can be-

come a granularity problem. If the achieved speed up is significantly lower than the

linear expectation then a hybrid approach becomes feasible. The strategy presented

in the following sections can then be applied.
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Chapter 18

Parallel Shared-Memory Framework

18.1 Choice of Multithreaded Framework

The simulation algorithm presented in Section 16 can be seen as an iterative algo-

rithm with nested parallel regions. Nested parallel regions are typical for the appli-

cations with nested loops with independent (or weakly dependent) iterations and for

codes utilizing functional decompositions. Algorithm 18-1 presents a general pseu-

docode of such codes. Note that the number of iterations of the inner loops may be

different for different iterations of the outer loops.

Algorithm 18-1 A pseudocode for a parallel program with nested parallel regions.

for i = F0, G0 in parallel do

Some code dependent on i

for j = F1(i), G1(i) in parallel do

Some code dependent on i, j

for k = F2(i,j), G2(i,j) in parallel do

Some code dependent on i, j, k

end for

Some code dependent on i, j

for k = F3(i,j), G3(i,j) in parallel do

Some code dependent on i, j, k

end for

end for

end for

We have mentioned earlier that the outer loops of the algorithm could be paral-

lelized in a SPMD style. However, the innermost loops could only be handled by

a shared-memory approach because of the complex data dependencies between the

loop iterations.

The purpose of this work was to complement the legacy message-passing sched-

uler with a shared memory parallelization subsystem. The message passing part is
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kept in touch and provided the coarse level scheduling of the outer loop iterations

between the nodes. Within each node the newly developed shared memory paral-

lelization is used.

Coarse-grained parallelization typically has higher computation to communica-

tion ratio than the fine-grained one and is therefore preferable. Hence, if several outer

loops iterations are scheduled to the same compute node the shared-memory subsys-

tem should run them in parallel before trying to parallelize the inner loops. The inner

loops need to be parallelized only if significant load imbalance at the outer loop level

is detected.

In the BEAST case, this means that if several contacts are scheduled to a com-

pute node then different threads should start processing different contacts first. Only

if significant load imbalance is detected separate contact should be considered for

parallel execution.

P1 P2 P1 P2

P1 P2

Node 1 Node 2a)

b)
Node 1 Node 2

P1 P2

Figure 18-1: Load balancing between two dual processor nodes. (a) Imbalance for a

pure message-passing code; (b) Balanced execution in hybrid code.

Figure 18-1 presents a situation where the hybrid code is expected to outperform

the message-passing counterpart. In case (a) one-level message-passing task schedul-

ing for four processors is done. Load imbalance occurs due to significant variation

in task sizes. In case (b) the high level scheduler distribute tasks for two nodes. The

shared-memory framework gets better load balancing by creating fine level tasks.

The most popular framework today for shared-memory programming in high-

performance computing is certainly OpenMP. Unfortunately, still not all the com-

pilers are supporting OpenMP extensions. Even fewer enable nested parallelism.

144



Besides, the number of features provided by OpenMP directives is limited and ad-

vanced scheduling algorithms and synchronization schemes are hard to implement.

Alternative frameworks like Cilk [27] and StackThreads/MP [17] are certainly

more advanced. The work-stealing strategies (see below) implemented in the cor-

responding schedulers have proved to be efficient. The only disadvantage in using

those frameworks is the limitation to a single compiler (gcc) which makes it limits

the portability of the application. The necessity to manage the program stack for the

parallel threads may cause implementation problems for building the frameworks for

other compilers. It also makes it hard to apply the frameworks to a legacy C++ code.

Besides, it complicates the use of thread local storage, which may be utilized, e.g.,

for thread specific buffering in the application. Such a buffering requires that the ID

of a thread executing a calculation does not change arbitrary. Another issue in both

frameworks is the lack of explicit support for loop parallelization. The application

programmer is therefore made responsible for the development of the necessary loop

scheduling algorithms.

Even though we realized that the existing Cilk and StackThreads frameworks

could not be directly utilized in our project the work-stealing strategy is certainly an

attractive approach. The work-stealing strategy assumes two stages:

1. Initial scheduling of tasks to processors;

2. Possibility for a processor that have completed all its tasks early to choose a

’victim’ among the other processors and ’steal’ some work from it.

The work-stealing strategy makes it possible to significantly reduce the synchroniza-

tion overhead since processors need to synchronize only when ’stealing’ tasks and

not when running their own tasks. The strategy also facilitates the implementation

of the affinity principles as described in [19] and [26]. The affinity principle recom-

mends scheduling consequent loop iterations to the same processor. In such a way

cache contentions can be minimized. In a work-stealing implementation the initial

tasks always contain chunks of consequent loop iterations.

Having looked at the existing multithreaded environments and our target applica-

tion we have formulated the following requirements for the framework:

• Fork-join programming style for the whole application.

• Multilevel parallelism and special support for dynamically scheduled nested

loops.

• The number of kernel level thread creation and termination operations should

be minimized.

• The caller thread is responsible for task termination. No advanced and possibly

architecture specific stack management should be used.

• Work-stealing and affinity methodologies should be used.
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• Any standard C++ compiler should be usable.

To realize the requirements above we have decided to create our own framework

implemented as a C++ library on top of pthreads [22]. The algorithms presented in

the following sections implement the strategies similar to the ones used in Cilk and

StackThreads/MP but stack manipulations are avoided. This makes the framework

portable at the price of lower parallel efficency in some cases. Additionally, the

structures facilitating loop parallelization are introduced.

18.2 A Framework For Nested Parallel Execution

The scheduling sequence for the hybrid approach presented in this paper has two

stages. First, the message-passing scheduler analyses coarse-grained tasks and dis-

tributes groups of them to different nodes (e.g., sets of contacts are distributed be-

tween nodes in our application). The legacy scheduler [10] was used in our case and

is not further discussed in this paper.

At every compute node a thread pool with one thread per processor is running.

The thread pool at every node has a single master thread responsible for communi-

cation with other nodes and a number of worker threads. The master threads receive

the groups of tasks from the message-passing part of the framework and submit them

to the shared-memory subsystem on each node. Second scheduling stage is then initi-

ated. The shared-memory scheduler implements the work-stealing strategy allowing

different threads within nodes to steal tasks from each other.

Some tasks running in the shared memory context contain computational work

with potential for parallel execution (e.g., contact slices). Due to the application spe-

cific issues partitioning of this work is only feasible in shared-memory environment

and therefore it is always scheduled as an atomic task by the message-passing sched-

uler. Such a task can be further partitioned in the shared memory context and a new

group of tasks representing parts of the coarse-grain task can be created.

The smaller tasks can be used to improve load balancing within a node. Threads

that complete their tasks (i.e., all the initially distributed complete contacts) early try

to ’steal’ the smaller sub-tasks from other processors within the same node. Fine

grain parts of the heavier tasks can be moved to other processors at this point (e.g.,

parts of a contact calculation can be stolen).

Note that for the case of dual-processor nodes at most one coarse grain task will

eventually be run with two threads.

In order to represent groups of concurrent tasks in our framework the concept of

task queues is introduced. A task queue is an interface to an application specific code

that has potential for parallel execution. It can be understood as a parallel region in

an OpenMP program or a series of spawn requests in Cilk. In our framework it is

represented by an abstract class. An object implementing the task queue is created

by the application every time there is a set of tasks that can run in parallel. The task

queues are then submitted to the framework for parallel execution. A new task queue
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can be created by any task including the tasks that are already running concurrently

with others. The task queue class interface provides only one method: run. Different

threads call this method concurrently until all the tasks in the queue are executed.

The submit operation is blocking. It terminates when all the tasks in the submitted

queue have completed. The submit operation is processed as a normal function call

and always returns in the context of the calling thread. Therefore, individual tasks

may safely store the references to the thread local storage on stack and utilize it for

buffering data in a thread context.

Every task queue has a special scheduler responsible for the management of tasks

within the queue. The scheduler decides how the tasks in the queue should be com-

bined and ordered. The simplest implementation of a queue can be done with the

following dynamic scheduling algorithm:

Routine Run

if no tasks left in the queue then

return

end if

lock the queue

while there are tasks do

take the next task from the queue;

unlock the queue;

run task;

lock the queue;

end while

unlock the queue;

The task queue abstraction facilitates introduction of advanced loop schedules

into the work stealing framework. Such schedulers may be application specific and

take into account, e.g., some particular dependencies between the loop iterations. Al-

ternatively, in case of simulation codes with a serial outer loop doing time stepping,

feedback based scheduling approaches may be used. That is the information about

the execution time of the iterations may be collected and utilized for scheduling dur-

ing the consequent executions of the loop.

The code in Algorithm 18-1 needs to be modified by the application developer

to match the structure expected by the framework. The potentially concurrent tasks

have to be encapsulated into subroutine calls. Algorithm 18-2 presents an example

code as accepted by the framework. Note that submit calls are nested and framework

does not limit nesting depth.

A thread that encounters a submit call creates a special data structure QueueNode.

The submitted task queue is recorded in this data structure and the thread becomes the

owner of the associated parallel region. The nested parallel regions can, therefore,
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Algorithm 18-2 Pseudocode for a parallel program as accepted by the framework.

Subroutine: work ij(i,j)

Some code dependent on i, j;

Subroutine: work i(i)

Some code dependent on i;

Create a task queue queue ij wrapping work ij for j between from j(i)

and to j(i);

Submit queue ij;

Some code dependent on i;

Application entry:

Create a task queue queue i wrapping work i for i between from i and

to i;

Submit queue i;

be represented with a tree of the QueueNode structures. The tree is dynamically

changing following creation and termination of tasks within the corresponding task

queues.

Figure 18-2 presents an example for such a tree. Here the queue Q1 with two

concurrent tasks was submitted to the framework. Two different processors started to

work on the tasks in parallel. Within both tasks new parallel queues Q2 and Q3 were

created. Two more processors got some work and started to execute tasks Q2.T2 and

Q3.T2 respectively. Next level parallel queues were created in tasks Q2.T1, Q2.T3
and Q3.T1. Since all the four available processors were already busy, all the tasks

in Q4 and Q6 could be executed by a single processor. The tasks in queue Q5 were

eventually distributed between 3 processors.

Figure 18-3 presents the time-line and stack scoping for the described example.

The QueueNode structures keep the following information:

• The ID of the owner-thread.

• Parent QueueNode references.

• A runnable flag indicating if the associated queue has some tasks left.

• An array of pointers to concurrently running child QueueNodes.

The QueueNode is allocated on the stack of the owner-thread and marks the stack

frame to be restored after the parallel region is done. Owner-thread is therefore re-

sponsible for the destruction of the QueueNode. The different child QueueNodes

may appear when two different threads executing two different tasks from the same

queue both create QueueNodes. This is a typical case of multilevel dynamic paral-

lel execution. Note that different children always have different owner-threads and

therefore the maximum number of siblings is limited to the total number of running

threads. The parent QueueNode exists for all the tree QueueNodes except the root
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Figure 18-2: An example QueueNode tree executed on four processors. Different

frames around individual tasks indicate different processors.
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Figure 18-3: Execution sequence for the tasks depicted in Figure 18-2. Arrows indi-

cate work stealing.
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one. It provides a reference to the thread context that was active when a request for a

new parallel region was encountered in the application.

The threads managed by the framework are arranged into a thread pool. The

pool has a reference to the root QueueNode of the tree. The pool also contains

an array of references to one QueueNode for every thread. The reference indicates

the QueueNode currently processed by the corresponding thread. Initially all the

references are empty.

A simplified pseudocode for the thread managing a newly created parallel region

is presented in Figure 18-3. The application makes a request for a new parallel region

by submitting a reference to a queue to the framework. A new QueueNode Qn is

created on the stack of the currently running thread (block 1). The reference to

the submitted queue is stored in Qn. If the new queue defines the top level parallel

region the tree root pointer is set. Alternatively, the new QueueNode becomes a child

to the thread’s current QueueNode (block 2). The reference to the thread’s current

QueueNode is updated. The run method on the submitted queue is called (block

3). When the call returns the thread checks if some other thread had stolen some

work from the queue. It then tries to search for the work available in the QueueNode

subtree under Qn and steals part of it (block 4). Breadth first search is utilized, i.e.,

all the QueueNodes at the higher level are checked before going down the tree. When

no work is left the reference to the currently running QueueNode is restored (block

5). Finally, Qn is destroyed and control returns to the application (block 6).

During an application run some worker threads are periodically free, i.e., they are

not running application code. Those threads regularly look for a QueueNode with a

runnable queue using breadth first search. If such a QueueNode is found, a thread

tries to steal some work from the queue. It makes the QueueNode current and calls

the run method on the queue. When the call returns the current QueueNode is marked

as not runnable and the search is restarted.

Note that the reference to the current QueueNode is owned by each thread ex-

clusively and no synchronization is necessary when updating it. Synchronization is

however necessary for safe modification of QueueNodes. To avoid deadlocks the fol-

lowing locking protocol is used: a child QueueNode can only be locked if its parent

QueueNode is locked. As soon as a child is locked the parent locking is released.

The breadth first search utilized by the algorithm ensures that the threads are

processing the most coarse grained parallel region before starting with the fine level.

This approach also favors the affinity of the tasks at the fine level since they are likely

to be executed by a single thread.

No system level modifications to the call-stack of the threads are used. A call

for a new parallel region made in the context of a thread always returns in the same

context. This forces a thread that had some work stolen first steal some work back to

ensure the fastest completion of the parallel region it owns. This can potentially result

in extra synchronization when many threads are used. No big overhead is expected

when the number of threads is low. Note that the presented solution is different from

other work-stealing approaches where the ’victim’ processor is chosen randomly.
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Algorithm 18-3 An algorithm for an owner-thread running a parallel region (simpli-

fied pseudocode)

1 { Create a QueueNode Qn on stack;

2



























Get the current QueueNode Qp from the thread pool data;

if there was no Qp then

make Qn the root QueueNode for the thread pool;

else

set a child pointer in the Qp to point to Qn;

end if

3

{

Set the new QueueNode Qn as currently running;

Run the queue in the new QueueNode Qn;

Mark Qn as non-runnable;

4



























































while other threads are running on the queue in Qn do

while current QueueNode has child QueueNodes do

Search a runnable queue in the QeueuNode tree from Qn

if a QueueNode Qc with runnable queue is found then

Set Qc as currently running

Run on the the queue associated with Qc (steal back)

Set Qn as currently running

end if

end while

end while

5



































if there exists a parent QueueNode Qp then

Make the QueueNode Qp current;

Remove the reference to Qn from Qp;

else

Clear the root QueueNode reference for the thread

pool;

end if

6 { Destroy Qn and return;
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Chapter 19

Feedback Based Loop Scheduling

Strategies

19.1 Motivation

Most simulation codes for analysis of time-dependent dynamic processes have a se-

rial outer loop doing time stepping. Pseudocode is presented in Algorithm 19-1.

Algorithm 19-1 Simplified pseudocode for a time-dependent process simulation.

i = 0; t i = time start;

while t i < time end do

Process and update the system state at time t i;

Save output data if necessary;

Evaluate time step length dt;

i = i+1; t i = t i + dt;

end while

The system state typically completely defines the system configuration at time

ti. The only part of the loop that is feasible to parallelize for our application is the

processing of the system state. This processing for mechanical systems consists of

three stages. First, analysis of the relative motion between components is done. Then

different interactions are processed and the resulting forces are calculated. Finally,

the accelerations are computed and a new state is generated.

The important physical aspect for mechanical systems is handling of collisions

between different bodies in the system and calculation of the contact forces. Very

often detection of the collision and evaluation of the reaction force constitutes the

most computationally expensive part of the simulation code.

Processing of contacts typically uses a multi-level approach. First a coarse grid

is used to detect if bodies are in contact at all. If there is no contact the further pro-

cessing is not necessary and zero forces are returned. Otherwise, a detailed geometry

152



analysis with a finer grid is performed. At this point the exact geometry of the con-

tact area is calculated. Finally, if the contact area is not zero, the reaction forces are

computed by calculating the pressure and integrating it over the contact area.

Obviously, the same contact can take different time to compute depending on its

area. The variations of computational time can reach several orders of magnitude

depending on the analysis details and the algorithms used.

Fortunately, the changes in computational complexity between consequent time

steps are likely to be small due to the physical nature of the model. If a contact was

detected at time step ti it is likely to be detected at the next time step as well. Hence,

timing the contact calculation provides a good estimation of the computation efforts

for the following iteration.

It is quite hard to partition a single contact calculation task into smaller tasks due

to the nature of the mathematical models. For advanced contact models strong depen-

dencies between different parts of the contact calculation algorithm can be identified.

Another natural property of a contact calculation loop is the need to access the same

geometry information in the iterations following after each other.

To summarize the discussion above we can identify the following computational

properties of the calculation loops defined in Section 16 Algorithm 16-1:

• Irregularity and potentially strong variation of the computational time between

inner loop iterations.

• Relatively small change in the computational time between two consequent

time steps.

• Tight data dependencies between the most inner loop iterations.

Dynamic loop scheduling is a widely discussed research topic in programming

of parallel computers. Any parallel programming conference has contributions dis-

cussing the scheduling schemes for different applications.

For the applications with an outer serial loop it is possible to record parameters of

the parallel execution at time step i and use this information to optimize scheduling

at step i + 1.

Many classical algorithms with a centralized task queue such as guided self-

scheduling [21], factoring [14] and trapezoid self-scheduling [31] do not utilize this

information.

Some approaches (see, e.g., [19, 32, 26]) utilize the fact that processor executing

a chunk of iterations at time i is likely to have the data relevant for those iterations

at the next time step i + 1 in the local cache. In such a case the iterations are said

to have an affinity to the processor. Therefore scheduling that respects the affinity

improves performance.

The designers of Feedback Guided Dynamic Loop Scheduling (FGDLS) [3, 4]

demonstrated that explicit use of feedback information can significantly improve ex-

ecution times. The further data on the performance of the algorithm was presented

in [29].
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The idea of the algorithm is to split the iteration space exactly into P chunks,

where P is the number of processors. The parallel execution can then be performed

as:

for j = 1 to P in parallel do

Record start time Ta;

work(xj , xj+1 − 1);

Record stop time Tb;

tj = Tb - Ta;

end for

where work(xj , xj+1 − 1) encapsulates the body of the original loop.

The scheduling tries to optimize the chunk sizes to balance computations between

processors. The main idea is to approximate the real work-load distribution over

iteration space with a piece-wise constant function. That is for any loop iteration i

belonging to a chunk j its execution time is assumed to be tj/(xj+1 − xj).

With such an assumption a scheduling algorithm that has complexity that de-

pends only on the number of chunks and not on the number of loop iterations can be

constructed.

Note, that in a traditional formulation of parallel loops for dynamic scheduling

only the body of the original loop could be included into the work function. Hence

the function needed to be called for each loop iteration (alternatively, each of the

small chunks). Grouping variable number of iterations in a single function call re-

duces the required overhead making its linear in the number of chunks and not the

number of iterations. Additionally, this improves the data locality within the chunks.

Let us now provide a pseudocode for the basic FGDLS algorithm (see Algorithm

19-2).

One important question regarding the FGDLS algorithm concerns its conver-

gence. This was studied in a number of papers [30, 29, 28]. The basic condition

for the global convergence of the algorithm may be formulated as a requirement for

limited variation of the work-load between the iterations of the loop.

The original FGDLS algorithm and its modifications for nested loops (see, e.g.,

[11]) are not directly suitable for a work-stealing framework like the one presented

here. The problem is that the algorithm assumes that all the processors are dedicated

to the computational loop to be scheduled. In a work-stealing environment this is

only the case for the most outer loop. An inner loop scheduler knows the maximum

number of processors working, but it often happens that the higher level scheduler

dedicates fewer processors to each particular inner loop. Further more, since the

environment is completely dynamic different processors rarely enter a loop simulta-

neously. To cope with the specifics of work-stealing approach the original algorithm

had to be modified. The modified algorithm is presented in Section 19.4.
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Algorithm 19-2 Pseudocode for the basic Feedback Guided Dynamic Loop Schedul-

ing (FGDLS)

Given:

A set of feedback records {xj , tj}, j ⊂ [1, P ], where:

P - is the number of processors running,

xj - start iteration index for chunk j; sets xj, ..., xj+1 − 1 for j ⊂ [1, P ]
form a partitioning of the iteration set 1, ..., n,

tj - time to run the iterations i ⊂ [xj, xj+1).

Proceed:

Calculate the ideally balanced work load per processor as w∗ = 1
P

∑P
j=1 tj .

Approximate the real workload distribution over the iterations W ∗(i) with a

piecewise constant function W (i):

W (i) = Wj(i) =
tj

xj+1−xj
for i ⊂ [xj, xj+1).

Find a new set of start iteration indices x+
j such as the work-load represented

by W (i) is distributed as evenly as possible between the processors:

x+
1 = 1;

for each chunk j ⊂ [2, P ] do

Find k, such as
∑k

i=1 ti ≤ j ∗ w∗ <
∑k+1

i=1 ti;

x+
j = xk + ⌊ 1

tk
(xk+1 − xk)(w

∗ ∗ j − ∑k
i=1 ti)⌋.

end for
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The algorithms presented in the following sections use the feedback information

to reschedule loop iterations into large chunks. The scheduling is done once per

iteration of the serial outer loop. The chunks are then wrapped in a queue interface

and submitted to the framework as described in Section 18.2.

19.2 Minimal Feasible Parallel Region

In our experience one important consideration when designing a dynamic strategy

was elimination of the short parallel regions. Running in parallel at a very fine grain

level often leads to performance degradation due to synchronization overhead and

caching effects. The basic requirement for a parallel code is to improve the wall-

clock time when compared to the original serial code. Therefore, it is very important

to reduce the possibility for such performance degradation.

The basic criterion can be formulated as follows:

max(kslow

ttot

NPE

+ tsched, tmin) < ttot (19-1)

where

• kslow - a coefficient reflecting non ideal speed up when running the loop in

parallel.

• ttot - estimated total serial run-time for the loop.

• NPE - number of physical processors on every node indicating the maximum

possible speedup.

• tsched - time for scheduling (often negligible).

• tmin - minimal feasible size of a parallel region, architecture dependent.

The kslow coefficient was introduced to cope with fact that the linear speedup is rarely

reached. The ideal value for the coefficient is obviously 1.0. Simple profiling showed

that the best speedup achieved for the computation expensive loops for our applica-

tion on two processors was around 1.8. This is primarily due to the communication

overhead. Therefore, for our application the value of kslow was chosen to be 1.2. Pro-

filing is necessary to determine the optimal coefficient for the particular architecture

and application. This profiling can be automated by varying the coefficient between

1.0 and NPE and choosing the value of kslow that gives the best wall-clock time.

Similar profiling strategy may be used to identify tmin.
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19.3 A Simple Feedback Based Scheduling

The scheduling strategy presented here is suitable for loops with the following prop-

erties:

• The number of iterations is moderate.

• The order of loop iterations is not important (two consequent iterations access

different data structures), i.e., affinity does not give any performance gain.

• Each loop iteration is heavy enough to be timed separately.

• Good load balancing is important, i.e., computation to communication rate is

high.

In our application this strategy was used for scheduling over the outer loops: over the

pairs of bodies and over the contacts.

Note that having timing information for each iteration effectively converts the

original loop scheduling strategy into scheduling of a simple task graph with known

times for each task.

Algorithm 19-3 presents the pseudocode for the strategy.

Algorithm 19-3 A simple feedback based scheduling.

Given:

Execution time for each loop iteration.

Proceed:

Sort iterations in descending order according to the execution time.

For each iteration i, starting from the slowest one:

Assign the iteration to the chunk that currently has the lowest execution time.

19.4 Nested Feedback Guided Parallel Loop Schedul-

ing

We have discussed in Section 19.1 that the basic FGDLS algorithm cannot be used in

a work-stealing environment. Here we present a generalization to the basic algorithm

that eliminates this limitation.

In addition to the timing information for the execution of the loop iterations we

require tracking of the number of processors actually used to run the loop. For each

such processor the time when it enters T e
j the loop is recorded and compared to the
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Algorithm 19-4 Pseudocode for the FGDLS with variable processors entry time.

Given:

Two sets of feedback records: {xj , tj}, j ⊂ [1, Po] and {∆tj}, j ⊂ [1, Pn − 1],
where:

Po - number of chunks prepared for parallel run of the loop,

Pn - number of processors that actually had resources to run the loop,

xj - start iteration index for a chunk j,

tj - time to run the iterations in chunk j,

∆tj - the time delay between the moments when processors j and j + 1
actually became available for processing the loop. Note that for this algo-

rithm the processors are numbered in the order they enter the particular

loop.

Proceed:

Calculate the total amount of work in the loop as W =
∑Po

j=1 tj

Find the ideal work load for each processor w∗

j , j ⊂ [1, Pn] using the available

set of records (∆tj):

Find the ideal load for the last processor:

w∗

Pn
= 1

Pn
(W − ∑Pn−1

j=1 j∆tj)

for j = Pn − 1 down to 1 do

w∗

j = w∗

j+1 + ∆tj

end for

Approximate the real workload distribution over the iterations W ∗(i) with a

piecewise constant function W (i):

W (i) = Wj(i) =
tj

xj+1−xj
for i ⊂ [xj, xj+1), j ⊂ [1, Po].

Find a new set of start iteration indices {x+
j }, j ⊂ [1, Pn] such as the work-

load represented by W (i) is distributed as close as possible to the ideal load

for each processor:

x+
1 = 1;

for each chunk j ⊂ [2, Pn] do

Find k, such as
∑k

m=1 tm <=
∑j

m=1 w∗

m <
∑k+1

m=1 tm

x+
j = xk + ⌊ 1

tk
(xk+1 − xk)(

∑j+1
m=1 w∗

m − ∑k
j=1 tj)⌋

end for
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entry time of the previous processor T e
j−1. The difference in the entry times is stored

and used for scheduling. Note that for this algorithm the processors are numbered in

the order they enter the particular loop. That is the numbering is loop specific.

The original FGDLS algorithm tries to make execution time for each proces-

sor equal. The generalized algorithm tries to make the load of each processor pro-

portional to the time the particular processors actually spends working on the loop.

Pseudocode for the algorithm is provided in Algorithm 19-4.

Note that when all the processors enter the loop simultaneously the modified

algorithm generates the same schedules as the original FGDLS algorithm.

19.5 Implementing Feedback Based Scheduling in

OpenMP

OpenMP does not provide facilities for custom loop schedulers. In order to realize

the presented feedback strategies the following code could be used:

#pragma omp parallel for

for(int i = 0; i < scheduler->get_n_buckets(); i++){
scheduler->get_bucket_from_to(i, &from, &to);

scheduler->start_time(i);

work(from,to);

scheduler->stop_time(i);

}

Here we assumed that a special scheduler class has been designed to imple-

ment the presented scheduling strategies.

Since the feedback base strategy is general and can be used in many applications

it might be possible to extend OpenMP to support it. The following syntax can for

instance be accepted:

#pragma omp parallel for schedule(feedback(fr))

where the fr argument provides a reference to an OMP_FEEDBACK_RECORD data

structure stored by the application code.
The OpenMP subsystem could then provide a function:

OMP_FEEDBACK_RECORD* omp_init_feedback_record(<arguments>);

that would initialize the structure. The function could also accept additional argu-

ments specifying the method for storing timing records. With the algorithms pre-

sented here two methods would be available: FGDLS and SIMPLE.

159



Chapter 20

Test Simulation Results

The results presented here were obtained on a 40-nodes Linux cluster (SuSE 9.2

Linux distribution). Every compute node of the cluster has two 2.4 GHz AMD

Opteron 250 processors and 2GB primary memory. The nodes are connected via

a GigabitEthernet network.

Short simulations of an SRB (spherical roller bearing) and a DGBB (deep groove

ball bearing) bearings were chosen to make test runs of the presented hybrid algo-

rithms. Profiling the simulation for the SRB case showed that calculations attributed

to a single one out of total 275 contacts were dominating. Granularity in this case

directly becomes the key speedup limiting factor and reduces the maximum possi-

ble speedup to be lower than 2. For the DGBB case there are 9 relatively expensive

contacts out of the total 27. In this case granularity becomes an important issue only

when the number of processors used is greater than 10.

Table 20-1 presents the execution times for the test simulations on a cluster with

dual-processor nodes. The hybrid algorithm was run with two threads per-node.

Corresponding relative speedup curves are presented in Figure 20-1.

We can see that the hybrid approach achieves about the same performance as the

distributed memory one when running on a few nodes. Hybrid code gains obvious

advantage when the load imbalance caused by the task granularity limits the speedup

of the pure message-passing code.

In fact, this result could be formulated into a simple rule for the mechanical en-

gineers using the simulation tool. They were asked to identify the number of po-

tentially large contacts Nc. It was then suggested to use the hybrid code on Nc + 1
dual-processor nodes. Users reported the decrease of wall-clock run time by a factor

1.5-1.8 as compared to the original pure message-passing code.
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NP Pure message-passing on NP processors Hybrid (NP /2 dual-processor nodes)

SRB DGBB SRB DGBB

1 42270 737

2 24304 367 25307 431

4 22419 202 16757 231

8 22256 148 15505 145

16 148 15039 111

32 100

Table 20-1: Execution times (seconds) for the test runs.
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Figure 20-1: Relative speedup for the test runs.
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Chapter 21

Conclusions

We have analyzed the applicability of the hybrid approach for different applications

and identified its feasibility for the solution of task granularity related problems.

Then we presented an approach to hybrid parallelization of multibody dynamics

simulation code with detailed contact models.

The original message-passing code of the simulation toolbox has been comple-

mented with an object-oriented shared-memory framework that includes a multilevel

scheduler implementing work-stealing strategy and two feedback based loop sched-

ulers. The main scheduling algorithm of the framework is designed to be easily

portable and can be implemented without any system level coding or compiler mod-

ifications. Of the two described loop scheduling algorithms one algorithm requires

timing data for each loop iteration and is suitable for loops with minimal dependen-

cies between the iterations. If the iterations have more significant dependencies the

second algorithm, which is a generalization of the Feedback Guided Dynamic Loop

Scheduling (FGDLS) [3] should be used. The generalized algorithm makes FGDLS

suitable for a work-stealing framework by tracking the time that different processors

spend working on the loop.

The presented test results demonstrated that the hybrid code outperforms the pure

message-passing implementation increasing the speedup limit by 1.8 times on a clus-

ter of two-processor SMP nodes for some cases. The theoretically maximum im-

provement, in this case 2, could not be archived since only parts of the application

are actually parallelized at fine-grain level. Further studies of different shared mem-

ory scheduling algorithms and their combinations at different levels are necessary to

archive further speedup improvements.

Another question that needs further investigation is an automatic detection of the

best parallelization approach to be used on a particular compute node without a priori

knowledge of the computational problem and, possibly, dynamic change of the strat-

egy. Certainly, one can periodically try different approaches during the simulation

run and choose the better to be used for a number of simulation steps (an approach

similar to that presented in [10]). However, it is currently technically complicated to

switch from the multi-thread enabled code to a pure message-passing code. Ideally,
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such switching requires two versions of the code to be available simultaneously. One

version should be optimized for single-thread execution within the message-passing

framework, while the other should implement the shared-memory parallelization.
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Chapter 22

Introduction

22.1 Motivation

In the area of modeling and simulation of mechanical systems one can identify many

different classes of models and corresponding tools. Specialization leads to differ-

ent focus for different tools. For instance, consider the differences in focus for the

equation-based multi-physics Modelica models [16], general multibody models in

MSC.ADAMS [17], models with detailed contact definitions in SKF’s BEAST, flex-

ible components as modeled in FE tools [2, 1], etc.

There is no single universal tool that can be used to analyze all kinds of problems

with maximum efficiency and accuracy. One might say that every tool is optimized

for a certain kind of task. This has lead to the creation of a large number of different

specialized simulation frameworks. Large industrial models often use some special

features of the particular framework which renders the translation of models between

different frameworks very complicated and costly.

In reality the different mechanical components modeled in different tools are

dependent on each other. Two components that are in physical interaction, form

boundary conditions for each other and some interface can often be defined.

Unfortunately it is often the case that the different classes of tools are used inde-

pendently. Every class of tool uses approximations of the components it has interface

with, that is, simplified models of the boundary conditions. Several time consuming

iterations are often necessary to make the components converge to similar values on

on the common interface. The limitations on modeling accuracy are thus fundamen-

tal.

The need to bring different components into a complete more tightly coupled sim-

ulation is therefore justified. This allows higher accuracy and preserves component

investments.

Co-simulation is one of the possible techniques of joining existing sub-models

into a more complete model. The joining technique is very different depending on

the particular application area (see, e.g, surveys in [7, 10, 21]).

One method used earlier to enable closer interaction between such sub-models in
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a coupled simulation is transmission lines modeling (TLM). The TLM uses physi-

cally motivated time delays to separate the components in time and enable efficient

co-simulation. The technique has proven to be stable and was implemented for cou-

pling of different sub-systems [11, 18, 19, 20].

The TLM system should allow two or more different tools to perform a cou-

pled transient simulation of complex systems. The idea is to use different tools to

model and simulate different subsystems (e.g., different parts of a mechanical prod-

uct) and TLM technique to allow dynamic information exchange between the tools.

The choice of a tool for a particular subsystem is determined by user needs and tools

features.

To give a concrete example, let us consider modeling of a vehicle. MSC.ADAMS

seems to be a ’standard’ tool for this field. However, ADAMS models are often

quite coarse and mostly handle interactions between larger components. Specialized

tools are better suited when detailed modeling of some specific components is of

interest. Wheel hub units modeling is important for SKF as the manufacturer of

such components. Proprietary SKF’s BEAST allows much more accurate modeling

of the hub units than ADAMS, while rebuilding the complete vehicle model in the

specialized tool is certainly an overkill. So far, the only possibility for the tools to

cooperate has been to record the load data during ADAMS simulation and then use

it as input to the BEAST simulation of the component. The response of the hub can

then be recorded and submitted back to ADAMS. Such iterative approach is very

time consuming and introduces additional modeling error since data is transferred

only after a complete simulation. In a TLM co-simulation information is transferred

during the simulation run giving more and earlier accurate results.

22.2 Related Work

So far, co-simulations have gained most acceptance for mechatronic applications.

Developers of control systems routinely utilize co-simulations to test control algo-

rithms. The most common environment that serves as a coupling framework is

SimuLink [14]. Simulation systems that support multibody dynamics simulations

like MSC.ADAMS [17] or Dymola [4] provide special modules for running such

co-simulations. Other competitive environments like CosiMate [3] are also avail-

able. The central issue in such simulations is often real-time performance since the

models are eventually used for the hardware-in-the-loop simulations.

High Level Architecture (HLA) standard [12] is designed with the vision of dis-

tributed simulations in mind. The goal here is to simulate a complete environment

with many different actors and tools. The main concerns are not simulation methods

but protocols that allow individual actors to communicate with the environment.

The focus of this paper is different. Our intention is to couple transient simulation

of mechanical components. The main issues in this case are stability and accuracy of

the coupling method.
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Let us provide a brief survey of the methods used for coupling of dynamics sim-

ulations. Our intent is to further motivate the choice of the TLM technique for the

framework. A wider recent survey can be found in [10]. The same paper provides

a classification of some of the co-simulation strategies depending on the interface

variables exchanged between the sub-models and the co-simulation coordinator. The

problem with setting kinematic variables into existing simulation codes is identified.

This motivates the preference for approaches that only compute reaction forces. The

authors also classify the time stepping methods typically used in co-simulations. The

parallel time-stepping where the compatibility between the sub-systems is achieved

at every global time step is identified as the most attractive.

Glue code [5, 6] is a co-simulation framework developed for connecting

MSC.ADAMS to other codes with discrete or continuous time stepping. It uses

quadratic interpolation to pass information about the ADAMS model to the other

code and quadratic extrapolation for the force coming into the ADAMS model.

The latter article introduces a concept of interface mass. The interface mass

is simulated in both coupled codes and gets different reaction forces in different

simulations. The reaction forces are communicated between the tools.

The coupling framework was successfully used in coupling an ADAMS model

to a flight simulator. The problem with this coupling approach is the lack of study

on the numerical stability of the method which leads to the necessity for additional

’tweaking’ for each particular case.

The paper [15] is mostly focused on fluid-structure interaction problems but the

results can be applied to other kinds of co-simulations as well. The paper analyses

different numerical coupling methods and a new block-Newton method is proposed.

The discussion here is focused on global solution of implicitly coupled differential

equations. The introduction of the global iterative solver requires close interaction

with the numerical solvers in the sub-models and may be hard to implement for

existing simulation codes.

A similar problem arises for the gluing algorithm presented in [10] which relies

on information available at the subsystem interfaces but requires a special evalua-

tion of the coupling matrices. This, again, may be hard to implement in an existing

environment.

In [9] a control block, called Boundary Condition Coordinator, is used to mini-

mize the difference in the coupled variables. The mismatch in the conditions does

not have any physical meaning and should be seen as a numerical artifact. Addition-

ally the paper does not address the problems related to the use of multistep implicit

solvers for the sub-systems.
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The TLM technique combines the following attractive properties:

• Very clear and small interface to the sub-models where kinematic data is only

read and the response is introduced via an external reaction force and torque.

• Proven unconditional stability of the coupling method.

• Coupling parameters are physically motivated and no additional numerical er-

ror is introduced.

The outlined combination of characteristics makes the technique an attractive candi-

date for a co-simulation framework. The mentioned properties of TLM coupling are

further discussed in Chapter 23.
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Chapter 23

TLM background theory

The TLM (Transmission Line Modeling) method, also called Bilateral Delay Line

Method [11], exploites the fact that all physical interactions in nature have finite prop-

agation speed. The properties of the delay lines were studied in [13]. The method is

briefly described below.

A basic one-dimensional transmission line is shown in Figure 23. For the me-

chanical case the line is basically an ideal elastic medium with force waves c1 and c2

going between it ends. The input disturbances are velocities v1 and v2 and the forces

from the transmission line F1 and F2.

Note that the springs in our implementation are assumed to be isotropic. That is

no cross-term waves are generated when working in 2D and 3D. See [18] for further

discussions.

If the line delay is set to TTLM and its impedance to ZF then the govering equa-

tions are:
c1(t) = F2(t − TTLM) + ZF v2(t − TTLM)
c2(t) = F1(t − TTLM) + ZF v1(t − TTLM)

F1(t) = ZF v1(t) + c1(t)
F2(t) = ZF v2(t) + c2(t)

(23-1)

The equations show that the two simulation systems are decoupled with the delay

v1 v2

c2

c1

F1 F2

Figure 23-1: Delay line with the passing wave variables c1 and c2 and velocity vari-

ables v1 and v2.
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Figure 23-2: Estimating the rotational stiffness.

time TTLM . Simulation framework can utilize this decoupling to enable efficient

communications during co-simulation.

Representing the TLM connection with a simple model of a steel beam, the stiff-

ness coefficient can be computed as (see [18]):

k =
EA

L0

(23-2)

where E is Young’s modulus, A is the cross section area and L0 the length of the

beam.

The impedance ZF has a relation to the spring constant k, ZF = kTTLM . The

impedance factor can then be formulated as a function of the area and length of the

steel rod according to

ZF =
EATTLM

L0

(23-3)

To get the stiffness and impedance for the rotational degrees of freedom one can

use the already computed stiffness k. If the arrangement depicted in Figure 23 is

assumed, then:

kφ =
M

δφ

= 2
(k/2)δφ(L0/2)2

δφ

=
kL2

0

4
(23-4)

and the impedance for the rotation:

ZFR =
1

4
ZF L2

0 (23-5)

The time constant TTLM can be computed using the speed of sound for the

medium:

TTLM =
L0

vmedium

(23-6)

It can be shown that the TLM element also introduces a (parasitic mass) that can

be viewed to be outside the simulated system [18]. The total mass for the combined

systems must therefore also include the parasitic mass of the TLM element in order

to make, e.g., the energy conservation formulas correct. This mass depends on the

impedance factor and the time delay factor

mp = ZF TTLM (23-7)
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This implies that if the impedance factor ZF is increased, the parasitic mass will

increase if the synchronization delay TTLM is not decreased. If the parasitic mass is

large it may influence the system behavior and can not be neglected. Note, that for

the simple beam case when TLM parameters are computed according to Equations

23-3 and 23-6 the parasitic mass is equivalent to the mass of the beam (ρAL0, where

ρ is the material density).

For practical purposes (see [8]) one can use the parameters of a material cube

with an edge given by characteristic distance L0. Equations 23-2 and 23-4 can then

be used to compute the translational and rotational stiffnesses:

k =
EL2

0

L0
= EL0

kφ =
kL2

0

4
=

EL3
0

4

(23-8)

To give a concrete example, let us assume that connection medium is steel and

the characteristic length is L0 = 0.1. Steel has Young’s modulus E = 210GPa and

the speed of sound in steel is vsteel = 5180m/s. The TLM parameters then can be

computed:
TTLM = L0/vsteel ≈ 2 ∗ 10−5

ZF = EL0TTLM ≈ 2 ∗ 105

ZFR = 1
4
ZF L2

0 ≈ 500

(23-9)

Calculations like these give approximate values of the stiffness and the time delay

of the TLM element. This gives a background for selecting the TLM line delay and

impedance parameters. In cases when required TTLM becomes a limiting factor,

while the TLM link stiffness is much higher than the stiffnesses used in the sub-

models, a lower stiffness and larger TTLM may be considered.

The elastic medium that is modelled with the TLM element introduces oscillation

frequencies (standing waves) given by:

fTLM,i =
i

2 TTLM

, i = 1, 2, 3, ... (23-10)

The basic TLM model has no damping which can result in unwanted vibrations

during simulation. In [18] a low pass filtering of the TLM charateristics is recom-

mended:

cfiltered(t) = cfiltered(t − T ) α + c(t) (1 − α) (23-11)

The filtering is controlled by a damping constant α. The recommended value accord-

ing to the paper is 0.2.
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Chapter 24

The TLM Co-simulation Framework

24.1 Component Based Meta-Modeling and Simula-

tion

In the area of modeling and simulation of mechanical systems one can identify many

different classes of models and corresponding tools. It terms of meta-modeling every

tool can be seen as a black-box handling a particular component. Where a compo-

nent is a model defined in some specific language together with some modeling and

simulation tool that can perform a transient simulation of it. The meta-model then is

used to define the interconnections between the component.

When discussing co-simulation environment it is important to consider qualifica-

tions required for running a simulation. Simulation components belong to the spe-

cialized tools. Even though all tools have interfaces to external functions (see survey

in the Appendix) the interfaces differ between tools. Therefore it is first necessary

to have a software developer familiar with the particular tool architecture design and

implement the meta-modeling interface for each tool. That is create a tool specific

adaptor for the framework. The design of the framework should therefore be general

and provide a clear interface that is easy to use from any specific environment. This

work needs to be done only once and the results can be used in all the following

simulations.

Next step is preparation of the isolated model for use in the co-simulation frame-

work. At this point an expert user familiar with the particular tool is likely to be asked

to modify the model so that it can be seen as a component. Basically the interface

points in the model should be identified and named.

Once the components are ready other users should be able to include them in

meta-models without considering the particular tools’ specifics. The framework user

have to be familiar with the meta-modeling notations and be able to define connection

between components’ interfaces. The most realistic assumption is that the meta-

model user is an expert in one of the participating tools and has limited knowledge

about the other tools. Installation of tools is done by a system administrator.
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Component A

Component B

Component A

Component B
Tool B

Tool A

Tool expert Meta-model creation
Meta-modeling user

Original model created

Specialized environments Meta-modeling environment

Software integration

Software developer

Component creation

Tool expert

Figure 24-1: Modeling phases and necessary competences

Let us now summarize the roles and qualifications that are assumed in the archi-

tecture presented in this chapter:

• Software developer creates a specific tool adaptor for the framework. This

work needs to be done once for each of the tools. Familiarity with C++ and

specific tool’s external interfaces is required.

• Expert user of a tool converts an isolated model into component with prede-

fined and named interfaces. This needs to be done once for every component.

Experience with the particular tool is required.

• Meta-modeling user creates a meta-model by connecting the interfaces of dif-

ferent components. Familiarity with meta-modeling is necessary. No specific

tools knowledge is required.

Figure 24-1 illustrates the described modeling stages that are necessary for a co-

simulation.

24.2 Simulation Framework Terminology

Two different system architectures were considered for the TLM co-simulation sys-

tem: centralized one with an independent co-simulation manager tool and a de-

centralized, where different participating simulation tools communicate with each

other in a peer-to-peer fashion. Both approaches have advantages and disadvan-

tages. Centralized approach is easier to implement, gives more control over the co-

simulation, makes it possible to create a separate meta-model defining the connection
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between the tools. It is, however, a bit less efficient from the performance point of

view since the co-simulation manager might create a bottleneck in a large model.

Since currently co-simulations involving more than three tools are not expected

(though supported), centralized approach was chosen.

To describe a model for a TLM co-simulation with several tools several compati-

ble models need to be built. First, every tool should have a model of the components

it is responsible for and define the interface points where the TLM connections are

attached. After that the connections between tools need to be defined that is a meta-

model should be created.

A terminology needs to be introduced to define concepts used in a TLM co-

simulation context. With the background given in previous sections we can define:

• TLM interface. A named point on a mechanical object where position and

velocity can be evaluated and a reaction force applied.

• TLM manager. The central simulation engine. It is a stand alone program

that reads in a Meta-model definition. It then starts Simulation components and

provides the communication bridge between the running simulations. That is

the components only communicate with the TLM manager which acts as a

broker marshalling information between the components as required by TLM

theory. TLM manager sees every simulation component as a black box having

one or several TLM interfaces. The information is then forwarded between

TLM interfaces belonging different components.

• TLM plug-in. A C++ library having a single abstract class representing TLM

interface for a specific simulation tool. The TLM plugin can be seen by a

simulation component as an external force/torque that depends on position,

velocity and time. The implementation of the plugin handles the necessary

communications with TLM manager.

• Simulation component. Any simulation program that has incorporated TLM

plugin as a part of its code. A small script that takes the general parameters as

input and starts the specific component is an additional requirement. This in-

termediate step is necessary since TLM manager needs a common way to start

all the components and each tool might have some specific start procedures.

• Meta-model definition An XML-file describing

– the Simulation components with there TLM interfaces;

– TLM connections between the interfaces of different components;

– simulation start, stop times and TLM manager port.

XML syntax was chosen to describe meta-models since it allows many differ-

ent general XML tools to be used directly to create and modify meta-models.

An example meta-model definition is presented in Figure 24-3.
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• TLM data Time-stamped force wave data and delayed position and orientation

data that is communicated between Simulation components.

Orpheus

Plugin wrapper

TLM plugin

BEAST

Plugin wrapper

TLM plugin

BEAST

Plugin wrapper

TLM plugin

TLM Manager

Start
Start

ANSYS

Plugin wrapper

TLM plugin

Modelica

Plugin wrapper

TLM plugin

Plugin wrapper

TLM plugin

MSC.ADAMS

StartTLM data

TLM data

TLM data

time step,

position,

velocity

Force, torque

TLM data
TLM data

Start
Start

Start

TLM data

Force, torque
time step,

position,

velocity

Figure 24-2: TLM system architecture. Currently Beast and ADAMS components

are implemented and tested. Several instances of the same component can be running

simultaneously.
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- The meta-model definition file -->

<Model Name="SimpleAB">

<!-- List of connected sub-models -->

<SubModels>

<SubModel Name="Dev_DGBB_NoC"

StartCommand="StartTLMBeast"

ExactStep="0">

<!-- TLM interface points for SubModel A -->

<InterfacePoint Name="TLMIR"/>

</SubModel>

<SubModel Name="Pendulum"

StartCommand="startadams"

ExactStep="0">

<!-- TLM interface points for SubModel B -->

<InterfacePoint Name="M9"/>

</SubModel>

</SubModels>

<!-- List of TLM connections -->

<Connections>

<Connection From="Dev_DGBB_NoC.TLMIR" To="Pendulum.M9"

Delay="1e-5" Zf="0.5e5" Zfr="500" alpha="0"/>

</Connections>

<!-- Parameters for the simulation -->

<SimulationParams ManagerPort="11111"

StartTime="0" StopTime="1e-3"/>

</Model>

Figure 24-3: An example meta-model definition in XML.
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24.3 TLM co-simulation scenario

TLM co-simulation is initiated by TLM manager that reads in the meta-model defin-

ing the different sub-models and the connection between them. TLM manager tool

then creates a server socket and start all the collaborating tools (see Figure 24-2).

Note that multiple instances of the same tool can be started.

A start script or program should be written for every tool that needs to accept the

following arguments:

StartToolX <Model> <from_t> <to_t> <Max_step> <Server>

where

• Model - typically gives the name of an input file for the sub-model;

• from t and to t specify the start and end time for the simulation;

• Max step defines the maximum time step allowed for the tool. It is determined

by the TLM delays in different connections to the tool;

• Server - gives the TCP/IP server name and port address that the TLM plugin

should contact.

The start script should start its respective tool for the simulation in a batch mode.

The tool needs then to initialize the TLM plugin (typically done via some tool specific

wrapper code). It should then register the TLM interface points that are defined in

the model. For every interface point TLM plugin will send a registration request to

TLM manager to verify that the interface is defined in the meta-model and to get the

TLM parameters (delay, impedance and damping) for this interface.

24.4 TLM Communication Modes

TLM communication mode depends on the properties of the numerical solvers used

in the communicating tools. Some solvers have an option to produce output (make an

integration step) with a predefined constant time frequency used as communication

interval Tcomm. Maximum allowed time step for such solvers can be set equal to

the TLM delay. Note that this doesn’t require a fixed time step solver. Solvers are

allowed to change the step length within Tcomm but no integration step should cross

the time-equidistant synchronization points.

Lack of the time-equidistant output option makes it necessary to limit the maxi-

mum time step to half TLM delay. The following analysis explains the reasons for

such a limitation.

Let us consider communications between two solvers A and B. The basic reason

for choosing the maximum time step and communication interval is the necessity

for solver A calculating forces at time tA to have information about solver B at time
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TTLM

b)

Tcomm

Tcomm

a)

c)

TTLM

TTLM

Tcomm

Figure 24-4: TLM communication modes: a) Two solvers with time-equidistant out-

put; b) Two solvers with non-regular output; c) First solver with regular output, sec-

ond one - non-regular.

tA −TTLM , where TTLM is the TLM connection time delay. Since communication is

symmetric the solver A data for time tA−TTLM should be sent before tA is reachable

within a time step. Therefore the solvers with time-equidistant output can have max-

imum time step equal to TTLM . They are expected to always respect this stepping

and send information as soon as the next communication time point is reached. The

solvers that do not support time-equidistant output, on the other hand, should have

maximum time steps halved. Such solvers send out the information as soon as they

cross the TTLM/2 boundary.

Figure 24-4 shows the time lines for two collaborating solvers working in differ-

ent modes. The filled points indicate the time steps taken. Arrows between the time

lines present the information flow. That is the time instances when the computed

time-stamped data is sent between the two simulations.

TTLM and Tcomm indicate the TLM delay in the connection and communication

delay respectively.
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24.5 TLM co-simulation interface requirements

The TLM co-simulation meta-modeling system requires every cooperating tool to

provide the following functionality:

• Start simulation externally, specifying start and end time and maximal time

step. This requirement basically corresponds to a request for batch mode of the

simulation tool. No tool-specific graphical user interface should be necessary.

The developer of the tool specific adapter should provide a start-up program

that accepts the following command line parameters:

– Model - the name of the sub-model as presented in the meta-model defi-

nition. This name typically corresponds to the component specific input

file name.

– FromTime - start time for the simulation.

– ToTime - end time for the simulation.

– Step - maximum time step allowed for the simulation. This depends on

the minimum TLM delay associated with one of the TLM links connected

to the sub-model.

– Server:port - name of the host machine running TLM manager applica-

tion and the TCP/IP port where TLM server is listening. This information

is required for TLM-plugin initialization. It is provided by the TLM man-

ager as the last argument to the start script.

• Communicate position, orientation and velocity of a point to the collaborating

tools and receive the reaction force and torque to be applied at this point. We

will call this point as TLM interface point in this report.

A requirement to communicate point motion data poses some difficulties for

the case of variable time-step numerical solvers. Such solvers can take trial

time steps that are then rejected based on the some error criteria. Besides,

implicit methods require Jacobian matrix to be evaluated which in turn leads

to multiple evaluation of forces for small variations of the position and velocity

state variables. All such calls are irrelevant for the coupled components and

should not be send over the TLM link.

Therefore the client code must be able to detect successful (completed) steps

and communicate point motion only for such time instances. Note that it is,

however, allowed to evaluate the force multiple times during the iterations

within a step.

• Additional technical requirement is the possibility to implement the required

functionality in C++. This is due to the fact that the standard plug-in compo-

nent is implemented in C++.
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Fortunately, the survey presented in the appendix shows that the outlined require-

ments are easily met by all the modern simulation tool considered.
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Chapter 25

System Design

This chapter outlines the main aspects of the design of the framework.

25.1 Communication Protocol

The protocol is designed to be as minimal as possible to keep it easily portable and

fast. Conceptually, the following stages can be outlined:

1. Simulation Component connects to TLM manager.

2. Simulation Component sends a component registration message, reporting its

name.

3. TLM manager replies with the component ID or error code.

4. Simulation Component sends a registration request for each of the TLM Inter-

faces, reporting the names.

5. TLM manager replies with the interface ID or −1 if the interface is not used in

the meta-model.

6. Simulation Component completes its initialization and sends a CheckModel

request.

7. TLM manager waits for the CheckModel requests from all the components,

verifies that all the interfaces defined in meta-model are connected, and sends

back confirmation to all the components. Initialization phase ends at this point.

8. Simulation Component regularly sends time-stamped data for its TLM inter-

faces to the TLM manager

9. TLM manager marshals the received messages to the right components. Note

that the manager does not modify message content, it just changes the source

TLM interfaces ID into the destination TLM interface ID in the message header

according to the TLM connection map.
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SimulationParams

SimParams

TLMManagerComm

Comm

TLMMessageQueue

MessageQueue

Figure 25-1: Design of TLM manager application.

Stages 9 and 10 are repeated until all the Simulation Components terminate.

25.2 TLM Manager

The central classes for the TLM manager and the relation between them are presented

in Figure 25-1.

The MetaModel class is created and filled in by the MetaModelReader class

(not shown) when it processes a meta-model definition file. The MetaModel holds

the TLM manager’s representation of the model. That is ’proxy’ classes (i.e., light-

weight manager objects providing a bridge to the corresponding component objects)

representing the TLM components and interfaces and TLMConnection classes

representing TLM links.

TLMManagerComm encapsulates the lower level operations on TCP/IP sockets.

TLMMessageQueue is a dynamic storage of message buffers. The intention is

minimization of the necessary memory allocation/deallocation operations.

ManagerCommHandler implements the server side of the TLM simulation

protocol as defined in the previous section. Separate threads are used for sending and

receiving messages in order to reach high responsiveness of the application.

25.3 TLM Plugin

The functionality of the TLM plugin is accessible for the client applications via the

abstract class TLMPlugin.

Special interface is implemented for the distributed application that use the

master-slave paradigm. For such applications the master is responsible for requesting

time stamped data from and to the TLM Plugin, that is for communication with

TLM manager. The data can then be sent to the slave nodes that can use the static
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Figure 25-2: Design of TLM plugin library.

GetForce method to evaluate the reaction force and torque. The computed motion

information should be reported to TLM manager from the master node only.

The PluginImplementer realizes the TLM interface main function-

ality, including data interpolation in time and the communication protocol.

TLMClientComm class implements a wrapper for lower level TCP/IP client

sockets. TLMMessage class is used to encapsulate the messages exchanged with

the TLM manager.

25.4 Beast wrapper

The specific of the Beast wrapper is the necessity to support parallel simulation. The

instance of the TLMInterface class is created only on the master node. The mas-

ter process is therefore responsible for the communications with the TLM manager.

Slave nodes are limited to the use of static functions defined in the TLMInterface.

The dynamic data required for force calculations is sent to the slaves and the con-

trolled motion is sent back to the master node.

25.5 ADAMS wrapper

The implementation of the wrapper is straight-forward. The basic call sequence in-

cludes:

• sysary function is used to obtain motion data;

• units function is used to get the model units and scale to the SI-units is

necessary;
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• timget function is used to identify the converged solver time steps.

One additional concern was the necessity to handle repeated calls for the same time

instance.
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Chapter 26

Test Cases

26.1 Simple Pendulum

The first model is classical for ADAMS. It is a simple pendulum shown in Figure

26-1. The pendulum will oscillate due to the gravity.

Figure 26-1: Simple pendulum model in ADAMS
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In the co-simulation case the revolute joint that connects the pendulum arm to the

ground was substituted with a DGBB bearing modelled in BEAST (see Figure 26-2).

Figure 26-2: DGBB bearing in BEAST

The graphs showing angular velocity of the pendulum arm are shown in Figure

26-3. One can see some differences caused by the friction and damping in the DGBB.

 

Figure 26-3: Comparison of pendulum’s rotational velocity (red solid line - model

with ADAMS joint; blue dashed - TLM)
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26.2 Double Pendulum

An ADAMS model of a double pendulum is presented in Figure 26-4. The revolute

joint connecting the two segments of the pendulum was substituted with the same

DGBB as in the previous example. Connection to ground uses an ADAMS joint.

Figure 26-4: Double pendulum model in ADAMS. Arms are connected via TLM

Figure 26-5 presents the graphs of angles between the two pendulum arms and

Figure 26-6 presents the calculated forces in the supporting joint. One can see that

the friction and finite stiffness of the bearing causes some differences.

At the same time an example of typical output from a Beast simulation - contact

power losses is presented in Figure 26-7.
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Figure 26-5: Comparison of angle graphs (red solid line - model with ADAMS joint;

blue dashed - TLM)

 

Figure 26-6: Comparison of the reaction forces in the supporting joint (red solid line

- model with ADAMS joint; blue dashed - TLM)

191



 

Figure 26-7: Power loss in the ring contacts of DGBB for Ball 1
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26.3 A Car Model

The model shown in Figure 26-8 was originally developed at SKF. With minimal

changes to the model, the revolute joint representing the hub unit in the front left

wheel was substituted with a BEAST model presented in Figure 26-9.

Figure 26-8: A car model in MSC.ADAMS. Left front wheel is connected via TLM

The wheel in this artificial case was positioned off-center, which can be seen in

the comparison in Figure 26-10. Figure 26-11 presents a curve that would typically

be a simulation output for an analysis engineer.
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Figure 26-9: Wheel hub unit model in BEAST

Figure 26-10: Comparison of wheel center position graphs showing off-center in

co-simulation (red solid line - model with ADAMS joint; blue dashed - TLM)

Figure 26-11: Comparison of the toe angle graphs (red solid line - model with

ADAMS joint; blue dashed - TLM)
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It should be pointed out that the initial conditions for the original car model spec-

ifying initial translational velocity of 20m/s were not suitable for co-simulation.

Modification to enable zero velocity start with a fast acceleration to the desired speed

had to be done. This is due to the practical difficulties in specifying correct velocity

for all bearing components given the translational speed only. Attempts to start a sim-

ulation with inconsistent velocities on the interfaces have lead to numerical problems

for the ODE solvers of the components.

Our experience with the car model has proved the importance of the use of right

competences as discussed in Section 24.1. Particularly, our attempts to modify the

complex car model without expert knowledge of the tool has lead to significant time

delays and a number of unsuccessful simulations caused by modeling errors. As soon

as the components were prepared the meta-model setup could be done within one

hour by an engineer with minimal user knowledge of the meta-modeling framework.

The simulation was performed in a distributed environment. The MSC.ADAMS

simulation together with the TLM manager were running on a PC workstation and

the BEAST simulation was running on a Linux cluster.

No significant delay due to the network communications were noticed. The

simulation time was completely dominated by the BEAST calculations. As the

MSC.ADAMS simulation was advancing much faster the BEAST process never

needed to wait for the data. Therefore the total simulation time did not increase

as compared to a typical pure BEAST simulation. This proved the efficiency of the

designed communication protocol.

The wall-clock time for the simulation reached 48 hours which can be considered

as a demonstration of the stability of the framework implementation.
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Chapter 27

Conclusions

A coupled simulation framework based on the TLM approach has been presented.

The advantages of the TLM technique such as its proven unconditional stability and

minimal requirements on the interfaces were discussed.

We have underlined that coupling of simulations with the TLM line has physical

meaning. The practical calculations that may be utilized to decide the characteristic

parameters of the coupling were also presented.

The object-oriented design of the co-simulation framework was described. This

includes a communication protocol specially developed to support coupling of vari-

able time step differential equations solvers.

The presented framework design is general with minimal requirements on the

participating simulation tools. Integration of a new tool into the framework is straight

forward for an experienced software developer.

The framework was successfully used for connecting MSC.ADAMS and SKF

BEAST simulation models. Some of the test runs were presented in the text.

The approach to the coupling between co-simulations that utilizes physical prop-

erties of the real connecting media is very promising. The system users are afforded

a practical way to estimate the effects introduced by the co-simulation and relate it

to the properties of the connected components.

Further development of the technique may introduce additional physical param-

eters, such as, e.g., connection damping, providing a way to model more advanced

connections directly in the co-simulation. It may also be interesting to apply TLM

technique for coupling other kinds of physical processes, e.g., heat transfer.
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Appendix: Review of Available

External Function Interfaces

MSC.ADAMS interfaces

MSC.ADAMS is a collection of several tools where the essential ones for co-

simulation purposes are ADAMS/View (pre- and post-processor program) and

ADAMS/Solver (the simulation subsystem). The typical scenario for meta-modeling

would be as following:

• The model is created (or loaded) in ADAMS/View and TLM interface point

is chosen. Points in terms of ADAMS are called markers. A general 6-

component force is defined at this marker and its value is set to Subroutine

with Routine field set to a custom library. This indicates that a user-written

function from the specified library will be used for actual calculation. The

only arguments required for a co-simulation user function are the action and

reaction markers ID.

• The model is exported to an ADAMS/Solver dataset by using File-Export

menu and choosing ADAMS/Solver Data Set as output file type.

• Now the TLM manager tool can be started and the ADAMS model can be spec-

ified as one of the collaborating tools. The tool then initializes the simulation

that generates dynamic output as a normal ADAMS simulation would do. The

ADAMS/View can be used to analyzed the output of the simulation.

The essential interface features used by the TLM module are:

• [GFOSUB] interface implementation in the custom dynamic library;

• [SYSARY] is utilized for getting kinematic data from ADAMS;

• [TIMGET] is used for interfacing the ADAMS DAE solver.

In order to start an ADAMS simulation externally the top level batch file for all

ADAMS products (mdi) can be used. The external code should issue the following

system command:
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mdi ru-s <ADAMS command file>

The ADAMS command file (.acf) can be automatically generated. Its content

should look as following:

model-to-simulate

output-files-base-name

sim/dyn, end=2.0, dtout=0.01

stop

The acf file gives the following information:

• model-to-simulate tells the name of ADAMS/Solver dataset file (’adm’) con-

taining the model definition

• output-files-base-name gives the base name for constructing the simulation

output file names (’req’, ’gra’, ’res’)

• ’sim/dyn, end=2.0, dtout=0.01’ tells the solver to perform a dynamic simula-

tion with the end time 2.0 using data output step 0.01. Note that for the case of

TLM the TLM communication time step should be a multiple of data output

step.

• ’stop’ command marks the end of the simulation and forces ADAMS/Solver to

terminate.

Modelica External Function Interface

Modelica standard [16] allows to call external functions written in C from inside

the Modelica code. External functions are typically written and compiled separately

from the Modelica code. The following steps are required to integrate the external

function into the Modelica simulation:

1. Define an external function in Modelica

2. Compile the Modelica code into C-code

3. Compile and link the Modelica C-code and the external function code

We might also compile the external function C-code into a library first and

link it to the Modelica C-code

The most widely used implementation of the Modelica standard is Dymola [4].

Dymola supports two ways of including C-code into a model:

• with the inline functions that are written directly in the model code;

• linking the external function as a static library.
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The Dymola simulation executable is called dynosim.exe and can be started

by the TLM manager process. Input parameters such as simulation start and end time

can be read from a simulation input file. This file can be specified on the command

line, e.g., dynosim.exe input file. If no input file is specified the default

input file called dsin.txt is read.

The external function interface can be used to integrate a TLM component into

the Modelica simulation. To achieve this we need to define a TLM Modelica class

which in turn calls an external function in the TLM component. The TLM component

can be linked to the Modelica simulation to connect the Modelica simulation to the

the co-simulation manager application.

MATLAB external functions interfaces

External simulation control: Start, Stop, Maximum timestep

Batch mode MATLAB can be started externally in a number of ways. The most

common option is to run MATLAB in batch mode.

matlab -nodesktop -nosplash -minimize -r "m-file"

There are also a number of ways to pass additional input parameters:

1. Variables values can be specifed at the command line.

2. The M-file can be converted to a function. Input parameters can then be passed

into the function from the command line..

3. Input parameters can be stroed in a file that the script M-file can open.

The Engine library The MATLAB engine library is a set of routines that allows

you to call MATLAB from your own programs, thereby employing MATLAB as

a computation engine. MATLAB engine programs are C or Fortran programs that

communicate with a separate MATLAB process via pipes, on UNIX, and through

a Component Object Model (COM) interface, on Windows. There is a library of

functions provided with MATLAB that allows you to start and end the MATLAB

process, send data to and from MATLAB, and send commands to be processed in

MATLAB.

Communication with TLM plug-in

It is possible to call external C or Fortran subroutines from MATLAB as if they were

built-in functions. MATLAB callable C and Fortran programs are referred to as MEX-

files. MEX-files are dynamically linked subroutines that the MATLAB interpreter can

automatically load and execute.
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