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CONTRIBUTIONS TO THE PROBLEM OF APPROXIMATION
OF EQUIDISTANT DATA BY ANALYTIC FUNCTIONS*

PART A.—ON THE PROBLEM OF SMOOTHING OR GRADUATION.
A FIRST CLASS OF ANALYTIC APPROXIMATION FORMULAE

BY

I. J. SCHOENBERG
University of Pennsylvania and Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. Let there be given a sequence of ordinates
{ Jn) (» = 0, + 1, ± 2, • • • ),

corresponding to all integral values of the variable x — n. If these ordinates are the
values of a known analytic function F{x), then the problem of interpolation between
these ordinates has an obvious and precise meaning: we are required to compute
intermediate values F(x) to the same accuracy to which the ordinates are known.
Undoubtedly, the most convenient tool for the solution of this problem is the poly-
nomial central interpolation method. It uses the polynomial of degree k — \, inter-
polating k successive ordinates, as an approximation to F(x) only within a unit
interval in x, centrally located with respect to its k defining ordinates. Assuming k
fixed, successive approximating arcs for F(x) are thus obtained which present dis-
continuities on passing from one arc to the next if k is odd, or discontinuities in their
first derivatives if k is even (see section 2.121). Actually these discontinuities are
irrelevant in our present case of an analytic function F(x). Indeed, if the interpolated
values obtained are sufficiently accurate, these discontinuities will be apparent only
if we force the computation beyond the intrinsic accuracy of the yn-

The situation is quite different if yn are empirical data. In this case we are to
determine an approximation F(x) which, for x = n, may disagree with yn by amounts
depending on the accuracy of the data, provided we thereby improve the smoothness
of the resulting approximation F(x). In various applied fields such as Ballistics and
Actuarial mathematics it is at times desirable to compute very smooth approxima-
tions F(x) to an accuracy surpassing by far the accuracy to which the physical or
statistical function involved may be determined. This physically unjustified accuracy
becomes desirable whenever the approximation F(x) enters into numerical processes
of some complexity, such as the numerical solution of differential equations. Modern
electronic computing machines, especially, require a good amount of forced mathe-
matical accuracy in such auxiliary tables in order to avoid the excessive accumulation
of rounding errors in the computation of the solution. These remarks justify the de-
sirability of approximation methods to empirical data furnishing easily computed
approximations F(x) which are very smooth functions of x. Approximations meeting
these requirements are of two kinds: 1. Polynomial approximation, where Fix) is com-
posed of a succession of polynomial arcs meeting with a certain number of continuous
derivatives. 2. Analytic approximations, where F{x) is an analytic and regular func-
tion of x for all real values of x.

* Received Oct. 18, 1945.
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Important work concerning polynomial approximations is to be found in the ac-
tuarial literature under the subject of osculatory interpolation. Of the extensive litera-
ture we mention especially the fundamental work of W. A. Jenkins and the valuable
systematization of the subject by T. N. E. Greville.1 Especially important are those
formulae derived by these authors which do not strictly interpolate the given ordi-
nates, but rather combine the operation of smoothing the data and the operation of
interpolation in one formula. Mr. Jenkins discusses interpolation formulae written
in the convenient Everett (or Steffensen) form. Mr. Greville's starting point is his
elegant expression of each polynomial arc in terms of the end point values of those
derivatives which are to be continuous on passing from one arc to the next. Each of
these two modes of attack has its peculiar advantages and one or the other seem
indispensable for an algebraic treatment of the subject. The present writer has found
the Lagrange form (explicitly in terms of the ordinates yn) of such formulae preferable
for two reasons: 1. The Lagrange form seems better adapted to computation with
modern desk computing machines and undoubtedly superior for computation with
punch-card machines. 2. The Lagrange form suggests a treatment of the subject by
means of elementary concepts of Fourier analysis which, firstly, affords a more ex-
haustive treatment of the problem of polynomial approximations, secondly, shows
how to extend these methods so as to furnish analytic approximations.

The explicit Lagrange form of the £-point central interpolation method, as well
as of all the interpolation formulae of osculatory interpolation, is extremely simple in
its formal appearance. Indeed, to every such formula corresponds an even function
L(x), defined for all real values of x, in terms of which the corresponding formula may
be written as follows

F(x) = X) yM* - »)• (i)
n—oo

The simplicity of this formula springs from the fact that it depends on the single func-
tion L(x) which describes the formula completely. Incidentally F(x) =L(x) if

yo = L yn = 0 (« ^ 0). (2)

Thus every interpolation method of this kind exhibits its corresponding L(x) if we
apply the method to the ordinates (2) (for an example see section 2.121).

The polynomial interpolation formulae arise from (1) if L(x) is a composite poly-
nomial function of arcs defined by various polynomials in successive unit intervals,
such that L{x) =0 for sufficiently large values of | x| (for an important example see
chapter II, formula (11)). The number of continuous derivatives of F(x) is, of course,
equal to the number of continuous derivatives of L(x) for all real x.

We obtain the formally simplest interpolation formula (1) if we choose

sin irx
L{x) =  (3)

irx

' W. A. Jenkins, Osculatory interpolation: New derivation and formulae, Record of the American In-
stitute of Actuaries, 15, 87 (1926).

Thomas N. E. Greville, The general theory of osculatory interpolation, Transactions of the Actuarial
Society of America, 45, 202-265 (1944).

W. A. Jenkins wrote four papers on this subject of which the above paper is the first. References to
the other three papers are found in the excellent bibliography in Greville's paper.
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in which case (1) becomes
" sin ir(x — n) , ,

*(*) = £ y. ~ • (4)
»*=—oo TT\X ft)

This expression which interpolates the ordinates y„, is known to mathematicians un-
der the name of the cardinal series.2 For this reason we wish to call the general formula
(1) a formula of the cardinal type, referring to L(x) as the basic function of the
formula.

The aim of the paper, of which the present Part A is the first, is twofold. Firstly,
we propose to carry through to a certain stage of completion the important actuarial
work concerning polynomial approximations. Incidentally, our work will answer Mr.
Greville's conjecture (loc. cit. pp. 212-213) concerning the existence of an "ordinary"
interpolation formula furnishing an approximation F(x) composed of polynomial
arcs of degree m-\-2, having m continuous derivatives and such that if the data yn
are the values of a polynomial of degree m — 1 then F(x) reduces identically to that
polynomial. In Part B it will be shown how to obtain such formulae for every value
of m. (The case of m = 2 reduces to Jenkins' formula mentioned in section 2. 122.)
Secondly, we shall derive formulae of the cardinal type (1) with basic functions L(x)
which are analytic and regular for all real or complex values of x. The classical basic
function (3) is of course analytic; however, its excessively slow rate of damping, for
increasing x, makes the classical cardinal series (4) inadequate for numerical pur-
poses. Our analytic L(x), derived in chapter IV, dampen out exponentially. In Part B
we will derive similar L(x) which will dampen out even faster: like exp( — C2x2).

The paper is divided into five chapters. In chapter I we discuss the general prob-
lem of smoothing by means of a linear compound formula. This discussion, by no
means exhaustive, is to serve as a guide to what is likely to be useful among formulae
of the cardinal type (1) which smooth and interpolate at the same time. It serves to
restrict somewhat the arbitrariness of the problem. The rather obvious idea of us-
ing cosine polynomials (or series) in this connection affords the possibility of a brief
exposition of this subject in the more scientific manner of E. de Forest, W. F.
Sheppard, E. T. Whittaker, and others, and may be followed up elsewhere.

Chapters II and III form the common foundation of both parts A and B. In chap-
ter II we describe the interpolatory properties of the formula (1) in terms of extremely
simple properties of the Fourier-transform

«(«) = I L(x) cos uxdx (5)
^ -00

of the basic function L(x) (Theorem 4). Thus we are assured that our formula
(1) will be exact for (i.e., reproduce) polynomials of degree k — l, provided g(u) — 1
has a zero of order k at w = 0 and g(u) has zeros of order k at all points u = 2irn
(«= ±1, ±2, • • • ). This elementary fact is reminiscent of N. Wiener's fundamental

2 See J. M. Whittaker, Interpolatory function theory, Cambridge Tracts in Mathematics, 1935, pp.
62-64, for a discussion of the relation between the cardinal series and Stirling's interpolation series. The
cardinal series was probably first investigated in an important memoire by Ch. J. de la Vallee Poussin,
Sur la convergence des formules d'interpolation entre ordonnees iquidistantes, Bull. Acad. Roy. Belgique,
1908, 319-410.
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description of the closure properties of the family of translation functions \L(x— X)}
in terms of the zeros of g(u). Chapter III contains a somewhat general discussion of
polygonal lines, the individual arcs of which are polynomials of degree k — 1, joined to-
gether with 4 — 2 continuous derivatives. A general parametric representation of such
curves is obtained (Theorem 5) which greatly facilitates their use for the purpose of
approximation of data. For 4=4 they represent approximately the curves drawn by
means of a spline and for this reason we propose to call them spline curves of order 4.
These polynomial spline curves are finally smoothed out, by means of one-dimen-
sional heat flow during the time interval /, into analytic spline curves of order 4. An
analytic spline curve of order 4 is represented by a series of the cardinal type

F(*) = £ f»Mk{x -«,/). (6)

where the basic function Mt(x, t) is defined as

1 ("* ,/2sinw/2\*Mk(x,t) = —J e~l(u/3) I j cos uxdx, (7)

while the coefficients /, may be thought of as arbitrary parameters.
The family of functions (6) forms the basis of our work. Its principal advantages

for purposes of numerical approximation spring from two sources: 1) The basic func-
tion Mk(x, t) dampens out like exp(—xH-1) (see III, formula (39)). As seen from our
Table I, for 4=4 and *=0.5, we have Mi(x, 1/2) = 0 to something like 10 decimal
places for |*| ^5. This causes the great flexibility of the graph of F(x) on varying
the parameters /, and the ease in computing F{x). 2) The family (6) contains (or
represents) all polynomials of degree k — \. The simplest analytic family of this type
is obtained for 4 = 0 and <>0 when (6) becomes

Hx) - Z /» A= «-(-n),/'. (8)
  » V Tft

This family obviously still enjoys the first property. However, (8) fails badly in its
ability of representing even the simplest types of curves because of the low value of
4 = 0. Indeed F(x)=0, for all/„ = 0, is the only constant value (8) is capable of repre-
senting.

Chapter IV contains the chief results of the present Part A. We show how the
family of curves (6) can be used to approximate given data. First we derive an ana-
lytic interpolation formula of the cardinal type (1) which leaves the given ordinates
unchanged (Theorem 8). Secondly we extend the result to a family of formulae de-
pending on a positive smoothing parameter e such as to combine a certain variable
amount of smoothing (depending on t) with the operation of interpolation (Theorem 9).

In collaboration with Lt. J. H. Levin, the author has had the opportunity of ap-
plying on a large scale this analytic approximation method at the Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland. The computations were per-
formed on punch-card machines. The given equidistant data yn were the values of
the drag coefficient of a projectile as a function of its velocity. Since very accurately
computed values of the derivatives F'(x), F"(x) of the approximation F(x) were also
desired, it seems doubtful if any of the existing osculatory interpolation formulae
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would have furnished satisfactory results in view of the complicated trend of the data
to be approximated.

In the last chapter we discuss procedures for the accurate computation of the func-
tions and constants tabulated at the end of the paper. The most noteworthy problem
encountered in this connection is the following: Let

oo

F(z) = X «nZn (9)
—00

be a Laurent series which converges in a ring a < \ z \ <fi. We assume furthermore that
/(z) does not vanish in this ring:

F(z) ^ 0, (« < | z | < /3). (10)

Under these circumstances we have an expansion of the reciprocal

1 = X>»z\ (11)
F(z)

If the coefficients an of the expansion (9) are given numerically the problem consists
in finding very accurate numerical values of the w,.! A very efficient iteration method
solving this.problem has been developed by H. A. Rademacher and the author. It
solves the similar problem of finding the expansion of the nth root of /(z) and gen-
erally of any algebraic function of Laurent series. This subject will be discussed else-
where in a joint publication with Professor Rademacher.

In a sequel to these papers we expect to discuss the fitting of curves of the form
(6) to data, in the sense of least squares. This will be accomplished by constructing
series of the cardinal type (1) which also enjoy the orthogonality property

r00 (" 1 if
J £(»)£<» - -)d, - {o jf

1 if n = 0
W 7^ 0.

This construction reduces to the problem of computing the Laurent expansion of the
square root V/(z) of an expansion (9).

The author wishes to express his appreciation for the encouraging interest shown
in his work by Dr. A. N. Lowan of the Mathematical Tables Project. He has bene-
fited much by the helpful advice of Dr. L. S. Dederick, Major A. A. Bennett, Lt. J. H.
Levin and others. Especially valuable were the author's frequent discussions with
Dr. C. B. Morrey. The tables were computed by Mrs. Mildred Young. The author
takes this opportunity of expressing his thanks to the officials of the Ballistic Re-
search Laboratory for their permission to publish these tables.

The reader who is mainly interested in the numerical applications, may pass di-
rectly from this point to the Appendix, where the use of the tables is fully explained
and one example is worked out.

3 It should be remarked here that also A. C. Aitken's computation in 1925 of the coefficients of E. T.
Whittaker's smoothing method amounted to the expansion in a Laurent series of a certain simple rational
function. See E. T. Whittaker and G. Robinson, Calculus of observations, London and Glasgow, 1940,
pp. 308-312.
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I. DEFINITIONS OF SMOOTHING AND SMOOTHING FORMULAE

1.1. A definition of smoothing formulae. Let {y„} («= • • • — 2, — 1, 0, 1, 2, • • • )
be a given sequence or "table" which we wish to smooth. This smoothing operation
is ordinarily performed by means of a formula of the following type

Fn — yn—pLp ~1~ • • • yn—\L\ ynLo ~i~ yn+\L~\ yn+pL—pt (1)

where the numerical coefficients L, are symmetric about the middle term L0, i.e.,
L, = L_V. The linear transformation (1) if applied to the original sequence {y„} will
transform it into the smoothed sequence { F„}. By extending the definition of L„ = 0
for | v\ >p we may rewrite (1) as

Fn = Z y.U-,- (2)
Pmrn—OO

If y, = const. =c, we also wish that Fn=c\ therefore

Zl, = 1 (3)
V

is a natural requirement.
When does the formula (1) actually smooth? As an example let £ = 1 and let the

coefficients L, be ( — 1, 3, —1). If we now apply the formula (1) to the periodic se-
quence

|y»} «{ ••■,0,1,0, 1,0, l,-- - }
we obtain

{Fn} = {•••,- 2,3, - 2, 3, - 2,3, •• • }
which is a good deal rougher than the original sequence. Obviously this situation de-
serves some clarification.

There seems no doubt that the "smoothness" of a sequence {y„} depends in some
way on its differences of higher order, especially on the sums of their square. We also
notice that the formula (2) agrees with the rule of multiplication of Fourier series.
This suggests the use of such series.

Let us assume for the moment that

E I y. I < 00 • (4)
»——00

We now define a function T(u) by
oo

T{u) = Z yneinu (5)
n—oo

and call it the characteristic function of our sequence {y„} ; it is a complex-valued con-
tinuous function of u of period 27r.

Now (5) implies
e~iuT(u) = Z y*ei(n-1)u = Z yn+iein"

and by subtracting (5) we get
oo

(e_iu — l)r(tt) = X Ayneinu. (6)
»=—00

This shows that we obtain the characteristic function of the sequence {Ay„} of first
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differences of {>>„} by multiplying the characteristic function T{u) of {y„} by the
factor e~iu — 1. Generally

oo

(c-,u _ i)mT(u) = X) Amyne*"u (m = 0, 1, 2, • • • ). (7)
n=—oo

Since |e~'u —1| =2 |sin(M/2)|, the Parseval relation furnishes the equation
oo 1 /% 2t

Z (Amy»)2 = — I [2 sin (m/2)]2"1 | r(«) |2<f« (« ^ 0). (8)
n co 2^ J o

These formulae furnish an expression for the sums of the squares of the differences
of any order in terms of the characteristic function T(u) of the sequence.

Let us now turn to the "smoothed" sequence {F„}. Let
oo

<t>(u) = X) Lneinu = L0 + 2Li cos u + 2Li cos 2m + • • • (9)
»=—oo

be the characterstic function of the sequence {Ln\. We shall also refer to 4>{u) as
the characteristic function of the smoothing formula (2). Notice that cj>(u) is always real
and even. By multiplication of the two Fourier series (5) and (9) we obtain, in view
of (2),

00

r(«)*(«) = 23 r»'inu- (io)
n—oo

Hence the characteristic function of the "smoothed" sequence {F„} is obtained by
multiplying the characteristic function T{u) of {y„} by the characteristic function
<t>(u) of the smoothing formula (2). By now applying (8) to the sequence we
obtain

£ (AmFny = — f T(2 sin (u/2))2m | T(u) 12(0(«))2J«, (« ^ 0). (11)
n. oo 2ir J o

A comparison of the relations (8) and (11) will readily furnish an answer to the ques-
tion: what is a smoothing formula? Indeed, we notice that the integrands in (8) and
(11) differ only, for each fixed value of m, by the factor </>(w)2 in (H)- This justifies
the following definition.

Definition 1. Let L„ be a symmetric sequence of coefficients, i.e., L_„=Z,„. The
formation of the weighted means

oo

Fn = D y£n-v (n = 0, ± 1, + 2, • • • ) (12)
i»=—oo

is said to be a smoothing formula if
Z4= 1, (13)

n

El ^ | < 00, (14)
n

while the characteristic function
oo

<t>(u) = X Lneinu = L0 + 2Zj cos u -f- 2L2 cos 2« + • • • (15)
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satisfies the condition

- 1 ^ <t>(u) ̂ 1, (0 Su ^ 2ir). (16)

The necessity of the condition (16) is justified as follows: By a comparison of (8)
and (11), in view of (16), we obtain the inequalities

oo oo

E (A"*1")2 ̂ E (A-yn)2, (» = o, 1, 2, • • • ).
n——oo »»—oo

Actually the equality sign in one of these relations will arise only under highly ex-
ceptional or else trivial conditions. This remark should make it clear why the smooth-
ing quality of a formula violating (16) should be highly questionable.

So far we were concerned merely with the ability of a formula (2) to smooth the
sequence. However, the discrepancies between the two sequences also deserve atten-
tion. By subtracting (10) from (5) we obtain

T(u)( 1 - *(«)) = E (y. ~ Fn)ein"

and therefore

E (y, - Fny = i- f" I T(u) |'(1 - mydu. (17)
»——oo 2t J o

A comparison of the integrands of (17) and (11) reveals the obvious fact that strong
smoothing may be achieved only if we allow relatively large discrepancies between
Fv and yv■ Indeed, the integral of (17) will be small only if <f>(u) differs but little from 1,
while strong smoothing requires as small a <f>(u) as possible.

1.11. Examples of smoothing formulae, (a) Our trivial example Lo = 3, Li = L-i = — 1,
L„ = 0 (n > 1) has the characteristic function 0 (u) = 3 — 2 cos m. We find $ (w) Si 1, with
<l>(ir)=5, which rules it out as a smoothing formula.

(b) If Ln^0 for all n, and E-^" =1» then (12) is always a smoothing formula
Indeed

I </>(«) | = | E | :g EU»I = I-
Thus

= (y»-i + yn + yn+0/3 (18,

is a smoothing formula with
(p(u) = (1 + 2 cos m)/3.

Let

<t>l(u) = | <t>(u) | = | 1 + 2 cos U I /3 = E COSMM.

Since (</>(«))2 = (</>i(m))2 it is clear from (11) that the formula (18) and the formula oi
characteristic function <f>i{u) have identical smoothing powers. However, since
0 <1 — <1 — 4>{u) for 2tt/3 <u <4tt/3, we see by (17) that the formula

f? = E
will alter the sequence {y„} much less than (18) will.
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(c) Generally, our formula (17) shows that it is desirable for an efficient smooth-
ing formula to have its characteristic function satisfy the more restrictive condition

0 g <*>(«) ^ 1. (19)

1.12. A comparison of smoothing formulae. Again our relations (11) justify the
following definition.

Definition 2. Let <f>i(u) and 4>z(u) be the characteristic functions of two smoothing
formulae. We say that the first is stronger than the second if

■ Ui(«)| sg|*t(«)|. (20)
with the inequality sign holding for some value of u.

Later in this paper we shall set up a basic sequence of smoothing formulae of
progressively greater strength according to this definition. Here we remark only that
two smoothing formulae cannot in general be compared on the basis of this definition.
However, the following remark seems obvious. Let

Fn = £ y-L"-, (21)

be a smoothing formula of characteristic function <t>(u). The iteration, or repetition,
of (21) may be thought of as another smoothing formula and its characteristic func-
tion is found to be ($(w))2. Since |<£(M)| ^1 obviously

(<#>(«))2 ^ | <K«) |-
This shows that the formula (21) and the sequence of its successive iterates form a
sequence of smoothing formula of progressively increasing strength.

1.13. Smoothing formulae which are exact for polynomial values of a given degree.
The following definition is in common use.

Definition 3. A smoothing formula (2) is said to be exact for the degree m if it re-
produces exactly the values {yn J of a polynomial of degree not exceeding m.

If
Fn=T (22)

is to be exact for the degree m, it is obviously sufficient that it be exact for the basic
monomials 1, x, • • • , xm. Thus the exactness for the degree m is equivalent to the
relations

00

n' = £ v'Ln-, (s = 0, 1, • • • , m). (23)
—00

Let us now assume for simplicity that the sequence of coefficients Ln tends to zero
exponentially as n—> oo, i.e., we assume the existence of two positive constants A and
B such that

| in | ^ Ae-Bl"l

for all values of n. This implies that the function

<t>(u) = £Z„ei"u
n

is regular in the strip
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| 7m | < B
of the complex w-plane. Now

4>(u) = X L,e«u = •trinu

and
einu<t>(u) = X)

v

We now expand both sides in ascending powers of u and compare like coefficients.
Since

U2 M4
<t>(u) = 1 + — <f>" + — <!>w + • • • ,

we get the identities in n

n' ~ ( 2 ) "n"~2 + ( 4 ) <*,(4>w'-4 - • * • = JL v'Ln-, (s = 0, 1, 2, • • • ).

A comparison with (23) will show that a smoothing formula is always exact for a
highest degree which is always odd. It also proves the following proposition which
may evidently be established under conditions less stringent than the ones we used.

Theorem 1. A smoothing formula (22) is exact for a degree 2v+l if and only if
</>(m) —1 has at u = 0 a zero of order 2j>+2, i.e.,

4>"{ 0) = </><">( 0) = • • • = 0(f)(0) = 0. (24)

As an illustration we mention the formula

1 3 1
Fn = — (- yn-3 + 9y„_i + 16yn + 9y„+1 - y^s) = yn - — S4yn - — 8eyn (25)

32 16 32

of characteristic function

<t>(u) = (8 + 9 cos u — cos 3m)/ 16. (26)

We find that <£"(0)=0, hence (25) is exact for cubics. The symmetry property
<£(w)-t-0(7r — u) = 1 shows that

<t>M = <f>\tt) = 4>"(ir) = ^"(tt) = 0.
This results in rather strong smoothing power. The formula (25) is part of a sequence
of formulae, the next one of this kind being

1
Fn = — (3j„_b — 25y„_3 + 150y„_i + 256y„ + 150y„+i — 25 yn+3 + 3yB+6) (27)

or

Its characteristic function

<p(u) = (128 + 150 cos u — 25 cos 3m + 3 cos 5w)/256

again enjoys the symmetry property <t>(u)+<j)(ir — u) = 1. Also 4>{u) — 1 has a zero of
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order 6 at m = 0, hence (25) is exact for quintics, while 4>(u) has a zero of order 6 at
u=t resulting in strong smoothing power.

1.2. Smoothing a finite table. In 1.1 we have discussed the smoothing of an infinite
table {y»} which is such that the series of the absolute values of its entries converges.
By (8), (11) and the inequalities (16) we have found that the sum of the squares of
the differences of order m is diminished by smoothing. This is true for m = 0, 1, 2, • • •.
Now we shall discuss briefly the practically most important case of a given finite table

{yn} (» = 0, 1, • • • , N). (28)

To fix the ideas we assume the following simplest concrete situation: the third
differences A3yn are slowly varying and of slowly varying signs, while the A4y» are of
random signs. In this situation we naturally wish to minimize the 4th differences of
the table. Now we form an average value of the A3yn at each of the two ends of the
table and we extend the column of A3yn with the corresponding constant average value
at each end.4 Thus the Asyn are defined for all n having one constant value for n >N—3
and another constant value for n <0. Now we extend the definition of yn for all n from
the values of the third differences. Also, we compute the A4y„ for the extended infinite
table. Clearly A*yn = 0 for n<—1 or n>N—3. Let

T<(u) = ^A4y„e<BU

be the characteristic function of the sequence of 4th differences, the series containing
really a finite sum of terms only.

Let us now apply to the extended table y„ a smoothing formula

Fn= £ yJL^, (29)
v

of characteristic function 4>(u), which is exact for cubics. The result is the new sequence
j/7*} (— «> <n< oo). Evidently yn are thfe values of cubics for large |n| and therefore
Fn = y„ for large |«|, hence also A3Fn = Alyn and A4F„ = 0 for large |w|. Notice also
that we may think of the sequence {A4F„} as arising from }A4y„) by the smoothing
operation (29). Therefore

and

Generally

X) (A4:y»)2 = — f | Ti(u) I *du
n«=—oo 2 ir •/ 0

S (A*F,y = 7- f I Tt(u) \24>(u)^du.
n—00 2t J 0

^ (A4+myn)2 = — r (2 sin u/2)im \ T\{u) \2du, (m ^ 0) (30)
n—00 2ir J 0

£ (A4+mF„)2 = — f (2 sin «/2)2"11 T4(«) \2<t>(u)2du, (m ^ 0). (31)
n. <x 2ir J 0

4 Compare G. J. Lidstone, Note on the computation of terminal values in graduation by Jenkins' modified
asculatory formula, Transactions of the Faculty of Actuaries (Scotland), 12, 277 (1930).
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A comparison of (30) and (31) shows that the sums of the squares of the fourths and
subsequent differences have been decreased by the smoothing operation. No such
statement can or should be inferred concerning the finite sums of relevant differences
of orders 0, 1, 2, and 3.

II. INTERPOLATION FORMULAE

2.1. Interpolation formulae of the cardinal type. Let

Fn = E (1)
p

be a smoothing formula. If we apply it to the "elementary" table

yo = 1, = 0 (n r* 0), (2)

then F„ = Ln. The even sequence {Ln\ may therefore be regarded as the smoothed
version by (1) of the elementary table. Now suppose that we are given not only the
even sequence of ordinates L„ but an even function L(x) defined for all real x and such
that L(n)=Ln. Then we may replace the integral variable n in (1) by the continuous
variable x and we obtain the formula

oo

f(x) = E yM* - ")• (3)
F=—00

We call L(x) the basic function of the formula (3). The chief aim of this paper is
to point out that the subject of interpolation is truly dominated by the formulae of
the type (3), the kind of approximation desired depending only on the choice of the
basic function L(x). The particular basic function

sin ttx
L(x) =  (4)

TX

gives rise to the series
" sin ir(x — v)

F(x) = L y,—- (5)
,—oo ir{x — v)

which is well known to mathematicians and referred to as the cardinal series. For this
reason we wish to call (3) a series, or formula of cardinal type.

We notice here for further reference that the basic function (4) may also be writ-
ten as a Fourier integral as follows.

sin trx

TX

1 r'
= — I eizudu.

2ir J (6)

2.11. The two kinds of interpolation formulae, ordinary or smoothing. For integral
values of x=n our formula (3) becomes

F(n) = £ y,L{n - v). (7)
oo

Equation (3) is an interpolation formula in the usual sense if F{n) =yn, for all n, and
this is the case if and only if L(x) satisfies the conditions



1946] APPROXIMATION OF EQUIDISTANT DATA 57

L(0) = 1, L{n) = 0 (n * 0). (8)

Otherwise, (7) is a smoothing formula. We shall follow the accepted actuarial practice
of referring to (3) as an ordinary interpolation formula if (3) reproduces exactly the given
ordinates {y,, ]. Otherwise we call (3) a smoothing interpolation formula.

2.12. Examples of interpolation formulae of the cardinal type. Later in this paper
wc shall discuss various classes of such interpolation formulas all arising from a com-
mon general theory. For purposes of orientation and illustration we mention here a
few concrete examples.

2.121. The k-point central interpolation formula. Let k be a fixed integer
( = 1, 2, 3, • • • ). By &-point central interpolation we mean the interpolation method
whereby the polynomial of degree at most k — 1, defined by k consecutive ordinates yn,
is utilized within an interval of unit length centrally located with respect to the set of
defining ordinates yn. This set of k defining ordinates y„ is shifted up by one unit in
the subscript for interpolation in the next unit interval. It seems obvious that this
kind of interpolation is performed for any real value of X by a formula of the cardinal
type

oo

p(x) = X y«Ck(x - «) (9)
n=—oo

with a suitable function C*(:t). To obtain this function, it is sufficient to interpolate
the elementary table (2) by means of this method of fe-point central interpolation.
The graphs indicate the resulting Ck(x) for k = \, 2, 3, and 4.6 It is found that Ck(x)

} I I ClW /!\ c*(x)

-2 -1 -1ft 0 V2

-2^3^-1 1o iTvT^;

6 These graphs indicate geometrically the construction of the successive arcs of these curves. Thus
CsC*) is defined in the interval 1/2 <x<3/2 by the parabola passing through the points (0, 1), (1, 0),
(2,0). Similarly C\(x) is defined in — 1 <x <0 by the cubic which takes the values 0, 0, 1, 0 at x = —2, — 1,
0, 1 respectively. We mention incidentally the following general analytic expression of the basic function
Ct(x) of i-point central interpolation. In terms of the "central" factorial

f*(z» - 12)(*! - 21) • • • (x* - (y - 1)») if k = 2»,

we define the corresponding truncated function

H]_i (si*!-1 if *>0
x+ = 10 if z<0 (k = 1, 2, 3, ••• ).



58 I. J. SCHOENBERG [Vol. IV, No. 1

is a polygonal line composed of arcs of degree k — 1. Also Ck(x) itself is continuous with
a discontinuous first derivative if k is even. For an odd k, Ck(x) itself is discontinuous,
the value assigned at a point of discontinuity being the arithmetic mean of the two
local limits. Evidently for k = 2 our formula (9) is identical with the method of linear
interpolation and the graph of F(x), as given by (9), is identical with the polygonal
line of vertices (w, yn).

For further reference we mention the following formulae which are valid for all
real values of x

1 r" sin«/2
Ci(x) = — I   eiuxdu,

2ir J —oo u/2
1 f 00 /sin w/2\2■ rJJijr)
1 r °° /sin m/2\3 / 1 \

1 r00 /sin «/2\4 / 1 \

CM - aL (-wr)(1+7<10)
The ^-point central interpolation method is the most important method for the

interpolation and the construction of tables of analytic and regular functions. How-
ever, for the construction of tables of empirical functions, the low order of continuity
of Ch(x) is at times a serious limitation of this method. It seems indeed evident that
the continuity properties of the linear compound

F(x) = X y*L{x - »)
»

are directly dependent on the continuity properties of the basic function L(x). We
turn now to an interesting example of an "osculatory" interpolation formula having a
basic L(x) enjoying stronger continuity properties.

2.122. An osculatory interpolation formula of W. A. Jenkins. We define a basic
function L(x) for *^0 by

0 if x ^ — 3
1

 (* + 3)3(x +2) if -3^x^-2
12

L{x) = 1 (11)
— (* + l)(x + 2)(x + 3)(3* + 7) if - 2 g * ^ - 1

1
— (x + 1)(6 — 6x — 9x2 — x3) if — li 1^0
6

The definition of this function is to be completed for x — 0 by continuity, if k is given, and by the arith-
metic mean of the two limits, if k is odd. Then

Ck(x) = 1 8kx+]~l (- 00 < x < oo),
— 1)!

where S* is the symbol of the &th central difference of step unity (compare Theorem 3 of section 3.11).
We will return to this subject in Part B where the extremely simple law of formation of the integrals (10)
will also be given.
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and extend its definition by the requirement L( — x)=L(x) to all real values of x.
Since the conditions (8) are visibly verified we see that

F(x) = VnL(x - n) (11')

is an ordinary interpolation formula. A closer inspection of the composite polynomial
function (11) will show that L(x), L'(x), and L"(x) are all continuous for all real val-
ues of x. Using a customary mathematical terminology we may say that L(x) is of
class C". Moreover, in various ways it may be shown that the formula (11') is exact
if the y* are the ordinates of a polynomial of degree 3 or less, i.e., F(x) becomes iden-
tical with that cubic polynomial.

It is of interest to compare Jenkins' formula (11') with the 4-point central inter-
polation formula (9) (for &=4). Both are exact for cubics. C^x) is of class C, while
the present L(x) of class C". This was achieved by increasing the complexity of the
basic function in two ways: 1) The interval where L(x) is non-vanishing was increased
from |*| ^2 to |a;| ^3. 2) The degree of the polynomial arcs has increased from 3
to 4. Later Jenkins' formula (11') will appear as a member of a sequence of interpola-
tion formulae of similar characteiistics. Here we mention that the basic function (11)
may be expressed in the form

1 r 00 /sin m/2\4 / siniAm ' tJS~w) K + cos""4 <u >
for all real values of x.

2.123. A smoothing interpolation formula of W. A. Jenkins. We define a basic func-
tion L(x) by

0 if * ^ — 3,
1

 (x + 3)3 if -3^*^-2,
36

L(x) = -! 1 (12)
— (69 + 117* + 63s2 + 11*') if - 2 £ x £ - 1,
36
1

— (15 - 27x* - 14s8) if -lgj^O,
18

L(— x) = L(x).

This particular L(x), composed of cubic arcs, is of class C". The formula'

• W. A. Jenkins writes his interpolation formula (11') in the following Everett form

F(n + x) = yn( + ~ 1} - ~ 1}12

+ >'„+!* + B*y»+1 2 ^ - «V+i ^*12 ^ ' (0 S a ^ 1, * + J = 1).

Likewise his formula (12') takes the form

£(£* - 1) i'F(n + x) = + S*yn - &*y«-

rCr J —11
+ Va+lX + i^n+l    S'Vn+l — •
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F(x) = £ ypL(x - v) (12')
p

corresponding to (12) is exact for polynomials of degree 3 or less. However, while
(11') was an ordinary interpolation formula, the formula (12') is a smoothing inter-
polation formula. Since

L( 0) = 15/18, L( 1) = 2/18, 1(2) = - 1/36,
while L(n) — 0 for «^3, we see that for x = n (12') reduces to a smoothing formula of
characteristic function

1
d>(u) = — (15 + 4 cos u — cos 2m).

18

We readily verify that <f>"(0) = 0 and 4>{j) =5/9^<£(w) 1. Hence (12') reduces for
integral i: = ti toa smoothing formula, according to our Definition 1. On comparing
Jenkins' two formulae (11') and (12') we notice that they are both exact for cubics,
giving rise to curves of class C". Since (12') is only a smoothing interpolation formula
while (11') is an ordinary interpolation formula, it has been possible to lower the de-
gree of L(x) from 4 to 3. We finally mention that the function (12) may be expressed as

1 r 00 /sin m/2\4 / 4 1 \
m' u L(rz7r){j- j cosV''"du- <ir)

2.2. A general theory of interpolation formulae of the cardinal type. In this sec-
tion we shall discuss various characteristic properties of interpolation formulae of the
cardinal type in terms of the Fourier transform of the basic function L(x). This dis-
cussion will provide a sufficiently broad foundation for the subsequent development
of specific formulae in the latter part of this paper.

2.21. Characteristic properties of interpolation formulae. Some of the following defi-
nitions have already occurred in the previous sections. For convenient reference we
include them in our present enumeration of properties of an interpolation formula

F{x) = £ yMx ~ »)■ (13)
»-=—ao

a. We say that (13) is an ordinary interpolation formula if F(x) interpolates ex-
actly the given ordinates yn, i.e., if

L(0) = 1, L(v) =0 (f ^ 0). (14)

b. We say that (13) is a smoothing interpolation formula if for x = n (13) turns into
a smoothing formula

F(n) = y*L(n — v). (15)
p

The term "smoothing formula" is meant, of course, in the sense of our Definition 1,
section 1.1.

c. We say that (13) is exact for the degree — 1 if the relation
oo

P(x) = x P{n)L{x — n)
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is an identity for any polynomial P(x) of degree at most k — 1. The last condition is
in turn equivalent with the k identities

00

x" = 2 n'Hx — n) (v = 0, 1, • • • , k — 1) (16)
w

out of which it can always be recovered by means of suitable linear combinations.
d. We say that (13) preserves the degree k — 1,7 if for any polynomial P(x) of degree

v^k — 1 we have an identity
00

Y P(n)L(x — n) = P(x) + (a polynomial of degree < v). (17)
—OC

Notice that the leading term of P(x) is not altered by (13). Again in terms of the mo-
nomials x' we may say: (13) preserves the degree fc —1 whenever the k functions

oe

Q>(x) = n'L{x - n), (y = 0, 1, • • • , * — 1), (18)
n——oc

are polynomials of the form

Q,(x) = x' + a,!*"-1 + • • • + a,„, (v = 0, 1, • • • , k — 1). (19)

e. We say that (13) is of degree m and of class C", if the basic function L(x) is a
polygonal line of polynomial arcs of degree at most m joining in such a way as to
result in a function L(x) having n continuous derivatives. In the sequel, the junction
points will always be either for integral values x — n or else for x = n-\-1/2. Conse-
quently no "condensation" of discontinuities will result by the formation of the linear
compound (13). Hence the interpolation curve F(x) will again be of degree m and of
class C". As examples we recall the formulae (11') and (12') of W. A. Jenkins, which
are both of class C" and of degree 4 and 3, respectively.

f. A formula (13) whose basic function L(x) is composed of polynomial arcs will
also be referred to as a polynomial interpolation formula. We shall say that it has the
span s if the even function L{x) vanishes identically for x>s/2, but not for x>s' with
0 <s'<s/2. Thus the &-point central interpolation formula (9) is of span k, while both
formulae (ll')> (12') of Jenkins' have the span 6. For obvious practical reasons it is
desirable to work with polynomial formulae having as small a span as possible.

g. We say that (13) is an analytic interpolation formula if the basic function L(x)
is analytic and regular for all real x. The original cardinal series (5) is an example of
this type. Obviously no analytic formula can possibly have a finite span. The role of
the span is taken over by the rate of damping of L(x) as x increases. For obvious prac-
tical reasons it is desirable to work with analytic L(x) damping out as fast as possible.

2.22. The characteristic function of the basic function L(x). It was shown in chapter

7 This property of interpolation formulae seems to have been neglected so far. It represents an im-
portant weaker form of the condition of exactness for the degree k — \. Compare T. N. E. Greville, loc. cit.
pp. 210-211, for our slight departure from the standard terminology. Jenkins speaks of a modified inter-
polation formula in case the formula is not ordinary. The term "modified" seems natural in view of
Jenkins' construction of such formulae by modifying certain terms of Everett's formula (the author is
indebted for this last remark to Mr. Chalmers L. Weaver). It seems, however, less desirable if their con-
struction is, as here, otherwise performed.
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I that various properties of a smoothing formula

Fn = 53 yJ*n-*
*

are readily expressible in terms of its characteristic function

<*>(«) = X) Lneinu.
n ■

Likewise, the properties of the interpolation formula

F(x) = £ yM* ~ v) (20)
f

will largely depend on the behaviour of the function

/oo /» oo
L(x)eiuxdx = I Z,(a;) cos wsrfz. (21)

-oo ^ —oo

This even function g{u) is the Fourier transform of L(x). Following a terminology
used in probability theory we shall refer to g(u) as the characteristic function of Lix).

Under certain general assumptions which will always be verified in our applica-
tion, the relation (21) may be inverted8 to

L(x) = — f g(u)e'"xdu. (22)
2ir J

However, it should be remarked that at times our integrals are not absolutely con-
vergent and that they then converge only as a principal value in the sense of Cauchy:
lim^so/f^. An example of this kind is our first formula (10)

1 r°° sinw/2
eiuxdu.

1 r'
CM ' 5/ m/2

Changing u and x to 2iru and jc/27t respectively we see

sin 7tm
Ci ( — ) = |  eiuxdu.

r «

Inverting this relation we obtain

sin ttx

\27r/ J r

in

1 r°° (u\ 1 rT
= — I Cj (—) eiuxdu = — I eiuxdu (23)

2x J _M \2ir/ 2ir J _t7T3C

which is identical with (6) and shows that
/ 1 if | «| < t

g(u) = = < I if | «| = t
'0 if | m ] > ir

is the characteristic function of the original cardinal series (5). It is precisely the dis-
continuity of its characteristic function which causes the extremely slow damping of
the basic function (23). (See 2.21, g.)

8 See e.g. S. Bochner, Vorlesungen iiber Fouriersche Integrate, Leipzig, 1932, Satz lib on p. 42.
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Similar reasons of slow damping will rule out the following rather obvious method
of turning a given smoothing formula

F„(X) = X)
V

into a smoothing interpolation formula

F(x) = Z) yM* - *)•

From
4>(u) = £z,„e<n"

we derive
1 r*

Ln = — | <j>{u)exnudu.
2ir J _r

Now we simply define a basic function L(x) by

1 /•T
L(x) = — I <t>(u)e,zudu.

2t J -r

The corresponding characteristic function g(u) is found to be

if I «| < t
> T.s{u)-\ 0 if I.

Again the discontinuities of g(u), or of one of its higher derivatives, will imply that
the damping of L(x) is too slow for numerical purposes. Indeed, by partial integra-
tions, L(x) is found to tend to zero as a certain negative power of x only, as x tends
to infinity. (Concerning the order of magnitude of Fourier integrals for large values
of x, see the theorem on page 11 of Bochner's book quoted in our footnote 8.)

2.23. Fundamental criteria in terms of characteristic functions. We shall now re-
strict ourselves to basic functions L(x) which are everywhere continuous with the
exception of possible "discontinuities of the first kind" (such as were exhibited by the
basic functions L{x) of section 2.121). Moreover, we shall assume that L(x) dampens
out exponentially. This means that we assume the existence of two positive constants
A and B such that the inequality

| L(x) | < Ae-*^ (24)

holds for all real values of x. This clearly rules out the basic function (23) of the cardi-
nal series. The assumption (24) implies that the characteristic function

g(u) = (* L(x)eiuzdx (25)
—00

is analytic and regular not only on the real M-axis but also in the infinite strip

| Iu | < B (26)

of the complex M-plane. It also implies that the expression
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v
lim ^ g(u + 2irn)eiT<"x (27)

P-*°° nmm—p

converges uniformly in a circular neighborhood of u = 0 and for every real value of x.
The following theorem will demonstrate the usefulness of the characteristic func-

tion of an interpolation formula.

Theorem 2. Let the basic function L(x) satisfy the condition (24). Let the correspond-
ing interpolation formula be

F{x) = £ yM* ~ ")• (28)
»

For integral x = n (28) reduces to the smoothing formula

F(n) = Yj yMn - p). (29)
A. The characteristic function 4>(u), of the smoothing formula (29) is given by the

relation
cc

<*>(«) = L ?(«+ 2irv). (30)
oo

In particular (28) is an ordinary interpolation formula (see 2.21, a) if and only if
oo

Z g(u + 2tv) m 1. (31)
*•=»—00

B. The formula (28) is exact for the degree k — \ (see 2.21, c) if the following two
conditions hold simultaneously:

g{u) — 1 has a zero of order k at u = 0, (32)

g(u) has zeros of order kfor all non-vanishing integral multiples of 2ir; u = 2-rrn 0). (33)

C. The formula (28) preserves the degree k — \ (see 2.21, d) if the condition (33) holds,
together with the additional condition

g( 0) = 1. (34)
Remark. For some applications it is important to notice that an ordinary inter-

polation formula which preserves the degree — 1 is automatically exact for the degree
k — 1. This seems evident a priori. It is also evident in terms of our criteria, for (31)
implies

g(u) - 1 = -E«(« + 2«r)

and the right-hand side has a zero of order k at w = 0 by (33).
Proof of A. Our formula (25) implies

j /» m 1 /* (2p+1*T
L(x) = — I g(u)eixudu = lim — J g(u)e'xudu

2x Jp->» 2ir •/_(2p+i)X

1 p cT
= lim — ^ I g(u + 2irv)eiuxe2,riuzdu

p->» 2ir J —T
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= lim — f | 23 g(u + 2vv)e2rix\ eiuzdu,
v->" 2w J _x u—P )

= J | Z) g(« + 2itp) j eiuzdu.

In particular, if x = n is an integer, we find

L(n) = — J* | 23 s(u + 2ti')| einudu. (35)

Since the characteristic function <f>(u) of (29) is by definition the function of
Fourier coefficients L(n) (see 1.1, (9)), the relation (30) is established.

Proof of B. We wish to apply Poisson's summation formula9
00 00 s» 00

23 /(* - n) = 23 e*rinx I f(v)<ririvn>
i——oo n— oo ^ —oo

dv (36)
n——oo n——oo ^ —oo

to the function
/(*) = e~ixuL(x). (37)

By (37) and (25) we find
/oo /% oo

f(v)e~iriv"dv = I L(v)e~'(u+iTn)vdv = g(« + 2x«)
-oo ^ —oo

hence by (36)
oo oo

e~'IU 2 eiunL(x - n) = 23 g(M + 27rw)e2,r<ni:

and finally
oo oo

23 eiunL(x — n) = 23 g(M + 2irn)e2Tinx. (38)
n—oo n=—oo

This identity actually holds for all real x and all real or complex values of u within
the strip (26). It contains implicitly all the statements of Theorem 1. Thus for* = 0
it reduces to (30). To prove our statement B we assume x fixed and regard both mem-
bers of (38) as functions of u, which we expand in series of powers of u, then equating
the respective coefficients on both sides. On the left-hand side we have the expansion

w i>uv oo

22—23 n'L(x - n).
^ • n—>—oo

On the right-hand side, our assumption (33) implies that the terms g{u+2irn)eirinx
(ny* 0) do not contribute any terms in u of order less than k. Thus our identity (38)
becomes

°° i'u' °°
2"!   23 n"L(x — n) — eixug(u) + uk (regular function of «). (39)
r-0 V!

On the other hand our assumption (32) amounts to

9 See S. Bochner, loc. clt., theorem 10 on page 35.
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g(u) = 1 + uk (regular function).

This and (39) imply

» i'u" " " i'u"
> ,   2-i — n) = 2^  + uk (regular function). (40)
,-o n—« .-o »<!

A comparison of the coefficients of the first k terms on each side of (40) furnishes the
identities (16). This concludes a proof of B.

Proof of C. Since g(u) is regular at « = 0, and even, it has in view of (34) an ex-
pansion of the form

02 #4 flu
g(u) = 1 W2 -1 M4 Ms + • • • .

2! 4! 6!

We now define a sequence of polynomials by means of the generating function

" (iu)'
e""g(u) = £ Q,(x) —— (41)

»-o vl
or

exug(u/1) = £ Q,(*) ~r (42)
o v!

where

«(«/*) = 1 + «2 + ^ «4 + * * • • (43)

A comparison of terms on both sides of (42), using (43), shows that

Q,(x) = x" + ^ ^ ^ a2x"~2 + ^ ^ aa*-4 + ■ • ■ . (44)

On substituting the expansion (41) into the right-hand side of (39) and by compari-
son of the first k terms on both sides we find that the identities (18) and (19) are
established. This completes the proof of our theorem.

As a brief illustration of our criteria let us consider again Jenkins' smoothing in-
terpolation formula (12') of 2.123. Its basic function is

1 r°° /2 sin w/2\4 / 4 1 \
—-Jkj-J <4S)

A simple method of evaluating explicitly such integrals in order to find the polynomial
expressions (12) will be discussed later. An inspection of the characteristic function

/2 sin w/2\4
g(«) = (   ) (4 - cos k)/3

immediately reveals that our condition (33) is verified for k=4. Direct expansion
shows that g(u) = 1 — (7/240)w4+ • • • and (32) is also verified for &=4. The inter-
polation formula (12') is therefore exact for cubics. Also the fact that L(x) is of class
C" is revealed by an inspection of the integral (45). Indeed we notice that g{u) van-
ishes for u = oo like u~4. This implies that we may differentiate (45) twice under the in-
tegral sign and that the integral
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1 r°°
L"(x) = — i g(u)(iu)2e>uxdu

2ir

is also continuous since it converges absolutely.

III. THE THEORY OF SPLINE CURVES

The previous chapter provides a formal theory of interpolation formulae in terms
of a basic function L[x) which, as yet, is largely arbitrary. The present chapter will
furnish the foundation for the derivation of special basic functions which are readily
computed with great accuracy and lead to interpolation formulae enjoying the proper-
ties described in the previous chapter.

3.1. Polynomial spline curves of order k. A spline is a simple mechanical device
for drawing smooth curves. It is a slender flexible bar made of wood or some other
elastic material. The spline is place on the sheet of graph paper and held in place at
various points by means of certain heavy objects (called "dogs" or "rats") such as
to take the shape of the curve we wish to draw. Let us assume that the spline is so
placed and supported as to take the shape of a curve which is nearly parallel to the
x-axis. If we denote by y = y{x) the equation of this curve then we may neglect its
small slope y', whereby its curvature becomes

1/R = y"/{ 1 + y'2)3'2 « y".

The elementary theory of the beam will then show that the curve y = y(x) is a polyg-
onal line composed of cubic arcs which join continuously, with a continuous first
and second derivative.10 These junction points are precisely the points where the
heavy supporting objects are placed.

3.11. Description of spline curves of order k. Our last remark suggests the following
definition.

Definition 4. A real function F(x) defined for all real x is called a spline curve of
order k and denoted by n^x) if it enjoys the following properties:

1) It is compressed of polynomial arcs of degree at most k — l.
2) It is of class Ck~2, i.e., F(x) has k — 2 continuous derivatives.
3) The only possible function points of the various polynomial arcs are the integer

points x — nif k is even, or else the points x = » + l/2 if k is odd.

Thus a IIiO*;) is a step function with possible discontinuities at the points
x — n-j-1/2. A n2(x) has an ordinary polygonal graph with vertices only at the in-
teger points x = n. A n4(x) corresponds to the elementary mathematical description
of an ordinary (infinite) spline with the "dogs" placed at all or only some of the points
with x = n.

It should be noticed that if a nfc(x) is of class C*-1, then II(i:_1)(a;) must necessarily
be constant for all x. Thus such a IIjt(a;) reduces to a polynomial of degree k — l. It
is just this relaxation of the requirement of the continuity of the (k — l)-order deriva-
tive of IIi(a:) which turns the spline curve into a flexible and versatile instrument of
approximation. Likewise, only the "dogs" (or "rats") enable the ordinary spline to
trace curves differing from the graph of a cubic polynomial.

The special importance of spline curves will be due to the fact that by the addi-

10 The author is indebted for this suggestion to Professor L. H. Thomas of Ohio State University.



68 I. J. SCHOENBERG [Vol. IV, No. 1

tion of several spline curves of successive orders we may get any desired polygonal line
of given degree m and class C".

3.12. The evaluation of certain Fourier integrals. Our further work is based on the
consideration of the functions

1 /*50 /2 sin u/2\kMM ~' S J__(—i—)e""ddu (k = 1, 2, • • • ; — oo < x < °o). (1)

They have been evaluated explicitly for low values of k by various authors.11 The fol-
lowing general explicit representation is essentially due to Laplace (see J. V. Uspen-
sky, Introduction to mathematical probability, 1937, Example 3, pp. 277-278).

Theorem 3. Let k be a positive integer. Define the function x^r1 by
i-i _ ( x*-1 if x

_\0 if *

»-* , ~lc~1 if x 5; 0
- < - ~ <0. (2)

For k = \ and x = 0 this definition is modified to 0k+1 = 1 /2.
The following identity holds for all real values of x

°° (2 sin u/2\k 1 k i-i
' 1 eiuxdu = 8 z+ , (3)

1 r°°/ 2 sin
2irJ_50\ u2irJ-x\ u ) (k — 1)!

where 5* stands for the usual symbol of the kth order central difference of step equal to
unity.

The identity (3) is correct for k = l. Indeed it is well known that

2ir

On replacing w by ux we get that

1 rx sin xu

1 f M sin «- I  du =
!iru

2ir

sm x

u

/ 5 if OO
du = < 0 if x = 0

— f if x < 0,
or

1 ra sin xu o
- |  du = x+ - i
!ir J u2ir

Therefore

1 rx 2 sin m/2 1 r " sin (a; + i)" 1 C00 sin (x — §)w
— I  cos uxdu = — I  du I  
2ir J M 2t J u 2irJ_„ u

du

1 /•"sinia o o
= — 5 1  du = 5(a:+ — f) = 5*+.

2-k J _M «

11 See S. Bochner, Fourier analysis, Princeton University lectures, 1936-1937, where our Af*(x) are
worked out for k = l, 2, 3, and where the increasing smoothness qualities of these functions are clearly
noted. Bochner also considers the integrals

2ir •/_«, \ U / U

Using Theorem 5 below, we readily obtain the identity M?(x) = —J+(l/£!)3*ac*.
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and (3) is established for k = 1.
Let us consider for the moment the sequence of functions

Nk{x) = — — h xk+ \ (4)
{k - 1)!

We have already shown that

Mk(x) = Nt(x) (5)

holds for k = \. Assume now that (5) holds. We wish to show that the similar identity
for £ + 1, rather than k, arises from (5) by performing the operation

| 1+1/2

1-1/2

on both sides of (5). This will be accomplished if we prove that

5V X-

and
' 1+1/2

Nk+1
' 1—1/2

In view of
11+1/2 . 2 sin m/2

/ 1+1/2 Mk(x)dx (6)
1-1/2

/> x+1/2 Nk(x)dx. (7)
x—1/2

/;
eiuxdx = eiux

1-1/2 «

we obtain (6) by an integration under the integral sign as follows

,*+i/2 1 r<° /2 sin u/2\k / r 1+1/2

1-1/2 Z7T ./ _w \ U ) \ J i_l/2

r1+112 1 r00 /2 sin u/2\k ( rx+1/2 \
Mk(x)dx = — I ( 1 f I eluxdx\du = Mt+i(x).

•/ i-l/2 2lT J -oo \ M / \ J i_l/2 /

To prove (7) we notice that
fc—1

/' x+1/2 /» x /• x ^
Nk(x)dx = S I Nk(x)dx = 5 I 5* dx

1—1/2 «/ — n •> — 00 1)!
i it-i t

= 55* | —— rfx = 5*+1 — = JVfc4.i(ac).(ife - 1)! fc!
This concludes the proof of Theorem 3.

3.13. Explicit polynomial expressions for Mk{x). The formula

Mk(x) = 1 8**+-1 (8)
(ft — 1)!

will readily show that y = Mk(x) represents a spline curve of order k. Indeed, if k is
even,then

(* + n)t'

is a Iljfc and therefore also their linear combination (8). If k is odd the same conclusion
holds because
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(x + n - §)+ 1

is a Ilfc.
It also follows from (8) that the explicit polynomial expressions for

(k - 1)LMk{x),

in successive unit intervals, are identical with the successive partial sums of the ex-
pansion

/ k\k~l /k\/ k V"1 / ky-1s'""-{'+7) + + •• + <-'>'(*-7) ■

an expression which incidentally vanishes identically, being the &th order difference
of a polynomial of degree k — l. We thus get

kif .%• S 
2

k \*~l k k
if - — i * S +1(* + A\

\ 2 / .22
( k ( k \ ( k \*_1 k k(*+t) -(JV' + T-1) lf -y + iS^-y + 2

(k - 1) \Mk{x) = (9)

(■+7) -(!)(-+t-0 +
k \ / k \ * kif 1 < x < —

2 ~ ~ 2
kgkxk-i = o if — ii.
2 ~

For future reference we work out explicitly the cases £ = 1,2,3, and 4. The expansions

8x<> = 1 - 1

82x = (x + 1) — 2x + (x — 1)
(10)

8W = (x + |)2 - 3(x + £)2 + 3(* - i)2 - (x - |)2

8ix3 = (x + 2)3 — 4(x + l)3 + 6x3 — A(x — l)3 + (x — 2)3

now furnish the following expressions

/ 0 if x < — \
Mi{x) = \1 if - J < x < \ (11)si ii — s x

' 0 if 5 < x,

to which must be added Afi( + l/2) = l/2 as required by (1) for k = l.

0 if * g - 1
x + 1 if -1^

- x + 1 if Oiigl
0 if 1 ^ x,

Mt(x) = (12)
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M3(x) =

Mt(x) =

fO
(l/2)(* + 3/2)2
(l/2)(* + 3/2)2 - (3/2)(* + 1/2)2
(l/2)(— a: + 3/2)2
0

0
(l/6)(* + 2)3

(l/6)(* + 2)3 - (4/6)(* + l)3
(1/6)(— x + 2)3 - (4/6)(— z + l)3

(l/6)(— x+2)3
0

r <   3

  3 < y. <   I
^ X = 2

2 = •* = 2

1 ^ *,
a: ^ - 2

-2Sii-l

OSigl
1^^2
2 ^ a-.

(13)

(14)

In deriving these expressions the expansions (10) were used up to the point from where
the evenness of the functions M\t(x) allowed us to complete their definition for all x
by symmetry.

! I i «iWill 
-i -i o i

-3/2 -1 -V2 0 1/Z 1 3t -2-10 1 2

3.14. Interpolation formula with Mk(x) as basic function. The interpolation formula
oo

F(x) = Z V'Mk(x - v) (15)
r—oo

will play an important role in our subsequent work. We mention it at this place be-
cause it contributes to our investigation of fc-order spline curves.

To the basic function
L{x) = Mk{x)

corresponds the characteristic function

(2 sin u/2\g(«) = y—-—J • (16)

as seen by comparing III (1) with II (22). The characteristic function of the formula
(IS) for integral x — n is

k
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= Mk(0) + 2Mk{\) cos u + 2Mk{2) cos 2« + ■ ■ ■ . (17)

The {<£*(«)} represent an interesting sequence of cosine polynomials which we will
investigate more closely later in this paper. Here we mention without proof that

1 = = 4>2(«) > • • • > 0*(w) > • • •> 0 (0 < u < 2x) (18)

while, of course, <At(0) = 1. Hence (15) is a smoothing interpolation formula of progres-
sively increasing strength as k increases. We assemble the various properties of (15)
in the form of a theorem.

Theorem 4.
oc

F(x) = 2 y*Mk(x - v) (19)
p=,—oo

is a polynomial smoothing interpolation formula of degree k — l, class C~2 and span
2s = k (see sections 2.21 and 3.13). It is exact for the degree 1 and preserves the degree
k — l. The smoothing power of (19) increases progressively for increasing values of k.

The exactness of (19) for the degree 1 and the preservation of the degree k — \
follow by Theorem 2 (B and C). Indeed, by (16), g(u) — 1 has a double zero for m = 0
while g(u) has zeros of order k for u = 2irn (n ^0). Since the preservation of the degree
k — l implies the identities 11(18) and (19), the following corollary results.

Corollary. Any given polynomial Pk-i(x) of degree at most k — \ may be represented
in the form

oo

iVi(x) = x ynMt(x - n) (20)
Ti—=—00

where {yn} are the ordinates of some other suitably chosen polynomial of the same degree
as Pk-i- This representation is unique.

3.15. The analytic representation of spline curves of order k. We know that if {yn j
is an arbitrary sequence of ordinates, then our interpolation formula

F(x) = 2 ynMk(x — n) (21)
n

represents a spline curve of order k. This is true because all Mk{x — n) are such curves.
The following question arises: Let F(x) be a given n*; can we always represent it in the
form (21) for an appropriate sequence {yn \ ?

This question is answered affirmatively by the following theorem.

Theorem 5. Any spline curve n^(ic) may be represented in one and only one way in
the form

oo

n*(*) = 23 ynMk{x - n) (22)
n=—oo

for appropriate values of the coefficients y„. There are no convergence difficulties since
Mk(x) vanishes for j x| >k/2. Thus (22) represents a Ilk for arbitrary J and represents
the most general one.

In order to prove this theorem we return to the interpolation formula (21) and
differentiate it repeatedly. By (8) we have
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k d 1 k—1 k 1 jfc—2
Mi (x) = 5 x+ =5  = bMk-\{x)

dx (k - 1)! (k - 2)!

and repeating we get

m['\x) = b° M k-,{x) (0 £ r £ A - 1). (23)

From (21) and (23) we obtain by partial summation

F'(x) = X yJM^ix — ») = 2 Syn+i/2 Mm(x — m — 3)
n n

or
F'(x + 5) = byn+i/iMk-\{x — «). (24)

n

If &>2, this formal rule of differentiation of a spline curve may now again be applied
to (24) with the result

F"(x + 1) = 2 S2yn+1Mk^(x — n)

or
F"(x) = b2ynMk—z(x — n).

Generally for 0 ^ v ̂  k — 1

( S t>"ynMk-„(x — n) if v is even,
F<"(z) = < " (25)

I L, &"yn+i/iMIc-V(x — n — f) if V is odd.
n

This result may be stated as follows: The vth derivative of the spline curve (21) may be
obtained directly by applying the same interpolation formula (21) with k — v, rather than
k, to the sequence of the vth central differences h"y properly centered according to the parity
of v. In particularly: F(k~2)(x) is obtained by interpolating linearly among the &k~2y.

fx) a step function whose successive values agree with those of the correspond-
ing bk~ly.

Now let F{x) be a given 11*. We are to show the existence of a sequence {;y„} such
that (21) holds identically. Suppose for the moment that such yn have been found
which do make (21) hold. Then by (25) for v = k — \ we have

(5*_1;yn for n — \ < x < n + 5 if k is odd./?<*-»(*) =< (26)
for n < x < n + 1 if A is even.

In either case the successive constant values of the step function F{k"l){x) determine
uniquely the values of the differences of order k — 1 of the sequence of the as yet un-
known coefficients yn. These differences in turn determine the coefficients y„ uniquely
up to an additive sequence of vanishing differences of order k — 1. Let yn be one se-
quence such that

St-iy„+i/2 = F(*_1)(w + 3) if k is even

or else

bk~xyn = F(-k~1)(n) if k is odd.
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Consider the &-order spline curve

F{x) = ^ ynMk(x — n)
n

and let

R(x) = F(s) - F(x).

From the way F(x) was defined it is clear that F^'^^x) and F<<:-1)(#) agree in their
successive unit intervals of constancy. Hence R(x) is all* whose various polynomial
arcs are of degree k — 2 or lower. Therefore R(x) is identical with a polynomial of de-
gree k — 2. As such it allows of a representation of the form (21) in view of our Corol-
lary of section 3.14. Therefore also

F(x) = F(x) + R(x)

may be represented by our formula (21).
The unicity of the representation (21) is readily established. Indeed two different

such representations would imply a representation of zero

0=2 ynMk( x - n)
n

without all y„ vanishing. However the 5*_1y all vanish, and our conclusion would con-
tradict the uniqueness of the representation (20) of polynomials.

A simple example might illustrate our proof of Theorem 5. Let us find the repre-
sentation of the spline curve of order 4

1 s
F(x) = — *+.

3!
By (26) we have

8 y*+1/2 = F'"(n + $) = (» + 2)+ =
if n ^ 0
if m < 0.

A sequence having these third differences is

0 if n < 0
«(»J — 1)

Hence

CT)= if n ^ 0.

*+ = 2 w(«2 — 1 )Mi{x — n), (27)

with the possibility still open that both member might differ by a third degree poly-
nomial. However this possibility is excluded by the remark that both sides vanish
identically for x^O. Incidentally, (27) implies

— (— x)*+ = 22 w(»2 ~ 1 )Mt(x — n)
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and by addition and subtraction of the two relations we get the identities

oo oo

x3 = Y. «(m2 — l)Mt(x — n), | *|s = ^ | n(n2 — 1) | M*(x — n).

In later applications we shall frequently operate with polygonal lines F(x) of de-
gree k — \ not having continuity properties as strong as a 11*. Thus Jenkins' L{x)
defined by 11(11) is of degree 4 and class C". Let F{x) be a polygonal line of degree
k — 1, having vertices at integral point x — n, and being for all real x a function of
class C" ( — 1 ^n^k — 2). We certainly obtain a curve of degree k — 1 and class C" by
addition of spline curves.

f(x) = nM+, + nM+j + • • • + n*, (28)

where n, stands for n,(x) or n,(x+l/2), according to whether v is even or odd.

Theorem 6. Any given polygonal line F(x) of degree k — 1 and class C" may be repre-
sented as a sum (28) of k—fi — l appropriate spline curves of orders m+2, h+3, • • • , k.

This theorem is a corollary to Theorem 5. Indeed, F<-"+1)(x) may have certain dis-
continuities. We determine a n„+2 having the same discontinuities in its 0*+l)st
derivative. Then

F(x) - n„+j

is of degree k — 1 and class C"+l. Proceeding in this way the theorem is readily estab-
lished.

Substituting for the II, in (28) their expressions in terms of the M, we obtain an
explicit (parametric) representation of such polygonal lines. Thus Jenkins' function
11(11) may be represented as

L{x) = 4Mt(x) + \M<{x + 1) + $Mt(x - 1) - 2M„(x + }) - 2Jf.(* - }).

At a glance we recognize a curve of degree 4, class C", span 5 = 6.
3.16. A summation property of spline curves. The degree of a polynomial is de-

creased or increased by one unit if we difference or else sum the polynomial. Not so
with our spline curves 11*. Indeed let

n*(*) = 22 ynMk(x — n) (29)
»

be a given spline curve. Then

IIi(* + 1) = X) ynMk(x + 1 — ») = 2 yn+iMk(x — n)

and subtracting (29) we have

An*(s) = n»(* + 1) - n*(s) = X) AynMk(x - «). (30)

Hence Ant(ic) will in general be also a 11*. Now let the spline curve II**(x) be given
and we wish to find n*(ac) such that

AIIt(x) = nt(*). (31)
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By using Theorem 5 the solution is immediately found. Indeed let

nt(*) = X y*Mk(x — n).

Now (29) will be a solution of (31) provided Ayn = y*, for all n. This relation defines
the yn up to an additive constant which appears as an arbitrary additive constant in
the solution IltO*). It is thus seen that the operation of differencing or summing
spline curves (29) reduces to performing the same operations on the sequence of the
coefficients {y„}.

3.17. An interpretation of Mh(x) in probability theory. In concluding our discussion
of polynomial spline curves we mention briefly the following interpretation of Mkix).
As seen from its values as given by 111(11) it is clear that Mi(x) may be interpreted
as the probability density function of the error committed on a random real variable
x, if that variable is rounded off to its nearest integral value. Now III(1) shows that
the characteristic function of Mt{x) is the kth power of the characteristic function of
Mi(x). From a known proposition in probability theory we may conclude that Mk(x)
is the density distribution function of the error committed on the sum

*i + *»+••■ + **

of k statistically independent real random variables x\, • • • , Xk, if each variable is re-
placed by its nearest integral value.

This interpretation, otherwise entirely irrelevant for our purpose, does make a
few of the properties of Mk(x) intuitively obvious, such as

Mh(x)
for | x | > k/2
for | x| < k/2,r1= o

J Mk(x)dx = 1

In concluding we note the identity

/x+1/2 /» xi+1/2 /» xk-1+1/2 /• oo
dxi I dx2 ■■■ I f(xk)dxk = I Mk(u — x)f{u)du.

c—1/2 J a—1/3 J xi—1—1/2 J -00

3.2. Analytic spline curves of order k. The polynomial spline curves 11*(x) de-
scribed in section 3.1 will be shown to be sufficient for the derivation of polynomial
approximations to equidistant data enjoying various desirable properties. These poly-
nomial approximations will have any a priori assigned number of continuous deriva-
tives. However, in order to obtain analytic approximations we shall now proceed to
derive from our spline curves IIi(a:) an analoguous family of analytic functions.

To achieve this end we shall smooth out our II * (a;) by means of one-dimensional
heat flow. Consider an infinite homogeneous bar (the x-axis) in which the tempera-
ture at the point x at the time t is denoted by F(x, t). We assume the flow of heat to
be governed by the equation

dF 1 d*F    (32)
dt 4 dx2

If F(x) = F{x, 0) is given, i.e., the temperature distribution at the time t — 0 is known,
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then F(x, t) is determined by the following integral12

F(x, t) = = f 0)du. (33)
V ft J -oo

This result is easy to verify: by partial differentiations we find that F(x, t) as defined
by (33) indeed satisfies the differential equation (32) while familiar arguments origi-
nated by Weierstrass will show that (33) implies

lim F(x, t) = F(x, 0),
<-+o

provided F(x, 0) is continuous and, e.g., bounded.
The solution of the problem of finding F(x, t), if F(x, 0) is given, is especially

simple in the case when Fix, 0) is defined by a Fourier integral

1 rx
F(x, 0) = — I \p(u)e'uxdu. (34)

2irJ_„

Indeed, in this case we find

F(x, t) = — [* e~Huli)2\l/(u)e'"xdu. (35)
2irJ-x

Notice that the temperature t enters only in the additional exponential factor. This
can be proved in two ways, either by substituting (34) into (33) or else by verifying
directly that (35) satisfies the differential equation (32). Obviously (35) reduces to
(34) for / = 0, as it should.

We may (and wish to) think of F{x, t), for a fixed />0, as a smoothed version of
F(x) = F{x\ 0). In fact F(x, t) is analytic and regular for all real or complex values of x
if is, e.g., bounded.

If we now apply this heat-flow transformation to our basic fc-order spline curve

1 f°°/2 sin u/2\k .Mk(x) = — J I J e,uzdu (36)

we obtain by (35) its smoothed version

1 C °° , /2 sin w/?\*
Mk(x, t) = — I e-«»'2>8( —J eiuxdu. (37)

2t J \ u /

Obviously

Mk(x, 0) = Mk(x). (38)

12 See H. S. Carslaw, Mathematical theory of the conduction of heat, Dover Publications, New York,
1945, Chapter III, Section 16. Certain smoothing properties of heat flow were already noticed by Ch.
Sturm in 1886. See in this connection G. P61ya, Qualitatives iiber Warmeausgleich, Z. angew. Math. u.
Mech. 13, 125-128 (1933). It should be mentioned here that Weierstrass derived his famous approxima-
tion theorem by means of the integral (33). Finally see E. Czuber, Wahrscheinlichkeitsrechnung, vol. I,
Leipzig-Berlin, 1924, pp. 417-418, for a brief sketch of a method of using (33) to derive analytic approxi-
mations to given data.
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The graph of y = Mk(x, t) (OO) is a bell-shaped curve which dampens out very fast.
Later we shall learn how to compute its values very accurately. Here we mention that

0 < Mk(x, t) < —= n x-z k/2. (39)
V irt

Also, the recurrence relation 111(6) generalizes so that Mk+i(x, t) is obtained by the
averaging operation

. 1+1/2

(40)
x—1/2

If now

/■ X+l Mk(x, t)dx.
x—1/2

00

n*(a;) = 22 JrMk(x — n) (41)

is a spline curve of order k, then its heat-flow transform is
oo

llk(x, 0 = 22 ynMk(x — n, t). (42)

The graph of this function may be called an analytic spline curve of order k. We notice
that the series (42) fails to converge only if y„ increases very fast with |n|.

Summarizing we see that the curve (42) arises from the step function

22 ynMi{x — n)
n

by k — 1 successive applications of the averaging operation

. £+1/2

/ X-

( )dx
1/2

followed by the heat-flow transformation during a time interval t. The order of ap-
plication of these k operations is of course irrelevant.

The remaining parts of the paper are devoted to the problem of utilizing the two
families of curves (41) and (42) for the purpose of approximating given equidistant
data.

XV. A FIRST CLASS OF ANALYTIC INTERPOLATION FORMULAE

We shall now use the analytic spline curves 111(42) to obtain
1. A smoothing interpolation formula which is exact for the degree 1 only.
2. An ordinary interpolation formula exact for the degree k — 1.
3. A smoothing interpolation formula depending on a positive parameter e, of

strictly increasing smoothing power as e increases. For e = 0 this formula reduces to 2,
while for e = «> it is identical with 1.

4.1. A smoothing interpolation formula exact for the degree 1. A comparison of
the formulae 111(15) and 111(42) immediately suggests the following analytic inter-
polation formula

oo

F(x) = 22 ynMk{x — n, t) (1)
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where Mk(x, t) is defined by 111(37). For the sequel we shall use the following notation

")„ /2 sin u/2\k
**(«,# =  -J-) , (2)

(2 sin u/2\k
tk{u) = 0) = (   ) , (3)

in terms of which 111(37) becomes
If"Mk(x, t) = — I yfrk(u, t)e,uxdu. (4)

2 7T «/ _«,

The characteristic function of the smoothing formula (1) for integral a; is
00

<t>k(u, <) = X) ^*(M> 0 cos ww- (5)
n=—oo

The general relation 11(30) furnishes the following equivalent expression
00

<t>k(u, t) = Yh + 2*". 0- (6)

The properties 111(18) for the case t = 0 generalize for OO as follows

1 > <t>x{u, t) > /)>•••-> <t>k{u, /)>••■> 0, (0 < w < 2tt, * > 0). (7)

Moreover, for each fixed u, 0<u<2r, t) is strictly decreasing as t increases.
These last two properties we state without proving them here.

The arguments which lead to Theorem 4 now allow us to state the following theo-
rem.

Theorem 7. For t>0, k = l, 2, • • • ,
oo

F(x) = X) ynMk(x — n, t) (8)
n=—oo

is an analytic smoothing interpolation formula which is exact for the degree 1 and pre-
serves the degree k — l. The smoothing power of (8) increases whenever either k or t is in-
creased.

4.2. An ordinary interpolation formula exact for the degree k — l. We shall now
use the important property (7) to the effect that the periodic function <f>k(u, t) is posi-
tive for real u. This allows us to define the basic function

i c tk(u, ty
Lk(x,f)=-\ e'uxdu (9)

2ir J <f>k{u, t)
whose characteristic function is

tk(u, t)
(10)

Our Theorem 2 of Chapter II will readily yield the following result.

Theorem 8. For /2£0, k — l, 2, 3, • • •
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00

F(x) = X) y»Lk(x - n, t) (11)
n=—oo

is an ordinary interpolation formula which is exact for the degree k — \.

Firstly we realize by (10) and (2) that the conditions 11(33), (34) of Theorem 2
are verified. Therefore (11) preserves the degree k — \. Secondly we have by (6), (10),
and 11(30)

^*(w + 2tv, t) 1 _tf>(«) = E «(« + 2*v) = 2Z —— r = —7 7 S + 2*r, t) = !•
v y <t>k{u + 2TTV, t) t) y

Thus 11(31) holds and (11) is therefore an ordinary interpolation formula. This con-
cludes the proof of our theorem. Indeed, by the remark following Theorem 2 our
formula (11) must also be exact for the degree k — 1.

We also mention without further details the following two limiting relations

tk(u, t) ik(u,t) (1 if | « | < 7T
lim —    = lim = < .11 (12)
(-.» <£*(«, t) t—o t) vO if | u | > ir.

They show, in view of the integral representation (9), that our present basic function
Lk(x, t) converges towards the basic function II (6) of the original cardinal series when-
ever either k or else t tends to infinity.

4.3. A family of smoothing interpolation formulae depending on a smoothing
parameter e. In section 4.1 we have derived the smoothing interpolation formula (8)
in the derivation of which no attempt was made to compromise between smoothness
of results and goodness of fit. Such a compromise is afforded by the following basic
function

1 r00 e + <t>k(u, t)
Lk(x, t,e)=— I —    t)eluzdu (0 ^ e ^ ») (13)

2tt J _„o « + 4>k(u, t)2

which depends also on the smoothing parameter e. The corresponding interpolation
formula

oo

F(x) = 21 ynLk(x - n, t, e) (14)
n=—oo

includes our previous formula (8) and (11) as special cases. Indeed by (13) ,(4) and
(9) we find

Lk{x, t, 0) = Lk(x, t), (15)

Lk(x, t, co) = Mk{x, t). (16)

Let us now investigate the characteristic function of the smoothing formula (14)
for integral x. By (13) and 11(30) this characteristic function is (<j>k(u,t) is periodic!):

t -f- <bk(u, I)
<t>k(u, t, t) =      — X) ik(u + 21 TV, t).

e + <t>k(u, t)2 y

This and (6) give
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<t>k{u, t, e) = (t<t>k(u, t) + 4>k(u, <)2)/(e + t)2). (17)

On the other hand we have by (7) the inequalities

0 < t) < 1, (0 < « < 2tt, / > 0). (18)

Now (17), (18) imply

0 < Mu, ',0<1. (0 < u < 2v, t > 0, e > 0), (19)
and therefore (14) is a smoothing interpolation formula in the sense of section 2.21 b.
Moreover, we see from (17) that for fixed t and u (0<w<2ir) (f>k(u, t, e) decreases
monotonically from

<£*(«, /, 0) = 1 to t, <x>) = <t>k(u, t)

as e varies from e = 0 to e= «. Finally (14) is exact for the degree 1 and preserves the
degree k — 1 for the same reason as mentioned in the case of (8).

We summarize these properties in the following theorem.13

Theorem 9. For t^0, k = l, 2, ■ • • ,
oo

F(x) = X yj<k(x — w, t, t), (20)
n=—oo

of basic function (13), is a smoothing interpolation formula which is exact for the degree 1
and preserves the degree k — \. For e = 0 (20) is identical with the ordinary interpolation
formula (11). For increasing values of t it increases in smoothing power until for e= «o
(20) is identical with our smoothing formula (8).

4.31. A property of the derivatives of the approximation F(x). Let the given data
{yn} satisfy the additional condition

Z I y»l < »• (21)
n—oo

Assume also <>0, e>0. We know that the sequence {/"(»)} obtained by (20) is
smoother than {yn} in the sense of our discussion in I Section 1.1. However, it appears

" The method used in deriving Theorems 8 and 9 obviously generalizes as follows. Let

1 r"L(x) = — J g(u)e,uxdu

be a basic function. Let the periodic function

<M«) = S(« + 2*r)
f

satisfy the inequality
0 < <*>(«) g 1.

Then

Li{x) = hL^)e""du
is the basic function of an ordinary interpolation formula. Moreover

1 r" e + (bill)£>(*, «) = - TT,'m sMe«"du
2tJ-„ t + d>(u)22x •/_. t + <t>(uy

gives rise to a family of smoothing formulae of increasing strength, as e increases.
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to be of some interest to discuss here the smoothness of the function F(x), rather
than that of the sequence {F{n)}, as a function of the smoothing parameter e. In
this connection we prove the following

Theorem 10. Denote by F(x, e) the approximation (20) so as to indicate its depend-
ence on e. The condition (21) insures the convergence of the integrals of the squares of
the derivatives

r (/?<">(*, Wdx, (m = 0, 1, 2, • • • ). (22)

Also each of these integrals is a monotonically decreasing function of e in the range
0 < € < co .

Indeed, let

T(u) = £ yne^ (23)

be the characteristic function of the sequence {)>„}. For convenience we define

€ ~t~ t)
(24)« + 0*(w, t)

Then (13) becomes

l r °°
Lk(x, (,«) = - I fi*(w, t, t)ipk{u, t)e~luxdu. (25)

2ir

By substitution of (25) into (20) we obtain

F{x, e) = — f Gk(u, t, t)ipk{u, t)T(u)e~iuxdu. (26)
2 xJ-n

We may evidently differentiate under the integral sign obtaining

1 r"
F(m)(x, t) = — I Qk(u, t, t)T{u){— iu)merluxdu.

2x J

This formula exhibits the Fourier transform of F(m)(x, e). We now use the analogue
of the Parseval relation for Fourier integrals finally obtaining

f (F(m)(x, i)2dx = — f (Qt(u, t, /))*| T(u)\2u2mdu. (27)
^ —oo 2ir J —a©

This relation establishes our theorem. Indeed, by (24) the behaviour of the function
0*(tt, t, e) of period of 2ir, is as follows: £2i(0, t, e) = 1, while for each fixed w, 0<w <2ir,
it decreases from

fi*(«, /, 0) = l/<t>k(u, t) to fit(«, t, oo) = 1,

as e increases from e = 0 to e = °o.
The discussion of I section 1.2 concerning the smoothing of a finite table also has

an analogue concerning the derivatives of the approximations F(x, e). We state the
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result without further details. We assume the concrete situation of I section 1.2 where
a finite table was extended to an infinite table by constant third differences at each
end. To this extended table we apply our formula (20) with such a value of k which
will insure that the formula (20) preserves cubics, i.e., k^A. Then we can prove that
the integrals (22) converge for m= 4, 5, 6, • • • and represent decreasing functions
of e.

4.32. Formula (20) as applied to sub tabulation. Our formula (20) is excellently
suited for the systematic interpolation, or subtabulation of given ordinates yn. It is
less suited for interpolation. The reason is obvious: For subtabulation to tenths we
need only a table of the basic function Lk(x, t, e) for the step h — 0.1 only, while inter-
polation would call for a much more elaborate table of this function.

The following transformation of the formula (20), in terms of the function
Mk(x, t), is of importance for numerical applications. First of all we expand the even
periodic function (24) in a Fourier (cosine series)

, . . « + <t>k(u, i) " (i) ,,u -A (k)
i2A(«, t, t) =   — = 2_ \l< Ve = Zj u, (t, e) cos vu. (28)

e + <t>k{u, ty y=—oo

Substituting this expansion into (25) we get

Lk{x, t, e) = X} w,(i>(/, c) — f ^*(m, t)ei<-'~x',udu,
»«—oo 2ir J _oo

which in view of (4) becomes

Lk(x, t, t) = 23 — V, t). (29)
»»•=—oo

This formula expresses the basic function Lt(x, t, e) in terms of the Mk(x). If we sub-
stitute this expansion into our formula (20) we obtain

F(x) = ^ y*Lk(x — n, t, f) = X ynwlh\t, t)Mk(x — n — v, t)
n n,9

and replacing v by v — n

F(x) = X) ynU-n(t, e)Mk(x — v, /).(*),
ync

n, p

A first summation by n introduces the sums

f, = 2 ynoil-n(t, () (30)

in terms of which our last expression becomes

oo

F(x) = Z f'Mkix - v, t). (31)

The pair of relations (30) and (31) is equivalent to (20) and represents its practical
form. The reason for this is that the basic function Mk(x, t) dampens out like
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exp( —*2) (see III (39)) while Lk(x, t, e), t< », dampens out like exp( — x) only. We
notice incidentally that (31) is identical with our formula (8), to be applied to the new
computed ordinates {/„} given by (30).

Frequently we require also tables of the derivatives F'(x) and F"(x), of the ap-
proximation F{x). These are then computed by the formulae

*"(*) = v,t), (31')
V

F"{x) = T,f'Ml'(x-v,t), (31")
v

from corresponding tables of Mi and Ml'.
4.33. The least squares origin of formula (20). We want to sketch briefly the genesis

of our formula (20). Let the sequence {y„} be given and consider the spline curve
F{x) given by (31), where the coefficients {/>} are as yet unknown. If we try to deter-
mine these unknowns by the requirement that F(x) should interpolate strictly the
given ordinates yn, i.e.,

*"(») = y% (« = o, ± 1, ± 2, • • • ), (32)
we obtain an infinite system of linear equations in the unknown /„ the solution of
which was found to be given by

f. = 2 Jr^-n(t, 0).

This leads to our ordinary interpolation formula (11).
In view of Whittaker's well known smoothing method it seemed natural to proceed

now as follows: Let tbea given positive number. To determine the unknown coefficients f„
of (31) as solutions of the following minimal problem, we set

X) (F(n) — yny + «• X (/» ~ }v)2 = minimum. (33)
n n

For « = 0 the solution is of course identical with the solution of the ordinary inter-
polation problem (32). For t = <» the solution is obviously —yn in which case (31)
reduces to (8). For 0^e^ oo a system of "normal equations" arises whose solution is
found to be given by (30). The explicit solution of these normal equations (matrix
inversion) is performed by the numerical determination of the cosine coefficients u,
of the expansion (28) for each given set of values of k, t and e.

V. THE COMPUTATION OF THE TABLES I, II, III

In this last chapter we shall discuss the methods used in the computation of our
tables which allow us to use our formulae (30), (31) or

fn = S «)> (1)
v=—oo

oo

F(x) = £ fnMk(x — n, t), (2)

for subtabulation to tenths.
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5.1. The computation of the function Mk(x, t) and its derivatives. This function
is defined (see 111(37)) by the integral

1 r" , /2 sin u/2\k
Mk(x, t) = — | e-««/2> ( ) eiuxdu, (I > 0).

2ir J \ u /
(3)

For the special case of / = 0 and £ = 1,2,3, • • • we found previously the explicit poly-
nomial expressions 111(3). It now so happens that for our present case of />0 (3) al-
lows us to define our function also for £=0 as

1 rx
Mo(x, t) = — I e~'(ul2) eluzdu.

2ir •/_«,

This last integral is known to be identical to

M0(x,l) (4)
v **

The recurrence relation 111(40) shows that (3) is obtained from (4) by repeating k
times the averaging operation

| 1+1/2
/» £+1/2 /• Xor Sj .

x—1/2 "J -=o

The result, however, is not changed if we perform all k integrations first to be fol-
lowed by the operation hk of £th central differencing. This proves the following result:

If we define a sequence of functions gk(x, t) by

g<,(x,t) =(5)
V ft

and the recurrence relation

gk(x, t) = f £*_i(x, t)dx (k = 1, 2, 3, • • • ),
J -00

(6)

then

Mk(x, t) = 8kgk(x, /). (7)

This relation reduces the problem to the problem of computing the repeated in-
tegral gk(x, t) of the error function (5). This we do as follows. It is easy to prove by
induction or otherwise that (5) and (6) imply

= /, 1 —7= f (x - u^e-o'i'du. (8)
(£ — 1)! yjTtJ-n

With x — u=v this becomes

£*(x' $ = /, 1 ~7= f er<*>~')*"vk-1dv. (9)
— 1)! "V irt J o

By differentiating this with respect to x we get
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i i r°°
gk (%, t) = — I 2xi-1 + 2vtrl)dv

(k — 1)! vt/ J o
2x 2k

  gk(x, 0 4 £*+i(*> 0/ /
and therefore the recurrence relation

t x
gk+i(x, t) = — gk (*, <) + — S*(*. 0. (A = 1, 2, • • • ) (10)

2s «

which allows us to compute the successive values gk(x, t) by the operation of differen-
tiation rather than integration. Indeed from (5) and (6) for J = 1 we get

g\(x, t) = —— f e~x'"dx. (11)
\ZirtJ-n

Now (11) and (10) for & = 1 will give

'1 , 1 rx
gt(x, t) = — e~x " + x —— | e~x "dx

2 y/rt yfi tJ-x

from which g3(x, t) is readily determined.
This progressive computation is greatly simplified if we realize that gk(x, t) will

appear as an expression of the. form

gk(x, t) = Pk(x, t)g0(x, /) + Qk(x, t)gi(x, t), (12)

where Pk, Qk are polynomials in x and t, while go(#, t) is the error function (5) and
gi(tf, t) is the error integral (11). Substituting (12) into (10) we find

gk+1(*, t) = — (P£ + Qk)go(x, t) + ^ Q&1 (x<') •

On comparing with (12) for £ + 1, rather than k, we obtain the recurrence relations

Pk+i = ^ {Pi + Qk)
21 k

Qk+i = + jQk (i = 1, 2, • • • ). (13)

Since Pi = 0, Qi = l we readily obtain the following explicit expressions

Pi = 1/2, Qt = x,
P3 = tx/ 4, Qz = t/4 + *72,
Pt = t(t + *2)/12, Q* = *(3/ + 2x2)/12, (14)
i>5 = te(5/ + 2ai2)/96, Q6 = (3*2 + 12/x2 + 4*4)/96,

P6 = <(4/2 + 9/z2 + 2x4)/480, (2, = s(15<2 + 20to2 + 4*4)/480.

Excellent tables of the probability function (5) and its integral (11) are now available.
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By means of these tables the formulae (12) and (14) allow us to compute readily the
function gk(x, t).u It seems worth while to point out that the relation (7) goes over
into III(8) if t—>+0. Indeed by an obvious change of variable we see that (11) becomes

1 rx'-J'
gi(x, t) = — I e~^du

and therefore

0
lim gi(s, t) = x+.

<-.+0

Now by induction we prove by (6), on letting /—>+0, that

1 *-i
lim gk(x, t) = — — x+
i-+o (k — 1)!

which proves our last statement by continuity.
The computation of the derivatives of Mk{x, t) is immediately settled by the rela-

tion

M(k'\x, t) = 5kgk-,(x, /), (15)

which is implied by (6).
5.2. The computation of the cosine coefficients coi^ (t, e). By IV(5) and IV(28)

we can see that the problem consists in computing the values of the coefficients of
the cosine expansion of the function

. € + <#>*(«>') " <*)fi*(w, t, t) =   — = 2^ ('. £) cos nu> (16)
« + 4>k{u, ty

where the even periodic function <j>k(u, t) is defined- by its cosine expansion

00

<t>k(u, 0 = S Mk{n, t) cos mm. (17)

I owe to D. H. Lehmer the reference to the functions Hhn(x) defined by

Hh0(x) = J c't'dx, Hhn(x) = J Hhn-i(x)dx.

Tables of these functions were published by J. R. Airey as Tables XV, Group IV, of the Mathematical
Tables of the British Association for the Advancement of Science. The relation between our gt(x, t) and
these new functions is

u(x, t) = ~j= (</2xVm-V2r

This relation, for k =4, t = \, would readily allow us to compute our Table I by means of Airey's tables
of Hhs, Hhi and Hh\. However, for other sets of values of k and t, such as fc = 8, /= J, which are needed
for other purposes, the range of x in Airey's table becomes insufficient. In this case tables of Mt{x, t) and
its derivatives are computed by our formula (12) and the excellent Tables of Probability Functions, vol. I
(1941), vol. II (1942), prepared by the Mathematical Tables Project under the direction of A. N. Lowan.
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The coefficients Mk(n, t) of this extremely fast convergent series are readily computed
to 10 decimal places. The obvious procedure would be to compute from (17) a table
of <f>k(u, t), then compute a similar table of Slk{u, t, e) which is then to be used in
computing w„ by some method of numerical harmonic analysis. It would be hard to
achieve accuracy by this method and for this reason we proceeded differently. I t should
be born in mind that the cosine expansion of the denominator of (16) is readily ob-
tained by the simple operation of multiplication of Fourier series. The only trouble-
some part is the computation of the expansion

1 00
■ . , cos nu, (18)

i.e., the reciprocation of a given cosine series. This was done as follows. The above-
mentioned method of a 24-ordinate harmonic analysis scheme was used for obtaining
values of the c„'s accurate to 4—5 decimal places. These values were then improved
to values accurate to 8 or 9 places by an iteration method developed by H. A. Rade-
macher and the author. This method is closely related to the method recommended
by H. Hotelling for the reciprocation of ordinary matrices and will be described else-
where.

In concluding this paper we want to point out two special cases of our ordinary
interpolation formula (11), or (20) for €=0, which are of mathematical interest. We
mention first the case of k=0, t>0. This corresponds to interpolating our ordinates
y„ by means of a function F(x) as described by the formula (8) of the Introduction.
Although, as remarked there, the resulting interpolation formula is useless for practi-
cal purposes, it has the remarkable feature that the expansion coefficients 0)
of (16) may be obtained explicitly. Indeed the function <t>o(u, t) reduces to a Theta
function which is a regular and uniform function of

z = eiu

with singularities only at z = 0 and z = °o. The simple zeros of this function are real,
negative and form a geometric progression. As a result we are able to find explicitly
the decomposition in partial fractions of the reciprocal

1/#o(m, t).

The expansion of these partial fractions into geometric power series furnishes ex-
plicitly the Laurent expansion in powers of z and therefore also the cosine expansion
(16).

The second special case of interest is &>0, / = 0. In this case our formula (11) re-
duces to an ordinary polynomial interpolation formula of degree k — 1 and class k — 2.
This does not contradict Mr. Greville's statement (loc. cit. page 212) to the effect
that such formulae do not exist. Indeed Mr. Greville considers only basic polynomial
functions L(x) of finite span s only, while our basic Lk(x, 0) are of infinite span. This
case, which is of considerable interest, requires a more detailed investigation of the
cosine polynomials 4>k{u, 0). We postpone this discussion to the second part B of
this paper.
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APPENDIX
Description of the tables and their use for the analytic approximation

of equidistant data.
Tables I and II. In Table I we find the 8-place values of the even function

1 r™ . /2 sin m/2\4
M(x) = — I e~u /8( J cos uxdu (1)

2ir J \ u /

and its derivatives M'(x), M"(x) for the step of Ax = 0.1. The graph of M(x) is a bell-
shaped curve and M(x) vanishes to 8 places for x ^ —4.3 and *^4.3. We now define
a function of period 2ir by the cosine series

4>{u) = M(0) + 2M(1) cos « + 2M(2) cos 2m H  (2)

and expand in cosine series the following functions

« + <t>(u)

t <f>(u)2
= &)o(«) + 2coj(c) cos u + 2w2(«) cos 2m + • • • , (3)

where € is a non-negative parameter. Our Table II gives the 8-plane values of these
coefficients for e = 0, 0.1, 0.2, • • • , 1.0.

These tables may be used as follows to obtain an analytic approximation F(x)
to our ordinates y„. We discuss first the case when F(x) is to interpolate the ordinates,
in the usual sense, i.e.,

F{n) = yn. (4)

For this end we compute first from the sequence {y„} a new sequence of coefficients
{/»I by means of the formula

fr — • • • + yn-&> 2(0) + y»-i<oi(0) + y„co0(0) + yn+ia>i(0) + yn+2W2(0) + • • • (5)

or

/» = L y *>»-,( 0), (5')
w

where un = co_m. The analytic approximation of the ordinates yn is then given by

F{x) = f»M(x - »). (6)
n

The values of F(x), x to even tenths, are now readily computed. Thus

F( 2.3) = f-iM(3.3) + /0M(2.3) + /,3f (1.3) + /2M(0.3)

+ f3M(- 1 + .3) + J<M{- 2 + .3) + /6M(- 3 + .3) + feM(- 4 + .3).

The tabular values of M(x) are so arranged that all 8 values needed in this computa-
tion are found in the fourth column headed x+.3. Generally, if the values of/„ are
written in a vertical column, we compute the values of F(m-\-v- 10_l) (v = 0,1, • • •, 9)
by matching the column of values of /„ with the vth column of the table of M(x) in
such a way that/m corresponds to the row for x = 0. The products

fnM(m — n + v 10-1)
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are then accumulated in the products counter of a desk computing machine. Also the
values/„ are best computed by (5') in a similar way if the column of values of co„(0)
is extended upwards by symmetry for negative values of n.

From the tables of M'(x) and M"(x) we may likewise compute tables of the de-
rivatives of F(x) by

F'yKx) = £/,Jrw(* - n). (7)
n

A check of the computation of the coefficients/„ is afforded by (4). Indeed the values
F(n) computed by (6) should agree with the y„ to about eight significant figures.

The formula (6) is exact for cubics, i.e., if the y„ are the ordinates of a polynomial
of degree at most 3, then F(pc) is identical with that polynomial.

If the conditions (4) of strict interpolation are not required, then we have the
possibility of obtaining an approximation F(x) which is such that the sequence
{F(n)} is smoother than the given {j»„}. The approximation F(x) is then given
by the pair of formulae

fn = 2 ?»"«-»(<0. (8)
v

Hx) = Z/„M(*- »), (9)
n

which are applied as above. The choice of the value of the smoothing parameter e
depends on the amount of smoothing desired. The strongest smoothing afforded by
our table is obtained for e = +<». Then (3) shows that yo(°°) = l, wi(°°)=«2(c0)
= • • • =0. Thus (8) becomes/„ =yn and (9) reduces to

F(x) = X ynM(x — n). (10)
n

This formula is especially simple to apply. It should be remarked however that, if
€>0, our formula (9) is exact only for linear functions and the same is true of (10).

Table III. We may eliminate the coefficients /„ between (8) and (9). In terms of
the new even function

oo

L(X, «) = H - 1l), (11)

our formulae (8), (9), then reduce to

F(x) = X) y»L(x — n, e). (12)
n

Table III gives the values of L(x, e) and L"(x, e) for € = 0, 0.1, • • • , 1.0 for the step
Ax = 0.5. These may be used for subtabulation to halves in preference to (5), (6) or
(8), (9). For subtabulation to fifths or tens, the use of formulae (8), (9) is preferable
because of the slower damping of the function L{x, «). Even so, formula (12) and
Table III allow us to estimate quickly how well F(x) approximates the yn. By (12) we
have

F"(x) = £ ynL"(x - n,«). (13)
n

The table of L"(x, e) then allows us to compute quickly a table of F"(x) for the step
Ax = 0.5 or else only isolated values if such are needed.
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Example of subtabulation to tenths. We consider the following fairly smooth se-
quence of 64 ordinates y„:

1
2
3
4
5
6
7
8
9

10
11

24614
24644
24680
24723
24772
24828
24892
24966
25048
25143
25250

12
13
14
15
16
17
18
19
20
21
22

25370
25504
25660
25850
26080
26350
26660
27040
27490
28010
28600

23
24
25
26
27
28
29
30
31
32
33

yn

29290
30160
31320
32840
34790
37260
40440
44750
51120
59390
67550

34
35
36
37
38
39
40
41
42
43
44

73820
77830
80240
81660
82330
82680
82840
82830
82780
82700
82590

45
46
47
48
49
50
51
52
53
54
55

y»

82450
82290
82110
81911
81699
81472
81234
80987
80736
80481
80223

56
57
58
59
60
61
62
63
64

y»

79962
79698
79431
79161
78889
78614
78338
78060
77780

The differences of the section of this table with which we will be concerned are as
follows:

A* A3 A* A6

27
28
29
30
31
32
33
34
35
36
37
38

34790
37260
40440
44750
51120
59390
67550
73820
77830
80240
81660
82330

2470
3180
4310
6370
8270
8160
6270
4010
2410
1420
670

710
1130
2060
1900

- 110
-1890
-2260
-1600
- 990
- 750

420
930

- 160
-2010
-1780
- 370

660
610
240

510
-1090
-1850

230
1410
1030

- 50
- 370

-1600
- 760

2080
1180

- 380
-1080
- 320

We illustrate the case of strict interpolation, i.e., we use our Tables II for e = 0. From
our formula (5) and the values of oj„ as given in the column of Table II, with the head-
ing « = 0, we obtain the following coefficients.

27 34662.222
28 37031.355
29 40215.195
30 44060.182
31 50349.304
32 59490.524
33 68212.510
34 74566.216
35 78283.074
36 80460.234
37 81953.811
38 82356.888
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From these values and our Table I of M(x) and M"{x), we obtain by the formulae
(6) and (7) the following tables of F(x) and F"(x) with their differences.

Table of the function F(x) and of its second derivative F"(x).

F(x) A2 A3 A4 F"{x) A2 A3 A4

31.0
31.1
31.2
31.3
31.4
31.5
31.6
31.7
31.8
31.9
32.0
32.1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
33.0
33.1
33.2
33.3
33.4
33.5
33.6
33.7
33.8
33.9
34.0

51120.00
51884.17
52667.97
53469.63
54287.11
55118.17
55960.40
56811.29
57668.25
58528.68
59390.00
60249.69
61105.30
61954.51
62795.08
63624.93
64442.10
65244.77
66031.30
66800.16
67550.00
68279.64
68988.05
69674.37
70337.91
70978.07
71594.50
72186.94
72755.29
73299.58
73820.00

76417
78380
80166
81748
83106
84223
85089
85696
86043
86132
85969
85561
84921
84057
82985
81717
80267
78653
76886
74984
72964
70841
68632
65354
64016
61643
59244
56835
54429
52042

1963
1786
1582
1358
1117
866
607
347
89

- 163
- 408
- 640
- 864
-1072
-1268
-1450
-1614
-1767
-1902
-2020
-2123
-2209
-2278
-2338
-2373
-2399
-2409
-2406
-2387

-177
-204
-224
-241
-251
-259
-260
-258
-252
-245
-232
-224
-208
-196
-182
-164
-153
-135
-118
-103
- 86
- 69
- 60
- 35
- 26
- 10

3
19

-27
-20
-17
-10
- 8
- 1

2
6
7

13
8

16
12
14
18
11
18
17
15
17
17
9

25
9

16
13
16

2117.97
1966.48
1787.44
1583.71
1359.15
1118.30
866.08
607.04
346.89
88.63

- 163.98
- 408.22
- 642.14
- 864.26
-1073.51
-1269.11
-1450.39
-1616.76
-1767.70
-1902.77
-2021.68
-2124.30
-2210.71
-2281.13
-2335.91
-2375.46
-2400.17
-2410.41
-2406.55
-2389.01
-2358.32

-15149
-17904
-20373
-22456
-24085
-25222
-25868
-26051
-25826
-25261
-24424
-23392
-22212
-20925
-19560
-18128
-16637
-15094
-13507
-11891
-10262
- 8641
- 7042
- 5478
- 3955
- 2471
- 1024

386
1754
3069

-2755
-2469
-2083
-1629
-1137
- 646
- 183

225
565
837

1032
1180
1287
1365
1432
1491
1543
1587
1616
1629
1621
1599
1564
1523
1484
1447
1410
1368
1315

286
386
454
492
491
463
408
340
272
195
148
107
78
67
59
52
44
29
13

- 8
-22
-35
-41
-39
-37
-37
-42
-53

100
68
38

- 1
-28
-55
-68
-68
-77
-47
-41
-29
-11
- 8
- 7
- 8
-15
-16
-21
-14
-13
- 6

2
2
0

- 5
-11

An inspection of these tables shows that they are very smooth and that they define
F(x) and F"(x) to 7 significant figures by 4-point central interpolation. We have
chosen on purpose an example for which it would be hard to obtain similar results by
standard methods, if we are to maintain the forced accuracy requirement, and the
same high degree of consistency between the function F(x) and its second derivative
F"(x). For purposes of comparison we show also the interpolated values Fc(x) for the
range * = 31.6—32.5 obtained by the 10-point central interpolation method.
On comparing with our table of F(x) we notice that

Fc(x) < F(x)

throughout this range, with the exception of the point * = 32.0 where, of course, both
values agree. The curve Fc(x) has a corner at * = 32. This is the typical discontinuity
in the first derivative due to central interpolation methods (see the first paragraph
of our Introduction).
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Fc(x) A2 A' A1

31.6
31.7
31.8
31.9
32.0
32.1
32.2
32.3
32.4
32.5

55959.90
56810.60
57667.55
58528.22
59390.00
60248.72
61103.61
61952.37
62792.77
63622.68

85070
85695
86067
86178
85872
85489
84876
84040
82991

625
372
111

- 306
- 383
- 613
- 836
-1049

-253
-261
-417
- 77
•230
-223
-213

- 8
-156

340
-153

7
10

Notice that we needed 12 coefficients /„ for the subtabulation of three panels.
Each additional coefficient/„ (n = 39, 40, • • • ) allows the subtabulation of an addi-
tional panel.

It should be remarked that 53 ordinates yn enter into the computation of each
coefficient/,,. This is due to the slow rate of damping of the w»(e) for e = 0. Thus for
t = . 1 (very moderate smoothing) only 35 ordinates yn are needed, for e = 1.0 only 23,
for e== oo only 1. Concerning the important matter of dealing with the ends of a table
see section 1.2 and the last paragraph of section 4.31.

Table I: Mk{x, t), M'k <x, I), Mk (x, t) for i=4, / = 0.5, Ax = 0.1.
M,(x, 1/2)

*+0 *+.1 x+.2 x+.3 x + A

.00000004

.00011325

.01616917

.22597004

.51549499

.22597004

.01616917

.00011325

.00000004

.00000002

.00005910

.01105340

.18940616

.51132566

.26483185

.02311310

.00021062

.00000010

.00000001

.00002991

.00737858

.15590118

.49901141

.30499058

.03230776

.00038032

.00000026

.00001467

.00480621

.12596479

.47911917

.34523755

.04418973

.00066726

.00000062

.00000697

.00305258

.09986387

.45254731

.38420963

.05917998

.00113822

.00000143

x+.5 jc+.6 x+.7 *+.8 x+.9

.00000321

.00188907

.07764689

.42046084

.42046084

.07764689

.00188907

.00000321

.00000143

.00113822

.05917998

.38420963

.45254731

.09986387

.00305258

.00000697

.00000062

.00066726

.04418973

.34523755

.47911917

.12596479

.00480621

.00001467

.00000026

.00038032

.03230776

.30499058

.49901141

.15590118

.00737858

.00002991

.00000001

.00000010

.00021062

.02311310

.26483185

.51132566

.18940616

.01105340

.00005910

.00000002
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Mi (x, 1/2)

*+0 *+.1 x+.2 *+.3 x+A

4 - .00000039
3 -.00071955
2 - .05961795
1 -.37860391
0 .00000000

-1 .37860391
-2 .05961795
-3 .00071955
-4 .00000039

.00000015

.00039340

.04334506

.35140346

.08306134

.39695855

.07996844

.00127546

.00000096

.00000006

.00020833

.03071644

.31784825

.16227165

.40419276

.10465732

.00219236

.00000229

- .00000002
-.00010680
-.02120376
-.28043885
-.23406492

.39846265

.13368990

.00365652

.00000529

- .00000001
-.00005298
- .01424920
-.24150489
-.29541674

.37855467

.16673619

.00592117

.00001179

*+.5 3C + .6 x + .l *+.8 *+.9

3 - .00002542
2 -.00931577
1 -.20306520
0 -.34404758

-1 .34404758
-2 .20306520
-3 .00931577
-4 .00002542
-5

.00001179

.00592117

.16673619

.37855467

.29541674

.24150489

.01424920

.00005298

.00000001

.00000529

.00365652

.13368990

.39846265

.23406492

.28043885

.02120376

.00010680

.00000002

- .00000229
-.00219236
-.10465732
- .40419276

.16227165

.31784825

.03071644

.00020833

.00000006

- .00000096
- .00217546
- .07996844
-.39695855

.08306134

.35140346

.04334506

.00039340

.00000015

M['{x, 1/2)

x+.O x+.l x+.2 *+.3 x+A

4 .00000357
3 .00423106
2 .18251117
1 .23181861
0 -.83712882

-1 .23181861
-2 .18251117
-3 .00423106
-4 .00000357
-5

.00000145

.00243772

.14368197

.30800376

.81763132

.13144694

.22494722

.00710375

.00000851

.00000056

.00135797

.10978191

.35890239
-.76058819

.01013023

.26885281

.01154277

.00001955

.00000021

.00073109

.08140988

.38537940
-.67020231
-.12678241

.31126005

.01816077

.00004332

.00000008

.00038024

.05858190

.38991971
-.55301267
-.27209706

.34845442

.02768079

.00009259

.00000001

x+.5 X + .6 x+.l 3C + .8 *+.9

4 .00000003
3 .00019097
2 .04089359
1 .37617315
0 -.41725773

-1 -.41725773
-2 .37617315
-3 .04089359
-4 .00019097
-5 .00000003

.00000001

.00009259

.02768079

.34845442
-.27209706
-.55301267
.38991971
.05858190
.00038024
.00000008

.00004332

.01816077

.31126005
-.12678241
-.67020231

.38537940

.08140988

.00073109

.00000021

.00001955

.01154277

.26885281

.01013023
-.76058819

.35890239

.10978191

.00135797

.00000056

.00000851

.00710375

.22494722

.13144694
-.81763132

.30800376

.14368197

.00243772

.00000145
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Table II: o£\t, «) for *=4, / =0.5, «=0 (0.1) 1.0.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

..0

3.50637741
-1.84900618

.87238793
-.40443570

.18693997
- .08636451

.03989615
- .01842978

.00851350
- .00393275

.00181670
-.00083921

.00038767
-.00017908

.00008272
-.00003821

.00001765
- .00000815

.00000377
- .00000174

.00000080
-.00000037

.00000017
- .00000008

.00000004
-.00000002

.00000001

-.1

1.61378653
-.26890929
- .08981772

.07027891
-.02078617

.00133949

.00169234
-.00088114

.00019734

.00001073
- .00002625

.00001022
-.00000156
-.00000044

.00000036
-.00000011

.00000001

.00000001

'.2

1.39953009
-.14132793
- .09332063

.04023694
-.00397484
- .00223908

.00099749
- .00010447
-.00005372

.00002469
-.00000273
-.00000129

.00000061
-.00000007
-.00000003

.00000002

e = .3

1.30308904
- .09293505
- .08242675

.02480160

.00050538
-.00188468

.00037463

.00005298
-.00003828

.00000455

.00000174
-.00000070

.00000003

.00000004
- .00000001

* = .4

1.24631521
-.06784110
-.07223261

.01624479

.00184671
- .00132999

.00010684

.00006541
-.00001761
-.00000116

.00000130
-.00000014
-.00000006

.00000002

e = .5 e = .6 = .7 € = .8 • .9 = 1.0

0 1.20834767
1 -.05268720
2 - .06387537
3 .01107108
4 .00219079
5 -.00091344
6 -.00000351
7 .00005180
8 -.00000656
9 - .00000206

10 .00000064
11 .00000003
12 - .00000004

1.18095463
- .04264921
- .05710538

.00773445

.00218246
-.00062674
-.00004704

.00003700
- .00000140
-.00000175

.00000025

.00000006
-.00000002

1.16016154
- .03556878
- .05156939

.00547641

.00204868
-.00043120
-.00006163

.00002545

.00000085
-.00000127

.00000006

.00000006
-.00000001

1.14379093
- .03034057
- .04698035

.00389078

.00187682
- .00029659
- .00006358

.00001716

.00000171
-.00000087
- .00000002

.00000004

1.13054096
- .02634263
-.04312407

.00274451

.00170183
- .00020265
-.00006018

.00001138

.00000193
-.00000057
-.00000005

.00000002

1.11958158
-.02319971
-.03984269

.00189634

.00153738
-.00013620
- .00005476

.00000739

.00000187
-.00000036
-.00000006

.00000001
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Table III: L*(x, t, t), Li' (x, /, t) for £=4, <=0.5, «=0 (0.1) 1.0, A*~0.5.
U(x, 1/2, e)

E = .0 = .1 -.2 --A

0.0 1.00000000
0.5 .62191163
1.0 .00000000
1.5 -.17291085
2.0 .00000000
2.5 .07415615
3.0 .00000000
3.5 -.03382251
4.0 .00000000
4.5 .01558996
5.0 .00000000
5.5 -.00719897
6.0 .00000000
6.5 .00332530
7.0 .00000000
7.5 -.00153608
8.0 .00000000
8.5 .00070958
9.0 .00000000
9.5 -.00032779

10.0 .00000000
10.5 .00015142
11.0 .00000000
11.5 -.00006995
12.0 .00000000
12.5 .00003231
13.0 .00000000
13.5 -.00001492
14.0 .00000000
14.5 .00000690
15.0 .00000000
15.5 -.00000318
16.0 .00000000
16.5 .00000147
17.0 .00000000
17.5 -.00000068
18.0 .00000000
18.5 .00000031
19.0 .00000000
19.5 -.00000014
20.0 .00000000
20.5 .00000007
21.0 .00000000
21.5 -.00000003
22.0 .00000000
22.5 .00000001
23.0 .00000000
23.5 -.00000001

.70747935

.53757743

.20252568

.02061576

.06545791

.02765903

.00709183

.01344008

.00401304

.00276042

.00251219

.00027479

.00065102

.00042139

.00000773

.00015286

.00006787

.00002025

.00003031

.00000793

.00000573

.00000566

.00000083

.00000159

.00000099

.00000007

.00000034

.00000014

.00000004

.00000007

.00000002

.00000001

.00000001

.65457028

.51070485

.22066478

.01285810
-.04840114
- .03096280
- .00340667

.00756627

.00502862

.00041208
-.00118870
- .00076318
-.00007596

.00019012

.00012316

.00000861
- .00002989
-.00001865
- .00000162

.00000477

.00000301

.00000017
-.00000075
-.00000045
- .00000003

.00000012

.00000007

.00000000
- .00000002
-.00000001

.62707488

.49509729

.22681461

.02919893
- .03681939
- .02894823
-.00711221

.00392340

.00410188

.00121901
-.00038015
-.00054505
- .00021043

.00003152

.00007297

.00003207
-.00000086
-.00000923
- .00000502
-.00000028

.00000115

.00000072

.00000011
- .00000014
-.00000011
-.00000002

.00000001

.00000001

.60947694

.48452022

.22949350

.03901344
-.02872086
-.02631330
- .00850828

.00177090

.00314843

.00135036

.00001138
-.00033539
- .00019927
-.00002867

.00003257

.00002580

.00000704
- .00000251
-.00000321
-.00000120

.00000010

.00000036

.00000018

.00000001
-.00000004
-.00000002
- .00000001
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£«(*, 1/2, e)

e = .5 e = .6 e = .7 £ = .8 e = .9 E — 1.0

0.0 .59702260 .58765637
0.5 .47675954 | .47077398

.23140004

.05027848
-.01820178
-.02167108
- .00898986
-.00038991

.00180229

.00114308

.00027865
- .00009654
-.00012137
-.00004885
-.00000179

.00001000

.00000641

.00000148
- .00000057
-.00000067
-.00000027
- .00000001

.00000006

.00000004

.00000001

1.0 .23077657
1.5 .04557847
2.0 -.02276409
2.5 -.02384227
3.0 -.00896161
3.5 .00044979
4.0 .00238588
4.5 .00127570
5.0 .00019600
5.5 -.00019071
6.0 -.00015995
6.5 -.00004696
7.0 .00000987
7.5 .00001687
8.0 .00000771
8.5 .00000044
9.0 -.00000156
9.5 -.00000101

10.0 -.00000023
10.5 .00000011
11.0 .00000012
11.5 .00000004
12.0 .00000000
12.5 -.00000001
13.0 -.00000001

.58031608

.46599416

.23168090

.05380648

.01459584

.01979233

.00881784

.00093726

.00135734

.00100305

.00030985

.00003598

.00008970

.00004474

.00000738

.00000536

.00000486

.00000168

.00000004

.00000039

.00000022

.00000005

.00000002

.00000002

.00000001

.57438799

.46207717

.23177314

.05654957

.01167397

.01816756

.00855221

.00129962

.00101562

.00087278

.00031471

.00000283

.00006510

.00003886

.00000973

.00000238

.00000350

.00000156

.00000021

.00000020

.00000017

.00000006

.00000000

.00000001

.00000001

.56948898

.45880202

.23175789

.05874137

.00925829

.01675611

.00824659

.00154092

.00075048

.00075725

.00030617

.00002756

.00004639

.00003288

.00001039

.00000050

.00000244

.00000134

.00000031

.00000009

.00000011

.00000005

.00000001

.00000001

.56536580

.45601892

.23168050

.06053136
-.00722771
-.01552233
- .00792883
-.00170083

.00054256

.00065681

.00029109

.00004311
- .00003223
- .00002744
- .00001018
- .00000064

.00000165

.00000110

.00000034
-.00000002
-.00000008
- .00000004
- .00000001
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Li'(x, 1/2, c)

e = .0 =.1 e — .2 -.3 e = .4

0.0
0.5
1.0
l.S
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0

-3.47753764
-1.03983382

2.15613767
1.50655095

-.58680458
-.68097024

.24590776

.31311773
-.11165611
-.14452585

.05142591

.06675341
- .02374375
- .03083551

.01096729

.01424417
-.00506618
- .00657998

.00234028

.00303957
-.00108107
-.00140411

.00049939

.00064862
- .00023069
- .00029962

.00010657

.00013841
- .00004923
-.00006394

.00002274

.00002954
- .00001050
- .00001364

.00000485

.00000630
- .00000224
- .00000291

.00000104

.00000134
-.00000048
- .00000062

.00000022

.00000029
-.00000010
- .00000013

.00000005

.00000006
-.00000002
- .00000003

.00000001

.00000001
-.00000001

-1.50781449
-.69689346

.54167607

.77131824

.31875073
-.03482567
-.12647279
- .06455381

.01678358

.03142765

.00673809
-.00655085
- .00477107
- .00059653

.00133431

.00097571
- .00005726
- .00035828
-.00012112

.00004878

.00005884

.00001802
-.00001229
- .00001316
-.00000110

.00000374

.00000182
-.00000018
-.00000067
- .00000033

.00000009

.00000016

.00000003
- .00000003
-.00000002

.00000000

.00000001

-1.27083552
-.61542693

.40225158

.63355043

.30878327

.02460402
-.07651577
- .05654901
- .00530735

.01425664

.00811324

.00060896
- .00194355
- .00138896
-.00011460

.00035809

.00019854

.00001209
- .00004884
-.00003391
- .00000242

.00000898

.00000485

.00000023
-.00000123
- .00000083
- .00000005

.00000022

.00000012

.00000000
- .00000003
-.00000002

-1.16381926
-.57326418

.34798919

.56889199

.29072626

.04246822
- .05154399
-.04581150
- .01047426

.00665986

.00596871

.00183704
- .00054832
- .00087620
- .00030729

.00005960

.00010609

.00004959
-.00000116
- .00001505
-.00000732
- .00000026

.00000168

.00000113

.00000016
- .00000023
- .00000015
- .00000003

.00000002

.00000002

.00000001

-1 .10100908
-.54670549

.31925128

.53067521

.27601758

.04943501
-.03726679
- .03775297
-.01153447

.00297134

.00423710

.00187944

.00001970
-.00050023
-.00026914
-.00003417

.00004375

.00003703

.00000954
- .00000404
-.00000433
- .00000164

.00000013

.00000053

.00000025

.00000001
-.00000005
- .00000004
- .00000001

.00000001
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L't (x, 1/2, c)

= .5

0.0 — 1.05919265
0.5 -.52821280
I.0 .30155959
1.5 .50527188
2.0 .26453429
2.5 .05240385
3.0 -.02823788
3.5 -.03182937
4.0 -.01135624
4.5 .00101034
5.0 .00303129
5.5 .00166647
6.0 .00024844
6.5 -.00027461
7.0 -.00020347
7.5 -.00005788
8.0 .00001265
8.5 .00002301
9.0 .00000979
9.5 .00000025

10.0 -.00000199
10.5 -.00000133
II.0 -.00000029
11.5 .00000016
12.0 .00000015
12.5 .00000005
13.0 .00000000
13.5 -.00000002
14.0 -.00000001

c = .6 e = .7 e = .8

-1.02916420
-.51450880

.28962736

.48711044

.25546310

.05363758
- .02210889
-.02737565
-.01078633
- .00009918

.00219629

.00142136

.00033324
- .00014145
-.00014764
-.00005841
- .00000184

.00001329

.00000777

.00000163
- .00000071
-.00000085
- .00000033

.00000000

.00000007

.00000004

.00000001

-1.00647330
-.50390754

.28106624

.47346009

.24815810

.05404202
-.01772635
- .02393662
-.01011492
-.00075259

.00160744

.00120000

.00035457
-.00006202
- .00010563
- .00005187
-.00000816

.00000717

.00000567

.00000187
-.00000008
-.00000049
- .00000026
- .00000005

.00000002

.00000003

.00000001

-.98868331
- .49544281

.27464186

.46281678

.24216442

.05402794
- .01446547
- .02121579
- .00944820
-.00114593

.00118299

.00101295

.00034759
- .00001410
- .00007505
-.00004389
-.00001051

.00000344

.00000399

.00000172

.00000021
- .00000026
- .00000019
-.00000006

.00000000

.00000001

.00000001

e —.9

.97433986

.48851722

.26965348

.45428116

.23716440

.05379802

.01196172

.01901742

.00882438

.00138383

.00087064

.00085821

.00032845

.00001495

.00005291

.00003637

.00001095

.00000121

.00000274

.00000145

.00000032

.00000012

.00000013

.00000005

.00000001

.00000001

e = 1.0

—.96251767
- .48273978

.26567454

.44728133

.23293281

.05345832
- .00998973
-.01720888
-.00825481
-.00152531

.00063651

.00073079

.00030479

.00003245
-.00003686
- .00002987
-.00001051
- .00000014

.00000184

.00000117

.00000034
- .00000004
- .00000008
- .00000004
- .00000001


