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Abstract. Hom clauses of first-order predicate logic can be regarded as a high-level programming language 
when SLD-resolution, a special-purpose resolution theorem prover, is used as interpreter. Consequently, 

the semantics of Hom clauses can be studied both by model-theoretic and fixpoint methods (in the sense 
of Scott). This possibility is exploited here by identifying the least (greatest) fixpoint with a least (greatest) 
model. Successful termination of SLD-resolution is characterized by least fupoints. A semantic charac­
terization of finite failure of SLD-resolution is given, which coincides with the greatest fixpoint only for 
a special case of clauses. It is shown that nondeterministic flowchart schemata of bounded nondeterminacy 

are modeled by this special case; the connection between finite failure and greatest fixpoint is then used 
to give a semantic characterization of termination, blocking, and nontermination of such flowchart 
schemata. 

Categories and Subject Descriptors: F.3.1 !Logics and Meanings of Programs!: Specifying and Verifying 
and Reasoning about Programs-logics of programs; F.4.l (Mathematical Logic and Formal Languages!: 

Mathematical Logic-logic programming-. 1.2.3 !Artificial lntelligencel: Deduction and Theorem Proving­
logic programming 
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1. Introduction 

This paper is a continuation of the investigation begun in [ 19], where various 
approaches to the semantics of predicate logic regarded as a programming language 
were discussed. Using the analogies provided by logic programming [6, I I, I2], the 
model-theoretic semantics of Hom sentences of first-order predicate logic was 
formulated in terms of a fix.point semantics. In the present paper we exploit further 
the application of fix.points of transformations to the semantics of Hom sentences by 
relating it to various properties of what we call SLD-resolution (SL resolution for 
Definite clauses, first described in [11]). Among other results we prove by fix.point 
techniques the soundness and strong completeness ofSLD-resolution; the latter result 
is shown to be a consequence of the continuity of the transformation. Similar results 
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have been obtained by Clark [5]. The first completeness proof is due to Hill (9). This 

proof does not apply the fix.point technique. 
There exists an extensive literature on the use of least fix.points in characterizing 

program behavior. The literature on the application of greatest fixpoints is much 

smaller; see (2) for some important results. The present paper shows that similar 

results can be obtained in the framework of Hom-clause logic with SLD-resolution 

as computational mechanism. Admittedly, the programs concerned are logic pro­

grams, but they have simple relationships with conventional models of programs or 

databases (17, 18]. These results are based on the fix.point and semantical character­

izations of finite failure of SLD-resolution; these characterizations are significant 

independently of the particular applications given here. 
The interest of greatest fix.points lies in the fact that they are not in all respects 

dual to least fix.points. A transformation T, as typically associated with a Horn 

sentence or with a program, has a least fix.point which is equal to the union of the 

finite powers of T applied to the least element of the universe; this property may be 
referred to as union-continuity. The T's used in program semantics typically are 

union-continuous, and ours are no exception. The dual property of intersection­

continuity, which is the equality of the greatest fix point of T to the intersection of all 

fmite powers of T applied to the greatest element of the universe, is typically not 

satisfied. We prove intersection-continuity for the T associated with a set of clauses 

which represents a flowchart schema of fmite indeterminacy. Together with our 
Theorem 7.11, which shows that finite failure of SLD-resolution computes the 

complement of the above-mentioned intersection, this result can be applied to obtain 

a semantic characterization of nontermination and blocking of flowchart schemata 

of fmite indeterminacy. 

The paper is organized as follows. In Sections 2 and 3 we gather the basic results 
and defmitions concerning fix.points and logic in clausal form. The semantics of logic 

and the transformation T associated with Hom sentences are introduced in Section 

4. In Section 5 SLD-refutations are introduced, and soundness and completeness of 

the method is proved. SLD-resolution is discussed in Section 6, where its strong 
completeness is proved. Finite failure of the SLD-resolution and its characterization 

using the greatest fix.point of the transformation T is considered in Section 7. Section 
8 is devoted to a semantical characterization offmite failure. Finally, in Section 9 we 

apply our results to a semantic characterization of some aspects of the behavior of 
nondeterministic flowchart schemata (see (17]). 

2. Basic Results on Fixpoints 

Let L be a complete lattice with set B, order relation k• greatest lower bound 
operation n, and least upper bound operation U. A function T:B ~Bis said to be 

monotone if X1 k x2 implies that Tx1 k Tx2, for any x1 and x2 in B. 

Although, by the completeness of L, any subset S of B has a glb and an lub in B, 

S does not necessarily contain either of them. Subsets that do are of special interest. 
For example, H = {x:x k Tx}, where Tis monotone, contains h =UH because 

h :;;;;! x for any x E H =:> (monotonicity of T), 

Th:;;;;! Tx for any x EH=:> (defmition of H), 

Th :;;;;! x for any x E H =:> (definition of U), 

Th:;;;;! UH=:> Th:;;;;! h =:> h EH. 

Likewise, for monotone T, G = {x: x :;;;;! Tx}, and g = no, we have g E G. The least 

fixpoint of T (lfp(T), for short) is the least element x of B such that Tx = x. 
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The greatest fixpoint of T (gfp(T), for short) is the greatest element x of B such that 

Tx = x. Both elements exist, as the following theorem shows. 

THEOREM 2.1 (THE KNASTER-T ARSKI FIXPOINT THEOREM). A monotone function 
T has a greatest and a least fixpoint: 

h'=Th', where h'=U{x:x=Tx}, 

g' = Tg', where g' = n{x:x = Tx}. 

PROOF. We shall show that h = Th, where h = U{x:x k Tx}. We prove that 

h = h'. We already showed that h k Th. It remains to show that h ~ Th: h k 
Th ==> Th ~ T(Th) ==> Th E H ==> Th ~ h. Th = h ==> h k h', by definition of h'. 

h' k h, because {x:x = Tx} k {x:x k Tx}. The existence of the least fixpoint may 

be shown in a similar way. 0 

Figure l may help to visualize the situation; F = {x:x = Tx}. 

We will need unions and intersections of powers of T. Because the exponents in 

those powers may have to go beyond the natural numbers, we define the following 

ordinal powers of T: 

Tj 0 = nB, 

T j n = T(T j (n - l)) if n is a successor ordinal, 

= U{Tj k:k < n} if n is a limit ordinal; 

T!O = UB, 

T!n = T(Tt(n - l)) if n is a successor ordinal, 

= n{T!k:k < n} if n is a limit ordinal. 

THEOREM 2.2. For any ordinal n, 

Tj n ~ ljp(T) and T !n ;;;2 gfp(T). 

There exist ordinals n1 and n2 such that 

Tjn, = ljp(T) and T !n2 = gfp(T). 

This theorem is well known in various areas of mathem&tics. Within theoretical 

computer science it has been popularized in [10], where its proof can be found. 

In the sequel we shall often need the following corollary to this theorem. 

COROLLARY 2.3 

Tjw ~ T!w. 

PROOF. Tjw ~ lfp(T) k gfp(T) k T!w. 0 
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Sometimes a property of functions stronger than monotonicity is considered. A 
function T:B ~Bis said to be continuous iffor every chain x1 k x2 k · · · of elements 
of B, T(U{x1:i < w}) = U{T(x1):i < w}. Note that continuity indeed implies 
monotonicity. 

We have the following theorem. 

THEOREM 2.4. For a continuous function T, 

Tj w = lfp(T). 0 

3. Syntax and Informal Semantics for Logic in Clausal Form 

A sentence is a possibly infinite set of clauses. A clause is a pair of sets of atomic 
formulas written as 

m ::::: 0, n 2:: 0. 

The set {A 1, •.• , Am} is the conclusion of the clause; {Bi, ... , Bn} is the premise of the 
clause. An atomic formula (or atom, for short) is P(ti. ... , tk), where P is a k-place 
predicate symbol and ti, ... , tk are terms. A term is a variable or f(t1, ... , ti) where 
f is a j-place functor (also called function symbol), ti, ... , ti are terms, and j 2:: 0. A 
0-place functor is called a constant. We write a = b to denote that a and b are the 
same sequence of symbols. 

Substitution is an operation, say (), which replaces throughout an expression e all 
occurrences of a variable by a term. The result is denoted by e() and is called an 
instance of e; e is said to be more general than e() (even when e = eO). If there exists 
for given expressions ei, ... , en a substitution () such that e = e18 = · · · = enO, then 
() is said to be a unifier of ei, ... , en. 

According to the informal semantics of logic in clausal form, a sentence is to be 
understood as the conjunction of its clauses. A clause 

is to be understood as 

for all xi, ... , Xk, A1 or · · · or Am if Brand · · · and Bn, 

where Xr, •.. , Xk are the variables in the clause and m > 0, n ::::: 0. A definite clause is 
one where m = I. A sentence containing definite clauses only is called a definite 
sentence. A negative clause is one where m = 0 and n > 0. It is to be understood as: 
For all x1, ... , Xk, it is not the case that B1 and ·. · and Bn. The "Horn clauses" often 
used in the literature are clauses which are definite or negative. An empty clause is 
one in which n = 0 and m = 0. Such a clause is to be understood as a contradiction. 
It is written as D. 

This informal semantics is defined formally in the next section. 

4. Semantics of Logic in Clausal Form 

We define the Her brand base U of a sentence S to be the set of variable-free atoms 
containing no predicate symbols or functors other than those occurring in S. Any 
subset of U is an interpretation (for S). 

Definition 4.1. Let I be an interpretation. 

(1) A sentence is true in I iff each of its clauses is true in /. 
(2) A clause is true in I iff each of its variable-free instances is true in I. 
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(3) A variable-free clause 
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is true in I iff at least one of Ai, ... , Am is true in I or at least one of Bi. ... , Bn 
is not true in I. 

(4) A variable-free atom Fis true in I iff FE /. 

Note that the set of variable-free instances of a term, atom, or clause is understood 
to result from substitution by terms containing only functors from a given sentence, 
in this case the sentence for which I is an interpretation. 

An interpretation I such that a sentence S is true in I is called a model of S. In 
more general treatments of logic this is called a "Herbrand model." As we consider 
only such models, the qualification will be omitted. We denote the set of models of 
S by M(S). If S has no model, then S is said to be inconsistent. When, for sentences 
S 1 and S2, M(S1) ~ M(S2), we say that S2 is a semantic implication of Si, and we write 
S1 F= S2. An example of this relationship between sentences is when S2 is a set of 
instances of clauses in S1. Hence 

PROPOSITION 4.2. If a set of instances of clauses in a sentence Sis inconsistent, then 
Sis inconsistent. 

S1 F= S2 implies that nM(S1) ;;;2 nM(S2). Another interesting special case occurs 
when S2 = {A}, where A is a variable-free atom. Now nM({A}) = {A}, so that 
nM(S1) ;;;2 {A}. Apparently we have 

PROPOSITION 4.3. nM(S) is the set of all variablejree atoms A such that SF= A. 

With a definite sentence P we associate a function Tp from interpretations to 
interpretations. Let I be an interpretation. We define Tp with 

iff there exists in P a clause Bo - Bi. ... , Bn (n :2:: 0) 
such that A = BoB and {BdJ, ... , BnB} ~I 
for some substitution B. 

We apply the basic results on fixpoints by making the set of the lattice equal to the 
powerset of the Herbrand base and by making the partial order of the lattice equal 
to inclusion among subsets of the Herbrand base. Note that Tp is monotone with 
respect to this order. 

THEOREM 4.4. For any definite sentence P and interpretation I, I ;;;2 T(l) if! I is a 
model of P where T is the transformation associated with P. 

PROOF. See [19]. D 

COROLLARY 4.5. For a definite sentence P we have 

nM(P) E M(P) 

(the "model-intersection property" for definite sentences). 

PROOF. From Section 2 we recall that for monotone T, 

n{x:x ;;;2 Tx} E {x:x ;;;2 Tx}. 
Theorem 4.4 translates this directly to 

nM(P) E M(P). D 

In [19] this corollary is proved directly, without recourse to T. 
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THEOREM 4.6. Let T be the transformation associated with a definite sentence P. 

Then T is continuous. In particular, 

lfp(T) = Tjw. 

PROOF. See [19]. D 

Apparently, for this type of domain and this T, the Nin Tj N = lfp(T) (Theorem 
2.2) may always be taken equal to w. It may, however, happen that 

gfp(T) .P T tw. 

The following example of such a T is due in part to K. Clark and in part to H. 

Andreka and I. N emeti: 

S = {(P(a) - P(x), Q(x)), P(s(x)) - P(x) 

, Q(b), Q(s(x)) - Q(x) 

}. 

Let Ube the Herbrand base for S generated by the predicate symbols P and Q, the 
functors, and the constants a and b. For all finite n we have 

Tn( U) = U\ { Q(a), ... , Q(sn- 1(a)) 

, P(b), ... , P(~- 1 (b)) 

}. 

Hence Ttw = {P(sn(a)):n < w} U {Q(sn(b):n < w}. Now, P(a) ~ T(Ttw); 

hence Ttw .P gfp(T) In fact, Tn(Ttw) = Ttw\{P(s;(a)):i < n}, for finite n. We 
have T L (w + w) = {Q(sn(b)): n < w} = gfp(T) = lfp(T). 

The least ordinal n such that TpL n = TP(TP Ln) has been called by Blair a closure 

ordinal; in [l] these ordinals are investigated for various kinds of definite sentence P. 

In Section 9 we prove a general theorem showing under what conditions T L w is 
the greatest fixpoint of T. This theorem implies, in particular, that if P is finite and 

there are no function symbols in P, then TpLw = gfp(Tp). 

5. SLD Refutations and Their Semantics 

A refutation of a sentence is a syntactic object which is intended to demonstrate the 
sentence's unsatisfiability. A refutation is not to be confused with a refutation 
procedure, which is a symbol-manipulation procedure for finding a refutation. 

Numerous refutation procedures have been based on J. A. Robinson's resolu­
tion principle, first by Robinson himself [15, 16] and subsequently by many others 
[3, 13]. For our purpose the SL-resolution procedure is most important, especially a 
variant [11, 12, 19] intended for use with sentences containing, apart from one 
negative clause, only definite clauses. Because of this restriction we refer to this 
resolution refutation procedure as SLD-resolution: SL-resolution for Definite clauses. 
This section is concerned with SLD refutations. The corresponding refutation pro­
cedure is discussed in the next section. 

Let P be a definite sentence and N a negative clause. An SLD-derivation of 
P U {N} consists of a finite or infinite sequence Ni. N2, ... of negative clauses, a 
sequence di, d2, ... of variants of clauses in P (the input clauses of the derivation), 
and a sequence Oi. 82, ... of substitutions. A variant of a clause y is a clause that 
differs from y at most in the names of its variables. The variants are such that no 
input clause d; of a derivation has a variable in common with the negative clause N;. 
Each nonempty N; contains one atom, which is the selected atom of N;. The clause 
N;+1 is said to be derived from N; and d; with substitution Oi. 
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The relationship of being derived is defined as follows. Let 

m ~ 1, 

with Ak as selected atom. Let 

q ~O, 

be any clause in P such that A and Ak are unifiable, that is, such that A 8 = Ak8 for 

some substitution 8. Then N;+ 1 is 

and 8;+1 is 8. Each atom A/~ of M+1 is said to be a derived atom of N;+1 (derived from 

Ai in N;). Each atom Bie in N;+1 is said to be an introduced atom of N;+1 (introduced 

by d;). 

Apparently, if a derivation contains the empty clause, it must be its last clause. 

Such a derivation is called an SLD-refutation. The success set of a definite sentence 

P is the set of all A in the Herbrand base of P such that P U {~A} has an SLD­

refutation. SLD-refutations are said to be sound if the success set is contained in the 

least model of P (or, by Corollary 4.5, is contained in every model of P); the opposite 

inclusion (Lemma 5.5) is a form of completeness. 

Let [A] denote the set of all variable-free instances of an atom A. Let 81, ••• , Bn be 

the sequence of substitutions of a refutation. Then their composition is called the 

answer substitution. This term has been chosen because in logic programming this 

substitution is usually interpreted as an answer to a database query or to a compu­

tational problem. 

THEOREM 5.1. We assume that an SLD-refutatzon exists of a sentence PU {G}, 

where P is a definite sentence and G is a negative clause containing no functors not 

occurring in P, and that 8 is the answer substitution. We assert that for every atom A in 

G81 · • · 8n, [A] f: rn(0). 

PROOF. Let G0 , .•• , Gn be the successive negative clauses of the refutation. Go = 

G.Gn = D. We show by induction on i that for every atom A in Gn-iBn-i+1 · • · 8n, 

[A] f: T;(0). 

If i = 1, then Gn-i consists of a single atom matching a clause, say, with conclusion 

C, without a premise. Gn- 18n = COn. [CJ f: T(0); a fortiori, [G,,-18n] f: T(0). This 

takes care of the induction basis i = l. 

Suppose now, as the induction assumption, that [A] f: Ti(0) for any atom A in 

Gn-iBn-i+l · .. Bn. Let X be an atom of Gn-i-1- Suppose first that X is not the selected 

atom. Then XBn-i is an atom of Gn-i· The induction assumption ensures that 

[(XBn-Mn-i+i ···On] h T;(0). The monotonicity of Timplies that T;(0) !: T;+1(0). 

Thus, X being an atom, but not the selected atom, of Gn-i-1 implies that [X8n-i · · • 

Bn] h T;+ 1(0). 

Suppose that X is the selected atom of Gn-i-1· Let A ~Bi, ... , Bm be the (n - i)th 

input clause of the refutation. X8n-i is an instance of A. 

Case m = 0. [A] f: T(0), by the definition of T. Also [X8n-i · • · Bn] f: 

[X8n-i] f: [A] and T(0) f: T;+ 1(0). Hence [XBn-i • • · Bn] f: T;+1(0). 

Case m > 0. B1Bn-i, ... , BmBn-i are atoms of Gn-i· By the induction hypothesis, 

[B18n-i •.. 8n] f: T;(0) for j = I, ... , m. Hence, by the definition of T, [XBn-i · · · 

Bn] !: Ti+1(0). 0 
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COROLLARY 5.2 (SOUNDNESS OF SLD-REFUTATIONS). Let P be a definite sentence 

and Na negative clause such that there exists an SLD refutation of P U {N}. Then 

PU {N} is inconsistent. 

PROOF. By Theorem 5.1 there exists a substitution fJ such that for all atoms A in 

N, A 0 E lfp(T) = nM(P). This implies that NO is not true in nM(P), so it is not true 

in any model of P; a fortiori, the same holds for N. Therefore P U {N} is 

inconsistent. D 

COROLLARY 5.3. The success set of a definite sentence is contained in its least 

model. 

Corollaries 5.2 and 5.3 can be proved from the soundness of resolution in general, 

which has a simpler proof than Theorem 5.1. The value of this theorem lies elsewhere, 

namely, in the way it justifies the constructive use of SLD-refutations. What we mean 

by this is illustrated by the following example. Let 

P = {app(nil, y, y) 

, app(u·x, y, u·z) +-- app(x, y, z) 

}. 

The functor "." is used as infix operator: for example, U·X stands for · (u, x). An 

additional notational convention determines that, for example, a· f3 • y stands for 

a·(/J·y) and not for (a·/J)·y. u·x stands for a list with u as first element; x stands for 

the rest of the list. The constant "nil" stands for the empty list. The clauses of P state 

theorems about the "append" relation among three lists, where the third list is the 

result of appending the second list to the end of the first. 

Let A = app(xi, 3·yi, 2.3.4.z1). Now PU {+-A} has an SLD-refutation with 

substitutions, say, Oi, ... , On. By itself, the soundness of resolution only guarantees 

the existence of unspecified X1,y1, and z1 such that 2·3 .4.z1 is the result of appending 

y 1 to x1. But Theorem 5.1 allows us to use resolution logic as a computational 

formalism: A81 ···On is app(2·nil, 3·4·w, 2·3·4-w), thereby stating that the x1,y1, 

and z1 that must exist, by the soundness of resolution, are 2. nil, 4. w, and w, 

respectively, where w can be any variable-free term. 

To prove the completeness of SLD-refutations, we establish some lemmas first. 

LEMMA 5.4. Let P be a definite sentence, N = +-Ai, ... , Ak a negative clause, and 

0 a substitution. If there exists a refutation of P U {NO} with A;fJ as the first selected 

atom, then there exists a refutation of P U {N} with A; as the first selected atom. 

PROOF. We can assume that() does not act on any of the variables in P. Suppose 

now that a refutation of PU {NO} exists, where A;O (in N()) is the first selected atom. 

Suppose the first input clause of the refutation is Bo +-- Bi, ... , Bm. It follows that 

A;Bf = Bof for some substitution t 
By the assumption there exists a refutation of 

p u { +-(A18, ... ' A;-18, B1, ... , Bm, A;+18, ... 'AkB)n. 

But B1 = B10 for j = 0, ... , m, since 0 does not act on any of the variables of P. So 

A;Of =Boer and by the above there exists a refutation of PU {N} with A; as the first 

selected atom, er as the first substitution, and the same input clause. D 

LEMMA 5.5. The least model of a definite sentence is contained in its success set. 

PROOF. The proof makes use of the fact that the transformation T is continuous. 

Assume that A is in the least model of a definite sentence P. By Corollary 4.5, the 
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least model of P is nM(P). By Theorem 2.1, nM(P) = lfp(T). By Theorem 4.6, T is 

continuous and consequently A E lfp(T) ~A E Tk(0) for some finite k. We now 

prove by induction on k that A E Tk(0) implies that an SLD-refutation exists of 

PU {-A}. 

If k = l, then A E Tk(0) implies that A is a variable-free instance of the conclu­

sion of a clause in P with an empty premise. Hence there is an SLD-refutation of 

PU {-A} (of length 1). 

If A E rk+ 1(0), then by the definition of T there exists a variable-free instance of 

a clause Bo - B1, ... , Bm in P such that A = B00 and {B10, ... , BmO} k Tk(0), for 

some 0. By the induction hypothesis there exists a refutation of P U { -B;O} for i = 

1, ... , m. Because of the absence of variables in B18, ... , Bm8, there exists a refutation 

of P U {-B18, ... , BmO}. Hence, there exists a refutation -A, -(B1, ... , Bm)O, 

... , D of P U {-A}. D 

THEOREM 5.6 (COMPLETENESS OF SLD REFUTATIONS). Let P be a definite sen­

tence and Na negative clause such that P U {N} is inconsistent. For each atom Ak of 

N there exists an SLD refutation of P U { N} with Ak as the first selected atom. 

PROOF. Suppose N =-Ai, ... , An. If PU {N} is inconsistent, then N is not true 

in nM(P); then there exists a variable-free instance NO of N which is not true in 

nM(P); then {A18, ... , AnO} k nM(P). By Lemma 5.5 there exists an SLD­

refutation of P U { -A;8} for i = l, ... , n. As all A;IJ are variable-free, there also 

exists an SLD refutation of PU {NO}, whatever the first selected atom. By Lemma 

5.4 there exists an SLD-refutation of PU {N}, whatever the first selected atom. D 

COROLLARY 5.7. The least model of a definite sentence P is the success set of P. 

6. SLD Refutation Procedures 

Let us now consider symbol manipulation procedures that find an SLD-refutation 

whenever one exists. Such a procedure would be in some sense an "automatic 

theorem prover." We are more interested in the use of such procedures for automatic 

computation; the interpreter for the programming language PROLOG [5, 6] can be 

regarded as an SLD-refutation procedure. 

According to the definition of an SLD-derivation the following choices have to be 

made in each step of constructing a refutation: 

(a) choice of selected atom; 

(b) choice of input clause, if two or more clauses have a conclusion unifying with the 

selected atom; 

( c) choice of substitution. 

In searching for a refutation, derivations are constructed with the goal of encountering 

an empty clause. The totality of derivations to be constructed by an SLD-refutation 

procedure we call the search space. Any necessity to consider alternatives to the 

choices (a)-(c) contributes to the size of the search space. In fact, in the search space 

we consider, the SLD-tree, only alternatives to choice (b) exist. We define the SLD 

tree and prove that alternatives (a) and (c) need not be considered. 

In the first place, it is easy to see (from Lemma 5.4) that if a refutation of PU {N} 

exists, then there also exists one for which every substitution is the most general 

unifier of the selected atom and the conclusion of the input clause. In fact, in most 

treatments of resolution, for this reason and because (as far as we know) most general 

unifiers are no harder to compute than other unifiers, only most general unifiers are 
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/~(x~:' 
<-A (x, y), Q( y, c) (path in graph 

r,, / ~ _ ~~ c of length 

/ ~:=c 
<-A(x,y), A(y, u), Q(u, c) +-A(x. c) 

~,/ ~@ u:=c 0 I x:=b 

{infinite +-A(x,y),A(y. c) D {path in graph from b to c) 

subtree} 

Q) y:=b 

+-A(x, b) 

{no descendant} 

Fw. 2. AnSLD-treeforPU {<-Q(x,c)}. 

considered. We showed that according to our less stringent definition, refutations 

also refute, and we introduce the condition of unifications being most general only 
to reduce the search space for the refutation procedure. All the results of Section 5 

remain valid when this modified definition of refutation is adopted. 
We call a search space for the SLD refutation procedure an SLD-tree and define 

it as follows. Let P be a definite sentence and Na negative or empty clause. An SLD­

tree for P U {N} has N as root. All its nodes are negative or empty clauses. A 

nonempty node has one atom which is the selected atom. A node 

1 s k s m, m 2::. 1, 

with selected atom Ak, has a descendant for every clause, 

q~O, 

such that A and Ak are unifiable, say, with most general unifier 0. The descendant is 

~Ai, ... , Ak-1, Bi, ... , Bq, Ak+i, ... , Am)O. 

Note that every path in an SLD-tree is an SLD-derivation and that every path to 

an empty clause is a refutation. Also, for every refutation of PU {N} there exists an 

SLD-tree for PU {N} of which a path is the most general version of this refutation. 
In general, a given PU {N} has different SLD-trees depending on which atoms are 

the selected atoms. Often there are very many SLD-trees, of vastly differing size. 

Example 6.1 

CD <i> 0 
P = {(Q (x, z) +-A(x,y), Q(y, z)), Q(x, x),A(b, c)}. 

In P, x, y, and z are variables, and b and c are constants. A possible meaning is as 
follows. Objects are nodes of a graph: A(x, y) if there is an arc from x toy; Q(x, y) 

if there is a path from x toy. Clauses CD and CD define the path relation. Clause ® 
gives an arc of the graph. The clause +-Q(x, c) negates that a path to c exists. One 

SLD-tree for P U { +-Q(x, c)} is shown in Figure 2. The selected atoms are 
underlined. Another SLD-tree for PU { +-Q(x, c)} is shown in Figure 3. 
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r;/:Q(x, ,,~~' 
+-A (x, y), Q (y, c) (path of length 0 to c} 

Q) 

x:=b 

y:=c 

+-Q(c, c) 

I ~=c 
0 +-A(c,y), Q(y, c) 

{path oflength I from b to c} 

F10. 3. Another SLD-tree for PU { +-Q(x, c)}. 

We now prove a special form of completeness of SLD-resolution. This result (due 

to Hill [9]) is a strengthening of the previously proved completeness of SLD 
refutations (Theorem 5.6). As usual, we need some definitions and lemmas first. 

Definition 6.2. A negative clause N is k-refutable, k ~ I, if in every SLD-tree with 
N as root there exists an empty clause with a path length from the root of at most k. 

The following lemma corresponds to Lemma 5.4. 

LEMMA 6.3. Let P be a definite clause and N =: -A 1, ••• , An a negative clause. For 

any substitution 0, if NO is k-refutable, then N is k-refutable. 

PROOF. The proof proceeds by induction on k. The case when k = I is obvious. 

To prove the induction step, consider an arbitrary SLD-tree with N as root. Suppose 

that Ai is the selected atom of the root. Since NO is k-refutable, there exists a clause 

Bo - Bi. ... , Bm in P such that AiOf =- Bof for some most general unifier f and 
-(A18, ... , A;-18, Bi. ... , Bm, A;+1B, ... , A,.O)f is (k - I)-refutable. 

Similarly as in the proof of Lemma 5.4, we can assume that(} does n9t act on the 

variables in P. Thus B1 =- B10 for j = 0, ... , m. For some most general unifier 'l'J, 

A;71 s Bo71 and Bf = 'l'/'l'/i for some 711. By the above, -(Ai. ... , A;-i. Bi. ... , Bm, 

A;+i. ... , An)'l'/'l'/1 is (k - I)-refutable; so by the induction hypothesis, -(A1, ... A;-i. 

Bi. ... , Bm, A;+i, ... , A,.)'l'J is (k - I)-refutable. But this clause is a direct descendant 

of the root N of the SLD-tree under consideration. This proves the induction step 
and concludes the proof. D 

LEMMA 6.4. Assume that Ai. ... , An are atomic formulas with no variables in 

common. If each -A; is k;-refutable, i = 1, ... , n, then -Ai. ... , A,. is k1 + · · · + k,.­

refutable. 

PROOF. Straightforward by induction on k1 + · · · + k,.. D 

LEMMA 6.5. If A is in the least model of P, then/or some k, -A is k-refutab/e. 

PROOF. Analogous to the proof of Lemma 5.5 using Lemma 6.4. D 

THEOREM 6.6 (STRONG COMPLETENESS OF SLD-RESOLUTION). If P U {N} is 

inconsistent, then every SLD-tree with N as root contains an empty clause. 

PROOF. Analogously to the proof of Lemma 5.5, with the use of Lemmas 6.5 and 
6.3 we may show that inconsistency of P U {N} implies that for some k, N is k-
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refutable. By the definition of k-refutability it follows that every SLD-tree with N as 

root contains an empty clause. 0 

The strong completeness theorem shows that alternatives in choice (a) (namely, of 

the selected atom) need not be considered by an SLD-refutation procedure; any one 

SLD-tree is a complete search space for such a procedure. Whether the procedure 

will actually find a refutation in an SLD-tree containing the empty clause depends 

on the tree-search algorithm. A breadth-first algorithm is guaranteed to find an 

empty clause if one exists, provided that the degree of the SLD-tree is bounded, 

which may not be the case with an infinite set of clauses. A depth-first algorithm, 

which is preferable for efficiency of implementation, can fail to find an existing 

refutation if the SLD-tree is infinite. 

The choice of the selected atom can make an enormous difference in the size of 

the SLD-tree. For example, with a choice that makes the SLD-tree finite, a depth­

first algorithm is guaranteed to succeed, whereas with another choice, leading to an 

infinite SLD-tree, the same algorithm may fail to find a refutation. 

An even stronger completeness result for SLD-resolution is proved by Clark [5]. 

He proves that for every "correct answer substitution" 8 there is in every SLD-tree 

a refutation that has as answer substitution one that has 8 as a special case. 

7. The Fixpoint Semantics of Finite Failure 

Consider a definite sentence P with Herbrand base U. The success set of P is the 

subset of U consisting of all variable-free atoms A such that the SLD-trees for P with 

-A as root contain an empty clause. One way of expressing the soundness and the 

weak completeness of SLD-refutations is to say that the success set equals the least 

model of P, and therefore equals also the least fixpoint of the associated T, and 

therefore equals Tj w also. 

A finitely failed SLD-tree is one which is finite and contains no empty clause. The 

finitejailure set of a definite sentence P is the subset in U of all variable-free atoms 

A such that there exists a finitely failed SLD-tree with -A as root. In this section we 

show that the finite-failure set is equal to the complement in U of T ! w. Because 

T ! w ;;2 gfp(T), with equality not necessarily being true, we can only conclude in 

general that the finite-failure set is included in the complement of gfp(T). Because 

of this result we are especially interested in classes of definite sentences for which 

T ! w = gfp(T) also holds. After this section we give an intuitive and semantic 

interpretation of gfp(T). 

THEOREM 7.1. The finitejailure set of a definite sentence P is included in the 

complement in U of T ! w. 

PROOF. Assume that for a variable-free atom A, -A is the root of a finitely failed 

SLD-tree of depth sk. We prove by induction over finite values of k that A €!. Tk( U). 

If k = 1, then A is not an instance of the conclusion of any clause in P, so 

A €f. T(U). 

Assume now that k ::= I. Suppose also that A E Tk( U); we show that this leads to 

a contradiction. There exists a clause Bo - Bi. ... , Bn in P such that A = B08 and 

{B18, ... , BnB} E rk-1(U) for some variable-free substitution 8. For some most 

general unifier A., AA. = BoA. and 8 = A.17 for some substitution 17. Hence -(Bi. ... , 

Bn)A. is a direct descendant of the root -A in the SLD-tree, which is therefore the 

root of a finitely failed SLD-tree of depth ::::k - 1. By Lemma 7.2, -(B1, .•• , Bn)B is 

also the root of a finitely failed SLD-tree of depth ::::k - I. Now, by Lemma 7.3, for 
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some i = l, ... , n, .,_Bi() is the root of a finitely failed SLD-tree of depth -:sk - l. By 

the induction hypothesis, BJJ ~ yk-1( U), which contradicts the supposition that 

A~ Tk(U). D 

We now state the two lemmas used. 

LEMMA 7.2. Let A. be a substitution and Na negative clause. Assume that N is the 

root of a finitely failed SLD-tree of depth -:sk. Then N/... is the root of a finitely Jailed 

SLD-tree of depth -:sk also. 

LEMMA 7.3. Let A1, ... , An be variablefree atomic formulas such that .,_A 1, 

... , An is the root of a finitely failed SLD-tree tree of depth -:sk. Then for some i = 

l, ... , n, .,_Ai is the root of a finitely failed SLD-tree of depth -:sk also. 

The proofs of both lemmas proceed by induction on k and are straightforward. 

Ifwe view the construction of a finitely failed SLD-tree as a method of computing 

complements in U of T t w, then Theorem 7 .1 states the correctness of the method. 

We prepare the completeness proof by introducing some definitions and lemmas. 

Definition 7.4. A definite sentence is said to be of finite degree if for no negative 

clause N there exists an SLD-tree with N as root and containing a node of infinite 

degree. 
A negative clause N is called infinite (with respect to a definite sentence P) if every 

SLD-tree for P with N as root is infinite. 

For example, if no predicate symbol occurs in infinitely many conclusions of 

clauses, then P is of finite degree. 

LEMMA 7.5. For no atom A in an infinite negative clause N can .,_A be the root of 

a finitely failed SLD-tree. 

PROOF. If a finitely failed SLD-tree F with A as root did exist, then a finitely 

failed SLD-tree tree could be constructed with N as root by initially selecting A and 

then selecting the same atoms as in F. 0 

LEMMA 7.6. Let N be a negative clause which is infinite with respect to a definite 

sentence of finite degree. In every SLD-tree with N as root, there is a direct descendant 

of N which is infinite. 

This is a form of Konig's Lemma. 

Definition 7.7. Let Mand N be negative clauses. N contains the atom A, and() is 

a substitution. We write N ~e;A M to denote the fact that there exists an SLD­

derivation with G0 , ••• , Gk as sequence of clauses such that 

(i) Go = N and Gk = M. 

(ii) () = 1JJ, •.. , 1/k is the composition of the successive substitutions of the derivation. 

(iii) A is the selected atom of N. 

(iv) The selected atoms of the clauses G1, ... , Gk-1 are introduced atoms (in the 

sense of the definition of Section 5). This implies that M is of the form 

~A1, ... , Ai-1, N', Ai+1, ... , An){}, for some list N' of atoms, if N is .,_Ai, ... , 

A;-1, A, A;+i. ... , An. 

LEMMA 7.8. Suppose that .,_Ai. ... , An is infinite with respect to a definite sentence 

of finite degree and that .,_Ai is not infinite. Then for some substitution B, we have 

.,_A i. ... , An tjo,A, ~A i. ... , Ai-i. A;+i, ... , An)8, [Ai()] C T t w, and ~A i. ... , A;-1, 

Ai+i. ... , An)8 is infinite. 
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PROOF. By Lemma 7.5, -A; cannot be the root of a finitely failed SLD-tree. As 

-Ai is not infinite, it must be the root of a finite SLD-tree F containing the empty 

clause. By Theorem 5.1, for some (), [A;8] k lfp(T); also, lfp(T) k T iw. By 

the definition of ==>, the first part of the lemma is proved. We now show that if 

~Ai, ... , A;-i, A;+i, ... , An){) were not infinite, then -Ai. ... , An would not be 

infinite either. 

Consider a tree F', isomorphic to F, obtained by performing the same resolutions 

on the same selected atoms but with -Ai. ... , An as root rather than -A;. F' is itself 

not necessarily an SLD-tree, but only the initial part of one. We complete F' to an 

SLD-tree by constructing SLD-trees with the terminal nodes of F' as roots. In a 

terminal node of F', corresponding to a nonempty terminal node of F, we select the 

same atom as in F. As a result, the node in F' has no descendant. In a terminal node 

~Ai. ... , A;-r, Ai+i. ... , An)B of F' corresponding to an empty (terminal) node of 

F, we select an arbitrary atom. There is only a finite number of this kind of nodes. 

If none of them were infinite, then a finite SLD-tree, with -A 1, ... , An as root, could 

be constructed. D 

LEMMA 7.9. Assume a definite sentence of finite degree. For each k ~ l, if-A; is 

infinite, then for every infinite clause -N containing A; there exists a substitution B and 

an infinite clause .,_M such that 

-N=>B;A;-M and 

PROOF. Let -Ai and N = -A1, ... , A;, ... , An both be infinite clauses. By 

Lemma 7.6 there exists an SLD-tree with N as root having as direct descendant the 

infinite clause, 

(1) 

We prove the lemma by induction on k. Clearly [A;B] k T(U), which provides the 

induction basis. For the induction step assume that the lemma holds fork - I. 

Case 1. -B1B is infinite. By the induction hypothesis there exists an infinite clause 

N1 and a substitution 81, such that [B1881] k Tk-1( U), 

(2) 

where, by the definition of==>, N 1 is of the form 

-A18B1, ... , Ai-1881, Mi, B28B1, ... , BmB8i, A1+188i, ... , A"BB1. (3) 

Case 2. +-B18 is not infinite. By Lemma 7.8 there exists a substitution 81 such 

that [BdlB1] k Ttw \;;;;; Tk- 1(U), 

where N1 is 

Thus in both cases there exists an infinite clause N1 and a substitution 8 such that 

[Bd1B1] k Tk- 1(U), (2) holds, and N1 is of the form (3). We proceed now in the same 

way with B18B1 · · · B1-1, for j = 2, ... , m, successively. Each time we obtain a 

substitution 81 and an infinite clause N1 such that 

and 

By the definition of~ we have 
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Note that [B;BB1 · · · O;-d ;:;/ [B1081 · · · Orn] for j = l, ... , m, so we can conclude 

that [B1881 • · · Bm] k Tk-1( U) for j = i, ... , m. Thus, by the definition of T, 

[A;001 • • · Om] k Tk( U), which completes the induction step. 0 

COROLLARY 7.10. If A is a variablejree atom such that .,_A is infinite with respect 

to a definite sentence of finite degree, then A E T t w. 

By Corollary 5.7 we have that the success set ofa definite sentence P is Tfw. We 

are now in a position to state its dual. 

THEOREM 7. l l. Let P be a definite sentence of finite degree. The finitejailure set 

of P is the complement in U of T t w. 

PROOF. Theorem 7.1 states that the finite-failure set is not too large. To show 

that it is not too small, let A be in the complement in U of T t w. By Corollary 7.10, 

.,_A is not infinite. If .,_A were the root of an SLD-tree containing the empty 

clause, then by Corollary 5.7, A E lfp(T) k T t w. Hence A is in the finite-failure 

set of P. 0 

8. Negation Inferred from Finite Failure 

We have discussed an extremely specialized kind of inference system: the applicability 

of SLD-resolution is restricted to sentences in clausal form, which, moreover, have 

to consist of definite clauses and exactly one negative clause. Clausal form is, in 

principle, no restriction in expressiveness. But the restriction to definite clauses does 

limit what one can say. 

For example, 

E = {Element(Fire), Element(Air), Element(Water) 

, Element(Earth), Stuff(Mud) 

} 

says what some of the elements are. But it does not express the fact that these are the 

only elements. 

If we want to establish that Air is an Element, then we can use SLD-resolution to 

refute EU {.,._Element( Air)}. But how can we use SLD resolution to show that Mud 

is not an Element? We cannot expect to be able to do so by constructing a refutation 

with input clauses from E alone, because .,._Element(Mud) is not a semantic impli­

cation of E; Element(Mud) is not false in all models of E. In fact, in general, for any 

definite sentence P we can say that PI= .,_A holds for no A in the Herbrand base U 

of P; as U itself is a model of P, none of its elements is false in all models of P. With 

respect to a definite clause, some things are necessarily true, but nothing is necessarily 

false. 

In the traditional syntax of predicate logic, E can be expressed as 

Stuff(Mud) !\ 

\fx.Element(x) .,._ x =Air V x =Fire V x =Water V x =Earth · · · (4) 

If we want to add the information that the things said to be Elements are the only 

such, we can simply change the implication to an equivalence. In clausal form this 

information can, of course, also be expressed. But the resulting clausal sentence is 

not definite, hence SLD-resolution does not apply. 

Yet, is it a coincidence that a finitely failed SLD-tree exists for E with .,._Ele­

ment(Mud) as root? It is not: we shall show that this implies that •Element(Mud) is 

a semantic implication of the if-and-only-if version of ( 4). This use of finite failure 

is due to Clark [4], who justified it by showing that the finitely failed SLD-tree is 
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isomorphic to a first-order deduction using the if-and-only-if version of the clauses 
together with axiom schemata for equality. In this section we give a justification on 
the basis of Theorem 7.11. 

We associate with each definite clausal sentence first-order formulas in the 
traditional syntax of predicate logic. One is called the IF-definition of the clause. It 
is equivalent to the clausal sentence. The other is called the !FF-definition. It differs 
from the IF-definition only in that all implications are replaced by the equivalence 
connective. We then show that whenever a finitely failed SLD tree exists for P U 
{~A}, with A a variable-free atomic formula, the negation of A is semantically 
implied by the !FF-definition associated with P. 

The IF-definition associated with a finite definite sentence P is obtained by 
applying each of the following rules, in the order given. We assume that P has no 
occurrence of the two-place infix predicate symbol "=." 

Rule 1. Change each clause 

n 2: 1, m 2: 0, 

of P to the universally quantified formula 

\;/xi, ... , Xn. R(xi, ... , Xn) ~ 3 y1, ... , Yk. 
Xi =St/\ • • • /\ Xn =Sn/\ Ai/\ • • • /\Am, 

where x1, •.• , Xn are different from the clause's variables and yi, ... , Yk are the 
variables occurring in s1, ... , Sn, Ai, ... , Am. 

Note that the clause is true in I (according to Definition 4.1) iff the resulting 
formula is true in I (according to the usual definition of truth in Definition 8.1). 

For the sake of simplicity we prefer not to add a rule for the case n = 0. The 
requirement that predicates have to have at least one argument is no loss of 
expressiveness and hardly an inconvenience. 

Rule 2. Change each set {Vxi, ... , Xm. (P - Qi), ... , Vxi, ... , Xm. (P - Qn)} 
of implications, obtained by the above rule and having the same predicate symbol in 
the conclusion, to \;/xi, ... , Xm. P ~(Qi V · · · V Qn). As a result of this rule, the 
original clausal sentence has been transformed to a set of universally quantified 
implications, no two of which have the same predicate symbol in the conclusion, 
having a disjunction of existentially quantified conjunctions as premise. 

We now apply the following. 

Rule 3. Change this set to the conjunction of its elements. This conjunction is the 
IF-definition associated with the original definite clausal sentence. 

The last rule is the following. 

Rule 4. For any (say, n-place) predicate symbol Q which occurs in a premise but 
in no conclusion of a clause, add the implication \;/ xi, ... , Xn. Q (x1, ... , Xn) -

Q(xi, ... , Xn). 

Note that dropping the original clause that contains such a Q does not affect the 
least model. Since we are interested in other models as well, we have to consider the 
case when such clauses are present. The added clause affects only the transformation 
Tp whose fixpoints we shall consider. It has another effect as well: previously finite 
SLD trees may become infinite. 
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Example 

(\Ix [Element(x) - x =Air V x =Fire V x =Water V x =Earth]) 

/\ (Vx [Stuff(x) - x =Mud]) 

is the IF -definition associated with E. D 

Example 

Vu, v, w.[App(u, v, w) -(3y.u =nil/\ v = y /\ w = y) 

V (3u1, x, y, z.(u = U1 ·X /\ v = y /\ w = u1 .z /\ App(x, y, z)))] 

is the IF -definition associated with 

{App(nil, y, y) 

, App(u·x, y, u·z) - App(x, y, z) 

} . 

857 

D 

As was mentioned before, the !FF-definition associated with a definite clause is 

the IF-definition with each implication changed to the equivalence connective. 

We now define when a certain class ofnonclausal first-order formulas is true in an 

interpretation /. As before, interpretations are subsets of a certain Herbrand base. 

Definition 8.1 

(l) A universally quantified implication is true in I iff for each variable-free 

instantiation of the implication which makes the premise true in/, the conclusion 

is also true in /. 

(2) An existentially quantified conjunction with no free variables is true in I iff at 

least one variable-free instance of the conjunction is true in/. 

(3) A variable-free conjunction is true in I iff each conjunct is true in/. 

(4) A variable-free disjunction is true in I iff at least one disjunct is true in/. 

(5) A variable-free atomic formula A is true in I iff A EI or, independently of I, A 

is t1 = t2 with ti and t2 the same variable-free term. 

LEMMA 8.2. Let R be an n-place predicate symbol in a conclusion of an implication 

of an IF-definition associated with a finite definite clausal sentence P. R(ti, ... , tn) E 

Tp(I) iff the substitution (t1/x1, •.• , tn/xn) =A. makes the implication's premise true in 

I, where x 1, ... , Xn are the free variables of the universally quantified implication. 

PROOF. R(ti. ... , tn) E TP(/) iff there exists in P a clause R(si, ... , Sn) -

B1, •.. , Bm such that R(t1, ••• , tn) = R(s1, ... , sn)8 and {B18, ... , Bm8} k; I, for 

some 8, iff the substitution A. makes the premise of the implication true in /. D 

LEMMA 8.3. For all interpretations I, the /FF-definition associated with a finite 

definite sentence P is true in I if! I= Tp(I). 

PROOF 

If We should first verify that P and its IF-definition have the same set of models. 

This is immediate in the case where every predicate symbol occurs in a conclusion. 

In the other case it is obvious that an IF-definition containing an implication of the 

form Vxi. ... , Xn. Q(xi, ... , Xn) - Q(x 1, ... , Xn) which has no counterpart in P 

(see Rule 4) also has the the same set of models as P. Hence Theorem 4.4 can be 

used to conclude that for all interpretations/, I ;:2 Tp(/) iff the IF-definition is true 

in/. 
Assume now that I k; Tp(/) and R(ti. ... , tn) is true in /, with R the predicate 

symbol in a left-hand side and ti, ... , tn variable-free. By the assumption I k Tp(I), 
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R(ti, ... , tn) is true in Tp(/). By Lemma 8.2, the corresponding instance of the right­

hand side is true in/. We conclude that I= T(I) implies that the !FF-definition is 

true in I. 

Only if. We assume the !FF-definition is true in I. We have to show I k; Tp(/). 

R(ti, ... , tn) E I~ because of Definition 8.1 there exists an equivalence having 

R(xi. ... , xn) in its conclusion and the substitution (ti/xi, ... , tn/Xn) makes its 

premise true in I~ (Lemma 8.2) R(ti, ... , tn) E Tp(l). 0 

THEOREM 8.4 [4, 5]. Let P be a finite definite clausal sentence. If A is in the finite 

failure set of P, then 1A is semantically implied by the /FF-definition associated 

with P. 

PROOF. Suppose A is the root of a finitely failed SLD-tree. By Theorem 7.11, 
A tf:. Tp t w. Also, we have TP t w ;;;2 gfp(Tp ). Hence A tf:. gfp(TP ); hence, by Theorem 

2.1, A tf:. I for any I such that I= T(l); hence, by Lemma 8.3, A is false in all models 

of the !FF-definition. 0 

In some cases we can prove the converse theorem. 

THEOREM 8.5. Let P be afinite definite sentence such that Tp i w = gfp(Tp), and 

let A be a variablefree atom. If 1 A is semantically implied by the /FF-definition 

associated with P, then A is in the finitef ailure set of P. 

PROOF. The argument of the proof of Theorem 8.4 can be reversed provided that 

Tp t w = gfp(Tp). 0 

9. Applications 

The fixpoint semantics of finite failure has at least two interesting applications. The 
first is to the semantics of the "closed-world assumption" for databases, various 

aspects of which are discussed in [4, 14, 18]. A database can be regarded as a sentence 
stating that certain relations hold. A conventional relational database then becomes 

a definite clause of a very special form: no conditional clauses, no variables, no 

functors. Other types of databases are being investigated for which some of these 

restrictions have been lifted. As a result, the definite sentence is a useful model (not 

in the technical sense) of databases in general. 

Definite sentences only explicitly say what is true. There are two distinct ways of 
stating that certain atomic formulas are false. One is the "closed-world assumption" 

discussed by Reiter [14], which assumes that every variable-free atomic formula not 

provable from a definite sentence S is false. The other way, let us call it the IFF 

assumption (see also [12, Ch. 11]), is to regard Sas having as meaning the associated 

IFF definition. Now, what is false under the closed-world assumption is the comple­
ment of the least fixpoint of Ts; what is false under the IFF assumption is the 

complement of the greatest fixpoint. It is thus clear that the two assumptions are 
equivalent only for rather special definite sentences (which include conventional 

relational databases). Moreover, the use of finite failure to conclude negations 

approximates more closely the IFF assumption; the approximation becomes an 

equality if gfp(T) = T tw. 
The second application is to the semantic characterization of the behavior of 

nondeterministic programs. For a discussion of this we need a brief description of 

flowgraph programs, their computations, and their representation in logic. For 
examples and comparisons with other models of computation the reader is ref erred 
to [17]. 
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A flowgraph is a possibly infinite directed graph in which the arcs are labeled 

by commands. There is one node called the start node S; it has no incoming arc. 

There is one node called the halt node H; it has no outgoing arc. Each command is 

a binary relation over states of a machine. The transition relation holds between two 

(node, state)-pairs (N;-i, cr;-1) and (N;, al) iff there is an arc from N;-1 to N; and 

(a;-i, a;) E C;, the command labeling that arc. A computation is a possibly infinite 

sequence of (node, state) pairs such that every element (Nh <Jj) has a succes­

sor (NJ+1, <TJ+>) in the sequence if (NJ, aJ) is in the transition relation with some 

(node, state)-pair and (NJ+i, a1+1) must be one such pair. Also, the node of the first 

pair in a computation must be the start node S. It follows that whenever the halt 

node H occurs in a computation, it must be finite, and that H must occur in the last 

pair. Such a computation is called successful. A finite computation which is not 

successful is called blocked. Flowgraphs also admit infinite computations. 

For a given (node, state)-pair (N, a) there may be several pairs (N', a') such that 

(N, a) and (N', a') are in the successor relation. It is this feature that makes the 

epithet "nondeterministic" applicable to flowgraphs. A flowgraph is said to be of 

finite nondeterminacy if the number of such successors is finite. The assumption of 

finite nondeterminacy has been extensively studied in the literature. Perhaps the best 

known reference is [7]. Our subsequent considerations are closely related to [8], 

where various execution methods for the case of nondeterministic programs are 

studied and the distinction is made among infinite, successful, and blocked compu­

tations. 

With a fiowgraph and a machine we associate a definite clausal sentence P. For 

each distinct node or command there is a distinct two-place predicate symbol. For 

each arc from V to W labeled with C there is a clause in P, 

V(x, z) - C(x,y), W(y, z). 

In addition to these clauses there is the clause 

H(x, x). 

We also add to Pall clauses C(a, b) such that "C" is the name of a command and 

(a, b) EC. 

With a computation we associate a sequence of negative clauses as follows. For 

i = l, 2, ... , if (N;, s;), (N;+i, s;+1) are the ith and (i + l )st pairs of the computation, 

then -E-N;(s;, z), (~C(s;, y), N;+ 1(y, z)), and -E-N;+ 1(s;+i, z) are the (2i - l)st, 2ith, 

and (2i + l)st negative clauses. 

LEMMA 9.1. The sequence of clauses associated with a computation is a derivation 

in which the leftmost atom is always selected. The computation is successful if! the 

associated derivation can be made into a refutation by appending the empty clause to it. 

This correspondence between computations and derivations is the basis for our 

characterizations of certain behaviors of flowgraphs. Note that computations form a 

tree, just as derivations form an SLD-tree. An interpreter for flowgraphs is a procedure 

to be used with the purpose of constructing a successful computation. In [8] such 

procedures are studied in a general framework of computation trees and are called 

execution methods. An interpreter is analogous to an SLD-refutation procedure for 

the clauses associated with the flowgraph. Conventionally, only interpreters are 

considered that perform a depth-first search of the tree of computations. These 

correspond to the DT execution method of [8]. 

In the case of possibility of nondeterminacy, such an interpreter will, after having 

constructed a blocked computation, backtrack to the most recent point where a 
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choice in successor remained untried. It will then continue, using that previously 
untried choice. Of course, other interpreters are possible, as shown, for exam­

ple, in [8]. 
For the behavior of such an interpreter when starting in a state a, we distinguish 

the following mutually exclusive contingencies. 

(A) For some choice of successors, a successful computation is found, with final 

state b. 
(B) For no choice of successors, the interpreter terminates successfully; for some 

choice of successors, the interpreter does not terminate. 
(C) For any choice of successors, the interpreter terminates and no successful 

computation is found. 

The distinction among these contingencies has been made in [8, 1 O] and other papers 
in the context of nondeterministic computation. Let P be the clausal sentence 
associated with the flowgraph. In [l 7] one may find an equivalent of the following. 

THEOREM 9.2. We have contingency (A) if! PI= S(a, b). 

PROOF 

Only if Successful computation exists ~ by Lem.ma 9.1, the corresponding 

derivation -s(a, x), ... , -H(b, x) exists~ refutation -s(a, x), ... , -H(b, x), 

D exists, in which b is substituted for x ~ S(a, b) E lfp(Tp), by Theorem 5.1 ~ 

PI= S(a, b). 

If PI= S(a, b) ~PU {-S(a, b)} inconsistent~ (Lemma 5.5) the refutation 
'=-S(a, b), ... , D exists~ because H(x, x) is the only clause without a premise, 
refutation -s(a, b), ... , -H(t, b), Dis a refutation~ (Lemma 9.1) (S, a), ... , 

(H, b) is a successful computation. 0 

To obtain a characterization of contingencies (B) and (C) we use the results of 
Section 8. Therefore we restrict our attention to flowgraphs for which the associated 
definite clausal sentence P is finite. This sentence is finite if both the flowgraph and 
the state set are finite. 

First we prove the following result, which is of independent interest. 

THEOREM 9.3. If P represents aflowgraph of finite nondeterminacy, then TpJ,w = 

gfp(Tp). 

PROOF. For any P we have Tp!w ~ gfp(Tp). Hence it suffices to show that 

TpJ,w ~ T(TpJ,w). 

Q(a, c) E TpJ,w ~for all n, Q(a, c) E r'(U) 

~ there exists a clause Q(x, z) - C(x,y), R(y, z) in P such that for 
infinitely many n, C(a, <Jn) and R(<Jn, c) both in rn-1( U); this is 
because, by finite nondeterminacy, only finitely many clauses 
resolve with -Q(a, c) 

~ there exists a CJ such that C(a, CJ) and R(<J, c) both in rn- 1( U) for 

infinitely many n; this is because, by finite nondeterminacy, only 
finitely many <Jn exist such that C(a, <Jn) 

~ C(a, CJ) and R(<J, c) both in TpJ,w 

~ Q(a, c) E T(Tp!w), by the definition of T. D 

We can now provide a characterization of contingency (C). 
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THEOREM 9.4. Assume the state set is finite. For a finite jlowgraph we have 

contingency (C) if! P' I= •S(a, a) for all states a, where P' is the /FF-definition 

associated with P. 

PROOF 

Only if. Contingency (C) ==*(Lemma 9.1) <c-S(a, x) is the root of a finitely failed 

SLD-tree ==* (Lemma 7.2) for all states a, -s(a, a) is the root of a finitely failed 

SLD-tree ==*(Theorem 8.4) for all states a, P' I= •S(a, a). 

If For all states a, P' I= •S(a, a)==* (Theorems 8.5 and 9.3) for all states a, there 

exists a finitely failed SLD-tree with -s(a, a) as root==* (by the form of P) for all 

states a there exists a finitely failed SLD tree with -s(a, a) as root, where the 

leftmost atom is always the selected atom==* (Lemma 9.1) all computations starting 

in state a are blocked; that is, we have contingency (C). D 

COROLLARY 9.5. Assume the state set is finite. For a finite jlowgraph we have 

contingency (B) if! 

PI= S(a, a) for no state a 

and 

P' I= S(a, a) for at least one state a, 

where P is the definite sentence representing the flowgraph and P' is the !FF-definition 

associated with P. 

Alternative characterizations of the contingencies (A)-(C) can be given by referring 

to the least and greatest fixpoints of T since, as in fact used in the above proofs, 

PI= S(a, a) 

P' I= S(a, a) 

iff 

iff 

S(a, a) E lfp(Tp), 

S(a, a) E gfp(TP). 

We conclude this section by formulating a general theorem which concerns 

sentences P for which Tpt w = gfp(TP ). 

THEOREM 9 .6. If each SLD-tree for P U { <c-A } , where A is any variablejree atom, 

is of finite degree and there are finitely many variablejree terms in the Herbrand 

universe, then Tptw = gfp(Tp). 

PROOF. The proof is analogous to that of Theorem 9.3. D 
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