CONTRIBUTIONS TO THE THiEORY OF STATISTICAL ESTIMATION
AND TESTING HYPOTHESES'

By ABraHAM WALD

1. Introduction. Let us consider a family of systems of n variates X;(8,

cee, 09, Lo, X0, -, 8%) depending on k parameters 6, ..., ¢%,
A system of k values 8, ..., 8% can be represented in the k-dimensional
parameter space by the point 8 with the co-ordinates 6, ..., 6. Denote

by Q the set of all possible points 8. For any point 6 of @ we shall denote by
P(E ew|6) the probability that the sample point E = (x;, - -- , z.) falls into’
the region w of the n-dimensional sample space, where x; denotes the observed
value of the variate X;(0)(j = 1, ..., n). The distribution P(E ew|6) is
supposed to be known for any point 6 of Q. In the theory of testing hypotheses
and of statistical estimation we have to deal with problems of the following type:
A sample point E = (2, - - - , z,) of the n-dimensional sample space is given.
We know that x;is the observed value of X ;(#) but we do not know the param-
eter point 8, and we have to draw inferences about 8 by means of the sample
point observed. The assumption that 6 belongs to a certain subset w of Q is
called a hypothesis. We shall deal in this paper with the following general prob-
lem: Let us consider a system S of subsets of 2. Denote by H, the hypoth-
esis corresponding to the element w of S, and by Hs the system of all hypotheses
corresponding to all elements of S. We have to decide by means of the observed
sample point E which hypothesis of the system Hg should be accepted. That is
to say for each H, we have to determine a region of acceptance M, in the n-
dimensional sample space. The hypothesis H, will be accepted if and only if
the sample point E falls in the region M,. M, and M, are disjoint if w 7 '.
The statistical problem is the question as to how the system Mj of all regions
M, should be chosen.

The problem in this formulation is very general. It contains the problems of
testing hypotheses and of statistical estimation treated in the literature.? For
instance if we want to test the hypothesis H, corresponding to a certain subset w
of Q, the system of hypotheses Hs consists only of the two hypotheses H, and
H; where & denotes the subset of 2 complementary tow. If we want to estimate
6 by a unique point, then S is the system of all points of 2. In the theory of
confidence intervals we estimate one of the parameter co-ordinates 8, ... , 6%,

1 Research under a grant-in-aid from the Carnegie Corporation of New York.

2 See, for instance, J. Neyman, ‘“Outline of a Theory of Statistical Estimation Baged on
the Classical Theory of Probability,” Phil. Transactions of the Royal Soctety, London,
Vol. 231 (1937), pp. 333-380.
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say 0, by an interval. In this case S is a certain system of subsets w of the
following type: w is the set of all points 8 = (8, . , 8%) for which 6 lies
in a certain interval [a, b]. The problem in our formulation covers also cases
which, as far as I know, have not yet been treated. Consider for instance 3
subsets w; , we and ws of @ such that the sum of them is equal to . It may be
that we are interested only to know in which of the subsets w; , ws , ws the un-
known parameter point lies. In this case the system of hypotheses Hs consists
only of the 3 hypotheses H., , H., and H,, . Cases like this might be of practical
interest.

For the determination of the ‘“‘best” system (in a certain sense) of regions of
acceptance we shall use methods and principles which are closely related to those
of the Neyman-Pearson theory of testing hypotheses. In the Neyman-Pearson
theory two types of error are considered. Let 6 = 6; be the hypothesis to be
tested, where 6; denotes a certain point of the parameter space. Denote this
hypothesis by H; and the hypothesis 8 # 6, by H. The type I error is that which
is made by rejecting H, when it is true. The type II error is made by accepting
H, when it is false. The fundamental principle in the Neyman-Pearson theory
can be formulated as follows: among all critical regions (regions of rejection of
H., i.e. regions of acceptance of H) for which the probability of type I error is
equal to a given constant a, we have to choose that region for which the proba-
bility of type II error is a minimum. The difficulty which arises here lies in the
circumstance that the probability of type II error depends on the true parameter
point 8. That is to say, if the critical region is given the probability of type II
error will be a function of the true parameter point 8. Since we do not know the
true parameter point 8, we want to have a critical region which minimizes the
probability of type II error with respect to any possible alternative hypothesis
0 = 0, % 6;. If such a common best critical region exists, then the problem is
solved. But such cases are rather exceptional. If a common best critical
region does not exist, Neyman and Pearson consider unbiased critical regions of
different types,’ which minimize the type II error locally, that is to say with
respect to alternative hypotheses in the neighborhood of the hypothesis con-
sidered. In this paper we develop methods for the determination of a system of
regions of acceptance taking in account type II errors also relative to alternative
hypotheses not lying in the neighborhood of the hypothesis to be tested.

2. Some Definitions. Let us denote by © the set of all possible parameter
points 8 and by S a system of subsets of 2. If p denotes the sum of the elements
of a subset ¢ of S, then we shall denote = M, by M,, where M, denotes the

3J. Neyman and E. S. Pearson: Statistical Research Memoirs, Volumes I and II. The
authors consider also unbiased regions of type 4, for which the probability of type 11
error with respect to every alternative hypothesis is not greater than for any other unbiased
region of the same size. However regions of type 4 do not always exist (the existence of
such regions hag been proved for a special but important class of cases).
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region of acceptance of H, and the summation is to be taken over all elements
w of o

Definition 1. Denote by Ms and Mg two different systems of regions of
acceptance corresponding to the same system Hj of hypotheses. The systems
Ms and Mg are said to be equivalent if for each point @ of @ and for every p
which is a sum of elements of S which does not contain 6, the equation

P(EeM,|6) = P(EeM,|0)

holds, where M, denotes the region according to the system M. s and M, denotes
the region according to the system My .

Definition 2. Denote by Ms and Mg two different systems of regions of
acceptance corresponding to the same system of hypotheses. The system Mg
is said to be absolutely better than the system M if they are not equivalent and
if for each 8 and for every p which is a sum of elements of S which does not
contain 8 the inequality

P(EeM,|6) < P(EeM,|0)

holds.
Definition 3. A system M of regions of acceptance is said to be admissible
if no absolutely better system of regions exists.

3. The problem of the choice of M3. The choice of M will in general be
affected by the following two circumstances:

(1) We do not attribute the same importance to each error. For instance
the acceptance of the hypothesis that 6 lies in a certain interval I has in general
more serious consequences if @ is far from I than if 8 is near to I. The choice of
M, will in general depend on the relative importance of the different possible
erTors. ‘

(2) In some cases we have a priori more confidence that the true parameter
point lies in a certain interval I than in some other cases. The choice of Ms
will in general be affected also by this fact. Let us illustrate this by an example.
We have two coins, a new and an old one and we want to test for both coins
whether the probability p of tossing head is equal to 3. Let us assume that we
make 100 tosses with each of the coins and we get head 40 times in each case.
Since we have a priori no very great confidence that the old coin is unbiased,
the fact that head occured only 40 times will suffice to reject the hypothesis that
for the old coin p = 1. But in the case of the new coin, having much greater a
priori confidence that it is unbiased, we shall perhaps not reject the hypothesis

= 1 and we shall rather assume that a somewhat improbable event occurred.
That is to say, we do not choose the same critical region in both cases due to the
fact that our a priori confidence for p = % is in the case of the new coin greater
than in the case of the old one.

" In order to study the dependence of the choice of M s on the two circumstances
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mentioned, let us introduce a weight function for the possible errors and ana
priori probability distribution for the unknown parameter 8. The weight
function W (8, w) is a real valued non-negative function defined for all points 8 of
@2 and for all elements w of 8, which expresses the relative importance of the
error committed by accepting H,, when 6 is true. If 6 is contained in w, W (6, w)
is, of course, equal to zero. The question as to how the form of the weight
function W (8, w) should be determined, is not a mathematical or statistical one.
The statistician who wants to test certain hypotheses must first determine the
relative importance of all possible errors which will entirely depend on the
special purposes of his investigation. If that is done, we shall in general be
able to give a more satisfactory answer to the question as to how the system.of
regions of acceptance should be chosen. In many cases, especially in statistical
questions concerning industrial production, we are able to express the importance
of an error in terms of money, that is to say, we can express the loss caused by the
error considered in terms of money. We shall also say that W (8, ) is the loss
caused by accepting H, when @ is true.

The situation regarding the introduction of an a priori probability distribution
of 0 is entirely different. First, the objection can be made against it, as Neyman
has pointed out, that 6 is merely an unknown constant and not a variate, hence
it makes no sense to speak of the probability distribution of . Second, even if
we may assume that 8 is a variate, we have in general no possibility of determin-
ing the distribution of # and any assumptions regarding this distribution are of
hypothetical character. On account of these facts the determination of the
system of regions of acceptance should be independent of any a priori probability
considerations. The “best”” system of regions of acceptance, which we shall
define later, will depend only on the weight function of the errors. The reason
why we introduce here a hypothetical probability distribution of 6 is simply
that it proves to be useful in deducing certain theorems and in the calculation
of the best system of regions of acceptance.

Let us denote by f(6) a distribution function of 6. For the sake of simplicity
let us assume that the probability density of the distribution P(E e w | 6) exists
in any point E of the sample space for any 6 and denote it by p(E | §). The
expected value of the loss is given by

) » I= fy fn W, ws)p(E|6) df(6) dE

where wg denotes the element of S corresponding to E (that is to say, wy is that
element of S for which E is a point of the region of acceptance M.,.), and the
integral is to be taken over the product of the sample space M with the param-
eter space Q. The expected value I of the loss depends on the system Mg of
regions of acceptance. The system M for which I becomes a minimum, can be
regarded as the best system of regions relative to the given weight function and
to the given a priori distribution of 6.

One can easily show the following: If Mg is an absolutely better system of
regions (in sense of the definition 2) than the system My, then for any weight
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function w(6, w) and for any a priori distribution f(8) the cxpected value I’ of
the loss corresponding to My is less than the expected value I of the loss cor-
responding to Ms. (For some exceptional weight and a priori distribution
functions I’ may be equal to I.)

Hence we can give the following rule: We have to choose an admissible system of
regions of acceptance.

Now let us consider the question whether besides admissibility further restric-
tions upon the choice of M can be made. In order to see this, let us consider
two admissible systems of regions Ms and Mg which are not equivalent. One
can easily show that there exist two weight functions W1(6, ), W2(8, w) and two a
priori distributions f1(8) and f»(6) such that for W(6, ») and f1(8) the expected
value of the loss corresponding to M s is less than that corresponding to M, s, and
for W,(8, w) and f2(6) the expected value of the loss corresponding to M g is greater
than that corresponding to Ms. Hence no absolute criteria can be given as to
which of the systems Mg and M, + should be chosen. In order to be able to make
further restrictions upon the choice of M, we have to make assumptions regard-
ing the form of the weight function. We shall deal with this question in section 6.

4. Calculation of admissible systems of regions. As we have seen, we have to
choose an admissible system of regions. The question arises as to how we can
find admissible systems of regions.

Provided that p(E | §) is continuous in E and 8 jointly, one can easily show
that Mg is an admissible system of regions if there exists a bounded, uniformly
continuous and everywhere positive (except if 6 is contained in w) weight func-
tion W (8, w) and an a priori distribution f(6) such that every open subset of Q
has a positive probability and the expected value of the loss

) 104y = fM fﬂ W, ws)p(E | 6) df(6) dE.

becomes a minimum for Mg = M. (wg denotes that element of S for which
M,, contains E). In fact if there existed an absolutely better system M s of
regions, then I(Mg) would be less than I (M) in contradiction to our assumption
that I(Ms) becomes a minimum for Ms = M.

In order to obtain an admissible system M we may choose any bounded,
uniformly continuous and everywhere positive (except if 8 is contained in w)
weight function W (6, w) and any arbitrary a priori distribution f(6) (subject
only to the condition that every open subset of @ should have a positive proba-
bility) and then the system My which makes

1019 = [ [ WG, wnp(®10) 5@ a5

a minimum is an admissible one. In order to determine Mg we have only to
determine for each E the corresponding element wgs of S. Let us consider the
integral

Is = [ WG, w)p(E10) .
Q
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The integral I is for a fixed E only a function of w. It is obvious that wg must
be that element of S for which Iz becomes a minimum.

5. Admissible systems M; and the Neyman-Pearson best critical regions.
Let us consider the case that the system Hg of hypotheses consists only of the
following two hypotheses: 1) 8 = 6, where 6 is a certain point of . 2) 6
belongs to the set complementary to 6. Let us denote by w; the set consisting
only of the point 8, , and by w. the set complementary tow; . S consists in this
case only of two elements w; and ws. The system M 5 of regions consists of two
regions of acceptance M, and M., corresponding to the hypotheses H,,, and H.,,.
If a common best critical region in the sense of Neyman-Pearson exists and if
M s is admissible, then M., is obviously a common best critical region. This
leads to the following remarkable conclusion: If a common best critical region
exists and if the system M of regions consisting of the two regions M,, and
M,, minimizes the expectation of the loss (formula 2) for a weight function and
for an a priori distribution subject to some weak conditions mentioned in para-
graph 4, then M., is a common best critical region. That is to say, the form
of the weight function and of the a priori distribution affects only the size of the
region M,, but it will always be a common best critical region.

6. The choice of M, if a weight function is given. We shall now consider the
case in which a weight function W (8, w) is given and we shall deal with the ques-
tion as to how M in this case is to be chosen.

If the parameter point is an unknown constant and if 6 denotes the true
parameter point, then the expected value of the loss is given by

®) @ = | W6, on)p(®|0)aE

where the integration is to be taken over the whole sample space M and H,,
denotes the hypothesis accepted if E is the observed sample point. That is
to say wg is that element of S for which E is contained in the region of acceptance
M., . We shall call the expression (3) the risk of accepting a false hypothesis
if 9 is the true parameter point. Since we do not know the true parameter
point 6, we shall have to study the risk »(8) as a function of 8. 'We shall call this
function the: risk function. The form of the risk function depends on the
system Mg of regions and on the form of the weight function. In order to
express this fact, we shall denote the risk function corresponding to the system
M and to the weight function W (8, w) also by

6 |- Ms, W, o).

Definition 4. Denote by Ms and Mg two systems of regions of acceptance
corresponding to the same system Hg of hypotheses. We shall say that Mg
and Mj are equivalent relative to the weight function W (6, ) if the risk function
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76| Ms, W(6, w)] is identically equal to the risk function {6 | Mg, W (8, )],
that is to say if for each point 6,

r[0 I M; ’ W(oy w)] = T[0 I M ’ W(o) w)]

Definition 5. Denote by Ms and M5 two systems of regions corresponding
to the same system Hjs of hypotheses. We shall say that M is uniformly
better than My relative to the weight function W(6, w) if Ms and Mg are not
equivalent and for each 6

(0| Ms, W6, w)] < rl8| Mg, W(6, w)l.

Definition 6. A system M s of regions of acceptance is said to be admissible
relative to the weight function W (6, w) if no uniformly: better system of regions
exists relative to the weight function considered.

It is obvious that we have to choose a system M s of regions which is admissible
relative to the weight function considered.

There exist in general many systems Mg which are admissible relative to the
weight function given. The question arises as to how can we distinguish among
them. Denote by ru, the maximum of the risk function corresponding to the
system M of regions and to the given weight function. If we do not take into
consideration a priori probabilities of 8, then it seems reasonable to choose that
system M for which ryy becomes a minimum. We shall see in section 8 that
the system M s for which raxy becomes a minimum has some important properties
which justify the distinction of this particular system of regions among all
admissible systems.

Definition 7. We shall call an admissible system M s of regions for which
rug becomes a minimum a best system of regions of acceptance relative to the
weight function given.*

Now we shall have to deal with the question of determining a best system M4
of regions and what special properties this system M s has.

7. Reduction of the problem to the case when the system H s of hypotheses is
the system of all simple hypotheses. A hypothesis H, is said to be a simple
hypothesis if w contains exactly one point of the parameter space 2. We assume
that each element w of S is a closed subset of 2. Hence the power of S is not
greater than the power of the continuum and therefore we can always set up a
correspondence between the elements » of S and the points @ of Q such that to
each point 6 corresponds a certain element ws of S and to each element w of S
at least one point 8 exists for which ws = w. For instance if S consists of the
two elements w; and w; then we can set up a correspondence as follows: the
element wy of S corresponding to 6 is w; if 8 is contained in w; and w, otherwise.

4 As we shall see later (Theorem 3), the best system of regions is uniquely determined if
some regularity conditions are fulfilled.
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If © is one dimensional and 8§ is the system of all intervals of a certain length e
then we can define the interval ws corresponding to 6 as the interval of which
the initial point is 6 and the terminal point 8 + e.

Let us denote the weight function by W (6, ) defined for all values of 6 and
for all elements w of S. Consider the system H; of all simple hypotheses and
the following weight function

(4) W (8, 6) = W(8, wi)

where § denotes the true parameter point and 8 denotes the estimated point.
A system M of regions of acceptance for Hj is given by a vector function 8(E)
of the observations such that to ecach point E = (z,, ..., x,) of the sample
space M corresponds a certain point 6(E) of the paramcter space. For cach
point 6y the region My, of the acceptance of the hypothesis 6 = 8 is given by
the equation 6(E) = 6. We shall call the function 8(E) an cstimate of 6,
the system of regions My is uniquely determined by the estimate. We shall
call 4(E) a best estimate relative to a given weight function if the system of
regions determined by 8(FE) is a best system of regions relative to the weight
function considered.

Let us denote by 8(E) a best estimate of 6 relative to the weight function
W (6, 6) defined in (4). A best system M . of regions of acceptance in the original
problem can obviously be obtained in the following way: Denote by w an element
of 8. The region M, of acceptance of the hypothesis H, consists of the points £
for which

Whg) = W.

Hence we can resttict our considerations to the case when the system of hypoth-
eses is the system of all simple hypotheses. We shall deal with the problem of
how a best estimate of 8 can be found and what properties this cstimate has.

8. Some theorems concerning the best estimate. In order to study the
properties of a best estimate 8(E) it is useful to consider hypothetical a priori
distributions of 8. We shall especially consider point distributions of 4, that
is to say, distributions where a finite number of points 6y, - - -, 6, of the param-
cter space  exist such that the probability of any subset of @ not containing
any of the points 6,, --- , 6, is zero. If 8, - .., 6, are given, a point distribu-
tion is characterized by a vector p = (o1, - - -, ps) where p; denotes the proba-
bility of 8; and Zp; = 1.

1f 6(E) denotes an estimate of 6 and if f(8) denotes a distribution function of 6
then the expected value of the loss, that is to say the expected value of the weight
function W[8, 6(E)] is obviously given by '

5) [ [ wio,0mip(z 1) is@) ar

where p(E | 8) denotes the probability density in E if 6 is the true parameter
point and the integration is to be taken over the product of the sample space M
and parameter space Q.
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Let us assume that for every sample point E there exists a parameter point
6;(E) such that the expression

(6) fn W, 8)p(E | 6) df(6)

becomes & minimum with respect to § for § = ,(E). We shall call the estimate
68,(E) a minimum risk estimate with respect to the distribution f(6), since also
the expression (5) becomes a minimum for the estimate 6,(E).

We shall make the following assumptions:

Assumption 1. The parameter space is a bounded and closed subset of the
k-dimensional Euclidean space.

Assumption 2. The weight function W (6, 8) is continuous in ¢ and 8 jointly.
Assumption 3. The probability density p(E |#6) is continuous in E and 6
jointly. That is to say if lim E; = E and lim 6; = 6 then lim p(E;|6;) =
p(E | 6).

Assumption 4. For any distribution f(8) of 8 there exists at most one minimum
risk estimate 8,(E).°

Assumption 5. If f(8) and f'(8) denote two different point distributions of 6
and if 6,(E) and 6,/(E) are minimum risk estimates corresponding to f(6) and
f'(8) respectively, then 6,(E) is not identically equal to 8,-(E).

The assumptions 1-5, with addition of an assumption 6 which we shall formu-
late later, enables us to deduce important properties of the best estimate 6(E).
First we shall prove some Lemmas by means of the assumptions 1-5.

Lemma 1. For any a priori distribution f(8) of 0 there exists exactly one mini-
mum risk estimate 6;(E).

According to Assumption 2 W(6, 8) is continuous. Since the parameter
space © is compact on account of Assumption 1, W (6, 8) is uniformly continuous.
According to Assumption 3 p(E | 6) is continuous; hence for any fixed sample
point E, p(E | 6) is bounded. From these facts it follows easily that the expres-
sion (6) is a continuous function of 8 for any fixed sample point E. Hence there
exists at least one parameter point 6,(E) such that (6) becomes a minimum for
8 = 6,(E). Since, according to Assumption 4, at most one parameter point
exists for which (6) becomes a minimum, Lemma 1 is proved.

If a distribution f(8) of @ is given then the distribution of each of the com-
ponents 6", ..., 6% of 6 can be found. Denote by Q; the set of real numbers
which are discontinuities of the distribution of the component 6”(j = 1, - .. , k)
and form theset Q = @ + --- + Q. Asiswell known, @ is at most denumer-
able. A k-dimensional interval J of the parameter space given by

aiS(’mei G=1---,k

is called a continuity interval of the distribution f(6) if no a; and no b; belongs to
Q. A sequence {f.(6)} of distributions is said to be convergent towards the

5 As will be shown in Section 10, Assumption 4 is not as restrictive as it would appear.
1t will be satisfied in the great majority of practical cases.
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distribution f(6), i.e. in symbols lim f,(6) = f(0), if for any continuity interval
J of f(8) the probability of J corresponding to the distribution f,(8) converges
with increasing n towards the probability of J corresponding to the distri-
bution f(8).

LemMa 2. If {fa(®} (n = 1, ..., ad inf.) denotes a sequence of distributions,
then there exists a subsequence {f.,(6)} (m = 1, ..., ad inf.) which converges
towards a distribution.

As is well known, there exists a completely additive set function P(w) defined
for all Borel measurable subsets w of @ and a subsequence {n.} of {n}, such
that for any continuity interval J of P(w) the probability of J corresponding
to the distribution f,_(8) converges with increasing m towards P(J). Since Q is
bounded, there exists a continuity interval J such that for all n the probability
of J according to f,(6) is equal to 1. Hence P(Q) = 1, that is to say, P(w) is a
probability set function which proves Lemma 2.

Lemma 3. If {f.(8)) (n = 1, ..., ad inf.) denotes a sequence of disiributions
which conwerges towards the distribution f(6) and if lim E, = E then

lim 0;,,(E',.) = Of(E),

n=ow0

where 0;,(E) denotes the minimum risk estimate corresponding to f.(6) and 6,(E)
denotes the minimum risk estimale corresponding to f(6).

If {¢.(6)} denotes a sequence of real valued functions which converges uni-
formly towards a continuous function ¢(8) then

@) tim [ 0.0)80.0) = [ (@) af).
Since {¢.(0)} converges uniformly towards ¢(6), (7) is obviously true if
lim [ o0 dfu® = [ o df@

holds. The latter equality follows easily from the fact that © is compact.
Consider a subsequence {nn} of {n} such that lim 6;,,,,(E,,) exists. Denote
m==e0

this limit by 6*. In order to prove Lemma 3, we have only to show that ¢* =
6,(E). If 6;(E) ¢ 6* then on account of Assumption 4

(8) | j; W19, 6,(E)Ip(E | 8) df(6) < fn W, p(E |6) df.

W (8, 8) is uniformly continuous since 2 is compact. On account of Assumption
3 also p(E | 6) is uniformly continuous in the product of 2 with a bounded subset
of the sample space. Hence ‘

W[G; 0fn(m)(Enm)]p(Eﬂm ‘ 0)
converges uniformly in 6 towards
W (8, 6*)p(E | 6)
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and we have on account of (7) and (8)

ggnwmuwwmmmAw@m=memmmmw

9
> [ Wis, o) p(E 6) df,
1]
and
(10) lim fn W6, 0,(E)Ip(E | 6) df,, = fn W1e, 6,(E)lp(E | 6) df.

From (9) and (10) it follows that there exists a positive  such that for sufficiently
large m :

j; W8, 61,y (Ewn)1p(En,, |6) dfn,, > L W8, 6,(E)Ip(E | 6) dfn,, + &.

Since the sequence of functions {p(E, | 6)} converges uniformly in 8 towards
p(E | ), we have for sufficiently large m

[ 910,010 B p e 10) e > [ W10, 6,Bp (B ) v,

But this is a contradiction, since 8, (E) is a minimum risk estimate. Hence the
assumption 8* = 6,(¥) is proved to be an absurdity. This proves Lemma 3.

LemMa 4. To each positive € a bounded and closed subset M, of the sample space
M can be given such that

[ pEl0aE 21~

for every point 8 of the parameter space 2.

Let us assume that Lemma 4 is not true and we shall deduce a contradiction.
Denote by M,(»v = 1, 2, - - -, ad inf.) the sphere in the sample space M whose
center is the origin and whose radius is equal to ». Since Lemma 4 is supposed
to be not true, to each » there exists a parameter point 6, such that

1) f p(E|6)dE <1—¢  (v=1,.--,ad inf).
M,

Since Qs coinpact, there exists a subsequence {4,,} of the sequence {6,} such that
lim 6,, exists. Denote lim 6,, by 8. Since

=00
[ pEl0)aE =1
M
there exists a positive integer »’ such that

p(E|8)dE > 1 — ;

My



310 ABRAHAM WALD

On account of Assumption 3 we get easily

im [ p(E|6,)dE = f,, p(E|6) dE.

1
pmmo YV M,

Hence for suificiently large u we get
[ »®l0)aE> [ pElo)dE>1-,
Myy M,

in contradiction to (11). This proves Lemma 4.
For any estimate 8(E) we shall call the integral

r() = j; Wi, 6(E)p(E | 6) o

the risk function of the estimate 6(E). The value of the risk function »(6) is
for any @ equal to the expected value of the loss (of the weight function) if 6 is
the true parameter point.

Lemma 5. To eny posttive n a positive 5 can be given such that for any estimate
0(E) and for any pair 6, 8’ of parameter points whose Euclidean distance is less

than & the inegquality
7@ = @) | = | [ Wi, 0@1p(E 0) B - [ W', 0BIpE|0) aB| <

holds.
Since W (9, 0) is uniformly continuous, to any ¢ > 0 a positive & can be given
such that for any pair of points 6, ¢ whose Euclidean distance is less than &

the relation

(12) | W(o,8) — W(,08) | <e

holds for every §. On account of Assumption 3 § can be chosen in such a way
that also the inequality

(13) |p(E|6) — p(E|0)] < e

is satisfied for any sample point E of a bounded subset M’ of M and for any
pair 8, 8 whose Euclidean distance is less than 8.

Since W (0, §) is continuous and @ is compact, W(6, 6) must be bounded.
Denote by A an upper bound of W (9, §). According to Lemma 4 there exists a
bounded and closed subset M’ of the sample space M such that

>1-L .
f”'p(Elo)dE >1 24 for any 6

It is obvious that

'./‘-l—M’ W[ay O(E)]P(E ‘0) dE — fM~M' W[e’, o(E)]p(E | 0;) dE S ‘%.
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In order to prove Lemma 5 we have only to show that
w || wiempE0dE - [ wie,ompe o) as| <.
M M

On account of (12) and (13), (14) is certainly true for sufficiently small e.
Hence Lemma 5 is proved.

LeMMa 6. If the sequence {f.(6)} of distributions converges towards the distri-
bution f(8) and if r;,(0) denotes the risk function of the minimum risk estimate
0s,(E) then {r; (0)} converges uniformly towards the risk function r,(8) of the

minimum risk estimate 0,(E).
According to Lemma 4 to any positive ¢ a bounded and closed subset M,

of M can be given such that
(15) [ »El0dE 21~
M.

for every 6. From Lemma 3 it follows easily that {6, (E)} converges uni-
formly towards 6,(F) in M,. Hence

tim [ W6, 0,,(Bp(E | 0) dE = [ W6, 6,(B)}p(E | 6) dE
n=ow JM, M,

holds for every 6 and for every positive e. Since W (8, 8) is bounded and ¢ can

be chosen arbitrarily small, we get on account of (15) that

lim [ W9, 6, (B)p(E|0) dE = [ Wis, 0,E)p(E | 0) dE,

that is to say

lim 7, (8) = ry(8).

The uniformity of the convergence follows easily from Lemma 5.
In the following argument we shall consider an arbitrary but fixed system of s

parameter points 6, -.-,8,, and point distributions such that no point
8 # 6., -, 0, has positive probability. Such a point distribution is charac-
terized by a vector p = (o1, -- -, ps) Where p; denotes the probability of 6;
(#=1,...,8 and Zp; = 1. The points 6,, - .-, 8, are kept constant and
only p will vary. Hence if we speak about different distributions p =
(or, -+ ,ps), o = (p1,-+-,ps) they are always related to the same points
6, ---, 0, unless we state explicitly the contrary.

LemMa 7. Ifp = (o1, - -,p) and o' = (o + Apy, -+, ps + Ap,) denote
two different distributions then

8

2 [O = Dpi + Mapd[ri(p”) — ri(p)] < 0

tmel
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holds for any posttive \, where

n6) = [ Wie, 0, |8) dE G=1,--,9,

rde’) = f,, W6, 0, (B)lp(E | 6;) dE,

and 0,(E) and 0,(E) denote the minimum risk estimates corresponding to p and p’

respectively.
We have

'Z (pi + Api)rip) = /;l E': W16:, 0,(E)p: P(E |6:)dE = I,
and

; (i + Ap)ri(p”) = fu > W6, 0,(E)lpip(E|6) dE = I,.

Since 8,.(E) is the minimum risk estimate corresponding to p’, we have I, > I..
We shall show that I; > I,. According to Assumption 5 8,(E) is not identically
equal to 8,.(E). Hence there exists a point E’ such that 6,(E") # 6,(E’). On
account of Assumption 4

IW10: , 6,(ENleip(E' | 8) > ZW16:, 0,,(ENpip(E' | 65).

From Lemma 3 it follows that 6,(E) and 6,.(E) are continuous functions of E.
Hence there exists a positive § and a sphere s with center in E’ such that

SWI6:, 0,(E)lpip(E | 6:) > ZWI8;, 8, (E)lp:ip(E | 6:) + &

for every point E of 8. Since 6,-(E) is the minimum risk estimate corre-
sponding to p’ we have

SW10; , 6,(E)oip(E | 0) 2 ZW(0: , 0,(E)lpip(E | 6:)
for every point E outside 8. Hence I, > I, that is to say

(16) Z(pi + Ap)ri(p) > Z(pi + Api)ri(p’).
Analogously we get
(17) i Zpiri(p) < Zpiri(p').

Multiplying (16) by an arbitrary positive value A and subtracting (17) we get
s + Ap:) — pilrile) > Z[A(p: + Api) — pilri(e’).
Hence
Z[(\ = Dpi + Mpilri(e”) — ri(p)] < 0.
Let us denote for any p the maximum of the numbers

ri(p), - -+ , Te(p)
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by 7(p). We shall call a distribution p for which r(p) becomes a minimum, a
risk-minimizing distribution. We shall say that the risk-minimizing distribu-
tion p = (p1, - -, ps) is not degenerate if py > 0, --- , p, > 0. Otherwise we
shall say that p is degenerate.

LeMMma 8. There exists at least one risk-minimizing distribution p.

From Lemma 6 it follows that 7(p), - - - , r.(p) are continuous functions of p.
Hence also r(p) is continuous. Since the set of all possible distributions p is
bounded and closed, there must be at least one distribution p for which r(p)
becomes a8 minimum.

LeMMa 9. Ifp = (m, - - -, ps) denotes a risk-minimizing distribution which is
not degenerale then

n(e) = ra(p) = -+ = np).”

Let us assume that there are two integers ¢ and j, for instance 1 and 2, such
that r1(p) < r2(p). We shall deduce a contradiction from this assumption. Let
us consider two different distributions p’ = (o1, - - - , p:) and p"” = (o1, -+, P%)
where p{ > 0. Hence at least one of the quantities

(1 — p1)y -+~ 5 (P — p2)
is unequal to zero. Since Zpi = Zpi = 1, also at least one of the quantities
(b2 — p2)y -+ 5 (Pe = p4)

must be unequal to zero. On account of Lemma 7 we have

310 = ok + 26 = el = rlpD] < 0.

p
If we put A = ;,‘, we get
1

] 1 ’
(8 1)si + 2 6 = o i) = o0 < 0.
i=2 | \p; p1
Hence at least one of the quantities

ra(p”) = 12(p”), -+, 1l0”) — 7u(p’)

must be unequal to zero.

Since p; > 0, there exists a closed sphere S, with center at p such that for any
point p’ of S, p1 > 0. Hence for any two different points p’ and o’ of S, at
least one of the quantities

ra(p’) — ra(p’), - -+, 1(p") — rp”)

is unequal to zero. Denote by 8, the projection of S, on the s — 1 dimensional
space given by ;» = 0. Consider the transformation according to which the
image of the point 3’ = (p3, ---, ps) of 8, is the point §(3") = [r:(p"), - - - ,
r(p")]. It is obvious that the images of two different points of S, are different.
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Since ri(p) ¢ = 1, -- ., 8) is continuous, the transformation is continuous and
therefore topological. Denote the image of §, by B,. Since 5 = (pa, --- , ps)
is an interior point of S, , according to the Brouwer-Jordan theorem® on domain
invariance the image §(3) = [ri(p), - -, r:(p)] of p must also be an interior
point of E,. Hence for sufficiently small ¢ > 0 the point

te) = [ralp) — ¢ -+, 1ulp) — ¢

is contained in B,. Denote by 5(¢) = [ps(e), - - - , ps(€)] the point of S, whose
image is {(¢). It is obvious that

(18) 1:}_13 p(e) =p = (o2, -+, pa).

Consider the point p(e) of S, whose projection is 5(e) that is to say p(¢) has the
co-ordinates 1 — Zpi(e), pa(e), - - -, ps(€). From (18) it follows that also

(19) hi% ple) = p = (Ply P2y ""Pl)-
Since r[p(e)], - - - , r:{p(€)] are continuous functions of e and since r1(p) < r2(p),
for sufficiently small ¢ the maximum of the numbers

nilp(e)l, rale(e)] = ralp) — ¢ -+, ralo(e)] = rul0) — €
is certainly smaller than the maximum r(p) of the numbers

rl(P), ttty T,(p),

in contradiction to our assumption that p is a risk minimizing distribution.
Hence the assumption r(p) < r2(p) is proved to be an absurdity and Lemma 9
is proved.

In the previous arguments we have considered an arbitrary but fixed system
of s parameter points 6, - - - , 6, and all distributions p were related to these
points. In the following arguments we shall vary the points 8,, ..., 6, and
therefore we shall have to state the parameter points to which the distribution p
is related.

Let us consider a sequence {6,} (» = 1, ..., ad inf.) of parameter points
which is dense in Q. We say that a subset w of € is dense in Q if for each point 8
of Q any arbitrarily small open neighborhood of 8 contains at least one point of w.
Since  is compact, a sequence {6,} which is dense in @ certainly exists. Let us
consider the first s points 6,, --., 0, of the sequence {6,}. According to
Lemma 8 there exists for any s a risk-minimizing distribution p(s) = [0i(s),

-, ps(8)] related to 6;, ---,0,.

Assumption 6. There exists a sequence {8} (s = 1, ..., ad inf.) of parame-
ter points which is dense in @ and such that for almost any s’ the risk-minimizing

¢ See for instance Alexandroff and Hopf, Topologie, Berlin 1935, p. 396.
7 By “almost any s’’ we understand ‘‘for all s greater than a sufficiently large integer.”
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distribution p(s) = [p:(8), - - - , pe(8)] related to the first s points 6, ---, 6.,
is not degenerate.

Lemma 10. Denote by {6,} (s = 1, 2, ..., ad inf.) a sequence of parameter
points for which the conditions of Assumption 6 are fulfilled. Denote by p(s) =
[p1(8), - - -, pa(8)] the risk-minimizing distribution related to the first s points
61, .-,0,. Then there exists a non-negative constant ¢ such that for any arbi-
trarily small positive e the inequality

c—e< [ W, 00@PEDIE <+

holds identically in 0 for almost every s. That is to say the risk function of the
minimum risk estimate 0,.,(E) lies entirely between ¢ — € and ¢ + ¢ for almost
every s.

Denote the risk function

fu W16, 8, (E)Ip(E | 6) dE
of the estimate 6,(E) by r(6, s). First we shall prove that there exists a

sequence {¢,} (¢ = 1, ..., ad inf.) of non-riegative numbers such that for every
e > 0 the inequality
(20) G—e< 70,8 <c+ e

holds for almost every s. In fact to any positive 5 a positive integer s, can be
given such that for any s > s, the points 6, ... , 6, are y-dense in Q. That is
to say every point 8 of € lies in a sphere with radius 4 and center in one of the
points 6;, --. , 6,. Since for sufficiently large s p(s) is not degenerate, we have
on account of Lemma 9 for sufficiently large s

(21) r(br,8) = ... =710,,8) =c¢.

Since for sufficiently large s 6;, ..., 6, is n-dense in @, we get easily from:
Lemma 5 that (20) holds for any positive e for almost every s.
In order to prove Lemma 10 we have only to show that lim ¢, exists and is

8==00

finite. First we see that for no estimate 6(E) can the corresponding risk function
0 = [ Wi, 6®)p(E|6) dE
M

lie entirely below (8, s) that is to say
(22) r(0) < r(, s)

cannot hold for any 6. In fact if (22) were true for a certain estimate 6(E) then
Zpi(s)r(6) = fM ZW[6:, 6(E)]p:(s)p(E | 6:) dE < Zpi(s)r(8:, 3)

= [ 2Wio:, 0,0 @Noiern(E | 0 a,
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which is not possible since 6,(,)(E) is a minimum risk estimate. Hence (22)
cannot hold for any 6. From this fact follows easily that lim c, exists and is
finite. This proves Lemma 10.

LemMma 11. Denote f(8) a distribution of 8 and let 0,(E) be the corresponding
minimum risk estimate. If 0(E) denotes an arbitrary estimate then

r(8) = r,(6)
if 0,(E) = 8(E) only in a set of measure 0, and

[r@ a6 > [ o a6

if 0,(E) = 6(E) in a set of positive measure. r(0) denotes the risk function of
6(E) and r;(0) denotes the risk function of 8,(E).

If 9,(E) £ 6(E) only in a set of measure zero, then we have obviously r(6) =
r7(6). Consider the case that 6,(F) # 6(F) in a set M’ of positive measure.
According to Assumption 4 we have

fn W 6, 6(E)] p(E | 6) df(6) > f W [0, 6,(E)] p(E | 6) df(6)

for any point E of M’. Since

[ wie, 00 pE10) a0 = [ W6, 0,8 p(E | 0) a50)

for any other point E of the sample space M, we get

fﬂ r(@) df = fM 'L W 19, 6(E)] p(E | 0) df dE

> [ [ Wi e@ @0 aiE = [ noa.

Hence Lemma 11 is proved.

We are now able to prove some theorems about the best estimate 8 (E) relative
to a given weight function. An estimate 8(E) is a best estimate according to
our definition 7, if the maximum of the risk function of 8(E) is less than or equal
to the maximum of the risk function of any other estimate 8(E) and if (E) is an
admissible estimate (that is to say there exists no estimate 6(E) such that the
risk function () of 6(E) is not identical to the risk function #(8) of 8(¥) and
in every point 6 #(8) > r(6).

TueoreM 1. If 8(E) is a best estimate and if the Assumptions 1-6 are fulfilled
then the risk function 7(8) of 8(E) is constant, that is to say

7(8) = c.

According to Assumption 6 there exists a sequence {6,} (s = 1, ..., ad inf.)
of parameter points such that {6,} is dense in © and for almost every s the risk-
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minimizing distribution p(s) related to 6, --., 6, is not degenerate. On
account of Lemma 10 there exists a non-negative constant ¢ such that for any
¢ > 0 the inequality

(23) c—e<r(0s) <c+e

holds for almost every s. 7(8, s) denotes the risk function of the estimate
6,)(E). According to Lemma 2 there exists a subsequence {s.} (n = 1, ...,
ad inf.) of integers such that the sequence {p(s.)} of distributions converges
towards a distribution f(6). From Lemma 6 it follows that

lim 79, s.) = r,(6)

N =00
where 7,(6) denotes the risk function of the minimum risk estimate 6,(¥). On
account of (23) we have

r,(a) = (.

From Lemma 11 it follows that for any other estimate 6(E) either

7(0) = r/(0) = ¢
or ’

[r@a> [ roa,

where r(6) denotes the risk function of 8(#). In the latter case there exists at
least one point 8 for which r(8) > r,(6). Hence 6,(E) is a best estimate. If
8(E) is also a best estimate, we get on account of Lemma 11 that 8(E) can
differ from 6,(E) only in a set of measure 0 and the risk function of 8(E) is
identically equal to c. Hence we have proved Theorem 1 and also the following
Theorems 2-3:

THEOREM 2. If the Assumptions 1-6 are fulfilled there exists a distribution
f(0) of 0 such that the corresponding minimum risk estimate 0;(E) 1s a best estimate.

TuroreM 3. If Assumptions 1-6 are fulfilled and 8(E), 6*(E) are best es-
timates, then 8(E) = 6%(E) almost everywhere and the corresponding risk functions
are identically equal.

Now we shall prove (without making the Assumptions 1-6)

THEOREM 4. If W (8, 8) and p(E | 6) are continuous and Q is compact, and if
fF(8) denotes a distribution of @ such that any open set has a positive probability,
then the minimum risk estimate 6,(E) is a best estimate if its risk function r;(6)
18 tdentically equal to a constant.

Let r,(8) be-identically equal to ¢ and consider an arbitrary estimate 8(E).
Since W (6, 6) and p(E | 6) are continuous and @ is compact, the risk function
r(6) of 6(E) is a continuous function of 8. Since 6,(F) is a minimum risk
estimate we have

(24) [97‘(0) df > ‘/;27',(0) df = c¢.
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In order to prove Theorem 4, we have to show that either

(25) r(8) = ¢
or there exists a point 8’ such that
(26) (@) > c

If (25) does not hold there exists a point 6* such that r(6*) = ¢. If r(6*) > ¢
our statement is prowed. Consider the case r(6*) < ¢. On account of the
continuity of 7(8) there exists a positive § and an open neighborhood U of 6*
such that

) <ec-—39

for every 8 in U. Since f df is assumed to be positive, the inequality (24)
U

can hold only if there exists at least a point ¢ for which 7(6") > ¢. This proves
Theorem 4.

9. Determination of the best estimate 6(E) for a certain class of distributions
p(E | 6). In this paragraph we shall prove two theorems which enable us to
calculate very easily the best estimate 8(E) for a certain special but important
class of distributions.

The risk function of an estimate 6(E) is given by

r() = f,, W 6, 8(E)] p(E | 6) dE,

where the integration is to be taken over the whole sample space M. We con-
sider the integral equation

@7) f,, W 16, 3(E)] p(E | 6) dE = c,

where ¢ denotes an arbitrary constant. If we can find an estimate §(E) which
satisfies (27) for a certain ¢ and which is an admissible estimate relative to the
weight function considered, then 8(E) is certainly a best estimate. If Assump-
tions 1-6 are fulfilled, an admissible estimate satisfying (27) certainly exists.
As we shall see, a best estimate can very easily be determined by the above
procedure if the conditions in the following theorem 5 are fulfilled.

TarorEM 5. Let us assume that the following conditions are fulfilled:

1. The parameter space Q@ is one dimensional and 6 can take any real value from
—w 0 +oo,

I1. The probability density p(E | 8) depends only on the differences z, — 8,

<, %y — O, thatisto say p(E | 6) = p(xy — 0, .. , x, — 8), where ,, -+ , T
denote the co-ordinates of E.

II1. The value of the weight function depends only on the difference u = 6 — 6
and 7s uniformly continuous in u.
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IV. For any value 8 and for any sample point E the integral

+0

(28) v(6, E) = W — d)p(E|6) do

has a finite value.

V. For every E there exists a finite value 0'(E) such that ¢(8, E) becomes a mini-
mum for § = 0'(E).

Then there exists an estimate 8(E) such that for any E, ql/(l') E) becomes a
minimum for § = 8(E) and 8(E"") — 8(E') = )\for any E = (2, ---,xs) and

E" = (i, -+, an) for whichay —z{ = --. = T — Tn = \. An estimate with
these properties is a best estimate.

Let us consider two sample points B’ = (21, --- , z5) and B” = (z7, --- , zu)
such that i — 2{ = ... = 2 — 2z, = A. From the conditions II and III

follows that if ¥(8, E’) becomes a minimum for 6 = ;, then ¥(8, E”) becomes
a minimum for § = 6 = 6 <4 A. Hence.there exists an estimate 8(F) =
6(z; , - - - , x,) such that for any E, \0(0 E) becomes a mlmmum for 8 = 8(F)
and 0(E”) B(E) = Nif 2y — 21 = .. = @, — xn-= . We shall show
that such an estimate 8(E) is a best estlmate First we shall show that the
risk function

4+ +o0
»(6) =L [ Wl - @ — 6,2 0) oy - d,

is constant. Let us consider two arbitrary parameter values ¢’ and ¢’’. Then
we have

+oo + o0 _
r(0’)=[ j_ Wi —6E))pler — ¢, .., 2. = 0) das--- daa,

-+ “+o0
@)= [ [ W - 0@ p — 07, a0 = 07) das - da,

Making in the second integral the transformation
=0 — (0” - 0/)) ety Yn = T — (0" - 0,))
we get

oo +0
r(0”)=_[ .»...[” W{G"—(?[yl'+(0”—0'),--.,y,,

+ @ = plyr— 6, ya — ) dys - dya

o0 o0
- [ o [ W =8, ey D@L — 8y ey = 8) dys - - g

E L]
Hence r(8') = r(6’") and our statement that r(8) is constant is proved. In
order to prove Theorem 5, we have only to show that §(E) is an admissible
estimate. For this purpose let us consider an arbitrary estimate 6*(¥) and
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denote the corresponding risk function by r*(8). Since #(E) minimizes the
integral (28), we have
(29) v[6*(E), E] > ¥[6(E), E)]

for all sample points E. Let us consider the integral

+o +o0
@0) I =[ [ (Wio — B(E)] — W8 — 6*(E)] p(E | 6) db das - - - dz.

-

Integrating (30) with respect to 8 we get
+4a0 “+w _
Gy I=[ [ W@, B - i) - Bl da - dan.
Integrating (30) with respect to E, we get
o0
(32) I=[" 10 - @,
On account of (29) and (31) we have I < 0, hence
+o0
33) [ 6 - r@1a<o0.

From (33) it follows that if 7*(6) < r(9) for every 8 then r*(6) < r(8) can hold
only for the points of a set of measure zero. In case 7*(8) is continuous, this
means that *(6) = r(6). Hence if 7*(6) is continuous, then either r*(8) = r(9)
or there exists at least one point & such that 7*(8) > r(8). The risk function
7*(0) is continuous if the estimate §*(E) is uniformly continuous in the whole
sample space. In fact, we have

+-o0 +a0
r*(0+t)=[ [ Wie+t—*E)p@i—6—1t,-- ;z,—0—1)dz1. . - dTs.
Making the transformation
Y = Xy — (’t=19:n)

we get
™0+ 1) =

+o0 +o0

[ Woti—e et gD PG =0, ya = O dys - dyn.

Since W(u) and 6*(E) are uniformly continuous, from the latter equation we
get easily

linox r*@ + t) = r*(0)

that is to say 7*(6) is continuous. Considering only continuous estimates the
admissibility of §(E), and therefore also Theorem 5, is proved. If §*(E) is not
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uniformly continuous we have only proved that if 7*(8) < r(8) for every 9,
then r*(8) < r(f) can hold only in a set of measure zero. I should like to
mention without proof that even if 6*(E) is not continuous, r*(8) < r(8) implies
™(8) = r(9).

An estimate §(E) is called a maximum likelihood estimate if for any fixed E
p(E | 6) becomes a maximum with respect to 8 for § = 8(E).

TaeorREM 6. Consider the following conditions:

VI. There exists exactly one maximum likelihood estimate 8(E) with the fol-
lowing properties:

a) For any E p(E | 8) is non-decreasing with increasing  for 8 < 8(E) and
non-increasing with increasing 9 for 8 > 6(E).

b) For any E p(E | §) is a symmetric function of 8 about §(E) that is to say, for
for any real value \ p[E | 8(E) — ] = plE | 6(E) + A].

VIIL. The value of the weight Sfunction depends only on the absolute value of the

difference w = 9 — 8 and ( ) exists, is uniformly continuous and > 0 for

u > 0.

If the conditions I-V of Theorem 5 and the above condition VII are fulfilled,
and if §(E) is a maximum Likelihood estimate satisfying VI, then 8(E) is a best
estimate.

Assume that the conditions I-V and VII are satisfied and that 4(E) is a
maximum likelihood estimate satisfying VI. It is obvious that 8(E”") — 6(E') =
AorE' = (z1, .-,z )and B = (1 + N\, -+, Z» + A). In order to prove
Theorem 6, we have, according to Theorem 5, only to show that the integral
in (28)

- +w -
vo.B) = [ W - Dp(E|0ae
W (u)

becomes a minimum for § = 6(E). Denote 8 — 8 by u. Since d o is uni-

formly continuous, we have

w00 [ i

dW(u) - dW(—u)
du du

e, E) _ dW (w) _ ,
(34) > _fo [ ][ (B8 —u) — p(B|§ + w)]du.

Since we have

From condition VI it follows easily that for any fixed E and 8 the function of u
0<Lu< w)

PE|6—u) — p(E|6+ w)
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does not change its sign and if 8 # 8(E) there exists an interval J such that the
above expression is unequal to zero for every point « of J. Hence on account

o d%@ > 0 for u > 0, the integral in (34) vanishes only for 8 = 8(E). Since

aceording to the condition V there exists a finite value 8 such that (3, E)
becomes a minimum for § = #, ¢ must be equal to #(E). This proves
Theorem 6.

The condition VI is seldom exactly fulfilled. But for large =, in the great
majority of practical cases, VI will be fulfilled with good approximation and the
best estimate approaches the maximum likelihood estimate with increasing n.

10. Two examples. As a first example we consider a normal distribution
with the variance 1. The mean value ¢ is unknown and we have to estimate

it by means of a sample E = (z;, ---,«,). In this case
1 4302
E 8 = —= € * .
p(E|6) @0
It is obvious that for a very broad class of weight functions the conditions I-V
of Theorem 5 are fulfilled. The maximum likelihood estimate (x; , - - - , z,) =

x—l-i-——'—'n'——i—_—i" satisfies the condition VI of Theorem 6. Hence if the weight
function satisfies also the condition VII, then the best estimate of # is the maxi-
Bt toa

- .
Let us now consider a weight function defined as follows:

W0 =206—06 if §>6

mum likelihood estimate 8(z,, - -- , z,) =

and
W, 6) =6—29 if 8<oe.

Since for this weight function, the conditions I-V satisfied, acecording to Theo-
rem 5 the best estimate of @ is the value 8 for which the integral
+o0 I} o
W, 6)e 2= gp = _[ 200 — 6)e 2= gp 4 / (0 — B)e 2= gg

— 0 © [}
becomes a minimum. As an easy calculation shows, the estimate obtained in
this way is not the arithmetic mean.

As a second example we consider the family of variates X(8) with the proba-
bility density f(x, 6) defined as follows:

f@,0) =1 if 6-3<z<0+}

N

and

S(z, ) = 0 for all other values of z.
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If E = (2, -, denotes a sample point where x; denotes the smallest and
z, denotes the greatest value in the sample, then

n

pE|0) =[Ifzi,0) =1 if 2a—3<0<m+14

f=1
and
p(E | 6) = 0 for all other values of 4.

The classical method of maximum likelihood cannot be applied here, since
p(E | 6) is maximum for every value 6 for whichz, — 3 < 0 < m + 3. Itis
obvious that for a broad class of weight functions the conditions I-V are satis-
fied. The estimate 8(E) = e _12- i
greatest value in the sample, satisfies the condition VI. Hence if the weight
function satisfies also’ the condition VII, the best estimate of 8 is given by

, where z; denotes the smallest and z. the

m =2t
Let us now calculate the best estimate of 8 if the weight function is given as

follows: '
W6 =6—28 if <6

and
W(,08 =206—206 if 08>0

In this case the conditions I-V are satisfied but not the condition VII. We
have to calculate the integral ¢(8, E) given in (28), which reduces in this case to
z1+4

- Z‘H - 5 - N -
v, E) = f,,_. W0, ) do = L_’ 20-0d+ [ ©-8a
= 158" — [(m + §) + 2@z — DB + 3@ + D* + (e — P
This expression becomes a minimum for

1 + 2z, — 3
g

Hence the best estimate of 8 is given by this expression.

0=

11. Miscellaneous remarks. Assumptions 1-6 of paragraph 8 are sufficient
but not necessary for the proof of the Theorems 1-3 (Theorems 4-6 have been
deduced without Assumptions 1-6). They can be weakened in many respects.
The assumption that the parameter space is bounded can be dropped if we
impose certain conditions on the weight function W(6, 8) and the probability
density p(E | 6). It is certainly not necessary to assume that W(4, 6) and
p(E | 6) are everywhere continuous. It is however doubtful whether Theorems
1-3 remain valid in the form in which they are stated, if we admit discon-
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tinuities in a set of measure zero without imposing any other restrictions. Also
Assumptions 4-6 can in all probability be essentially weakened.

I should like to mention that Assumption 4 is not as restrictive as it would
appear. Let us make this clear in the case that the parameter space is a one-
dimensional interval [a, b]. If we assume that W(#, 6) is a polynomial of the
second degree in § and the coefficient of & is positive for every 6, and if
p(E | 8) > 0for every E and 6, the Assumption 4 can easily be proved. In fact,

b
v6,B) = [ W6, Dp(B|0)df6) = AWE) + BUD + CBF.

Since the coefficient of 8° in W (0, 6) is positive and since p(E | 8) > 0 for every
E and 6, C(E) > 0 for every E and for any arbitrary distribution f(§). From
this fact follows easily that for every E there exists a value 6(E) in the interval
[a, b] such that

VI8(E), E] < ¥(b, E)

for every 8 contained in [a, b] and unequal to 6(E). Hence Assumption 4 is
proved.

Let us consider a system S of subsets of the parameter space @ and the
corresponding system H of hypotheses. The weight function W (6, w) is defined
for all points @ of @ and for all elements w of S and expresses the weight of the
error committed by accepting H,, when 6 is true. If 8 is an element of w then
W (6, w) is of course equal to zero. Let us assume that W(6, w) has the special
form: W(8, w) = 1 if 0 is not contained in w, and W(0, w) = 0 if 6 is an element
of w. It is obvious that in this case for any @ the value of the risk function
r(8) is equal to the probability of accepting a false hypothesis if 6 is the true
parameter point. Because of this fact the theory developed here has close rela-
tion to the theory of confidence intervals. Let us first make this clear for the
case when the parameter space is one dimensional, that is to say 8 is a real
number.

In the theory of confidence intervals we estimate the unknown parameter 6
by an interval I(E) extending from 6,(E) to 6;(E) where 6,(E) and 6,(E) are
certain functions of the sample point E. The interval I(E) is defined in such a
way that the following probability statement holds: If we perform an experi-
ment, the probability that we shall obtain a sample point E such that I(E) will
cover the true parameter point 8, is equal to a given constant a (called confi-
dence coefficient) and is independent of the value of 6. Let us consider a
certain example of such an inference with the confidence coefficient « and
denote by I(E) the interval corresponding to E. We define a system S of
intervals as follows: An interval I is an element of S if and only if there exists
a sample point E for which I(E) = I. Consider the corresponding system H
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of hypotheses and the weight function W (6, I) defined for all values 6 and all
elements I of S as follows:

W6,I) =0 if 6isa point of I
W(,I) =1 if @isnot contained in I.

Denote by Ms a best system of regions of acceptance relative to the weight
function defined above. Denote by I’(E) the element of 8 which we accept
according to Mg if E is the sample point. On account of the special form of the
weight function, the risk is obviously equal to the probability of accepting a
false interval. From the definition of the best system of regions it follows
that for any 6 the probability that I'(E) will cover 6 is greater than or equal to a.
If the risk function is constant, that is to say, if the probability that I'(E) will
cover the true parameter point 6 is independent of the value of 6, then the
intervals I'(E) are confidence intervals corresponding to a confidence coeffi-
cient o’ > a.

Similar observations can be made if the parameter space is k-dimensional
(k > 1) that is to say, 6 is a system of k numbers 6, ..., 6. An important
case is that when we have to estimate only one of the components, say 6, by
an interval. As the investigations of W. Feller® have shown, confidence inter-
vals in such cases do not exist always. That is to say, it is not always possible
to determine I(E) such that the probability that I(E) will cover " is equal
to a given constant o independently of the values of 6, ..., 6%, It is of
great interest to know under what conditions confidence intervals exist. I
should like to mention that a further development of the theory given in para-
graph 8 may contribute much to the solution of this problem. In order to make
this clear, let us consider a system S; of one-dimensional intervals. To each
element I of S; let there correspond the subset w of the k-dimensional parameter
space Q consisting of all points § = (6%, ..., 6®) for which 6 liesin I. Con-
sider the system S of subsets w of £ corresponding to all elements of 8; and the
system Hg of hypotheses corresponding to 8. The weight function is to be
chosen as follows: W (6, w) = 1 if 6 is not an element of w and W(6, w) = 0if 6
is an element of w. Consider a best system M of regions of acceptance and
the corresponding risk function (). On account of the special definition of
W (6, w), r(8) is equal to the probability of accepting a false hypothesis if 8 is the
true parameter point. If the risk function r(6) is identically equal to a con-
stant «, we have confidence intervals corresponding to the confidence coefficient
a. In order to see under what conditions the risk function is constant, we have
to consider an equivalent problem (see paragraph 7) where the system of hy-
potheses is the system of all simple hypotheses and the weight function W (6, 8)

8 W. Feller, ‘‘Note on Regions Similar to the Sample Space,’’ Statistical Research Memoirs,
Vol. 11, 1938.
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is given according to formula (4). If W(6, 8) satisfies Assumptions 1-6, the
risk function of the best estimate is constant. As we have mentioned, Assump-
tions 1-6 can be weakened. In order to get valuable results concerning the
problem of the existence of confidence intervals, we have to weaken especially
Assumption 2. In fact W(8, w) takes only the values 1 and 0 and therefore
W (8, 8) cannot be continuous.

Finally I should like to mention that the most stringent test as defined by
Robert W. B. Jackson® is contained as special case in our general definition of
the best system of regions of acceptance. Jackson considers a discontinuous
parameter space Q. Consider the problem of testing the hypothesis § = 6,
where 6, denotes a point of 2. According to Jackson’s definition we have the
most stringent test if the ciitical region w, satisfies the-condition: the maximum
of the numbers A and B

A =P(Eew]6), B =leastupperboundof P(E ¢ |6) formed for all 8 = 6,

becomes a minimum for w = w,-% denotes the region complementary to w.
It is easy to see that Jackson’s definition of the most stringent test coincides with
our definition of the best system of regions of acceptance in the following
special case:

1) Q is discontinuous 2) S consists only of two elements.

3) The weight function W (6, ) is equal to 1 if 6 is not contained in w.

CoLumBiA UNIVERSITY.

8 Robert W. Jackson, ‘‘“Testing Statistical Hypotheses,”’ Statistical Research Memoirs,
Vol. I, 1936.



