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Abstract

The steady state, depth-averaged hydrodynamic equations are used for the
computation of transverse profiles of the longitudinal velocity in prismatic
and natural channels. Turbulence closure of the comlete set of equations is
accomplished (a) via a simle model in which vt is assumed proportional to
the shear velocity and the local depth, and (b) the depth-averaged k-e model
of Rastogi & Rodi. Subsequently, the governing equations are simplified to
their purely parabolic form and the transverse distance is replaced by the
cumulative discharge as the second independent variable. Turbulence closure
in the latter set of equations is accomplished with model (a). All models are
solved numerically via Patankar's scheme and the results are compared with
literature data corresponding to laboratory and field measurements. It is
shown that the purely parabolic, transformed-coordinates model is more
efficient than, and equally accurate with, the complete model.

1 Introduction

Determination of transverse profiles of the longitudinal velocity in
channels and streams has many practical implications. Amongst
others, it facilitates computation of stream discharge and is of major
importance in mass transport studies where velocity distributions are
required for the solution of the advection dispersion equation. In this
study we examine channels and streams of large aspect ratio for
which the determination of the flow field may be accomplished via
the depth-averaged hydrodynamic equations.
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2 Equations

2.1 General hydrodynamic equations

The steady state, depth-averaged hydrodynamic equations consist of
the continuity equation

9x 9y

and the momentum equations, which can be written as[l]:
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The x-momentum equation is recovered from eqn (2) for

(2)

, ^ , u y t , u - - - T T
^ dx p|cos 9|

and the y-momentum is recovered from eqn (2) for

(3)

(4)

where h=water depth, H=water surface elevation, Tbx, iby^
shear stresses, pd= pressure in the transverse direction and
8=transverse angle of inclination at any point of the bottom[2]. The
above equations define a flow problem which is parabolic in the
longitudinal direction and elliptic in the transverse direction. Bottom
shear stresses are given by the relations:

(2 i V^ n g
u +v j , i = x,y and Cf =— — (5)

2.2 Turbulence closure

Turbulence closure is achieved with two different models. In
the first model, the eddy viscosity, Vt, is expressed as
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V; = CyU*h (6)

in which u* =shear velocity and Cv=dimensionless eddy viscosity

coefficient. A model presented by the authors[3] is used for the
transverse variation of Cv. This model assumes a value Cvm=0.6 for
most of the cross-section and a parabolic variation near the
boundaries, leading to a value of zero and slope of K/h at the banks.
Equations (1) through (5) and (6) define the first model, hereafter
called XYCV, for determination of the transverse distribution of
longitudinal velocities.

The second model for turbulence closure is the depth-
averaged k-8 model of Rastogi & Rodi[4]. Therein, Vt is defined as

where k=depth-averaged kinetic energy of turbulent motion and
6=depth-averaged rate of its dissipation. The transport equations of
k and 8 are recovered from eqn (2) for

k

^ ̂̂ kV
in which

3̂ 4̂

h ' ^ ^ h"
and

(8)

The constants appearing in the equations take the following
values: ĉ 0.09, Gk^l.O, cie=1.3, Ci = 1.43, C2-1.92 and the von
Karman constant is K=0.42.

Boundary conditions for k and e are defined at the first
internal node which is placed outside of the viscous sublayer. This is
achieved by selecting a transverse distance of the first internal node,
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Yw, which satisfies the inequality 30<(u*y^ / v)<100. At that node k

and 8 are given by[4]:

Combination of eqns (1) through (5) and (7) through (11)
defines the second model, hereafter called XYKE, for determination
of the transverse distribution of longitudinal velocities.

2.3 Fully parabolic transformed-coordinates model

The momentum transport equations resulting from eqns (2), (3) and
(4) can be reduced to their purely parabolic form when downstream
phenomena do not influence the flow upstream, except for the
influence on the longitudinal depth and velocity profiles. In such
cases the boundary layer approximations are valid, i.e.
3 / dx « d / dy and v«u. Thus, the purely parabolic form of the

hydrodynamic equations reduces to the continuity and the x-
momentum equation , i.e. eqns (1) through (3).

In natural streams, where the cross section varies in the
longitudinal direction, the problem can be simplified by replacing y
with the cumulative discharge, q, measured from one bank

where 0<y<B and Resurface width. Transformation of eqns (1)

through (3) to a system of (x,q) independent variables yields:

3x

9u

phu cos 01

and

= uh (a) and = -vh (b) (14)
dy ox

Note that eqn (13) conforms to the general form ofeqn (2), for

D^ =0 (15a)
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S -[g(-dH/dx)1
by - +

phu cos0
u (15b)

Turbulence closure is achieved via the model of eqn (6). The
resulting model, consisting of eqns (13), (14), (6) and (5), called
hereafter XQCV model, is the third model used for determination of
the transverse distribution of longitudinal velocities.

3 Numerical solution

The numerical solution of models XYCV and XYKE is based on
Patankar's SIMPLER algorithm[5]. Constuction of the staggered
control volumes is given in [1]. All hydraulic and geometric
parameters take their local values. Solution proceeds in the
longitudinal direction until the correct velocity profile is computed.
The step Ax is taken equal to the size of the smallest of the large
eddies that can be observed in the cross-section. For a composite
cross-section of rectangular segments this implies the smallest
between half-widths of each rectangle. An under-relaxation
coefficient of 0.8 is used at each successive step.

The numerical solution of the XQCV model does not require
the use of the SIMPLER algorithm because the pressure term is not
present. It does require, however, the use of a successive iterations
technique since the diffusion coefficient and the coefficients of the
source term are functions of the unknown velocity u. In the manner
of the previous two models, the numerical solution can be viewed as
one commencing from an initial estimate of the transverse
distribution of u, and marching in the longitudinal direction until
convergence to the true solution is attained.

Determination of nodes on the q-axis, is based on the velocity

distribution at the previous step, u? , and is given by the relations

with q =0 (16a)

where the subscript e indicates control volume interface. It is
assumed that the values of u; at the next step correspond to nodes y%
and are used for the computation of new cumulative discharge

                                                             Transactions on Ecology and the Environment vol 17, © 1998 WIT Press, www.witpress.com, ISSN 1743-3541 



490 Computer Methods in Water Resources XII

values, QJ . Convergence is based on the continuity equation and is

formulated as follows:
(a) Eqn (14b) is utilized for the computation of transverse velocities

1
/ p
^i Qq

Ax
(17)

(b) Satisfaction of the continuity equation is checked as a source
term

(18)

(c) Since MSi#0 during the initial steps, the cumulative absolute
volume source is formulated as

(19)

where N=number of nodes. This quantity is compared with the total
volume flux, Q, which is computed from the latest velocity

distribution. Convergence is attained when CAMS < 10~ Q.

4 Results and discussion

The models presented herein were compared with laboratory data
collected in two different flumes with trapezoidal and rectangular,
respectively, composit cross-sections[6]. The trapezoidal flume was
hydraulically smooth with bottom slope 1.027x10-3, while the
rectangular one was smooth in the main channel and rough in the
flood plain with bottom slope 9.93x 10-t

Observation of velocity distributions in composite cross-
sections shows that the difference between maximum velocity in the
main channel and the flood plain increases with increasing depth.
This causes a stronger transverse exchange of momentum, which in
turn controls longitudinal velocities in the main channel. Thus, main
channel velocities are strongly affected by roughness characteristics
and flow depth in the flood plain. The experimental data in [6] show
that for small flood plain depths, total discharge is essentially equal
with the discarge of the main channel flowing full. Numerical
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experiments showed that separate roughness coefficients must be
used for ratios of flood plain to main channel depth smaller than 0.2,
and a weighted-average value for ratios larger than 0.2. This is done
by equating the total motion-resisting force to the sum of such forces
in each segment.

Comparison of the three models with the experimental data
for the trapezoidal cross-section, corresponding to main channel flow
depth of 0.178 m, are shown in Figure 1. Comparisons for the stage-
discharge curves are given in Figure 2. Finally, comparisons with
data from a river cross-section]?] are shown in Figure 3.

All three models perform satisfactorily with better
performance provided by the XQCV and XYCV models. This
indicates that for depth-averaged solutions, the simpler model of eqn
(6) may be more appropriate and that the (x,q) formulation is
preferable because it is easier to program and implement.
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Figure 1: Transverse distribution of longitudinal velocities
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Figure 2: Stage-discharge curves for data of [6]. (a) trapezoidal and
(b) rectangular composite cross-sections
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Figure 3: Stage-discharge curve for a riverine cross-section
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