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Prologue

The history and practice of science is convoluted (Wootton 2015), but when I was
a student it was taught to me in a relatively uncomplicated manner. Among the
things I remember from my high school science classes are how to convert a metric
distance into Astronomical Units (AUs) and that there was something called
the research cycle (I always forgot the separate steps and their order, which will
ironically be a crucial subject of this dissertation). Those classes presented things
such as the AU and the empirical cycle as unambiguous truths. In hindsight, it
is difficult to imagine these constructed ideas as historically unambiguous. For
example, I was taught the AU as simple arithmetic while that calculation implies
accepting a historically complex process full of debate on how an AU should be
defined (Standish 2004). As such, that calculation was path-dependent, similar to
how the history and practice of science in general is also path-dependent (Latour
and Woolgard 1986; Gelman and Loken 2013).

Scientific textbooks understandably present a distillation of the scientific
process. Not everyone needs the (full) history of discussions after broad consensus
has already been reached. This is a useful heuristic for progress but also minimizes
(maybe even belittles) the importance of the process (Latour and Woolgard 1986).
As such, textbook science (vademecum science; Fleck 1984), with which science
teaching starts, provides high certainty, little detail, and provides the breeding
ground for a view of science as producing certain knowledge. Through this kind
of teaching, storybook images of scientists and science might arise, often as
the actors and process of discovering absolute truths rather than of uncertain
and iterative production of coherent and consistent knowledge. Such storybook
images likely result in the impression that scientists versus non-scientists are more
objective, rational, skeptical, rigorous, and ethical, even after taking into account
educational level (Veldkamp et al. 2016).

Scientific research articles tend to provide more details and less certainty than
scientific textbooks, but still present storified findings that simplify a complicated
process into a single, linear narrative (particularly salient in tutorials on writing
journal publications; Bem 2000). Compared to scientific textbooks, which present
a narrative across many studies, scientific articles provide a narrative across
relatively few studies. Hence, scientific articles should be relatively better than
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scientific textbooks for understanding the validity of findings because they get
more space to nuance, provide more details, and contextualize research findings.
Nonetheless, the linear narrative of the scientific article distills and distorts
a complicated non-linear research process and thereby provides little space to
encapsulate the full nuance, detail, and context of findings. Moreover, storification
of research results requires flexibility, where its manifestation in the flexibility of
analyses may be one of the main culprits of false positive findings (i.e., incorrectly
claiming an effect; Ioannidis 2005) and detracts from accurate reporting. The lack
of detail and (excessive) storification go hand in hand with the misrepresentation
of event chronology to present a more comprehensible narrative to the reader
and researcher. For example, breaks from a main narrative (i.e., nonconfirming
results) may be excluded from the reporting. Such misrepresentation becomes
particularly problematic if the validity of the presented findings rests on the
actual and complete order of events — as it does in the prevalent epistemological
model based on the empirical research cycle (De Groot 1994). Moreover, the
storification within scholarly articles can create highly discordant stories across
scholarly articles, leading to conflicting narratives and confusion in research fields
or news reports and, ultimately, less coherent understanding of science by both
general- and specialized audiences.

When I started as a psychology student in 2009, I implicitly perceived science
and scientists in the storybook way. I was the first in my immediate family to
go to university, so I had no previous informal education about what “true”
scientists or “true” science looked like — I was only influenced by the depictions
in the media and popular culture. In other words, I thought scientists were
objective, disinterested, skeptical, rigorous, ethical (and predominantly male).
The textbook- and article based education I received at the university did not
disconfirm or recalibrate this storybook image and, in hindsight, might have
served to reinforce it (e.g., textbooks provided a decontextualized history that
presented the path of discovery as linear, “the truth” as unequivocal, multiple
choice exams which could only receive correct or wrong answers, and certified
stories in the form of peer reviewed publications). Granted, the empirical scientist
was warranted the storybook qualities exactly because the empirical research
cycle provided a way to overcome human biases and provided grounds for the
widespread belief that search for “the truth” was more important than individual
gain.

As I progressed throughout my science education, it became clear to me
how naive the storybook image of science and the scientist was through a series of
events that undercut the very epistemological model that granted these qualities.
As a result of these events, I had what I somewhat dramatically called two
“personal crises of epistemological faith in science” (or put plainly: wake up calls).
These crises strongly correlated with several major events within the psychology
research community and raised doubts about the value of the research I was
studying and conducting. Both these crises made me consider leaving scientific
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research and I am sure I was not alone in experiencing this sentiment.

My first, local crisis of epistemological faith was when the psychology
professor who got me interested in research publicly confessed to having fabricated
data throughout his academic career (Stapel 2012). Having been inspired to go
down the path of scholarly research by this very professor and having worked
as a research assistant for him, I doubted myself and my abilities and asked
whether I was critical enough to conduct and notice valid research. After all,
I had not had even an inch of suspicion while working with him. Moreover, I
wondered what to make of my interest in research, given that the person who got
me inspired appeared to be such a bad example to model myself after. This event
also unveiled to me the politics of science and how validity, rigor, and “truth”
finding was not a given (see for example Broad and Wade 1983). Regardless,
the self-reported prevalence of fraudulent behaviors among scientists (viz. 2%;
Fanelli 2009) was sufficiently low to not undermine the epistemological effort of
the scientific collective (although it could still severely distort it). Ultimately, I
considered it unlikely that the majority of researchers would be fraudsters like
this professor and simply realized that research could fail at various stages (e.g.,
data sharing, peer review). As a result, I became more skeptical of the certified
stories in peer reviewed journals and in my own and other’s research. I ultimately
shifted my focus towards studying statistics to improve research.

A second, more encompassing epistemological crisis arose when I took a
class that indicated that scientists undermine the empirical research cycle at
a large scale. These behaviors were sometimes intentional, sometimes uninten-
tional, but often the result of misconceptions and ill procedures in order to
play the game of getting published (Bakker et al. 2012). More specifically, this
epistemological crisis originated from learning about how loose application of
statistical procedures could produce statistically significant results from pretty
much anything (e.g., Simmons, Nelson, and Simonsohn 2011). Additionally, these
behaviors result in biased publication of results (Mahoney 1977) through the
invisible (and often unaccountable) hand of peer review (Harnad 2000) that in
itself suffers from various misconceptions. This combination potentially leads to
a vicious cycle of overestimated (and sometimes false positive) effects, leading
to underpowered research that is selectively published, leading to overestimated
effects and underpowered research, and so on until that cycle gets disrupted.
These issues are not necessarily new and have been discussed for over 40 years in
some way or form (Sedlmeier and Gigerenzer 1989; Cohen 1962; Rosenthal 1979;
Marszalek et al. 2011; Kerr 1998; Mills 1993). Given this longstanding vicious
cycle, it seemed unlikely the issues in empirical research would resolve themselves

— they seemed more likely to be further exacerbated if left unattended. Progress
on these issues would not be trivial or self-evident, given that previous awareness
subsided and attempts to improve the situation did not stick in the long run.
It also indicated to me that the reforms needed had to be substantial, because
the improvements made over the last decades remained insufficient (although
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the historical context is highly relevant, see Spellman 2015). Because of the
failed attempts in the past and the awareness of these issues throughout the last
six years or so, my epistemological worries are ongoing and oscillate between
pessimism and optimism for improvement.

Nonetheless, these two epistemological crises caused me to become increas-
ingly engaged with various initiatives and research domains to actively contribute
towards improving science. This was not only my personal way of coping with
these crises and more specific incidents, it also felt like an exciting space to
contribute to. In late 2012, I was introduced to the concept of Open Science for
my first big research project. It seemed evident to me that Open Science was
a great way to improve the verifiability of research (see also Hartgerink 2015a).
The Open Science Framework had launched only recently (Spies 2017), which is
where I started to document my work openly. I found it scary, difficult, and did
not know where to start simply because I had never been taught to do science
this way nor did anyone really know how. It led me to experiment with these
new tools and processes to find out the practicalities of actually making my own
work open, and I have continued to do so ever since. It made me work in a more
reproducible, open manner, and also led me to become engaged in what are often
called the Open Access and Open Science movements. Both these movements
aim to make knowledge available to all in various ways, going beyond dumping
excessive amounts of information but also making it comprehensible by providing
clear documentation to for example data. Not only are the communities behind
these movements supportive in educating each other in open practices, they also
activated me to help others see the value of Open Science and how to implement
it (my first steps taken in Hartgerink 2014). Through this, activism within the
realm of science became part of my daily scientific practice.

Actively improving science through doing research became the main moti-
vation for me to pursue a PhD project. Initially, we set out to focus purely on
statistical detection of data fabrication (linking back to my first epistemological
crisis). The proposed methods to detect data fabrication had not been tested
widely nor validated and there was a clear opportunity for a valuable contribution.
Rather quickly, our attention widened towards a broader set of issues, resulting
in a broad perspective on issues in science by looking at not only data fabrication,
but also at questionable research practices, statistical results and the reporting
thereof, complemented by thinking about incentivizing rigorous practices. This
dissertation presents the results of this work in two parts.

Part 1 of this dissertation (chapters 1-6) pertains to research on understand-
ing and detecting the tripartite of research practice (the good [responsible], the
bad [fraudulent], and the ugly [questionable] practices so to speak). Chapter 1
reviews literature on research misconduct, questionable research practices, and
responsible conduct of research. In addition to providing an introduction to these
three topics in a systematic way by asking “What is it?”, “What do researchers
do?” and “How can we improve?”, the chapter also proposes a practical computer
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folder structure for transparent research practices in an attempt to promote
responsible conduct of research. In Chapter 2, I report the reanalysis of data
indicating widespread p-hacking across various scientific domains (Head et al.
2015b; Head et al. 2015a). The original research was highly reproducible itself,
but slight and justifiable changes to the analyses failed to confirm the finding of
widespread p-hacking across scientific domains. This chapter offered an initial
indication of how difficult it is to robustly detect p-hacking. In an attempt to
improve the detection and estimation of p-hacking, Chapter 3 replicated and
extended the findings from Chapter 2. We replicated the analyses using an
independent data set of statistical results in psychology (Nuijten, Hartgerink, et
al. 2015) and found that p-value distributions are distorted through reporting
habits (e.g., rounding to two decimals). Additionally, we set out to create and
apply new statistical models in an attempt to improve detection of p-hacking.
Chapter 4 focuses on the opposite of false positive results, namely false negative
results. Here we argue that, based on the published statistically nonsignificant
results in combination with typically small sample sizes, researchers are letting
a lot of potential true effects slip under their radar if nonsignificant findings
are naively interpreted as true zero effects. We introduce the adjusted Fisher
method for testing the presence of non-zero true effects among a set of statistically
nonsignificant results, and present three applications of this method. In Chapter
5 I report on a data set containing over half a million statistical results extracted
with the tool statcheck from the psychology literature. This chapter, in the form
of a data paper, explains the methodology underlying the data collection process,
how the data can be downloaded, that there are no copyright restrictions on the
data, and what the limitations of the data are. This data set was documented and
shared for further research on understanding the reporting and reported results
(original research using these data has already been conducted; Aczel, Palfi, and
Szaszi 2017). Chapter 6 presents results on two studies where we tried to classify
genuine and fabricated data solely using statistical methods. In these two studies,
we relied heavily on openly shared data from two Many Labs projects (R. A.
Klein et al. 2014; Ebersole et al. 2016) and had a total of 67 researchers fabricate
data in a controlled setting to determine which statistical methods distinguish
between genuine- and fabricated data the best.

Part 2 of this dissertation (chapters 7-9) pertains to practical ways to improve
the epistemological sustainability of science. Epistemological sustainability of
science pertains to both the reliability of the knowledge produced as the longevity
of the system that produces it. Chapter 7 specifically focuses on data retrieval
from empirical research articles presenting vector images. We developed and
tested software to this end, which is a promising way to mitigate the effect of
rapidly decreasing odds of data retrieval as a paper gets older (Vines et al. 2014).
In Chapter 8 we present a conceptual redesign of the scholarly communication
system based on modules, focusing on how networked scholarly communication
might facilitate improved research and researcher evaluation. This conceptual

11



redesign takes into account the issues of restricted access, researcher degrees
of freedom, publication biases, perverse incentives for researchers, and other
human biases in the conduct of research. The basis of this redesign is to shift
from a reconstructive and text-based research article into a decomposed set of
research modules that are communicated continuously and contain information
in any form (e.g., text, code, data, video). Chapter 9 extends this new form
of scholarly communication in its technical foundations and contextualizes it in
the library- and information sciences (LIS). From LIS, five key functions of a
scholarly communication system emerge: registration, certification, preservation,
awareness, and incentives (Roosendaal and Geurts 1998; Sompel et al. 2004).
First, I extend how the article-based scholarly communication system takes a
narrow and unsatisfactory approach to the five functions. Second, I extend how
new Web protocols, when used to implement the redesign proposed in Chapter
8, could fulfill the five scholarly communication functions in a wider and more
satisfactory sense. In the Epilogue, I provide a high level framework to inform
radical change in the scientific system, which brings together all the lessons from
this dissertation.

The order of the chapters in this dissertation does not reflect the exact
chronological order of events. Table 1 re-sorts the chapters in the chronological
order and provides additional information for each chapter. More specifically, it
includes a direct link to the collection of materials underlying that chapter (if
relevant), whether the chapter was shared as a preprint, and the associated peer
reviewed article (if any). If published, the chapters in this dissertation may be
slightly different in word use or formatting, but contain substantively the same
content. These are additional aspects to the chapters that attempt to improve
the reproducibility of the chapters, in order to prevent the issues causing my
epistemological crises.
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Table 1: Chronologically ordered dissertation chapters, supplemented with identifiers data package, preprint, and peer
reviewed article.

Chapter Data package Preprint Article

3 https://osf.io/4d2g9/ http://doi.org/c9tf http://doi.org/c9s7
1 http://doi.org/c9s5
5 http://doi.org/c9th http://doi.org/c9td http://doi.org/c9s6
2 http://doi.org/c9tj http://doi.org/c9tc http://doi.org/c9s8
4 http://doi.org/c9tk http://doi.org/c9tg http://doi.org/gfrjj3

7 http://doi.org/c9tm https://arxiv.org/abs/1709.02261
8 http://doi.org/c9tb http://doi.org/c9s9
6 http://doi.org/c9tn http://doi.org/c9tq
9 http://doi.org/c9tp http://doi.org/gf4hpr
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Part I

Understanding sustainable
science

15





Chapter 1

Research practices and
assessment of research
misconduct1

Research practices directly affect the epistemological pursuit of science: Responsi-
ble conduct of research affirms it; research misconduct undermines it. Typically, a
responsible scientist is conceptualized as objective, meticulous, skeptical, rational,
and not subject to external incentives such as prestige or social pressure. Research
misconduct, on the other hand, is formally defined (e.g., in regulatory documents)
as three types of condemned, intentional behaviors: fabrication, falsification, and
plagiarism (Office of Science and Technology Policy 2000). Research practices
that are neither conceptualized as responsible nor defined as research misconduct
could be considered questionable research practices, which are practices that are
detrimental to the research process (National Academy of Sciences and Medicine
1992; Steneck 2006). For example, the misapplication of statistical methods can
increase the number of false results and is therefore not responsible. At the same
time, such misapplication can also not be deemed research misconduct because it
falls outside the defined scope of FFP. Such undefined and potentially questionable
research practices have been widely discussed in the field of psychology in recent
years (John, Loewenstein, and Prelec 2012; Nosek and Bar-Anan 2012; Nosek,
Spies, and Motyl 2012; Open Science Collaboration 2015; Simmons, Nelson, and
Simonsohn 2011).

This chapter discusses the responsible conduct of research, questionable
research practices, and research misconduct. For each of these three, we extend
on what it means, what researchers currently do, and how it can be facilitated

1Hartgerink, C. H. J. and Wicherts, J. M. (2016). Research practices and assessment of
research misconduct. ScienceOpen Research. doi:10.14293/s2199-1006.1.sor-socsci.arysbi.v1
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(i.e., responsible conduct) or prevented (i.e., questionable practices and research
misconduct). These research practices encompass the entire research practice
spectrum proposed by Steneck (2006), where responsible conduct of research is
the ideal behavior at one end, FFP the worst behavior on the other end, with
(potentially) questionable practices in between.

Responsible conduct of research

What is it?

Responsible conduct of research is often defined in terms of a set of abstract,
normative principles. One such set of norms of good science (Anderson et al.
2010; Merton 1942) is accompanied by a set of counternorms (Anderson et al.
2010; Mitroff 1974) that promulgate irresponsible research. These six norms and
counternorms can serve as a valuable framework to reflect on the behavior of a
researcher and are included in Table 1.1.

Table 1.1: Six norms of responsible conduct of research and their respective
counternorms.

Norm Description norm Counternorm

Universalism Evaluate results based on pre-established and non-personal criteria Particularism
Communality Freely and widely share findings Secrecy
Disinterestedness Results not corrupted by personal gains Self-interestedness
Skepticism Scrutinize all findings, including own Dogmatism
Governance Decision-making in science is done by researchers Administration

Quality Evaluate researchers based on the quality of their work Quantity

Besides abiding by these norms, responsible conduct of research consists of
both research integrity and research ethics (Shamoo and Resnik 2009). Research
integrity is the adherence to professional standards and rules that are well defined
and uniform, such as the standards outlined by the American Psychological
Association (2010a). Research ethics, on the other hand, is “the critical study
of the moral problems associated with or that arise in the course of pursuing
research” (Steneck 2006), which is abstract and pluralistic. As such, research
ethics is more fluid than research integrity and is supposed to fill in the gaps
left by research integrity (Koppelman-White 2006). For example, not fabricating
data is the professional standard in research, but research ethics informs us on
why it is wrong to fabricate data. This highlights that ethics and integrity are
not the same, but rather two related constructs. Discussion or education should
therefore not only reiterate the professional standards, but also include training
on developing ethical and moral principles that can guide researchers in their
decision-making.
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What do researchers do?

Even though most researchers subscribe to the aforementioned normative princi-
ples, fewer researchers actually adhere to them in practice and many researchers
perceive their scientific peers to adhere to them even less. A survey of 3,247 re-
searchers by Anderson, Martinson, and De Vries (2007) indicated that researchers
subscribed to the norms more than they actually behaved in accordance to these
norms. For instance, a researcher may be committed to sharing their data (the
norm of communality), but might shy away from actually sharing data at an early
stage out of a fear of being scooped by other researchers. This result aligns with
surveys showing that many researchers express a willingness to share data, but
often fail to do so when asked (Krawczyk and Reuben 2012; Savage and Vickers
2009). Moreover, although researchers admit they do not adhere to the norms
as much as they subscribe to them, they still regard themselves as adhering to
the norms more so than their peers. For counternorms, this pattern reversed.
These results indicate that researchers systematically evaluate their own conduct
as more responsible than other researchers’ conduct.

This gap between subscription and actual adherence to the normative prin-
ciples is called normative dissonance and could potentially be due to substandard
academic education or lack of open discussion on ethical issues. Anderson et al.
(2007) suggested that different types of mentoring affect the normative behavior
by a researcher. Most importantly, ethics mentoring (e.g., discussing whether a
mistake that does not affect conclusions should result in a corrigendum) might
promote adherence to the norms, whereas survival mentoring (e.g., advising not
to submit a non-crucial corrigendum because it could be bad for your scientific
reputation) might promote adherence to the counternorms. Ethics mentoring
focuses on discussing ethical issues (Anderson et al. 2007) that might facilitate
higher adherence to norms due to increased self-reflection, whereas survival men-
toring focuses on how to thrive in academia and focuses on building relationships
and specific skills to increase the odds of being successful.

Improving responsible conduct

Increasing exposure to ethics education throughout the research career might
improve responsible research conduct. Research indicated that weekly 15-minute
ethics discussions facilitated confidence in recognizing ethical problems in a way
that participants deemed both effective and enjoyable (Peiffer, Hugenschmidt,
and Laurienti 2011). Such forms of active education are fruitful because they
teach researchers practical skills that can change their research conduct and
improve prospective decision making, where a researcher rapidly assesses the
potential outcomes and ethical implications of the decision at hand, instead of
in hindsight (Whitebeck 2001). It is not to be expected that passive education
on guidelines should be efficacious in producing behavioral change (Kornfeld
2012), considering that participants rarely learn about useful skills or experience
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a change in attitudes as a consequence of such passive education (Plemmons,
Brody, and Kalichman 2006).

Moreover, in order to accommodate the normative principles of scientific
research, the professional standards, and a researcher’s moral principles, trans-
parent research practices can serve as a framework for responsible conduct of
research. Transparency in research embodies the normative principles of scientific
research: universalism is promoted by improved documentation; communalism
is promoted by publicly sharing research; disinterestedness is promoted by in-
creasing accountability and exposure of potential conflicts of interest; skepticism
is promoted by allowing for verification of results; governance is promoted by
improved project management by researchers; higher quality is promoted by the
other norms. Professional standards also require transparency. For instance,
the APA and publication contracts require researchers to share their data with
other researchers (American Psychological Association 2010a). Even though
authors often make their data available upon request, such requests frequently
fail (Krawczyk and Reuben 2012; Wicherts et al. 2006), which results in a failure
to adhere to professional standards. Openness regarding the choices made (e.g.,
on how to analyze the data) during the research process will promote active
discussion of prospective ethics, increasing self-reflective capacities of both the
individual researcher and the collective evaluation of the research (e.g., peer
reviewers).

In the remainder of this section we outline a type of project management,
founded on transparency, which seems apt to be the new standard within psychol-
ogy (Nosek and Bar-Anan 2012; Nosek, Spies, and Motyl 2012). Transparency
guidelines for journals have also been proposed (Nosek et al. 2015) and the
outlined project management adheres to these guidelines from an author’s per-
spective. The provided format focuses on empirical research and is certainly not
the only way to apply transparency to adhere to responsible conduct of research
principles.

Transparent project management

Research files can be easily managed by creating an online project at the Open
Science Framework (OSF; osf.io). The OSF is free to use and provides extensive
project management facilities to encourage transparent research. Project man-
agement via this tool has been tried and tested in, for example, the Many Labs
project (R. A. Klein et al. 2014) and the Reproducibility project (Open Science
Collaboration 2015). Research files can be manually uploaded by the researcher
or automatically synchronized (e.g., via Dropbox or Github). Using the OSF is
easy and explained in-depth at osf.io/getting-started.

The OSF provides the tools to manage a research project, but how to apply
these tools still remains a question. Such online management of materials, informa-
tion, and data, is preferred above a more informal system lacking in transparency
that often strongly rests on particular contributor’s implicit knowledge.
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As a way to organize a version-controlled project, we suggest a “prune-and-
add” template, where the major elements of most research projects are included
but which can be specified and extended for specific projects. This template
includes folders as specified in Table 1.2, which covers many of the research stages.
The template can be readily duplicated and adjusted on the OSF for practical
use in similar projects (like replication studies; osf.io/4sdn3).

Table 1.2: Project management folder structure, which can be pruned and added
to in order to meet specific research needs. This folder structure can be duplicated
as an OSF project at https://osf.io/4sdn3.

Folder Summary of contents

analyses Analyses scripts (e.g., as reported in the paper, exploratory files)
archive Outdated files or files not of direct value (e.g., unused code)
bibliography Reference library or related articles (e.g., Endnote library, PDF files)
data All data files used (e.g., raw data, processed data)
figures Figures included in the manuscript and code for figures

functions Custom functions used (e.g., SPSS macro, R scripts)
materials Research materials specified per study (e.g., survey questions, stimuli)
preregister Preregistered hypotheses, analysis plans, research designs
submission Manuscript, submissions per journal, and review rounds
supplement Files that supplement the research project (e.g., notes, codebooks)

This suggested project structure also includes a folder to include preregis-
tration files of hypotheses, analyses, and research design. The preregistration of
these ensures that the researcher does not hypothesize after the results are known
(Kerr 1998), but also ensures readers that the results presented as confirmatory
were actually confirmatory (Chambers 2015; Wagenmakers et al. 2012). The
preregistration of analyses also ensures that the statistical analysis chosen to test
the hypothesis was not dependent on the result. Such preregistrations document
the chronology of the research process and also ensure that researchers actively
reflect on the decisions they make prior to running a study, such that the quality
of the research might be improved.

Also available in this project template is a file to specify contributions to a
research project. This is important for determining authorship, responsibility, and
credit of the research project. With more collaborations occurring throughout
science and increasing specialization, researchers cannot be expected to carry
responsibility for the entirety of large multidisciplinary papers, but authorship
does currently imply this. Consequently, authorship has become a too imprecise
measure for specifying contributions to a research project and requires a more
precise approach.

Besides structuring the project and documenting the contributions, re-
sponsible conduct encourages independent verification of the results to reduce
particularism. A co-pilot model has been introduced previously (Veldkamp et
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al. 2014; Wicherts 2011), where at least two researchers independently run all
analyses based on the raw data. Such verification of research results enables
streamline reproduction of the results by outsiders (e.g., are all files readily avail-
able? are the files properly documented? do the analyses work on someone else’s
computer?), helps find out potential errors (Bakker and Wicherts 2011; Nuijten,
Hartgerink, et al. 2015), and increases confidence in the results. We therefore
encourage researchers to incorporate such a co-pilot model into all empirical
research projects.

Questionable research practices

What is it?

Questionable research practices are defined as practices that are detrimental to the
research process (National Academy of Sciences and Medicine 1992). Examples
include inadequate research documentation, failing to retain research data for
a sufficient amount of time, and actively refusing access to published research
materials. However, questionable research practices should not be confounded
with questionable academic practices, such as academic power play, sexism, and
scooping.

Attention for questionable practices in psychology has (re-)arisen in recent
years, in light of the so-called “replication crisis” (Makel, Plucker, and Hegarty
2012). Pinpointing which factors initiated doubts about the reproducibility of
findings is difficult, but most notable seems an increased awareness of widely
accepted practices as statistically and methodologically questionable.

Besides affecting the reproducibility of psychological science, questionable
research practices align with the aforementioned counternorms in science. For
instance, confirming prior beliefs by selectively reporting results is a form of
dogmatism; skepticism and communalism are violated by not providing peers
with research materials or details of the analysis; universalism is hindered by
lack of research documentation; governance is deteriorated when the public loses
its trust in the research system because of signs of the effects of questionable
research practices (e.g., repeated failures to replicate) and politicians initiate new
forms of oversight.

Suppose a researcher fails to find the (a priori) hypothesized effect, subse-
quently decides to inspect the effect for each gender, and finds an effect only
for women. Such an ad hoc exploration of the data is perfectly fine if it were
presented as an exploration (Wigboldus and Dotsch 2015). However, if the
subsequent publication only mentions the effect for females and presents it as
confirmatory, instead of exploratory, this is questionable. The p-values should
have been corrected for multiple testing (three hypotheses rather than one were
tested) and the result is clearly not as convincing as one that would have been
hypothesized a priori.
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These biases occur in part because researchers, editors, and peer reviewers
are biased to believe that statistical significance has a bearing on the probability
of a hypothesis being true. Such misinterpretation of the p-value is not uncommon
(Cohen 1994). The perception that statistical significance bears on the probability
of a hypothesis reflects an essentialist view of p-values rather than a stochastic
one; the belief that if an effect exists, the data will mirror this with a small p-
value (Sijtsma, Veldkamp, and Wicherts 2015). Such problematic beliefs enhance
publication bias, because researchers are less likely to believe in their results and
are less likely submit their work for publication (Franco, Malhotra, and Simonovits
2014). This enforces the counternorm of secrecy by keeping nonsignificant results
in the file-drawer (Rosenthal 1979), which in turn greatly biases the picture
emerging from the literature.

What do researchers do?

Most questionable research practices are hard to retrospectively detect, but
one questionable research practice, the misreporting of statistical significance,
can be readily estimated and could provide some indication of how widespread
questionable practices might be. Errors that result in the incorrect conclusion
that a result is significant are often called gross errors, which indicates that the
decision error had substantive effects. Large scale research in psychology has
indicated that 12.5-20% of sampled articles include at least one such gross error,
with approximately 1% of all reported test results being affected by such gross
errors (Bakker and Wicherts 2011; Nuijten, Hartgerink, et al. 2015; Veldkamp et
al. 2014).

Nonetheless, the prevalence of questionable research practices remains largely
unknown and reproducibility of findings has been shown to be problematic. In
one large-scale project, only 36% of findings published in three main psychology
journals in a given year could be replicated (Open Science Collaboration 2015).
Effect sizes were smaller in the replication than in the original study in 80% of
the studies, and it is quite possible that this low replication rate and decrease in
effect sizes are mostly due to publication bias and the use of questionable research
practices in the original studies.

How can it be prevented?

Counternorms such as self-interestedness, dogmatism, and particularism are
discouraged by transparent practices because practices that arise from them will
become more apparent to scientific peers.

Therefore transparency guidelines have been proposed and signed by editors
of over 500 journals (Nosek et al. 2015). To different degrees, signatories of
these guidelines actively encourage, enforce, and reward data sharing, material
sharing, preregistration of hypotheses or analyses, and independent verification of
results. The effects of these guidelines are not yet known, considering their recent
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introduction. Nonetheless, they provide a strong indication that the awareness
of problems is trickling down into systemic changes that prevent questionable
practices.

Most effective might be preregistrations of research design, hypotheses, and
analyses, which reduce particularism of results by providing an a priori research
scheme. It also outs behaviors such as the aforementioned optional stopping,
where extra participants are sampled until statistical significance is reached
(Armitage, McPherson, and Rowe 1969) or the dropping of conditions or outcome
variables (Franco, Malhotra, and Simonovits 2016). Knowing that researchers
outlined their research process and seeing it adhered to helps ensure readers that
results are confirmatory – rather than exploratory of nature, when results are
presented as confirmatory (Wagenmakers et al. 2012), ensuring researchers that
questionable practices did not culminate in those results.

Moreover, use of transparent practices even allows for unpublished research
to become discoverable, effectively eliminating publication bias. Eliminating
publication bias would make the research system an estimated 30 times more
efficient (Van Assen et al. 2014). Considering that unpublished research is not
indexed in the familiar peer reviewed databases, infrastructures to search through
repositories similar to the OSF are needed. One such infrastructure is being built
by the Center for Open Science (SHARE; osf.io/share), which searches through
repositories similar to the OSF (e.g., figshare, Dryad, arXiv).

Research misconduct

What is it?

As mentioned at the beginning of the article, research misconduct has been
defined as fabrication, falsification, and plagiarism (FFP). However, it does not
include “honest error or differences of opinion” (Office of Science and Technology
Policy 2000; Resnik and Stewart 2012). Fabrication is the making up of data
sets entirely. Falsification is the adjustment of a set of data points to ensure
the wanted results. Plagiarism is the direct reproduction of other’s creative
work without properly attributing it. These behaviors are condemned by many
institutions and organizations, including the American Psychological Association
(2010a).

Research misconduct is clearly the worst type of research practice, but despite
it being clearly wrong, it can be approached from a scientific and legal perspective
(Wicherts and Van Assen 2012). The scientific perspective condemns research
misconduct because it undermines the pursuit for knowledge. Fabricated or
falsified data are scientifically useless because they do not add any knowledge that
can be trusted. Use of fabricated or falsified data is detrimental to the research
process and to knowledge building. It leads other researchers or practitioners
astray, potentially leading to waste of research resources when pursuing false
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insights or unwarranted use of such false insights in professional or educational
practice.

The legal perspective sees research misconduct as a form of white-collar
crime, although in practice it is typically not subject to criminal law but rather
to administrative or labor law. The legal perspective requires intention to
commit research misconduct, whereas the scientific perspective requires data to
be collected as described in a research report, regardless of intent. In other words,
the legal perspective seeks to answer the question “was misconduct committed
with intent and by whom?”

The scientific perspective seeks to answer the question “were results inval-
idated because of the misconduct?” For instance, a paper reporting data that
could not have been collected with the materials used in the study (e.g., the
reported means lie outside the possible values on the psychometric scale) is invalid
scientifically. The impossible results could be due to research misconduct but
also due to honest error.

Hence, a legal verdict of research misconduct requires proof that a certain
researcher falsified or fabricated the data. The scientific assessment of the problems
is often more straightforward than the legal assessment of research misconduct.
The former can be done by peer reviewers, whereas the latter involves regulations
and a well-defined procedure allowing the accused to respond to the accusations.

Throughout this part of the article, we focus on data fabrication and
falsification, which we will illustrate with examples from the Diederik Stapel
case — a case we are deeply familiar with. His fraudulent activities resulted in 58
retractions (as of May, 2016), making this the largest known research misconduct
case in the social sciences.

What do researchers do?

Given that research misconduct represents such a clear violation of the normative
structure of science, it is difficult to study how many researchers commit research
misconduct and why they do it. Estimates based on self-report surveys suggest
that around 2% of researchers admit to having fabricated or falsified data during
their career (Fanelli 2009). Although the number of retractions due to misconduct
has risen in the last decades, both across the sciences in general (Fang, Steen, and
Casadevall 2012) and in psychology in particular (Margraf 2015), this number still
represents a fairly low number in comparison to the total number of articles in the
literature (Wicherts, Hartgerink, and Grasman 2016). Similarly, the number of
researchers found guilty of research misconduct is relatively low, suggesting that
many cases of misconduct go undetected; the actual rate of research misconduct
is unknown. Little research has addressed why researchers fabricate or falsify
data, but it is commonly accepted that they do so out of self-interest in order to
obtain publications and further their career. What we know from some exposed
cases, however, is that fabricated or falsified data are often quite extraordinary
and so could sometimes be exposed as not being genuine.
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Figure 1.1: Reproduction of Table 1 from the retracted Ruys and Stapel (2008)
paper. The table shows 32 cells with ’M (SD)’, of which 15 are direct duplicates
of one of the other cells. The original version with highlighted duplicates can be
found at https://osf.io/89mcn.

Humans, including researchers, are quite bad in recognizing and fabricating
probabilistic processes (Mosimann et al. 2002; Mosimann, Wiseman, and Edelman
1995). For instance, humans frequently think that, after five coin flips that result
in heads, the probability of the next coin flip is more likely to be tails than heads;
the gambler’s fallacy (Tversky and Kahneman 1974). Inferential testing is based
on sampling; by extension variables should be of probabilistic origin and have
certain stochastic properties. Because humans have problems adhering to these
probabilistic principles, fabricated data is likely to lead to data that does not
properly adhere to the probabilistic origins at some level of the data (Haldane
1948).

Exemplary of this lack of fabricating probabilistic processes is a table in
a now retracted paper from the Stapel case (“Retraction of ‘the Secret Life of
Emotions’ and ‘Emotion Elicitor or Emotion Messenger? Subliminal Priming
Reveals Two Faces of Facial Expressions”’ 2012; Ruys and Stapel 2008). In the
original Table 1, reproduced here as Figure 1.1, 32 means and standard deviations
are presented. Fifteen of these cells are duplicates of another cell (e.g., “0.87
(0.74)” occurs three times). Finding exact duplicates is extremely rare for even
one case, if the variables are a result of probabilistic processes as in sampling
theory.

Why reviewers and editors did not detect this remains a mystery, but it
seems that they simply do not pay attention to potential indicators of misconduct
in the publication process (Bornmann, Nast, and Daniel 2008). Similar issues
with blatantly problematic results in papers that were later found to be due to
misconduct have been noted in the medical sciences (Stewart and Feder 1987).
Science has been regarded as a self-correcting system based on trust. This aligns
with the idea that misconduct occurs because of “bad apples” (i.e., individual
factors) and not because of a “bad barrel” (i.e., systemic factors), increasing trust
in the scientific enterprise. However, the self-correcting system has been called

26



a myth (Stroebe, Postmes, and Spears 2012) and an assumption that instigates
complacency (Hettinger 2010); if reviewers and editors have no criteria that
pertain to fabrication and falsification (Bornmann, Nast, and Daniel 2008), this
implies that the current publication process is not always functioning properly as a
self-correcting mechanism. Moreover, trust in research as a self-correcting system
can be accompanied with complacency by colleagues in the research process.

The most frequent way data fabrication is detected is by those researchers
who are scrutinous, which ultimately results in whistleblowing. For example,
Stapel’s misdeeds were detected by young researchers who were brave enough to
blow the whistle. Although many regulations include clauses that help protect
the whistleblowers, whistleblowing is known to represent a risk (Lubalin, Ardini,
and Matheson 1995), not only because of potential backlash but also because
the perpetrator is often closely associated with the whistleblower, potentially
leading to negative career outcomes such as retracted articles on which one is
co-author. This could explain why whistleblowers remain anonymous in only an
estimated 8% of the cases (Price 1998). Negative actions as a result of loss of
anonymity include not only potential loss of a position, but also social and mental
health problems (Lubalin and Matheson 1999; Allen and Dowell 2013). It seems
plausible to assume that therefore not all suspicions are reported.

How often data fabrication and falsification occur is an important question
that can be answered in different ways; it can be approached as incidence or
as prevalence. Incidence refers to new cases in a certain timeframe, whereas
prevalence refers to all cases in the population at a certain time point. Misconduct
cases are often widely publicized, which might create the image that more cases
occur, but the number of cases seems relatively stable (Rhoades 2004). Prevalence
of research misconduct is of great interest and, as aforementioned, a meta-analysis
indicated that around 2% of surveyed researchers admit to fabricating or falsifying
research at least once (Fanelli 2009).

The prevalence that is of greatest interest is that of how many research
papers contain data that have been fabricated or falsified. Systematic data on
this are unavailable, because papers are not evaluated to this end in an active
manner (Bornmann, Nast, and Daniel 2008). Only one case study exists: the
Journal of Cell Biology evaluates all research papers for cell image manipulation
(Rossner and Yamada 2004; Bik, Casadevall, and Fang 2016a), a form of data
fabrication/falsification. They have found that approximately 1% of all research
papers that passed peer review (out of total of over 3000 submissions) were not
published because of the detection of image manipulation (The Journal of Cell
Biology 2015a).

How can it be prevented?

Notwithstanding discussion about reconciliation of researchers who have been
found guilty of research misconduct (Cressey 2013), these researchers typically
leave science after having been exposed. Hence, improving the chances of detecting
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misconduct may help not only in the correction of the scientific record, but also
in the prevention of research misconduct. In this section we discuss how the
detection of fabrication and falsification might be improved and what to do when
misconduct is detected.

When research is suspect of data fabrication or falsification, whistleblowers
can report these suspicions to institutions, professional associations, and journals.
For example, institutions can launch investigations via their integrity offices.
Typically, a complaint is submitted to the research integrity officer, who sub-
sequently decides whether there are sufficient grounds for further investigation.
In the United States, integrity officers have the possibility to sequester, that is
to retrieve, all data of the person in question. If there is sufficient evidence, a
formal misconduct investigation or even a federal misconduct investigation by
the Office of Research Integrity might be started. Professional associations can
also launch some sort of investigation, if the complaint is made to the association
and the respondent is a member of that association. Journals are also confronted
with complaints about specific research papers and those affiliated with the
Committee on Publication Ethics have a protocol for dealing with these kinds
of allegations (see publicationethics.org/resources for details). The best way to
improve detection of data fabrication directly is to further investigate suspicions
and report them to your research integrity office, albeit the potential negative
consequences should be kept in mind when reporting the suspicions, such that it
is best to report anonymously and via analog mail (digital files contain metadata
with identifying information).

More indirectly, statistical tools can be applied to evaluate the veracity
of research papers and raw data (Carlisle et al. 2015; Peeters, Klaassen, and
Wiel 2015), which helps detect potential lapses of conduct. Statistical tools have
been successfully applied in data fabrication cases, for instance the Stapel case
(Levelt Committee, Drenth Committee, and Noort, Committee 2012), the Fujii
case (Carlisle 2012), and in the cases of Smeesters and Sanna (Simonsohn 2013).
Interested readers are referred to Buyse et al. (1999) for a review of statistical
methods to detect potential data fabrication.

Besides using statistics to monitor for potential problems, authors and
principal investigators are responsible for results in the paper and therefore should
invest in verification of results, which improves earlier detection of problems even
if these problems are the result of mere sloppiness or honest error. Even though it
is not feasible for all authors to verify all results, ideally results should be verified
by at least one co-author. As mentioned earlier, peer review does not weed out all
major problems (Bornmann, Nast, and Daniel 2008) and should not be trusted
blindly.

Institutions could facilitate detection of data fabrication and falsification
by implementing data auditing. Data auditing is the independent verification of
research results published in a paper (Shamoo 2006). This goes hand-in-hand
with co-authors verifying results, but this is done by a researcher not directly
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affiliated with the research project. Auditing data is common practice in research
that is subject to governmental oversight, for instance drug trials that are audited
by the Food and Drug Administration (Seife 2015).

Papers that report fabricated or falsified data are typically retracted. The
decision to retract is often (albeit not necessarily) made after the completion of
a formal inquiry and/or investigation of research misconduct by the academic
institution, employer, funding organization and/or oversight body. Because much
of the academic work is done for hire, the employer can request a retraction from
the publisher of the journal in which the article appeared. Often, the publisher
then consults with the editor (and sometimes also with proprietary organizations
like the professional society that owns the journal title) to decide on whether to
retract. Such processes can be legally complex if the researcher who was guilty of
research misconduct opposes the retraction. The retraction notice ideally should
provide readers with the main reasons for the retraction, although quite often
the notices lack necessary information (Van Noorden 2011). The popular blog
Retraction Watch normally reports on retractions and often provides additional
information on the reasons for retraction that other parties involved in the process
(co-authors, whistleblowers, the accused researcher, the (former) employer, and
the publisher) are sometimes reluctant to provide (Marcus and Oransky 2014). In
some cases, the editors of a journal may decide to publish an editorial expression
of concern if there are sufficient grounds to doubt the data in a paper that is
being subjected to a formal investigation of research misconduct.

Many retracted articles are still cited after the retraction has been issued
(Bornemann-Cimenti, Szilagyi, and Sandner-Kiesling 2015; Pfeifer and Snodgrass
1990). Additionally, retractions might be issued following a misconduct investiga-
tion, resulting in no action taken by journals, the original content simply being
deleted wholesale, or subsequent legal threats if the work would be retracted
(Elia, Wager, and Tramèr 2014). If retractions do not occur even though they
have been issued, their negative effect, for instance decreased author citations
(Lu et al. 2013), are nullified, reducing the costs of committing misconduct.

Conclusion

This chapter provides an overview of the research practice spectrum, where on
the one end there is responsible conduct of research and with research misconduct
on the other end. In sum, transparent research practices are proposed to embody
scientific norms and a way to deal with both questionable research practices and
research misconduct, inducing better research practices. This would improve not
only the documentation and verification of research results; it also helps create a
more open environment for researchers to actively discuss ethical problems and
handle problems in a responsible manner, promoting good research practices. This
might help reduce both questionable research practices and research misconduct.
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Chapter 2

Reanalyzing Head et al.
(2015): investigating the
robustness of widespread
p-hacking1

Head et al. (2015b) provided a large collection of p-values that, from their
perspective, indicates widespread statistical significance seeking (i.e., p-hacking)
throughout the sciences. This result has been questioned from an epistemological
perspective because analyzing all reported p-values in research articles answers the
supposedly inappropriate question of evidential value across all results (Simonsohn,
Simmons, and Nelson 2015). Adjacent to epistemological concerns, the robustness
of widespread p-hacking in these data can be questioned due to the large variation
in a priori choices with regards to data analysis. Head et al. (2015b) had to make
several decisions with respect to the data analysis, which might have affected the
results. In this chapter I evaluate the data analysis approach with which Head et
al. (2015b) found widespread p-hacking and propose that this effect is not robust
to several justifiable changes. The underlying models for their findings have
been discussed in several preprints (e.g., Bishop and Thompson 2015; Holman
2015) and publications (e.g., Simonsohn, Simmons, and Nelson 2015; Bruns and
Ioannidis 2016), but the data have not extensively been reanalyzed for robustness.

The p-value distribution of a set of true- and null results without p-hacking
should be a mixture distribution of only the uniform p-value distribution under
the null hypothesis H0 and right-skew p-value distributions under the alternative

1Hartgerink, C. H. J. (2017). Reanalyzing Head et al. (2015): investigating the robustness
of widespread p-hacking. PeerJ, 5, e3068. doi:10.7717/peerj.3068
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hypothesis H1. P -hacking behaviors affect the distribution of statistically signifi-
cant p-values, potentially resulting in left-skew below .05 (i.e., a bump), but not
necessarily so (Hartgerink et al. 2016; Lakens 2015a; Bishop and Thompson 2016).
An example of a questionable behavior that can result in left-skew is optional
stopping (i.e., data peeking) if the null hypothesis is true (Lakens 2015a).

Consequently, Head et al. (2015b) correctly argue that an aggregate p-
value distribution could show a bump below .05 when left-skew p-hacking occurs
frequently. Questionable behaviors that result in seeking statistically significant
results, such as (but not limited to) the aforementioned optional stopping under
H0, could result in a bump below .05. Hence, a systematic bump below .05 (i.e.,
not due to sampling error) is a sufficient condition for the presence of specific forms
of p-hacking. However, this bump below .05 is not a necessary condition, because
other types of p-hacking can still occur without a bump below .05 presenting
itself (Hartgerink et al. 2016; Lakens 2015a; Bishop and Thompson 2016). For
example, one might use optional stopping when there is a true effect or conduct
multiple analyses, but only report that statistical test which yielded the smallest
p-value. Therefore, if no bump of statistically significant p-values is found, this
does not exclude that p-hacking occurs at a large scale.

In the current chapter, the conclusion from Head et al. (2015b) is inspected
for robustness. Their conclusion is that the data fullfill the sufficient condition
for p-hacking (i.e., show a systematic bump below .05), hence, provides evidence
for the presence of specific forms of p-hacking. The robustness of this conclusion
is inspected in three steps: (i) explaining the data and data analysis strategies
(original and reanalysis), (ii) reevaluating the evidence for a bump below .05 (i.e.,
the sufficient condition) based on the reanalysis, and (iii) discussing whether this
means that there is widespread p-hacking in the literature.

Data and methods

In the original paper, over two million reported p-values were mined from the
Open Access subset of PubMed central. PubMed central indexes the biomedical
and life sciences and permits bulk downloading of full-text Open Access articles.
By text-mining these full-text articles for p-values, Head et al. (2015b) extracted
more than two million p-values in total. Their text-mining procedure extracted all
reported p-values, including those that were reported without an accompanying
test statistic. For example, the p-value from the result t(59) = 1.75, p > .05 was
included, but also a lone p < .05. Subsequently, Head et al. (2015b) analyzed a
subset of statistically significant p-values (assuming α = .05) that were exactly
reported (e.g., p = .043; the same subset is analyzed in this chapter).

Head et al. (2015b) their data analysis approach focused on comparing
frequencies in the last and penultimate bins from .05 at a binwidth of .005 (i.e.,
.04 < p < .045 versus .045 < p < .05). Based on the tenet that a sufficient
condition for p-hacking is a systematic bump of p-values below .05 (Simonsohn,
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Nelson, and Simmons 2014), sufficient evidence for p-hacking is present if the last
bin has a significantly higher frequency than the penultimate bin in a binomial
test. Applying the binomial test (i.e., Caliper test) to two frequency bins has
previously been used in publication bias research (Gerber et al. 2010; Kühberger,
Fritz, and Scherndl 2014), applied here specifically to test for p-hacking behaviors
that result in a bump below .05. The binwidth of .005 and the bins .04 < p < .045
and .045 < p < .05 were chosen by Head et al. (2015b) because they expected
the signal of this form of p-hacking to be strongest in this part of the distribution
(regions of the p-value distribution closer to zero are more likely to contain
evidence of true effects than regions close to .05). They excluded p = .05 “because
[they] suspect[ed] that many authors do not regard p = 0.05 as significant” (p.4).

Figure 2.1 shows the selection of p-values in Head et al. (2015b) in two
ways: (1) in green, which shows the results as analysed by Head et al. (i.e.,
.04 < p < .045 versus .045 < p < .05), and (2) in grey, which shows the entire
distribution of significant p-values (assuming α = .05) available to Head et al.
after eliminating p = .045 and p = .05 (depicted by the black bins). The height of
the two green bins (i.e., the sum of the grey bins in the same range) show a bump
below .05, which indicates p-hacking. The grey histogram in Figure 2.1 shows a
more fine-grained depiction of the p-value distribution and does not clearly show
a bump below .05, because it is dependent on which bins are compared. However,
the grey histogram clearly indicates that results around the second decimal tend
to be reported more frequently when p ≥ .01.

Theoretically, the p-value distribution should be a smooth, decreasing func-
tion, but the grey distribution shows systematically more reported p-values for
.01, .02, .03, .04 (and .05 when the black histogram is included). As such, there
seems to be a tendency to report p-values to two decimal places, instead of
three. For example, p = .041 might be correctly rounded down to p = .04 or
p = .046 rounded up to p = .05. A potential post-hoc explanation is that three
decimal reporting of p-values is a relatively recent standard, if a standard at all.
For example, it has only been prescribed since 2010 in psychology (American
Psychological Association 2010b), where it previously prescribed two decimal
reporting (American Psychological Association 1983; American Psychological
Association 2001). Given the results, it seems reasonable to assume that other
fields might also report to two decimal places instead of three, most of the time.

Moreover, the data analysis approach used by Head et al. (2015b) eliminates
p = .045 for symmetry of the compared bins and p = .05 based on a potentially
invalid assumption of when researchers regard results as statistically significant.
P = .045 is not included in the selected bins (.04 < p < .045 versus .045 < p < .05),
while this could affect the results. If p = .045 is included, no evidence of a bump
below .05 is found (the left black bin in Figure 2.1 is then included; frequency
.04 < p ≤ .045 = 20114 versus .045 < p < .05 = 18132). However, the bins
are subsequently asymmetrical and require a different analysis. To this end, I
supplement the Caliper tests with Fisher’s method (Fisher 1925; Mosteller and
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Figure 2.1: Histograms of p-values as selected in Head et al. (in green; .04 <
p < .045 versus .045 < p < .05), the significant p-value distribution as selected in
Head et al. (in grey; 0 < p ≤ .00125, .00125 < p ≤ .0025, ..., .0475 < p ≤ .04875,
.04875 < p < .05, binwidth = .00125). The green and grey histograms exclude
p = .045 and p = .05; the black histogram shows the frequencies of results that
are omitted because of this (.04375 < p ≤ .045 and .04875 < p ≤ .05, binwidth =
.00125).
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Fisher 1948) based on the same range analyzed by Head et al. (2015b). This
analysis includes .04 < p < .05 (i.e., it does not exclude p = .045 as in the binned
Caliper test). Fisher’s method tests for a deviation from uniformity and was
computed as

χ2
2k = −2

k
∑

i=1

ln(
pi − .04

.01
) (2.1)

where pi are the p-values between .04 < p < .05. Effectively, Equation (2.1)
tests for a bump between .04 and .05 (i.e., the transformation ensures that the
transformed p-values range from 0-1 and that Fisher’s method inspects left-skew
instead of right-skew). P = .05 was consistently excluded by Head et al. (2015b)
because they assumed researchers did not interpret this as statistically significant.
However, researchers interpret p = .05 as statistically significant more frequently
than they thought: 94% of 236 cases investigated by Nuijten, Hartgerink, et al.
(2015) interpreted p = .05 as statistically significant, indicating this assumption
might not be valid.

Given that systematically more p-values are reported to two decimal places
and the adjustments described in the previous paragraph, I did not exclude
p = .045 and p = .05 and I adjusted the bin selection to .03875 < p ≤ .04 versus
.04875 < p ≤ .05. Visually, the newly selected data are the grey and black bins
from Figure 2.1 combined, where the rightmost black bin (i.e., .04875 < p ≤ .05)
is compared with the large grey bin at .04 (i.e., .03875 < p ≤ .04). The bins
.03875 < p ≤ .04 and .04875 < p ≤ .05 were selected to take into account
that p-values are typically rounded (both up and down) in the observed data.
Moreover, if incorrect or excessive rounding-down of p-values occurs strategically
(e.g., p = .054 reported as p = .05; Vermeulen et al. 2015), this can be considered
p-hacking. If p = .05 is excluded from the analyses, these types of p-hacking
behaviors are eliminated from the analyses, potentially decreasing the sensitivity
of the test for a bump.

The reanalysis approach for the bins .03875 < p ≤ .04 and .04875 < p ≤ .05 is
similar to Head et al. (2015b) and applies the Caliper test to detect a bump below
.05, with the addition of Bayesian Caliper tests. The Caliper test investigates
whether the bins are equally distributed or that the penultimate bin (i.e., .03875 <
p ≤ .04) contains more results than the ultimate bin (i.e., .04875 < p ≤ .05;
H0 : Proportion ≤ .5). Sensitivity analyses were also conducted, altering the
binwidth from .00125 to .005 and .01. Moreover, the analyses were conducted for
both the p-values extracted from the abstracts- and the results sections separately.

The results from the Bayesian Caliper test and the traditional, frequentist
Caliper test give results with different interpretations. The p-value of the Caliper
test gives the probability of more extreme results if the null hypothesis is true,
but does not quantify the probability of the null- and alternative hypothesis. The
added value of the Bayes Factor (BF ) is that it does quantify the probabilities of
the hypotheses in the model and creates a ratio, either as BF10, the alternative
hypothesis versus the null hypothesis, or vice versa, BF01. A BF of 1 indicates
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that both hypotheses are equally probable, given the data. All Bayesian proportion
tests were conducted with highly uncertain priors (r = 1, “ultrawide” prior) using
the BayesFactor package (Morey and Rouder 2015). In this specific instance,
BF10 is computed and values > 1 can be interpreted, for our purposes, as: the
data are more likely under p-hacking that results in a bump below .05 (i.e.,
left-skew p-hacking) than under no left-skew p-hacking. BF10 values < 1 indicate
that the data are more likely under no left-skew p-hacking than under left-skew
p-hacking. The further removed from 1, the more evidence in the direction of
either hypothesis is available.

Reanalysis results

Results of Fisher’s method for all p-values between .04 < p < .05 and does
not exclude p = .045 fails to find evidence for a bump below .05, χ2(76492) =
70328.86, p > .999. Additionally, no evidence for a bump below .05 remains
when I focus on the more frequently reported second-decimal bins, which could
include p-hacking behaviors such as incorrect or excessive rounding down to
p = .05. Reanalyses showed no evidence for left-skew p-hacking, Proportion =
.417, p > .999, BF10 < .001 for the Results sections and Proportion = .358, p >
.999, BF10 < .001 for the Abstract sections. Table 2.1 summarizes these results
for alternate binwidths (.00125, .005, and .01) and shows results are consistent
across different binwidths. Separated per discipline, no binomial test for left-skew
p-hacking is statistically significant in either the Results- or Abstract sections
(see the Supporting Information). This indicates that the evidence for p-hacking
that results in a bump below .05, as presented by Head et al. (2015b), seems
to not be robust to minor changes in the analysis such as including p = .045 by
evaluating .04 < p < .05 continuously instead of binning, or when taking into
account the observed tendency to round p-values to two decimal places during
the bin selection.

Discussion

Head et al. (2015b) collected p-values from full-text articles and analyzed these
for p-hacking, concluding that “p-hacking is widespread throughout science” (see
abstract; Head et al. 2015b). Given the implications of such a finding, I inspected
whether evidence for widespread p-hacking was robust to some substantively
justified changes in the data selection. A minor adjustment from comparing bins
to continuously evaluating .04 < p < .05, the latter not excluding .045, already
indicated this finding seems to not be robust. Additionally, after altering the bins
inspected due to the observation that systematically more p-values are reported
to the second decimal and including p = .05 in the analyses, the results indicate
that evidence for widespread p-hacking, as presented by Head et al. (2015b) is
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Table 2.1: Results of the reanalysis across various binwidths (i.e., .00125, .005,
.01) and different sections of the paper.

Abstracts Results

Binwidth = .00125 .03875 < p ≤ .04 4,597 26,047
.04875 < p ≤ .05 2,565 18,664
Proportion 0.358 0.417
p > .999 > .999
BF10 < .001 < .001

Binwidth = .005 .035 < p ≤ .04 6,641 38,537
.045 < p ≤ .05 4,485 30,406
Proportion 0.403 0.441
p > .999 > .999
BF10 < .001 < .001

Binwidth = .01 .03 < p ≤ .04 9,885 58,809
.04 < p ≤ .05 7,250 47,755
Proportion 0.423 0.448
p > .999 > .999
BF10 < .001 < .001

not robust to these substantive changes in the analysis. Moreover, the frequency
of p = .05 is directly affected by p-hacking, when rounding-down of p-values is
done strategically. The conclusion drawn by Head et al. (2015b) might still be
correct, but the data do not undisputably show so. Moreover, even if there is no
p-hacking that results in a bump of p-values below .05, other forms of p-hacking
that do not cause such a bump can still be present and prevalent (Hartgerink et
al. 2016; Lakens 2015a; Bishop and Thompson 2016).

Second-decimal reporting tendencies of p-values should be taken into con-
sideration when selecting bins for inspection because this data set does not allow
for the elimination of such reporting tendencies. Its substantive consequences
are clearly depicted in the results of the reanalysis and Figure 2.1 illustrates how
the theoretical properties of p-value distributions do not hold for the reported
p-value distribution. Previous research has indicated that when the recalculated
p-value distribution is inspected, the theoretically expected smooth distribution
re-emerges even when the reported p-value distribution shows reporting tendencies
(Hartgerink et al. 2016; Krawczyk 2015). Given that the text-mining procedure
implemented by Head et al. (2015b) does not allow for recalculation of p-values,
the effect of reporting tendencies needs to mitigated by altering the data analysis
approach.

Even after mitigating the effect of reporting tendencies, these analyses were
all conducted on a set of aggregated p-values, which can either detect p-hacking

37



that results in a bump of p-values below .05 if it is widespread, but not prove that
no p-hacking is going on in any of the individual papers. Firstly, there is the risk
of an ecological fallacy. These analyses take place at the aggregate level, but there
might still be research papers that show a bump below .05 at the paper level.
Secondly, some forms of p-hacking also result in right-skew, which is not picked
up in these analyses and is difficult to detect in a set of heterogeneous results
(attempted in Hartgerink et al. 2016). As such, if any detection of p-hacking is
attempted, this should be done at the paper level and after careful scrutiny of
which results are included (Simonsohn, Simmons, and Nelson 2015; Bishop and
Thompson 2016).

Limitations and conclusion

In this reanalysis two limitations remain with respect to the data analysis. First,
selecting the bins just below .04 and .05 results in selecting non-adjacent bins.
Hence, the test might be less sensitive to detect a bump below .05. In light of
this limitation I ran the original analysis from Head et al. (2015b), but included
the second decimal (i.e., .04 ≤ p < .045 versus .045 < p ≤ .05). This analysis also
yielded no evidence for a bump of p-values below .05, Proportion = .431, p >
.999, BF10 < .001. Second, the selection of only exactly reported p-values might
have distorted the p-value distribution due to reporting tendencies in rounding.
For example, a researcher with a p-value of .047 might be more likely to report
p < .05 than a researcher with a p-value of .037 reporting p < .04. Given that
these analyses exclude all values reported as p < X, this could have affected the
results. There is some indication that this tendency to round up is relatively
stronger around .05 than around .04 (a factor of 1.25 approximately based on the
original Figure 5; Krawczyk 2015), which might result in an underrepresentation
of p-values around .05.

Given the implications of the findings by Head et al. (2015b), it is important
that these findings are robust to choices that can vary. Moreover, the absence of a
bump below .05 seems to be stronger than its presence throughout the literature:
a reanalysis of a previous paper, which found evidence for a bump below .05
(Masicampo and Lalande 2012), yielded no evidence for a bump below .05 (Lakens
2015a); two new data sets also did not reveal a bump below .05 (Hartgerink et
al. 2016; Vermeulen et al. 2015). Consequently, findings that claim there is a
bump below .05 need to be robust. In this chapter, I explained why a different
data analysis approach to the data of Head et al. (2015b) can be justified and as
a result no evidence of widespread p-hacking that results in a bump of p-values
below .05 is found. Although this does not mean that no p-hacking occurs at
all, the conclusion by Head et al. (2015b) should not be taken at face value
considering that the results are not robust to (minor) choices in the data analysis
approach. As such, the evidence for widespread left-skew p-hacking is ambiguous
at best.
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Supporting Information

S1 File. Full reanalysis results per discipline: https://doi.org/10.7717/peerj.3068/
supp-1.
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Chapter 3

Distributions of p-values
between .01-.05 in
psychology: What is going
on?1

A set of p-values can be informative of the underlying effects that are investigated,
but can also be indicative of potential research biases or questionable research
practices (QRPs). In the absence of QRPs, the distribution of significant p-values
can be expected to have a certain shape. Under the null hypothesis all p-values
are equally probable (i.e., follow a uniform distribution). If there is truly an effect,
smaller p-values are more likely than larger p-values (i.e., the distribution decreases
monotonically in the p-value). Consequently, because some hypotheses are false
and some are true, the distribution of observed p-values arises from a mixture of
uniform and right-skewed distributions and should also decrease monotonically.2

QRPs may have various effects on the p-value distribution. Figure 3.1 shows the
p-value distribution of statistical tests both with data peeking (solid lines) and
without data peeking. Data peeking (also known as optional stopping) refers to
conducting intermediate significance testing during data collection (Armitage,
McPherson, and Rowe 1969). Data peeking greatly affects the p-value distribution
in all panels, which can be seen from comparing the “true” and “data-peeked”
p-value distributions. Panel A, which is obtained after data peeking of studies

1Hartgerink, C. H. J., van Aert, R. C. M., Nuijten, M. B., Wicherts, J. M., and van Assen,
M. A. L. M. (2016). Distributions of p-values smaller than .05 in psychology: what is going on?
PeerJ, 4, e1935. doi:10.7717/peerj.1935

2One exception to this rule is when the alternative hypothesis is wrongly specified, that is, if
the true effect size is negative whereas the alternative hypothesis states that the true effect is
positive. In this case the distribution of the p- value is left-skewed and monotonically increasing.
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with standardized effect size d = 0, shows a “bump” in the distribution. A
bump corresponds to that part of the p-value distribution that makes it no longer
monotonically decreasing. Panel B also shows a bump for data peeking of studies
with d = 0.2. However, Panel C shows no bump but merely monotonic excess,
i.e. an increase in the frequency of p-values below .05 in the absence of a bump.
Consequently, data peeking may either lead to monotonic excess or a bump in
the distribution of p-values. There are other known QRPs in the analysis of data
(John, Loewenstein, and Prelec 2012), but these have different effects on the
p-value distribution and do not necessarily lead to a bump, as shown in Figure
3.1.

In this chapter we attempt to answer two questions: (1) Does a bump
or monotonic excess of p-values below .05 exist in psychology? and (2) Did
evidence for a bump increase over time in psychology? We chose to focus on
psychology because of the availability of an extensive database on statistical
results in psychology (used in Nuijten, Hartgerink, et al. 2015) and because
discussions on research practices are particularly salient in this discipline (Pashler
and Wagenmakers 2012; John, Loewenstein, and Prelec 2012; Simmons, Nelson,
and Simonsohn 2011; Wagenmakers et al. 2012; Asendorpf et al. 2013).

How QRPs relate to distributions of p-values

QRPs are defined as practices that are detrimental to the research process
(National Academy of Sciences and Medicine 1992), with a recent focus on those
which “increase the likelihood of finding support for a false hypothesis” (p.524;
John, Loewenstein, and Prelec 2012). Several QRPs related to significance testing
are known to affect p-values of statistical tests and consequently the decisions
based on these tests. Specifically, particular QRPs may yield results that are
just significant and can create a bump of p-values, such as ad hoc exclusion of
outliers (Bakker and Wicherts 2014), repeatedly sampling new participants and
checking the results (i.e., data peeking; Armitage, McPherson, and Rowe 1969),
including various combinations of covariates until a significant result is reached,
operationalizing a measure in different ways until significance is reached (Simmons,
Nelson, and Simonsohn 2011), or selective reporting of p-values (Franco, Malhotra,
and Simonovits 2016). These QRPs have been used by many researchers at least
once in their career. For instance, data peeking and the ad hoc exclusion of
outliers were admitted by 63% and 38% of psychological researchers, respectively
(John, Loewenstein, and Prelec 2012). On the other hand, other QRPs mainly
yield very small and (clearly) significant p-values, such as analyzing multiple
conditions or correlated variables and selecting only the smallest p-value out of
this set of analyses (Van Aert, Wicherts, and Van Assen 2016; Ulrich and Miller
2015) and do not lead to a bump. To summarize, different QRPs may differently
affect the distribution of statistically significant p-values.
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Figure 3.1: Distributions of 20 million p-values each, when Cohen’s standardized effect size d = 0 (bump; Panel A),
d = .2 (bump; Panel B), and d = .5 (monotonic excess; Panel C), given data peeking (solid) or no data peeking (dashed).
Simulations were run for two-sample t-tests with nk = 24. For data peeking, a maximum of three rounds of additional
sampling occurred if the result was nonsignificant, with each round adding 1/3 of the original sample size.
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However, there are at least two problems with using p-value distributions to
examine the prevalence of QRPs. First, as we previously argued, not all QRPs
lead to a bump of p-values just below .05. Hence, examining the distribution
of p-values just below .05 will not inform us on the prevalence of QRPs that
do not aim to obtain just significant results but yield mainly small and clearly
significant p-values (Van Aert, Wicherts, and Van Assen 2016; Ulrich and Miller
2015). Second, the QRPs yielding just significant results do not necessarily result
in a non-monotonic p-value distribution, that is, a distribution with a bump. For
instance, consider Figure 3.1 that shows the result of simulations done for data
peeking, which is known to result in mainly just significant p-values (Armitage,
McPherson, and Rowe 1969; Lakens 2015a; Wagenmakers 2007). Figure 3.1
illustrates that data peeking may result in non-monotonic excess (i.e., bump;
panel A and B), but can also cause monotonic excess (panel C), even if all
researchers use data peeking. Specifically, if all underlying effects are genuinely
and substantially different from zero (panel C), data peeking will generally not
lead to a bump below .05. In the present paper, we therefore examine the peculiar
prevalence of p-values just below .05 by both investigating the presence of a bump
or monotonic excess in distributions of statistically significant results.

Previous findings

Masicampo and Lalande (2012) found a bump of p-values just below .05 in three
main psychology journals (i.e., Journal of Personality and Social Psychology,
JPSP; Journal of Experimental Psychology: General, JEPG; Psychological Science,
PS), which, as we saw, could be explained by research biases due to QRPs. The
observation of a bump was one of several signals of a crisis of confidence in research
findings in psychological science (Pashler and Wagenmakers 2012; Ferguson 2015).
Leggett et al. (2013) later corroborated this bump of p-values for JPSP and
JEPG, and observed that it was larger in 2005 than in 1965. Considering that
research biases can lead to overemphasis on statistical significance, this result
suggested that the state of psychology may have even deteriorated over the years.
Additional corroboration in samples of published articles from various fields was
provided by Head et al. (2015b), who documented the bump of p-values below
.05 in 1,048,575 articles across 16 disciplines including psychology. Ginsel et al.
(2015) found similar biased reporting of p-values in medical abstracts, but noted
the variety of potential causes (e.g., publication bias, fraud, selective reporting).

At the same time, other studies failed to find a bump of p-values below .05
(Jager and Leek 2013; Krawczyk 2015; Vermeulen et al. 2015). Reanalysis of
original data by Lakens (2015a) and ourselves indicated that the results may
have been confounded by publication bias (Masicampo and Lalande 2012) and by
tendencies to round p-values (Head et al. 2015b). Publication bias refers to the
fact that the probability of getting published is higher for statistically significant
results than for statistically nonsignificant results (Gerber et al. 2010; Franco,
Malhotra, and Simonovits 2014). Publication bias only changes the p-value
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distribution above .05 and cannot cause a bump. Krawczyk (2015) analyzed a
sample of around 5,000 psychology articles and found no bump in p-values that
were recalculated on the basis of reported test statistics and degrees of freedom (cf.
Bakker and Wicherts 2011). However, he did observe a bump for reported p-values.
As such, this highlights an important difference between reported p-values and
recalculated p-values, and stresses the need to distinguish both types of results
when studying signs of questionable research practices.

Extensions of previous studies

In answering our research questions, we extend previous studies on four dimen-
sions. First, we eliminate the distortive effects of publication bias on the p-value
distribution by inspecting only statistically significant results. Second, we use
a large data set on p-values from entire articles instead of only p-values from
abstracts (as in Jager and Leek 2013; De Winter and Dodou 2015). Third, we
distinguish between reported and recalculated p-value distributions for the same
set of test results and show that this distinction affects answers to the two ques-
tions because of common mismatches (Bakker and Wicherts 2011). Fourth, we fit
analytic models to p-value distributions to investigate the existence of monotonic
excess as shown in the panel C of Figure 3.1, whereas previous research only
investigated whether there was non-monotonic excess (i.e., a bump).

Publication bias distorts the p-value distribution, but distortions caused
by this bias should not be confounded with distortions caused by other QRPs.
Publication bias refers to the selective publication of disproportionate amounts
of statistically significant outcomes (Gerber et al. 2010; Franco, Malhotra, and
Simonovits 2014). Publication bias contributes to a higher frequency of p-values
just below .05 relative to the frequency of p-values just above .05, but only does so
by decreasing the frequency of p-values larger than .05. Masicampo and Lalande
(2012) and De Winter and Dodou (2015) indeed found this relatively higher
frequency, which is more readily explained by publication bias. QRPs that lead
to a bump affect only the distribution of p-values smaller than .05 (Lakens 2015a).
We focus only on the distribution of significant p-values, because this distribution
is directly affected by QRPs that cause a bump or monotonic excess. Publication
bias only indirectly affects this distribution, through QRPs to obtain statistically
significant results, but not directly because publication bias lowers the frequency
of observed nonsignificant p-values.

The second extension is the use of more extensive data for psychology
than previously used to inspect QRPs that cause a bump or monotonic excess,
improving our ability to examine the prevalence of QRPs. Masicampo and Lalande
(2012) and Leggett et al. (2013) manually collected p-values from a relatively
small set of full research articles (i.e., 3,627 and 3,701), whereas Jager and Leek
(2013) and De Winter and Dodou (2015) used automated extraction of p-values
from only the abstracts of research papers. However, p-values from abstracts are
not representative for the population of p-values from the entire paper (Benjamini
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and Hechtlinger 2013; Ioannidis 2013), even though some have argued against
this (Pautasso 2010). Our large scale inspection of full-text articles is similar to
papers by Head et al. (2015b) and Krawczyk (2015).

Third, we examine the prevalence of QRPs that cause a bump or mono-
tonic excess by investigating both reported and the accompanying recalculated
p-values. Not all previous studies distinguished results from reported p-values
and recalculated p-values. This distinction is relevant, because reported p-values
are subject to reporting bias such as rounding errors, particularly relevant around
the .05 threshold. Such reporting biases result in inaccurate p-value distributions.
For example, there is evidence that reporting errors that affect statistical sig-
nificance (i.e., gross inconsistencies) occur in approximately 10-15% of papers
in psychology (Bakker and Wicherts 2011; García-Berthou and Alcaraz 2004;
Nuijten, Hartgerink, et al. 2015; Veldkamp et al. 2014). The advantage of
analyzing recalculated p-values is that they contain more decimals than typically
reported and that they correct reporting errors. Some previous studies analyzed
reported p-values (De Winter and Dodou 2015; Jager and Leek 2013; Head et al.
2015b), whereas others looked at recalculated p-values (Masicampo and Lalande
2012) or a mix of reported and recalculated (Leggett et al. 2013). Only Krawczyk
(2015) used both reported and recalculated p-values for a subset of the data
(approximately 27,000 of the 135,000 were recalculated), and found that the
peculiar prevalence below .05 disappeared when the recalculated data were used.
Hence, this distinction between reported and recalculated p-values allows us to
distinguish between peculiarities due to reporting errors and peculiarities due to
QRPs such as data peeking.

Fourth, we examine the prevalence of p-values just below .05 by taking into
account various models to test and explain characteristics of p-value distributions.
We applied tests and fitted models to p-values below .05, in two ways. We
first applied the non-parametric Caliper test (Gerber et al. 2010) comparing
frequencies of p-values in an interval just below .05 to the frequency in the
adjacent lower interval; a higher frequency in the interval closest to .05 is evidence
for QRPs that seek to obtain just significant results. The Caliper test has also
been applied to examine publication bias, by comparing just significant to just
nonsignificant p-values (Kühberger, Fritz, and Scherndl 2014), and to detect
QRPs (Head et al. 2015b). However, the Caliper test can only detect a bump
but not monotonic excess, as illustrated by the distributions of p-values in Figure
3.1. Therefore, we also attempted to model the distribution of significant p-values
in order to investigate for all forms of excess (i.e., both a bump and monotonic
excess), and illustrate the results and difficulties of this approach.

In short, this chapter studies the distribution of significant p-values in four
ways. First, we verified whether a bump is present in reported p-values just
below .05 with the Caliper test. Second, to examine how reporting errors might
influence p-value distributions around .05, we analyzed only the recalculated
p-values corresponding to those reported as .05. Third, we used the Caliper
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test to examine if a bump effect is present in recalculated p-values and whether
evidence for a bump changed over time. Finally, we modeled the distribution of
significant recalculated p-values in an attempt to also detect a monotonic excess
of p-values below .05.

Data and methods

Data

We investigated the p-value distribution of research papers in eight high impact
psychology journals (also used in Nuijten, Hartgerink, et al. 2015). These
eight journals were selected due to their high-impact across different subfields
in psychology and their availability within the Tilburg University subscriptions.
This selection also encompasses the journals covered by Masicampo and Lalande
(2012) and Leggett et al. (2013). A summary of the downloaded articles is
included in Table 3.1.

For these journals, our sample included articles published from 1985 through
2013 that were available in HTML format. For the PLOS journals, HTML
versions of articles were downloaded automatically with the rplos package (v0.3.8;
Chamberlain, Boettiger, and Ram 2015). This package allows an R user to search
the PLOS database as one would search for an article on the website.3 We
used this package to retrieve search results that include the subject “psychology”
for (part of) an article. For all other journals, HTML versions of articles were
downloaded manually by the first author.

APA test results were extracted from the downloaded articles with the R
package statcheck (v1.0.1; Epskamp and Nuijten 2016). The only requirement
for this package to operate is a supply of HTML (or PDF) files of the articles
that are to be scanned and statcheck extracts all test results reported according
to the standards of the American Psychological Association (APA; American
Psychological Association 2010b). This format is defined as test results reported
in the following order: the test statistic and degrees of freedom (encapsulated in
parentheses) followed by the p-value (e.g., t(85) = 2.86, p = .005). This style has
been prescribed by the APA since at least 1983 (American Psychological Asso-
ciation 1983; American Psychological Association 2001), with the only relevant
revision being the precision of the reported p-value, changing from two decimal
places to three decimal places in the sixth edition from 2010. statcheck extracts
t, F , χ2, Z and r results reported in APA style. Additional details on the validity
of the statcheck package can be found in Nuijten, Hartgerink, et al. (2015).

3We note there are minor differences in the number of search results from the PLOS
webpage and the rplos package for equal searches. This is due to differences in the default
search database for the webpage and the package. For technical details on this issue, see
https://github.com/ropensci/rplos/issues/75
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Table 3.1: Articles downloaded, articles with extracted results in American Psychological Association (APA) style, and
number of extracted APA test results per journal.

Journal Acronym Timespan Articles downloaded Articles with extracted results APA results extracted

Developmental Psychology DP 1985–2013 3,381 2,607 (77%) 37,658
Frontiers in Psychology FP 2010–2013 2,126 702 (33%) 10,149
Journal of Applied Psychology JAP 1985–2013 2,782 1,638 (59%) 15,134
Journal of Consulting and Clinical Psychology JCCP 1985–2013 3,519 2,413 (69%) 27,429
Journal of Experimental Psychology General JEPG 1985–2013 1,184 821 (69%) 18,921

Journal of Personality and Social Psychology JPSP 1985–2013 5,108 4,346 (85%) 101,621
Public Library of Science PLOS 2000–2013 10,303 2,487 (24%) 31,539
Psychological Science PS 2003–2013 2,307 1,681 (73%) 15,654

Total 30,710 16,695 (54%) 258,105
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From the 30,710 downloaded papers, statcheck extracted 258,105 test
results. We removed 55 results, because these were impossible test results (i.e.,
F (0, 55) = ... or r > 1). The final data set thus included 258,050 test results. The
extracted test results can have four different formats, where test results or p-values
are reported either exactly (e.g., p = .042) or inexactly (e.g., p < .05). Table
3.2 shows the composition of the data set, when split across these (in)exactly
reported p-values and (in)exactly reported test results.

Table 3.2: Composition of extracted APA test results with respect to exact and
inexact reporting of p-values or test statistics.

Exact test statistic Inexact test statistic

Exact p-value 68,776 274 69,050 (27%)
Inexact p-value 187,617 1,383 189,000 (73%)

256,393 (99.36%) 1,657 (0.64%) 258,050 (100%)

From this data set, we selected six subsets throughout our analyses to
investigate our research questions regarding a bump below .05. We analyzed (i)
all reported p-values (N = 258, 050) for a bump in their distribution just below
.05. Subsequently we analyzed (ii) only exactly reported p-values (N = 69, 050).
It is possible that reporting or rounding errors have occurred among the reported
p-values. To investigate the degree to which this happens at p = .05, we analyzed
(iii) exactly reported test statistics that are accompanied by an exactly reported
p-value of .05 (i.e., p = .05). This subset contains 2,470 results. To attenuate
the effect of rounding errors and other factors influencing the reporting of p-
values (e.g., Ridley et al. 2007), we also investigated the recalculated p-value
distribution with (iv) p-values that were accompanied by exactly reported test
statistics (N = 256, 393). To investigate whether evidence for a bump differs
for inexactly and exactly reported p-values, (v) 68,776 exactly reported test
statistics with exactly reported p-values were analyzed. Finally, we used (vi) all
recalculated p-values in 0-.05 for t, r, and F (df1 = 1) values to model the effect
size distribution underlying these p-values to investigate evidence of both a bump
and monotonic excess.

Methods

We used the Caliper test and two new measures to examine if the observed p-value
distribution shows evidence for a bump or monotonic excess below .05. We applied
the two measures to the observed p-value distribution and we examined their
performance to detect a bump or monotonic excess using a simulation study on
data peeking. Data peeking was chosen because it is one of the most frequently
used and well-known QRPs. Below, we explain the Caliper test, how the p-value
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distributions are modeled with the two new measures, and describe the design of
the simulation study in more detail.

Caliper test

In order to test for a bump of p-values just below .05, we applied the Caliper
test (Gerber et al. 2010; Kühberger, Fritz, and Scherndl 2014). This proportion
test compares the frequencies of p-values in two intervals, such as the intervals
.04-.045 and .045-.05. Let Pr denote the proportion of p-values of the interval
.045-.05. Then, independent of the population effect sizes underlying the p-values,
Pr should not be higher than .5 in any situation because the p-value distribution
should be monotone decreasing. Hence Pr > .5 signifies a bump of p-values just
below .05.

We carried out one-tailed binomial proportion tests, with H0 : Pr ≤ .5 and
H1 : Pr > .5. For example, if 40 and 60 p-values are observed in the intervals
.04-.045 and .045-.05, respectively, then Pr = .6 and the binomial test results
in p-value = .0284, suggesting evidence for a bump below .05. We applied the
Caliper test to the reported p-values (subsets one through three as described in
the previous section) and recalculated p-values (subsets four and five), both for
the entire data set and each of the eight psychology journals.

The Caliper test requires specifying the width of the intervals that are to
be compared. For reported p-values, we selected the intervals (.03875-.04] and
(.04875-.05) because there is a strong preference to report p-values to the second
decimal in research papers (see also Hartgerink 2017b). For recalculated p-values
we used the same interval width as used by Masicampo and Lalande 2012; Leggett
et al. 2013, which is .00125, corresponding to a comparison of intervals (.0475-
.04875) and [.04875-.05). Note that rounding is not a problem for recalculated
p-values. Considering that some journals might show small frequencies of p-values
in these intervals, we also carried out Caliper tests with interval widths of .0025,
.005, and .01. Note that, on the one hand, increasing interval width increases the
statistical power of the Caliper test because more p-values are included in the
test, but on the other hand also decreases power because Pr is negatively related
to interval width whenever p-values correspond to tests of non-zero population
effects. In other words, a bump just below .05 will tend more and more towards
a monotonically decreasing distribution as the binwidth increases.

To verify if evidence for a bump of p-values increased over time, we fitted a
linear trend to proportion Pr of the Caliper test with binwidths .00125, .0025,
.005, and .01. We computed these proportions for each year separately, for
both the total data set and per journal. Time was centered at the start of data
collection, which was 1985 except for PLOS (2000), PS (2006; due to 0 p-values
in the considered interval for preceding years), and FP (2010). The value .5 was
subtracted from all Pr values, such that the intercept of the trend corresponds to
the bump of p-values at the start of data collection, where 0 means no bump. A
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positive linear trend signifies an increase in the bump of p-values below .05 over
time.

Measures based on p-value distributions

Figure 3.1 demonstrates that the effect of data peeking on the shape of the p-value
distribution (i.e., bump or just monotonic excess) depends on the true effect size.
The distribution after data peeking does not monotonically decrease for d = 0
or d = .2 (panel A and B), whereas it does decrease monotonically for d = 0.5
(panel C). Consequently, the Caliper test will signal a bump of p-values for d = 0
(i.e., it will detect a bump), but not for d = 0.5.

We examined how we may be able to detect both a bump and monotonic
excess of p-values below .05. Figure 3.1 indicates that, for p-values close to zero
(e.g., ≤ .00125) the p-value distributions with data peeking (solid lines) closely
match the p-value distributions without data peeking (dashed lines). In other
words, data-peeking in studies with initially nonsignificant p-values rarely results
in tiny significant p-values, but more often in p-values larger than .00125. The
basic idea of this analysis is therefore to estimate the “true” effect size distribution
using only these tiny p-values (i.e., ≤ .00125), assuming that none or a very small
proportion of these p-values were affected by data-peeking. We note that we
selected the .00125 cut-off point rather arbitrarily. Other, more liberal (e.g.,
.01, in case of a smaller set of statistically significant p-values) or even more
conservative cut-off points (e.g., .0001, in case of a very large data set as ours)
can be selected.

We examined the performance of two measures to detect a bump or mono-
tonic excess of p-values below .05. The first method compares the effect sizes
estimated on p-values smaller than .00125 to effect sizes estimated using all
p-values smaller than .05. The idea of this first method is that increasing the
frequency of just-significant p-values decreases the effect size estimate. Indeed,
the more right-skewed the p-value distribution, the higher the effect size estimate
when keeping constant studies’ sample sizes (Simonsohn, Nelson, and Simmons
2014; Van Assen, Van Aert, and Wicherts 2015). According to the first method,
there is evidence suggestive of data peeking (or other QRPs leading to a bump
of p-values just below .05) if the effect size estimate is considerably lower when
based on all p-values than when based on only p-values ≤ .00125.

The second method yields a measure of excess of p-values just below .05,
for either a bump or monotonic excess, by comparing the observed frequency of
p-values in the interval .00125-.05 to the predicted frequency of p-values in that
interval. This prediction is based on the effect size estimated using the p-values
smaller than .00125. If the ratio of observed over expected p-values is larger than
1, referred to as statistic D, then this could indicate data peeking. Statistic D is
calculated as

D =
po

.00125

1 − po
.00125

× 1 − pe
.00125

pe
.00125

(3.1)
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with po
.00125 and pe

.00125 representing the proportion of p-values lower than .00125
observed and expected, respectively. Note that D is an odds ratio.

For both measures the expected p-value distribution needs to be derived and
compared to the observed p-value distribtuion. The expected p-value distribution
was derived by minimizing the χ2-statistic as a function of mean effect δ and
standard deviation τ , where it was assumed that the true effect size (Fisher-
transformed correlation, ρF ) is normally distributed with parameters δ and τ .
We only considered nonnegative values of δ because we only fitted our model to
observed positive effects. See the Supplemental File for the technical details.

Design of simulation study

To examine the potential of the two measures to detect data peeking, their
performance was examined on simulated data with and without data peeking.
We used a two-group between-subjects design with 24 participants per group
(nk = 24), and compared their means using a t-test. The performance of both
measures was examined as a function of true effect size δ (0; 0.2; 0.5; 0.8) and
heterogeneity τ (0; 0.15). In the data peeking conditions, data were simulated
as follows: means and variances per group were simulated and a two-sample
t-test was conducted. If this t-test was statistically significant (i.e., p ≤ .05), the
p-value was stored, otherwise the data peeking procedure was started. In this
data peeking procedure, one-third of the original sample size was added to the
data before conducting another two-sample t-test. This data peeking procedure
was repeated until a statistically significant result was obtained or three rounds
of additive sampling had taken place (see osf.io/x5z6u for functions used in the
simulation). The simulations were stopped if 1,000,000 studies with a p-value
below .1 were obtained for each combination of δ and τ .

Results and discussion

In this section, we report the results of our analyses in the following order for
the subsets: all reported p-values (258,050 results), exactly reported p-values
(69,050 results), p-values erroneously reported as equal to .05 (2,470 results), all
recalculated p-values based on exactly reported test statistics (256,393 results),
recalculated p-values based on exactly reported test statistics and exactly reported
p-values (68,776 results), and the modeling of p-value distributions based on
recalculated p-values 0-.00125 and 0-.05 (54,561 results and 127,509, respectively).
These analyses apply the Caliper test to investigate evidence of a possible bump
below .05. Subsequently, the results of the two measures are presented based on
all recalculated p-values.
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Reported p-values

Figure 3.2 shows the distribution for all reported p-values (i.e., 258,050; white
bars) and exactly reported p-values (i.e., 69,050; blue bars). Results of the Caliper
test indicate (i) there is a bump just below .05 when considering all reported
p-values in bins .03875-.04 versus .04875-.05, N = 45, 667, P r = 0.905, p < .001
and (ii) there is less evidence for a bump when considering only exactly reported
p-values, N = 4, 900, P r = 0.547, p < .001. The difference in bumps between
these two subsets can be explained by the amount of p-values that are reported
as < .05, which is 86% of all p-values reported as exactly equal to .05 and 14% of
all reported p-values.

To investigate whether this observed bump below .05 across exactly reported
p-values originates from one or multiple journals, we performed the Caliper test
on the exactly reported p-values per journal. Table 3.3 shows the results for
these tests. The results indicate that there is sufficient and reliable evidence for
a bump below .05 (i.e., Pr > .5) for the journals DP and JPSP and sufficient
evidence, but debatable reliability for JAP, where the results depend on the
binwidth. However, the other five journals show no evidence for a bump below
.05 in exactly reported p-values at all. In other words, the bump below .05 in
exactly reported p-values is mainly driven by the journals DP, JAP, and JPSP.

The Caliper test results for reported p-values indicate two things: (i) includ-
ing inexactly reported p-values has a large impact on the p-value distribution
and (ii) a bump below .05 is also found when only considering exactly reported
p-values. Because inexact reporting of p-values causes excess at certain points of
the p-value (e.g., the significance threshold .05; Ridley et al. 2007), we recommend
only inspecting exactly reported p-values when examining p-value distributions.

Considering only exactly reported p-values, there is sufficient evidence for a
bump below .05 in the journals DP, JAP, and JPSP, but not in the remaining
five journals (i.e., FP, JCCP, JEPG, PLOS, PS). A tentative explanation of the
bump of p-values just below .05 for DP, JAP, and JPSP may be that QRPs that
aim to obtain barely significant results are more frequent in the fields of these
journals. However, another explanation may be that scientists in these fields are
more prone to exactly report p-values just below .05 (e.g., to emphasize they are
really smaller than .05) than p-values considerably smaller than .05.

53



Figure 3.2: Distributions of all reported p-values (white) and exactly reported
p-values (blue) across eight psychology journals. Binwidth = .00125.
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Table 3.3: Caliper test for exactly reported p-values per journal for different binwidths.
Binwidth 0.00125 0.0025 0.005 0.01

x N Pr p x N Pr p x N Pr p x N Pr p

All 2,682 4,900 0.547 <.001 2,881 5,309 0.543 <.001 3,308 6,178 0.535 <.001 4,218 8,129 0.519 <.001
DP 319 531 0.601 <.001 336 567 0.593 <.001 383 653 0.587 <.001 464 843 0.55 0.002
FP 96 193 0.497 0.557 105 227 0.463 0.884 141 304 0.464 0.906 215 458 0.469 0.912
JAP 78 131 0.595 0.018 82 137 0.599 0.013 85 154 0.552 0.113 101 183 0.552 0.092
JCCP 246 517 0.476 0.874 267 562 0.475 0.889 308 641 0.48 0.848 395 823 0.48 0.882

JEPG 147 285 0.516 0.318 159 310 0.513 0.346 195 375 0.52 0.235 258 509 0.507 0.395
JPSP 1,252 2,097 0.597 <.001 1310 2,207 0.594 <.001 1,408 2,399 0.587 <.001 1,623 2,869 0.566 <.001
PLOS 307 649 0.473 0.921 366 760 0.482 0.854 489 1000 0.489 0.766 744 1558 0.478 0.964
PS 237 497 0.477 0.859 256 539 0.475 0.886 299 652 0.459 0.984 418 886 0.472 0.957
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Recalculated p-value distributions

Recalculated when reported p = .05

Results for reported p-values remain inconclusive with regard to the distribution of
p-values, due to potential rounding or errors (Bakker and Wicherts 2011; Nuijten,
Hartgerink, et al. 2015; Veldkamp et al. 2014). Rounding and errors could
result in an overrepresentation of p-values ≤ .05. To investigate the plausibility
of this notion, we inspected recalculated p-values when p = .05 was reported
(i.e., 2,470 values). Figure 3.3 indicates that p-values that were reported as .05
show remarkable spread when recalculated, which indicates that the reported
p-value might frequently be rounded or incorrect, assuming that the reported
test statistics are correct. More specifically, 67.45% of p-values reported as .05
were larger than .05 when recalculated and 32.55% were smaller than .05. This
percentage does not greatly vary across journals (range 58.8%-73.4% compared
to 67.45%). Taking into account rounding possibilities (i.e., widening the range
of correct p-values to .045-.055), these percentages become 13.81% and 7.85%,
respectively, meaning incorrect reporting of at least 21.66% of the p-values that
were reported as .05. In comparison, p-values reported as p = .04, p = .03,
or p = .02 show smaller proportions of downward rounding when compared
to p = .05 (i.e., 53.33%, 54.32%, 50.38%, respectively compared to 67.45%).
When taking into account potential rounding errors in the initial reporting of
p-values, the discrepancy remains but becomes smaller (i.e., 11.74%, 9.57%, 8.03%,
respectively compared to 13.81%). These results provide direct evidence for the
QRP “incorrect rounding of p-value” (John, Loewenstein, and Prelec 2012), which
contributes to a bump or monotonic excess just below .05.

The discrepancy between recalculated p-values and p-values reported as
equal to .05 highlights the importance of using recalculated p-values when un-
derlying effect distributions are estimated as in p-uniform and p-curve (Van
Assen, Van Aert, and Wicherts 2015; Simonsohn, Nelson, and Simmons 2014).
When interested in inspecting the p-value distribution, reported p-values can
substantially distort the p-value distribution, such that results become biased if
we rely solely on the reported p-value. Such a discrepancy indicates potential
rounding of p-values, erroneous reporting of p-values, or strategic reporting of
p-values. The p-value distortions can be (partially) corrected for by recalculating
p-values based on reported test statistics. Additionally, potential distortions to
the distribution at the third decimal place due to the rounding of p-values to the
second decimal (Hartgerink 2017b) is also solved by recalculating p-values. We
continue with recalculated p-values in our following analyses.

Recalculated p-values

Figure 3.4 shows the distribution of all recalculated p-values (i.e., set of 256,393
results) and of recalculated p-values whenever the reported p-value is exact (i.e.,
set of 68,776 results). The recalculated p-value distribution is markedly smoother
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Figure 3.3: Distribution of recalculated p-values where the p-value is reported
as p = .05. 9.7 percent of the results fall outside the range of the plot, with 3.6
percent at the left tail and 6.1 percent at the right tail. Binwidth = .00125

than the reported p-value distribution (see Figure 3.2) due to the absence of
rounded p-values.

After inspecting all recalculated p-values, we did not observe a bump just
below .05, N = 2, 808, P r = .5, p = 0.508. When we analyzed the recalculated
p-values per journal (Table 3.4), there is no evidence for a bump below .05 in
the journals. Additionally, we inspected all recalculated p-values that resulted
from exactly reported p-values. For this subset we did observe a bump below .05,
N = 809, P r = 0.564, p = 0.000165 (blue histogram in Figure 3.4) for the smallest
binwidth (i.e., .00125), but this effect was not robust across larger binwidths, as
shown in Table 3.5. This table also specifies the results for a bump below .05 per
journal, with sufficient evidence of a bump only in JPSP. This finding, however,
was only observed for binwidths .00125 and .0025, not for larger binwidths.
Considering these results, there is sparse evidence for the presence of a bump
below .05, opposed to previously claimed widespread evidence (Masicampo and
Lalande 2012; Leggett et al. 2013; Head et al. 2015b). Moreover, interpretation
of the bump for JPSP is not straightforward; it may also be that authors of JPSP
are more prone to report exact test statistics if the p-value is just below .05 than
whenever p-values are considerably smaller than .05.
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Figure 3.4: Recalculated p-values for exactly reported test statistics (white bars),
and recalculated p-values for exactly reported test statistics where p-values are
also exactly reported (blue bars). Binwidth = .00125
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Table 3.4: Caliper test for exactly recalculated p-values per journal for different binwidths.
Binwidth 0.00125 0.0025 0.005 0.01

x N Pr p x N Pr p x N Pr p x N Pr p

All 1,404 2,808 0.500 0.508 2,808 5,761 0.487 0.973 5,761 11,824 0.487 0.997 11,824 25,142 0.470 >.999
DP 184 382 0.482 0.779 382 829 0.461 0.989 829 1,710 0.485 0.900 1,710 3,579 0.478 0.996
FP 30 69 0.435 0.886 69 172 0.401 0.996 172 376 0.457 0.956 376 799 0.471 0.955
JAP 73 145 0.503 0.500 145 270 0.537 0.124 270 556 0.486 0.765 556 1,168 0.476 0.952
JCCP 160 308 0.519 0.265 308 633 0.487 0.763 633 1,267 0.500 0.522 1,267 2,706 0.468 >.999

JEPG 81 164 0.494 0.593 164 332 0.494 0.608 332 683 0.486 0.778 683 1,535 0.445 >.999
JPSP 640 1,268 0.505 0.379 1,268 2,557 0.496 0.668 2,557 5,174 0.494 0.802 5,174 10,976 0.471 >.999
PLOS 125 260 0.481 0.752 260 541 0.481 0.828 541 1,170 0.462 0.995 1,170 2,544 0.460 >.999
PS 111 212 0.524 0.268 212 427 0.496 0.577 427 888 0.481 0.880 888 1,835 0.484 0.919
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Table 3.5: Caliper tests for exactly recalculated and exactly reported p-values per journal, including alternative binwidths.
Binwidth 0.00125 0.0025 0.005 0.01

x N Pr p x N Pr p x N Pr p x N Pr p

All 456 809 0.564 <.001 809 1,617 0.5 0.5 1,617 3,403 0.475 0.998 3,403 7,402 0.460 1
DP 46 87 0.529 0.334 87 185 0.47 0.811 185 358 0.517 0.281 358 756 0.474 0.932
FP 15 27 0.556 0.351 27 87 0.31 >.999 87 192 0.453 0.915 192 437 0.439 0.995
JAP 8 20 0.4 0.868 20 29 0.69 0.031 29 65 0.446 0.839 65 141 0.461 0.844
JCCP 43 78 0.551 0.214 78 161 0.484 0.682 161 364 0.442 0.988 364 780 0.467 0.971

JEPG 27 50 0.54 0.336 50 98 0.51 0.46 98 209 0.469 0.834 209 479 0.436 0.998
JPSP 184 305 0.603 <.001 305 547 0.558 0.004 547 1,117 0.490 0.764 1,117 2,451 0.456 >.999
PLOS 76 149 0.51 0.435 149 323 0.461 0.926 323 698 0.463 0.978 698 1,470 0.475 0.975
PS 57 93 0.613 0.019 93 187 0.497 0.558 187 400 0.468 0.912 400 888 0.450 0.999

60



Excessive significance over time

The regression results of the development of a bump below .05 over time, based
on recalculated p-values, are shown in Table 3.6. Results indicate that there
is no evidence for a linear relation between publication year and the degree to
which a bump of p-values below .05 is present across the different binwidths
(only results for binwidth .00125 are presented; results for the other binwidths
available at osf.io/96kbc/). Conversely, for PLOS there is some evidence for a
minor increase of a bump throughout the years (b = .072, p = .039), but this
result is not robust for binwidths .0025, .005, and .01. These results contrast with
Leggett et al. (2013), who found a linear relation between time and the degree
to which a bump occurred for JEPG and JPSP. Hence, based on the period
1985-2013, our findings contrast with the increase of a bump below .05 for the
period 1965-2005 in psychology (Leggett et al. 2013). In other words, our results
of the Caliper test indicate that, generally speaking, there is no evidence for an
increasing prevalence of p-values just below .05 or of QRPs causing such a bump
in psychology.

Table 3.6: Linear regression coefficients as a test of increasing excess of p-values
just below .05.

Timespan Coefficient Estimate SE t p

All 1985-2013 Intercept 0.007 0.017 0.392 0.698
All Years (centered) -0.001 0.001 -0.492 0.627
DP 1985-2013 Intercept -0.043 0.056 -0.769 0.448
DP Years (centered) 0.001 0.003 0.193 0.849
FP 2010-2013 Intercept -0.182 0.148 -1.233 0.343

FP Years (centered) 0.055 0.079 0.694 0.56
JAP 1985-2013 Intercept 0.041 0.081 0.504 0.619
JAP Years (centered) -0.001 0.005 -0.208 0.837
JCCP 1985-2013 Intercept 0.077 0.058 1.315 0.2
JCCP Years (centered) -0.006 0.004 -1.546 0.134

JEPG 1985-2013 Intercept -0.022 0.124 -0.176 0.862
JEPG Years (centered) 0.001 0.007 0.097 0.924
JPSP 1985-2013 Intercept -0.002 0.027 -0.062 0.951
JPSP Years (centered) 0 0.002 -0.005 0.996
PLOS 2006-2013 Intercept -0.382 0.114 -3.344 0.016

PLOS Years (centered) 0.072 0.027 2.632 0.039
PS 2003-2013 Intercept 0.081 0.078 1.045 0.323
PS Years (centered) -0.009 0.013 -0.669 0.52

Note:
Intercept indicates the degree of excess for the first year of the estimated timespan (> 0 is excess).
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Results of two measures based on modeling p-value distri-
butions

Simulation study

Table 3.7 shows the results of the two measures for data simulated with and
without data peeking. The column headers show the mean effect size (i.e., δ)
and heterogeneity (i.e., τ) of the simulated conditions, with the corresponding ρF

and τρF
on the Fisher transformed correlation scale. The first set of rows shows

the results for the data simulated without data peeking, of which we discuss the
results first.

The results for the data without data peeking inform us on (i) whether the
effect size distribution parameters can accurately be recovered using only very
small (≤ .00125) or small p-values (≤ .05), and (ii) if both measures accurately
signal no data peeking. Note that ρF is slightly overestimated due to categorizing
the p-value distribution into 40 categories: the estimates based on all p-values
(i.e., ρ̂F , first row) are slightly larger than the population parameter (i.e., ρF ,
column headers).

Answering the first question of accurate parameter estimates, whenever there
is no heterogeneity (i.e., τρF

= 0) both ρF and τρF
are accurately recovered. When

heterogeneity is non-zero, the parameters were also accurately recovered, but not
when ρF = 0. Here, ρF was overestimated (equal to .1) and τρF

underestimated
(.025 rather than the true .077), while at the same time the misfit was negligible.

The latter result, that the effect is overestimated under heterogeneity when
ρF = 0, is explained by the fact that a p-value distribution can accurately
be modeled with an infinite range of negatively correlated values of ρF and
τρF

. An increase in ρF yields a more right-skewed distribution, which is hardly
distinguishable from the right-skewed distribution caused by an increase in τρF

.
Hence almost identical p-value distributions can be generated with (δ,τ) and
some values (δ∗,τ∗), with δ∗ > µ and at the same time τ∗ < τ , or δ∗ < µ
and at the same time τ∗ > τ . The similar effects of both parameters on the
fitted p-value distribution already hint at potential problems for both measures,
because performance of these measures is dependent on accurate estimates of
these parameters.
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Table 3.7: Results of parameter estimation of the distribution of effect sizes and measures of data peeking as a function of
population effect size (δ, ρF ), population heterogeneity (τ), and data peeking, for the simulated data. Results are based
on all p-values 0-1, p-values ≤ .05, and ≤ .00125.

τ = 0 τ = .15

p-values δ = 0, ρF = 0 δ = .2, ρF = .099 δ = .5, ρF = .247 δ = .8, ρF = .390 δ = 0, ρF = 0 δ = .2, ρF = .099 δ = .5, ρF = .247 δ = .8, ρF = .390

Without data peeking 0-1 ρ̂F 0 0.103 0.258 0.413 0 0.103 0.258 0.413
τ̂ρF

0 0 0 0 0.077 0.077 0.077 0.077
0-.05 ρ̂F 0 0.103 0.258 0.413 0 0.103 0.258 0.413

τ̂ρF
0 0 0 0.001 0.077 0.077 0.077 0.077

Misfit χ2 0 0 0 0 0 0 0 0

0-.00125 ρ̂F 0 0.103 0.258 0.413 0.1 0.107 0.259 0.413
τ̂ρF

0 0 0 0.001 0.025 0.076 0.077 0.077
Misfit χ2 0 0 0 0 0 0 0 0
D 1 1 1 1 1.205 1.006 1.003 1.001

With data peeking 0-.05 ρ̂F 0 0 0.117 0.345 0 0 0.075 0.36

τ̂ρF
0 0 0 0.038 0 0.055 0.137 0.091

Misfit χ2 126,267.4 50,298.4 696.6 101.6 14,867.6 1,209.5 576.3 340.6
N 759,812 811,296 936,517 994,974 434,660 525,023 707,650 889,681

0-.00125 ρ̂F 0 0.075 0.218 0.366 0.066 0.161 0.283 0.402
τ̂ρF

0 0 0 0 0.036 0 0 0.012

Misfit χ2 6.9 3.2 7.1 11.8 2 1.9 2.6 2.1
N 9,729 21,576 95,615 350,482 14,791 34,530 124,991 366,875
D 1.977 1.976 1.835 1.166 1.628 1.62 1.472 1.164
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With respect to the second question, whether the measures accurately
signal the absence of data peeking, the first measure does so in both homo- and
heterogeneous conditions, whereas the second measure correctly signals absence
only under homogeneity. The first measure signals data peeking if the estimate of
ρF is smaller when based on p ≤ .05 than on p ≤ .00125. Previously, we already
noted that effect size estimates were identical to population effect sizes under
homogeneity, and equal or larger when based on p ≤ .00125 under heterogeneity.
This suggests that the first measure behaves well if there is no data peeking (but
see the conclusion section). The second measure, D, performed well (i.e., was
equal to 1) under homogeneity, but incorrectly suggested data peeking under
heterogeneity. For instance, D = 1.205 for ρF = 0 and τ = .15, which suggests
that 20.5% more p-values were observed in the interval .00125-.05 than were
expected based on the ρ̂F estimate even though no data peeking occurred. The
explanation for the breakdown of the performance of D is that the parameters
of the effect size distribution were not accurately recovered, overestimating the
average effect size and underestimating heterogeneity based on small p-values.
This yields a lower expected frequency of higher p-values (between .00125 and
.05), thereby falsely suggesting data peeking.

The last rows present the results obtained when data peeking does occur.
First, consider the estimates of ρF and the performance of the first measure
of data peeking. The estimates of ρF confirm that data peeking results in
underestimation, particularly if the average true effect size is not large (i.e., δ = .2
or .5). Moreover, downward bias of ρF decreases when it is estimated on p-values
≤ .00125 than on ≤ .05, accurately signaling data peeking with the first measure.
For instance, if ρF = .099 and τ = 0, ρ̂F = .075 when based on p-values ≤ .00125
and ρ̂F = 0 when based on p-values ≤ .05. Together with the good performance
of this measure under no data peeking, these results suggest that the first measure
may be useful to detect data peeking in practice.

Consider the estimates of τρF
and the performance of D. Similar to con-

ditions under no data peeking, heterogeneity is grossly underestimated when
using p-values ≤ .00125. Hence D cannot be expected to perform well under
data peeking. Although D-values seem to correctly signal data peeking in all
conditions and decrease as expected when the effect size increases, these values
do not correspond to the actual values of data peeking. For instance, consider
the condition with δ = .5 and τρF

= .15; of the 582,659 simulated p-values in
interval .00125-.05, 106,241 p-values were obtained through data-peeking, which
yields a true D = 1.223, which is very different from the estimated D = 1.472 in
Table 3.7.

Finally, consider the (mis)fit of the estimated p-value distribution. Despite
the considerable downward bias in heterogeneity estimate τ̂ρF

, the simulated p-
value distribution is mostly well approximated by the expected p-value distribution,
as indicated by the small values of the χ2 statistic for p-values in 0-.00125. Hence,
good fit again does not imply accurate parameter estimates. The misfit of
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the estimated distribution for p-values ≤ .05 is indicated by large χ2-values,
particularly when the p-value distribution is not monotonically decreasing (which
is the case for, e.g., δ = 0).

To conclude, this simulation study showed that under true homogeneity
both measures of data peeking can accurately signal both absence and presence of
data peeking. However, under true heterogeneity, heterogeneity is underestimated
and the performance of D breaks down, while results suggest that comparing
estimates of average effect size, the first measure, may still accurately signal both
the absence and presence of data peeking.

Applied to data of eight psychology journals

Figure 3.5 depicts the observed p-value distribution and the expected p-value
distribution corresponding to the fitted effect size distribution based on p-values
≤ .00125. Estimates for p-values ≤ .05 were effect size ρ̂F = 0 and heterogeneity
τ̂ρF

= .183, and ρ̂F = .149 and τ̂ρF
= .106 for p-values ≤ .00125. Note that

we only considered nonnegative values of δ in the estimation procedure. Misfit
between observed and expected p-value distribution for p ≤ .00125 was minor
(χ2 = 4.1), indicating that the observed p-values ≤ .00125 were well approximated
by the estimated effect size distribution.

Our first measure suggests practices leading to a monotonic excess of p-
values below .05, because the estimated effect size based on all significant p-values
(i.e., 0) is much smaller than the supposedly more accurate estimate based on
only the very small p-values (i.e., .183). Moreover, assuming that effect sizes are
normally distributed with ρF = 0 and τρF

= .183, combined with the degrees of
freedom of the observed effects, implies that only 27.5% of all effects would be
statistically significant. However, of all reported p-values, 74.7% were statistically
significant, but this difference may at least partly be caused by other factors
such as publication bias. It is highly unlikely that the average true effect size
underlying statistically significant results in psychology is truly zero. It remains
undecided, however, whether this very low estimate is mainly due to QRPs leading
to a downward bias of the effect size estimate, or to a misspecification of the
model, an issue we revisit later in the paper.

For the second measure that compares the ratio of observed and expected
p-values below .05, we found D = .701, which does not suggest data peeking
but under-reporting of p-values (29.9%) in the p-value interval .00125-.05. The
simulation results, however, have already demonstrated that the measure D
performs badly under effect size heterogeneity. Since heterogeneity is underlying
the observed data, we conclude that the measure D is not useful for investigating
evidence of a bump or monotonic excess of p-values.
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Figure 3.5: Observed proportions of p-values (circles) and expected proportions
of p-values based on estimated ρ̂F and estimated τ̂ρF

estimated from 0-.00125
(crosses).

Limitations and conclusions

Before concluding, some limitations of our method to collect p-values need to be
addressed. First, statcheck (Epskamp and Nuijten 2016; Nuijten, Hartgerink,
et al. 2015), the R package used to collect the observed data, extracts all
APA test results reported in the text of an article, but not those reported in
tables. Hence, our selection of results is potentially not representative of all
reported results and systematically excludes results that are not reported to APA
standards. Second, our analysis assumed that test statistics other than p-values
were accurately reported. If test statistics and degrees of freedom are incorrectly
reported, recalculated p-values are wrong as well. We identified some erroneous
test statistics (e.g., df1 = 0 and r > 1), but do not know how often errors in
reported test statistics and df occur and how these errors may have affected our
results. We assumed that p-value errors were made due to the overemphasis on
them in current day research.
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In light of conflicting findings and interpretations, we aimed to provide final
answers to the questions (1) Does a bump or monotonic excess of p-values below
.05 exist in psychology? and (2) Did evidence for a bump increase over time in
psychology? Answering these research questions may inform us on the prevalence
of QRPs and its development over time in psychology. Using statcheck, we
extracted and analyzed 258,050 test results conforming to APA-style across
30,710 articles from eight high impact journals in psychology, and distinguished
between results with inexactly reported p-values, exactly reported p-values, and
recalculated p-values. The basic idea underlying our analyses is that QRPs
distort the p-value distribution. We argued that only some QRPs yield an excess
of p-values just below .05, and show that QRPs sometimes yield a bump and
sometimes only monotonic excess of p-values just below .05. We used the Caliper
test to test for a bump, and suggested two measures to examine monotonic excess.

Starting with the existence of a bump in psychology, we drew the following
conclusions. First, inexactly reported p-values are not useful for analyses of
p-value distributions. Second, a bump in exactly reported p-values indeed exists
in psychology journals DP, JAP, and JPSP. QRPs leading to just significant
p-values can explain these bumps, but we also cannot rule out the explanation that
scientists in these particular journals are more prone to exactly report p-values
just below .05 (e.g., to emphasize they are really smaller than .05) than p-values
considerably smaller than .05. Third, contradicting Leggett et al. (2013), the
bump and evidence of a bump in psychology did not increase over the years.
Fourth, when analyzing only the exactly reported p-values equal to .05, clear and
direct evidence was obtained for the QRP “incorrect rounding of p-value” (John,
Loewenstein, and Prelec 2012). Evidence of this QRP, which contributed to the
bump in exactly reported p-values in psychology, was found in all psychology
journals. Fifth, after removing reporting errors and analyzing the recalculated
reported p-values, evidence of a bump was found only for JPSP. Again, this may
have been caused by QRPs or by scientists being more prone to report all test
statistics when p-values are just below .05 than if they are considerable smaller
than zero.

The conclusions obtained with the two measures investigating the bump
and monotonic excess are not satisfactory. First, performance of both measures is
dependent on accurately recovering parameters of the effect size distribution, which
turned out to be difficult; estimates of effect size heterogeneity and average effect
size are highly correlated and unstable when based on only statistically significant
findings. Second, simulations show that one of the measures, D, does not
accurately assess the QRP data peeking when effect sizes are heterogeneous. Third,
even though performance of the second measure (i.e., difference between effect sizes
based on contaminated and supposedly uncontaminated p-values) is affected by
estimation problems, it correctly signaled data peeking in the simulations. Fourth,
when applying the second measure to the observed distribution of significant p-
values in psychology, the measure found evidence of monotonic excess of p-values;

67



the average effect size estimate based on all these p-values was 0, which seems
very unrealistic, and suggests the use of QRPs in psychology leading to p-values
just below .05.

Notwithstanding the outcome of the second measure, suggesting QRPs that
cause monotonic excess, we do not consider it as direct evidence of such QRPs in
psychology. Lakens (p.3; 2015) suggests that “it is essential to use a model of
p-value distributions before drawing conclusions about the underlying reasons
for specific distributions of p-values extracted from the scientific literature.” We
explicitly modeled the effect size distribution and by using the degrees of freedom
of test results also model the effect sizes’ power and the p-value distribution. But
we fear this is not and cannot be sufficient. First of all, we could not accurately
recover the effect size distribution under heterogeneity in our simulation study,
even if all assumptions of our model were met. This rendered measure D unfruitful
when there is heterogeneity, and severely limits the usefulness of the second
measure that compares estimated average effect sizes. Second, devising other
models may yield other results and thereby other interpretations (Benjamini and
Hechtlinger 2013; Goodman 2013; Lakens 2015b; De Winter and Dodou 2015).

Results of all the aforementioned models are most likely not robust to
violations of their assumptions. For instance, we assume a normal distribution of
true effect sizes. This assumption is surely violated, since the reported p-values
arise from a mixture of many different types of effects, such as very large effects
(manipulation checks), effects corresponding to main hypotheses, and zero effects
(“control” variables). Additionally, consider the QRPs themselves; we examined
the effect of only one QRP, data peeking, in one of its limited variants. Other
QRPs exist that also increase the prevalence of p-values just below .05, such
as multiple operationalizations of a measure and selecting the first one to be
significant. Other QRPs even increase the frequency of very small p-values (Van
Aert, Wicherts, and Van Assen 2016). We deem it impossible to accurately model
QRPs and their effects, considering the difficulties we already demonstrated for
modeling the p-value distribution generated using a single QRP that was clearly
defined. To conclude, we fear that Gelman and O’Rourke (2013) may be right
when suggesting that drawing conclusions with regard to any QRP based on
modeling p-value distributions obtained from automatically extracted results is
unfruitful.

On the other hand, we do recommend modeling effect size and p-value
distributions of results that all intend to test the same hypothesis, to prevent
contamination by irrelevant test results (Bishop and Thompson 2016; Simon-
sohn, Simmons, and Nelson 2015). Examples of methods that focus on similar
results are p-uniform (Van Assen, Van Aert, and Wicherts 2015) and p-curve
(Simonsohn, Nelson, and Simmons 2014), which model statistically significant
statistics pertaining to one specific effect and estimate the effect size based on
these statistics while correcting for publication bias. Further research should
reveal if both methods can also be used to detect and correct for p-hacking in
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the context of estimating one particular effect size. Preliminary results suggest,
however, that detection and correcting for p-hacking based on statistics alone is
rather challenging (Van Aert, Wicherts, and Van Assen 2016).
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Chapter 4

Too good to be false:
Nonsignificant results
revisited1

According to Popper (2002) falsifiability serves as one of the main demarcating
criteria in the social sciences, which stipulates that a hypothesis is required to
have the possibility of being proven false to be considered scientific. Within the
theoretical framework of scientific hypothesis testing, accepting or rejecting a
hypothesis is unequivocal, because the hypothesis is either true or false. Statistical
hypothesis testing, on the other hand, is a probabilistic operationalization of
scientific hypothesis testing (Meehl 2004) and, in view of its probabilistic nature,
is subject to decision errors. Such decision errors are the topic of this chapter.

Null Hypothesis Significance Testing (NHST) is the most prevalent paradigm
for statistical hypothesis testing in the social sciences (American Psychological
Association 2010b). In NHST the hypothesis H0 is tested, where H0 most
often regards the absence of an effect. If deemed false, an alternative, mutually
exclusive hypothesis H1 is accepted. These decisions are based on the p-value;
the probability of the sample data, or more extreme data, given H0 is true. If the
p-value is smaller than the decision criterion α (typically .05; Nuijten, Hartgerink,
et al. 2015), H0 is rejected and H1 is accepted.

Table 4.1 summarizes the four possible situations that can occur in NHST.
The columns indicate which hypothesis is true in the population and the rows
indicate what is decided based on the sample data. When there is discordance
between the true- and decided hypothesis, a decision error is made. More
specifically, when H0 is true in the population, but H1 is accepted (′H ′

1), a Type

1Hartgerink, C. H. J., Wicherts, J. M., and Van Assen, M. A. L. M. (2017). Too Good to be
False: Nonsignificant Results Revisited. Collabra: Psychology, 3(1), 9. doi:10.1525/collabra.71
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I error is made (α); a false positive (lower left cell). When H1 is true in the
population and H0 is not rejected (′H ′

0), a Type II error is made (β); a false
negative (upper right cell). However, when the null hypothesis is true in the
population and H0 is not rejected (′H ′

0), this is a true negative (upper left cell;
1 − α). The true negative rate is also called specificity of the test. Conversely,
when the alternative hypothesis is true in the population and H1 is accepted
(′H ′

1), this is a true positive (lower right cell). The probability of finding a
statistically significant result if H1 is true is the power (1−β), which is also called
the sensitivity of the test. Power is a positive function of the (true) population
effect size, the sample size, and the alpha of the study, such that higher power can
always be achieved by altering either the sample size or the alpha level (Aberson
2010).

Table 4.1: Summary table of possible NHST results. Columns indicate the true
situation in the population, rows indicate the decision based on a statistical test.
The true positive probability is also called power and sensitivity, whereas the true
negative rate is also called specificity.

Population

H0 H1

Decision ′H ′

0 1 − α, true negative β, false negative [Type II error]
′H ′

1 α, false positive [Type I error] 1 − β, true positive

Unfortunately, NHST has led to many misconceptions and misinterpretations
(Goodman 2008; Bakan 1966). The most serious mistake relevant to our chapter
is that many researchers accept the null hypothesis and claim no effect in case of
a statistically nonsignificant effect (about 60%, see Hoekstra et al. 2006). Hence,
most researchers overlook that the outcome of hypothesis testing is probabilistic
(if the null hypothesis is true, or the alternative hypothesis is true and power is
less than 1) and interpret outcomes of hypothesis testing as reflecting the absolute
truth. At least partly because of mistakes like this, many researchers ignore the
possibility of false negatives and false positives and they remain pervasive in the
literature.

Readers should be aware that outcomes of inferential statistics such as
p-values are generally highly unstable (e.g., Cumming 2020), and that we should
consider statistical results as more incomplete and uncertain than is currently
the norm (Amrhein, Trafimow, and Greenland 2019). Nonetheless, as NHST and
decisions based on that are still the norm in many empirical sciences, the present
chapter focuses on the NHST framework and erroneous decisions based on this
framework.

Recent debate about false positives has received much attention in science
and psychological science in particular. The Reproducibility Project Psychology
(RPP), which replicated 100 effects reported in prominent psychology journals

72



in 2008, found that only 36% of these effects were statistically significant in the
replication (Open Science Collaboration 2015). Besides in psychology, repro-
ducibility problems have also been indicated in economics (Camerer et al. 2016)
and medicine (Begley and Ellis 2012). Although these studies suggest substantial
evidence of false positives in these fields, replications show considerable variability
in resulting effect size estimates (R. A. Klein et al. 2014; Stanley and Spence
2014). Therefore caution is warranted when wishing to draw conclusions on the
presence of an effect in individual (original or replication) studies (Open Science
Collaboration 2015; Gilbert et al. 2016; Anderson et al. 2016).

The debate about false positives is driven by the current overemphasis on
statistical significance of research results (Giner-Sorolla 2012). This overemphasis
is substantiated by the finding that more than 90% of results in the psycho-
logical literature are statistically significant (Open Science Collaboration 2015;
Sterling, Rosenbaum, and Weinkam 1995; Sterling 1959) despite low statistical
power due to small sample sizes (Cohen 1962; Sedlmeier and Gigerenzer 1989;
Marszalek et al. 2011; Bakker et al. 2012). Consequently, publications have
become biased by overrepresenting statistically significant results (Greenwald
1975), which generally results in effect size overestimation in both individual
studies (Nuijten, Hartgerink, et al. 2015) and meta-analyses (Van Assen, Van
Aert, and Wicherts 2015; Lane and Dunlap 1978; Rothstein 2005; Borenstein et al.
2011). The overemphasis on statistically significant effects has been accompanied
by questionable research practices (QRPs; John, Loewenstein, and Prelec 2012)
such as erroneously rounding p-values towards significance, which for example
occurred for 13.8% of all p-values reported as “p = .05” in articles from eight
major psychology journals in the period 1985-2013 (Hartgerink et al. 2016).

The concern for false positives has overshadowed the concern for false
negatives in the recent debate, which seems unwarranted. Cohen (1962) was the
first to indicate that psychological science was (severely) underpowered, which
is defined as the chance of finding a statistically significant effect in the sample
being lower than 50% when there is truly an effect in the population. This has
not changed throughout the subsequent fifty years (Bakker et al. 2012; Fraley and
Vazire 2014). Given that the complement of true positives (i.e., power) are false
negatives, no evidence either exists that the problem of false negatives has been
resolved in psychology. Moreover, Fiedler, Kutzner, and Krueger (2012) expressed
the concern that an increased focus on false positives is too shortsighted because
false negatives are more difficult to detect than false positives. They also argued
that, because of the focus on statistically significant results, negative results are
less likely to be the subject of replications than positive results, decreasing the
probability of detecting a false negative. Additionally, the Positive Predictive
Value (PPV, the number of statistically significant effects that are true; Ioannidis
2005) has been a major point of discussion in recent years, whereas the Negative
Predictive Value (NPV) has rarely been mentioned.

The research objective of the current chapter is to examine evidence for false
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negative results in the psychology literature. Assuming the framework of NHST,
this chapter operates under the premise of naive realism about the interpretation of
statistically nonsignificant results, where naive realism would result in neglecting
the probabilistic nature of these results. To this end, we inspected a large
number of nonsignificant results from eight flagship psychology journals. First,
we compared the observed effect distributions of nonsignificant results for eight
journals (combined and separately) to the expected null distribution based on
simulations, where a discrepancy between observed and expected distribution was
anticipated (i.e., presence of false negatives). Second, we propose to use the Fisher
test to test the hypothesis that H0 is true for all nonsignificant results reported
in a paper, which we show to have high power to detect false negatives in a
simulation study. Third, we applied the Fisher test to the nonsignificant results in
14,765 psychology papers from these eight flagship psychology journals to inspect
how many papers show evidence of at least one false negative result. Fourth, we
examined evidence of false negatives in reported gender effects. Gender effects
are particularly interesting, because gender is typically a control variable and not
the primary focus of studies. Hence we expect little p-hacking and substantial
evidence of false negatives in reported gender effects in psychology. Finally, as
another application, we applied the Fisher test to the 64 nonsignificant replication
results of the RPP (Open Science Collaboration 2015) to examine whether at
least one of these nonsignificant results may actually be a false negative.

The approach in this chapter contrasts with research on statistical power in
the current psychological literature. Research on statistical power in a literature
or set of papers typically asks the theoretical question “what is the power of
detecting true effect size x with the sample size of paper y?” for all papers y in
that set of papers or literature, as a function of x. Alternatively, this chapter
answers the empirical question “do we reject the null-hypothesis of no effect based
on a set of statistically nonsignificant p-values”, although we also examine the
statistical power of the procedure to answer this question.

Theoretical framework

We begin by reviewing the probability density function of both an individual
p-value and a set of independent p-values as a function of population effect
size. Subsequently, we apply the Kolmogorov-Smirnov test to inspect whether
a collection of nonsignificant results across papers deviates from what would
be expected under the H0. We also propose an adapted Fisher method to test
whether nonsignificant results deviate from H0 within a paper. These methods
will be used to test whether there is evidence for false negatives in the psychology
literature.
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Distributions of p-values

The distribution of one p-value is a function of the population effect, the observed
effect and the precision of the estimate. When the population effect is zero, the
probability distribution of one p-value is uniform. When there is a non-zero effect,
the probability distribution is right-skewed. More specifically, as sample size
or true effect size increases, the probability distribution of one p-value becomes
increasingly right-skewed. These regularities also generalize to a set of independent
p-values, which are uniformly distributed when there is no population effect and
right-skew distributed when there is a population effect, with more right-skew as
the population effect and/or precision increases (Fisher 1925).

Considering that the present chapter focuses on false negatives, we primarily
examine nonsignificant p-values and their distribution. Since the test we apply is
based on nonselected p-values, it requires random variables distributed between 0
and 1. We apply the following transformation to each nonsignificant p-value that
is selected:

p∗

i =
pi − α

1 − α
(4.1)

where pi is the reported nonsignificant p-value, α is the selected significance cutoff
(i.e., α = .05), and p∗

i the transformed p-value. Note that this transformation
retains the distributional properties of the original p-values for the selected
nonsignificant results. Both one-tailed and two-tailed tests can be included in
this way.

Testing for false negatives: the Fisher test

We applied the Fisher test to inspect whether the distribution of observed
nonsignificant p-values deviates from those expected under H0. The Fisher test
was initially introduced as a meta-analytic technique to synthesize results across
studies (Fisher 1925; Hedges and Olkin 1985). When applied to transformed
nonsignificant p-values (see Equation (4.1)) the Fisher test tests for evidence
against H0 in a set of nonsignificant p-values. In other words, the null hypothesis
we test with the Fisher test is that all included nonsignificant results are true
negatives. The Fisher test statistic is calculated as

χ2
2k = −2

k
∑

i=1

ln(p∗

i ) (4.2)

where k is the number of nonsignificant p-values and χ2 has 2k degrees of freedom.
A larger χ2 value indicates more evidence for at least one false negative in the
set of p-values. We conclude that there is sufficient evidence of at least one false
negative result, if the Fisher test is statistically significant at α = .10, similar
to tests of publication bias that also use α = .10 (Sterne, Gavaghan, and Egger
2000; Ioannidis and Trikalinos 2007; Francis 2012).
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We estimated the power of detecting false negatives with the Fisher test as a
function of sample size N , true correlation effect size η, and k nonsignificant test
results (the full procedure is described in Appendix A). The three levels of sample
size used in our simulation study (33, 62, 119) correspond to the 25th, 50th
(median) and 75th percentiles of the degrees of freedom of reported t, F , and r
statistics in eight flagship psychology journals (see Application 1 below). Degrees
of freedom of these statistics are directly related to sample size, for instance, for
a two-group comparison including 100 people, df = 98.

Table 4.2 summarizes the results for the simulations of the Fisher test when
the nonsignificant p-values are generated by either small- or medium population
effect sizes. Results for all 5,400 conditions can be found on the OSF (osf.io/qpfnw).
The results indicate that the Fisher test is a powerful method to test for a false
negative among nonsignificant results. For example, for small true effect sizes
(η = .1), 25 nonsignificant results from medium samples result in 85% power (7
nonsignificant results from large samples yield 83% power). For medium true
effects (η = .25), three nonsignificant results from small samples (N = 33) already
provide 89% power for detecting a false negative with the Fisher test. For large
effects (η = .4), two nonsignificant results from small samples already almost
always detects the existence of false negatives (not shown in Table 4.2).

To put the power of the Fisher test into perspective, we can compare its
power to reject the null based on one statistically nonsignificant result (k = 1)
with the power of a regular t-test to reject the null. If η = .1, the power of a
regular t-test equals 0.17, 0.255, 0.467 for sample sizes of 33, 62, 119, respectively;
if η = .25, power values equal 0.813, 0.998, 1 for these sample sizes. The power
values of the regular t-test are higher than that of the Fisher test, because the
Fisher test does not make use of the more informative statistically significant
findings.

Application 1: Evidence of false negatives in arti-
cles across eight major psychology journals

To show that statistically nonsignificant results do not warrant the interpretation
that there is truly no effect, we analyzed statistically nonsignificant results from
eight psychology journals. First, we investigate if and how much the distribution
of reported nonsignificant effect sizes deviates from what the expected effect
size distribution is if there is truly no effect (i.e., H0). Second, we investigate
how many articles report nonsignificant results and how many of those show
evidence for at least one false negative using the Fisher test (Fisher 1925). Note
that this application only investigates the evidence of false negatives in articles,
not how authors might interpret these findings (i.e., we do not assume all these
nonsignificant results are interpreted as evidence for the null).
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Table 4.2: Power of Fisher test to detect false negatives for small- and medium
effect sizes (i.e., η = .1 and η = .25), for different sample sizes (i.e., N) and
number of test results (i.e., k). Results of each condition are based on 10,000
iterations. Power was rounded to 1 whenever it was larger than .9995.

η = .1 η = .25

N = 33 N = 62 N = 119 N = 33 N = 62 N = 119

k = 1 0.151 0.211 0.341 0.575 0.852 0.983
k = 2 0.175 0.267 0.459 0.779 0.978 1.000
k = 3 0.201 0.317 0.572 0.894 1.000 1.000
k = 4 0.208 0.352 0.659 0.948 1.000 1.000
k = 5 0.229 0.390 0.719 0.975 1.000 1.000

k = 6 0.251 0.434 0.784 0.990 1.000 1.000
k = 7 0.259 0.471 0.834 0.995 1.000 1.000
k = 8 0.280 0.514 0.871 0.998 1.000 1.000
k = 9 0.298 0.530 0.895 1.000 1.000 1.000
k = 10 0.304 0.570 0.918 1.000 1.000 1.000

k = 15 0.362 0.691 0.980 1.000 1.000 1.000
k = 20 0.429 0.780 0.996 1.000 1.000 1.000
k = 25 0.490 0.852 1.000 1.000 1.000 1.000
k = 30 0.531 0.894 1.000 1.000 1.000 1.000
k = 35 0.578 0.930 1.000 1.000 1.000 1.000

k = 40 0.621 0.953 1.000 1.000 1.000 1.000
k = 45 0.654 0.966 1.000 1.000 1.000 1.000
k = 50 0.686 0.976 1.000 1.000 1.000 1.000

Method

APA style t, r, and F test statistics were extracted from eight psychology journals
with the R package statcheck (Nuijten, Hartgerink, et al. 2015; Epskamp and
Nuijten 2016). APA style is defined as the format where type of test statistic
is reported, followed by degrees of freedom (if applicable), observed test value,
and the p-value (e.g., t(85) = 2.86, p = .005; American Psychological Association
2010b). The statcheck package also recalculates p-values. We reuse the data
from Nuijten et al. (https://osf.io/gdr4q; Nuijten, Hartgerink, et al. 2015). Table
4.3 depicts the journals, the timeframe, and summaries of the results extracted.
The database also includes χ2 results, which we did not use in our analyses because
effect sizes based on these results are not readily mapped on the correlation scale.
Two erroneously reported test statistics were eliminated, such that these did not
confound results.

Analyses reported in this chapter use recalculated p-values to eliminate
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potential errors in reported p-values (Bakker and Wicherts 2011; Nuijten, Hart-
gerink, et al. 2015). However, recalculation assumed that all other test statistics
(degrees of freedom, test values of t, F , or r) are correctly reported. Most p-values
and corresponding test statistics were consistent in our data set (90.7%).
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Table 4.3: Summary table of articles downloaded per journal, their mean number of results, and proportion of
(non)significant results. Statistical significance was determined using α = .05, two-tailed test.

Journal Acronym Time frame Results Mean results per article Significant (%) Nonsignificant (%)

Developmental Psychology (DP) 1985–2013 30,920 13.5 24,584 (79.5%) 6,336 (20.5%)
Frontiers in Psychology (FP) 2010–2013 9,172 14.9 6,595 (71.9%) 2,577 (28.1%)
Journal of Applied Psychology (JAP) 1985–2013 11,240 9.1 8,455 (75.2%) 2,785 (24.8%)
Journal of Consulting and Clinical Psychology (JCCP) 1985–2013 20,083 9.8 15,672 (78.0%) 4,411 (22.0%)
Journal of Experimental Psychology: General (JEPG) 1985–2013 17,283 22.4 12,706 (73.5%) 4,577 (26.5%)

Journal of Personality and Social Psychology (JPSP) 1985–2013 91,791 22.5 69,836 (76.1%) 21,955 (23.9%)
Public Library of Science (PLOS) 2003–2013 28,561 13.2 19,696 (69.0%) 8,865 (31.0%)
Psychological Science (PS) 2003–2013 14,032 9 10,943 (78.0%) 3,089 (22.0%)
Totals 1985–2013 223,082 14.3 168,487 (75.5%) 54,595 (24.5%)
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First, we compared the observed nonsignificant effect size distribution (com-
puted with observed test results) to the expected nonsignificant effect size distribu-
tion under H0. The expected effect size distribution under H0 was approximated
using simulation. We first randomly drew an observed test result (with replace-
ment) and subsequently drew a random nonsignificant p-value between 0.05 and
1 (i.e., under the distribution of the H0). Based on the drawn p-value and the
degrees of freedom of the drawn test result, we computed the accompanying test
statistic and the corresponding effect size (for details on effect size computation
see Appendix A). This procedure was repeated 163,785 times, which is three
times the number of observed nonsignificant test results (54,595). The collection
of simulated results approximates the expected effect size distribution under
H0, assuming independence of test results in the same paper. We inspected
this possible dependency with the intraclass correlation (ICC), where ICC = 1
indicates full dependency and ICC = 0 indicates full independence. For the
set of observed results, the ICC for nonsignificant p-values was 0.001, indicating
independence of p-values within a paper (the ICC of the log odds transformed
p-values was similar, with ICC = 0.00175 after excluding p-values equal to 1
for computational reasons). The resulting, expected effect size distribution was
compared to the observed effect size distribution (i) across all journals and (ii)
per journal. To test for differences between the expected and observed nonsignifi-
cant effect size distributions we applied the Kolmogorov-Smirnov test. This is a
non-parametric goodness-of-fit test for equality of distributions, which is based
on the maximum absolute deviation between the independent distributions being
compared (denoted D; Massey 1951).

Second, we applied the Fisher test to test how many research papers show
evidence of at least one false negative statistical result. To recapitulate, the Fisher
test tests whether the distribution of observed nonsignificant p-values deviates
from the uniform distribution expected under H0. In order to compute the
result of the Fisher test, we applied equations (4.1) and (4.2) to the recalculated
nonsignificant p-values in each paper (α = .05).

Results

Observed effect size distribution.

Figure 4.1 shows the distribution of observed effect sizes (in |η|) across all articles
and indicates that, of the 223,082 observed effects, 7% were zero to small (i.e.,
0 ≤ |η| < .1), 23% were small to medium (i.e., .1 ≤ |η| < .25), 27% medium to
large (i.e., .25 ≤ |η| < .4), and 42% large or larger (i.e., |η| ≥ .4; Cohen 1988).
This suggests that the majority of effects reported in psychology is medium or
smaller (i.e., 30%), which is somewhat in line with a previous study on effect
distributions (Gignac and Szodorai 2016). Of the full set of 223,082 test results,
54,595 (24.5%) were nonsignificant, which is the data set for our main analyses.

80



Figure 4.1: Density of observed effect sizes of results reported in eight psychology
journals, with 7 percent of effects in the category none-small, 23 percent small-
medium, 27 percent medium-large, and 42 percent large and beyond.

Our data set indicated that more nonsignificant results are reported through-
out the years, strengthening the case for inspecting potential false negatives. The
proportion of reported nonsignificant results showed an upward trend, as depicted
in Figure 4.2, from approximately 20% in the eighties to approximately 30% of
all reported APA results in 2015.

Expected effect size distribution.

For the entire set of nonsignificant results across journals, Figure 4.3 indicates that
there is substantial evidence of false negatives. Under H0, 46% of all observed
effects is expected to be within the range 0 ≤ |η| < .1, as can be seen in the left
panel of Figure 4.3 highlighted by the lowest grey line (dashed). However, of the
observed effects, only 26% fall within this range, as highlighted by the lowest
black line. Similarly, we would expect 85% of all effect sizes to be within the
range 0 ≤ |η| < .25 (middle grey line), but we observed 14 percentage points
less in this range (i.e., 71%; middle black line); 96% is expected for the range
0 ≤ |η| < .4 (top grey line), but we observed 4 percentage points less (i.e., 92%;
top black line). These differences indicate that larger nonsignificant effects are
reported in papers than expected under a null effect. This indicates the presence
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Figure 4.2: Observed proportion of nonsignificant test results per year.

of false negatives, which is confirmed by the Kolmogorov-Smirnov test, D = 0.3,
p < .000000000000001. Results were similar when the nonsignificant effects were
considered separately for the eight journals, although deviations were smaller
for the Journal of Applied Psychology (see https://osf.io/au3wv/ for results per
journal).

Because effect sizes and their distribution typically overestimate population
effect size η2, particularly when sample size is small (Voelkle, Ackerman, and
Wittmann 2007; Hedges 1981), we also compared the observed and expected
adjusted nonsignificant effect sizes that correct for such overestimation of effect
sizes (right panel of Figure 4.3; see Appendix A). Such overestimation affects
all effects in a model, both focal and non-focal. The distribution of adjusted
effect sizes of nonsignificant results tells the same story as the unadjusted effect
sizes; observed effect sizes are larger than expected effect sizes. For instance, the
distribution of adjusted reported effect size suggests 49% of effect sizes are at
least small, whereas under the H0 only 22% is expected.
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Figure 4.3: Observed and expected (adjusted and unadjusted) effect size distribution for statistically nonsignificant APA
results reported in eight psychology journals. Grey lines depict expected values; black lines depict observed values. The
three vertical dotted lines correspond to a small, medium, large effect, respectively. Header includes Kolmogorov-Smirnov
test results.
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Evidence of false negatives in articles.

The Fisher test was applied to the nonsignificant test results of each of the 14,765
papers separately, to inspect for evidence of false negatives. More technically, we
inspected whether p-values within a paper deviate from what can be expected
under the H0 (i.e., uniformity). If H0 is in fact true, our results would be that
there is evidence for false negatives in 10% of the papers (a meta-false positive).
Table 4.4 shows the number of papers with evidence for false negatives, specified
per journal and per k number of nonsignificant test results. The first row indicates
the number of papers that report no nonsignificant results. When k = 1, the
Fisher test is simply another way of testing whether the result deviates from a null
effect, conditional on the result being statistically nonsignificant. Overall results
(last row) indicate that 47.1% of all articles show evidence of false negatives
(i.e. 6,951 articles). Of articles reporting at least one nonsignificant result, 66.7%
show evidence of false negatives, which is much more than the 10% predicted by
chance alone. Results did not substantially differ if nonsignificance is determined
based on α = .10 (the analyses can be rerun with any set of p-values larger than
a certain value based on the code provided on OSF; https://osf.io/qpfnw).

Table 4.4: Summary table of Fisher test results applied to the nonsignificant
results (k) of each article separately, overall and specified per journal. A significant
Fisher test result is indicative of a false negative (FN). DP = Developmental
Psychology; FP = Frontiers in Psychology; JAP = Journal of Applied Psychology;
JCCP = Journal of Consulting and Clinical Psychology; JEPG = Journal of
Experimental Psychology: General; JPSP = Journal of Personality and Social
Psychology; PLOS = Public Library of Science; PS = Psychological Science.

Overall DP FP JAP JCCP JEPG JPSP PLOS PS

Nr. of papers 14,765 2,283 614 1,239 2,039 772 4,087 2,166 1,565
k = 0 Count 4,340 758 133 488 907 122 840 565 527

% 29.4% 33.2% 21.7% 39.4% 44.5% 15.8% 20.6% 26.1% 33.7%
k = 1 Evidence FN 57.7% 66.1% 41.2% 48.7% 58.7% 51.4% 66.0% 47.2% 56.4%

Count 2,510 433 102 238 380 109 556 339 353

k = 2 Evidence FN 60.6% 66.9% 50.0% 36.3% 57.7% 66.7% 75.2% 51.6% 57.1%
Count 1,768 293 64 157 227 81 424 289 233

k = 3 Evidence FN 65.3% 69.8% 57.6% 53.1% 54.4% 77.1% 80.6% 47.8% 60.2%
Count 1,257 199 66 98 125 83 341 184 161

k = 4 Evidence FN 68.7% 75.0% 63.8% 53.1% 69.7% 67.9% 81.4% 52.7% 62.5%

Count 892 128 47 64 89 56 264 148 96
5 ≤ k < 10 Evidence FN 72.3% 71.2% 67.7% 56.7% 66.3% 71.2% 87.1% 52.4% 63.0%

Count 2,394 326 124 134 208 163 898 368 173
10 ≤ k < 20 Evidence FN 77.7% 76.9% 67.7% 60.0% 72.4% 81.2% 88.1% 57.3% 81.0%

Count 1,280 121 65 55 87 117 596 218 21

k ≥ 20 Evidence FN 84.0% 76.0% 53.8% 60.0% 87.5% 80.5% 94.0% 69.1% 0.0%
Count 324 25 13 5 16 41 168 55 1

All Evidence FN 47.1% 46.5% 45.1% 29.9% 34.3% 59.1% 64.6% 38.4% 39.3%
Evidence FN k ≥ 1 66.7% 69.6% 57.6% 49.4% 61.7% 70.2% 81.3% 51.9% 59.2%
Count 6,951 1,061 277 371 699 456 2,641 831 615

Table 4.4 also shows evidence of false negatives for each of the eight journals.
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The lowest proportion of articles with evidence of at least one false negative
was for the Journal of Applied Psychology (49.4%; penultimate row). The
remaining journals show higher proportions, with a maximum of 81.3% (Journal
of Personality and Social Psychology). Researchers should thus be wary to
interpret negative results in journal articles as a sign that there is no effect; at
least half of the papers provide evidence for at least one false negative finding.

As would be expected, we found a higher proportion of articles with evidence
of at least one false negative for higher numbers of statistically nonsignificant
results (k; see Table 4.4). For instance, 84% of all papers that report more
than 20 nonsignificant results show evidence for false negatives, whereas 57.7%
of all papers with only 1 nonsignificant result show evidence for false negatives.
Consequently, we observe that journals with articles containing a higher number
of nonsignificant results, such as JPSP, have a higher proportion of articles with
evidence of false negatives. This is the result of higher power of the Fisher method
when there are more nonsignificant results and does not necessarily reflect that
a nonsignificant p-value in e.g. JPSP has a higher probability of being a false
negative than one in another journal.

We also checked whether evidence of at least one false negative at the article
level changed over time. Figure 4.4 depicts evidence across all articles per year,
as a function of year (1985-2013); point size in the figure corresponds to the mean
number of nonsignificant results per article (mean k) in that year. Interestingly,
the proportion of articles with evidence for false negatives decreased from 77% in
1985 to 55% in 2013, despite the increase in mean k (from 2.11 in 1985 to 4.52 in
2013). This decreasing proportion of papers with evidence over time cannot be
explained by a decrease in sample size over time, as sample size in psychology
articles has stayed stable across time (see Figure 4.5; degrees of freedom is a
direct proxy of sample size resulting from the sample size minus the number of
parameters in the model). One (at least partial) explanation of this surprising
result is that in the early days researchers primarily reported fewer APA results
and used to report relatively more APA results with “marginally significant”
p-values (i.e., p-values slightly larger than .05), compared to nowadays. This
explanation is supported by both a smaller number of reported APA results in the
past and the smaller mean reported nonsignificant p-value (0.222 in 1985, 0.386
in 2013). We do not know whether these marginally significant p-values were
interpreted as evidence in favor of a finding (or not) and how these interpretations
changed over time. Another potential explanation is that the effect sizes being
studied have become smaller over time (mean correlation effect r = 0.257 in 1985,
0.187 in 2013), which results in both higher p-values over time and lower power
of the Fisher test. Using the data at hand, we cannot distinguish between the
two explanations.
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Figure 4.4: Proportion of papers reporting nonsignificant results in a given year,
showing evidence for false negative results. Larger point size indicates a higher
mean number of nonsignificant results reported in that year.

Discussion

The result that 2 out of 3 papers containing nonsignificant results show evidence
of at least one false negative, when applying the NHST framework, empirically
verifies previously voiced concerns about insufficient attention for false negatives
(Fiedler, Kutzner, and Krueger 2012). The Fisher test proved a powerful test
to inspect for false negatives in our simulation study, where three nonsignificant
results already results in high power to detect evidence of a false negative if
sample size is at least 33 per result and the population effect is medium. Journals
differed in the proportion of papers that showed evidence of false negatives, but
this was largely due to differences in the number of nonsignificant results reported
in these papers. More generally, we observed that more nonsignificant results
were reported in 2013 than in 1985.

The repeated concern about power and false negatives throughout the last
decades seems not to have trickled down into substantial change in psychology
research practice. Cohen (1962) and Sedlmeier and Gigerenzer (1989) already
voiced concern decades ago and showed that power in psychology was low. Fiedler,
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Figure 4.5: Sample size development in psychology throughout 1985-2013, based
on degrees of freedom across 258,050 test results. P25 = 25th percentile. P50 =
50th percentile (i.e., median). P75 = 75th percentile.

Kutzner, and Krueger (2012) contended that false negatives are harder to detect
in the current scientific system and therefore warrant more concern. Despite
recommendations of increasing power by increasing sample size, we found no
evidence for increased sample size (see Figure 4.5). To the contrary, the data
indicate that average sample sizes have been remarkably stable since 1985, despite
the improved ease of collecting participants with data collection tools such as
online services.

However, what has changed is the amount of nonsignificant results reported
in the literature. Our data show that more nonsignificant results are reported
throughout the years (see Figure 4.2), which seems contrary to findings that
indicate that relatively more significant results are being reported (Fanelli 2011;
Sterling, Rosenbaum, and Weinkam 1995; Sterling 1959; De Winter and Dodou
2015). It would seem the field is not shying away from publishing negative results
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per se, as proposed before (Fanelli 2011; Greenwald 1975; Nosek, Spies, and
Motyl 2012; Rosenthal 1979; Schimmack 2012), but whether this is also the
case for results relating to hypotheses of explicit interest in a study and not all
results reported in a paper, requires further research. Other research strongly
suggests that most reported results relating to hypotheses of explicit interest are
statistically significant (Open Science Collaboration 2015).

Application 2: Evidence of false negative gender
effects in eight major psychology journals

In order to illustrate the practical value of the Fisher test to test for evidential
value of (non)significant p-values with the NHST framework, we investigated
gender related effects in a random subsample of our database. Gender effects
are particularly interesting because gender is typically a control variable and not
the primary focus of studies. Hence, we expect little p-hacking and substantial
evidence of false negatives in reported gender effects in psychology. We apply the
Fisher test to significant and nonsignificant gender results to test for evidential
value (Van Assen, Van Aert, and Wicherts 2015; Simonsohn, Nelson, and Simmons
2014). More precisely, we investigate whether evidential value depends on whether
or not the result is statistically significant, and whether or not the results were in
line with expectations expressed in the paper.

Method

We planned to test for evidential value in six categories (expectation [3 levels]
× significance [2 levels]). Expectations were specified as “H1 expected”, “H0

expected”, or “no expectation”. Prior to data collection, we assessed the required
sample size for the Fisher test based on research on the gender similarities
hypothesis (Hyde 2005). We calculated that the required number of statistical
results for the Fisher test, given r = .11 (Hyde 2005) and 80% power, is 15
p-values per condition, requiring 90 results in total. However, the six categories
are unlikely to occur equally throughout the literature, hence we sampled 90
significant and 90 nonsignificant results pertaining to gender, with an expected
cell size of 30 if results are equally distributed across the six cells of our design.
Significance was coded based on the reported p-value, where ≤ .05 was used as
the decision criterion to determine significance (Nuijten, Hartgerink, et al. 2015).

We sampled the 180 gender results from our database of over 250,000
test results in four steps. First, we automatically searched for “gender”, “sex”,
“female” AND “male”, " man" AND " woman" [sic], or " men" AND " women"
[sic] in the 100 characters before the statistical result and 100 after the statistical
result (i.e., range of 200 characters surrounding the result), which yielded 27,523
results. Second, the first author inspected 500 characters before and after the
first result of a randomly ordered list of all 27,523 results and coded whether
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it indeed pertained to gender. This was done until 180 results pertaining to
gender were retrieved from 180 different articles. Third, these results were
independently coded by all authors with respect to the expectations of the
original researcher(s) (coding scheme available at https://osf.io/9ev63). The
coding included checks for qualifiers pertaining to the expectation of the statistical
result (confirmed/theorized/hypothesized/expected/etc.). If researchers reported
such a qualifier, we assumed they correctly represented these expectations with
respect to the statistical significance of the result. For example, if the text stated
“as expected no evidence for an effect was found, t(12) = 1, p = .337” we assumed
the authors expected a nonsignificant result. Fourth, discrepant codings were
resolved by discussion (25 cases [13.9%]; two cases remained unresolved and were
dropped). 178 valid results remained for analysis.

Prior to analyzing these 178 p-values for evidential value with the Fisher test,
we transformed them to variables ranging from 0 to 1. Statistically nonsignificant
results were transformed with Equation (4.1); statistically significant p-values
were divided by alpha .05 (Van Assen, Van Aert, and Wicherts 2015; Simonsohn,
Nelson, and Simmons 2014).

Results

The coding of the 178 results indicated that results rarely specify whether these
are in line with the hypothesized effect (see Table 4.5. For the 178 results, only 15
clearly stated whether their results were as expected, whereas the remaining 163
did not. Illustrative of the lack of clarity in expectations is the following quote:
“As predicted, there was little gender difference [. . . ] p < .06.” There were two
results that were presented as significant but contained p-values larger than .05;
these two were dropped (i.e., 176 results were analyzed). As a result, the condi-
tions significant-H0 expected, nonsignificant-H0 expected, and nonsignificant-H1

expected contained too few results for meaningful investigation of evidential value
(i.e., with sufficient statistical power).

Table 4.5: Number of gender results coded per condition in a 2 (significance:
significant or nonsignificant) by 3 (expectation: H0 expected, H1 expected, or
no expectation) design. Cells printed in bold had sufficient results to inspect for
evidential value.

H0 expected H1 expected No expectation

Significant 0 11 75
Nonsignificant 2 1 87

Figure 4.6 presents the distributions of both transformed significant and
non-significant p-values. For significant results, applying the Fisher test to the
p-values showed evidential value for a gender effect both when an effect was
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expected (χ2(22) = 358.904, p < .001) and when no expectation was presented
at all (χ2(15) = 1094.911, p < .001). Similarly, applying the Fisher test to
nonsignificant gender results without stated expectation yielded evidence of
at least one false negative (χ2(174) = 324.374, p < .001). Unfortunately, we
could not examine whether evidential value of gender effects is dependent on the
hypothesis/expectation of the researcher, because these effects are most frequently
reported without stated expectations.

Figure 4.6: Probability density distributions of the p-values for gender effects,
split for nonsignificant and significant results. A uniform density distribution
indicates the absence of a true effect.

Discussion

We observed evidential value of gender effects both in the statistically significant
(no expectation or H1 expected) and nonsignificant results (no expectation)
using the NHST framework. The data from the 178 results we investigated
indicated that in only 15 cases the expectation of the test result was clearly
explicated. This indicates that based on test results alone, it is very difficult
to differentiate between results that relate to a priori hypotheses and results
that are of an exploratory nature. The importance of being able to differentiate
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between confirmatory and exploratory results has been previously demonstrated
(Wagenmakers et al. 2012) and has been incorporated into the Transparency and
Openness Promotion guidelines (TOP; Nosek et al. 2015) with explicit attention
paid to preregistration.

Application 3: Reproducibility Project Psychol-
ogy

Out of the 100 replicated studies in the RPP, 64 did not yield a statistically
significant effect size, despite the fact that high replication power was one of the
aims of the project (Open Science Collaboration 2015). Regardless, the authors
suggested “. . . that at least one replication could be a false negative” (p. aac4716-4).
Here we estimate how many of these nonsignificant replications might be false
negative, by applying the Fisher test to these nonsignificant effects.

Method

Of the 64 nonsignificant studies in the RPP data (https://osf.io/fgjvw), we
selected the 63 nonsignificant studies with a test statistic. We eliminated one
result because it was a regression coefficient that could not be used in the following
procedure. We first applied the Fisher test to the nonsignificant results, after
transforming them to variables ranging from 0 to 1 using equations (4.1) and
(4.2). Denote the value of this Fisher test by Y ; note that under the H0 of no
evidential value Y is χ2-distributed with 126 degrees of freedom.

Subsequently, we hypothesized that X out of these 63 nonsignificant results
had a weak, medium, or strong population effect size (i.e., ρ = .1, .3, .5, respec-
tively; Cohen 1988) and the remaining 63 − X had a zero population effect size.
For each of these hypotheses, we generated 10,000 data sets (see next paragraph
for details) and used them to approximate the distribution of the Fisher test
statistic (i.e., Y ). Using this distribution, we computed the probability that a
χ2-value exceeds Y , further denoted by pY . We then used the inversion method
(Casella and Berger 2001) to compute confidence intervals of X, the number of
nonzero effects. Specifically, the confidence interval for X is (XLB ; XUB), where
XLB is the value of X for which pY is closest to .025 and XUB is the value of
X for which pY is closest to .975. We computed three confidence intervals of X:
one for the number of weak, medium, and large effects.

We computed pY for a combination of a value of X and a true effect size
using 10,000 randomly generated data sets, in three steps. For each data set we:

• Randomly selected X out of 63 effects which are supposed to be generated
by true nonzero effects, with the remaining 63−X supposed to be generated
by true zero effects;
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• Given the degrees of freedom of the effects, we randomly generated p-values
under the H0 using the central distributions and noncentral distributions
(for the 63 − X and X effects selected in step 1, respectively);

• The Fisher statistic Y was computed by applying Equation (4.2) to the
transformed p-values (see Equation (4.1)) of step 2.
Probability pY equals the proportion of 10,000 data sets with Y exceeding

the value of the Fisher statistic applied to the RPP data. See osf.io/egnh9 for
the analysis script to compute the confidence intervals of X.

Results

Upon reanalysis of the 63 statistically nonsignificant replications within RPP we
determined that many of these “failed” replications say hardly anything about
whether there are truly no effects when using the adapted Fisher method. The
Fisher test of these 63 nonsignificant results indicated some evidence for the
presence of at least one false negative finding (χ2(126) = 155.2382, p = 0.039).
Assuming X small nonzero true effects among the nonsignificant results yields
a confidence interval of 0-63 (0-100%). More specifically, if all results are in
fact true negatives then pY = .039, whereas if all true effects are ρ = .1 then
pY = .872. Hence, the 63 statistically nonsignificant results of the RPP are in
line with any number of true small effects — from none to all. Consequently, we
cannot draw firm conclusions about the state of the field psychology concerning
the frequency of false negatives using the RPP results and the Fisher test, when
all true effects are small. Assuming X medium or strong true effects underlying
the nonsignificant results from RPP yields confidence intervals 0-21 (0-33.3%) and
0-13 (0-20.6%), respectively. In other words, the 63 statistically nonsignificant
RPP results are also in line with some true effects actually being medium or even
large.

Discussion

The reanalysis of the nonsignificant RPP results using the Fisher method and the
NHST framework demonstrates that any conclusions on the validity of individual
effects based on “failed” replications, as determined by statistical significance,
is unwarranted. This was also noted by both the original RPP team (Open
Science Collaboration 2015; Anderson et al. 2016) and in a critique of the RPP
(Gilbert et al. 2016). Replication efforts such as the RPP or the Many Labs
project remove publication bias and result in a less biased assessment of the true
effect size. Nonetheless, single replications should not be seen as the definitive
result, considering that these results indicate there remains much uncertainty
about whether a nonsignificant result is a true negative or a false negative. The
explanation of this finding is that most of the RPP replications, although often
statistically more powerful than the original studies, still did not have enough
statistical power to distinguish a true small effect from a true zero effect (Maxwell,
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Lau, and Howard 2015). Interpreting results of replications should therefore
also take the precision of the estimate of both the original and replication into
account (Cumming 2013) and publication bias of the original studies (Etz and
Vandekerckhove 2016).

Very recently four statistical papers have reanalyzed the RPP results to
either estimate the frequency of studies testing true zero hypotheses or to estimate
the individual effects examined in the original and replication study. All four
papers account for the possibility of publication bias in the original study. Johnson
et al. (2016) estimated a Bayesian statistical model including a distribution of
effect sizes among studies for which the null hypothesis is false. On the basis
of their analyses they conclude that at least 90% of psychology experiments
tested negligible true effects. Johnson et al.’s model as well as our Fisher’s
test are not useful for estimation and testing of individual effects examined in
original and replication study. Interpreting results of individual effects should
take the precision of the estimate of both the original and replication into account
(Cumming 2013). Etz and Vandekerckhove (2016) reanalyzed the RPP at the level
of individual effects, using Bayesian models incorporating publication bias. They
concluded that 64% of individual studies did not provide strong evidence for either
the null or the alternative hypothesis in either the original of the replication study.
This agrees with our interpretaion of the RPP findings and that of Maxwell, Lau,
and Howard (2015). As opposed to Etz and Vandekerckhove (2016), Van Aert and
Van Assen (2017b) use a statistically significant original and a replication study
to evaluate the common true underlying effect size, adjusting for publication
bias. From their Bayesian analysis (Van Aert and Van Assen 2017a) assuming
equally likely zero, small, medium, large true effects, they conclude that only
13.4% of individual effects contain substantial evidence (Bayes factor > 3) of
a true zero effect. For a staggering 62.7% of individual effects no substantial
evidence in favor of zero, small, medium, or large true effect size was obtained.
All in all, conclusions of our analyses using the Fisher test are in line with other
statistical papers reanalyzing the RPP data (with the exception of Johnson et al.
2016) suggesting that studies in psychology are typically not powerful enough to
distinguish zero from nonzero true findings.

General Discussion

Much attention has been paid to false positive results in recent years. Our study
demonstrates the importance of paying attention to false negatives alongside false
positives. We examined evidence for false negatives in nonsignificant results in
three different ways, using the NHST framework. Specifically, we adapted the
Fisher method to detect the presence of at least one false negative in a set of
statistically nonsignificant results. Simulations indicated the adapted Fisher test
to be a powerful method for that purpose. The three applications indicated that
(i) approximately two out of three psychology articles reporting nonsignificant
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results contain evidence for at least one false negative, (ii) nonsignificant results
on gender effects contain evidence of true nonzero effects, and (iii) the statistically
nonsignificant replications from the Reproducibility Project Psychology (RPP) do
not warrant strong conclusions about the absence or presence of true zero effects
underlying these nonsignificant results (RPP does yield less biased estimates of
the effect; the original studies severely overestimated the effects of interest).

The methods used in the three different applications provide crucial context
to interpret the results. In applications 1 and 2, we did not differentiate between
main and peripheral results. Hence, the interpretation of a significant Fisher test
result pertains to the evidence of at least one false negative in all reported results,
not the evidence for at least one false negative in the main results. Nonetheless,
even when we focused only on the main results in application 3, the Fisher
test does not indicate specifically which result is false negative, rather it only
provides evidence for a false negative in a set of results. As such, the Fisher
test is primarily useful to test a set of potentially underpowered results in a
more powerful manner, albeit that the result then applies to the complete set.
Additionally, in applications 1 and 2 we focused on results reported in eight
psychology journals; extrapolating the results to other journals might not be
warranted given that there might be substantial differences in the type of results
reported in other journals or fields.

More generally, our results in these three applications confirm that the
problem of false negatives in psychology remains pervasive. Previous concern
about power (Cohen 1962; Sedlmeier and Gigerenzer 1989; Bakker et al. 2012;
Marszalek et al. 2011), which was even addressed by an APA Statistical Task
Force in 1999 that recommended increased statistical power (Wilkinson 1999),
seems not to have resulted in actual change (Marszalek et al. 2011). Potential
explanations for this lack of change is that researchers overestimate statistical
power when designing a study for small effects (Bakker et al. 2016), use p-hacking
to artificially increase statistical power, and can act strategically by running
multiple underpowered studies rather than one large powerful study (Bakker et
al. 2012). The effects of p-hacking are likely to be the most pervasive, with
many people admitting to using such behaviors at some point (John, Loewenstein,
and Prelec 2012) and publication bias pushing researchers to find statistically
significant results. As such, the problems of false positives, publication bias, and
false negatives are intertwined and mutually reinforcing.

Reducing the emphasis on binary decisions in individual studies and in-
creasing the emphasis on the precision of a study might help reduce the problem
of decision errors (Cumming 2013). For example, a large but statistically non-
significant study might yield a confidence interval (CI) of the effect size of [-0.01;
0.05], whereas a small but significant study might yield a CI of [0.01; 1.30]. In a
purely binary decision mode, the small but significant study would result in the
conclusion that there is an effect because it provided a statistically significant
result, despite it containing much more uncertainty than the larger study about
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the underlying true effect size. In a precision mode, the large study provides a
more certain estimate and therefore is deemed more informative and provides the
best estimate. Using meta-analyses to combine estimates obtained in studies on
the same effect may further increase the overall estimate’s precision. Although
the emphasis on precision and the meta-analytic approach is fruitful in theory, we
should realize that publication bias will result in precise but biased (overestimated)
effect size estimation of meta-analyses (Nuijten, Van Assen, et al. 2015).

Limitations and further research

For all three applications, the Fisher tests’ conclusions are limited to detecting at
least one false negative in a set of results. The method cannot be used to draw
inferences on individuals results in the set. To draw inferences on the true effect
size underlying one specific observed effect size, generally more information (i.e.,
studies) is needed to increase the precision of the effect size estimate.

Another potential caveat relates to the data collected with the R package
statcheck and used in applications 1 and 2. statcheck extracts inline, APA
style reported test statistics, but does not include results included from tables or
results that are not reported as the APA prescribes. Consequently, our results
and conclusions may not be generalizable to all results reported in articles.

Given that the results indicate that false negatives are still a problem in
psychology, albeit slowly on the decline in published research, further research
is warranted. Further research could focus on comparing evidence for false
negatives in main and peripheral results. Our results in combination with results
of previous studies suggest that publication bias mainly operates on results of tests
of main hypotheses, and less so on peripheral results. Another venue for future
research is using the Fisher test to re-examine evidence in the literature on certain
other effects or often-used covariates, such as age and race, or to see if it helps
researchers prevent dichotomous thinking with individual p-values (Hoekstra et al.
2006). Finally, the Fisher test may and is also used to meta-analyze effect sizes
of different studies. Whereas Fisher used his method to test the null hypothesis
of an underlying true zero effect using several studies’ p-values, the method has
recently been extended to yield unbiased effect estimates using only statistically
significant p-values. The principle of uniformly distributed p-values given the true
effect size on which the Fisher method is based, also underlies newly developed
methods of meta-analysis that adjust for publication bias, such as p-uniform
(Van Assen, Van Aert, and Wicherts 2015) and p-curve (Simonsohn, Nelson, and
Simmons 2014). Extensions of these methods to include nonsignificant as well
as significant p-values and to estimate heterogeneity are still under construction.
Other approaches to examine statistically nonsignificant results may include
inspecting effect sizes directly, similar to our approach used to construct Figure
4.3, instead of relying on the NHST framework.

To conclude, our three applications indicate that false negatives remain
a problem in the psychology literature, despite the decreased attention and
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that we should be wary to interpret statistically nonsignificant results as there
being no effect in reality. One way to combat this interpretation of statistically
nonsignificant results is to incorporate testing for potential false negatives, which
the Fisher method facilitates in a highly approachable manner (a spreadsheet for
carrying out such a test is available at https://osf.io/tk57v/).
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Chapter 5

688,112 Statistical Results:
Content Mining Psychology
Articles for Statistical Test
Results1

In this chapter, I describe a data set (available at http://doi.org/10.17026/
dans-2cm-v9j9) that is the result of content mining 167,318 published psychology
articles for statistical test results. I tried to mine the content of HTML articles in
all psychology journals published by the six major publishers in psychology, and
succeeded in doing so for four major publishers (see Table 5.1 for descriptives
per publisher). This content mining was done with the R package statcheck

(Nuijten, Hartgerink, et al. 2015; Epskamp and Nuijten 2016), which extracts
statistical results from research articles in an automated fashion, given that they
are reported in the format prescribed by the American Psychological Association
(APA). I only inspected psychology journals, because this is a standard within
the field of psychology and not necessarily outside of this field.

1Hartgerink, C. (2016). 688,112 Statistical Results: Content Mining Psychology Articles for
Statistical Test Results. Data. doi:10.3390/data1030014
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Table 5.1: An overview of the publishers included accompanied by descriptive statistics per publisher regarding the
extracted APA results.

Publisher Timespan # articles # articles with results # results Median # results per article Mean reported p-value Mean recalculated p-value

APA 1985–2016 74,489 36,662 522,367 9 0.073 0.098
Sage 1972–2016 13,893 5,118 59,561 8 0.101 0.110
Springer 2003–2016 53,667 8,333 97,657 8 0.097 0.113
Taylor & Francis 2003–2016 25,274 732 8,527 8 0.118 0.133
Total 1972–2016 167,318 50,845 688,112 9 0.080 0.102
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The statcheck software extracted 688,112 results from 50,845 articles (out
of 167,318 articles). The extracted statistical test results are presented in long
format in this data set (i.e., each row corresponds to one statistical result). For
each extracted statistical test result, the reported statistical values are used to
recalculate the p-value for the reported statistical result. These recalculated
p-values are checked against the reported p-value for (decision) errors. A potential
error has occurred when the reported p-value is not congruent with the recalculated
p-value, whereas a decision error (or gross error) occurs when the recalculated
p-value does not correspond to the reported p-value and alters the significance
of the result, assuming α = 0.05. The results of this comparison are available in
the data set. The articles for which no results were found are not included in the
data set (filenames without results available at https://raw.githubusercontent.
com/chartgerink/2016statcheckdata/master/noresult.txt).

In order to provide a comprehensive data set, the statistical results are
supplemented with metadata of the original article as available in CrossRef (https:
//crossref.org). These metadata include the doi, the publisher, the publication
year, the journal, the author names, the author count, and the publication title.
Given that the data set is in long format, multiple rows can contain duplicate
metadata if multiple results are extracted from the same article.

This data set of statistical results and accompanying metadata can be used
to inspect if specific papers include potential statistical errors or for trends in
statistical results over time. Articles based on a similar data set inspected the
degree to which reporting errors occur (Nuijten, Hartgerink, et al. 2015), tried
to assess whether such data could be modeled for p-hacking (Hartgerink et al.
2016), and the degree to which sample sizes and potential false negative results
developed over time (Hartgerink, Wicherts, and Van Assen 2017). This data set
can be used to replicate these findings and correlate findings with the available
metadata. These data can also be used as baseline data to identify extreme
statistical results in the literature by determining their percentile score, or to
replicate other meta-research. These are only a few examples, and “the best
thing to do with [the] data will be thought of by someone else” (quote from Rufus
Pollock).

Data description

The data are provided in a comma separated file (CSV) and in long-format, where
each row contains one statistical result. As such, multiple rows can pertain to
the same article and include the same metadata. This information is provided in
duplicate because any other file format (wide-format or separate files per article)
is unfeasible without increasing the difficulty to reuse the data (e.g., in JSON
format). Given the size of the full data set (>200MB), a smaller test data set is
also included to pilot analysis scripts.

99

https://raw.githubusercontent.com/chartgerink/2016statcheckdata/master/noresult.txt
https://raw.githubusercontent.com/chartgerink/2016statcheckdata/master/noresult.txt
https://crossref.org
https://crossref.org


For each of the 688,112 results, 20 variables are included, of which seven
pertain to article metadata and 13 pertain to the individual statistical results.
Table 5.2 lists all variables included in the data set. Two specific sets of variables
are worth explaining further. First, only F -values have two degrees of freedom
(i.e., df1 and df2). For t-values, the reported degrees of freedom are df2, because
t2(df) = F (1, df). For all other test statistics that include degrees of freedom,
they are included in df1 (i.e., χ2,r; Z contains no degrees of freedom). Second, the
variable DecisionError indicates whether an error results in wrongly concluding
statistical significance (report p < 0.05 whereas the recalculated p-value yields
p > 0.05, or vice versa). If the variables OneTail and OneTailedInTxt are TRUE

(see Table 5.2), a decision error is reverted to FALSE.

Methods

The data were collected in five steps: (i) collect journal lists; (ii) spider journal
pages for articles; (iii) download articles; (iv) add article metadata; and (v) mine
articles for statistical results. These five steps are specified below. All code and
version history is available at https://github.com/chartgerink/2016statcheckdata
(preserved at http://doi.org/10.5281/zenodo.59818). Figure 5.1 gives a flowchart
of the different steps in the data collection process.

Lists of psychology journals from six major publishers were collected man-
ually. Six publishers were included at the start of this project: Elsevier, Wiley,
Sage, Springer, Taylor & Francis, and the APA. These six publishers cover
>70% of the published psychology literature (Larivière, Haustein, and Mon-
geon 2015). Except for the APA, only journals included in the “Psychology”
or “Behavioral Sciences” sections were included (as categorized by the pub-
lishers themselves). These journal lists were collected in October 2015 and
available at https://github.com/chartgerink/2016statcheckdata/blob/master/
scraping/journal-spiders/journallistold.csv.

Journals from two of the six publishers had to be removed from the journal
list, because Elsevier and Wiley prevented me from automatically downloading
research articles (Hartgerink 2015b; Bloudoff-Indelicato 2015; Hartgerink 2016a).
The library at my university was prompted by these publishers that suspicious
downloading activity occurred, which they thought indicated compromised user
credentials and theft of copyrighted material. The Tilburg University library
services requested me to halt the automated downloading, in light of potential
blocks for the entire university. As a result, Elsevier and Wiley were excluded from
the journal list, resulting in a remainder of 461 journals from the original 1011 (this
renewed list is available at https://github.com/chartgerink/2016statcheckdata/
blob/master/scraping/journal-spiders/journallist.csv).
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Table 5.2: Variables included in the data set and a description of each variable.
Variable Type Description

Source Metadata Digital Object Identifier (DOI) of the article
publisher Metadata Publisher of the article, as available in CrossRef
year Metadata Publication year, as available in CrossRef
journal Metadata Journal, as available in CrossRef
Statistic Individual result Type of statistical test statistic (possible values t, F , r, Z, and χ2)

df1 Individual result First degree of freedom of the test statistic
df2 Individual result Second degree of freedom of the test statistic
Test.Comparison Individual result Sign used in reporting of test statistic (>, <, =)
Value Individual result Reported value of the test statistic
Reported.Comparison Individual result Sign used in reporting of p-value (>, <, =)

Reported.P.Value Individual result Reported p-value
Computed Individual result Recalculated p-value (two-tailed) based on Statistic and df1, df2

Raw Individual result Raw text of extracted statistical result
Error Individual result Whether the reported p-value differs from recalculated p-value
DecisionError Individual result Whether the reported p-value differs from the recalculated p-value AND significance is different (α = 0.05)

OneTail Individual result Whether the result would be correct if the p-value were one-tailed
OneTailedInTxt Individual result Whether the article contains “sided”, “tailed”, or “directional”
authors Metadata Author names, as available in CrossRef
author_count Metadata Number of authors
title Metadata Title, as available in CrossRef
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Figure 5.1: Flowchart of the data collection process, specified per step in the
collection process.

Article URLs were collected with a web spider in April 2016. A web spider
visits a webpage and collects all or a specific set of URLs included on that
webpage. Subsequently, the web spider visits the pages that are referred to on
the initial webpage and again collects URLs, which it repeats over and over. For
this project, a web spider was developed to extract specific links that referred
to full texts (https://github.com/chartgerink/journal-spiders). This web spider
produced a set of URLs, which provided direct links to full-text articles in HTML
format (all URLs available at https://github.com/chartgerink/2016statcheckdata/
tree/master/scraping/journal-spiders/journal-links). Only those HTMLs that
were accessible within the Tilburg University subscription were collected (list
of available journal titles within subscription available at https://github.com/
chartgerink/2016statcheckdata/blob/master/tilburgjournals.ods?raw=true). The
original sample, including Elsevier and Wiley, was ∼ 900, 000 articles.

The research articles were subsequently automatically downloaded, with the
command-line utilities wget (i.e., APA articles) and quickscrape (v0.4.6 https:
//github.com/contentmine/quickscrape; i.e., Sage, Springer, Taylor & Francis).
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This downloading occurred in April–May 2016 and took into account potential
strain on the publisher’s servers by restricting downloads to weekends or limiting
the download rate to 10 per minute at most.

Metadata for each article were collected with the Ruby module terrier

(https://github.com/thewinnower/terrier). This module queries the CrossRef
database when provided with a Digital Object Identifier (DOI). If available, it
returns the available metadata such as the journal name, publication year, etc.
These metadata were collected in April–June 2016 for all included articles (https://
github.com/chartgerink/2016statcheckdata/blob/master/scraping/terrier.rb. Not
all articles contained a DOI and no metadata could be collected from CrossRef
as a result.

Finally, after all HTML files were collected and metadata were added,
statcheck (v1.0.1; Nuijten, Hartgerink, et al. 2015; Epskamp and Nuijten 2016)
was run in August 2016 to create the final data set. This R package scans the text
from an article for APA style statistical results, extracts these statistical results,
and checks whether the reported p-values are equivalent to the recalculated
p-value (with a margin of error due to potential rounding). For example, the
result t(85) = 2.86, p = 0.005 would be automatically extracted. Version 1.0.1 of
statcheck is able to mine t, F , r, Z, and χ2 results.

Usage notes

Usage of the data requires understanding several limitations of the statcheck

package, in order to provide context for results obtained from this data set.
A manual validity check for statcheck proved that the software is valid for
extracting APA style reported test results (Nuijten, Hartgerink, et al. 2015).
However, it does not extract results that are not in line with what the APA
prescribes. Additionally, statcheck only extracts results reported in the text
and not those reported in tabular format or in images. As such, statistical results
from tables and images are systematically excluded. As a result, any conclusions
based on this data set should not be extrapolated without caution.

Additionally, it is worth mentioning that relatively few articles contained
results that were extracted by statcheck (∼ 1/3 downloaded articles). This could
be due to at least three reasons. First, results might not be reported according
to the APA format in some psychology journals/volumes, which results in fewer
extracted results. Second, statistical results could be reported in APA format,
but these statistical results are not t, F , r, Z, or χ2. Third, a considerable part
of the literature might pertain to theoretical papers, case studies, or narrative
reviews, instead of empirical research.

The presented data have been deposited in the Dutch Archival Network
for the Sciences (DANS) and are available under a public domain license (CC0
1.0 rights waiver). The DANS repository is a trustworthy digital repository and
has received the Data Seal of Approval (DSA), the World Data System (WDS)
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certificate, and the NESTOR-seal. This ensures that deposited data will remain
available for a substantial amount of time. All rights to this data set are waived
to the furthest extent possible, such that reuse is maximized.

In addition to preserving the data in the DANS repository, individual
reports have been generated for each of the 50,845 articles and posted on PubPeer
(https://pubpeer.com/). Appendix C shows a fictitious example of such a report.
These reports were generated in order to increase the accessibility of the data
for those wanting to investigate a specific paper instead of the entire data set.
Additionally, this increases the discoverability of potential errors by posting them
in a central forum of post-publication peer review.
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Chapter 6

Detection of data
fabrication using statistical
tools1

Any field of empirical inquiry is faced with cases of scientific misconduct at
some point, either in the form of fabrication, falsification, or plagiarism (FFP).
Psychology faced Stapel; medical sciences faced Poldermans and Macchiarini;
life sciences faced Voignet; physical sciences faced Schön — these are just a few
examples of research misconduct cases in the last decade. Overall, an estimated
2% of all scholars admit to having falsified or fabricated research results at least
once during their career (Fanelli 2009), which due to its self-report nature is likely
to be an underestimate of the true rate of misconduct. The detection rate of data
fabrication is likely to be even lower; for example, among several hundreds of
thousands of researchers working in the United States and the Netherlands, only
around a dozen cases become public each year. At best, this suggests a detection
rate below 1% among those 2% who admit to fabricating or falsifying data — the
tip of a seemingly much larger iceberg.

The ability to detect fabricated data may help deter researchers from fab-
ricating data in their work. Deterrence theory (e.g., Hobbes 1651) states that
improved detection and sanctioning of behaviors decreases the expected utility
of said behaviors, ultimately leading to fewer people to engage in it. Detection
techniques have developed differently for fabrication, falsification, and plagiarism.
Plagiarism scanners have been around the longest (e.g., Parker and Hamblen
1989) and are widely implemented in practice, not only at journals but also in
the evaluation of student theses (e.g., with commercial services such as Turnitin).

1Hartgerink, C. H. J., Voelkel, J., Wicherts, J. M., and Van Assen, M. A. L. M. (2019).
Detection of data fabrication using statistical tools. PsyArxiv preprint. doi:10.31234/osf.io/jkws4
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Various tools have been developed to detect image manipulation and some of
these tools have been implemented at biomedical journals to screen for fabricated
or falsified images. For example, the Journal of Cell Biology and the EMBO
journal scan each submitted image for potential image manipulation (The Journal
of Cell Biology 2015b; Nature editors 2017), which supposedly increases the risk
of detecting (blatant) image manipulation. Recently developed algorithms even
allow automated scanning of images for such manipulations (Koppers, Wormer,
and Ickstadt 2016). The application of such tools can also help researchers
systematically evaluate research articles in order to estimate the extent to which
image manipulation occurs in the literature (4% of all papers are estimated to
contain manipulated images; Bik, Casadevall, and Fang 2016b) and to study
factors that predict image manipulation (Fanelli et al. 2018).

Methods to detect fabrication of quantitative data are often based on a mix
of psychology theory and statistics theory. Because humans are notoriously bad at
understanding and estimating randomness (Haldane 1948; Tversky and Kahneman
1974; Tversky and Kahneman 1971; Nickerson 2000; Wagenaar 1972), they might
create fabricated data that fail to follow the fundamentally probabilistic nature
of genuine data. Data and outcomes of analyses based on these data that fail
to align with the (at least partly probabilistic) processes that are assumed to
underlie genuine data may indicate deviations from the reported data collecting
protocol, potentially even data fabrication or falsification.

Statistical methods have proven to be of importance in initiating data
fabrication investigations or in assessing the scope of potential data fabrication.
For example, Kranke, Apfel, and Roewer skeptically perceived Fujii’s data (Kranke,
Apfel, and Roewer 2000) and used statistical methods to contextualize their
skepticism. At the time, a reviewer perceived them to be on a “crusade against
Fujii and his colleagues” (Kranke 2012) and further investigation remained absent.
Only when Carlisle extended the systematic investigation to 168 of Fujii’s papers
for misconduct (Carlisle 2012; Carlisle and Loadsman 2016; Carlisle et al. 2015)
did events cumulate into an investigation- and ultimately retraction of 183 of
Fujii’s peer-reviewed papers (Oransky 2015; “Joint Editors-in-Chief request for
determination regarding papers published by Dr. Yoshitaka Fujii” 2013). In
another example, the Stapel case, statistical evaluation of his oeuvre occurred
after he had already confessed to fabricating data, which ultimately resulted in
58 retractions of papers (co-)authored by Stapel (Levelt 2012; Oransky 2015).

In order to determine whether the application of statistical methods to detect
data fabrication is responsible and valuable, we need to study their diagnostic
value. Specifically, many of the developed statistical methods to detect data
fabrication are quantifications of case specific suspicions by researchers, but these
applications do not inform us on their diagnostic value (i.e., sensitivity and
specificity) outside of those specific cases. Side-by-side comparisons of different
statistical methods to detect data fabrication have also been difficult through the
in-casu origin of these methods. Moreover, the efficacy of these methods based
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on known cases is likely to be biased, considering that an unknown amount of
undetected cases is not included. Using different statistical methods to detect
fabricated data using genuine versus fabricated data yields information on the
sensitivity and specificity of the detection tools. This is important because of
the severe professional- and personal consequences of accusations of potential
research misconduct (as illustrated by the STAP case; Cyranoski 2015). These
methods might have utility in misconduct investigations where the prior chances
of misconduct are high, but their diagnostic value in large-scale applications to
screen the literature are unclear.

In this article, we investigate the diagnostic performance of various statistical
methods to detect data fabrication. These statistical methods (detailed next) have
not previously been validated systematically in research using both genuine and
fabricated data. We present two studies where we try to distinguish (arguably)
genuine data from known fabricated data based on these statistical methods.
These studies investigate methods to detect data fabrication in summary statistics
(Study 1) or in individual level (raw) data (Study 2) in psychology. In Study 1,
we invited researchers to fabricate summary statistics for a set of four anchoring
studies, for which we also had genuine data from the Many Labs 1 initiative
(https://osf.io/pqf9r; R. A. Klein et al. 2014). In Study 2, we invited researchers
to fabricate individual level data for a classic Stroop experiment, for which we
also had genuine data from the Many Labs 3 initiative (https://osf.io/n8xa7/;
Ebersole et al. 2016). Before presenting these studies, we discuss the theoretical
framework of the investigated statistical methods to detect data fabrication.

Theoretical framework

Statistical methods to detect potential data fabrication can be based either on
reported summary statistics that can often be retrieved from articles or on the raw
(underlying) data if these are available. Below we detail p-value analysis, variance
analysis, and effect size analysis as potential ways to detect data fabrication
using summary statistics. P -value analyses can be applied whenever a set of
nonsignificant p-values are reported; variance analysis can be applied whenever
a set of variances and accompanying sample sizes are reported for independent,
randomly assigned groups; effect size analysis can be used whenever the effect
size is reported or calculated (e.g., an APA reported t- or F -statistic; Hartgerink,
Wicherts, and Van Assen 2017). Among the methods that can be applied to
uncover potential fabrication using raw data, we consider digit analyses (i.e., the
Newcomb-Benford law and terminal digit analysis) and multivariate associations
between variables. The Newcomb-Benford law can be applied on ratio- or count
scale measures that have sufficient digits and that are not truncated (Hill and
Schürger 2005); terminal digit analysis can also be applied whenever measures have
sufficient digits (see also Mosimann, Wiseman, and Edelman 1995). Multivariate
associations can be investigated whenever there are two or more numerical
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variables available and data on that same relation is available from (arguably)
genuine data sources.

Detecting data fabrication in summary statistics

P -value analysis

The distribution of a single or a set of independent p-values is uniform if the
null hypothesis is true, while it is right-skewed if the alternative hypothesis is
true (Fisher 1925). If the model assumptions of the underlying process hold, the
probability density function of one p-value is the result of the population effect
size, the precision of the estimate, and the observed effect size, whose properties
carry over to a set of p-values if those p-values are independent.

When assumptions underlying the model used to compute a p-value are
violated, p-value distributions can take on a variety of shapes. For example,
when optional stopping (i.e., adding batches of participants until you have a
statistically significant result) occurs and the null hypothesis is true, p-values
just below .05 become more frequent (Lakens 2015a; Hartgerink et al. 2016).
However, when optional stopping occurs under the alternative hypothesis or when
other researcher degrees of freedom are used in an effort to obtain significance
(Simmons, Nelson, and Simonsohn 2011; Wicherts et al. 2016), a right-skewed
distribution for significant p-values can and will likely still occur (Ulrich and
Miller 2015; Hartgerink et al. 2016).

A failure of independent p-values to be right-skewed or uniformly distributed
(as would be theoretically expected) can indicate potential data fabrication. For
example, in the Fujii case, baseline measurements of supposed randomly assigned
groups later turned out to be fabricated. When participants are randomly assigned
to conditions, measures at baseline are expected to statistically equivalent between
the groups (i.e., equivalent distributions), hence, produce uniformly distributed
p-values. However, in the Fujii case, Carlisle observed many large p-values,
which ultimately led to the identification of potential data fabrication (Carlisle
2012). The cause of such large p-values may be that the effect of randomness
is underappreciated when fabricating statistically nonsignificant data due to
(for example) widespread misunderstanding of what a p-value means (Sijtsma,
Veldkamp, and Wicherts 2015; Goodman 2008), which results in groups of data
that are too similar conditional on the null hypothesis of no differences between
the groups. As an illustration, we simulated normal distributed measurements for
studies and their t-test comparisons in Table 6.1, under statistically equivalent
populations (Set 1). We also fabricated independent data for equivalent groups,
where we fixed the mean and standard deviation for all studies and subsequently
added (too) little uniform noise to these parameters (Set 2). The expected value of
a uniform p-value distribution is .5, but the fabricated data from our illustration
have a mean p-value of 0.997.

108



Table 6.1: Examples of means and standard deviations for a continuous outcome
in genuine and fabricated randomized clinical trials. Set 1 is randomly generated
data under the null hypothesis of random assignment (assumed to be the genuine
process), whereas Set 2 is generated under excessive consistency with equal groups.
Each trial condition contains 100 participants. The p-values are the result of
independent t-tests comparing the experimental and control conditions within
each respective set of a study.

Set 1 Set 2

Experimental Control Experimental Control

M (SD) M (SD) P-value M (SD) M (SD) P-value

Study 1 48.432 (10.044) 49.158 (9.138) 0.594 49.913 (9.707) 49.918 (9.308) 0.997
Study 2 50.412 (10.322) 49.925 (9.777) 0.732 49.918 (9.993) 49.924 (10.071) 0.997
Study 3 51.546 (9.602) 51.336 (9.479) 0.877 49.266 (10.251) 49.264 (9.49) 0.999
Study 4 49.919 (10.503) 50.857 (9.513) 0.509 49.219 (10.876) 49.23 (10.712) 0.994
Study 5 49.782 (11.167) 50.308 (8.989) 0.714 51.287 (9.311) 51.282 (10.183) 0.997

Study 6 48.631 (9.289) 49.29 (10.003) 0.630 50.02 (10.792) 50.014 (9.231) 0.997
Study 7 49.121 (9.191) 47.756 (10.095) 0.318 49.927 (10.139) 49.919 (10.019) 0.996
Study 8 49.992 (9.849) 51.651 (10.425) 0.249 49.396 (10.449) 49.398 (9.77) 0.999
Study 9 50.181 (9.236) 51.292 (10.756) 0.434 50.239 (10.191) 50.24 (10.421) 0.999
Study 10 49.323 (10.414) 49.879 (9.577) 0.695 50.739 (9.846) 50.748 (9.942) 0.994

In order to test whether a distribution of independent p-values might be
fabricated, we propose using the Fisher method (Fisher 1925; O’Brien et al.
2016). The Fisher method originally was intended as a meta-analytic tool, which
tests whether there is sufficient evidence for an effect (i.e., right-skewed p-value
distribution). The original Fisher method is computed over the individual p-values
(pi) as

χ2
2k = −2

k
∑

i=1

ln(pi) (6.1)

where the null hypothesis of a zero true effect size underlying all k results is
tested and is rejected for values of the test statistic that are larger than a certain
value, typically the 95th percentile of χ2

2k, to conclude that true effect size differs
from zero for at least one of k results. The Fisher method can be adapted to
test the same null hypothesis against the alternative that the results are closer to
their expected values than expected under the null. The adapted test statistic of
this so-called “reversed Fisher method” is

χ2
2k = −2

k
∑

i=1

ln(1 − pi − t

1 − t
) (6.2)

where t determines the range of p-values that are selected in the method. For
instance, if t = 0, all p-values are selected, whereas if t = 0.05 only statisti-
cally nonsignificant results are selected in the method. Note that each result’s
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contribution (between the brackets) is in the interval (0,1), as for the original
Fisher method. The reversed Fisher method is similar (but not equivalent) to
Carlisle’s method testing for excessive homogeneity across baseline measurements
in Randomized Controlled Trials (Carlisle 2017a; Carlisle 2012; Carlisle et al.
2015).

As an example, we apply the reversed Fisher method to both the genuine and
fabricated results from Table 6.1. Using the threshold t = 0.05 to select only the
nonsignificant results from Table 6.1, we retain k = 10 genuine p-values and k = 10
fabricated p-values. This results in χ2

2×10 = 18.362, p = 0.564 for the genuine
data (Set 1), and χ2

2×10 = 118.011, p = 0 for the fabricated data (Set 2). Another
example, from the Fujii case (Carlisle 2012), also illustrates that the reversed
Fisher method may detect fabricated data; the p-values related to fentanyl dose
(as presented in Table 3 of Carlisle 2012) for five independent comparisons also
show excessively high p-values, χ2

2×5 = 19.335, p = 0.036. However, based on this
anecdotal evidence little can be said about the sensitivity, specificity, and utility
of the reversed Fisher method.

We note that incorrectly specified one-tailed tests can also result in excessive
amounts of large p-values. For correctly specified one-tailed tests, the p-value
distribution is right-skewed if the alternative hypothesis were true. When the
alternative hypothesis is true, but the effect is in the opposite direction of the
hypothesized effect (e.g., a negative effect when a one-tailed test for a positive
effect is conducted), this results in a left-skewed p-value distribution. As such, any
potential data fabrication detected with this method would need to be inspected
for misspecified one-tailed hypotheses to preclude false conclusions. In the studies
we present in this paper, misspecification of one-tailed hypothesis testing is not
an issue because we prespecified the effect and its direction to the participants
who were requested to fabricate data.

Variance analysis

In most empirical research papers, sample variance or standard deviation estimates
are typically reported alongside means to indicate dispersion in the data. For
example, if a sample has a reported age of M(SD) = 21.05(2.11) we know this
sample is both younger and more homogeneous than another sample with reported
M(SD) = 42.78(17.83) (see also Klaassen 2014 for another approach).

Similar to the estimate of the mean in the data, there is sampling error
in the estimated variance in the data (i.e., dispersion of the variance). The
sampling error of the estimated variance is inversely related to the sample size.
For example, under the assumption of normality the sampling error of a given
standard deviation can be estimated as σ/

√
2n (p. 351, Yule 1922), where n is

the sample size of the group. Additionally, if an observed random variable x is
normally distributed, the standardized variance of x in sample j is χ2-distributed
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(p. 445; Hogg and Tanis 2001); that is

var(x) ∼
χ2

nj−1

nj − 1
(6.3)

where n is the sample size of the jth group. Assuming equal variances of the J
populations, this population variance is estimated by the Mean Squares within
(MSw) as

MSw =

k
∑

j=1

(nj − 1)s2
j

k
∑

j=1

(nj − 1)

(6.4)

where s2
j is the sample variance and nj the sample size in group j. As such, under

normality and equality of variances, the sampling distribution of standardized2

variances in group j (i.e., z2
j ) is

z2
j ∼

(

χ2
nj−1

nj − 1

)

/MSw (6.5)

Using the theoretical sampling distribution of the standardized variances,
we bootstrap the expected distribution of the dispersion of variances. In other
words, we use the theoretical sampling distribution of the standard deviations
to formulate a null model of the dispersion of variances that is in line with the
probabilistic sampling processes for groups of equal population variances. First,
we randomly draw standard deviations for all j groups according to Equation (6.3).
Second, we calculate MSw using those previously drawn values (Equation (6.4)).
Third, we standardize the standard deviations using Equation (6.5). Fourth, we
compute the measure of dispersion across the j groups as the standard deviation
of the standardized variances (denoted SDz, Simonsohn 2013) or as the range of
the standardized variances (denoted maxz − minz). This process is repeated for
i iterations to generate a parametric bootstrap distribution of the dispersion of
variances according to the null model of equal variances across populations.

The observed dispersion of the variances, when compared to its expected
distribution, allows a test for potential data fabrication. To this end we compute
the proportion of iterations that show equally- or more extreme consistency
in the dispersion of the variances to compute a bootstrapped p-value (e.g.,
P (X ≤ SDobs)), with SDobs the standard deviation of standardized variances and
X the random variable corresponding to the standard deviation of standardized
variances under the null model. In other words, we compute how many samples
of j groups under the null show the observed consistency of the dispersion

2By dividing all variances by MSw their weighted average equals 1. This is what we call
standardization for this scenario.

111



in the variances (or more consistent), to test whether the data are plausible
given a genuine probabilistic sampling process (Simonsohn 2013). Similar to the
Fisher method, this could be the result of the fabricator underappreciating the
higher level sampling fluctuations, resulting in generating too little randomness
(i.e., error) in the standard deviations across groups (Mosimann, Wiseman, and
Edelman 1995).

As an example, we apply the variance analysis to the illustration from
Table 6.1 and the Smeesters case (Simonsohn 2013). We apply the variance
analysis across the standard deviations from each set in Table 6.1. For the
genuinely probabilistic data (Set 1), we find that the reported mean standard
deviation is 9.868 with a standard deviation equal to 0.595. For the fabricated
data (Set 2), we find that the reported mean standard deviation is 10.035 with
a standard deviation equal to 0.48. Such means illustrate the differences, but
are insufficient to test them. Using the standard deviation of variances as the
dispersion of variances measure, we can quantify how extreme this difference
is using the previously outlined procedure. Results indicate that Set 1 has no
excessive consistency in the dispersion of the standard deviations (p = 0.214),
whereas Set 2 does show excessive consistency in the dispersion of the standard
deviations (p = 0.02). In words, out of 100,000 randomly selected samples
under the null model of independent groups with equal variances on a normally
distributed measure, 2.142 × 104 showed less dispersion in standard deviations
for Set 1, whereas only 2027 showed less dispersion in standard deviations for
Set 2. As a non-fictional example, three independent conditions from a study in
the Smeesters case (nj = 15) were reported to have standard deviations 25.09,
24.58, and 25.65 (Simonsohn 2013). Here too, we can use the outlined procedure
to see whether these reported standard deviations are too consistent according
to sampling fluctuations of the second moment of the data according to theory.
The standard deviation of these standard deviations is 0.54. Comparing this to
100,000 randomly selected replications under the theoretical null model, such
consistency in standard deviations (or even more) would only be observed in
1.21% of those (Simonsohn 2013).

Extreme effect sizes

There is sufficient evidence that data fabrication can result in (too) large effects.
For example, in the misconduct investigations in the Stapel case, large effect sizes
were used as an indicator of data fabrication (Levelt 2012) with some papers
showing incredibly large effect sizes that translate to explained variances of up
to 95% or these effect sizes were larger than the product of the reliabilities
of the related measures. Moreover, Akhtar-Danesh and Dehghan-Kooshkghazi
(2003) asked faculty members from three universities to fabricate data sets and
found that the fabricated data generally showed much larger effect sizes than
the genuine data. From our own anecdotal experience, we have found that large
effect sizes raised initial suspicions of data fabrication (e.g., d > 20). In clinical
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trials, extreme effect sizes are also used to identify potentially fabricated data in
multisite trials while the study is still being conducted (Bailey 1991).

Effect sizes can be reported in research reports in various ways. For example,
effect sizes in psychology papers are often reported as a standardized mean
difference (e.g., d) or as an explained variance (e.g., R2). A test statistic can be
transformed into a measure of effect size. A test result such as t(59) = 3.55 in
a between-subjects design corresponds to d = 0.924 and r = 0.42 (Hartgerink,
Wicherts, and Van Assen 2017). These effect sizes can readily be recomputed
based on data extracted with statcheck across thousands of results (see Appendix
B or Nuijten, Hartgerink, et al. 2015; Hartgerink 2016b).

Observed effect sizes can subsequently be compared with the effect distribu-
tion of other studies investigating the same effect. For example, if a study on the
“foot-in-the-door” technique (Cialdini and Goldstein 2004) yields an effect size of
r = .8, we can collect other studies that investigate the “foot-in-the-door” effect
and compare how extreme that r = .8 is in comparison to the other studies. If the
largest observed effect size in the distribution is r = .2 and a reasonable number
of studies on the “foot-in-the-door” effect have been conducted, an extremely
large effect might be considered a flag for potential data fabrication. This method
specifically looks at situations where fabricators would want to fabricate the
existence of an effect (not the absence of one).

Detecting data fabrication in raw data

Digit analysis

The properties of leading (first) digits (e.g., the 1 in 123.45) or terminal (last)
digits (e.g., the 5 in 123.45) may be examined in raw data. Here we focus on testing
the distribution of leading digits based on the Newcomb-Benford Law (NBL) and
testing the distribution of terminal digits based on the uniform distribution in
order to detect potentially fabricated data.

For leading digits, the Newcomb-Benford Law or NBL (Newcomb 1881;
Benford 1938) states that these digits do not have an equal probability of occuring
under certain conditions, but rather a monotonically decreasing probability. A
leading digit is the left-most digit of a numeric value, where a digit is any of
the nine natural numbers (1, 2, 3, ..., 9). The distribution of the leading digit is,
according to the NBL:

P (d) = log10
1 + d

d
(6.6)

where d is the natural number of the leading digit and P (d) is the probability
of d occurring. Table 6.2 indicates the expected leading digit distribution based
on the NBL. This expected distribution is typically compared to the observed
distribution using a χ2-test (df = 9 − 1). In order to make such a comparison
feasible, it requires a minimum of 45 observations based on the rule of thumb
outlined by Agresti (2003) (n = I × J × 5, with I rows and J columns). The NBL
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has been applied to detect financial fraud (e.g., Cho and Gaines 2007), voting
fraud (e.g., Durtschi, Hillison, and Pacini 2004), and also problems in scientific
data (Hüllemann, Schüpfer, and Mauch 2017; Bauer and Gross 2011).

Table 6.2: The expected first digit distribution, based on the Newcomb-Benford
Law.

Digit Proportion

1 0.301
2 0.176
3 0.125
4 0.097
5 0.079

6 0.067
7 0.058
8 0.051
9 0.046

However, the NBL only applies under specific conditions that are rarely
fulfilled in the social sciences. Hence, its applicability for detecting data fabrication
in science can be questioned. First, the NBL only applies for true ratio scale
measures (Hill 1995; Berger and Hill 2011). Second, sufficient range on the
measure is required for the NBL to apply (i.e., range from at least 1 − 1000000
or 1 − 106; Fewster 2009). Third, these measures should not be subject to digit
preferences, for example due to psychological preferences for rounded numbers.
Fourth, any form of truncation undermines the NBL (Nigrini 2015). Moreover,
some research has even indicated that humans might be able to fabricate data that
are in line with the NBL (Diekmann 2007; Burns 2009), immediately undermining
the applicability of the NBL in context of detecting data fabrication.

For terminal digits, analysis is based on the principle that the rightmost
digit is the most random digit of a number, hence, is expected to be uniformly
distributed under specific conditions (Mosimann, Wiseman, and Edelman 1995;
Mosimann and Ratnaparkhi 1996). Terminal digit analysis is also conducted using
a χ2-test (df = 10 − 1) on the digit occurrence counts (including zero), where
the observed frequencies are compared with the expected uniform frequencies.
The rule of thumb outlined by Agresti (2003) indicates at least 50 observations
are required to provide a meaningful test of the terminal digit distribution
(n = I × J × 5, with I rows and J columns). Terminal digit analysis was
developed during the Imanishi-Kari case by Mosimann and Ratnaparkhi (1996;
for a history of this decade long case, see Kevles 2000).

Figure 6.1 depicts simulated digit counts for the first- through third digit
of a random, standard normally distributed variable (i.e., N ∼ (0, 1)). The first-
and second digit distributions are clearly non-uniform, whereas the third digit
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Figure 6.1: Frequency distributions of the first-, second-, and third digits. We
sampled 100,000 values from a standard normal distribution to create these digit
distributions.

distribution seems only slightly non-uniform. As such, the rightmost digit can be
expected to be uniformly distributed if sufficient precision is provided (Mosimann,
Wiseman, and Edelman 1995). What sufficient precision is, depends on the
process generating the data. In our example with N ∼ (0, 1), the distribution of
the third and later digits seem well-approximated by the uniform distribution.

Multivariate associations

Variables or measurements included in one study can have multivariate associa-
tions that might be non-obvious to researchers. Hence, such relations between
variables or measurements might be overlooked by people who fabricate data.
Fabricators might also simply be practically unable to fabricate data that reflect
these multivariate associations, even if they are aware of these associations. For
example, in response time latencies, there typically is a positive relation between
mean response time and the variance of the response time. Given that the genuine
multivariate relations between different variables arise from stochastic processes
and are not readily known in either their form or size, these might be difficult
to take into account for someone who wants to fabricate data. As such, using
multivariate associations to discern fabricated data from genuine data might
prove worthwhile.
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The multivariate associations between different variables can be estimated
from control data that are (arguably) genuine. For example, if the multivariate
association between means (Ms) and standard deviations (SDs) is of interest,
control data for that same measure can be collected from the literature. With
these control data, a meta-analysis provides an overall estimate of the multivariate
relation that can subsequently be used to verify the credibility of a set of statistics.

Specifically, the multivariate associations from the genuine data are subse-
quently used to estimate the extremity of an observed multivariate relation in
investigated data. Consider the following fictitious example, regarding the multi-
variate association between Ms and SDs for a response latency task mentioned
earlier. Figure 6.2 depicts a (simulated) population distribution of the association
(e.g., a correlation) between Ms and SDs from the literature (N ∼ (.123, .1)).
Assume we have two papers, each coming from a pool of direct replications provid-
ing an equal number of Ms and corresponding SDs. Associations between these
statistics are 0.5 for Paper 1 and 0.2 for Paper 2. From Figure 6.2 we see that
the association in Paper 1 has a much higher percentile score in the distribution
(i.e., 99.995th percentile) than that of Paper 2 (i.e., 78.447th percentile).

Study 1 - detecting fabricated summary statistics

We tested the performance of statistical methods to detect data fabrication in
summary statistics with genuine and fabricated summary statistics with psycho-
logical data. We asked participants to fabricate data that were supposedly drawn
from a study on the anchoring effect (Tversky and Kahneman 1974; Jacowitz and
Kahneman 1995). The anchoring effect is a well-known psychological heuristic
that uses the information in the question as the starting point for the answer,
which is then adjusted to yield a final estimate of a quantity. For example:

Do you think the percentage of African countries in the UN is above or
below [10% or 65%]? What do you think is the percentage of African
countries in the UN?

In their classic study, Tversky and Kahneman (1974) varied the anchor in
this question between 10% and 65% and found that they yielded mean responses
of 25% and 45%, respectively (Tversky and Kahneman 1974). We chose the
anchoring effect because it is well known and because a considerable amount
of (arguably) genuine data sets on the anchoring heuristic are freely available
(https://osf.io/pqf9r; R. A. Klein et al. 2014). This allowed us to compare data
knowingly and openly fabricated by our participants (researchers in psychology)
to actual data that can be assumed to be genuine because they were drawn
from a large-scale international project involving many contributing labs (a so-
called Many Labs study). Our data fabrication study was approved by Tilburg
University’s Ethics Review Board (EC-2015.50; https://osf.io/7tg8g/).
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Figure 6.2: Distribution of 100 simulated observed associations between Ms and
SDs for a response latency task; simulated under N(.123, .1). The red- and blue
dots indicate observed multivariate associations from fictitious papers. Paper 1
may be considered relatively extreme and of interest for further inspection; Paper
2 may be considered relatively normal.
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Methods

We collected genuine summary statistics from the Many Labs study and fabricated
summary statistics from our participating fabricators for four anchoring studies:
(i) distance from San Francisco to New York, (ii) human population of Chicago,
(iii) height of the Mount Everest, and (iv) the number of babies born per day in
the United States (Jacowitz and Kahneman 1995). Each of the four (genuine or
fabricated) studies provided us with summary statistics in a 2 (low/high anchoring)
× 2 (male/female) factorial design. Our analysis of the data fabrication detection
methods used the summary statistics (i.e., means, standard deviations, and
test results) of the four anchoring studies fabricated by each participant or the
four anchoring studies that had actually been conducted by each participating
lab in the Many Labs project (R. A. Klein et al. 2014). The test results
available are the main effect of the anchoring condition, the main effect of
gender, and the interaction effect between the anchoring conditions and gender
conditions. For current purposes, a participant is defined as researcher/lab where
the four anchoring studies’ summary statistics originate from. All materials,
data, and analyses scripts are freely available on the OSF (https://osf.io/b24pq)
and a preregistration is available at https://osf.io/tshx8/. Throughout this
report, we will indicate which facets were not preregistered or deviate from the
preregistration (for example by denoting “(not preregistered)” or “(deviation from
preregistration)”) and explain the reason of the deviation.

Data collection

We downloaded thirty-six genuine data sets from the publicly available Many
Labs (ML) project (https://osf.io/pqf9r; R. A. Klein et al. 2014). The ML project
replicated several effects across thirty-six locations, including the anchoring effect
in the four studies mentioned previously. Considering the size of the ML project,
the transparency of research results, and minimal individual gain for fabricating
data, we felt confident to assume these data are genuine. For each of the thirty-
six labs we computed three summary statistics (i.e., sample sizes, means, and
standard deviations) for each of the four conditions in the four anchoring studies
(i.e., 3 × 4 × 4; data: https://osf.io/5xgcp/). We computed these summary
statistics from the raw ML data, which were cleaned using the original analysis
scripts from the ML project.

The sampling frame for the participants asked to fabricate data consisted
of 2,038 psychology researchers who published a peer-reviewed paper in 2015,
as indexed in Web of Science (WoS) with the filter set to the U.S. We sampled
psychology researchers to improve familiarity with the anchoring effect (Tversky
and Kahneman 1974; Jacowitz and Kahneman 1995). We filtered for U.S. re-
searchers to ensure familiarity with the imperial measurement system, which is
the scale of some of the anchoring studies and in order to reduce heterogeneity
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across fabricators.3 We searched WoS on October 13, 2015. In total, 2,038
unique corresponding emails were extracted from 2,014 papers (due to multiple
corresponding authors).

From these 2,038 psychology researchers, we emailed a random sample of
1,000 researchers to participate in our study (April 25, 2016; osf.io/s4w8r). We
used Qualtrics and removed identifying information not essential to the study
(e.g., no IP-addresses saved). We informed the participating researchers that the
study would require them to fabricate data and explicitly mentioned that we
would investigate these data with statistical methods to detect data fabrication.
We also clarified to the participants that they could stop at any time without
providing a reason. If they wanted, participants received a $30 Amazon gift card
as compensation for their participation if they were willing to enter their email
address. They could win an additional $50 Amazon gift card if they were one of
three top fabricators (participants were not informed about how we planned to
detect data fabrication; the procedure for this is explained in the Data Analysis
section). The provided email addresses were unlinked from individual responses
upon sending the bonus gift cards. The full Qualtrics survey is available at
osf.io/rg3qc.

Each participant was instructed to fabricate 32 summary statistics (4 studies
× 2 anchoring conditions × 2 sexes × 2 statistics [mean and SD]) that corre-
sponded to three hypotheses. We instructed participants to fabricate results
for the following hypotheses: there is (i) a positive main effect of the anchoring
condition, (ii) no effect of sex, and (iii) no interaction effect between condition
and sex. We fixed the sample sizes in the fabricated anchoring studies to 25 per
cell so that participants did not need to fabricate sample sizes. These fabricated
summary statistics and their accompanying test results for these three hypotheses
serve as the data to examine the properties of statistical tools to detect data
fabrication.

We provided participants with a template spreadsheet to fill out the fabri-
cated data, in order to standardize the fabrication process without restraining the
participant in how they chose to fabricate data. Figure 6.3 depicts an example of
this spreadsheet (original: https://osf.io/w6v4u). We requested participants to fill
out the yellow cells with fabricated data, which included means and standard de-
viations for the four conditions. Using these values, the spreadsheet automatically
computed statistical tests and immediately showed them in the “Current result”
column instantaneously. If these results supported the (fabrication) hypotheses,
a checkmark appeared as depicted in Figure 6.3. We required participants to
copy-paste the yellow cells into Qualtrics. This provided a standardized response
format that could be automatically processed in the analyses. Technically, partic-

3We discovered that we included several non-U.S. researchers against our initial aim. We
filtered Web of Science on U.S. origin, but found out that this meant that one of the authors on
the paper was U.S. based. As such, corresponding authors might still be non-U.S. Based on a
search through the open ended comments of the participant’s responses, there was no mention
of issues in fabricating the data related to the metric or imperial system.
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Figure 6.3: Example of a filled out template spreadsheet used in the fabrication
process of Study 1. Respondents fabricated data in the yellow cells, which were
used to automatically compute the results of the hypothesis tests, shown in
the column "Current result". If the fabricated data confirm the hypotheses, a
checkmark appeared in a green cell (one of four template spreadsheets available
at https://osf.io/w6v4u).

ipants could provide a response that did not correspond to the instructions but
none of them did.

Upon completion of the data fabrication, we debriefed respondents within
Qualtrics (full survey: osf.io/rg3qc/). Respondents self-rated their statistical
knowledge (1 = extremely poor, 10 = excellent), what statistical analysis programs
they used frequently (i.e., at least once per week), whether they had ever conducted
an anchoring study themselves, whether they used a random number generator
to fabricate data in this study, whether they fabricated raw data to get summary
statistics, how many combinations of means and standard deviations they created
for each study (on average), and a free-text description of their fabrication
procedures per study. Lastly we reminded participants that data fabrication is
widely condemned by professional organizations, institutions, and funding agencies
alike. This reminder was intended to minimize potential carry-over effects of
the unethical behavior into actual research practice (Mazar, Amir, and Ariely
2008). Using quotum sampling, we collected as many responses as possible for
the available 36 rewards, resulting in 39 fabricated data sets (https://osf.io/e6zys;
3 participants did not participate for a bonus).

Data analysis

We analyzed the genuine and fabricated data sets (36 and 39, respectively), with
each data set consisting of summary statistics of four anchoring studies. The
data set is the unit of analysis. Four types of analyses are conducted on each of
the 75 data sets; (i) the reversed Fisher method, (ii) variance analyses, (iii) the
Fisher method applied to the results of the former two, and (iv) analysis of the
effect sizes of the statistically significant anchoring effect of the four anchoring
studies. Per type of analysis, we examine if we can distinguish the 36 genuine
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from the 39 fabricated data sets, mainly using Area Under Receiving Operator
Characteristic (AUROC) curves. Below we first describe each of the four types of
analyses, followed by a description of the AUROC curve analysis.

We conducted two analyses to detect data fabrication using the reversed
Fisher method. More specifically, we conducted one reversed Fisher method
analysis for the four statistically nonsignificant results of the gender effect (one
per anchoring study) and one for the four statistically nonsignificant interaction
effects (one per anchoring study). This results in two reversed Fisher method
results (based on k=4) per data set.

For the variance analyses, we substantially deviated from the preregistration
(https://osf.io/tshx8/) and added multiple analyses. We analyzed the 16 sample
variances (four anchoring studies × four conditions per anchoring study) per lab
or participant in fourteen different ways. Each of the fourteen variance analyses
was conducted using two dispersion of variance measures. One measure inspects
the standard deviation of the sample variances (i.e., SDz); one measure inspects
the range of the sample variances (i.e., maxz − minz); we ran all 28 analyses
with 100,000 iterations from which we computed the bootstrapped p-value (see
also the Theoretical Framework). Of these 28 variance analyses (14 for each
dispersion of variances measure), only one was preregistered. This was the
variance analysis combining all 16 sample variances of the four anchoring studies.
Upon analyzing the results of this preregistered variance analysis, however, we
realized that the variance analyses assume that the included variances are from the
same population distribution. Assuming homogeneous populations of variances is
unrealistic for the four very different anchoring conditions or studies (i.e., they
have outcome measures on very different scales, such as distances in miles and
babies born). Hence, we included variance analyses based on subgroups, where
we analyzed each anchoring study separately (four variance analyses) or analyzed
each anchoring condition of each study separately (i.e., the low/high anchoring
condition collapsed across gender; eight variance analyses). We also conducted
one variance analysis that combined all variances across studies but takes into
account the subgroups per anchoring condition per study.

We also combined the reversed Fisher method results with the results
from the variance analyses using the original Fisher method. More specifically,
we combined the results from the two reversed Fisher method analyses (one
analysis for the four gender effects and one analysis for the four interaction
effects) with the preregistered variance analysis (the result of this analysis was
used to determine the three most difficult to detect fabricated datasets and
subsequently to reward the “best fabricators”). We additionally applied the
Fisher method to results of the reversed Fisher method (two results) with three
different combinations of results of the variance analyses; based on variance
analyses per anchoring study (four results), per anchoring study × condition
combination (eight results), and across all studies and conditions but taking into
account heterogeneous variances per anchoring condition for each study (one
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result). Hence, the additional Fisher method analyses were based on six, ten,
and three results, respectively. Throughout these combinations, we only use the
SDz dispersion of variance measure for parsimony. Note that the performance
of the Fisher method combining results of various analyses (the reversed Fisher
method and the variance analyses) as we do here is naturally dependent on the
performance of the individual results included in the combination; if all included
results perform well the Fisher method is bound to perform well and vice versa.

Finally, we looked at statistically significant effect sizes. We expected
fabricated statistically significant effects to be larger than genuine statistically
significant effects. As such, we compared the 75 statistically significant anchoring
effects for each of the four anchoring studies separately (not preregistered).

For each of the previously described statistical methods to detect data
fabrication, we carried out AUROC curve analyses. AUROC analyses summarize
the sensitivity (i.e., True Positive Rate [TPR]) and specificity (i.e., True Negative
Rate [TNR]) for various decision criteria (e.g., α = 0, .01, .02, ..., .99, 1). For
our purposes, AUROC values indicate the probability that a randomly drawn
fabricated and genuine dataset can be correctly classified as fabricated or genuine
based on the result of the analysis (Hanley and McNeil 1982). In other words, if
AUROC = .5, correctly classifying a randomly drawn dataset as fabricated (or
genuine) is equal to 50% (assuming equal prevalences). For this setting, we follow
the guidelines of Youngstrom (2013) and regard any AUROC value < .7 as poor
for detecting data fabrication, .7 ≤ AUROC < .8 as fair, .8 ≤ AUROC < .9 as
good, and AUROC ≥ .9 as excellent. We conducted all analyses using the pROC

package (Robin et al. 2011).

Results

Figure 6.4 shows a group-level comparison of the genuine- (k = 36) and fabricated
(k = 39) datasets, which contain four p-values and relevant effect sizes (r) for
each type of effect (gender, anchoring, interaction) per dataset (i.e., 75 × 4 data
points for each plot). These group-level comparisons provide a general overview
of the differences between the genuine and fabricated data. Figure 6.4 (right
and left column) already indicates that there are few systematic differences
between fabricated and genuine summary statistics from the anchoring studies
when statistically nonsignificant effects are inspected (i.e., gender and interaction
hypotheses). However, there seem to be larger differences when we required
participants to fabricate statistically significant summary statistics (i.e., anchoring
hypothesis; middle column). We discuss results bearing on the specific tests for
data fabrication next.

P -value analysis

When we applied the reversed Fisher method to the statistically nonsignificant
effects, results indicated its performance is approximately equal to chance clas-
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Figure 6.4: Density distributions of genuine and fabricated summary statistics
across four anchoring studies, per effect (gender, anchoring, or interaction across
columns) and type of result (p-value or effect size across rows).
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sification. We found AUROC = 0.501, 95% CI [0.468-0.535] for statistically
nonsignificant gender effects and AUROC = 0.516, 95% CI [0.483-0.549] for
statistically nonsignificant interaction effects. For the gender effects, we classified
12 of the 39 fabricated summary statistics as fabricated (α = .01) and 6 of the
36 genuine summary statistics as fabricated (results per respondent available at
osf.io/a6jb4). For the interaction effects, we classified 11 of the 39 fabricated
summary statistics (α = .01) and 8 of the 36 genuine summary statistics as
fabricated (results per respondent available at osf.io/jz57p). In other words,
results from this sample indicated that detection of fabricated data using the
distribution of statistically nonsignificant p-values to detect excessive amounts of
high p-values does not seem promising.

Variance analysis

We expected the dispersion of variances to be lower in fabricated data as opposed
to genuine data. We computed the AUROC values for the variance analyses with
the directional hypothesis that genuine data shows more variation than fabricated
data, using either the dispersion of variance as captured by the standard deviation
of the variances (i.e., SDz) or the range of the variances (i.e., maxz − minz).
AUROC results of all 14 analyses (as described in the Data analysis section)
are presented in Table 6.3, one result for each dispersion of variance measure.
Of these 14 results, we only preregistered the variance analysis inspecting the
standardized variances across all studies under both the SDz and maxz − minz

operationalizations, assuming unrealistically homogeneous population variances
(https://osf.io/tshx8/; second row of Table 6.3). As we did not preregister the
other variance analyses, these should be considered exploratory.

Under the (in hindsight unrealistic) assumption of homogeneous population
variances, our preregistered variance analyses did not perform above chance level.
Using the standard deviation of the variances (i.e., SDz) as dispersion of variance
measure, the results are: AUROC = 0.264, 95% CI [0.235-0.293]. With this
statistic, we classified 0 of the 39 fabricated summary statistics (α = .01) and
0 of the 36 genuine summary statistics as fabricated (results per respondent
available at osf.io/9cjdh). Using the range of the variances (i.e., maxz − minz)
as dispersion of variance, the results are: AUROC = 0.544, 95% CI [0.507-0.58].
With this statistic, we detected 39 of the 39 fabricated summary statistics as
fabricated (α = .01) and 36 of the 36 genuine summary statistics as fabricated
(results per respondent available at osf.io/2ts6b). Comparing the results between
SDz and maxz − minz indicates that the range of the variances measure seems
more robust to the violations of the assumption of homogeneous variances than
the standard deviation of the variances measure. Overall these results indicate
that a violation of the homogeneity assumption may undermine analyses on
heterogeneous variances. These assumptions should be made more explicit and
checked whenever possible, to prevent improper use.
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Table 6.3: Area Under Receiving Operator Characteristic (AUROC) values of
each variance analysis and operationalization, including its 95 percent Confidence
Interval. ’Heterogeneity’ assumes unequal population variances for the low- and
high anchoring conditions, whereas ’homogeneity’ assumes equal population
variances across anchoring conditions in the same study. We preregistered only
the analyses in the second row.

Population variance assumption Study SDz maxz − minz

Heterogeneity Overall 0.761 [0.733-0.788] 0.827 [0.8-0.853]
Homogeneity Overall 0.264 [0.235-0.293] 0.544 [0.507-0.58]
Homogeneity Study 1 0.373 [0.339-0.406] 0.488 [0.474-0.502]
Homogeneity Study 2 0.395 [0.36-0.429] 0.634 [0.608-0.66]
Homogeneity Study 3 0.498 [0.463-0.533] 0.563 [0.539-0.588]

Homogeneity Study 4 0.401 [0.367-0.435] 0.561 [0.527-0.594]
Heterogeneity Study 1, low anchoring 0.438 [0.406-0.47] 0.487 [0.481-0.493]
Heterogeneity Study 1, high anchoring 0.615 [0.582-0.647] 0.501 [0.492-0.51]
Heterogeneity Study 2, low anchoring 0.652 [0.621-0.683] 0.625 [0.607-0.643]
Heterogeneity Study 2, high anchoring 0.556 [0.523-0.589] 0.528 [0.515-0.541]

Heterogeneity Study 3, low anchoring 0.643 [0.612-0.674] 0.542 [0.53-0.553]
Heterogeneity Study 3, high anchoring 0.747 [0.719-0.775] 0.691 [0.669-0.712]
Heterogeneity Study 4, low anchoring 0.667 [0.636-0.697] 0.595 [0.577-0.614]
Heterogeneity Study 4, high anchoring 0.798 [0.773-0.823] 0.756 [0.733-0.779]

We conducted exploratory analyses that take into account the heterogeneity
of variances across conditions and studies, which sometimes also resulted in
improved performance to detect data fabrication. Analyses separated per study
or anchoring condition show variable AUROC results (ranging from 0.373-0.798;
rows 3-14 in Table 6.3). Using the standard deviation of variances (i.e., SDz;
row 1 in Table 6.3) in a heterogeneous manner across the conditions and studies,
AUROC = 0.761, 95% CI [0.733-0.788]. With this statistic, we classified 9 of the
39 fabricated summary statistics as fabricated (α = .01) and 0 of the 36 genuine
summary statistics (results per respondent available at osf.io/srpg9). Using the
range of variances (i.e., maxz − minz) in a heterogeneous manner across the
conditions and studies, AUROC = 0.827, 95% CI [0.8-0.853]. With this statistic,
we classified the same 9 of the 39 fabricated summary statistics as fabricated
(α = .01) and 0 of the 36 genuine summary statistics (results per respondent
available at osf.io/93rek).

Combining p-value and variance analyses

Our preregistered analysis combined the homogeneous variance analysis across
studies and conditions with the p-value analyses of the gender and interaction
effects. This combined analysis yielded AUROC = 0.58, 95% CI [0.548-0.611].
With this statistic, we classified 19 of the 39 fabricated summary statistics as
fabricated (α = .01) and 16 of the 36 genuine summary statistics (results per
respondent available at osf.io/hq29t). Given that the combination method would
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be expected to perform not much better than its constituent results it logically
follows that the combination of p-values and variance analyses performs poorly.

The poor performance is in part is due to the unrealistic assumption of
homogeneous variances in the variance analysis; we explored the efficacy of other
combinations that loosen this assumption. First, we split the variance analyses per
study and included four variance analysis results instead of one when we analyzed
them overall; AUROC = 0.605, 95% CI [0.573-0.636]. With this statistic, we
classified 20 of the 39 fabricated summary statistics as fabricated (α = .01)
and 13 of the 36 genuine summary statistics (results per respondent available
at osf.io/r8pf5). Second, we split the variance analyses further, splitting across
conditions within studies. This adds another four variance analyses (a total of
eight); AUROC = 0.684, 95% CI [0.655-0.714]. With this statistic, we classified
25 of the 39 fabricated summary statistics as fabricated (α = .01) and 15 of the
36 genuine summary statistics (results per respondent available at osf.io/sv35k).
Finally, we replaced the original homogeneous variance analysis (row 2 in Table
6.3) with the overall and heterogeneous variance analysis (row 1 in Table 6.3);
AUROC = 0.647, 95% CI [0.616-0.677]. With this statistic, we classified 23 of
the 39 fabricated summary statistics as fabricated (α = .01) and 16 of the 36
genuine summary statistics (results per respondent available at osf.io/zt3nk). As
the AUROCs of the combination method did not exceed that of the variance
analyses alone, we conclude that the combination method failed to outperform
the variance analyses.

Extreme effect sizes

Using the statistically significant effect sizes from the anchoring studies, we
differentiated between the fabricated and genuine results fairly well. Figure 6.4
(middle column, second row) indicates that the fabricated statistically significant
effects were considerably different from the genuine ones. When we inspected the
effect size distributions (r), we saw that the median fabricated effect size across
the four studies was 0.891 whereas the median genuine effect size was considerably
smaller (0.661; median difference across the four anchoring effects 0.23). In
contrast to the fabricated nonsignificant effects, which resembled the genuine data
quite well, the statistically significant effects seem to have been harder to fabricate
for the participants. More specifically, the AUROC for the studies approximate
.75 each (0.743, 95% CI [0.712-0.774]; 0.734, 95% CI [0.702-0.767]; 0.737, 95%
CI [0.706-0.768]; 0.755, 95% CI [0.724-0.786]; respectively). Figure 6.5 depicts
the density distributions of the genuine and fabricated effect sizes per anchoring
study, which shows the extent to which the density of the fabricated effect sizes
exceeds the maximum of the genuine effect sizes. For instance, the percentage of
fabricated statistically significant anchoring effect sizes that is larger than all 36
genuine statistically significant anchoring effect sizes is 59% in Study 1, 64.1%
in Study 2, 53.8% in Study 3, and 66.7% in Study 4. Based on these results, it
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Figure 6.5: Density distributions of genuine and fabricated anchoring effect sizes
for each of the four anchoring studies.

seems that using extreme effect sizes to detect potential data fabrication may be
is a parsimonious and fairly effective method.

Fabricating effects with Random Number Generators (RNGs)

Fabricated effects might seem more genuine when participants used Random Num-
ber Generators (RNGs). RNGs are typically used in computer-based simulation
procedures where data are generated that are supposed to arise from probabilistic
processes. Given that our framework of detecting data fabrication rests on the
lack of intuitive understanding of humans at drawing values from probability dis-
tributions, those participants who used an RNG might come closer to fabricating
seemingly genuine data, leading to more difficult to detect fabricated data. The
analyses presented next were not preregistered.

We split our analyses for those 11 participants who indicated using RNGs
and the remaining 28 participants who indicated not to have used RNGs. Figure
6.6 shows the same density distributions as in Figure 6.4, except that this time
the density distributions of the fabricated data are split between these two groups.

Figure 6.6 suggests that using RNGs may have resulted in less exaggerated
anchoring effect sizes, but still larger than genuine ones. Furthermore, it seems
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Figure 6.6: Density distributions of p-values and effect sizes for the gender effect,
the anchoring effect, and the interaction effect across the four anchoring studies.
This figure is similar to Figure 6.4, except that each panel now separates the
density distributions for fabricated results using a random number generator
(RNG), fabricated results without using a RNG, and genuine effects. Respondents
self-selected to use (or not use) RNGs in their fabrication process.
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that the use of RNGs produced somewhat more uniformly distributed statistically
nonsignficant p-values than those without RNGs. For effect sizes, Table 6.4
specifies the differences in sample estimates of the AUROC between the groups
of fabricated results with and without RNGs (as compared to the genuine data).
These results indicate that the fabricated effect sizes from participants who used
RNGs are relatively more difficult to detect compared to data from participants
who did not use a RNG (illustratively, the simple mean of the left column of Table
6.4 is 0.604 compared to the right column simple mean of 0.797). The numbers
presented inTable 6.4 can be interpreted as the probability that the larger effect
is fabricated, when presented with one genuine and fabricated effect size. For
nonsignificant p-values, we obtained the following AUROC values; gender, with
RNG AUROC = 0.455 95% CI [0.405-0.504], without RNG AUROC = 0.52
95% CI [0.482-0.557]; interaction, with RNG AUROC = 0.601 95% CI [0.558-
0.644], without RNG AUROC = 0.482 95% CI [0.444-0.52]). For the best
performing variance analysis (i.e., heterogeneity over all four anchoring studies
with maxz − minz) classification performance does not seem to be systematically
different between those data fabricated with (AUROC = 0.78 95% CI [0.728-
0.833]) or without RNGs (AUROC = 0.845 95% CI [0.817-0.874]).

Table 6.4: AUROC values for detecting data fabrication based on effect sizes
for those participants who used Random Number Generators (RNGs) and those
participants who did not use RNGs, including 95 percent confidence interval.
Split based on self-report data on whether RNGs were used by the participant.

Study AUROC RNG, k = 11 AUROC no RNG, k = 28

Study 1 0.553 [0.489-0.617] 0.817 [0.785-0.85]
Study 2 0.641 [0.578-0.705] 0.771 [0.734-0.807]
Study 3 0.578 [0.512-0.645] 0.8 [0.767-0.832]
Study 4 0.641 [0.581-0.702] 0.8 [0.764-0.835]

Note that participants self-selected the use of RNGs or not, and that we
did not preregister these analyses. Given the small number of results (11 versus
28), we did not statistically test the differences due to lack of statistical power,
and only present descriptive results.

Discussion

We presented the first controlled study on detecting data fabrication at the
level summary statistics. As far as we could tell, previous efforts only looked
at group-level comparisons of genuine and fabricated data (Akhtar-Danesh and
Dehghan-Kooshkghazi 2003), inspected properties of individually fabricated sets
of data without comparing them to genuine data, or did not contextualize these
data in a realistic study with specific hypotheses (Mosimann, Wiseman, and
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Edelman 1995). We explicitly asked researchers to fabricate results for an effect
within their research domain (i.e., the anchoring effect), which was contextualized
in realistic hypotheses, and compared them to genuine data on the same effect.
We investigated the performance of the reversed Fisher method, variance analyses,
combinations of these two methods, and statistically significant effect sizes to
detect fabricated data.

Methods related to classifying statistically significant summary statistics
(i.e., effect sizes and variance analyses) performed fairly well, whereas those
relating to statistically nonsignificant summary statistics (i.e., p-value analyses)
performed poorly. Non-preregistered results suggest that variance analyses per-
formed similarly or marginally better than using statistically significant effect
sizes in this sample. Hence, we recommend using methods that investigate statis-
tically significant effects to detect potential data fabrication, but prior to their
application their assumptions should be well understood and tested.

We noted that the assumption of homogeneous population variances in the
variance analyses has not previously been explicated nor tested for robustness to
violations. In Simonsohn (2013) it remains implicit that the variances grouped
together in an analysis should arise from a homogeneous population distribution.
Our results indicated that the classification performance of variance analyses
may strongly depend on satisfying this assumption, that is, the performance
of the method is not robust to violations of the homogeneity assumption. The
alternative approach to variance analyses using the range of variances instead
of their standard deviation (i.e., maxz − minz rather than SDz) seemed to be
more robust to violations of the homogeneity assumption. This comparison was
not preregistered and its performance could be studied further. Nonetheless,
based on the success of using the dispersion of variances, we recommend to use
variance analyses with subgrouping of variances into those that are likely to be
from the same population distribution (e.g., based on anchoring condition in the
datasets studied here) and also consider using the range of standard deviations
maxz − minz).

Of all methods we applied, we obtained the best performance using the
heterogeneous variance analyses, which resulted in detecting 9 out of 39 fabricated
data sets (23%) and no false positives (0; α = .01). Performance using (only)
the statistically effect sizes was comparably good. Consequently, we failed to
detect the majority of the fabricated datasets using statistical methods based on
nonsignificant p-values, consistency of variances, and effect sizes. More worrisome
is that for many methods the false positive rate was high, in one case even 100%
(using maxz − minz based on the assumption of homogeneity of all variances).

Our finding that statistical analyses of data with fabrication detection
tools may not be robust to violations of their assumptions has implications for
investigations of research misconduct. Our results demonstrate that improper
model specification can result in classifying anything as potentially fabricated
(i.e., high false positive rate), which comes at high costs for all parties involved.
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Moreover, improper model specification may also result in a high false negative
rate, as in our homogeneous variance analyses, resulting in a much too low
AUROC values (e.g., AUROC = .264). Our sometimes high false positive and
false negative rates are especially worrisome in light of widespread application
of statistical methods to screen for potential problematic studies (e.g., Carlisle
2017a; Loadsman and McCulloch 2017), when their validation is based on the
criterion that the methods proved useful to detect problematic data in isolated
research misconduct cases the past (e.g., Carlisle 2012; Miller 2015; Carlisle and
Loadsman 2016). For instance, the usefulness of the reversed Fisher method to
detect problematic data in the past (Anonymous 2012; Levelt 2012) should not
be taken as evidence of its validity for general application. Our study highlights
the importance of validating methods with genuine reference data, before using
these tools to flag potential problematic papers. Note that concerns like this have
been expressed before (Kharasch and Houle 2017a; Mascha, Vetter, and Pittet
2017; Piraino 2017; Kharasch and Houle 2017b; Moppett 2017).

Our results warrant further research on the underlying assumptions and va-
lidity of statistical approaches to detect potential data fabrication using summary
statistics. This further research can help determine or prevent model misspec-
ification, both in the assumptions of the statistical models and the psychology
theory for specific ways of fabricating data before standard application of these
methods in practice (see also Carlisle 2017b).

For the reversed Fisher method that focused on the overly consistent results
for effects that are expected to follow the null hypothesis, results indicated that
participants did not fabricate excessive amounts of high p-values (i.e., closer to 1
than expected by chance) when told to fabricate statistically nonsignificant effects.
This ran against our prediction that the absence of a true effect would prompt
fabricators to fabricate results that do not contain enough randomness, resulting
in too many high p-values. This is particularly noteworthy because this tenet
has been helpful or even central to several known cases of research misconduct
(Anonymous 2012; Levelt 2012). However, different from these specific cases,
the results we asked participants to fabricate were first-order results (i.e., those
immediately observable to the participants), whereas in the Stapel and Förster
case, the reversed Fisher method showed potential data fabrication across second
order results (i.e., similarity of means of experiments of different papers in the
case of Stapel, or linearity test of first-order results in case of Förster). Hence,
although our results indicate that the reversed Fisher method often does not
perform well for inspecting first-order results, it may still perform well in isolated
cases, particularly when applied to higher order results (see also Haldane 1948).

Results of our reversed Fisher method are inexact because we used dependent
fabricated results, which we did not take into account in our analyses. More
specifically, for the p-value analyses we analyzed the four p-values from (for
example) the gender effect across the four fabricated studies for one participant.
This might have violated the assumption of independence, hence may have resulted
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in biased results of this test. Neither our analyses of the effect sizes nor our
variance analyses suffer from this issue.

Analyses combining different data fabrication tools may not perform better
than analyses based on a single tool, which also has implications for research
misconduct investigations. First, a fabricated dataset does not imply that all
tools should hint at data fabrication; fabricated data may resemble genuine data
in some respects but not in others. Second, focusing on one aspect that best
distinguishes fabricated from genuine data may perform best. The problem is then
to identify that aspect, preferably before conducting the investigation. Our study
suggests to focus on the analysis of properties of statistically significant effect
sizes, whereas some fraud cases suggested to focus on properties of statistically
nonsignificant effect sizes. We recommend, in cases of multiple independent
possibly fabricated studies, to use several tools to identify possible fabrication in
one study, and then apply and test the tools that worked to the other possibly
fabricated studies (cross-validation). Importantly, we wish to emphasize that it
does not make sense to require that all tools signal fabrication; as fabricated data
may resemble genuine data in some respects, absence of one or several signals
should not be considered as evidence of no fabrication.

We also considered the possibility that the use of a Random Number Gen-
erator (RNG) to fabricate summary statistics could decrease the probability of
detecting a fabricated dataset. Although we did not preregister these analyses,
descriptive results suggest that using RNGs decreases the performance of using
effect sizes to classify fabricated from genuine data. On the other hand, using
RNGs did not substantially decrease the performance of the variance analysis that
analyzed the effect sizes bearing on anchoring. Note that our results are solely
descriptive due to too small group sizes for meaningful comparisons. We will
investigate in Study 2 whether using RNGs affects the performance of detecting
data fabrication in a similar fashion and revisit this issue in the general discussion.

We note that our presented results might be particular to the anchoring
effect and not replicable with other effects. First, as opposed to many other
effects in psychology, many data on the anchoring effect are already available and
fabricators may have used these data when fabricating theirs. Second, fabrication
strategies may be dependent on the type of effect or measurement that is being
fabricated. In the anchoring studies, data needed to be fabricated for numbers
that are in the hundreds or thousands. Such relatively large values might feel
more unintuitive to think about than smaller numbers in the singles or tens that
might appear in other research contexts. Hence, we might be better at detecting
potential data fabrication in data of our study compared to most other studies
because of this increased lack of intuitiveness. Other kinds of studies that are
easier for fabricators to think about in terms of fabricating realistic data might
prove more difficult to classify. For example, fabrication of data of Likert scales
may be more difficult (or easier) to detect than fabrication of continuous data.

Despite testing various statistical methods to detect data fabrication, we did
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not test all available statistical methods to detect data fabrication in summary
statistics. SPRITE (Heathers et al. 2018), GRIM (Brown and Heathers 2016),
and GRIMMER (Anaya 2016) are some examples of other statistical methods
that test for problematic or fabricated summary statistics (see also Buyse et al.
1999). However, these methods were not applicable in the studies we presented,
because they require ordinal scale measures. It seems that, combined with the
question of whether current results of detecting fabricated data replicate in Likert
scale studies, validating these other methods would be a fruitful avenue for further
research.

Study 2 - detecting fabricated individual level
data

In Study 2 we tested the performance of statistical methods to detect fabrication
of individual level (or raw) data. Our procedure is comparable to that used in
Study 1: We again asked actual researchers to fabricate data that they thought
would go undetected. However, instead of summary statistics, in Study 2 we asked
participants to fabricate lower level data (i.e., individual level data) and included
a face-to-face interview in which we debriefed participants on how they fabricated
their data (Hartgerink et al. 2017). A preregistration of this study occurred
during the seeking of funding (Hartgerink, Wicherts, and Assen 2016) and during
data collection (https://osf.io/fc35g). Just like Study 1, this study was approved
by the Tilburg Ethics Review Board (EC-2015.50; https://osf.io/7tg8g/).

To test the validity of statistical methods to detect data fabrication in
individual level data, we investigated individual level data of the classic Stroop
experiment (Stroop 1935). In a Stroop experiment, participants were asked to
determine the color a word is presented in (i.e., word colors) and where the word
also reads a color (i.e., color words). The presented word color (i.e., “red”, “blue”,
or “green”) can be either presented in the congruent color (e.g., “red” presented
in red) or an incongruent color (e.g., “red” presented in green). The dependent
variable in a Stroop experiment is the response latency, typically in milliseconds.
Participants in actual Stroop studies are usually presented with a set of these
Stroop tasks, where the mean and standard deviation per condition serve as the
individual level data for analyses (see also Ebersole et al. 2016). The Stroop
effect is often computed as the difference in mean response latencies between the
congruent and incongruent conditions.

Methods

Data collection

We collected twenty-one genuine data sets on the Stroop task from the Many
Labs 3 project (https://osf.io/n8xa7/; Ebersole et al. 2016). Many Labs 3 (ML3)
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includes 20 participant pools from universities and one online sample (the original
preregistration mentioned 20 data sets, accidentally overlooking the online sample;
Hartgerink, Wicherts, and Assen 2016). Similar to Study 1, we assumed these
data to be genuine due to the minimal individual gains for fabricating data and the
transparency of the project. Using the original raw data and analysis script from
ML3 (https://osf.io/qs8tp/), we computed the mean (M) and standard deviation
(SD) of response latencies for each participant in both within-subjects conditions
of congruent trials and incongruent trials (i.e., two M -SD combinations for each
participant). This format was also the basis for the template spreadsheet that
we requested participants to use to supply the fabricated data (see also Figure
6.7 or https://osf.io/2qrbs/). We calculated the Stroop effect as a t-test of the
difference between the congruent and incongruent conditions (H0 : µX̄1−X̄2

= 0).

We collected 28 fabricated data sets on the Stroop task in a two-stage sam-
pling procedure. First, we invited 80 Dutch and Flemish psychology researchers
who published a peer-reviewed paper on the Stroop task between 2005-2015 as
available in the Thomson Reuters’ Web of Science database. We selected Dutch
and Flemish researchers to allow for face-to-face interviews on how the data
were fabricated. We chose the period 2005-2015 to prevent a decrease in the
probability that the corresponding author would still be reachable via the given
corresponding email address. The database was searched on October 10, 2016 and
80 unique emails were retrieved from 90 publications. Two of these 80 researchers
(2.5%) we contacted actually ended up participating in our study. Subsequently,
we implemented a second, unplanned sampling stage where we collected emails
from all PhD-candidates, teachers, and professors of psychology-related depart-
ments at Dutch universities. This resulted in 1,659 additional unique emails that
we subsequently invited to participate in this study. Due to a malfunction in
Qualtrics’ quotum sampling, we oversampled, resulting in 28 participants instead
of the originally intended 20 participants. The second sampling scheme was not
part of the original ethics application, but was considered crucial to obtain a
sufficiently large sample.

Each participant received instructions on the data fabrication task via
Qualtrics and was allowed to fabricate data until the face-to-face interview took
place. In other words, each participant could take the time they wanted or needed
to fabricate the data as extensively as they liked. Each participant received
downloadable instructions (original: https://osf.io/7qhy8/) and the template
spreadsheet via Qualtrics (see Figure 6.7; https://osf.io/2qrbs/). The interview
was scheduled via Qualtrics with JGV, who blinded the rest of the research
team from the identifying information of each participant and the date of the
interview. All interviews took place between January 31 and March 3, 2017. To
incentivize researchers to participate, they received 100 euros for participation;
to incentivize them to fabricate (supposedly) hard to detect data they could
win an additional 100 euros if they belonged to one out of three top fabricators.
Participants were not informed about how we planned to detect data fabrication;
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Figure 6.7: Example of a filled out template spreadsheet used in the fabrication
process for Study 2. Respondents fabricated data in the yellow cells and green
cells, which were used to compute the results of the hypothesis test of the condition
effect. If the fabricated data confirmed the hypotheses, a checkmark appeared
(upper right). This template is available at https://osf.io/2qrbs.
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we used the combined Fisher method (described next). JGV transcribed the
contents of the interview and CHJH blind-reviewed these transcripts to remove
any potentially personally identifiable information (these transcripts are freely
available for anyone to use at https://doi.org/10.5281/zenodo.832490).

Data analysis

To detect data fabrication in individual level data using statistical tools, we
performed a total of sixteen analyses per dataset (preregistration: https://osf.io/
ecxvn/) for each of the 21 genuine datasets and 28 fabricated datasets. These
sixteen analyses consisted of four Newcomb-Benford Law (NBL) digit analyses,
four terminal digit analyses, two variance analyses, four multivariate association
analyses (deviated from preregistration in that we used a parametric approach
instead of the planned non-parametric approach), a combination test of these
methods, and effect sizes at the summary statistics level (the latter test replicated
Study 1 and was not preregistered). We had one dataset for each participant
fabricating data and for each lab in the Many Labs study, amounting to 49
datasets.

For the digit analyses (NBL and terminal), we separated the 25 Ms and 25
SDs per within-subjects condition and conducted χ2-tests for each per data set.
As such, for one data set, we conducted digit analyses on the digits of (i) the mean
response latencies in the congruent condition, (ii) the mean response latencies in
the incongruent condition, (iii) the standard deviation of the response latencies in
the congruent condition, and (iv) the standard deviation of the response latencies
in the incongruent condition. For the NBL, we used the first (or leading) digit,
whereas for the terminal digit analyses we tested the same sets but on the final
digit.

For the variance analyses, we analyzed the 25 standard deviations of the
response latencies in the congruent condition for excessive consistency separately
from the 25 standard deviations of the incongruent condition. We conducted
this analysis for each genuine and fabricated dataset, using the maxz − minz

operationalization (not preregistered; based on results from Study 1 indicating
that it is more robust to violations of the assumption of equal variances).

For the multivariate association analyses, we analyzed four correlations
between 25 pairs of fabricated statistics (both Ms and SDs) and compared this
correlation to the corresponding distribution of correlations for genuine data. More
specifically, we did this for the (i) correlation between the means of congruent-
and incongruent conditions, (ii) standard deviations of both conditions, (iii)
means and standard deviations within the congruent condition, and (iv) means
and standard deviations within the incongruent condition. We compared these
correlations to the corresponding correlations for the genuine data after computing
a random-effects estimate of the observed (Fisher transformed) correlations from
the Many Labs 3 data. The estimated effect distribution served as the parametric
model for each of those four relations under investigation (N ∼ (µ, τ)). Using
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the estimated parametric distribution, we computed two-tailed p-values for each
fabricated and genuine dataset.

We also combined the terminal digit analyses, the variance analyses, and
the analyses based on multivariate associations using the Fisher method for
each dataset. More specifically, we included the p-values of ten statistical tests;
four terminal digit analyses, two variance analyses, and four analyses of the
multivariate associations. The results of this test served as the basis for selecting
the top three fabricators. We excluded the NBL digit analyses because we a priori
expected that psychological measures (e.g., response times) are rarely true ratio
scales with sufficient range to show the NBL properties in the first digit (Diekmann
2007), hence that this type of analysis would not be productive in detecting data
fabrication in these types of data (preregistration: doi.org/10.3897/rio.2.e8860).

Study 1 showed that effect sizes are a potentially valuable tool to detect data
fabrication, which we exploratively replicate in Study 2. This was not preregistered
because we had not yet determined results of Study 1 before designing Study
2. Based on the genuine and fabricated data sets, we computed effect sizes for
the Stroop effect based on the effect computation from the Many Labs 3 scripts
(https://osf.io/qs8tp/). Using a t-test of the difference between the congruent and
incongruent conditions (H0 : µ = 0) we computed the t-value and its constituent
effect size as a correlation using (Hartgerink, Wicherts, and Van Assen 2017)

r =

√

√

√

√

F ×df1

df2

F ×df1

df2

+ 1
(6.7)

where df1 = 1, F = t2, and df2 is the degrees of freedom of the t-test.
Similar to Study 1, we computed the AUROC for each of these statistical

methods to detect data fabrication. We again conducted all analyses using the
pROC package (Robin et al. 2011). We also explored whether using Random
Number Generators (RNGs) may have affected the detection of fabricated data in
our sample by running AUROC analyses comparing genuine data and fabricated
data with RNGs, or by comparing genuine data and fabricated data without
RNGs.

Results

Digit analyses

Figure 6.8 shows the aggregated first digit distributions of the genuine and
fabricated data side-by-side with the expected first digit distributions according
to the NBL. In the first row the first digit distributions of the means are presented,
for both the congruent condition (left column) and incongruent condition (right
column). The first row indicates that the first digit distributions of the genuine
and fabricated mean response times do not adhere to the NBL. The first digit
distributions of the standard deviations (second row) adhere to the NBL more
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Figure 6.8: First (Benford) digit distributions of the (in)congruent means and
standard deviations, aggregated across all Many Labs 3 datasets, across the
datasets fabricated by the participants, and the theoretically expected proportions.

than the means at first glance, but still deviate substantially from what would
be expected according to the NBL. These aggregate results already suggest that
using the NBL to test for data fabrication is definitely not appropriate for means
and probably also not appropriate for standard deviations. Figure 6.8 also shows
that fabricated means and standard deviations differ from genuine means and
SDs. Fabricated means seem systematically larger, with more dispersion than
their genuine counterparts. Fabricated incronguent SDs seem smaller than those
of genuine SDs. Note, however, that we did not plan to detect fabricated data
using values or distributions of means and SDs directly (but see also the Variance
analyis section next).

The AUROC results indicate that using the Newcomb-Benford Law is at
best on par with chance level classification of genuine and fabricated data. More
specifically, for the congruent standard deviations, using the results of the NBL
test are on par with chance classification (AUROC = 0.553, 95% CI [0.389-0.717]).
Using the congruent standard deviations, we detected 19 of the 28 fabricated
ones as fabricated (α = .01) and 13 of the 21 genuine ones as fabricated (results
per respondent available at osf.io/dsbge). Values from other measures showcase
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that the fabricated data are actually more in line with the NBL than the genuine
data. Consequently, the genuine data and fabricated data are often wrongly
classified. This is reflected by the AUROC values that are significantly smaller
than .5. For congruent means, AUROC = 0.039, 95% CI [0-0.087]; Using the
congruent means, we detected 28 of the 28 fabricated ones as fabricated (α = .01)
and 21 of the 21 genuine ones as fabricated (results per respondent available at
osf.io/sgda8). For incongruent means, AUROC = 0.024, 95% CI [0-0.059]; Using
the incongruent means, we detected 28 of the 28 fabricated ones as fabricated
(α = .01) and 21 of the 21 genuine ones as fabricated (results per respondent
available at osf.io/xjsd6). For incongruent standard deviations, AUROC = 0.156,
95% CI [0.045-0.268]; Using the incongruent standard deviations, we detected 18
of the 28 fabricated ones as fabricated (α = .01) and 21 of the 21 genuine ones as
fabricated (results per respondent available at osf.io/2sd7w).

Figure 6.9 shows the aggregated terminal digit distributions of the genuine
and fabricated data side-by-side with the expected terminal digit distributions.
The first row depicts the terminal digit distributions of the means, for both the
congruent (left column) and incongruent (right column) conditions. The first
row shows that the terminal digit distributions of the genuine and fabricated
mean response times are approximately uniform with only minor differences
between the genuine and fabricated data. The terminal digit distributions of the
standard deviations (second row) show slightly more deviation from uniformly
distributed digits, but still approximate the expected distribution of terminal
digits reasonably well. Based on these aggregate digit distributions, it seems
like the classification based on the terminal digit analyses will not be able to
differentiate between genuine and fabricated data particularly well.

The AUROC results indeed show that terminal digit analyses perform
close to chance level classification of genuine and fabricated data. More specifi-
cally, for the incongruent standard deviations, AUROC = 0.511, 95% CI [0.343-
0.679]; congruent means, AUROC = 0.383, 95% CI [0.222-0.543]; incongruent
means, AUROC = 0.387, 95% CI [0.226-0.548]; congruent standard deviations,
AUROC = 0.401, 95% CI [0.241-0.562]. The terminal digit analysis classified at
most 2 of the 28 fabricated datasets as being fabricated (and 2 of the 21 genuine
data as being fabricated; α = .05).

Variance analysis

Figure 6.10 indicates that the standard deviations of genuine data are larger on
average and more dispersed. Results indicate that the fabricated and genuine
data can be perfectly separated based on results from the variance analyses
(maxz − minz). More specifically, the AUROC of both the variance analyses for
the congruent standard deviations and the incongruent standard deviations is
AUROC = 1 (confidence intervals cannot be reliably computed in this case). We
note that these results are likely to be sample specific and do not mean to imply
that this method will always be able to separate the genuine- from fabricated
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Figure 6.9: Terminal digit distributions for the (in)congruent means and standard
deviations, aggregated across all Many Labs 3 datasets or across the datasets
fabricated by the participants.
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Figure 6.10: Density distributions of the standard deviations of the response
times in the congruent conditions (left) and the incongruent conditions (right),
split for the genuine and fabricated data. X-axis truncated at 1000.

data perfectly. However, they also indicate that given the number of standard
deviations participants had to fabricate (k = 25), it was difficult for participants
to make them look similar to those found in the genuine data. This method is
particularly difficult to apply if no reference distribution of (arguably) genuine
data is available.

Upon closer inspection of the individual level results of the variance analyses
per data set, all p-values are statistically significant if compared to traditional
α levels (i.e., .05; maximum 0.006 across both the genuine- and the fabricated
data). As a result, we recommend that variance analyses are only used when a
reference model is available (in line with the results from Study 1).

Multivariate associations

We expected that fabricated multivariate associations would be different from
genuine multivariate associations. Using the parametric test of multivariate
associations, results indicate classification is fair to good in the current sample.
Figure 6.11 shows the density distributions of the various multivariate associa-
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Figure 6.11: Density distributions of the multivariate relations (first two rows)
and the effect sizes (final row), split for the genuine and fabricated data.

tions (rows 1-2), which already indicates that genuine data are less dispersed
and more normally distributed when compared to the fabricated multivariate
associations. Using the parametric estimates of the associations to test the vari-
ous sets of multivariate relations between the (in)congruent means and standard
deviations, AUROC values range from 0.549 through 0.842. More specifically,
the AUROC for the various sets of relations (going clockwise with the first four
figures in Figure 6.11) are AUROC = 0.818, 95% CI [0.689-0.947] for M -SD
in the congruent condition, AUROC = 0.833, 95% CI [0.705-0.962] for M -SD
in the incongruent condition, AUROC = 0.714, 95% CI [0.568-0.861] for M -M
across conditions, AUROC = 0.549, 95% CI [0.379-0.72] for SD-SD across con-
ditions. The percentage of fabricated multivariate relations that is larger than
all 21 genuine multivariate relations is 7.1% for M -SD congruent, 0% for M -SD
incongruent, 7.1% for M -M across, and 14.3% for SD-SD across. Overall, it
seems that comparing multivariate associations to known genuine ones is a good
way to detect (potential) data fabrication, with the connotation that a reference
distribution is needed.
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Combining variance, terminal digit, and associational analyses

As preregistered, we combined both variance analyses, the terminal digit analyses,
and the tests of the multivariate associations with the Fisher method (10 results in
total). Results of the combined analysis perform excellent at classifying fabricated
and genuine data in this sample. More specifically, the results for the combination
method indicate AUROC = 0.959 (95% CI [0.912-1]). This combination method
is affected by the effectiveness of the individual methods involved; given that
the performance of the multivariate associations and variance analyses ranged
from sufficient to excellent, it makes sense that this combination method also
performs quite well. The maximum p-value of the combination of these tests for
either the genuine or fabricated data is 0.003 (results per respondent available at
osf.io/rke9q), indicating that all datasets would be classified as fabricated if we
did not compare the results from the genuine and fabricated data.

Extreme effect sizes

Figure 6.11 (final row) shows the density distributions of the fabricated and
genuine Stroop effect sizes, which is an excellent classifier of fabricated/genuine
data in this sample. More specifically, the classification performance for detecting
fabricated data in this sample is AUROC = 0.981, 95% CI [0.954-1] (the 95% CI
is truncated at 1), with fabricated effect sizes generally being larger than genuine
effect sizes. Upon closer inspection of the effect sizes, we note that only three (of
28) fabricated effect sizes fall within the range of genuine effect sizes (results per
respondent available at osf.io/28zy4). As such, this is a particularly good result
within this sample (we did not preregister this analysis).

Fabricating effects with Random Number Generators (RNGs)

Using Random Number Generators (RNGs) in the individual level data fabrication
procedure did not seem to have a substantial effect on how genuine the fabricated
results appeared. We explored this in our data (i.e., not preregistered) and Table
6.5 presents the AUROC values split on participating researchers who said they
used (k = 19) or did not use RNGs (k = 9) to fabricate data (based on manual
coding of the interview transcripts). Noteworthy from our exploration is that the
effect size distribution seems approximately similar for both data fabricated with
and without RNGs (Figure 6.12). Given these minor and inconsistent changes to
the density distributions, we do not regard RNGs as having substantial effects on
the effectiveness of statistical methods to detect data fabrication in this sample.

Discussion

Our second study investigated how well statistical methods that use individual-
level (raw) data can distinguish fabricated data from genuine data. To this end,
we replicated the procedure from Study 1 and asked researchers to fabricate

143

https://osf.io/rke9q
https://osf.io/28zy4


0

2

4

0.00 0.25 0.50 0.75 1.00

Multivariate relation

D
e
n
s
it
y

M−SD congruent

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00

Multivariate relation

D
e
n
s
it
y

M−SD incongruent

0

2

4

0.00 0.25 0.50 0.75 1.00

Multivariate relation

D
e
n
s
it
y

M−M across

0

1

2

3

0.00 0.25 0.50 0.75 1.00

Multivariate relation

D
e
n
s
it
y

SD−SD across

0

5

10

15

0.00 0.25 0.50 0.75 1.00

Effect size (r)

D
e
n
s
it
y

Fabricated, RNG: FALSE

Fabricated, RNG: TRUE

Genuine, RNG: NA

Effect size (r)

Figure 6.12: Density distributions of the multivariate relations (first two rows)
and the effect sizes (final row), split for the genuine data, the fabricated data
without using Random Number Generators RNGs), and fabricated data with
using RNGs.
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Table 6.5: AUROC values with 95 percent confidence intervals for each test, when
split for those with Random Number Generators (RNGs) and those without.

Test With RNG (k=19) Without RNG (k=9)

Benford, congruent means 0.035 [0-0.087] 0.048 [0-0.144]
Benford, congruent sds 0.506 [0.315-0.698] 0.651 [0.431-0.87]
Benford, incongruent means 0.023 [0-0.064] 0.026 [0-0.082]
Benford, incongruent sds 0.115 [0.008-0.223] 0.243 [0.015-0.472]
Combination with Fisher method 0.957 [0.9-1] 0.963 [0.895-1]

Effect size (r) 0.985 [0.957-1] 0.974 [0.918-1]
Multivariate association, M-M across 0.662 [0.481-0.842] 0.825 [0.603-1]
Multivariate association, M-SD congruent 0.85 [0.707-0.992] 0.751 [0.488-1]
Multivariate association, M-SD incongruent 0.802 [0.637-0.967] 0.899 [0.702-1]
Multivariate association, SD-SD across 0.484 [0.272-0.695] 0.688 [0.421-0.955]

Parametric test of Multivariate association, M-M across 0.662 [0.481-0.842] 0.825 [0.603-1]
Parametric test of Multivariate association, M-SD congruent 0.85 [0.707-0.992] 0.751 [0.488-1]
Parametric test of Multivariate association, M-SD incongruent 0.802 [0.637-0.967] 0.899 [0.702-1]
Parametric test of Multivariate association, SD-SD across 0.847 [0.717-0.977] 0.831 [0.671-0.991]
Terminal digits, congruent means 0.388 [0.206-0.57] 0.37 [0.132-0.609]

Terminal digits, congruent sds 0.439 [0.253-0.624] 0.323 [0.087-0.559]
Terminal digits, incongruent means 0.36 [0.186-0.534] 0.444 [0.181-0.708]
Terminal digits, incongruent sds 0.573 [0.383-0.763] 0.381 [0.162-0.6]
Variance analysis, congruent sds (maxmin) 1 [1-1] 1 [1-1]
Variance analysis, incongruent sds (maxmin) 1 [1-1] 1 [1-1]

data for individual participants for the classic Stroop task. We also collected
(arguably) genuine data from the labs involved in the Many Labs study, which
included the classic Stroop task. As such, we had both genuine and fabricated
data sets on the same effect.

Using these data sets we attempted to classify genuine and fabricated indi-
vidual level data using digit analyses, variance analyses, multivariate associations,
and effect sizes. Results of preregistered analyses indicate that digit analyses of
raw data performed at chance level, variance analyses of individual level data
performed excellently, and analyses of multivariate relations between variables
in the individual level data performed fairly to excellently. Moreover, the sum-
mary statistic effect size appeared to strike a surprisingly good balance between
efficacy and parsimony for classifying fabricated- from genuine individual level
data (only superseded in performance by the more complex variance analyses).
This replicates the finding from Study 1 that effect sizes are a valuable piece of
information to discern genuine from fabricated data. Fabricators’ use of Random
Number Generators (RNGs) did not appear to have a consistent relation with
classification performance with individual level data.

Our results confirmed our prediction that leading digit analyses (i.e., NBL)
are not fruitful in detecting fabricated response times. The Newcomb-Benford Law
is frequently observed in various natural phenomena (e.g., population numbers)
but Figure 6.8 (clearly) indicates this is not the case for summary statistics of
response times. Response times are untruncated ratio measures in theory that
technically satisfy the NBL’s requirements, but in practice response time measures
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are truncated severely (e.g., nobody can respond within <50 milliseconds and
few take longer than 2000 milliseconds). If the NBL is being considered for
applications to detect (potential) misconduct, there need to be indications that
the data generation process is in line with the requirements of the NBL, but we
consider that this is hardly the case for experimental studies in the social sciences.

Going against our predictions, participants fabricated individual level data
that was almost indistinguishable from the genuine individual level data when
looking at terminal digit analyses. Given the theoretical framework we use,
wherein humans are expected to be poor at fabricating stochastic processes that
underlie data collection procedures, we expected that our participants would be
unable to fabricate uniformly distributed terminal digits. Our sample indicates
this is not the case. Moreover, given that these stochastic processes are expected
to be better included when data is fabricated with RNGs, it was a surprise that
this did not affect classification performance. This raises questions with respect to
whether human’s lack of intuitive understanding of uniform probabilities manifests
itself in fabricated individual level data, and if so, under which conditions.

Study 2 replicated the effectiveness of variance analyses (preregistered) and
effect sizes (not preregistered) to detect data fabrication, but failed to replicate
the potential effect of RNGs on detection rates (not preregistered). These mixed
results with respect to the effect of RNGs on the fabricated data suggests that a
lack of intuitions for probabilities does not necessarily manifest itself in fabricated
data. Hence, further research might look into correlating the (lack of) expertise
on probabilities and the kind of data being fabricated. With respect to variance
analyses and effect sizes, our results suggest that these are the most promising
methods when genuine data are available (we further discuss this in the General
Discussion).

Study 2 substantiates two conclusions from Study 1: (1) As methods may
not be robust to violations of its assumptions (e.g., NBL in Study 2), these
methods should be validated with genuine reference data if available, before using
these tools to flag potential problematic papers. This dependence on assumptions
also questions the validity of automatic large-scale scrutiny for data fabrication.
(2) Although some methods did not perform well in Study 2, these methods
have shown to work well to detect data fabrication in some isolated cases of
misconduct. For instance, both the NBL (Cho and Gaines 2007) and the analysis
of terminal digits (Mosimann, Wiseman, and Edelman 1995) have shown their
usefulness in some cases. Similarly, although some methods worked well in Study
2 (i.e. variance analyses, effect size distributions, multivariate associations), this
does not mean that they always work well in detecting fabricated data, or that
they could exonerate anyone when these methods fail to flag any fabrication.
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General discussion

We presented the first two empirical studies on detecting individual sets of
fabricated data, where the fabricated data pertained to existing experiments and
detection occurred purely by using statistical methods. By comparing results
from genuine and fabricated data across summary statistics and individual level
data from two well-known psychology research topics, it seems like classification
based on statistically significant effect sizes strikes the best balance between
parsimony, effectiveness, and usability. On the other hand, variance analyses are
a good option that is somewhat more complex in its application because one
has to identify the sets of variances that can be expected to be homogeneous.
The digit analyses based on the Newcomb-Benford law and the terminal digit
principle did not perform well. We bundled our functions for the variance
and digit analyses and the (reversed) Fisher method in the ddfab (short for
detecting data fabrication) package for R, which is available through GitHub
(https://github.com/chartgerink/ddfab) for application in further research and
development.

We designed the current studies to have sufficient information to detect
data fabrication within a given set of data, but not necessarily to generalize our
results to a larger population. As such, the sample sizes of the presented studies
and the type of effect we chose as the empirical context necessarily restrict the
drawing of more general inferences. Further research should consider whether
these results also apply to other types of data or effects. Nevertheless, our
studies have highlighted that variance- and effect size analysis and multivariate
associations are methods that look promising to detect problematic data. Our
descriptive results with confidence intervals may be regarded as an initial step
in understanding the effectiveness of these methods to detect data fabrication
(although we note those of the Fisher method are incorrect due to dependent
p-values). Next, we highlight some of the difficulties that remain.

All presented results throughout the two studies pertain to relative com-
parisons between genuine and fabricated data. Hence, all statements about the
performance of classification depends on the availability of unbiased genuine data
to compare to and cannot readily be done by using generic decision criteria such
as α-levels. As we saw for example in the variance analyses for Study 2, there was
excellent relative classification, but absolute classification as many researchers are
used to by comparing p < α remained impossible or problematic at best. More
specifically, we would have classified all datasets as fabricated if we had used the
traditional hypothesis testing approach. Hence, we agree with the call to always
include a control sample when applying these statistical tools to studies that look
suspicious (Simonsohn 2013). It is for exactly this reason that we refrain from
formulating general decision rules for the methods presented in this paper. This
might also have implications for systematic applications of statistical methods to
detect potentially problematic data, such as the recent application by Carlisle
(2017a). Carlisle (2017a) used the same method applied in the Fujii case to
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approximately 5,000 clinical trials without any further validation of the methods
(Bolland et al. 2019). Our results suggest that in practice aberrant effects are
best detected in relative fashion, for example in a meta-analysis (corroborating
our own anecdotal experience), or to look for excessively large effect sizes (e.g.,
r > .95) as an initial screening of a set of effects (especially when that effect
size is larger than the reliability of the product of the measures involved). Using
absolute classification (i.e., p < α) can be problematic, considering that many of
the methods we tested (e.g., variance analyses, digit analyses) are not specific
enough and rely on models with strong assumptions, potentially flagging both
genuine and fabricated data as problematic.

Because we included the Many Labs data (R. A. Klein et al. 2014; Ebersole et
al. 2016) we had (arguably) unbiased estimates of the effects under investigation,
which is key for relative comparisons. If we had used the peer-reviewed literature
on the anchoring effect (Study 1) or the Stroop effect (Study 2), we would likely
have found inflated effect size estimates of the anchoring- or Stroop effects due
to publication bias. These inflated effect size estimates could have resulted
in worsened classification of genuine and fabricated data because publication
bias results in inflated effect sizes (Nuijten, Van Assen, et al. 2015) and our
studies indicate fabricating data has a similar effect. That publication bias and
fabricating data might have similar effects in turn conflates the detection of
fabricated data. Collecting an unbiased genuine effect distribution thus requires
careful attention; when arguably genuine effects are collected from a literature
ridden with publication bias and related biases, detection of data fabrication may
be undermined. We recommend retrieving unbiased effect size distributions for an
effect from large-scale replication projects, such as Registered Replication Reports
(e.g., Cheung et al. 2016) and building systemic efforts to reduce publication bias
(see also Hartgerink and Van Zelst 2018).

Our results depend on the (majority of the) Many Labs data being genuine.
We remain confident that (most of) the Many Labs data are genuine for a variety
of reasons. First, the sheer number of people involved in these projects results
in a distribution of responsibility that also limits the effect if one person were
to fabricate data. Second, the number of people involved also minimizes the
individual reward it would have to fabricate data given that any utility would
have to be shared across all researchers involved. Third, the projects actively
made all individual research files available and participating researchers in the
ML were made aware of this from the very start. Fourth, the analyses of the
Many Labs are not conducted by the same individuals who collected the data.
We of course cannot exclude the possibility of malicious actors in the ML studies,
but also have no evidence that suggests there would be.

Highly relevant to the application of these kinds of methods in screening
for problems in the published literature (e.g., Bik, Casadevall, and Fang 2016b;
Carlisle 2017a) or during peer review is that the diagnostic value of any instrument
is dependent on the base rate of afflicted cases (here: fabricated data). In our
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study design, we built in a high prevalence of data fabrication, which directly
affects the positive predictive value of these statistical methods. The positive
predictive value is the chance of getting a true positive when a positive result
is found. More specifically, Study 1 by design has a prevalence of 52% of data
fabrication and Study 2 has a prevalence of 57%. This strongly affects the positive
predictive value (PPV) of these methods if they would be applied in a more
general setting. After all, even if we could classify all fabricated data correctly
and falsely regard genuine data as fabricated in 5% of the cases, then with a
prevalence of 2% (Fanelli 2009) the positive predictive value would only be 29%.
This is a best-case scenario (see also Stricker and Günther 2019) that would
cause approximately 1 out of 3 cases of “detected data fabrication” to be false.
Hence, we do not recommend attempting to detect data fabrication on statistical
methods alone.

We do advise to use some of the more successful statistical methods as
screening tools in review processes and as additional tools in formal misconduct
investigations where prevalence is supposedly higher than in the general population
of research results. We note that this should only happen in combination with
evidence from other sources than statistical methods (e.g., focusing on practical,
methodological, or substantive aspects). As we mentioned before, excessively large
effect sizes might be used as a screening approach for further manual or in-depth
investigation, but we warn against the potential for confirmation bias that results
from these earlier tests might create. As such, if any of these statistical tools are
used, we recommend to solely use them to screen for indications of potential data
anomalies, which are subsequently further inspected by a blinded researcher to
prevent confirmation bias and using a rigorous protocol that involves due care
and due process.

We note that our studies have been regarded as unethical by some due to the
nature of asking participants to fabricate data (see for example Ellemers 2017).
We understand and respect that asking researchers to show one of the most widely
condemned scientific behaviors is risky. While designing these studies, we also
asked ourselves whether this was an appropriate design and ultimately regarded
it was appropriate for several reasons. First, there was little utility in simulating
potential data fabrication strategies because there is little to no knowledge of how
researchers actually fabricate data. Second, the cases of data fabrication known
to us are severely self-selected (i.e., based on detection bias), which would limit
the ecological validity of any tests we could do on such suspect data. These two
reasons made it necessary for us to collect fabricated data. After we had come to
that decision, we also regarded that we should minimize the negative effect it had
on the researchers participating. We attempted to minimize any negative effect
by using findings from psychology research to decrease potential carry-over of this
controlled misbehavior (Mazar, Amir, and Ariely 2008; although a recent multilab
replication contested this effect, Verschuere et al. 2018). Despite that some of
our participants indicated that they felt initial unease with fabricating data for

149



the study, no participants reached out afterwards indicating feeling conflicted.
Moreover, we actively attempt to maximize returns of the data collected by
sharing all the information we gathered openly and without restrictions. We
consider these reasons to balance the design and ask of our study from our
participants.

Another ethical issue is the dual use of these kinds of statistical methods to
detect data fabrication. Dual use is the ethical issue where the development of
knowledge can be used for both good and evil purposes, hence, whether we should
want to morally conduct this research. A traditional example is the research into
biological agents that might be used for chemical warfare. For our research, a
data fabricator might use our research to test their fabricated data until it goes
undetected based on these methods. There is no inherent way to control whether
malicious actors do this and one might argue that this is sufficient reason to shy
away from conducting this kind of research to begin with. However, we argue that
the potential ethical uses of these methods are substantial (improved detection
of fabricated data by a potential many) and outweigh the potential unethical
uses of these methods (undermining detection by a potential few). Secrecy in
this respect would actually enhance the ability of malicious actors to remain
undetected, because when they find a way to exploit the system fewer people can
investigate suspicions they might have. Hence, we regard the ethical issue of dual
use to ultimately weigh in favor of doing the research, although we recognize that
this might start a competition in undermining detection of problematic data.

Some of our participants in Study 2 indicated using the Many Labs (or
other open) data to fabricate their own dataset. During the interviews, some
participants indicated that they thought this would make it more difficult to detect
their data as fabricated. We did not investigate evidence for this claim specifically
(this could be avenue for further research) but we note that our detection in Study
2 performed well despite some participants using genuine data. Moreover, we
note that open data might actually facilitate the detection of fabricated data for
two reasons. First, open data from preregistered projects improves the unbiased
estimation of effect sizes and multivariate associations, where the peer-reviewed
literature inflates estimated effect sizes due to publication bias and often lacks the
required information to compute these multivariate associations. As we mentioned
before, having these unbiased effect size estimates seem key to detecting issues.
Second, if data are fabricated based on existing data, it is more likely to be
detected if it is based on open data than when based on closed data. For example,
in the LaCour case data were fabricated based on existing data (McNutt 2015;
LaCour and Green 2014). Researchers detected that this data had been fabricated
because it seemed to be a(n almost) linear transformation of variables because
they could access the relevant dataset (Broockman, Kalla, and Aronow 2015).
As such, we see no concrete evidence to support the claim that open data could
lead to worsened detection of fabricated data, but we also recognize that this
does not exclude it as an option. As such, beyond being fruitful for examining
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reproducibility (Munafò et al. 2017) and facilitating new research, open data
may also facilitate the improvement of detecting potential data fabrication. We
see the effect of open data on detection of data fabrication as a fruitful avenue
for further research.

All in all, we see a need for unbiased effect size estimates to provide mean-
ingful comparisons of genuine- and potentially fabricated data, but even when
those are available the (potentially) low positive predictive value of widespread
detection of data fabrication is going extremely difficult. Hence, we recommend
meta-research to focus on more effective systemic reforms to make progress on
the root causes of data fabrication possible. One root cause is likely to be the
incentive system that rewards bean-counts of outputs and does not put them
in the context of a larger collective scientific effort where validity counts. Our
premise in these two research studies was after the fact detection of a problem,
but we recognize that prior to the fact addressing of the underlying causes that
give rise to data fabrication is more sustainable and effective. Nonetheless, we
also recognize that there will always be dishonesty involved for some researchers,
and we recommend that research engage in more penetration testing of how those
with dishonesty can fool a system.
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Part II

Improving science
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Chapter 7

Extracting data from vector
figures in scholarly articles1

It is common for authors to communicate their results in graphical figures, but
what is generally not realised it that it may be possible to reconstruct the original
data from a data based figure (see also the preceding “In Brief” report; Hartgerink
2017a). Figures are typically presented in order to communicate something about
the underlying data, but in an inherently static way. As such, reshaping this
communication is not readily possible, because the original data are not available.
Examples of reuse if the data are available could be as simple as joining data
across figures, standardizing axes across figures for easy comparison, changing
color codings to be more colorblind friendly, or using the data to compute relative
numbers instead of absolute numbers. Moreover, considering the current low
rates of data sharing (Wicherts et al. 2006; Vanpaemel et al. 2015; Krawczyk and
Reuben 2012) and rapid decrease of the odds of successfully requesting those data
(Vines et al. 2014), reusing data effectively becomes impossible in the long run
because data simply are not available any more. Hence, we find it important to
be able to have alternative ways of extracting data solely from results presented
in a scholarly report.

Some figures are stored in bitmap format whereas others are stored in vector
format. In a bitmap format the image is stored by saving the color code for each
pixel. This means that information about overlapping datapoints is lost, because
a pixel in a bitmap does not differentiate between different layers. However, in a
vector format, information is stored on the shape and its position on the canvas,
which is unrestricted to a specific pixel size, and information can be saved. As
such, these images can be enlarged without loss of image quality. Moreover, the
position of those shapes can be retraced in order to reconstruct data points in

1Hartgerink, C. H. J. and Murray-Rust, P. (2018). Extracting data from vector figures in
scholarly articles. arXiv preprint. doi:10.5281/zenodo.839536
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a figure. This can even be done when data points overlap, because unlike in
the pixel format, overlapping shapes are stored alongside each other in a vector
image.

To extract data points manually from a figure, an author may have to
measure the coordinates either on printed pages using a ruler, or from the display
screen using a cursor. This is time-consuming (often hours) and error-prone, and
limited by the precision of the display or ruler. What is often not realised is that
the data themselves are held in the PDF document to much higher precision
(usually 0.0-0.01 pixels), if the figure is stored in vector format. By using suitable
software we can extract the coordinates of the individual data points without
ambiguity or loss of inherent precision. For example, a figure with 10,000 x-values
presented onto 500 pixels will suffer massive overlap in the display but all 10,000
data points are recoverable from the PDF if the figure is stored in vector format.

In the current report, we share the results of the alpha software norma

(github.com/contentmine/norma) to automatically extract raw data from vector
based figures. More specifically, we report the method of data extraction, the
effectiveness, and provide documentation to use the software pipeline. Finally, we
review the potential of using vector based images to extract data from scholarly
reports in light of the results.

Method

Extraction procedure

At the highest level, typical figure components are the body, header, footer, and
axes. Figure 7.1 provides a visual depiction of these figure components. In order
to extract data, recognition of some these components is mandatory, whereas
recognition of others is optional. For example, the header and footer are irrelevant
to data extraction, but are relevant to data comprehension; hence these are
optional. Left- and bottom axes are mandatory, because these typically depict
the scale of the presented plots. Right- and top axes are optional because they
are rarely used as the main axes and mostly just to delimit the plotbox (as far
as we know). Logically, the body of the plot, containing the depicted data, is
mandatory for data extraction.

Based on the plot body, absolute locations of the individual data points are
extracted. Not all vector images are created in a similar way, but in the simplest
scenario with data points depicted as circles, the vector gives three parameters:
the x coordinate of the centre, the y coordinate of the centre, and the radius
r. As such, for a simple circle the underlying vector code (in Scalable Vector
Graphics, SVG) might look as follows:

<circle cx="103.71" cy="121.22" r="25.234" fill-opacity="0"

stroke="#cf1d35"

stroke-width=".26458"/>
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Figure 7.1: Visual representation of the typical components to a data based plot.
This serves as the basis of the software to extract data from the plot body.

This information can be readily extracted after isolating the vector figure
from a PDF file. The current alpha software is primarily developed to operate on
circles of similar size within one plot but can be extended for data depicted in
other ways.

In order to make the absolute locations of the shapes represent the original
data points as accurately as possible, they are mapped onto the identified x-
and y-axis. Although absolute locations retain the relative relations between the
individual data points, they are not representative of the original data. norma

interprets characters as “ladders” of numeric values along the axes. It then
identifies a rectangular box, examines it for tick marks and matches the ticks to
the axial scale values. Subsequently, the location of the data on the x-axis and
y-axis are combined with the information about the scale in order to remap the
absolute locations of the points on the canvas into the original data points. The
current alpha software assumes a linear scale, but logarithmic scales could be
incorporated at a future stage.

Corpus

Using ScienceOpen, we searched for meta-analytic reports that mention “pub-
lication bias”. For this project, we focused on funnel plot figures from meta-
analyses. We restricted our search on ScienceOpen to Open Access reports,
in order to legally redistribute those reports in the Github project repository
(https://github.com/chartgerink/2015ori-3), which facilitates reproducibility of
our procedure. We searched the ScienceOpen database on March 30 2017; this
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Figure 7.2: Screenshot of the search criteria used to search ScienceOpen.

search resulted in 422 reports (see also Figure 7.2), but the webpage presented
only 368 reports.

We manually searched through these 368 reports for vector based funnel
plots. The first author (CHJH) checked each article for (1) whether a funnel plot
was present; (2) if so, how many funnels were present, and (3) whether the funnel
plots were vector based. In order to determine whether a funnel plot was vector
based, a heuristic was used. This heuristic was to try and select the axes (either
x- or y-axis) from the plot. If we could select the labels from the tickmarks, the
plot was deemed to be vector based, otherwise it was dropped. We later found
out this was a liberal heuristic, considering some publishers present vector axes
but incorporate a bitmap plot body (see Figure 7.3 for an example).

Documentation

The following documentation assumes that the Github repository for this project
is cloned and that the working directory is the resulting folder. As such, in order
to walk through these documentation steps, the following code is run from the
shell command line

# Via SSH

git clone git@github.com:chartgerink/2015ori-3

# Via HTTPS (if you don't know what SSH is, use this)

git clone https://github.com/chartgerink/2015ori-3

# Change the working directory

cd 2015ori-3

If git is not available from the commandline, a direct download of the
project is available from Github (https://github.com/chartgerink/2015ori-3/
archive/master.zip). All other dependencies to reproduce the results are included
in the packaged command line tool norma and the user is only required to have
Java installed on their system and available from the commandline.
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Figure 7.3: Example of a funnel plot with selectable axes, but including a bitmap
body. This can be seen by the large difference in quality between the body and
the axes, where the axes are crisp and the body is pixelated. The x-axis is selected.
Funnel plot reproduced under CC BY-NC license from 10.2147/amep.s116699.

In order to extract data from vector figures with the software norma, 5
steps are taken. First, the user needs to organize all original PDFs into one
folder. Second, this folder needs to be converted to a cproject structure. The
cproject structure normalizes the contents for each paper into a ctree, such that
subsequent operations are trivial to standardize (and extensions can be applied
relatively easily). For example, the root folder might contain ctree1.pdf, but
after transforming the root folder into a cproject it contains a folder ctree1/

with fulltext.pdf. By running the command

java -jar bin/norma-0.5.0-SNAPSHOT-jar-with-dependencies.jar \

--project corpus-raw \

--fileFilter '.*/(.*).pdf' \

--makeProject '(\1)/fulltext.pdf'

the folder corpus-raw (--project corpus-raw) is restructured into a
cproject structure, containing a folder for each PDF file (--fileFilter

'.*/(.*).pdf' --makeProject '(\1)/fulltext.pdf'). This results in the
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following folder structure, where fulltext.pdf is the original PDF and ctree1

(etc.) may capture the DOI or other document identifiers.:

cproject/

|--- ctree1

| |--- fulltext.pdf

|--- ctree2

| |--- fulltext.pdf

...

|--- ctreeN

|--- fulltext.pdf

After converting the folder into a cproject, the norma software is applied
to convert the PDF files into separate SVGs per page. In order to convert each
page of the PDF into a separate SVG file, we used the following command

java -jar bin/norma-0.5.0-SNAPSHOT-jar-with-dependencies.jar \

--project corpus-raw \

-i fulltext.pdf --outputDir corpus-raw --transform pdf2svg

resulting in a svg/ folder for each ctree in the structure presented above.
That is, each ctree now contains a folder with one vector file for each page in
the fulltext PDF.

The following step, extracting the plots from the page and saving these,
currently needs to be done manually. We recommend using the FOSS software
Inkscape to do this. For each article, open the pages containing funnel plots, select
the area of the plot, and press the keyboard shortcut SHIFT+1 (i.e., !) to inverse
the selection; then press the delete key to retain only the plot. Subsequently save
the file as Plain SVG (not Inkscape SVG) and structure the folders as follows:

cproject/

|--- ctree1

|--- fulltext.pdf

|--- figures/

|--- figure1/

|--- figure.svg

|--- figure2/

|--- figure.svg

where figure1 contains the first funnel plot (not the figure number in the
paper), figure2/ contains the second funnel plot, etc. If a figure is contained in
a box, it is important to retain only the figure and exclude the box (see Figure
7.4 for an example). In the Github repository, we provide a project folder that
already contains all the clipped images for the corpus under investigation in this
chapter.

Finally, each figure is converted to a data file with norma. The following
command produces an annoted SVG file showing the identified areas from Figure
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Figure 7.4: The original depiction of a funnel plot [left, reproduced under CC BY
license from 10.1186/s13027-016-0058-9] and the manually extracted part that is
subsequently ingested into the norma software (right).

1 and a CSV file containing the data based on the manually clipped figures
available in the corpus-clipped/ folder.

java -jar bin/norma-0.5.0-SNAPSHOT-jar-with-dependencies.jar \

--project corpus-clipped \

--fileFilter "^.*figures/figure(\\d+)/figure(_\\d+)?\\.svg" \

--outputDir corpus-clipped \

--transform scatter2csv

We provide the fully extracted data in the folder corpus-extracted/ of the
Github repository (https://github.com/chartgerink/2015ori-3/archive/master.
zip).

Results

By searching ScienceOpen, we identified 15 meta-analytic reports containing
vector based funnel plots. Upon manual inspection of the 368 initially found
meta-analytic reports, 136 (37%) contained funnel plots. Of those 136 meta-
analytic reports with funnel plots, we identified 32 reports (24%) with vector based
images, assuming the heuristic described in the methods section (i.e., selectable
tick marks). Finally, of those 32 reports with selectable tick marks, 15 reports
contained a vector based plot body (47%).

These 15 reports contained 27 vector funnel plots; we extracted data for 24
funnel plots (89%) using the software. Table 7.1 depicts the DOIs and the figure
numbers for which we extracted or failed to extract data. For the 3 funnel plots
without extracted data, the notes indicate potential reasons as to why we were
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unable to extract the data. This provides indications as to how the software can
be developed further.
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Table 7.1: All meta-analytic reports with vector based funnel plots and the results of automated data extraction. The
figure number depicts the funnel plot order for extraction, the paper figure number depicts the original figure number in
the paper. ’Data extracted’ indicates whether any datafile was generated by the software. ’Nr. extracted data points’
indicates the number of rows in the datafile; ’Nr. manual data points’ indicates the visually discernable data points in
the plot. ’X-axis correct’ and ’Y-axis correct’ depicts whether the extracted data corresponded to the data points of the
funnel plot upon manual inspection.

DOI Fig. nr. Paper fig. nr. Data extracted Nr. extracted data points Nr. manual data points X-axis correct Y-axis correct

10.1186/s12885-016-2685-3 1 4 yes 24 24 yes no
10.1186/s12889-016-3083-0 1 3 yes 5 5 no no
10.1186/s12891-016-1231-4 1 4 yes 6 6 yes no
10.1186/s13027-016-0058-9 1 3 yes 24 22 yes yes
10.1186/s13054-016-1298-1 1 4 no NA NA NA NA

10.1186/s40064-016-3064-x 1 6a no NA NA NA NA
10.1186/s40064-016-3064-x 2 6b yes 21 8 no no
10.1186/s40064-016-3064-x 3 6c yes 19 6 no no
10.1515/med-2016-0052 1 2 yes 23 23 yes yes
10.1515/med-2016-0052 2 4 yes 23 23 yes yes

10.1515/med-2016-0052 3 6 yes 23 23 yes yes
10.1515/med-2016-0099 1 7a yes 7 7 yes yes
10.1515/med-2016-0099 2 7b yes 11 11 yes yes
10.1515/med-2016-0099 3 7c yes 10 10 yes yes
10.1515/med-2016-0099 4 7d yes 7 7 yes yes

10.1590/S1518-8787.2016050006236 1 3 no NA NA NA NA
10.21053/ceo.2016.9.1.1 1 3 yes 18 18 yes no
10.21053/ceo.2016.9.1.1 2 3 yes 13 13 yes no
10.21053/ceo.2016.9.1.1 3 3 yes 14 14 yes yes
10.21053/ceo.2016.9.1.1 4 3 yes 9 9 yes yes

10.2147/BCTT.S94617 1 7 yes 7 7 no yes
10.3349/ymj.2016.57.5.1260 1 7 yes 24 24 yes yes
10.3349/ymj.2016.57.5.1260 2 8 yes 12 12 yes yes
10.3390/ijerph13050458 1 24 yes 15 15 yes no
10.5114/aoms.2016.61916 1 4 yes 5 5 yes no

10.5114/aoms.2016.61916 2 4 yes 4 4 yes no
10.5812/ircmj.40061 1 11 yes 30 30 yes yes
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Of the 24 funnel plots with extracted data, we correctly extracted data for
12 funnel plots (50%). That is, the data points were correctly mapped onto the x-
and y-axis and the number of extracted data points corresponded to the number
of visually discernable data points. For the remaining 12 funnel plots, there was 1
with correctly mapped x- and y-axes, but with an incorrect number of extracted
data points. For the remaining 11 funnel plots, the software did not correctly
map the axes or did not extract the correct number of data points.

Discussion

As the results indicate, vector figures are a fruitful and feasible resource for data
extraction. Based on initial alpha software of norma to extract data from vector
figures, we correctly extracted data from 50% of funnel plots for which data was
extracted. This is a very strict assessment, considering our manual investigation
depicted that four extracted data sets (which used a non-standard direction of
the y-axis) only required a simple reversal of one axis to be 100% accurate (i.e.,
1.23 should be -1.23, etc.), adding a constant to all data points on an axis to
adjust an incorrect mapping, or by rescaling an axis to fit to the logarithmic scale
of one axis. If these manual corrections for four funnel plots are made, 59% of all
funnel plots for which data were correctly extracted.

Considering the alpha software to extract data from vectors was developed in
the timespan of approximately one month, we are hopeful that future development
can refine the data extraction and eliminate some flaws that exist in the alpha
software, including those such as reversed axes, logarithmic axes, etc. The current
software was developed specifically on funnel plots, but its use can be extended to
include other types of plots, such as histograms, etc. Moreover, third-dimensions
such as variable point size provide a fruitful avenue, considering the SVG also
contains information on this (see Extraction procedure).

The main bottleneck for data extraction from vector figures is the publi-
cation of vector figures. In older publications (e.g., scanned articles) this will
be impossible to reconstruct. Our results indicate that the availability of vector
figures in digitally born articles is relatively sparse; only 15 out of 136 papers
with funnel plots contained vector figures in our sample. From our own anecdotal
publishing experience, vector based figures are often converted into bitmaps in
the editing stage, resulting in loss of information. For publishers themselves,
it is also fruitful to use vector based figures where possible, considering figure
quality is no longer an issue as a result. As such, we encourage both authors and
publishers to produce figures in vector format (e.g., PDF, SVG, EPS) instead of
bitmap format (e.g., JPEG, PNG, GIF) when it regards figures presenting results.
Not only will it benefit the quality of the publications, it will also present a new
way of data preservation.
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Chapter 8

As-you-go instead of
after-the-fact: A network
approach to scholarly
communication and
evaluation1

Scholarly research faces threats to its sustainability and has been said to face a
reproducibility crisis (Baker 2016) amongst other pernicious problems such as
access and exclusivity. The underlying cause might be the way we have collectively
designed the reporting and rewarding of research (implicitly or explicitly). The
current scholarly communication system is primarily organized around researchers
who publish static (digital) research papers in scholarly journals. Many of these
journals have artificial page limits (in the digital age), which leads to artificial
scarcity and subsequently increases the perceived prestige of such a journal due to
high rejection rates (71% on average for APA journals in 2016; perma.cc/Q7AT-
RN5C). Furthermore, scholarly communication has become highly centralized,
where over 50% of all papers are published by as little as five publishers (over
70% for social sciences; Larivière, Haustein, and Mongeon 2015). Centralization
has introduced knowledge discrimination, as publishers are able to influence
who can access scholarly knowledge, what gets published, and allows for other
single points of failure to arise with their own consequences (e.g., censorship;
perma.cc/HDX8-DJ8F). In order to have a sustainable scholarly research system,

1Hartgerink, C., and van Zelst, M. (2018). "As-You-Go" Instead of "After-the-Fact":
A Network Approach to Scholarly Communication and Evaluation. Publications, 6(2), 21.
doi:10.3390/publications6020021
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we consider it necessary to implement changes that provide progress on multiple
of these threats at once instead of addressing them individually.

Systems design directly affects what the system and the people who use it
can do; scholarly communication still retains an analog based design affecting
the effectivity of the spread and production of knowledge dissemination (see also
Kling and Callahan 2005). Researchers and institutions are evaluated on where
and how much papers they publish (as a form of prestige). For example, an
oft-used measure of quality is the Journal Impact Factor (JIF; Garfield 2006).
The JIF is also frequently used to evaluate the “quality” of individual papers
under the assumption that a high impact factor predicts the success of individual
papers, which has been debunked many times (Prathap, Mini, and Nishy 2016;
Seglen 1992; Seglen 1994). Many other performance indicators in the current
system (e.g., citation counts and h-indices) resort to generic bean counting.
Inadequate evaluation measures leave universities, individual researchers, and
funders (amongst others) in the dark with respect to the substantive questions
they might have about the produced scholarly knowledge. Additionally, work that
is not aptly captured by the authorship of papers is likely to receive less recognition
(e.g., writing software code) due to reward systems counting publications instead
of contributions (see also perma.cc/MUH7-VCA9). It is unfeasible that a paper-
based approach to scholarly communication can escape the consequences of paper’s
limitations.

A scholarly communication system is supposed to serve five functions, but
can do so in a narrow sense as it currently does, or in a wider sense. These functions
of the scholarly communication system are (1) registration-, (2) certification-, (3)
awareness-, and (4) archival (Roosendaal and Geurts 1998), and (5) incentives
(Sompel et al. 2004). A narrow fulfillment of for example the registration function
would mean that findings that are published are registered, but not all findings are
registered (e.g., due to selective publication; (Franco, Malhotra, and Simonovits
2014)). Similarly, certification is supposed to occur through peer review, but peer
review can exacerbate human biases in the assessment of quality (e.g., statistical
significance increasing the perceived quality of methods; Mahoney 1977).

We propose an alternative design for scholarly communication based on
modular research outputs with direct links between subsequent modules, forming
a network. Whereas a paper-based approach communicates after a whole research
cycle is completed, modular communication was proposed two decades ago (Kircz
1998; Sompel et al. 2004; Kuhn et al. 2016; Groth, Gibson, and Velterop 2010;
Velterop 2010; Nielsen 2012). These modules could be similar to sections of
a research paper, but extend to modular research outputs such as software or
materials. We propose to implement this modular communication on an “as-
you-go” basis and include direct links to indicate provenance. This respects the
chronological nature of research cycles and decreases the possibility for pernicious
problems such as selective publication and making predictions after results are
known (HARKing; Kerr 1998).
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With a network structure between modules of knowledge, we can go beyond
citations and facilitate different questions about single- or collectives of knowledge.
For example, how central is a single module in the larger network? Or: How
densely interconnected is this collective of knowledge modules? A network could
facilitate question-driven evaluation where an indicator needs to be operationalized
per question, instead of indicators that have become a goal in themselves and
become invalidated by clear cheating behaviors (Seeber et al. 2017; “The Impact
Factor Game” 2006). As such, we propose to make evaluation of research its
own research process with question formulation, operationalizations, and data
collection (i.e., constructing the network of interest).

Network structure

Research outputs are typically research papers, which report on at least one
research cycle after it has occurred. The communicative design of papers embeds
hindsight and its biases in the reporting of results by being inherently reconstruc-
tive. Moreover, this design eliminates the verification of the chronology within
a paper. On the other hand, the paper encompasses so much that citations to
other papers can indicate a tangent or a crucial link. Additionally, the paper is a
bottleneck for what is communicated: It cannot properly deal with code, data,
materials, etc.

When stages of research are communicated separately and as they occur, it
changes the communicative design to eliminate hindsight and allows more types of
outputs to be communicated as separate modules. For example, a theory can be
communicated first and hypotheses communicated second, as a direct descendant
of the theory. Subsequently, a study design can be linked as a direct descendant
of the hypotheses, materials as a direct descendant of the design, and so on. This
would allow for the incorporation of materials, data, and analysis code (amongst
others). In this structure, many modules could link to a single module (e.g.,
replication causes many data modules to connect to the same hypotheses module)
but one module can also link to many other modules (e.g., when hypotheses
follow from multiple theories or when a meta-analytic module is linked to many
results modules).

Figure 8.1 shows two simple examples of how these different modular research
outputs (i.e., modules) would directly connect to each other. The connection
between these modules only shows the direct descendance and could still include
citations to other pieces of information. For example, a discussion module could
be a direct descendant of a results module and could still include citations to
other relevant findings. When one research cycle ends, a new one can link to
the last module, continuing the chain of descendance. Incorporating the direct
descendancy of these knowledge modules builds a different kind of network than
citation and authorship networks. As such, this network would be an addition
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Figure 8.1: Two Directed Acyclic Graphs (DAGs) of connected research stages.
The ordering is chronological (top-bottom) and therefore modules that are situated
below one another cannot refer upwards. Panel A shows a less complex network
of modules; Panel B shows a more extensive network of modules.

to these already existing citation and authorship networks; it does not seek to
replace them.

Given that these modular outputs would be communicated as they oc-
cur, chronology is directly embedded in the communication process with many
added benefits. For example, preregistration of hypotheses tries to ensure that
predictions precede observations, which would be embedded with modular com-
munication where predictions are communicated when they are made (exploratory
research could be communicated without hypotheses; for a more extensive discus-
sion of the benefits and limits of preregistration see Nosek et al. 2018). Moreover,
if modular outputs are communicated as they are produced, selective reporting
(i.e., publication bias) is reduced by having already communicated the data before
results are generated.

With immutable append-only registers, the chronology and content integrity
of these outputs can be ensured and preserved over time. This can occur efficiently
and elegantly with the Dat protocol (without a blockchain; perma.cc/GC8X-
VQ4K). In short, the Dat protocol is a peer-to-peer protocol (i.e., decentralized
and openly accessible) that provides non-adjustable timestamps to each change
that occurs within a folder, which is given a permanent unique address on the peer-
to-peer Web (3664 addresses possible; Ogden 2017). The full details, implications,
and potential implementations of this protocol for scholarly communication fall
outside of the scope of this chapter (an extended technical explanation of the
application of the Dat protocol can be found in the next chapter).

A continuous and network based communication system could take a wider
interpretation of the scholarly functions it is supposed to serve (Roosendaal and
Geurts 1998; Sompel et al. 2004). Registration would become more complete,
because selective publication based on results is preempted by embedding com-
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munication before any results are known. Certification is improved by embedding
the chronology of a research cycle into the communication of research, ensuring
that predictions precede results (Nosek et al. 2018). Awareness is improved by
using open by design principles, whereas awareness is now limited by financial
means to access scholarly papers (Tennant et al. 2017). Archival would not
only be simplified with peer-to-peer protocols, but also allows anyone to create a
copy and could result in excessive redundancy under the Lots Of Copies Keeps
Stuff Safe principle (LOCKSS; Reich and Rosenthal 2001). In the next sections,
we extend on how incentives could be adjusted in such a network structure, to
facilitate both the evaluation of research(ers) and the planning of research.

Indicators

With a chronological ordering of various modular research outputs and their
parent relations, a directional adjacency matrix can be extracted for network
analysis. Table 8.1 shows the directional adjacency matrix for Figure 8.1 (Panel
A). Parent modules (i.e., modules) must precede the child modules in time,
therefore only J(J−1)

2 of cells of the adjacency matrix are filled in, where J is the
number of research modules.

Table 8.1: Directional adjacency matrix for Figure 1. modules are ordered
according to time (top-bottom in Figure 1). Rows indicate the source module,
columns indicate the target module.

module01 module02 module03 module04 module05 module06 module07 module08 module09

module01 1 0 1 0 0 0 0 0
module02 1 0 0 0 1 0 0
module03 0 0 0 0 0 0
module04 1 1 0 0 1
module05 0 0 1 1

module06 1 0 0
module07 1 0
module08 0
module09

With a directional adjacency matrix, countless network indicators can be
calculated that could be useful in research evaluation depending on the questions
asked. However, not all network indicators are directly applicable because a
time based component is included in the network (i.e., new outputs cannot refer
to even newer outputs). Below, we propose some basic network indicators for
evaluating past and future research outputs.

Networks indicators could be used to evaluate the network as it exists now
or how it developed in the past (i.e., backward-looking evaluation). For example,
in-degree centrality could be used to identify highly interconnected modules of
information. This measure indicates how many child modules are spawned by a
parent module and indicates how much new work a researcher’s output stimulates
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(e.g., module04 in Table 8.1 would have an in-degree centrality of three). To
contextualize this, a data module could spawn four results modules, hence has an
in-degree centrality of four. This measure would look only at one-generation of
child modules, but other measures extend this to incorporate multiple generations
of child modules. Katz centrality extends this and computes the centrality over N
generations of child modules (pp. 206-210; Wasserman and Faust 1994) whereas
traditional in-degree centrality calculates centrality for N = 1 generations. For
example, two data modules that each spawn five results modules would have the
same in-degree centrality, but could have different Katz centrality if only one of
those two networks has a third-generation of modules included. If multi-generation
indicators are relevant, Katz centrality measures could provide operationalizations
of such measures.

Another set of network indicators could be used to evaluate how the network
would change when new modules are added in the future (i.e., forward-looking
evaluation). For example, a researcher who is looking for ways to increase
the density in their own network, could ask the question “If I would add one
module that has k parents, which addition would increase the density the most?”
Subsequently, the researcher could inspect the identified connections for inspiration
and feasibility. Complexity of the new module could be increased by increasing the
number of parent modules to connect (k in the question; e.g., five instead of two).
Potentially, this could facilitate creative thinking, where k is gradually increased
over time to increase the complexity of the issue from a network perspective.

The indicators we highlighted here are simple proposals. Other indicators
from network analysis and graph theory could be applied to the study of knowledge
development when a network structure is available and we hope to see suggestions
to answer questions about the network. These kinds of analyses are already done
within citation networks (e.g., Fortunato et al. 2018) and authorship networks
(e.g., Morel et al. 2009), but we cannot do so with the provenance or planning of
knowledge generation in the current scholarly communication system.

Use cases

We describe three use cases of network based evaluation to contextualize the ideas
proposed above. For each use case, we first provide a general and non-exhaustive
overview of the possibilities with network based evaluation. Subsequently, we
specify a scenario for that use case, how an evaluation question flows from that
scenario, how an indicator to answer that question could be operationalized,
and how that indicator could inform the evaluation process. With these use
cases we hope to illustrate that network based evaluation could align better with
the implicit evaluation criteria already present in common research evaluation
scenarios.
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Funders

Funders of scholarly research often have specific aims when distributing their
financial resources amongst researchers. Funders often use generic “one size
fits all” indicators to evaluate the quality of researchers and research (e.g., JIF,
h-index, citation counts). Given that funding calls often have specific aims, these
funding calls could be used as the basis of research evaluation if we move beyond
these generic measures.

A scenario could exist where a funding agency wants to fund researchers to
extend an existing and interconnected research line. This is not an implausible
scenario, where funding agencies aim to fund several million dollars (or similar in
other currencies) in order to increase follow through in research lines. A specific
example might be the Dutch national funding agency “Vici” funding scheme, which
aims to fund “senior researchers who have successfully demonstrated the ability to
develop their own innovative lines of research” (https://perma.cc/GB83-RE4J).

Whether researchers who submitted proposals actually built a connected
research line could be evaluated by looking at how interconnected each researcher’s
personal network of modules is. Let us assume that a research line here would
mean that new research efforts interconnect with previous efforts by that same
researcher (i.e., building on previous work). Additionally, we could assume that
building a research line means that the research line becomes more present in the
network over the years. Building a research line thus could be reformulated into
questions about the network of directly linked output and its development over
time.

Operationalizing the concept “research line” as increased interconnectedness
of modules over time, we could compute the network density per year. One way of
computing density would be to tally the number of links and divide them by the
number of possible links. By taking snapshots of the network of outputs of that
researcher in for example the last five years on January 1st, we could compute
an indicator to inform us about the development of the researcher’s network of
outputs.

The development of network density over time could help inform the evalua-
tion, but one measure could hardly be deemed the only decision criterion. As
such, it only provides an indication as to whether an applicant aligns with the aim
of the funding agency. Other questions would still need to be answered by the
evaluation committee. For example, is the project feasible or does the proposal
extend the previous research line? Some of these other questions could also be
seen as questions about the future development of the network and serve as their
own questions to investigate the applicant on.

Universities

Universities can use research evaluation for the internal allocation of resources
and to hire new scientists. As such, a research group within a university could
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apply network analysis to assess how (dis)connected a group’s modules are or
how their group compares to similar groups at other institutions. Using network
indicators, it could become possible to assess whether a job applicant fulfills
certain criteria, such as whether their modules connect to existing modules of a
group. If a university wants to stimulate more diversity in research background,
network analysis could also be used to identify those who are further removed
from the current researchers at the institution. Considering that universities are
often evaluated on the same generic indicators as individual researchers (e.g.,
JIF) in the rankings, such new and more precise evaluation tools might also help
specify university goals.

Extending the scenario above, imagine a research group that is looking to
hire an assistant professor with the aim of increasing connectivity between the
group’s members. The head of the research group made this her personal goal in
order to facilitate more information exchange and collaborative potential within
the group. By making increasing connectivity within the group an explicit aim of
the hiring process, it can be incorporated into the evaluation process.

In order to achieve the increased connectivity within the research group, the
head of the research group wants to evaluate applicants relatively but also with
an absolute standard. Relative evaluation could facilitate applicant selection, but
absolute evaluation could facilitate insight into whether any applicant is sufficient
to begin with. In other words, relative evaluation here asks which is the best
applicant, whereas absolute evaluation asks whether the best applicant is good
enough. These decision criteria could be preregistered in order to ensure a fair
selection process.

Increased connectivity could be computed as a difference measure of the
research group’s network density with and without the applicant. In order to take
into account the number of produced modules, the computed density could take
into account the number of modules of an applicant. Moreover, the head stipulates
that the minimum increase in network density needs to be five percentage points.
To evaluate applicants, each gets a score that is made up of the difference between
the current network density and the network density if they were hired. For
example, baseline connectivity within a group might be 60%, hence, the network
density has to be at least 65% for one of the applicants to pass the evaluation
criterium.

If the head of the research group relied purely on the increase in network
density as an indicator without further evaluation, a hire that decreases morale in
the research group could easily be made. For example, it is reasonable to assume
that critics of a research group often link research outputs in a criticism of their
work. If such a person would apply for a job within that group, the density
within the network might be increased but subsequently result in a more hostile
work climate. Without evaluating the content of the applicant that increases
the network density, it would be difficult to assess whether they would actually
increase information exchange and collaborative potential instead of stifling it.
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Individuals

Individual researchers could use networks to better understand their research
outputs and plan new research efforts. For example, simply visualizing a network
of outputs could prove a useful tool for researchers to view relationships between
their outputs from a different perspective. Researchers looking for new research
opportunities could also use network analysis to identify their strengths, by
comparing whether specific sets of outputs are more central than others in a
larger network. For example, a researcher who writes software for their research
might find that their software is more central in a larger network than their
theoretical work, which could indicate a fruitful specialization.

One scenario where network evaluation tools could be valuable for individual
researchers is resource allocation needs to be optimized. A researcher might want
to revisit previous work and conduct a replication, but only has funds for one such
replication. Imagine a researcher wants to identify an effect that they previously
studied and which has been central to their new research efforts. Identifying
which effect to replicate is intended by this researcher as a safeguard mechanism
to prevent further investment in new studies, if a fundamental finding proves to
not be replicable.

In this resource allocation scenario, the researcher aims to identify the
most central finding in a network. The researcher has conducted many studies
throughout their career and does not want to identify the most central finding in
the entire network of outputs over the years, but only of the most recent domain
they’ve been working in. As such, the researcher takes the latest output and traces
all the preceding outputs automatically to five generations, to create a subset of
the full network and to incorporate potential work not done by themselves.

Subsequently, by computing the Katz centrality of the resulting subnetwork,
the researcher can compute the number of outputs generated by a finding and
how many outputs those outputs generated in return. By assigning this value to
each module in the network, the researcher can identify the most central modules.
However, these modules need to be investigated subsequently in order to see
whether they are findings or something else (e.g., theory; we assume an agnostic
infrastructure that does not classify modules).

Katz centrality can be a useful measure to identify which finding to repli-
cate in a multi-generational network, but would fail to take into account what
replications have already been conducted. When taking the most recent output
and looking at its parent(s), grandparent(s), etc., this only looks at the lineage
of the finding. However, the children of all these parents are not taken into
account in such a trace. As such, the researcher in our scenario might iden-
tify an important piece of research to replicate, but neglect that it has already
been replicated. Without further inspection of the network for already available
replications, resource allocation might be suboptimal after all.

173



Discussion

We propose to communicate research in modular “as-you-go” outputs (e.g., theory
followed by hypotheses, etc.) instead of large “after-the-fact” papers. Modular
communication opens up the possibility of a network of knowledge to come into
existence when these pieces are linked (e.g., results descend from data). This
network of knowledge would be supplementary to traditional citation networks
and could facilitate new evaluation tools that are based in the question of interest
rather than generic “one size fits all” indicators (e.g., Journal Impact Factor,
citation counts, number of publications). Given the countless questions and
operationalizations possible to evaluate research in a network of knowledge, we
hope this would increase the focus on indicators as a tool in the evaluation process
instead of indicators being the evaluation process itself (Hicks et al. 2015; Wilsdon
et al. 2015).

We highlighted a few use cases and potential indicators for funders, research
collectives, and individuals, but recognize that we are merely scratching the
surface of possible use cases and implementations of network analysis in research
evaluation. The use cases presented for the various target groups (e.g., universities)
can readily be transferred to suit other target groups (e.g., individuals). Award
committees might use critical path analysis or network stability analysis to identify
key hubs in a network to recognize. Moreover, services could be built to harness
the information available in a network to identify people who could be approached
for collaborations or to facilitate the ease with which such network analyses can
be conducted. Future work could investigate more use cases, qualitatively identify
what researchers (or others) would like to know from such networks, and how
existing network analysis methods could be harnessed to evaluate research and
better understand its development over time. Despite our enthusiasm for network
based evaluation, we also recognize the need for exploring the potential negative
sides of this approach. Proximity effects might increase bias towards people
already embedded in a network and might exacerbate inequalities already present.
Researchers might also find ways to game these indicators, which warrants further
investigation.

Communicating scholarly research in modular “as-you-go” outputs might
also address other threats to research sustainability. In modular “as-you-go”
communication, selective publication based on results would be reduced because
data would be communicated before results are known. Similarly, adjusting
predictions after results are known would be reduced because predictions would
be communicated before data are available (i.e., preregistration by design). Repli-
cations (or reanalyses) would be encouraged both for the replicated (the replicated
module gets more child modules, increasing its centrality) and the replicator
(time investment is lower due to only having to add a data module that is linked
to the materials module of the replicated). Self-plagiarism could be reduced
by not forcing researchers to rehash the same theory across papers that spawn
various predictions and studies. These various issues (amongst other out of scope
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issues) could be addressed jointly instead of each issue vying for importance for
researchers, funders, or policy makers (amongst others).

To encourage culture- and behavioral change, “after-the-fact” papers and
modular “as-you-go” outputs could co-exist (initially) and would not require
researchers to make a zero-sum decision. Copyright is often transferred to
publishers upon publication (resulting in pay-to-access), but only after a legal
contract is signed. Hence, preprints cannot legally be restricted by publishers
when they precede a copyright transfer agreement. However, preprints face
institutional and social opposition (Kaiser 2017), where preprinting could exclude
a manuscript for publication depending on editorial policies or due to fears of
non-publication or scooping (itself a result of hypercompetition). In recent years,
preprints have become more widely accepted and less likely to exclude manuscript
publication (e.g., Science accepts preprinted manuscripts; Berg 2017). Similarly,
sharing modular “as-you-go” outputs could not legally be restricted by publishers
and can ride the wave of preprint acceptance, but might also face institutional
or social counterchange similar to preprints. Researchers could communicate
“as-they-go” and compile “after-the-fact” papers, facilitating co-existence and
minimizing negative effects on career opportunities. Additionally, “as-you-go”
modules could be used in any scholarly field where the provenance of information
is important to findings and is not restricted to empirical and hypothesis driven
research per se.

As far as we know, modular “as-you-go” scholarly communication infras-
tructure that includes direct links between modules has not yet been available
to researchers in a sustainable way. One of the few thought styles that has
facilitated “as-you-go” reporting in the past decade is that of Open Notebook
Science (ONS; Bradley 2007), where researchers share their day-to-day notes and
thoughts. However, ONS has remained on the fringes of the Open Science thought
style and has not matured, limiting its usefulness and uptake. For example, ONS
increases user control because communication occurs on personal domains, but
does not have a mechanism of preserving the content. Considering reference rot
occurs in seven out of ten scholarly papers containing Weblinks (M. Klein et al.
2014), concern for sustainable ONS is warranted without further development of
content integrity. Moreover, ONS increases information output without providing
more possibilities of discovering that content.

Digital infrastructure that facilitates “as-you-go” scholarly communication
is now feasible and sustainable. Feasible because the peer-to-peer protocol Dat
provides stable addresses for versioned content and it ensures content integrity
across those versions. Sustainable because preservation in a peer-to-peer network
is relatively trivial (inherent redundancy, anyone can rehost information and
libraries could be persistent hosters) and removes (or at least reduces) the need for
centralized services in scholarly communication. Consequently, this decreases the
need for inefficient server farms of centralized services (Cavdar and Alagoz 2012)
by decentralizing services. However, preservation is a social process that requires
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commitment. Hence, a peer-to-peer infrastructure would require committed and
persistent peers (e.g., libraries) to make sure content is preserved. Another form
of sustainability is knowledge inclusion, which is facilitated by a decentralized
network protocol that is openly accessible.

Finally, we would like to note that communication was not instantly rev-
olutionized by the printing press but changed society over the centuries that
followed. The Web has only been around since 1991 and its effect on society is
already pervasive, but far from over. We hope that individuals who want change
do not despair by feelings of inertia in scholarly communication throughout recent
years and further entrenching of positions and interests. We remain optimistic
for substantial change to occur within scholarly communication that improves
the way we communicate research and hope these ideas contribute in working
towards that.

Conclusion

The current scholarly communication system based on research papers is “after-the-
fact” and can be supplemented by a modular “as-you-go” based communication
system. By doing so, the functions of a scholarly communication system can
be interpreted more widely, making registration complete, certification part
of the process instead of just the judgment of peers, access to everything for
everyone based on peer-to-peer protocols, simplify archival, and facilitate incentive
structures that could align researcher’s interests with that of scholarly research.
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Chapter 9

Verified, shared, modular,
and provenance based
research communication
with the Dat protocol1

In scholarly research, communication needs to be thorough and parsimonious in
logging the order of various research steps, while at the same time being functional
in seeking- and distributing knowledge. Roosendaal and Geurts proposed that
any scholarly communication system needs to serve as a (1) registration-, (2)
certification-, (3) awareness-, and (4) archival system (Roosendaal and Geurts
1998). Sompel and colleagues added that it also needs to serve as an (5) incentive
system (Sompel et al. 2004).

How the functions of scholarly communication are conceptualized and imple-
mented directly impacts (the effectiveness of) scholarly research. For example, an
incentive system might be present where number of publications or publication
outlet is more important than the quality of the publications (Brembs 2018). In
a narrow sense, this scholarly communication system serves the fifth function
of providing an incentive system. In a wider sense, it undermines the goal of
scholarly research, which scholarly communication is a part of, and therefore does
not serve its purpose.

Narrow conceptualizations of the functions of a scholarly communication
system can be identified throughout the current article-based system. Registra-
tion occurs for published works, but registration is incomplete due to selective
publication (e.g., 1 out of 2 registered clinical trials gets published; Easterbrook et

1Hartgerink, C. (2019). Verified, Shared, Modular, and Provenance Based Research Commu-
nication with the Dat Protocol. Publications, 7(2), 40. doi:10.3390/publications7020040
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al. 1991) making research highly inefficient (Van Assen et al. 2014). Certification
occurs through peer review (Sompel 2006) but peer review is confounded by a
set of human biases at the reporting- and evaluation stages (e.g., methods are
evaluated as of higher quality when they result in statistically significant results
than when in statistically nonsignificant results; Mahoney 1977), leading to the
“natural selection of bad science” (Smaldino and McElreath 2016). Awareness
occurs, but increasingly only for those researchers with the financial means to
access or make accessible (Khoo 2019). Restrictions on the sharing of scholarly in-
formation hampers discovery and widespread dissemination. Content is archived,
but is centralized (i.e., failure prone), separated from the main dissemination
infrastructure, and not available until an arbitrary trigger event occurs (i.e., a
dark archive; Kiefer 2015).

The scholarly paper seems an anachronistic form of communication in
light of how we now know it undermines the functions it is supposed to serve.
When no alternative communication form was feasible (i.e., before the Internet
and the Web), the scholarly paper seemed a reasonable and balanced form for
communication. However, already in 1998, seven years after the first Web browser
was released, researchers associated with the scholarly publisher Elsevier suggested
to make changes to the way scholars communicate scholarly research (Kircz 1998).
More specifically, they suggested to change the communication to a more modular
form, which would help iterate research more frequently and increase feedback
moments (high speed of feedback was essential to for example Nature’s rise during
the early twentieth century; Baldwin 2015). Throughout the years, others also
suggested various perspectives on modularity (Priem and Hemminger 2012; Kuhn
et al. 2016) and suggested micro- and nanopublications (Kuhn et al. 2016;
Clark, Ciccarese, and Goble 2014). One example of modular, stepwise research
communication is depicted in Figure 9.1.

Modular scholarly outputs, each a separate step in the research process,
could supplement the scholarly article (as detailed in Hartgerink and Van Zelst
2018). Scholarly textbooks and monographs (i.e., vademecum science; Fleck 1984)
communicate findings with few details and a high degree of certainty; scholarly
articles present relatively more details and less certainty than textbooks, but
still lack the detail to reproduce results. This lack of detail is multiplied by the
increasingly complex research pipelines due to technological changes and the size
of data processed. Moreover, textbooks and articles construct narratives across
findings because they report far after events have happened and it is what editors
expect. Scholarly modules could serve as the base for scholarly articles, reporting
more details, less certainty of findings, and where events are reported closer to
their occurrence. Granular reporting may help facilitate a shift from authorship to
contributorship (Holcombe 2019), could facilitate reproducibility (i.e., it is easier
to reproduce one action with more details than multiple actions with fewer details
per action); earlier reporting could facilitate discussion by making it practical
for the research process (extending the idea of Registered Reports; Chambers
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Figure 9.1: An example of modular, stepwise research communication, from the
Octopus project (see also https://perma.cc/TA79-YPH9).

2013) and making content easier to find and reuse. As findings become replicated
and more consensus about a finding starts to arise, findings could move up the
“chain” and be integrated into scholarly articles and textbooks. Articles and
books would then provide overviews and larger narratives to understand historical
developments within scholarly research. Figure 9.2 provides a conceptual depiction
of how these different forms of documenting findings relate to each other.

Below I extend on technical details for a modular scholarly communication
infrastructure that facilitates (more) continuous communication and builds on
recent advances in Web infrastructures. The premise of this scholarly infrastruc-
ture is a wider interpretation of the five functions of a scholarly communication
system, where (1) registration is (more) complete, (2) certification by peer review
is supplemented by embedding chronology to prevent misrepresentation and by
increased potential for verification and peer discussion, (3) unrestricted awareness
(i.e., access) is embedded in the underlying peer-to-peer protocol that locks it
open-by-design, (4) archival is facilitated by simplified copying, and (5) making
more specific scholarly evaluation possible to improve incentives (for an initial
proposal of such evaluation systems see Hartgerink and Van Zelst 2018). First, I
expand on the functionality of the Internet protocol Dat and how it facilitates
improved dissemination and archival. Second, I illustrate an initial design of mod-
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Figure 9.2: Conceptual depiction of how different forms of scholarly communica-
tion relate to each other in both detail and certainty.

ular scholarly communication using this protocol to facilitate better registration
and certification.

Dat protocol

The Dat protocol (dat://) is a peer-to-peer protocol, with persistent public keys
per filesystem (see also https://perma.cc/FX7M-H85Y; Ogden 2017; Robinson et
al. 2018). Each filesystem is a folder that lives on the Dat network. Upon creation,
each Dat filesystem receives a unique 64 character hash address, which provides
read-only access to anyone who has knowledge of the hash. Below an example
filesystem is presented. Each Dat filesystem has a persistent public key, which is
unaffected by bit-level changes within it (e.g., when a file is modified or created).
Other peer-to-peer protocols, such as BitTorrent or the Inter Planetary File
System (IPFS), receive new public keys upon bit-level changes in the filesystem
and require re-sharing those keys after each change (at the protocol level).

0c6...613/

|--- file1

|--- file2

|--- file3

|--- file4

Bit-level changes within a Dat filesystem are verified with cryptographically
signed hashes of the changes in a Merkle Tree. In effect, using a Merkle Tree creates
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a verified append-only register. In a Merkle Tree, contents are decomposed into
chunks that are subsequently hashed in a tree (as illustrated in Figure 9.3), adding
each new action to the tree at the lowest level. These hashes are cryptographically
signed with the permitted users’ private keys. The Dat protocol regards all
actions in its filesystem as put or del commands to the filesystem, allowing all
operations on the filesystem to be regarded as actions to append to a register (i.e.,
log). For example, if an empty file5 was added to the Dat filesystem presented
above, the register would include [put] /file5 0 B (0 blocks); if we delete
the file, it would log [del] /file5. The complete register for this Dat filesystem
is as follows

dat://0c6...613

1 [put] /file1 0 B (0 blocks)

2 [put] /file2 0 B (0 blocks)

3 [put] /file3 0 B (0 blocks)

4 [put] /file4 0 B (0 blocks)

5 [put] /file5 0 B (0 blocks)

6 [del] /file5

The persistent public key combined with the append-only register, results
in persistent versioned addresses for filesystems that also ensure content integrity.
For example, based on the register presented above, we see that version 5 in-
cludes file5 whereas version 6 does not. By appending +5 to the public key
(dat://0c66...613+5) we can view the Dat filesystem as it existed at version 5
and be ensured that the contents we receive are the exact contents at that version.
If the specific Dat filesystem is available from at least one peer on the network, it
means that both “link rot” and “content drift” (M. Klein et al. 2014; Jones et al.
2016) could become superfluous.

Any content posted to the Dat protocol is as publicly available as the
public key of that Dat filesystem is shared. More specifically, the Dat protocol is
inherently open. As such, if that key is widely shared, the content will also be
harder or impossible to remove from the network because other peers (can) have
copied it. Conversely, if that key is shared among just few people that content
can more easily disappear from the network but remains more private. This is
important in light of privacy issues, because researchers cannot unshare personal
data after they have widely broadcasted it. However, because the Dat protocol
is a peer-to-peer protocol and users connect directly to each other, information
is not mediated. The protocol uses package encryption by default which can
also help improve secure and private transfers of (sensitive) data. Users would
(most likely) also remain personally responsible for the information they (wrongly)
disclose on the network.
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Figure 9.3: A diagram depicting how a Merkle Tree hashes initial chunks of
information into one top hash, with which the content can be verified.

Verified modular scholarly communication

Here I propose an initial technical design of verified modular scholarly communi-
cation using the Dat protocol. Scholarly modules are instantiated as separate Dat
filesystems for each researcher or for each module of scholarly content. Scholarly
content could entail virtually anything the researcher wants or needs to com-
municate in order to verify findings (see also Hartgerink and Van Zelst 2018).
Hence, there is no restriction to text as it is in the current article-based scholarly
communication system; it may also include photographs, data files, scripts, etc.
Note that all presented hypothetical scenarios next include shortened Dat links
and the unshortened links can be found in the Supporting Information.

Scholarly profiles

Before communicating research modules, a researcher would need to have a place
to broadcast that information. Increasingly, researchers are acquiring centralized
scholarly profiles to identify the work they do, such as ORCIDs, ResearcherIDs,
Google Scholar profiles, or ResearchGate profiles. A decentralized scholarly profile
in a Dat filesystem is similar and provides a unique ID (i.e., public key) for each
researcher. However, researchers can modify their profiles freely because they
retain full ownership and control of their data (as opposed to centralized profiles)
and are not tied to one platform. As such, with decentralized scholarly profiles

182



on the Dat network, the researcher permits others access to their profile instead
of a service permitting them to have a profile.

Each Dat filesystem is initialized with a dat.json with some initial metadata,
including its own Dat public key, the title (i.e., name) of the filesystem and a
description. For example, Alice wants to create a scholarly profile and initializes
her Dat filesystem, resulting in:

{

"title": "Alice",

"description": "I am a physicist at CERN-LHC. As a fan of the

decentralized Web, I look forward to communicating my research

in a digital native manner and in a way that is not limited

to just text.",

"url": "dat://b49...551"

}

Because dat.json is a generic container for metadata across the Dat network,
I propose adding scholarly-metadata.json with some more specific metadata
(i.e., data about the profile) for a scholarly context. As the bare minimum, we
initialize a scholarly profile metadata file as

{

"type": "scholarly-profile",

"url": "dat://b49...551",

"parents": [],

"roots": [],

"main": "/cv.pdf",

"follows": [],

"modules": []

}

where the type property indicates it is a scholarly profile. The url property
provides a reference to the public key of Alice herself (i.e., self-referencing).
The parents property is where Alice can indicate her “scholarly parents” (e.g.,
supervisors, mentors); the roots property is inherited from her scholarly parents
and links back to the root(s) of her scholarly genealogy. The main property
indicates the main file for Alice’s profile. The follows property links to other
decentralized scholarly profiles or decentralized scholarly modules that Alice wants
to watch for updates. Finally, the modules property refers to versioned scholarly
modules, which serves as Alice’s public registrations. These metadata files may
be joined in a later specification.

Assuming Alice is the first person in her research program to use a decentral-
ized scholarly profile, she is unable to indicate parents or inherit roots. However,
Bob and Eve are her PhD students and she helps them set up a decentralized schol-
arly profile. As such, their profiles do contain a parent: Alice’s profile. Based on
this genealogy, we would be able to automatically construct self-reported genealog-
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ical trees for scholarly profiles. Bob’s scholarly-metadata.json subsequently
looks as follows

{

"type": "scholarly-profile",

"url": "dat://c3a...a1b",

"parents": [ "dat://b49...551" ],

"roots": [ "dat://b49...551" ],

"main": null,

"follows": [],

"modules": []

}

Alice wants to stay up to date with the work from Bob and Eve and adds
their profiles to the follows property. By adding the unique Dat links to their
scholarly profiles to her follows property, the profiles can be watched in order
to build a chronological feed that continuously updates. Whenever Bob (or Eve)
changes something in their profile, Alice gets a post in her chronological feed. For
example, when Bob follows someone, when Eve posts a new scholarly module, or
when Bob updates his main property. In contrast to existing social media, Alice
can either fully unfollow Bob, which removes all of Bob’s updates from her feed,
or “freeze follow” where she simply does not get any future updates. A “freeze
follow” follows a static and specific version of the profile by adding a version
number to the followed link (e.g., dat://...+12).

Figure 9.4: Conceptual diagram of scholarly profiles and following others. Network
propagation to rank N can be used to facilitate discovery of researchers and to
build networks of researchers.

Using the follows property, Alice can propagate her feed deeper into her
network, as depicted in Figure 9.4. More specifically, Alice’s personal profile,
rank zero in the network, extends to the people she follows (i.e., Bob and Eve are
rank one). Subsequently, the profiles Bob and Eve follow are of rank three. By
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using recursive functions to crawl the extended network to rank N , edges in the
network are easily discovered despite the (potential) lack of direct connections
(Travers and Milgram 1969).

The main property can be used by a researcher to build a personalized
profile beyond the metadata. For example, Alice wants to make sure that
people who know the Dat link to her scholarly profile can access her Curriculum
Vitae, so she adds /cv.pdf as the main to her scholarly profile. Whenever she
submits a job application, she can link to her versioned scholarly profile (e.g.,
dat://b49...551+13). Afterwards, she can keep updating her profile whatever
way she likes. She could even choose to host her website on the decentralized Web
by attaching a personal webpage with /index.html. Because of the versioned
link and the properties of the Dat protocol, she can rest assured that the version
she submitted is the version the reviewing committee sees. Vice versa, whenever
she receives a versioned link to a scholarly profile, she can rest assured it is what
the researcher wanted her to see.

The modules property contains an array of versioned Dat links to scholarly
modules. What these scholarly modules are and how they are shaped is explained
in the next section. The modules property differs from the follows property
in that it can only contain versioned Dat links, which serve as registrations of
the outputs of the researcher. Where a versioned link in the follows property
is regarded as a “freeze follow,” a versioned link in the modules property is the
registration and public communication of the output. The versioned links also
prevent duplicate entries of outputs that are repeatedly updated. For example,
a scholarly module containing a theory could be registered repeatedly over the
timespan of several days or years. If the researcher would register non-versioned
links of the scholarly module, registration would not be specific and the scholarly
profile could contain duplicates. By including only versioned links the registrations
are specific and unique.

Scholarly modules

Scholarly research is composed of time-dependent pieces of information (i.e.,
modules) that chronologically follow each other. For example, predictions precede
data and results, otherwise they become postdictions. In a typical theory-testing
research study, which adheres to the framework of a modern empirical research
cycle (De Groot 1994), we can identify at least eight chronological modules
of research outputs: (1) theory, (2) predictions, (3) study design, (4) study
materials, (5) data, (6) code for analysis, (7) results, (8) discussion, and (9)
summary (these are examples and modules should not be limited to these to
prevent homogenization of scholarly outputs; Star 1990). Sometimes we might
iterate between steps, such as adjusting a theory due to insights gathered when
formulating the predictions. Continuously communicating these in the form
of modules as they are produced, by registering versioned references to Dat
filesystems in a scholarly profile as explained before, could fulfill the five functions
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of a scholarly communication system and is unconstrained by the current article-
based system (see also Hartgerink and Van Zelst 2018).

These scholarly modules each live in their own filesystem, first on the
researcher’s computer and when synchronized, on the Dat network. Hence,
researchers can interact with files on their own machine as they are used to. The
Dat network registers changes in the filesystem as soon as it is activated. As such,
researchers can initialize a Dat filesystem on their computer and, for example,
copy private information into the filesystem, anonymize it and only then activate
and synchronize it with the Dat network (note: this does not require connection
to the Internet, but initialization of the protocol). The private information will
then not be available in the version history of the Dat filesystem.

Metadata for scholarly modules also consists of a generic dat.json and a
more specific scholarly-metadata.json. The dat.json contains the title of the
module, the description, and its own Dat link. For example, Alice communicates
the first module on the network, where she proposes a theory; the dat.json file
for this module is

{

"title": "Mock Theory",

"description": "This is a mock theory but it could just as well

be a real one.",

"url": "dat://dbf...d82"

}

Again, more specific metadata about the decentralized scholarly module is
added in scholarly-metadata.json. As the bare minimum, the metadata for a
scholarly module is initialized as

{

"type": "scholarly-module",

"url": "dat://dbf...d82",

"authors": [

"dat://b49...551",

"dat://167...a26"

],

"parents": [],

"roots": [],

"main": "/theory.md"

}

These metadata indicate aspects that are essential in determining contents
and provenance of the module. First, we specify that it is a scholarly module in
the type property. Second, we specify its own Dat url for reference purposes.
Third, an array of Dat links in the authors property links to scholarly profiles
for authorship. Subsequently, if the module is the following step of a previous
registered module, we specify the Dat link of the preceding module(s) in the
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parents property in the form of a versioned Dat link. Tracing the parents’
parents forms a chronology of findings, leading ultimately to the roots property.
In practice, the roots property is inherited from the immediate parents. Because
the presented hypothetical module above is the first on the network, it has no
parents or roots. The main property specifies a single landing page/file of the
scholarly module. For a text based scholarly module, main might be /index.html

(or /theory.md as it is here), whereas for a data module that could be /data.csv.
For more complex modules, a guidebook to navigate the module could be included.
The researcher can also store other relevant assets in the Dat filesystem, such as
converted files or supporting files. For text based scholarly module, assets could
include figures; for data based scholarly modules assets could include codebooks.

To register a module into the researcher’s profile, the versioned Dat link
is included in the modules array on the profile. More specifically, when the
registration process is initiated, the Dat filesystem is inspected for the latest
version number, which is appended to the Dat link before it is put in the modules

property. Specifically for Alice’s theory, she was at version 19 when she wanted
to register it. This means that dat://dbf...d82+19 is appended to the modules

array in her scholarly profile. All the users who follow Alice get an update that
she registered her theory, with a versioned link that is unique and persistent,
referring to exactly the content Alice registered. Alice can keep updating her
theory locally, without it affecting what the people who follow her see, because it
does not affect version 19. When the module is registered, others can view the
most recent version of the Dat filesystem (e.g., theory) by removing the version
from the Dat link (or view any other synchronized version if available from the
network).

Figure 9.5 depicts how the scholarly modules relate to each other (Panel
B). The versioned, registered scholarly modules become the parent and root links
in subsequent child modules. For example, a set of predictions link back to the
theory they are distilled from; a study design links back to the predictions it is
planned to test and by extension to the theory it is based on. Panel B in Figure
9.5 conceptually depicts one contained empirical research cycle registered in this
way. The links between versioned scholarly modules embeds the chronological
nature of the research process in its communication.

Verification

In order to detect whether scholarly modules that a researcher claims to have
authored are indeed (partly) theirs, the scholarly module needs to also assign the
profile as author. For example, Alice and Eve claim to have authored version 19 of
the “Theory” module in their profiles (Figure 9.5, Panel C). Because a module can
only be edited by its author, we can inspect the scholarly module to corroborate
this. For verified authorship, the module should ascribe authorship to Alice
and Eve. To do this, we inspect scholarly-metadata.json of the “Theory”
module at the registered version (i.e., version 19). If the versioned theory

187



Figure 9.5: Conceptual representations of how scholarly profiles relate to each
other (Panel A), how scholarly modules relate to each other (Panel B), how
scholarly profiles and modules create a network of scholarly activity in both
researchers and research (Panel C), and how claims of authorship are verified if
two-way or unverified if one-way (Panel D).

module also ascribes authorship to Alice or Eve, we have two-way verification of
authorship (Figure 9.5, Panel D). In other words, registered scholarly modules
must corroborate the authorship claims of the scholarly profiles in order to become
verified.

Unverified authorship can happen when a researcher incorrectly claims
authorship over a module or when a module ascribes authorship to a researcher
who does not claim it. In Figure 9.5 Panel D, for example, Bob has claimed
authorship of the data module, which is not corroborated by the scholarly module.
Unverified authorship of this kind (i.e., where a researcher incorrectly claims
authorship) is helpful in preventing misrepresentation of previous work by that
researcher. Unverified authorship where a researcher is incorrectly ascribed
authorship can have various origins. A researcher might remove a versioned
module from their profile, effectively distancing themselves from the module
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(similar to retracting the work but on a more individual level). In a similar vein,
it might also be that the author registered a later version of the module in their
profile and deleted the old version (similar to a corrigendum). Note that the
registration will still be available in the history of the profile, because the history
of a Dat filesystem is append-only.

Prototype

In order to show that decentralized, modular scholarly communication is not just
a hypothetical exercise, I developed a minimal working prototype. The prototype
code supplied below currently only functions within Beaker Browser because
specific Application Programmatic Interfaces (APIs) that directly interface with
the Dat protocol are not yet available in the most commonly used Web browsers
(e.g., Mozilla Firefox, Google Chrome).

The minimal working prototype ingests a network of decentralized scholarly
modules and profiles. More specifically, it ingests all content to rank N of the
network, using webdb. webdb collects the scholarly metadata from each scholarly
module and scholarly profile and consolidates these disparate pieces of information
into a local database. This database can be considered temporary; the original
information still has its primary origin in the disparate scholarly modules and
scholarly profiles that live on the Dat network. As such, the same database can
be reconstructed at any time without any issues, assuming the modules are still
available. Figure 9.6 presents a screenshot of the prototype, which looks like any
other webpage to the user but does not have a centralized server providing the
content. Note also the link at the bottom showcasing the versioned link to the
analysis file.

Procedurally, the prototype takes Alice’s scholarly profile as starting point,
subsequently ingesting the network presented in Figure 9.5. By doing so, we
get a one-on-one replication of Alice’s perspective (regardless of whether we
are Alice or not). As such, Alice’s Dat link serves as the starting point (rank
zero). The metadata contained in her profile is ingested into our local database.
Subsequently, the links in her profile to other scholarly modules (or profiles) are
ingested into the database (rank one), and the links they have (rank two), and so
on (to rank N). The following JavaScript code produces this local database for
Alice specifically (dat://b49...551) but can be replaced with Bob’s, Eve’s, or
anyone else’s scholarly profile to receive their personal network.

// npm install -g @beaker/webdb

const WebDB = require('@beaker/webdb')

let webdb = new WebDB('view')

webdb.define('modules', {

filePattern: [ '/scholarly-metadata.json' ],
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Figure 9.6: Screencap of the minimal prototype of decentralized scholarly commu-
nication. The prototype resembles a regular webpage on the userside, but on the
backend it runs entirely on Dat filesystems that live on a decentralized network.

index: [ 'type', 'authors', 'parents', 'root',

'main', 'follows', 'modules' ]

})

async function ingestPortal (url) {

await webdb.open()

let archive = new DatArchive(url)

await webdb.indexArchive(url)

let scholRaw = await archive.readFile(

'/scholarly-metadata.json')

let scholParsed = await JSON.parse(

scholRaw)

if (scholParsed.type === 'scholarly-profile') {

console.log(scholParsed)

scholParsed.follows.concat(

scholParsed.modules).forEach((val) => {

ingestPortal(val)
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})

}

}

ingestPortal("dat://b49...551")

The presented prototype provides a portal to the information contained in
the modules, but is not the sole portal to access that information. Because the
modules live on a decentralized network and are open-by-design, anyone may build
a portal to view that information (Figure 9.7 presents a mockup of an additional
interface). As such, this is not a proposal for a platform but for infrastructure.
The difference between platforms and infrastructure is vital in light of ownership
and responsibility of communicated content and the moderation of that content.
As opposed to centralized services that carry the legal burden and therefore
moderate its platform, this type of infrastructure does not take such a role
and merely aims to facilitate the individual. As a consequence, the legal burden
remains with the individual. Moreover, platforms require people to go to one place
(e.g., you cannot view content of ResearchGate on Academia.edu or Elsevier’s
content on Wiley’s webpage); this infrastructure would give the potential for
various types of usage to take place on the same type of infrastructure.

Discussion

The proposed design for decentralized, verified, provenance based modular com-
munication on the Dat protocol fulfills a wide conceptualization of the functions
of a scholarly communications system from library and information sciences
(Roosendaal and Geurts 1998; Sompel et al. 2004). Due to more modular and
continuous communication, it is more difficult to selectively register results when
the preceding steps have publicly been registered already. Moreover, time of com-
munication is decided by the researcher, making it more feasible for researchers to
communicate their research efforts without biases introduced at the journal stage.
Certification of results is improved by embedding the chronology of the empirical
research cycle in the communication process itself, making peer-to-peer discussion
constructive and less obstructed by hindsight bias (Nickerson 1998). Unfettered
awareness of research is facilitated by using an open-by-design infrastructure that
is the peer-to-peer Dat protocol. Moreover, because all content is open-by-design
and independent of service platforms, text- and data-mining may be applied freely
without technical restrictions by service providers. The removal of these technical
and service restrictions may facilitate innovations in discovery of content and the
potential for new business models to come into existence. Based on the links
between scholarly modules, the arising network structure can be used to help
evaluate networks of research(ers) instead of counting publications and citations
(Hartgerink and Van Zelst 2018). Archival is facilitated by making it trivially easy
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Figure 9.7: Mockup design of an additional interface for the proposed scholarly
communication infrastructure. Made by Rebecca Lam, reused under CC-BY 4.0
license.
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to create local copies of large sets of content, facilitating the Lots Of Copies Keeps
Stuff Safe (LOCKSS; Reich and Rosenthal 2001; Domenico and Arenas 2017)
principle to be more widely used than just approved organizations. Moreover,
with append-only registers, the provenance of content can also be archived more
readily than it is now. These functions also apply to non-empirical research that
requires provenance of information (e.g., qualitative studies).

By producing scholarly content on a decentralized infrastructure, diversity
of how research is consumed and discovered can be facilitated. Currently, content
lives on the webserver of the publisher and is often solely served at the publisher’s
webpage due to copyright restrictions (except for open access articles; Piwowar
et al. 2018). If the design of the publisher’s webpage does not suit the user’s
needs (e.g., due to red color blindness affecting approximately 1 in 20 males and
1 in 100 females; Fareed, Anwar, and Afzal 2015), there is relatively little a user
can do. Moreover, service providers that are not the rightsholder (i.e., publisher)
now cannot fulfill that need for users. By making all content open by default,
building on content becomes easier. For example, someone can build a portal
that automatically shows content with color shifting for people who have red (or
other types of) color blindness. Building and upgrading automated translation
services are another way of improving accessibility (e.g., translexy.com/), which is
currently restricted due to copyright. Other examples of diverse ways of consuming
or discovering research might include text-based comparisons of modules to build
recommender algorithms that provide contrasting and corroborating views to users
(e.g., McKenzie 2017). Stimulating diversity in how to consume and discover
content is key to making scholarly research accessible to as many people as
possible and in order to attempt to keep some pace with the tremendous amount
of information published each year (>3 million articles in 2017). As such, we have
collectively passed the point of being able to comprehend the relevant information
and should no longer strive to eliminate all uncertainty in knowing but find
ways to deal with that uncertainty better (Bridle 2018). As such, alternatives
in consuming, discovering, and learning about knowledge are a necessity. Open
Knowledge Maps is an existing example of an innovative discovery mechanism
based on openly licensed and machine-readable content (Kraker, Kittel, and
Enkhbayar 2016). There would be more smaller pieces of information in the
scholarly modules approach than in the scholarly article approach, which is
counterbalanced by the network structure and lack of technical restrictions to
build tools to digest that information — this may make those larger amounts of
smaller units (i.e., modules) more digestible than the smaller volume of larger
units (i.e., articles), mitigating information onslaught (Spellman 2012).

The proposed design is only the first in a multi-layer infrastructure that
would need to be developed moving forward. Currently, I only provide a model
on the container format for how to store metadata for modules — not how the
data is stored in the module itself or how the individual could go about doing so.
Moreover, how could reviews be structured to fit in such modules? As such, the
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next layer to the proposed infrastructure would require further specification of how
contents are stored. For example, for text-based modules, what file formats should
be the standard or allowed? It would be unfeasible to allow any file format due
to readability into the future (e.g., Word 2003 files are likely to be problematic)
and issues could exacerbate if software becomes more proprietary and research
uses more types of software. Standards similar to current publications could
prove worthwhile for text (i.e., JATS XML), but impractical to non-technical
users. As such, does the original file need to be in JATS XML when it can also
easily be converted? (e.g., Markdown to JATS XML; Johnston 2016) Other
specifications for data, code, materials would also be needed moving forward
(e.g., no proprietary binary files such as SPSS data files). In order to make those
standards practical to individuals not privy to the technical details, the next
infrastructure layer would be building user-facing applications that interface with
the Dat protocol and take the requirements into account. These would then
do the heavy lifting for the users, guiding them through potential conversion
processes and reducing friction as much as possible. An example of a rich editing
environment that takes the machine readability of scholarly text to the next level,
and makes this relatively easy to the end-user, is Dokie.li (which writes to HTML;
Capadisli et al. 2017). This editing environment provides a What You See Is
What You Get (WYSIWYG) editor, while at the same time providing semantic
enrichments to the text (e.g., discerning between positive, negative, corroborating,
or other forms of citations).

New infrastructure layers could provide a much needed upgrade to the
security of scholarly communication. Many of the scholarly publisher’s websites
do not use an appropriate level of security in transferring information to and
from the user. More specifically, only 26% of all scholarly publishers use HTTPS
(Hartgerink 2018). This means that any information transferred to or from the user
can be grabbed by anyone in the physical proximity of that person (amongst other
scenarios) — including usernames and passwords. In other words, publisher’s
lack of up-to-date security practices put the user at risk, but also the publisher.
Some publishers for example complained about Sci-Hub, alleging that it illegally
retrieved articles by phishing researcher’s credentials. A lack of HTTPS would
facilitate the illegal retrieval of user credentials, hence those publishers would
ironically facilitate the kinds of activities they say are illegal (Bohannon 2016a).
Beyond the potential of missed revenue for pay-to-access publishers, security
negligence is worrisome because the accuracy of scholarly content is at risk.
Man-in-the-middle attacks, where a middleman inserts themselves between the
user and the server, can surreptitiously distort content, with practical effects for
scientific practice (e.g., changing author names) and real life effects for professions
using results for their jobs (e.g., milligram dosages replaced by gram dosages). By
building a scholarly communication infrastructure on top of the Dat protocol, all
communications are encrypted in transit from one end to the other by default. For
the format of communications, scholarly publishers may currently be unknowing
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distributors of malware in their PDFs distributed to (paying) readers. More
specifically, an estimated .3-2% of scholarly PDFs contain malware (Nissim et
al. 2017), although the types of malware remain ill specified. By implementing
scholarly modules that are converted on the user’s system (e.g., JATS XML,
HTML, Markdown), the attack vector on readers of the scholarly literature can
be reduced by moving away from server-side generated PDFs, which potentially
contain clandestine malware.

Limitations

In the proposed decentralized, modular scholarly communication system there is
no requirement for scholarly profiles to be linked to their real-world entities. This
means that scholarly profiles may or may not be identified. For comparison, a link
to a identification is also not mandatory for ORCID identifiers. Moreover, the
history of anonymous (or pseudonymous) communication has a vibrant historical
context in scholarly communication (e.g., Student 1908) and should therefore not
be excluded by the infrastructure design. However, some might view this as a
limitation.

One of the major points of debate may be that the scholarly modules
are chronologically ordered only (both internally and externally). As such, the
temporal distance between two actions within a scholarly module or between two
scholarly modules is unknown. Within a scholarly module and Dat filesystem,
chronological append-only actions are more reliable to register from a technical
perspective than time-based append-only registers. This has its origin in the fact
that creation-, modification-, and last opened times can technically be altered by
willing users (see for example superuser.com/questions/504829). If timestamps
are altered, people can fabricate records that seem genuine and chronological,
but are not — undermining the whole point of immutable append-only registers.
Hardcoded timestamps in the scholarly metadata would be an even greater risk
due to the potential for direct modification (i.e., it would only require editing
the scholarly-metadata.json file in a text editor). The external ordering, that
is the chronology of scholarly modules, might be gamed as well. Consider the
scenario where a predictions module at version 12 is said to be the parent of a
design module at version 26 but does not exist yet at the time of registration for
the design module. An individual with malicious intentions might do this and
retroactively fabricate the parent predictions. So, despite a specific, persistent,
and unique parent Dat link being provided, the chronology could be undermined,
which in turn threatens the provenance of information. It would require some
effort from said researcher to subsequently ensure that the referenced Dat link
contains the postdictions, but it might be possible to fake predictions in this
manner. Other mechanisms could be put in place to verify the existence of parent
links at the time of registration (which is technically feasible but would require
additional bodies of trust) or to technically investigate for filler actions in a Dat
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filesystems when artificially high version numbers are registered. How to game
the proposed system is an active avenue for further research.

The immutability of the Dat protocol that is central to this proposal only
functions when information is being shared on the network continuously. Techni-
cally, if information has not been shared yet, a user could check out an old version
and create an alternative history. This could prove useful when accidental versions
are registered, but could also provide incorrect provenance. When already shared,
the Dat protocol rejects the content given that it is inconsistent with previous
versions. As such, as long as peers keep sharing a module once its author shares
it, it is difficult to corrupt. Ongoing implementations that add a checksum to
the Dat link (e.g., dat://<hash>@<checksum>+<version>) could help further
reduce this issue.

Despite the potential of building an open-by-design scholarly infrastruc-
ture on top of the Dat protocol, there are also domains where advances need
to be made. Until those advances are made, widespread use in the form of a
scholarly communication system remains impractical and premature (note that
no technical limitations prevent an implementation of the same modular struc-
ture on current technologies, for example GitHub). These developments can
occur asynchronously of the further development of this scholarly communication
infrastructure. Amongst others, these domains include technical aspects and
implementations of the Dat protocol itself, implementations of APIs built on
top of it, legal exploration of intellectual property on a peer-to-peer network,
privacy issues due to high difficulty of removing content permanently once com-
municated, the usability of the proposed scholarly infrastructure, and how to
store information in the modules that is machine readable but also easy-to-use
for individuals.

The Dat protocol is functional, but is currently limited to NodeJS and single-
user write access. Because it is currently only available in NodeJS, portability of
the protocol is currently restricted to JavaScript environments. An experimental
implementation of the Dat protocol is currently being built in Rust and in C++,
which would greatly improve availability of the protocol to other environments.
Moreover, by being restricted to single-user write access, Dat archives are not
really portable across machines or users, although work on multi-user write (i.e.,
multiple devices or users) has recently been released. Other APIs built on top of
the Dat protocol that are essential to building a proposed infrastructure, such as
webdb, also need to be further refined in order to make them worthwhile. For
example, webdb currently does not index versioned Dat links but simply the most
recent versions. As such, the indexing of versioned references is problematic
at the moment, but can be readily tackled with further development. If these
and other developments continue, the benefits of the protocol will mature, may
become readily available to individuals from within their standard browser, and
become more practical to collaborate on. Considering this, the proposed design
is imperfect but timely, allowing for community driven iterations into something
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more refined as implementations of the Dat protocol are also refined and may
become more widely used.

Instead of logging in with passwords, the Dat protocol uses cryptographical
verification using a public-private key pair. A public-private key pair is similar to
the lock-key pair we know from everyday life. This also means that if the (private)
key is lost, a researcher can get locked out from their profile. Similarly, if the
(private) key gets stolen, it might give access to people other than the researcher.
How to securely handle private keys in a user-friendly manner is an important
issue in further development of this scholarly communication system. Regardless,
this changes the threat model from centralized leaks (for example of plaintext
passwords by Elsevier; https://perma.cc/6J9D-ZPAW) decentralized security.
This would make the researcher more in control, but also more responsible, for
their operational security.

Despite the Dat protocol’s peer-to-peer nature, intellectual property laws still
ascribe copyright upon creation and do not allow copying of content except when
explicitly permitted through non-restrictive licenses by authors (Baldwin 2014).
As such, intellectual property laws could be used to hamper widespread copying
when licensing is neglected by authors. Legal uncertainty here might give rise to
a chilling effect to use the Dat protocol to share scholarly information. Moreover,
it seems virtually impossible to issue takedown notices for (retroactively deemed)
illicit content on the Dat protocol without removing all peer copies on the network.
As a result of this, social perception of the Dat protocol might turn negative if
high-profile cases of illicit or illegal sharing occur (regardless of whether that is
scholarly information or something else). However, just as the Web requires local
copies in cache to function and which lawmakers made legal relatively quickly
when the Web was becoming widespread, the wider implementation of peer-to-
peer protocols to share content might also require reforms to allow for more
permissive copying of original content shared on the network. Regardless, legal
issues need to be thought about beforehand and users should be made aware that
they carry responsibility for their shared content. Given its inherent open and
unrestricted sharing design, it would make sense to use non-restrictive licenses
on the scholarly modules by default to prevent these legal issues for researchers
wanting to reuse and build on scholarly modules.

Similarly, we need to take seriously the issue that information on the
network, once copied by a peer or multiple peers, is increasingly unlikely to be
uncommunicated. The implications of this in light of privacy legislations, ethical
ramifications, and general negative effects should not be underestimated. Because
a Dat filesystem has a stable public key and stores versions, the content remains
available even if the content is deleted from the filesystem. That is, users could go
to an older version and still find the file that was deleted. The only way to truly
undo the availability of that information is to remove all existing copies. Hence,
it is worthwhile to ask the question whether scholarly research that is based on
personal data should ever be conducted on the individual level data or whether
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this should be done on higher level summaries of relations between variables (e.g.,
covariance matrices). How these summaries can be verified, would remain an
issue to tackle. Conversely, the limitation with respect to privacy is also a benefit
with regards to censorship, where information would also be much harder to
censure (in stark contrast to publishers that might be pressured by governments;
Philips 2017). Moreover, we might start thinking about the ownership of data in
research. In the case of human subjects research, researchers now collect data
and store it, but we might consider decentralized data collection where human
participants produce their own data locally and simply permit a researcher to
ingest that into an analysis process (creating throwaway databases themselves
with webdb for example). This would in turn return ownership to the participant
and benefit transparency of data generated.

Bandwidth and persistent peers on the Dat protocol are highly correlated
issues that are key to a usable decentralized infrastructure. When there are
few peers on the network, information redundancy is low, content attrition is
(potentially) high, and bandwidth will be limited. Subsequently, maximum data
transfer of 40KB/s may be possible when few peers with restricted bandwidth are
available and are farther removed on the physical network. Vice versa, in the most
optimal scenario data transfer could reach the maximum of the infrastructure
between peers (e.g., 1GB/s on peers located on an intranet). Considering that
replicating Dat filesystems is relatively easy given storage space, it could be
done by individuals, and (university) libraries seem particularly qualified and
motivated candidates for persistent hosting of content on the Dat network. These
organizations often have substantial server infrastructure available, would facilitate
high data transfer speeds, and also have a vested interested in preserving scholarly
content. With over 400 research libraries in Europe and over 900 academic
libraries in Africa alone, bandwidth and redundancy of scholarly content could
be addressed if sufficient libraries participate in rehosting content. Moreover, the
peer-to-peer nature would also allow for researchers to keep accessing content
in the same way when the content is rehosted on the intranet and the wider
connection has service interruptions.

The semi-technical proposal for verified, modular, and provenance based
scholarly infrastructure on the Dat protocol synthesizes meta-research, technical
developments of new Web protocols, real-life issues in a lack of diversity for
consuming scholarly research, and library and information science’s perspectives
on the five functions scholarly communication is supposed to fulfill. With this
initial proposal a scholarly commons seems feasible. The proposal provides a more
complete and less biased register of information than the current article-based
system. Moreover, it facilitates more constructive certification discussions and
allows anyone with access to the Internet to participate. It also provides archival
supportive of the distribution, which anyone may meaningfully contribute to
if they have the physical means. This proposal also may provide new ways of
evaluating, consuming, and discovering research. The decentralized nature of
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the Dat protocol requires less trust to be put in institutions to maintain key
data stores that are the fundament to any infrastructure and replaces it with
widespread distribution of that information. However, technological, legal, and
social developments need to occur asynchronously to make this a reality.

Supporting Information

S1 File. Overview of original Dat links corresponding to shortened
links: https://github.com/chartgerink/2018dat-com/raw/master/assets/
mock-modules-overview.ods.
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Summary

This dissertation focuses on either understanding and detecting threats to the
epistemology of science (chapters 1-6) or making practical advances to remedy
epistemological threats (chapters 7-9)

Chapter 1 reviews the literature on responsible conduct of research, question-
able research practices, and research misconduct. Responsible conduct of research
is often defined in terms of a set of abstract, normative principles, professional
standards, and ethics in doing research. In order to accommodate the normative
principles of scientific research, the professional standards, and a researcher’s
moral principles, transparent research practices can serve as a framework for
responsible conduct of research. Here I suggest a “prune-and-add” project struc-
ture to enhance transparency and by extension, responsible conduct of research.
Questionable research practices are defined as practices that are detrimental to
the research process. The prevalence of questionable research practices remains
largely unknown and reproducibility of findings has been shown to be problematic.
Questionable practices are discouraged by transparent practices because practices
that arise from them will become more apparent to scientific peers. Most effective
might be preregistrations of research design, hypotheses, and analyses, which
reduce particularism of results by providing an a priori research scheme. Research
misconduct has been defined as fabrication, falsification, and plagiarism (FFP),
which is clearly the worst type of research practice. Despite it being clearly
wrong, it can be approached from a scientific and legal perspective. The legal
perspective sees research misconduct as a form of white-collar crime. The scientific
perspective seeks to answer the question “were results invalidated because of the
misconduct?” I review how misconduct is typically detected, how its detection
can be improved, and how prevalent it might be. Institutions could facilitate
detection of data fabrication and falsification by implementing data auditing.
Nonetheless, the effect of misconduct is pervasive: many retracted articles are
still cited after the retraction has been issued.

Head et al. (2015b) provided a large collection of p-values that, from
their perspective, indicates widespread statistical significance seeking (i.e., p-
hacking). Chapter 2 inspects this result for robustness. Theoretically, the p-value
distribution should be a smooth, decreasing function, but the distribution of
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reported p-values shows systematically more reported p-values for .01, .02, .03,
.04, and .05 than p-values reported to three decimal places, due to apparent
tendencies to round p-values to two decimal places. Head et al. (2015b) correctly
argue that an aggregate p-value distribution could show a bump below .05 when
left-skew p-hacking occurs frequently. Moreover, the elimination of p = .045
and p = .05, as done in the original paper, is debatable. Given that eliminating
p = .045 is a result of the need for symmetric bins and systematically more
p-values are reported to two decimal places than to three decimal places, I did
not exclude p = .045 and p = .05. I applied Fisher’s method on .04 < p < .05
and reanalyzed the data by adjusting the bin selection to .03875 < p ≤ .04 versus
.04875 < p ≤ .05. Results of the reanalysis indicate that no evidence for left-skew
p-hacking remains when I look at the entire range between .04 < p < .05 or
when I inspect the second-decimal. Taking into account reporting tendencies
when selecting the bins to compare is especially important because this dataset
does not allow for the recalculation of the p-values. Moreover, inspecting the
bins that include two-decimal reported p-values potentially increases sensitivity if
strategic rounding down of p-values as a form of p-hacking is widespread. Given
the far-reaching implications of supposed widespread p-hacking throughout the
sciences Head et al. (2015b), it is important that these findings are robust to data
analysis choices if the conclusion is to be considered unequivocal. Although no
evidence of widespread left-skew p-hacking is found in this reanalysis, this does
not mean that there is no p-hacking at all. These results nuance the conclusion
by Head et al. (2015b), indicating that the results are not robust and that the
evidence for widespread left-skew p-hacking is ambiguous at best.

Chapter 3 examined 258,050 test results across 30,710 articles from eight
high impact journals to investigate the existence of a peculiar prevalence of p-
values just below .05 (i.e., a bump) in the psychological literature, and a potential
increase thereof over time. I indeed found evidence for a bump just below .05
in the distribution of exactly reported p-values in the journals Developmental
Psychology, Journal of Applied Psychology, and Journal of Personality and Social
Psychology, but the bump did not increase over the years and disappeared
when using recalculated p-values. I found clear and direct evidence for the
QRP “incorrect rounding of p-value” (John, Loewenstein, and Prelec 2012) in all
psychology journals. Finally, I also investigated monotonic excess of p-values, an
effect of certain QRPs that has been neglected in previous research, and developed
two measures to detect this by modeling the distributions of statistically significant
p-values. Using simulations and applying the two measures to the retrieved test
results, I argue that, although one of the measures suggests the use of QRPs in
psychology, it is difficult to draw general conclusions concerning QRPs based on
modeling of p-value distributions.

In Chapter 4 I examined evidence for false negatives in nonsignificant results
in three different ways. I adapted the Fisher method to detect the presence of at
least one false negative in a set of statistically nonsignificant results. Simulations
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show that the adapted Fisher method generally is a powerful method to detect
false negatives. I examined evidence for false negatives in the psychology literature
in three applications of the adapted Fisher method. These applications indicate
that (i) the observed effect size distribution of nonsignificant effects exceeds
the expected distribution assuming a null-effect, and approximately two out
of three (66.7%) psychology articles reporting nonsignificant results contain
evidence for at least one false negative, (ii) nonsignificant results on gender effects
contain evidence of true nonzero effects, and (iii) the statistically nonsignificant
replications from the Reproducibility Project Psychology (RPP) do not warrant
strong conclusions about the absence or presence of true zero effects underlying
these nonsignificant results. I conclude that false negatives deserve more attention
in the current debate on statistical practices in psychology. Potentially neglecting
effects due to a lack of statistical power can lead to a waste of research resources
and stifle the scientific discovery process.

Chapter 5 describes a dataset that is the result of content mining 167,318
published articles for statistical test results reported according to the standards
prescribed by the American Psychological Association (APA). Articles published
by the APA, Springer, Sage, and Taylor & Francis were included (mining from
Wiley and Elsevier was actively blocked). As a result of this content mining,
688,112 results from 50,845 articles were extracted. In order to provide a com-
prehensive set of data, the statistical results are supplemented with metadata
from the article they originate from. The dataset is provided in a comma sep-
arated file (CSV) in long-format. For each of the 688,112 results, 20 variables
are included, of which seven are article metadata and 13 pertain to the individ-
ual statistical results (e.g., reported and recalculated p-value). A five-pronged
approach was taken to generate the dataset: (i) collect journal lists; (ii) spider
journal pages for articles; (iii) download articles; (iv) add article metadata; and
(v) mine articles for statistical results. All materials, scripts, etc. are avail-
able at https://github.com/chartgerink/2016statcheck_data2 and preserved at
http://dx.doi.org/10.5281/zenodo.59818.

In Chapter 6, I test the validity of statistical methods to detect fabricated
data in two studies. In Study 1, I tested the validity of statistical methods to detect
fabricated data at the study level using summary statistics. Using (arguably)
genuine data from the Many Labs 1 project on the anchoring effect (k = 36) and
fabricated data for the same effect by our participants (k = 39), I tested the
validity of our newly proposed “reversed Fisher method”, variance analyses, and
extreme effect sizes, and a combination of these three indicators using the original
Fisher method. Results indicate that the variance analyses perform fairly well
when the homogeneity of population variances is accounted for and that extreme
effect sizes perform similarly well in distinguishing genuine from fabricated data.
The performance of the “reversed Fisher method” was poor and depended on the

2This GitHub repository has been deleted since this chapter was previously published. The
links are included to remain consistent with the published version.
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types of tests included. In Study 2, I tested the validity of statistical methods to
detect fabricated data using raw data. Using (arguably) genuine data from the
Many Labs 3 project on the classic Stroop task (k = 21) and fabricated data for
the same effect by our participants (k = 28), I investigated the performance of
digit analyses, variance analyses, multivariate associations, and extreme effect
sizes, and a combination of these four methods using the original Fisher method.
Results indicate that variance analyses, extreme effect sizes, and multivariate
associations perform fairly well to excellent in detecting fabricated data using
raw data, while digit analyses perform at chance levels. The two studies provide
mixed results on how the use of random number generators affects the detection
of data fabrication. Ultimately, I consider the variance analyses, effect sizes, and
multivariate associations valuable tools to detect potential data anomalies in
empirical (summary or raw) data. However, I argue against widespread (possible
automatic) application of these tools, because some fabricated data may be
irregular in one aspect but not in another. Considering how violations of the
assumptions of fabrication detection methods may yield high false positive or
false negative probabilities, I recommend comparing potentially fabricated data
to genuine data on the same topic.

Chapter 7 tackles the issue of data extraction. It is common for authors
to communicate their results in graphical figures, but those data are frequently
unavailable for reanalysis. Reconstructing data points from a figure manually
requires the author to measure the coordinates either on printed pages using a
ruler, or from the display screen using a cursor. This is time-consuming (often
hours) and error-prone, and limited by the precision of the display or ruler. What
is often not realised is that the data themselves are held in the PDF document to
much higher precision (usually 0.0-0.01 pixels), if the figure is stored in vector
format. We developed alpha software to automatically reconstruct data from
vector figures and tested it on funnel plots in the meta-analysis literature. Our
results indicate that reconstructing data from vector based figures is promising,
where I correctly extracted data for 12 out of 24 funnel plots with extracted data
(50%). However, I observed that vector based figures are relatively sparse (15
out of 136 papers with funnel plots) and strongly insist publishers to provide
more vector based data figures in the near future for the benefit of the scholarly
community.

Scholarly research faces threats to its sustainability on multiple domains
(access, incentives, reproducibility, inclusivity). In Chapter 8 I argue that “after-
the-fact” research papers do not help and actually cause some of these threats
because the chronology of the research cycle is lost in a research paper. I
propose to give up the academic paper and propose a digitally native “as-you-go”
alternative. In this design, modules of research outputs are communicated along
the way and are directly linked to each other to form a network of outputs
that can facilitate research evaluation. This embeds chronology in the design of
scholarly communication and facilitates recognition of more diverse outputs that
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go beyond the paper (e.g., code, materials). Moreover, using network analysis to
investigate the relations between linked outputs could help align evaluation tools
with evaluation questions. I illustrate how such a modular “as-you-go” design of
scholarly communication could be structured and how network indicators could
be computed to assist in the evaluation process, with specific use cases for funders,
universities, and individual researchers.

A scholarly communication system needs to register, distribute, certify,
archive, and incentivize knowledge production. Chapter 9 proposes that the
current article-based system technically fulfills these functions, but suboptimally.
I propose a module-based communication infrastructure that attempts to take a
wider view of these functions and optimize the fulfillment of the five functions of
scholarly communication. Scholarly modules are conceptualized as the constituent
parts of a research process as determined by a researcher. These can be text,
but also code, data, and any other relevant piece of information. The chronology
of these modules is registered by iteratively linking to each other, creating a
provenance record of parent- and child modules (and a network of modules).
These scholarly modules are linked to scholarly profiles, creating a network of
profiles, and a network of profiles and their constituent modules. All these
scholarly modules would be communicated on the new peer-to-peer Web protocol
Dat (datproject.org), which provides a decentralized register that is immutable,
facilitates greater content integrity through verification, and is open by design.
Open by design would also allow diversity in the way content is consumed,
discovered, and evaluated to arise. This initial proposal needs to be refined and
developed further based on technical developments of the Dat protocol and its
implementations, and discussions within the scholarly community to evaluate the
qualities claimed here. Nonetheless, a minimal prototype is available today and
this is technically feasible.
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Epilogue

Eight years after my first epistemological crisis, which led me to spend five years
attempting to understand and find ways to improve the sustainability of science, I
see no way around it: We need new systems to intersectionally and fundamentally
address the systemic issues of science. Now, most reform fiddles with minor
superficial knobs when and where we are allowed to. Piecemeal reform, such as
giving virtual stickers for sharing data, is just not going to cut it when we want
to do something about the sustainability of science. In this Epilogue, I reflect on
the dire need for radical and uncompromising reform in science and I propose a
set of demands.

The fundamental question when choosing between reformism and radicalism
is whether one thinks the current system mostly works. Reformist thinking is
conditional on the current system, whereas radical thinking is unconditional.
In that sense, reformist thinking accepts the very system it is trying to change

— which makes perfect sense if one explicitly or implicitly believes the current
system mostly works or if it serves them. Hence, there is a clear interest for
established actors to argue for (conservative) reform. Conversely, radicalism does
not condition itself on the current system and reimagines what is necessary for
deep-seated change where it is necessary. I consider that the current system,
taken to its logical conclusion, does not work, hence, is unsustainable. For that
reason, I see radical thinking as the only viable option.

That the current, article based, scientific system is too broken to fix has
become painfully clear. Putting aside how invested the established institutions are
in the current system, why should it objectively persist in its current form? Not
only must all changes to the publication system, even effective ones, go through
the gatekeepers of that system, but its gatekeepers do not serve the scientific
system. The publishers logically serve their shareholders in the end. Even if we
could alter the rules such that “mischief” no longer pays in the publishing game
(Bakker et al. 2012), framing it in terms of bettering science need not convince
publishers. Moreover, my research suggests that it is unfeasible to detect mischief
at large, indicating it may be more fruitful to aim for a system that prevents it
in the first place. Only under the sunk cost fallacy does it make sense to me to
keep the current system.
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To understand the need for radical reform from another angle, we need to
consider how the complex systemic issues of science are intertwined with the
complex systemic issues of society. One societal issue that affects issues in science,
for example, is austerity policy in government spending. Spending cuts affect the
available national (research) budgets, which in turn intensifies competition among
scientists, negatively affecting their mental health (Pain 2017) and feeding a race
to the bottom of validity of findings (Smaldino and McElreath 2016). Vice versa,
we cannot neglect the impact the scientific system has on societal issues. For
example, we increasingly add to the ecological crises through conference travel as
careers advance (Wynes et al. 2019); labs also produce large amounts of waste
(one lab estimates approximately 1 ton of plastics per researcher per year; Urbina,
Watts, and Reardon 2015).

Many complex interactions between issues of science and society exist. These
include restrictive access to publications, causing many people to resort to illegal
means to gain access for legitimate purposes (Bohannon 2016b)3. Additionally,
in an attempt to manage the risks Open Access poses to their subscription
models (and shareholders), the highly centralized oligarchy of academic pub-
lishers (Larivière, Haustein, and Mongeon 2015) are shifting to business models
resembling the problematic and data-exploitative models of Facebook. But even
for researchers, the costs to play in publishing Open Access is substantial and
rising faster than inflation (Grossmann and Brembs 2019), reaffirming structural
and global inequalities, creating a paywall at the beginning of the publication
process. This affirms existing inequalities in participation, such as participation
in scientific education that is increasingly difficult as collective financing programs
are replaced with individualized debt (Streeck 2014). These complex issues do not
even begin to grapple with the distortion caused by biased publication of results.
If the studied effects are not large (the low hanging fruit) or widely reproduced
using open data, the rules of the game promote contradicting results, serving
confirmation bias. Moreover, intellectual property laws restrict our capabilities
to deal with information overload in science. On top of all of this and more,
systemic factors resulting in conscious and unconscious individual or institutional
ableism, ageism, classism, homophobia, racism, sexism, and transphobia multiply
these struggles for already underrepresented scientists, making it probable they
become even more underrepresented as time passes. How can we create or expect
valid, reproducible, and applicable knowledge if these issues are its context?

We need to start considering these interconnected issues together, not sepa-
rately, and consider that current powerful stakeholders are invested in maintaining
the status quo. Parallel scientific systems provide a space to envision something
totally different. In order to build parallel systems that may provide hope in
this web of complex issues, we need to integrate the critical study of scientific

3Governments have been documented to seek university interns to
get access (see also https://therostrumblog.wordpress.com/2015/01/12/
why-all-phd-students-should-do-a-policy-placement/).
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practices with critical studies of society, economics, organizations, information
technology, and other relevant fields. Only that way will we be able to determine
and interconnect the issues that need to be addressed in their broadest sense.
Parallel systems also allow us to do more than simply shift power to a new
generation; we can use it to restructure and distribute power. To restructure
power in such a way that when we learn about the immanent problems of the
new systems we build, power no longer serves to maintain the status quo but to
change it. To distribute power such that those chronically underrepresented may
finally become adequately represented.

What should we demand of a parallel scientific system to make it worthwhile?
The following demands can serve as utopian expectations to strive towards and
evaluate proposals.

A worthwhile scientific system must be widely applicable. It must be usable
on its own, but also in parallel with current structures that people might already
be embedded in (e.g., universities). This would allow simultaneous participation
in both old and new systems for researchers in institutions. This would also not
force (early career) academics into zero-sum publishing decisions, which would
effectively exacerbate the institutionalized issues they are already facing (e.g.,
not being able to publish Open Access in the most career rewarding journals).
Nonetheless, the parallel system should be usable on its own for researchers
outside of academic institutions, who should not be forced to conform to the
norms of the institutions that they are not a part of (or may have actively rejected
if they left academia).

Beyond minimizing barriers to participation in the scientific system, every-
day research practices must be facilitated in the most concrete way. Too many
proposals for change in the scientific system simply add to the already overbur-
dening research process, making it more, not less, difficult to do and participate in
research. Especially (quick) technocratic fixes serve such alienation from research:
technocrats formulate these rules to create a veil of progress, telling people what
to do but (often) not how they might go about (effectively) doing so. Examples
include stricter data regulations but with no support structures to achieve them.
Additionally, technocratic measures are inherently institution-specific and affirm
top-down control mechanisms, further entrenching power inequities. A worth-
while alternative must boost bottom-up change by making it easier to organize
information, retrieve it, discuss it, and use it in the most concrete, everyday sense.

Alternatives must provide a coherent and extensive answer to the functions of
a scholarly communication system. These functions encompass access, registration,
certification, archival, and incentives. By analyzing the limitations of the current
system on these functions, we can design an alternative that differentiates itself
substantially and completely. By providing a more coherent and parsimonious
answer to these functions, a parallel system may also prove more convincing for
bottom-up change.

Those designing parallel scientific systems must actively reconsider what
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ought to be valued in science. As a result, cooperation, incrementalism, validity,
reliability, and replications must become preferred and rewarded over competition,
innovativeness, unreliability, and spontaneous isolated discovery. There is nothing
objective about what we subjectively decide to value. Only deep and active value
changes allow for incentive superstructures that substantially differ from the
current and problematic system.

Access to and reuse of published information must be complete and unlimited,
further removing barriers to participate in research. Not all information should
be published to begin with (e.g., sensitive data), but published information
should not be additionally fortified. Unlimited access and reuse means that
intellectual control and censorship of information by state, commercial, or other
actors needs to be mitigated by design. These actors benefit from bottlenecks in
information flow that can be tightened, controlled, and surveilled. This is exactly
how the services we now use are (being) designed. Hence, current centralized and
restrictive models need to be replaced for decentralized and permissive models.

We must demand the potential of new ways to deal with information overload.
Full access and unlimited reuse permits us to deal with information overload in
better ways by making it easier to commodify ways to consume and discover
information. Creating such a market was part of the European Digital Single
Market strategy4, but it failed to do so. Oligarchic control over access and reuse
prevents its existence today. By demanding decentralization and distribution of
information, we may break up both the oligarchic publishing structures in science
and break up the oligarchic control over the data on which services can be built.

To better deal with information overload we must also demand new informa-
tion structures. Transparency is often proposed as the key to reforming science,
but without somewhat standardized structures to make sense of what is available,
there is a risk of obfuscation. I have spent many hours trying to understand
someone else’s project structure with hundreds of files — this does not scale
for sustainable information consumption and production. Questions about the
unit of communication and what is communicable seem timely when the lack of
chronology causes some of the issues in science (e.g., HARKing; Kerr 1998). As
we create new information structures, we must also demand schemas that are
flexible enough to allow for heterogeneous forms of research and prevent excessive
rigidity that homogenizes and may even straitjacket research.

Due to the delicate balances and interests that need to be sought, we must
demand that these systems are built in an open, dialectical, and actively inclusive
way. It is unacceptable to create new (temporary) exclusionary privileges under
the header of progress (e.g., the temporary Open Access privilege the Bill and
Melinda Gates Foundation created; Van Noorden 2017). This means that any
form of oligarchic control over how these demands are implemented needs to be
actively prevented and bottom-up procedures need to actively be promoted.

4https://ec.europa.eu/digital-single-market/en/policies/digitising-european-industry
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Finally, we must demand systems that are sustainable for both knowledge
production and the planetary environment. This is the acute societal context that
we must not neglect (IPCC 2018). In order to reduce the need for consumptive
resources (often fossil fuel based; Pirani 2018), we must reimagine how we can
interact with other researchers. Doing so may drastically reduce the need for flights
for conferences. The digital services that are provided also consume substantial
amounts of energy, especially given the rise of machine learning algorithms whose
training is substantial in its energy use (Strubell, Ganesh, and McCallum 2019).
Any radical proposals must be evaluated on their sustainability given the acute
urgency of the ecological crises.

Only together do these demands produce a framework to build parallel
systems that may start to substantially change the sustainability of science.
Many scientific issues intersect with the societal issues that we are embedded
in; ignoring this intersection harms effective and sustainable change. Reformist
changes often lack this intersectionalism by being highly specific, which ultimately
results in more effort spent for (maybe) the same goals. Regardless, the described
framework served me in creating a concrete radical proposal (cf. chapters 8
and 9) and provides the basis as I implement this in my work moving forward.
Nonetheless, there is a multiplicity of ways to think radically and achieve these
demands. With pluralism of radical ideas, substantial change may happen. In
the end, it does not matter who makes the change, but that the change happens.
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Appendix A

Examining statistical
properties of the Fisher test

The Fisher test to detect false negatives is only useful if it is powerful enough
to detect evidence of at least one false negative result in papers with few non-
significant results. Therefore we examined the specificity and sensitivity of the
Fisher test to test for false negatives, with a simulation study of the one sample
t-test. Throughout this chapter, we apply the Fisher test with αF isher = 0.10,
because tests that inspect whether results are “too good to be true” typically
also use alpha levels of 10% (Sterne, Gavaghan, and Egger 2000; Ioannidis and
Trikalinos 2007; Francis 2012). The simulation procedure was carried out for
conditions in a three-factor design, where power of the Fisher test was simulated
as a function of sample size N , effect size η, and k test results. The three factor
design was a 3 (sample size N : 33, 62, 119) by 100 (effect size η: .00, .01, .02,
. . . , .99) by 18 (k test results: 1, 2, 3, . . . , 10, 15, 20, . . . , 50) design, resulting in
5,400 conditions. The levels for sample size were determined based on the 25th,
50th, and 75th percentile for the degrees of freedom (df2) in the observed dataset
for Application 1. Each condition contained 10,000 simulations. The power of
the Fisher test for one condition was calculated as the proportion of significant
Fisher test results given αF isher = 0.10. If the power for a specific effect size η
was ≥ 99.5%, power for larger effect sizes were set to 1.

We simulated false negative p-values according to the following six steps (see
Figure A.1. First, we determined the critical value under the null distribution.
Second, we determined the distribution under the alternative hypothesis by
computing the non-centrality parameter as δ = (η2/1−η2)N (Steiger and Fouladi
1997; Smithson 2001). Third, we calculated the probability that a result under the
alternative hypothesis was, in fact, nonsignificant (i.e., β). Fourth, we randomly
sampled, uniformly, a value between 0 − β. Fifth, with this value we determined
the accompanying t-value. Finally, we computed the p-value for this t-value under
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Figure A.1: Visual aid for simulating one nonsignificant test result. The critical
value from H0 (left distribution) was used to determine β under H1 (right
distribution). A value between 0 and β was drawn, t-value computed, and p-value
under H0 determined.

the null distribution.
We repeated the procedure to simulate a false negative p-value k times and

used the resulting p-values to compute the Fisher test. Before computing the
Fisher test statistic, the nonsignificant p-values were transformed (see Equation
(4.1)). Subsequently, we computed the Fisher test statistic and the accompanying
p-value according to Equation (4.2).
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Appendix B

Effect computation

The t, F , and r-values were all transformed into the effect size η2, which is the
explained variance for that test result and ranges between 0 and 1, for comparing
observed to expected effect size distributions. For r-values, this only requires
taking the square (i.e., r2). F and t-values were converted to effect sizes by

η2 =

F ×df1

df2

F ×df1

df2

+ 1
(B.1)

where F = t2 and df1 = 1 for t-values. Adjusted effect sizes, which correct for
positive bias due to sample size, were computed as

η2
adj =

F ×df1

df2

− df1

df2

F ×df1

df2

+ 1
(B.2)

which shows that when F = 1 the adjusted effect size is zero. For r-values the
adjusted effect sizes were computed as (Ivarsson et al. 2013)

η2
adj = η2 − ([1 − η2] × v

N − v − 1
) (B.3)

where v is the number of predictors. It was assumed that reported correlations
concern simple bivariate correlations and concern only one predictor (i.e., v = 1).
This reduces the previous formula to

η2
adj = η2 − 1 − η2

df
(B.4)

where df = N − 2.
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Appendix C

Example of statcheck

report for PubPeer

The HTML version of this article was scanned on 5 August 2016 for
statistical results (t, r, F , χ2, and Z values) reported in APA format
(for specifics, see Nuijten, Hartgerink, et al. 2015). An automatically
generated report follows.
The scan detected 5 statistical results in APA format, of which 3
contained potentially incorrect statistical results, of which 1 may
change statistical significance (α=0.05). Potential one-tailed results
were taken into account when “one-sided”, “one-tailed”, or “direc-
tional” occurred in the text. The errors that may change statistical
significance were reported as:
t(67) = −0.436, p < 0.001 (recalculated p-value: 0.66424)
The errors that may affect the computed p-value (but not the statistical
significance) were reported as:
F (1, 126) = 2.1, p > 0.90 (recalculated p-value: 0.14978)
t(67) = −1.02, p = 0.35 (recalculated p-value: 0.31140)
Note that these are not definitive results and require manual inspection
to definitively assess whether results are erroneous.
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