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1, rue de la Noë, BP 92101. 44321 Nantes, France

Email: Yannick.Aoustin@irccyn.ec-nantes.fr

Yuri Martynenko

Institut of Mechanics,
Moscow Lomonosov State University,

1, Michurinskii Prospect, Moscow,

119192, Russia
Email: martynenko@imec.msu.ru

ABSTRACT

The design of remotely controlled and autonomous Un-

manned Aerial Vehicles (UAVs) is an actual direction in modern

aircraft development. A promising aircraft of this type is a pow-

ered paraglider (PPG). In this paper, a new mathematical model

is suggested for the paraglider’s longitudinal motion aimed at the

study of PPG dynamics and the synthesis of its automatic con-

trol. PPG under consideration is composed of a wing (canopy)

and a load (gondola) with propelling unit. The PPG mechanical

model is constructed as the system of two rigid bodies connected

by an elastic joint with four degrees of freedom that executes

a 2D motion in a vertical plane. The details of PPG’s motion

characteristics including steady-states regimes and its stability

have been studied. A nonlinear control law, based on the partial

feedback linearization, has been designed for the thrust of PPG.

Simulation results are analyzed. Simulation tests show that the

internal dynamics are stable near the steady-state flight regime.

NOMENCLATURE

Ox0y0 Inertial (fixed) coordinate system.

Ax1y1 Moving coordinate system connected with the gondola.

C1x2y2 Moving coordinate system connected with the canopy.

α Angle of attack [rad].

θ1 Pitch angle for the gondola [rad].

θ2 Pitch angle for the canopy [rad].

γ Climbing angle for the steady-state flight regime [rad].
C1 center of mass for the gondola.

C2 center of mass for the canopy.

A Confluence point.

A1 Application point of the trust force.

A2 Wheel of the gondola.

σ1 Angle between the axis x1 and the trust force [rad].
σ2 Angle between the axis x2 and the canopy [rad].
l1 Distance between A and C1, d(AC1) [m].
l2 distance between A and C2, d(AC2) [m].
l3 Distance between A and the wheel of the gondola

A2 , d(AA2) [m].
l4 Distance between A1 and C1, d(A1C1) [m].
R Radius of the wheel of the gondola [m].
g Constant of gravity [m.s−2].
ρ Density of air [kg/m3].
ρ1 Radius of inertia of the gondola with respect to C1, [m2].
ρ2 Radius of inertia of the canopy with respect to C2, [m2].
m1 Mass of the gondola [kg].
m2 Mass of the canopy [kg].
k Stiffness coefficient for the flexible joint in A [N.m/radians].
S1 Surface of the gondola [m2].
S2 Surface of the canopy [m2].
CD1

Drag coefficient of the gondola.

CD2
Drag coefficient of the canopy.

CL Lift coefficient of the canopy.
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Cω Coefficient of the spin moment acting on the canopy.

Tv Trust force of the propelling unit [N].

1 Introduction

Recreational flight, space recovery, rescue delivery of air

cargo are privileged application fields for PPGs or parafoil-load-

systems. From the economic viewpoint they are low cost com-

pared to fixed wings. Their ability to glide and steer allows

them to face wind-offsets, contrarily to the conventional round

parachutes. They can be used for sensitive instruments or in-

jured humans because precise and very soft landings are pos-

sible. They are lightweight and usually their size is small. In

consequence their portability is an essential characteristic when

they are not airborne. All these advantages enhance their appeal

for use as (UAV).

The PPG is an aircraft which derives lift from a ram-air

inflated canopy, under which the gondola is suspended. Their

canopies are inflated by the dynamic pressure of the air flowing

past them and have a cross section in the shape of an airfoil, al-

lowing them to create lift. This capability differentiates these

”parafoils” from conventional parachutes which are used to sim-

ply create drag. Thus far, the paragliders have been utilized al-

most exclusively for unmanned aerial vehicles (UAV) and sens-

ing applications. UAV arouse the interest of researchers since the

60s. For example, Chambers and Boisseau [1] make a theoret-

ical analysis to provide an understanding of some of the funda-

mentals of the dynamic lateral stability and control of parawing

vehicles. Kuchta [2] investigates the spacecraft landing with a

parachute system. Some of the earliest projects involving the us-

age of parafoil-based systems were discussed by Nikolaides and

Knapp [3].

To determinate the analytic or interpolating expressions for

aerodynamic forces acting on a paraglider in flight, it is necessary

to perform a complex of experimental researches in wind tun-

nels, and also to solve very complicated 3D problems of compu-

tational fluid mechanics. The first preliminary wind-tunnel tests

and free-flight tests for small velocities of wings in air were car-

ried out in wind tunnel of university of Notre Dame by Niko-

laides and Knapp [3]. Burk et al. presented an investigation of

the low-speed static aerodynamic characteristics of three ram-air-

inflated low-aspect-ratio parafoils in full-scale wind tunnel [4].

The aerodynamic coefficients included lift, drag and side-force

coefficients; rolling, pitching and yawing moment coefficients.

The experimental researches confirmed that a parafoil is similar

to an airplane wing.

Parallel computational methods are described for 3D simu-

lation of the dynamics and the fluid dynamics of a parafoil with

prescribed, time-dependent shape changes by Tezduyar et al [5].

The mathematical model in [5] is based on the time-dependent,

3D Navier-Stokes equations governing the incompressible flow

around the parafoil and Newton’s law of motion governing the

dynamics of the parafoil, with the aerodynamic forces acting on

the parafoil calculated from the flow field.

Most parachute and payload systems are usually analyzed as

one rigid body system in the same way as an airplane [6]. One

of the first paper when the motion characteristics of parachute

and payload system were analyzed as a two-body system is pa-

per [7] because it has to be considered that the oscillation of the

parachute is different from that of the payload.

The paper by Moulin [8] points out the importance of the

modeling of the link between the parachute and the load by show-

ing its in the dynamic behavior of this complex system. The in-

dicated circumstance has led to occurrence of a great number of

works, in which the paraglider model is designed as the system of

two or several rigid bodies connected by a cylindrical (or spher-

ical) joint. During 2D motion these systems have four degrees

of freedom, for 3D motion models with eight, nine degrees of

freedom or even with 15 degrees of freedom are appeared [9].

Slegers and Costello [10] study on the dynamic modelling of

a parafoil with nine degrees of freedom, including three inertial

positions of the joint as well as the Euler angles of the parafoil

and the payload.

In [11] for an experimental vehicle ALEX a dynamic mod-

eled is given. The physical parameters of the model are estimated

and then validated using flight test data.

Hur and Valasek [12] investigated the dynamics of the

BUCKEREYE vehicle considering the mechanical model with

eight degrees of freedom: six for the parafoil, and two for the

relative pitch and yaw attitudes of the vehicle. The parafoil and

the vehicle are assumed as rigid bodies. The elasticity of the

risers and suspension are ignored in modeling. In a related pa-

per, Lund [13] details the testing of the same Buckeye powered

parafoil which had been modified for use as an unmanned aerial

vehicle. The aircraft was developed into a testbed for the parafoil

guidance, navigation and control (PGNC) algorithms and sensors

designed for the autonomous parafoil recovery of NASA’s X-38

aircraft.

Very detailed and careful review of different models of

parafoil-payload system and paraglider was carried out in paper

of Yakimenko [14]. Such models are necessary for a rational

choice of the basic geometrical and mass parameters of system,

for readjusting nominal aerodynamic coefficients, parameters of

control systems, at processing of results of flight tests and iden-

tification of mathematical models such vehicles.

Multicriteria parametrical identification of parafoil load de-

livery system was proposed in [15]. Based on the structural iden-

tification as an initial step toward creation of an adequate model

of the parafoil, a high-fidelity model including several dozens of

optimization parameters has been developed.

In [16] a control law is proposed, which includes corrections

in the linear displacement, velocity, and acceleration for a pow-

ered parachute.

The paper [17] and its extended version [18] present a non-
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linear dynamic model of a powered paraglider (PPG) and numer-

ical simulation results obtained using the model with six degrees

of freedom and two control inputs, which are the lengths of the

right and left trailing edges of the parafoil canopy.

Modeling using the Lagrangian/Hamiltonian approach is

also proposed in [19] and [20]. Recently, Zaitsev and Formal’skii

[21] suggest a mathematical model for a planar longitudinal mo-

tion of a paraglider to synthesize its automatic control.

In contrast, in this study a new approximated dynamic model

is considered for investigation PPG motion characteristics in-

cluding steady-states regimes and its stability. A Lagrange ap-

proach is used to derive the PPG’s equations and aerodynamic

forces are described by analytical expressions. Section 2 is

devoted to the paraglider model presentation. Dynamic equa-

tions are presented, and the physical parameters of the model

are chosen. In section 3 the properties of steady-state regimes

of paraglider are analyzed. In section 4 the PPG’s control is

designed which makes use of the partial feedback linearization

results. We consider the amplitude of trust Tv as input and the

vertical coordinate yC1
of the center of mass of PPG as output.

Proposed control provides the output tracks a desired trajectory

while keeping the whole state bounded and stable. The results of

numerical simulation of PPG’s motion are presented in section

6. Our conclusion and perspectives are offered in Section 7.

2 Mathematical model of paraglider’s longitudinal

motion

A schematic view of the powered paraglider is depicted in

figure 1. The PPG’s model is the system of two rigid-bodies, the

gondola and the wing (canopy), connected by an elastic joint in

point A. The gondola parameters have subscript 1, the canopy

parameters have subscript 2. The distances between the center of

mass C1 of the gondola, the center of mass C2 of the canopy and

joint A are AC1 = l1,AC2 = l2. The configuration variables of the

two-bodies system are

q = (x,y,θ1,θ2)
t (1)

where x, y are the coordinates of joint A in the fixed coordinate

system Oxy, θ1 and θ2 are the pitch angles for the gondola and

the canopy respectively.

The positions of the center of mass C1 of the gondola and of

the center of mass C2 of the canopy will be

xC1
= x+ l1 sin θ1, xC2

= x− l2 sinθ2

yC1
= y− l1 cosθ1, yC2

= y+ l2 cosθ2
(2)

During the take-off roll the wheels of the gondola have con-
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FIGURE 1. Geometric parameters and coordinate systems for the

PPG’s model (Oxy is a fixed (inertial) coordinate system, C1x1y1,Ax2y2

are frames attached to the gondola and the canopy, axes y1 and y2 are

parallel to segments C1A and AC2 respectively.

tact with the ground surface, so we have the unilateral constraint

y− l3 cosθ1 −R = 0 (3)

The kinetic energy of PPG is

2K = q̇tA(q)q̇, (4)

where A(q) is the matrix of inertia coefficients

A(q) =









a11 0 a13 cosθ1 −a14 cosθ2

0 a11 a13 sinθ1 −a14 sinθ2

a13 cosθ1 a13 sinθ1 a33 0

−a14 cosθ2 −a14 sinθ2 0 a44









a11 = m1 +m2, a33 = m1(ρ2
1 + l2

1),
a44 = m2(l

2
2 +ρ2

2 ), a13 = m1l1, a14 = m2l2

The elastic and gravitational potential energies Π of the PPG

are

Π =
1

2
k(θ1 −θ2)

2 +(a11y− a13 cosθ1 + a14 cosθ2)g (5)
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where k is the stiffness coefficient of the joint linking the canopy

and the gondola at the confluence point A, g is the acceleration

of the free fall.

The wing (canopy) is considered as a straight-line segment

centered at point C2 , the angle between axis x2 and canopy is

denoted σ2, the unit vector es determines the direction of the

canopy, see figure 2.

Due to the theorem about the simplification of the arbitrary

forces system to a single resultant force and a resultant mo-

ment [22] we can replace the aerodynamic forces acting of the

canopy by one resultant in the center of mass C2 and one resul-

tant moment Ma, see figure 2.

F
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e
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C
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M
a

y
2

x
2

s
2

q
2m g

2

FD2
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FIGURE 2. Resultant of the aerodynamic forces and spin moments

applied to the canopy and attack angle.

|FD2
|=CD2

1
2
ρV2

C2
S2, |FL|=CL (α) 1

2
ρV2

C2
S2 (6)

The drag force FD2
has the opposite direction to the velocity

vector of center of mass of the canopy VC2
. The direction of the

lift force FL is orthogonal to the velocity VC2
. In equations (6)

1
2
ρVC2

represents the dynamic pressure of the airflow, ρ is the

air density, S2 is the canopy area. The drag coefficient and the

lift coefficient are denoted by CD2
and CL. The lift coefficient CL

depends on the attack angle α [23], which is the angle between

the velocity of center of canopy VC2
and the unit vector of canopy

es, see figure 2. We can calculate sinα as function of generalized

coordinates and velocities as follow

sinα =
sin(θ2 +σ2) ẋ− cos(θ2 +σ2) ẏ− l2 sinσ2θ̇2

√

(ẋ− l2 cosθ2θ̇2)2 +(ẏ− l2 sinθ2θ̇2)2

(7)

For the lift coefficient CL (α) the following approximated

model is used to take into account a variation of α in a large

range [24]:

CL(α) =Cα
L sinα cosα (8)

where Cα
L has a constant value. We assume the existence of a

spin damping moment [25–27]:

Ma =−Cω
1

2
ρVC2

S2l2
2 θ̇2 (9)

where Cω is a constant coefficient. This moment of aerodynamic

forces tends to decrease the angular velocity of canopy θ̇2 such

as a viscous friction.

For the gondola we use the same model aerodynamic forces

but without lifting force, CL1
= 0. The modulus of the resultant

of the drag force acting on the gondola can be written:

|FD1
|=CD1

1
2
ρV2

C1
S1. (10)

Similarly to FD2
, the drag force FD1

acting on the gondola has

the opposite direction to the velocity of center of mass of the

gondola VC1
.

Modulus Tv of the force trust that produces by a propelling

unit applies to the gondola at the point A1, (AA1 = l4), the angle

between axis x1 of the gondola and the thrust is denoted σ1. The

points A, A1, C1 and A2 are assumed to be on the same line.

Using Lagrange’s equations the dynamic model of the

paraglider in aerial phase can be written

d

dt

(

∂K

∂ q̇

)t

−

(

∂K

∂q

)t

+

(

∂Π
∂q

)t

= Qa +Qt (11)

where Qa is the generalized aerodynamic force, Qt is the gener-

alized thrust force

Qa =





























Fa1x +Fa2x

Fa1y +Fa2y

Fa1xl1 cosθ1+
Fa1yl1 sinθ1

−Fa2xl2 cosθ2−
Fa2xl2 sinθ2 +Mα





























, Qt =





















Tv cos(θ1 +σ1)

Tv sin(θ1 +σ1)

Tvl4 cosσ1

0





















Fa1x, Fa2x, Fa1y, Fa2y are the projections onto fixed axes x,y the

aerodynamic forces applied to the gondola and the canopy.

After computations in equation (11), we have

A(q) q̈ = h(q, q̇)+b(q)Tv

h(q, q̇) = hc −
(

∂Π
∂q

)t

+Qa

b(q) =
(

cos(θ1 +σ1) sin(θ1 +σ1) l4 cosσ1 0
)t

(12)
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where h(q, q̇) is the vector of nonlinear members, hc are the vec-

tor of the Coriolis and centrifugal forces, −
(

∂Π
∂q

)t

are potential

(gravity and elasticity) forces, Qa are aerodynamic forces.

When accelerating during the launch, the paraglider moves

on the ground and the vertical reaction Ry at point A1 is

Ry = a11g−Fa1y−Fa2y−Tv sin (σ1 +θ1)+
a13

(

cosθ1θ̇ 2
1 + sinθ1θ̈1

)

−
a14

(

cosθ2θ̇ 2
2 + sinθ2θ̈2

)

+ a11ÿ

(13)

After differentiating twice the unilateral constraint (3) we

obtain the vertical component of the acceleration of point A for

ground motion

ÿ =−l3
(

θ̇ 2
1 cosθ1 + θ̈1 sinθ1

)

When the reaction Ry given by (13) is positive adding in the

right part of the first equation (12) the vector,









0

1

l3 sinθ1

0









Ry, (14)

yields the equations of motion for the gondola rolling on the

ground.

When the reaction (13) reverses its sign and becomes neg-

ative, the vehicle takes off the ground and we have to consider

the equation (12). Let us remark that before to take off, the

paraglider is assumed to move along the ground perfectly flat

without friction.

2.1 Physical parameters of the paraglider

For the paraglider the physical parameters are:

m1 = 100 kg, m2 = 7 kg, g = 9.81 ms−2,
CD1

= 0.1,CD2
= 0.1,Cω = 0.01,

l1 = 0.48 m, l2 = 6.78 m, l3 = 0.51 m, l4 = 0.24 m,
R = 0.3 m,K j = 100 N.m/rad, ρ = 1.29 kg/m3,

ρ1 = 0.32 kg/m3, ρ2 = 1.7 kg/m3,
S1 = 1 m2, S2 = 30 m2, σ1 = 0 rad, σ2 = 0.1 rad.

(15)

Let us remark that for the choice of the stiffness coefficient

k of joint linking the canopy and the gondola it is possible to

use the relation between the natural frequencies of PPG and the

stiffness coefficient k. (The natural frequencies of relative mo-

tions of the gondola and the canopy can be measured during the

flight [11]). For a steady-state flight of PPG the forces applied to

paraglider (gravitational, aerodynamic, thrust) form the balanced

system of forces so we can replace aerodynamic forces the ver-

tical force (m1 +m2)g applied to PPG at point C2 and consider

two-link pendulum with the fixed point C2. If we neglect friction

we can consider the conservative system. For small oscillations

this system we have the following matrix equation:

A0q̈+C0q = 0 (16)

where A0 is the constant inertia positive definite matrix and C0 is

rigidity matrix.The linear system (16) being conservative, all the

roots of its characteristic equation are on the imaginary axis. Fig-

ure 3 shows for the two non null natural frequencies dependence

on the stiffness coefficient k of the joint between the canopy and

the gondola

0 1 2 3 4 5

x 10
4

0

2

4

6

8

10

12

14

k N.m/radians

f 1
,

f 2
H

z

FIGURE 3. Natural frequencies as a function of the stiffness coeffi-

cient k

3 Steady-state flight regimes

If the modulus Tv of the thrust force is constant, then, using

the dynamic model (12) we can find the steady-state flight regime

under which there is the following steady stationary solution

ẋ =V0 cosγ, ẏ =V0 sinγ,
θ̇1 = 0, θ̇2 = 0, θ1 = θ10, θ2 = θ20,

(17)

where γ is the climbing angle.
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In this regime, the paraglider moves uniformly along a

straight line making an angle of γ with the horizontal axis Ox.

Substituting particular solution (17) into differential equation

(12) yields to four scalar equations relating for four unknowns:

Tv, θ10, θ20 and V0

0 = h(q, q̇)+b(q)Tv (18)

First and second scalar equations in (18) are linear equations

with respect to Tv and V 2
0 . After to solve these equations and the

elimination of Tv and V 2
0 from third and fourth equations (18) we

get two transcendental equations for the steady-state values of

angles θ10, θ20

f3 (θ10,θ20,µ) = 0, f4 (θ10,θ20,µ) = 0 (19)

where µ is the vector of parameters of PPG which include the

angles γ , σ1, σ2, the stiffness coefficient k and other parameters.

The transcendental equations (19) define a multi-parameter

set of steady-state regimes. This set can be constructed numeri-

cally with a Newton-Raphson method. If in the numerical study

we use the angle γ as a single parameter, then each given (rea-

sonable) value of γ is associated with some values of θ10, θ20,

V0, and Tv. These steady-state values include γ = 0 and the corre-

sponding values of θ10, θ20, V0, and Tv, with the last characteristic

denoted by Tv0. In other words, the steady state regimes include a

horizontal flight at Tv0 = const. For thrust values other than Tv0,

the paraglider in a steady-state regime follows an inclined tra-

jectory. Therefore, the velocity of a horizontal flight cannot be

changed by varying the thrust. Setting up linear equations for a

small neighborhood of steady-state regimes (17), we can analyze

their stability. Using the data (15) the roots of the characteristic

equation of the linear model of the paraglider around the steady

stationary solution (17) with γ = 0.1 are:

λ1,2 =−3.2370± 7.0385 i, λ3,4 =−0.2849± 7.7878 i,
λ5,6 =−0.05281± 0.8164 i.

(20)

Steady-state regimes with highly inclined trajectories are un-

stable.

If for horizontal flight (γ = 0) we use the angle σ1 as pa-

rameter in the equations (19) we can investigate the behavior of

Tv0(σ1), V0(σ1), θ10(σ1) and θ20(σ1), see figure 4. The thrust Tv0

has minimum for variation σ1 between −0.5 rad and 0.5 rad.

When the stiffness coefficient k increases the difference be-

tween the pitch of the gondola θ1 and the pitch of the canopy θ2

decreases, see figure 5.
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FIGURE 4. Different steady-state regimes characterized by Tv0, V0,

θ10 and θ20 as a function of σ1 for the interval −0.5 rad < σ1 < 0.5 rad

.
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FIGURE 5. Dependence of steady state values of angles θ10 (solid

line) and θ20 (dashed line) on the stiffness coefficient k.

4 Stabilization of the flight altitude

In this section we briefly inform the reader about the par-

ticular application of the routine procedure of linear control to

stabilize the flight altitude. The density of air ρ depends on the

altitude above the ground. However for small flight altitudes, this

dependance can be considered as null. Then the motion of the

paraglider does not depend on its altitude and in consequence, y

is a cyclic variable. Therefore, the horizontal uncontrolled mo-

tion of the paraglider at Tv = Tv0 = const does not depend on y.
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Hence this steady-state flight regime is not asymptotically stable

with respect to the flight altitude. However a flight at the desired

altitude can be stabilized by controlled the trust force in ampli-

tude [21]. Zaitsev and Formal’skii proposed for the stabilizing

control of a 2D paraglider without joint in the confluent point a

nominal thrust amplitude Ts, closed to Tv0, added to a feedback

with respect to the deviation of the gondola’s flight altitude from

the desired value and with respect to the vertical component of

velocity of the point A.

Tv = Ts −Kp(yC1
− yd

C1
)−KvẏC1

(21)

where, Ts = const is a given thrust amplitude equal or close to

Tv0. The admissible thrust values are bounded above by a certain

value Tm because the steady-state regime can become unstable,

see [28]. Furthermore the thrust amplitude cannot be negative.

Therefore, instead (21), we consider the feedback:

Tv =























0, i f Tv ≤ 0.

Tv, i f 0 ≤ Tv ≤ Tm

Tm, i f Tv ≥ Tm

(22)

The gains Kp and Kv, are chosen using the degree of stability

δ > 0 such as the eigenvalues of the matrix system of the lin-

ear model satisfy Reλi < −δ [29]. In the other cases we apply

δ = 0. Figure 6 shows δ , and then the asymptotical stability, ob-

tained with the control law (22) for variations of gains Kp and Kv

from 1.0 N/m to 400.0 N/m and 0.0 N/(m.s) to 400.0 N/(m.s)
respectively.

5 Partial feedback linearization

Our objective is to make the output yC1
tracks a desired tra-

jectory yd
C1
(t) while keeping the whole state bounded. Time

variable yd
C1
(t) and its time derivatives up to a sufficiently high

are assumed to be known and bounded. We consider Y = yC1
−

yd
C1
(t) = y− l1cosθ1 − yd

C1
(t) as output of system (12) and

Ẏ = ẏ+ l1θ̇1sinθ1 − ẏd
C1
(t) (23)

defines the linearizing coordinates. The state feedback is com-

puted when solving the following equation in Tv

u = ctq̈+ l1θ̇ 2
1 cosθ1 − ÿd

C1
(t)

= ctA−1h+ l1θ̇ 2
1 cosθ1 + ctA−1bTv − ÿd

C1
(t)

(24)
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FIGURE 6. Stability degree as a function of the gains Kv and Kp ob-

tained with the control law (22).

with ct =
(

0 1 l1 sinθ1 0
)t

, which yields Ÿ = u. We choose the

control law as a simple linear double-integrator relationship be-

tween the output and the new input u

u = k2

(

ẏd
C1

− ẏC1

)

+ k1

(

yd
C1

− yC1

)

(25)

where yd
C1

is the desired trajectory.

The trust amplitude Tv has to be chosen in the pre-feedback

form

Tv =
1

ctA−1b

(

u− ctA−1h− l1θ̇ 2
1 cosθ1 + ÿd

C1

)

(26)

Similarly to (22) the applied pre-feedback cannot be negative and

is limited by the maximal value Tm.

The trust control (26) is defined everywhere, except at the

points of singularity which are zeros of the following function

ctA−1b =
d (θ1,θ2)

d0 (θ1,θ2)
(27)

For m2 ≪ m1 it is possible to get for the function d (θ1,θ2) the

following asymptotic expansion

d (θ1,θ2)∼
sin(θ1 +σ1)

m1

(

1+ o

(

m2

m1

))
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The physical sense of the equality to zero the function

d (θ1,θ2) is the horizontal position of a vector of thrust of the

PPG propelling unit.

To investigate the internal dynamics of PPG under the con-

trol law (26) with (25) we define a 4× 3 dimensional matrix as

follow

S(q) =









−sin(σ1 +θ1) l4 cos(σ1 +θ1) 0

cos(σ1 +θ1) l4 sin(σ1 +θ1) 0

0 −1 0

0 0 1









The three independent columns of matrix S(q) are in the null

space of vector b(q), that is Stb = 0

Multiplying the equation (12) on the matrix St we get the

zero-dynamic equation which does not content the input u

St (A(q) q̈−h(q, q̇))
∣

∣

yC1
=yd

C1
(t)

= 0 (28)

The equations (28) are the system of three nonlinear ordi-

nary differential equations of second order with the three vari-

ables x, θ1 and θ2. The simulation results show that near the

steady-state flight regimes the solutions of internal dynamics are

stable, so our control design has been solved.

For numerical simulation we choose the desired trajectory

as following:

yd
C1
(t) =

4

∑
n=0

an
(t − ti)

n

(

t f − ti
)n+1

(29)

6 Numerical results about the tests of the partial
feedback linearization

For the numerical test the chosen value of Tm to limit (26) is

equal to 500 N. For the reference trajectories (29) we choose the

following coefficient

a0 = 0; a1 = 0; a2 = 60; a3 =−120 and a4 = 60 (30)

The chosen values for the initial and final times ti = 0 s and

t f = 40 s. Then the control law (26) is applied without discon-

tinuities when the paraglider rolls on the ground and during the

flight phase. The initial conditions are:

θ1(0) = 0.2 rad, a1 = θ2(0) = 0.0 rad,
x(0) = 0, y(0) = 0.7998 m

θ̇1(0) = 0.2 rad.s−1, θ̇2(0) = 0.0 rad.s−1,
ẋ(0) = 5.0 m.s−1, ẏ(0) = 0 m.s−1.

(31)

Physically the initial velocity ẋ(0) can be viewed like an initial

impulsion given by the pilot. Figure 7 the profiles of the output

yC1
and its reference trajectory yd

C1
show that the choice to define

a unique reference trajectory for both phases, the rolling phase

and the flight phase is feasible. Just before to take off the track-

ing error is maximal but after the control law tracks perfectly

the reference trajectory. The other generalized coordinates of the

paraglider, figures 9a and 9b their time derivatives are stable dur-

ing the travel.
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1
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3

4

0 5 10 15 20 25 30 35 40
−0.1

0

0.1

0.2

0.3

0.4

t(s)

FIGURE 7. Top: Profiles of yC1
(solid line) and yd

C1
(dashed line).

Bottom: difference yC1
−yd

C1
.

Figure 10, before to take off the control law of paraglider Tv

evolutes as a bang-bang control between the limit values 0 and

500 N. After for the flight phase this control law is smooth.

Figure 11, the profile of the vertical component Ry of the

ground reaction confirms the activity of the control law with the

presence of several oscillations. The paraglider takes off at in-

stant t = 3.5 s. The initial value of Ry is coherent with the global

Paraglider’s mass, (107 kg, see (15)) and tacking into account

also its initial velocity.

7 Conclusion

Based on the available approach for aerodynamic forces a

very soundness model of longitude motion of power paraglider

are proposed. Paraglider motion has a complicated oscillatory

character. The feedback linearization is very popular in robotics

and gives very good results. We proposed to apply this con-

trol method to the paraglider, considering as output the center

of mass of the gondola. Good preliminary results are obtained to
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FIGURE 9. Time derivatives of the generalized coordinates of the

Paraglider.

prove that the feedback linearization makes sense for the control

of the paraglider. However it would be interesting to explore an-

other output with maximum feedback linearization and internal

stability. See for example [30] where the computation of a suit-

able output function whose feedback linearization yields asymp-

totic stability of the full state for 2-DOF underactuated mechan-

ical systems. However this method of feedback linearization is

strongly connected to the physical system’s model. It would be a

drawback for the paraglider the aerodynamic forces with for ex-

ample the dependance on the attack angle for the canopy, which

is not so easy to estimate. In consequence it would be interesting
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FIGURE 10. Control law Tv.
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FIGURE 11. Vertical component of the ground reaction R.

in future to study deeper the robustness of this control strategy to

see if it is well-adapted for the so complex dynamic model of the

paraglider. Furthermore an extended 3D dynamic model would

useful for the design of new types of efficient powered paraglider.

In future the perspectives are to consider a more exact model for

the attack angle and to study the sensitivity of the control law

with respect to some perturbations.
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