
University of Connecticut

OpenCommons@UConn

Doctoral Dissertations University of Connecticut Graduate School

4-3-2015

Control and Integration Strategies for Bidirectional
and Unidirectional Converters in Residential
Distributed Power Systems
Sung Min Park
goobota@gmail.com

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

Recommended Citation
Park, Sung Min, "Control and Integration Strategies for Bidirectional and Unidirectional Converters in Residential Distributed Power
Systems" (2015). Doctoral Dissertations. 686.
https://opencommons.uconn.edu/dissertations/686

http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/gs?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations/686?utm_source=opencommons.uconn.edu%2Fdissertations%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages


Sung Min Park – University of Connecticut, 2015 

 

 

Control and Integration Strategies for Bidirectional and Unidirectional Converters  

in Residential Distributed Power Systems 

 

Sung Min Park, PhD 

University of Connecticut, 2015 

 

Reactive power compensation is important not only for power system stability but also 

efficient use of the power transmitted through the electric grid. Although many power 

electronics-based technologies such as flexible alternating current transmission systems and 

active power filters have emerged to overcome the shortcomings of traditional passive shunt 

compensation methods, they may not be the best solution for improvement of power quality of 

an entire power system due to high capital and operating costs, as well as additional inherent 

power losses.  

Usually, unidirectional power factor correction converters are utilized in many 

commercial applications as front-end circuitry in order to minimize the effects of harmonics 

distortion and poor power factor. Since these converters are commonly used, they have great 

potential as huge reactive power compensators in distribution level power systems. However, the 

distortion of input current as a result of reactive power compensation cannot be avoided due to 

intrinsic topology limitations. This drawback can be mitigated by employing bidirectional 

converters which would be incorporated in electric vehicles and photovoltaic systems, which are 

becoming increasingly available as residential distributed generation systems. 

The objective of this dissertation is to investigate reactive power capabilities of 

aggregated unidirectional converters and to propose cost-effective residential distributed 

generation systems with maximized local reactive power support capabilities. The proposed 
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approaches are as follows: 1) to investigate functionalities of unidirectional converters as active 

power filers, 2) to analyze and design control algorithms for unidirectional and bidirectional 

converters in residential distributed power systems, and 3) to harmonize unidirectional and 

bidirectional converters in order to obtain harmonic-free reactive power support. The current 

distortion of the unidirectional converter under reactive power compensation is analytically 

explained and the performance of unidirectional converters as an active power filter is evaluated. 

Power control methods of bidirectional converters in photovoltaic and vehicle-to-grid systems 

are investigated. Finally, an integration strategy for controlling bidirectional and unidirectional 

converters is proposed. The outcome of this dissertation is to get free reactive power support 

using the existing resources without harmonic pollution in residential distributed generation 

systems. 
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Chapter 1. Introduction 

1.1 Motivation 

Reactive power has long been considered as an element of electric grid control. It 

should be properly maintained in order to enhance voltage stability and transmission 

efficiency in ac power systems. Due to voltage fluctuations and power intermittency caused 

predominantly by poorly controlled reactive power flow, the end user of electric systems in 

the U.S. suffers from losses of billions of dollars every year [1], [2]. Although many power 

electronics-based technologies such as flexible alternating current transmission systems and 

active power filters have emerged to overcome the shortcomings of traditional passive 

reactive compensation methods, these solutions are limited for improvement of power 

quality of an entire power system, due to high capital and operating costs, as well as their 

additional inherent power losses. 

The purpose of this dissertation is to investigate reactive power capabilities of 

existing aggregated unidirectional converters and to propose a cost-effective solution for 

reactive power compensation through control and integration strategies for unidirectional 

and bidirectional converters in residential distributed power systems as shown in Figure 1.1. 

Usually, unidirectional power factor correction converters are utilized in many commercial 

applications such as laundry machines, air conditioners, and battery chargers as front-end 

circuitry in order to minimize the effects of harmonic distortion and poor power factor 

caused by their respective nonlinear loads. Since these converters are ubiquitous, they have 

great potential as reactive power resources in distribution level power systems if they 

possess reactive power compensation functionality functionalities. However, the distortion 
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of input current as a result of reactive power compensation cannot be avoided due to 

intrinsic topology limitations of unidirectional converters. These harmonic distortions can 

be mitigated by employing bidirectional converters soon to be available in residential 

distributed generation systems such as vehicle-to-grid and photovoltaic systems. As a result, 

free reactive power support without additional costs and harmonic pollutions can be 

obtained through integration of bidirectional and unidirectional converters. Ultimately, 

residential power systems will possess the ability to act as large reactive power 

compensators, resulting in more efficient and stable electric power distribution system. 

 

1.2 Overview of the present state of technologies 

Traditional reactive power compensation methods include rotating synchronous 

condensers and fixed or mechanically switched capacitors or inductors. However, there are 

 

 

Figure 1.1 Proposed residential distributed power system. 
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limitations in both dynamic and steady-state performance, because these methods use 

mechanical devices with little or no high-speed controllability. In addition, these 

mechanical devices cannot be switched frequently due to their low durability. To overcome 

the demerits of traditional technologies, several power electronics-based technologies have 

been developed to enhance the controllability and power transfer capability in transmission 

and distribution systems.  

Flexible alternating current transmission systems (FACTS), mostly having high 

power capacities along with remote VAR transmission, have been studied by industrial and 

academic researchers since the 1990’s [3], [4]. Among these FACTS technologies, the 

static VAR compensator (SVC), and static synchronous compensator (STATCOM) mainly 

focus on compensating reactive power by injecting current of a desired phase into the 

system [5], [6] as shown in Figure 1.2.  

Active power filters (APF) shown in Figure 1.3 are another sophisticated 

compensation method. APFs are configurable with various power stage topologies and have 

been developed to resolve power quality problems by employing harmonic current 

compensation (HCC) and reactive power compensation (RPC) [8], [9].  

Although SVCs, STATCOMs and APFs have outstanding performance, they may 

not be the best solution to improve the power quality of an entire power system due to high 

capital and operating costs related to space and installation, as well as additional inherent 

power losses. Moreover, a local supply of reactive power from distribution systems or 

microgrids in response to local voltage signals is more desirable and economical rather than 
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remote VAR transmission methods, because local reactive power supply can significantly 

reduce feeder losses [10].  

 

 

   
 

(a) 64 Mvar static VAR compensator                          

 

   
  

 (b)  Six 4.5 Mvar static synchronous compensator 

 

Figure 1.2 Flexible alternating current transmission systems [7]. 

 

 

 
 

Figure 1.3 Active power filters [11]. 
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To find better economical solutions, the demands of power quality mitigation have 

continuously encouraged power electronics engineers to include HCC and RPC capabilities 

in power converters typically used for renewable energy conversion systems such as wind 

turbines, photovoltaic (PV) and fuel cell systems [12], [13]. These may have HCC and RPC 

functionalities as ancillary services, usually typical of converters capable of bidirectional 

power flow. As power converters for renewable energy sources become more popular in ac 

power systems, the potential for HCC and RPC will greatly increase, as these control 

schemes can be employed in existing topologies without hardware changes, while 

simultaneously sending generated energy back to the grid. Despite the increased utility and 

cost savings, the number of renewable power converters capable of fulfilling these 

functions is still limited.  

Alternatively, vehicle-to-grid (V2G) technology shown in Figure 1.4 has recently 

emerged for incorporation of electric vehicles into the electric grid as energy storages [14] 

which can mitigate power quality as an ancillary service. This will result in enhanced 

reliability and performance of the power system. However, V2G require a bidirectional 

power converter [15], [16], which increases system cost and complexity compared to that 

of a unidirectional power converter. For this reason, a unidirectional topology is a 

preferable configuration for level 1 battery chargers in electric vehicle (EV) and plug-in 

electric vehicle (PHEV) applications, meant for residential interconnections, whereas V2G 

utilizing bi-directional converters is more applicable for level 2 battery chargers [17].  

Power factor correction (PFC) converters are embedded in the commercial products 

such as home appliances, EV/PHEV battery chargers, switched mode power supplies to 
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regulate the input current to be sinusoidal waveform in phase with the grid voltage in 

unidirectional power flow capability [18]-[22]. Since numerous unidirectional converters 

are connected with ac power systems, if we can utilize the reactive power capacity of PFC  

circuits, then existing unidirectional ac-dc boost converters have great potential to improve 

substantially the stability of ac power systems. 

In recent years, few papers have detailed HCC and RPC functionalities using 

unidirectional PFC converters in [17], [23], [24]. In [17], battery charger topologies used 

for EV/PHEV applications have been reviewed for providing reactive power support to the 

grid, but the RPC capability in unidirectional converters was mentioned briefly and any 

further analysis was not conducted. In [23], the feasibility of HCC functionality using a 

boost converter was presented as a low cost solution, but RPC functionality was not 

considered. In [24], the reactive power support capabilities of the unidirectional converter 

within V2G applications were studied through simulation results without detailed analysis 

regarding input current distortions.  

 

 

 
 

Figure 1.4 Conceptual diagram of vehicle to grid.                  
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1.3 Dissertation outline 

Chapter 1 gives the introduction of the research background regarding reactive 

power compensation methods. The proposed system utilizing the combination of the 

unidirectional and bidirectional converters can provide cost-effective reactive power 

compensation method to power systems, so that it will improve overall performance of 

power system stability and efficiency. 

In chapter 2, a brief review of the unidirectional ac-dc converters is presented and 

typical control method with a voltage feedforward controller is discussed. The input 

impedance and current (IIC) feedforward control scheme is proposed to improve input 

power quality under limited bandwidth feedback current controller. Small-signal input 

admittances are derived and presented and detailed comparisons are carried out and 

discussed. MATLAB/Simulink simulation results comparing the performance of the three 

control methods are show and experimental verification of the proposed approach is 

presented. 

In chapter 3, the feasibility and limitations of the unidirectional ac-dc boost PFC 

converter, when it is employed for active power filter functionalities, are explored. Due to 

the inherent limitations of the unidirectional ac-dc boost converter, the grid current will be 

distorted during reactive power compensation. Therefore, an approach for estimating the 

distortion levels of the current under reactive power compensation modes is analytically 

justified. MATLAB/Simulink simulation and experimental results are presented in order to 

validate the proposed approach. 
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In chapter 4, a brief review of the bidirectional ac-dc converters in PV and V2G 

applications is presented. The bidirectional converter modeling approach using the 

averaged state-space and control method to improve the seamless power transfer capability 

are proposed and investigated in PV applications. Additionally, a simple power control 

method of a bidirectional power converter is proposed for V2G applications especially 

utilizing the cycloconverter-type high frequency link converter. The proposed method 

yields the trigonometric-based current references using the sine and cosine terms of the grid 

phase from existing PLL algorithms. The amplitudes of these sine and cosine terms are 

calculated not only for active power control but also reactive power and anti-islanding 

algorithms, resulting in a reduced number of calculation steps and producing a simpler 

current reference generator. These advantages allows the use of fixed point digital signal 

processors rather than high cost, high performance digital signal processors in single phase 

bi-directional converter applications. The effectiveness of the proposed power control is 

validated through the experimental results using the cycloconverter-type high frequency 

linked converter. 

In chapter 5, an integration strategy of unidirectional converters and bidirectional 

converters is proposed in order to provide free reactive power support in residential 

applications. Through this method, these converters cooperatively generate reactive power 

locally without polluting the grid. MATLAB/Simulink simulation results describe the 

performance of the proposed strategy of unidirectional and bidirectional converter control 

and operations. 

Chapter 6 will give a summary followed by contribution to this dissertation. 
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Chapter 2. Unidirectional converters 

2.1 Introduction 

Nonlinear loads can be defined when the current is drawn in abrupt short pulses 

rather than in a smooth sinusoidal manner due to the physical properties of the loads such 

as adjustable speed drives, electronic lighting ballasts or solid state rectifiers. Thus, the 

current waveform is non-sinusoidal, and is called “distorted current” [25]. This distorted 

current can be decomposed into a weighted sum of sinusoids whose frequencies are integer 

multiples of the fundamental frequency. These component frequencies are called harmonics. 

Harmonics cause disturbances and interferences to other electric facilities, resulting in 

malfunction or conductor heating. Therefore, it is desired to reduce these harmonics in 

distribution power systems. 

Conventionally many power electronics applications such as inverter-based motor 

drives, battery chargers or power supplies necessarily require constant dc energy typically 

provided by a diode rectifier and bulky electrolytic capacitor. Due to periodical charging 

and discharging operations of large electrolytic capacitor, however, the ac input current is 

severely distorted and thus a power factor correction (PFC) circuit is additionally required 

to meet harmonic regulations which are mandatory in some Asia and European countries. 

Standard IEC 1000-3-2 [26] and EN 61000-3-2 [27] apply to equipment with a rated 

current up to 16 Arms to be connected to low voltage distribution power systems. Figure 

2.1 shows PFC circuits in commercial products such as air-conditioning systems, battery 

chargers in EV application and general power supplies. 

PFC technology has been applied widely in industrial and commercial products for 
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(a) Air-conditioner [28] 

 

 
(b) Power supply [29] 

 

 
 

(c) PHEV/EV battery Charger [30] 

 

Figure 2.1 Unidirectional converter applications. 
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ac-dc power conversion to eliminate input current harmonics. Nevertheless, PFC 

technology may be considered a mature discipline in terms of high efficiency and high 

power quality. It can be achieved through advanced circuit topologies and control 

algorithms by dedicated efforts through an immense amount of research [19], [31], [32].  

In general, when converters are designed, there are tradeoffs between high 

efficiency and high power quality in terms of switching frequency. Higher switching 

frequency synchronized with the sampling rate yields lower total harmonic distortion (THD) 

because of the high bandwidth of the current-loop compensator, but the efficiency can be 

reduced by the increased switching losses. In contrast, low switching frequency may reduce 

the power quality of the line current. This is caused by the low bandwidth of the current-

loop controller but results in lower switching losses. Reducing switching losses while using 

high switching frequency is fairly restricted by the electrical characteristics of semi-

conductors unless a new paradigm of power devices, such as silicon carbide devices are 

considered [33]. Therefore, it is desirable to use the lowest possible switching frequency to 

increase the converter efficiency if the low bandwidth current-loop issue is circumvented.  

This chapter starts with a brief review of the conventional feedforward control 

based on input voltage. The proposed IIC feedforward control scheme and small-signal 

input admittances are derived and presented in Section 2.2. Detailed comparisons of each 

control method are carried out and briefly discussed in Section 2.3. MATLAB/Simulink 

simulation results comparing the performance of the three control methods are shown in 

Section 2.4. Experimental verification of the proposed approach using a 1.2kW dual boost 

PFC converter is presented in Section 2.5. Finally, Section 2.6 concludes the chapter. 
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2.2 Control algorithms 

A simple control method through nonlinear-carrier (NLC) that allows operation in 

continuous conduction mode (CCM) without a source voltage sensor has been described in 

[34]. This approach is more suitable in analog implementations. As extended versions of 

NLC for digital implementations, digital nonlinear carrier (DNLC) methods have been 

proposed in [35]-[37]. [35] and [36] used only an instantaneous input current and a 

proportional gain for controlling the dc-link voltage where the partial switching operation 

can reduce switching losses in [36] and a low-cost solution using a low-resolution DPWM 

and low-resolution A/D converters has been proposed in [36]. Also, DNLC with a variable 

slope ramp has been presented in [37] to reduce complexity of integrated circuit realization. 

However, these methods excluded the current loop compensation, and might not guarantee 

stable operation during transients, or protect devices and circuits from overcurrent in 

unexpected fault conditions. 

Predictive current control for single-phase ac-dc boost converters have been 

presented in [38]-[40]. The desired next duty ratio to yield the current reference can be 

predicted through calculations based on sensed or observed state if the mathematical model 

of the system is known. However, as the performance highly depends on circuit parameters 

which might be sensitive to temperature changes, it requires estimating accurate parameter 

values under uncertainties. 

Leading-phase admittance cancellation (LPAC) techniques have been presented in 

[41], [42] to improve the current control and to eliminate the leading-phase of line current 
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through a properly designed admittance compensator without increasing the bandwidth of 

the current-loop compensator. Nevertheless, these methods considered only leading phase 

admittance and the complexity of designing admittance compensator makes it less 

attractive. 

The attempts to eliminate zero-crossing distortion of input current through voltage 

feedforward control methods have been suggested in [28], [43]-[46]. A voltage feedforward 

duty ratio signal is adopted to effectively produce an average switch voltage over a 

switching cycle, hence reducing the control proportions of a regular feedback current-loop 

compensator [43]. Based on [43], [44] employs the full feedforward control signal 

consisting of the instantaneous line voltage and the derivative of the reference current. 

Sensorless control methods of PFC without input voltage and current sensors have been 

presented in [28], [45] and the plug-in repetitive control scheme was investigated in [46] 

under the voltage feedforward control method. However, these methods might not 

accomplish unity power factor due to lagging-phase admittances if the current-loop 

compensator does not have enough bandwidth. Recently, many papers tend to focus on 

low-cost PFC solutions through usage of low-performance controller and elimination of 

sensors such as current [47]-[49] and voltage sensors [50], [51] rather than improving input 

power quality. 

Most control methods reported in the literature for improving input current quality 

have focused on the compensation methods for leading-phase effects with a well-regulated 

current compensator in spite of the advent of lagging-phase admittances in some conditions 

where low switching frequency is used in high-line frequency. 
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This chapter proposes an input impedance and current (IIC) feedforward control 

method. It employs a simple modification of the conventional voltage feedforward control 

method which is popularly used in PFC applications. The dual boost PFC converter is 

utilized to reduce conduction losses [22], [28], [52]-[53] while the proposed method also 

reduces switching losses with a low bandwidth current-loop compensator. By applying the 

IIC feedforward control scheme, the proposed feedforward signal can cancel undesirable 

leading phase admittances as well as lagging- phase admittances, even with a low 

bandwidth current-loop compensator. Thus, it provides more applicable solutions for ac-dc 

boost converters in low switching sampling frequency and high-line frequency applications. 

2.2.1 Voltage feedforward  

A. Derivation of the conventional voltage feedforward control 

The conventional voltage feedforward control method has been discussed in [28], 

[43]-[46] and has been used as a standard practice to improve input power quality of 

converters in digital implementations. From the dual boost converter, as shown in Figure 

2.2 and Figure 2.3, with an input inductor, L, and its parasitic resistor, R, Kirchhoff’s 

voltage law with the source voltage, vs, the switch voltage, vd and the input line current, is, 

yields, 

s
s s d

di
v Ri L v

dt
     (2.1) 
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where vd is the only active control variable in the circuit. The switch voltage is always a 

major factor in determining the waveform of the input current. In other words, when 

producing a sinusoidal input current, the switch voltage has to emulate the source voltage 

identically, with the exact phase difference due to input impedance. The average switch 

voltage over a switching cycle at a positive source voltage in CCM, can be expressed as 

(1 )d ov d v     (2.2) 

 
 

 

Figure 2.2 Dual boost PFC converter. 

 
 

 
 

Figure 2.3 Simplified circuit of a dual boost PFC converter. 
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where, d is the average on-time duty ratio of the switches and vo is the dc output voltage 

shown in Figure 1. Combining (2.1) and (2.2), and rearranging in terms of d, the duty ratio 

equation can be obtained as 

1
1s s

s

o o

FB FF

di v
d Ri L

v dt v

d d

       
   

         (2.3) 

Theoretically, the duty ratio in (2.3) should be generated for the ideal switch voltage 

as accurately as possible through adequate converter compensators to yield pure sinusoidal 

input current. Under the assumption that the phase difference by the input impedance is 

relatively small, the two voltage waveforms should be almost identical [43]. However, this 

assumption may lead to lagging-phase shift problems of the input current if a large 

inductance and a low bandwidth current-loop compensator are employed at a high-line 

frequency.  

B. Problems in low switching and high-line frequency applications 

The duty ratio, d of the system in (2.3) consists of the feedback duty ratio dFB and 

the feedforward duty ratio dFF. dFB contributes to the generation of the exact phase 

difference between the source voltage and the average switch voltage, which can be 

obtained through a simple proportional-integral (PI) compensator. dFF produces the inverse 

of the source voltage waveform as the average switch voltage. If the feedforward controller 

is not used, the compensator is heavily burdened with producing the total duty value (dFB + 

dFF) in (2.3) and the system will require a high bandwidth compensator. 
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Figure 2.4 asserts that the phase difference between vs and vd (not shown but 

represented with d as shown in (2.2) and (2.3)), becomes significantly larger when the 

boost inductance and line frequency increase. It is necessary that dFB is more accurately 

generated as the feedback controller’s contribution increases.  

 

 

 

(a) Line frequency-60Hz 

 

(b) Line frequency-400Hz 

Figure 2.4 Duty waveforms of feedback and feedforward controllers. 
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If the limited current-loop compensator yielding dFB compensates the phase 

difference incompletely, then this condition causes lagging-phase input admittance. Finally, 

this may yield undesired input current distortion and displacement of phase. [41]-[44] 

focused mainly on ameliorating distortions of input admittances in the leading-phase region 

caused by dynamics of the current-loop and they did not mention the issue of lagging phase 

caused by the boost inductor and the limited bandwidth current-loop compensator. The 

lagging region addressed in [41]-[44], [46] was located at the high frequency range from 3 

kHz to 10 kHz, and did not cause an issue due to high bandwidth of the current-loop 

compensator and low input inductance.  

In the conventional voltage feedforward scheme, (2.3) indicates that dFF does not 

exhibit compensator terms to reduce lagging-phase effects, and remains unchanged 

regardless of leading or lagging input current because dFF is related to the input and output 

voltages. The conventional scheme depends on only the performance of the current-loop 

compensator to eliminate lagging-phase effects. As a result, the converter encounters a non-

unity power factor if the bandwidth of the current-loop compensator is limited. 

2.2.2 Current feedforward 

The proposed IIC feedforward control method is based on surveying the phase 

information of the input current to know whether it is lagging or leading with respect to the 

source voltage. Combining simple current control law and conventional voltage 

feedforward control duty, a new feedforward control signal can be expressed under the 

assumption that the power factor value is unity [35], [36], [54]. 
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2

,1
1 1 1

s rmss
IIC s s

o e o in o

vv
d i i

v G v P v
       

 
       (2.4) 

2

,

where,  G s in
e

s s rms

i P

v v
   

Ge is the emulated input admittance, vs,rms is the RMS value of source voltage, and Pin is the 

input power of the PFC rectifying stage. Furthermore, the input power can be expressed in 

terms of RMS values of the source voltage and input current is,rms as 

, ,in s rms s rmsP v i      (2.5) 

By combining (2.4) and (2.5), the proposed IIC feedforward duty equation can be obtained 

as 

,

,

1
s rms

IIC s

s rms o

v
d i

i v
  


   (2.6) 

To exemplify how significantly the proposed feedforward controller reduces the 

control portion of the feedback controller, the duty ratio equations can be compared in the 

Laplace domain.  Taking the Laplace transform of the source voltage and input current 

2 2
( )s sv s V

s







  (2.7) 

2 2

cos sin
( )s s

s
i s I

s

  






  (2.8) 

where, Vs and Is are the peak magnitude values and ω is the line angular frequency and ϕ is 

the phase difference between the source voltage and input current. Using (2.3), (2.7) and 
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(2.8), the duty ratio using the conventional voltage feedforward term can be written in (2.9). 

In a similar manner, the duty ratio using the proposed IIC feedforward term can be written 

in (2.10). 

3 2 2

3 2

( ) ( )

( sin ) ( sin cos ) ( cos )

( )

FB FF

s o s s s s o

o o

d s d s

I L s v I R I L s I R V s v

v s v s

       




     



          (2.9) 

3 2 2

3 2

( ) ( )

( sin ) ( sin sin cos ) ( cos cos )

( )

FB IIC

s o s s s s s o

o o

d s d s

I L s v V I R I L s I R V s v

v s v s

         




      




  (2.10) 

 

The feedback duty portions of the total duty for the two feedforward methods can be 

defined as  

( )
( )

( ) ( )

FB
VF

FB FF

d s
s

d s d s
 


   (2.11) 

( )
( )

( ) ( )

FB
IIC

FB IIC

d s
s

d s d s
 


   (2.12) 

where ρVF(s) is the feedback duty portions of the total duty with the conventional voltage 

feedforward and ρIIC(s) is the feedback duty portions of the total duty with the proposed IIC 

feedforward. Using (2.9)-(2.12), (2.11) and (2.12) can be rewritten as in (2.13) and (2.14).  

 

3 2

3 2 2

( sin ) ( sin cos ) ( cos )
( )

( sin ) ( sin cos ) ( cos )

s s s s
VF

s o s s s s o

I L s I R I L s I R s
s

I L s v I R I L s I R V s v

     


       
  


     

        (2.13) 
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3 2

3 2 2

( sin ) ( sin cos ) ( cos )
( )

( sin ) ( sin sin cos ) ( cos cos )

s s s s
IIC

s o s s s s s o

I L s I R I L s I R s
s

I L s v V I R I L s I R V s v

     


         
  


      

      (2.14) 

 

If a high-bandwidth current-loop compensator is implemented, the phase difference ϕ is 

zero. As a result, both (2.13) and (2.14) are identical. Otherwise, ϕ is nonzero and both 

(2.13) and (2.14) behave differently. 

Figure 2.5(a) shows the Bode plot generated at ϕ=0º for (2.13) and (2.14) which are 

the same when ϕ=0º. The feedback duty portion at a line frequency of 60Hz increases from 

2% to 5% as the boost inductance increases from 0.5mH to 1.5mH, whereas this value at 

400Hz increases from 13% to 34%. In reference to Figure 2.4, the phase shift of the 

feedback duty portion is almost 90º at 60Hz, and less than 90º at 400Hz. Figure 2.5(b) 

shows a reference value from Figure 2.5(a) at ϕ=0º in addition to ϕ=-30º for (2.13) and 

(2.14) at 60Hz and 400Hz. It is important to note to characteristics in Figure 2.5(b): 1) The 

phase of (2.14) in the proposed IIC feedforward method remains unchanged with the phase 

of the reference, but the phase of (2.13) in the conventional voltage feedforward method 

becomes greater than the ideal value; and 2) The magnitude of (2.14) representing the 

feedback duty portion to the total duty is lower than one of (2.13), which can be 

distinguished at 400Hz. As a result, the proposed method reduces the control portion of the 

compensator compared to the conventional method, indicating that the proposed method is 

less dependent on the performance of its current-loop compensator. 
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(a) ϕ=0º with different inductor values  

 

 

(b) ϕ=-30º with 1.0mH inductor and ϕ=0º as reference value. 

 

Figure 2.5 Feedback duty portion of the total duty. 
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2.2.3 Input admittances for three control methods 

The benefits of the proposed IIC feedforward controller can be also verified by 

analyzing input admittances in the frequency domain. Recent papers [43], [44], [54] assist 

to predict the behaviors of input admittances for designing control algorithms. Figure 2.6 

depicts the control block diagram including the regular current-loop compensator and the 

feedforward controller.  

Figure 2.7 describes the three control methods; “without any feedforward”, “with 

the conventional voltage feedforward”, and “with the proposed IIC feedforward”. 

 

 
 

 

Figure 2.6 Control block diagram with feedforward controllers. 
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By employing the linearized input admittances, the input current quality can be assessed 

and the harmonic distortion can be predicted at different input frequency ranges. Using (2.2) 

in (2.1) and applying small perturbations, the response of the ac-dc boost converter can be 

expressed as 

ˆˆˆ ˆ( ) ( ) ( ) (1 ) ( ) ( )s s o ov s sL R i s D v s V d s            (2.15) 

 
(a) without any feedforward 

 

 

(b) with the conventional voltage feedforward 

 

 
(c) with the proposed IIC feedforward 

 

Figure 2.7 Three control methods. 
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where the capital letters are values of system variables at a steady-state operating point and 

hatted lowercase letters are small perturbations from a steady state. The linearized version 

of the feedback duty dFB(s), the voltage feedforward duty dFF(s) and the proposed IIC 

feedforward duty dIIC(s) can be obtained as 

ˆ ˆˆ( ) ( ) ( ) ( )OREF
FB s s c

M

I
d s v s i s G s

V

 
  
 

           (2.16) 

1ˆ ˆ ˆ( ) ( ) ( )s
FF o s

o o

V
d s v s v s

V V
             (2.17) 

1 1ˆ ˆˆ( ) ( ) ( )s
IIC o s

e o o

I
d s v s i s

G V V

 
  

 
           (2.18) 

From Figure 2.7, the small-signal transfer functions of the final output duties to three 

control methods can be obtained as 

ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( )OREF
cc FB PWM s s c PWM

M

I
d s d s G s v s i s G s G s

V

 
    

 
       (2.19) 

 ˆ ˆ ˆ( ) ( ) ( ) ( )

1ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ff FB FF PWM

OREF s
s s c o s PWM

M o o

d s d s d s G s

I V
v s i s G s v s v s G s

V V V

  

  
        

      (2.20) 

 
 ˆ ˆ ˆ( ) ( ) ( ) ( )

1 1ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

iic FB IIC PWM

OREF s
s s c o s PWM

M e o o

d s d s d s G s

I I
v s i s G s v s i s G s

V G V V

  

   
           

      (2.21)

 

where 𝑑̂𝑐𝑐(s), 𝑑̂𝑓𝑓(s) and 𝑑̂𝑖𝑖𝑐(s) are the small-signal duty transfer functions of the ac-dc 

boost converter with only the regular current-loop compensator, the conventional voltage 

feedforward duty, and the proposed IIC method, respectively.  
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The following derivations are performed under the assumption that the output of the 

dc voltage compensator is constant and the delay from the transducers is small when 

calculating the input impedance in the high-frequency region. Using (2.19)-(2.21) in the 

duty term of (2.15), respectively, to eliminate duty terms, the small-signal input 

admittances of the ac-dc converter using the three control strategies can be obtained as  

( ) ( )
1ˆ ( )

( )
ˆ ( ) ( ) ( )

OREF o c PWM

s M
cc

s o c PWM

I V G s G s

i s V
G s

v s sL R V G s G s


 

   

          (2.22) 

( ) ( )
1 ( )ˆ ( )

( )
ˆ ( ) ( ) ( )

OREF o c PWM
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s M
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s o c PWM

I V G s G s
G s

i s V
G s

v s sL R V G s G s

 
 

 
      (2.23) 
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
 

  
    (2.24) 

In (2.22)-(2.24), Gcc(s), Gff(s), Giic(s) are the small-signal input admittance transfer 

functions of the ac-dc boost converter with only the regular current-loop compensator, the 

conventional voltage feedforward duty, and the proposed IIC method, respectively. 

Furthermore, if the delay influence of the PWM is negligible over frequency ranges of 

interest and the static gain is unity, GPWM(s) can be modeled as a constant unity gain under 

average current control. Hence, the small-signal input admittances can be approximated by 

1 ( )
( )

( )

e
cc

G T s
G s

sL R T s




 
            (2.25) 



 

27 

 

( )
( )

( )

e
ff

G T s
G s

sL R T s


 
              (2.26) 

1
( )

( )
1

( )

e

e

iic

e

G T s
G

G s

sL R T s
G

 
 

 
 

   
 

           (2.27) 

where, ( ) ( ) ( ),  OREF
o c PWM e

M

I
T s V G s G s G

V
   

It can be observed in (2.25)-(2.27) that if it is assumed that the impedance of boost 

inductors is negligible over the low frequency ranges of interest, Gcc(s) approaches 

1/T(s)+Ge, which is the leading-phase effect caused by dynamics of the current-loop 

compensator [54]. Gff(s) and Giic(s) both approach the constant Ge. This implies that they 

act in a purely resistive manner. For such a reason, higher quality of input current can be 

obtained through feedforward control schemes. 
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2.3 Comparisons of small-signal input admittances 

In this section, the distortion and contribution factors are introduced to explain the 

effectiveness of the proposed IIC feedforward controller. The deviation in actual impedance 

from the expected impedance is referred to as the distortion factor.  The distortion factors of 

the input admittances for the aforementioned control methods are defined by 

( ) 1 ( )
( )

( )

cc e
cc

e

G s G T s
A s

G sL R T s


 

 
          (2.28) 

( ) ( )
( )

( )

ff

ff

e

G s T s
A s

G sL R T s
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 
          (2.29) 

( ) ( ) 1
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( ) 1

iic e
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e e

G s T s G
A s

G sL R T s G


 

  
        (2.30) 

It can be observed that the three distortion factors in (2.28)-(2.30) are identical if the total 

input impedance (1/Ge) of the converters approaches zero. Similarly, if the inductance and 

parasitic resistance (sL+R) of the boost inductor are ignored, as assumed in [43], the other 

two distortion factors for the feedforward controllers are at unity and there is no distortion. 

However, the boost inductor impedance term in the denominators of the distortion factors 

becomes overwhelming and forces the distortion factors into a lagging-phase as the line 

frequency rises. In low switching frequency applications, the zero-phase crossover occurs 

at a lower frequency and thus, the boost inductor impedance term is no longer negligible. 

The boost inductor impedance term should be eliminated by a high bandwidth current-loop 

compensator. Due to this phenomenon, the conventional voltage feedforward control may 

not be a suitable approach when the current-loop compensator has limited bandwidth.  
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Ideally, it is desired to achieve a distortion factor magnitude close to unity at a zero 

phase difference, yielding ideal power factor correction. Figure 2.8 shows the magnitude 

and phase response of distortion factors when the input impedance increases where the 

input frequency is 400 Hz and the bandwidth of current-loop compensator is 1 kHz. It can 

be observed that the magnitude and phase of Aiic(s) approaches the ideal value closer as the 

 
(a) maginitude response 

 
(b) phase response 

 

Figure 2.8 Distortion factors for three control methods vs. input impedance (line frequency: 

400Hz, the bandwidth of current loop controller: 1000Hz). 
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input impedance increases while Aff(s) has some deviations to the ideal value due to 

unsatisfied current-loop compensator regardless of the input impedance. Figure 2.9 shows 

the Bode plots of distortion factors in frequency ranges. By employing the proposed 

method, the input admittance is more constant and the lag is reduced in both Ge=1/31 and 

Ge=1/10.3.  

 

 

 

 
 

(a) Ge = 1/31 

 
(b) Ge = 1/10.3 

 

Figure 2.9 Bode plots of distortion factor (BW= 1kHz). 
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As another comparison factor, the contribution factors are introduced to figure out 

how the proposed IIC feedforward method can effectively reduce undesired input 

admittance. 

( ) ( )
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( ) 1 ( )
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         (2.32) 

Figure 2.10 shows the Bode plots of contribution factors Kff(s) and Kiic(s) to the 

input admittance Gcc(s). It should be noted that the phase of Gcc(s) is changed from leading 

phase to lagging phase around 300Hz in Figure 2.10(a) and 450Hz in Figure 2.10(b), 

respectively. Thus, the lagging input admittance appears in the lower frequency range as 

the bandwidth of the compensator becomes more limited. It can be noted that these 

controllers show similar features for eliminating the undesired input admittance of Gcc(s) 

below 100 Hz, but Kiic(s) cancels the distorted and displaced input admittance more 

properly than Kff(s). In other words, the proposed IIC feedforward controller can 

compensate for an inductive input admittance as the line frequency increases, and a 

capacitive input admittance as the line frequency decreases. The superiority of the proposed 

method becomes significantly distinguished from the conventional one as the performance 

of the current-loop compensator becomes worse. 

In addition, it can be seen in (2.31) and (2.32) that the contribution factor of the 

proposed IIC feedforward method includes inductor impedance in both of numerator and 
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denominator, from which it can be inferred that Giic(s) is less sensitive to inductance 

variations. Figure 2.11 shows Gff(s) and Giic(s) under boost inductance (L) variations to 

compare sensitivity and uncertainties. As expected, the deviation of Gff(s) is significant 

under inductance variations from 50% to 200%, as shown in Figure 2.11(a) while Giic(s) is 

less sensitive as shown in Figure 2.11(b).  

 

 

 

 
(a) Bandwidth of current loop controller : 500Hz 

 

 
(b) Bandwidth of current loop controller : 1 kHz 

 

Figure 2.10 Bode plots for contribution terms of feedforward controllers. 
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(a) Conventional voltage feedforward 

 

 
(b) Proposed IIC feedforward 

 

 

Figure 2.11 Bode plots for input admittance under inductance variations.  
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2.4 Simulation results 

The dual boost PFC converter model is implemented in MATLAB/Simulink 

environment to investigate the effectiveness and the performance of the proposed IIC 

feedforward control. For the evaluations of performances, the converter operation under 

three control strategies with 1 kHz bandwidth of current-loop compensator was simulated: 

1) without employing any feedforward controllers, 2) the conventional voltage feedforward 

control, 3) the proposed IIC feedforward control.  

Figure 2.12 the compares steady state input current waveforms obtained in the 

condition the source voltage is 110Vrms/60Hz. It can be noted that with only current-loop 

compensator having limited bandwidth, the leading-phase effects and the zero-crossing 

distortions of the input current are observed at the nominal input frequency (60 Hz), as 

shown in Figure 2.12(a), but completely these distortion factors disappear shown in Figure 

2.12(b) and Figure 2.12(c) when the feedforward methods are applied. Similarly, at the 

high input frequency (400Hz), the distortion and displacement factors of input current is 

significantly degraded shown in Figure 2.13(a) and 2.13(b) due to lagging-phase effects, 

meanwhile significant reduction in terms of the displacement value has been achieved in 

the proposed IIC feedforward controller compared to the conventional voltage feedforward 

controller, as shown in Figure 2.13(c). The simulation results indicate the proposed 

method’s superiority in the time domain, as Figure 2.9 displays this in the frequency 

domain.  
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(a)                      (b) 

 

 
  (c) 

 

 

Figure 2.12 Simulation results; line frequency : 60Hz. 

(a) without any feedforward control (PF: 0.93, THD:33.4%), 

(b) the conventinal voltage feedforward ( PF: 0.99, THD: 4.5%) 

(c) the proposed IIC feedforward (PF: 1.0, THD:2.1%). 
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(a)                       (b) 

 

 
(c) 

 

Figure 2.13 Simulation results; line frequency : 400Hz. 

(a) Without any feedforward control (PF: 0.89, THD:28.7%) 

 (b) Conventinal voltage feedforward ( PF: 0.86, THD: 10.1%) 

 (c) Proposed IIC feedforward (PF: 0.98, THD:7.3%). 
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Figure 2.14. Proto-type dual boost PFC converter with a dc-dc converter. 

 

TABLE 2.1 Experimental setup 

System parameter Values 

AC Source Voltage 110 Vrms / 60Hz and 400Hz 

Rated Power  1.2 kW 

Switching Frequency 15 kHz 

Sampling time 75 us  

Boost Inductor 
0.9mH (split into two in 

series) 

DSP TMS320F28035(60MHz) 

Power device 
FPDB60PH60B 

(FAIRCHILD) 

Load  Resistive dc loads 

Grid emulator Programmable AC source  

 

2.5 Experimental results 

Figure 2.14 shows the prototype ac-dc and dc-dc converter for a battery charger. For 

an ac-dc converter, a single-phase dual boost converter based on low-cost digital control 

was used to verify the proposed IIC feedforward control. Table 2.1 lists some important 

experimental values.  
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Figure 2.15 and Figure 2.16 show experimental results comparing the performances 

of the conventional feedforward controller and the proposed IIC feedforward controller, 

both with a 1 kHz bandwidth current compensator. Figure 2.15 show the input current and 

voltage at the nominal input frequency (60Hz). When feedforward controllers are employed, 

exceptionally high performance with low distortion factor and low displacement factor can 

be seen. However, input current shown in Figure 2.16(a), using the conventional 

feedforward controller is displaced significantly at the high input frequency (400Hz) 

because of the effect of uncompensated lagging-phase admittance. Meanwhile, input 

current shown in Figure 2.16(b), using the proposed IIC feedforward control is less 

displaced and still has acceptable PFC performance with a low bandwidth compensator 

indicating a reduced ratio of switching frequency to input frequency. 

The results for THD and power factor between the two feedforward methods are 

compared in Table 2.2. The proposed IIC feedforward control has superior performance 

where it result in 17% improvement in the displacement factor and 0.3% improvement in 

the distortion factor when the ac-dc boost converter has a limited-bandwidth current 

compensator at 400Hz line frequency. This can be explained with the analytical results in 

Figure 2.9—the input admittances of two feedforward control methods behave similarly 

with input admittance at 60Hz, whereas the proposed method has a distinguishably reduced 

lagging-phase at 400Hz in the phase domain. Compared to the conventional method, the 

proposed method fares better in terms of displacement factor rather than in THD. In 

conclusion, the experimental results demonstrate that the proposed IIC feedforward 
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controller is an enhanced solution for power factor correction at low switching/sampling 

frequency operation. 

 

   
(a) Conventional feedforward control  

 
(b) Proposed feedforward control 

Figure 2.15 Experimental results (line frequency: 60Hz).  
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(a) Conventional feedforward control  

 

 
 

(b) Proposed feedforward control 

 

Figure 2.16 Experimental results (line frequency: 400Hz).  
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2.6 Summary 

This chapter has presented the input impedance and current (IIC) feedforward 

control method to solve the phase shift problems of the input current caused by lagging-

phase admittances in low switching/sampling and high line frequency applications. The 

proposed method can reduce the undesired effects of input admittances over wide 

frequency ranges as a leading-lagging phase admittance cancellation. The effectiveness of 

the proposed method was analyzed through small input admittances, the distortion and 

contribution factors. Simulation and experimental results show that input power quality is 

improved through the proposed IIC feedforward control, which supporting the theoretical 

analysis. In addition, the proposed IIC feedforward method can be utilized easily with 

simple modification of the existing voltage feedforward equation. Consequently, these 

features make the proposed IIC feedforward method extremely fit for digital 

implementation in ac-dc boost converters with limited bandwidth. 

  

  TABLE 2.2 Summary of Experimental Results  

Method 
60Hz line frequency 

400Hz line 

frequency 

THD P.F THD P.F 

Conventional 4.0% 1.0 5.3% 0.80 

Proposed IIC 3.0% 1.0 5.0% 0.97 
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Chapter 3. Active power filter functionalities using 

unidirectional converters 

3.1 Introduction 

Power quality analysis in ac power systems is concerned with deviations of the 

voltage or current from the desired, ideal sinusoid of constant amplitude and frequency [25]. 

Most residential loads are not purely resistive, often producing harmonics due to their 

nonlinearity; while linear loads consume or generate reactive power, which reduces the 

active power available. Unfiltered harmonics cause interferences in other electric facilities, 

creating abnormal and undesirable behavior of electrical equipment and transformer 

overheating [8]. Uncontrolled reactive power increases transmission conduction losses and 

deteriorates the performance of voltage regulation [55]. Therefore, it is desired to reduce 

these effects through adequate means in power systems, i.e., harmonic current 

compensation (HCC) and reactive power compensation (RPC) [8], [9], [55], [56]. 

The focus of this chapter is to investigate a cost-effective power quality mitigation 

solution for residential power systems by utilizing existing commercial unidirectional 

converters [18], [19], [57] typically used for home appliances and battery chargers with 

unidirectional power flow, even though HCC and RPC in these applications conflicts with 

the basic purpose and premise of maximizing the power factor of these products. Since an 

immense number of these unidirectional converters are present within residential power 

systems, these unidirectional converters, operating in unison, have a high potential as 

alternative HCC and RPC units, and thus these converters can act in place of larger, more 

costly HCC and RPC equipment if they possess these functionalities. 
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In recent years, few papers have detailed HCC and RPC functionalities using 

unidirectional PFC converters in [17], [23], [24]. In [17], authors broadly reviewed battery 

charger topologies used for EV/PHEV applications for providing reactive power support to 

the grid, but the RPC capability in unidirectional converters was mentioned briefly and any 

further analysis was not conducted. In [23], the feasibility of HCC functionality using a 

boost converter was presented as a low cost solution, but RPC functionality was not 

considered. In [24], the reactive power support capabilities of the unidirectional converter 

within V2G applications were studied through simulation results, but detailed analysis 

regarding input current distortions was not performed. 

In this chapter, the feasibility and limitations of the unidirectional ac-dc boost PFC 

converter are explored for HCC and RPC. In addition, an approach for estimating the 

distortion levels of the current under reactive power compensation modes is analytically 

justified. This chapter starts with descriptions of control modes and analysis of local loads 

for the proposed system in Section 3.2. The distortion levels on the input currents when the 

unidirectional ac-dc boost converter is employed for RPC are analytically explained in 

Section 3.3. MATLAB/Simulink simulation results are shown in Section 3.4. Experimental 

results using a 1.2-kW dual boost PFC converter are presented in order to validate the 

proposed approach in Section 3.5. Finally, Section 3.6 concludes the chapter.  

3.2 Control algorithms 

The dual boost PFC converter [22], [28], [46], [52], [53], often called the bridgeless 

PFC converter, is one of the most popular unidirectional ac-dc boost converters. There are a 

few commercial power modules including IGBTs, gate circuits and protection circuits, 
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which accelerates the application of this topology to home appliances and digital products 

[20]-[22], [28]. The control algorithms of the dual boost PFC converter are almost identical 

to any conventional ac-dc converter using a diode rectifier and step-up chopper, except that 

the dual boost PFC converter controls ac input current while the conventional one controls 

rectified output current.  Figure 3.1 shows a prevalent application of unidirectional ac-dc 

boost converters. The investigated loads are a non-linear load with harmonic current and a 

linear load with a poor power factor, which results in reduced power quality. Conventional 

 

 

Figure 3.1 Proposed unidirectional ac-dc boost converter systems.  
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PFC converters consider the input current to be a purely sinusoidal waveform which is 

completely in phase with the input voltage. The proposed control method can ameliorate 

harmonic current and reactive power for improved grid power quality as well as regulation 

of dc-bus voltage. Even though the capacity of HCC and RPC is limited compared to APFs, 

this control strategy will contribute to a more stable power system without additional costs. 

The proposed versatile control of unidirectional ac-dc boost converter has three modes of 

operation, i.e., PFC, HCC and RPC. Also, both HCC and RPC can operate simultaneously 

to improve the distortion and the displacement factors of the grid current.  

3.2.1 Harmonic current compensation 

The distorted current due to nonlinear loads can be decomposed into a weighted 

sum of sinusoids whose frequencies are integer multiples of the fundamental frequency via 

the Fourier series [25]. Figure 3.2 shows the current waveform of a typical nonlinear load 

in a single-phase diode rectifier. Generally, the distorted load current, inon, can be written in 

terms of its fundamental components, ifn, and harmonic components, ihn, as 

1 1 1 1

2,3,

sin( ) sin( )non fn hn n n

n

i i i I t I n t   




          (3.1) 

where ω1 is the line angular frequency and θn is the phase difference between the source 

voltage and input current. Assume that the input current from the unidirectional ac-dc boost 

converter operating in PFC mode is a purely sinusoidal waveform. The grid current ig 

includes ihn from a nonlinear load as shown in Figure 3.3(a). These harmonics are 

undesirable and should be removed. If the unidirectional ac-dc boost converter can generate 

the harmonic current capable of canceling the harmonics of the nonlinear load, the grid 
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current will be comprised of only fundamental components of the converter current and 

load current as shown in Figure 3.3(b). Therefore, the new current reference for the current 

controller of the converter from Figure 3.4 can be expressed as  

* * sin( )s s hni I t i               (3.2) 

where Is
*
 is the magnitude reference provided by the dc-bus voltage controller. The 

harmonic current at the load side can be obtained by subtracting the measured load current 

from the fundamental load current which can be estimated by employing a band pass filter 

in real implementations. 

 

    

 

Figure 3.2 Example for non-linear load current. 

(THD: 80%, PF: 0.705, P: 550W, Q: 200 Var) 
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(a) Without HCC  

 

(b) With HCC 

Figure 3.3 Harmonic current flow diagrams. 

  

 

 

Figure 3.4 Current reference generator block for HCC.  
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3.2.2 Reactive power compensation 

Unlike non-linear loads, the current waveform of a linear load is sinusoidal at the 

frequency of the power system [25], but the power factor can be significantly exacerbated 

when the load is capacitive or inductive. This reactive power increases the total current 

unnecessarily in power systems, which causes increased conduction losses or reduced 

performance of voltage regulation at PCC. Therefore, the compensation of reactive power 

is required. Figure 3.5 shows the current waveform of a typical inductive load in a single-

phase induction motor. The current flow, consisting of the converter current with RPC and 

the load current ir consuming reactive power, shown in Figure 3.6, can be written 

respectively as 

s s si i ji                 (3.3) 

r r ri i ji                 (3.4)  

( )g r s r si i i j i i              (3.5)  

 

Figure 3.5 Example for linear load current (THD: 0.5%, PF:0.8, active power: 1500W, 

reactive power: 1100 Var). 
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As a result, the grid power factor at the PCC can be improved by injecting reactive 

power from the converter as shown in Figure 3.7. However, it should be considered that the 

input current of the unidirectional converter becomes distorted due to the natural 

commutation of diodes, thus the amount of reactive power generated by an individual 

converter should be restricted [J1],[C3],[24]. Since the current waveform of the converter 

in RPC mode is not sinusoidal, the required phase angle of the current cannot be calculated 

by a simple reactive power equation. Thus, the phase angle reference to the input converter 

current needs to be generated by employing a proportional integral (PI) compensator as 

shown in Figure 3.8 and can be represented as  

* *( ) ( )pc icK Q Q K Q Q dt              (3.6) 

* * sin( )s si I t                 (3.7) 

 

 

Figure 3.6 Current flow diagram in RPC mode at the PCC. 
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where Kpc and Kic are proportional gain and integral gain of the reactive power compensator, 

respectively and ϕ is the desired phase to be adjusted from the original current reference. 

As an alternative method, the look-up table for generating a proper phase angle can be 

applied in an open loop manner. It should be noted in (3.7) that the current magnitude 

reference Is
*
 will be adjusted through the dc-bus voltage controller to feed active power to 

the dc load. The reactive power will be adjusted by changing the phase angle, ϕ. Thus, 

initially Is
*
 is determined by the dc link voltage controller and actual active power will 

change as result of generating reactive power with respect to the dc link command. 

However, since Is
*
 will be updated by the dc link voltage compensator, as the phase angle ϕ 

changes, the dc link voltage will be maintained.  

 

Figure 3.7 Phase diagram of the grid voltage and current during RPC. 

 

Figure 3.8 Current reference generator block for RPC. 
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3.2.3 Control strategy for APF functionality 

The proposed control strategy of the unidirectional ac-dc converter including a 

feedforward controller, HCC, and RPC is shown in Figure 3.9. Two control blocks for HCC 

and RPC have been added to the conventional control algorithm. Thus, the final current 

reference for a versatile control strategy based on (3.2) and (3.7) can be expressed as 

* * sin( )s s hni I t i               (3.8) 

 In addtion, it is worthwhile to mention that functionalities of HCC and RPC in 

unidirectional ac-dc boost converters are available only when these converters supply 

active power to its dc load. Thus, the current reference able to be used for HCC and RPC is 

highly dependent on its power rating and its existing loads, signifying that the amount of 

RPC should be limited due to current distortions caused as a result of the feature. Since 

multiple unidirectional converters may be connected to the power system in residential 

applications, their RPC capabilities can be maxmized by incorporating these aggregated 

converters as shown in Figure 3.10.  
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Figure 3.9 Proposed HCC and RPC control block diagram. 

     

Figure 3.10 Reactive power compensation using aggregated unidirectional converters. 
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The possible supervisory control strategy for future smart grid applications [58] in 

aggregated unidirectional converters with proposed control method can be suggested as 

follows 

(1) Analyze grid power quality factors, such as THD and PF.  

(2)  Calculate the amount of compensation for harmonic-producing components and 

reactive power. 

(3) Obtain the available capacities used for HCC and RPC in an individual converter. 

(4) Determine and distribute HCC and RPC references to an individual converter. 

(5)  Analyze the grid power quality. If the THD of the grid current is above 5%, the level 

of RPC needs to be reduced. Otherwise, the amount of RPC can be increased up to 

each converter’s maximum capacity to achieve unity power factor. 

(6) Repeat (1) through (5). 

Using these steps, the grid power quality can be enhanced, as long as the available 

converter capacities for HCC and RPC remain.  
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3.3 Current harmonic analysis 

In the conventional control method of unidirectional ac-dc boost converters, the 

magnitude and phase of the current reference can be obtained in the dc-voltage controller 

and the phase-locked-loop (PLL), respectively. By adjusting the phase angle, ϕ in (3.6), the 

current either leads or lags in reference to the voltage. This allows the generation or 

consumption of reactive power in unidirectional ac-dc boost converters. Due to the intrinsic 

operation of diodes, however, uncontrolled regions exist where the signs of the input 

voltage and current reference are opposite [59] and the actual current in unidirectional 

converters is not capable of following the current reference exactly. Therefore, an analytical 

approach is required to estimate current distortions and actual generated power. To simplify 

and generalize the current waveform in this paper, it is assumed that the duty output from 

the controller is zero in these regions. 

3.3.1 Extended cusp distortion in the capacitive current  

Figure 3.11(a) depicts the comparison of the current waveforms during capacitive 

power compensation. It can be observed in Figure 3.11(b) that there are two distortion 

periods, called the zero-current distortion and the cusp distortion regions. Due to the 

unidirectional power flow capabilities of the converter, the current is periodically 

uncontrollable when signs of the input voltage and current reference are opposite, which 

creates the zero-current distortion region, ϕ. In addition, the current drastically increases 

after the grid voltage crosses zero, which leads to the cusp distortion common to all boost 

converter topologies [60]. This occurs because the inductor voltage is limited in its ability 

to drive its current up, even with the switch closed during this time [59].  
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(a) comparison of current wavefoms 

 

(b) the zero-current and cusp distortion in zoomed regions 

Figure 3.11 Current waveform in capacitive power compensation. 
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It should be noted in Figure 3.11(b) that the duration of the cusp distortion is extended up 

to tc in capacitive power compensation, compared to the original to in unity power factor 

mode. Since the switch is always on during the cusp distortion (d=1 in this condition), only 

the source voltage and inductor voltage remain in Figure 2.3, i.e. the averaged source 

voltage is zero. Therefore, the input current is described by  

 
0

( ) sin( ) 1 cos( )          where, 
ctg g

s c

V V
i t t dt t X L

L X
        (3.9)  

where, Vg is the peak input voltage. The cusp distortion continues until the actual current 

meets the capacitive current reference  

 1 cos( ) sin( )
g

c s c

V
t I t

X
              (3.10)  

By solving (3.10) in terms of ωtc, the extended duration of the cusp distortion, ωtc can be 

calculated as 

2 2

1 1
2 sin cos

tan tan

sin

s s s s
c

gg
s

X I V I X I
t

VV
I

X

 


 

 
   
    
      

 

    (3.11) 

ωto can be obtained as 2tan
-1

(XIs /Vg) when ϕ is zero in (3.11), which corresponds with [60]. 

Figure 3.12(a) shows ωtc values calculated by (3.11) with various inductances L under vg is 

110 Vrms. It increases in magnitude as the inductance value and peak current increase. 

Additionally, ωtc is prolonged, as shown in Figure 3.12(b), when more capacitive current is 
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required because the current error between the actual current and reference current after the 

zero crossing of the input voltage grows.  

 

(a) ωtc versus peak current for different L values when ϕ=0 

 

(b) ωtc versus peak current for different ϕ when L=1.4 mH 

Figure 3.12 Duration of the cusp distortion in various L values and capacitive currents. 
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3.3.2 Analysis of the current waveform in capacitive power compensation 

Based on periods of zero-current and cusp distortions, the resulting current 

waveform in capacitive power compensation can be defined by  

 

 

1 cos( ) ,0

sin( )        ,

0     ,
( )

1 cos( )        ,

sin( )                 , 2

0        , 2 2

s
c

s c

s

s
c

s c

V
t t t

X

I t t t

t
i t

V
t t t

X

I t t t

t

  

     
   

    

      
   

   


   
    
     

     

  

  (3.12)  

Even though the current reference in (3.7) is used to generate or consume reactive power, 

the real current is not capable of tracking the current reference in an exact manner due to 

the zero current and extended cusp distortions. Since the real currents are distorted, the 

fundamental current needs to be extracted to calculate the actual active and reactive power. 

According to the Fourier series, the current waveform in (3.12) can be expressed as the sum 

of multiple sinusoids of different frequencies [25]  

 0

1

( ) cos sins n n

n

i t a a n t b n t 




           (3.13) 

where ao is the dc value (zero under a perfect ac waveform, i.e. ao = 0), an and bn are the 

amplitudes of the n-th cosine-term and sine-term harmonics, respectively. Regarding the 

fundamental content of the capacitive current in (3.12), the Fourier series coefficient at the 

fundamental frequency can be solved as  
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    
    1

cos 2 cos 2 sin
1

2 sin 2 4sin 2

s c c

s
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I t t
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t t t
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    (3.14) 
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  1 2
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     (3.15) 

Using (3.14) and (3.15), the current with the fundamental radian frequency, ω can be 

obtained as 

1 1 sin( )s si I t              (3.16) 

 2 2 1

1 1 1 1 1where, ,  tansI a b a b            

It should be noted that δ is a displacement angle in the current in reference to the 

fundamental frequency, which contributes to the production of actual active and reactive 

power, rather than just at the phase angle reference (ϕ). The rms value of the current 

waveform in (3.12) can be defined and calculated as 

         

2
2
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2
2

2

1
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I t t t t t
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
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       
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

 
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 


 (3.17) 

Using rms values of the fundamental and total current from (3.16) and (3.17), the 

theoretical THD values of the input current under RPC can be obtained as 
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2 2 2 2

1 1 1
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In addition, the active and reactive power under RPC can be calculated as 

1

1
cos

2
s sP V I              (3.19) 

1

1
sin

2
s sQ V I               (3.20)  

Finally, using (3.18)-(3.20), the theoretical THD values and the expected active and 

reactive power in capacitive power compensation mode can be calculated as shown in 

Figure 3.13. It can be noted that not only the zero-current distortion, but also the cusp 

distortion causes the current distortion level to increase at higher capacitive power.  
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(a) THD versus peak current for different ϕ 

 

 

(b) active power and reactive power versus peak current for different ϕ 

Figure 3.13 Analytical results in capacitive power compensation mode. 
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3.3.3 Analysis of the current waveform in inductive power compensation 

Similarly, Figure 3.14 depicts the comparison of the current waveforms with 

varying inductive power. Compared to the capacitive current, the cusp distortion is not as 

pronounced because the voltage across the boost inductor is already high enough to drive 

the required current. However, in this scenario, the zero-current distortion still appears due 

to the uncontrollable regions caused by the diodes. The resulting current waveform for 

inductive power compensation is simpler than the capacitive current and can be defined as  

0 ,0

sin( ) ,
( )

0      ,

sin( )        , 2

s

s

s

t

I t t
i t

t

I t t

 
    

   
     

 
       
    

       (3.21) 

 

Figure 3.14 Current waveform in inductive power compensation. 
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Deriving the Fourier series coefficients in the same way, and expressing the rms values of 

the current with respect to the fundamental frequency 

 
1

sinsI
a

  


 
                 (3.22) 

  1 sin cossI
b    


                 (3.23) 
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I
I i t dt


  

 
         (3.24)  

(3.22) and (3.23) are used to obtain the fundamental current in (3.16); substituting its 

outcome and (3.24) into (3.18)-(3.20) yields the expected values of the THD, active power, 

and reactive power in inductive power compensation, as shown in Figure 3.15. It is notable 

that the distortion level remains unchanged regardless of the magnitudes of the current, but 

deteriorates as ϕ increases. The currents in inductive power compensation, when compared 

to the currents in capacitive power compensation, exhibit approximately a 30% reduction of 

THD. For example, when ϕ is 20º, the THD values of the capacitive and inductive currents 

at 17-A are 12.9% and 8.7%, respectively, because the inductive current does not have cusp 

distortions. As a result, inductive power compensation yields a higher amount of reactive 

power (when only absolute values of reactive power are compared) at the same phase angle 

when Figure 3.13(b) and Figure 3.15(b) are compared.  

The grid current THD highly depends on load currents and converter currents. If the 

load power is much greater and more sinusoidal than that of the converter, the grid current 
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THD is less affected by the converter current distortion when RPC is enabled, and vice 

versa. If there is no load current, the grid current is identical to the converter current. Since 

the converter current THD is dependent on many electrical parameters such as the grid 

voltage, converter power rating, and maximum shifted phase angle, each converter has 

different RPC capabilities even if the power rating of the converter is similar with others. 

From Figure 3.13(a) and 15(a) with regard to our test environment, the maximum shifted 

phase angle, which should not cause current THD higher than 5%, can be estimated. Then, 

using its maximum shifted phase angle and converter power ratings, the maximum reactive 

power can be estimated theoretically in Figure 3.13(b) and 3.15(b). In conclusion, 

approximately up to 15% and 30% of available power from a 1.2kVA unidirectional 

converter can be supplied for capacitive and inductive power, respectively. From a single 

converter, this capability is relatively small, but RPC capabilities can be multiplied by 

utilizing aggregated unidirectional converters as shown in Figure 3.10.  
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(a) THD versus peak current for different ϕ 

 

(b) active power and reactive power versus peak current for different ϕ 

 

Figure 3.15 Analytical results in inductive power compensation  mode. 
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3.3.4 Estimation of current THD 

Although the current distortion levels based on the emulated current models in (3.12) 

and (3.21) are mathematically predicted in previous sections, actual distortion levels under 

practical implementations might deviate from these theoretical results because the quality 

of current waveforms correlate closely with many hardware and software components, such 

as the performances of the current compensator, filters and PLL, as well as the noise 

immunity of the sensors and the linearity of the inductor [61]. Due to these inherent 

imperfections, commercial ac-dc PFC converters in unity power factor mode ordinarily 

have THD values in the range of 2% to 5%. Demonstrating this, Figure 3.16 shows the 

THD values acquired experimentally from our proto-type PFC board. Since this 

 

 

Figure 3.16 Actual harmonic distortion levels in a unity power factor mode. 
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imperfection from real circuits relates to the real current waveforms of the converter, it also 

affects THD values of reactive power current and causes the deviation between the 

theoretical and actual THD values. Therefore, the actual THD value considering this 

deviation can be represented approximately as  

com th devTHD THD THD            (3.25) 

where THDth is the theoretical THD value from (3.18) and THDdev is an averaged deviation 

based on experimental results in unity power factor mode. In Figure 3.16, THDdev is 2.14% 

which will be used for calculating the estimated THD in (3.25). 

 3.4 Simulation results 

In order to validate the effectiveness and performance of the proposed control 

method for a unidirectional ac-dc boost converter, a 2-kW bridgeless PFC converter model, 

a nonlinear load and a linear load are implemented in MATLAB/Simulink. For a 

comparative evaluation of performances, the three converter operation modes are simulated: 

1) HCC mode, 2) RPC mode, and 3) combined operations of HCC and RPC. 

Figure 3.17 shows the simulation results in HCC mode when a single-phase rectifier 

with 80% current THD as a nonlinear load is connected to the unidirectional ac-dc boost 

converter at the PCC. The PFC operation begins with a 200 V dc-bus voltage reference 

while the current THD is 3% and the PF is 0.993. However, the grid THD increases as it 

becomes polluted with the harmonic current from the nonlinear load, resulting in 17% THD 

and 0.975 PF. At 0.2s, the operation mode of the converter is changed from PFC to HCC. It 
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can be observed that the grid current is a nearly sinusoidal waveform with 3% THD and 

0.990 PF as a result of canceling the harmonic current at the load side. 

Figure 3.18 shows the simulation results in RPC mode when a single-phase 

induction motor connected to the unidirectional ac-dc boost converter at the PCC is used as 

linear load with a poor PF of 0.8. It can be observed that the power factor of the grid is 

improved from 0.948 to 0.976 when the converter generates 500-Var in RPC mode. 

However, the THD of the grid current increases from 1.3% to 8% due to inherent 

distortions of reactive power current in unidirectional ac-dc boost converters. Thus, as 

 

Figure 3.17 Simulation results in HCC mode. 
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explained in previous sections, the amount of reactive power used for compensation should 

be limited to maintain low THD of the grid current.  

Figure 3.19 shows the simulation results for combined operations of HCC and RPC 

when the two emulated loads used in previous simulations are connected at the PCC. When 

the converter is operating in PFC mode, the PF and THD of the grid current are 0.941 and 

10%, respectively. When HCC and RPC begin simultaneously, the resulting grid power 

 

 

Figure 3.18 Simulation results in RPC mode. 
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quality improves to a PF of 0.974 and 5% THD. This means that the grid power quality is 

enhanced as a result of the proposed control method. If more converters are available at the 

PCC and the total amount of RPC can be larger with smaller assignments of RPC of 

individual converters, the grid current will be more sinusoidal and in phase with the grid 

voltage. Simulation results are summarized in Table 3.1. 

 

 

 

 

Figure 3.19 Simulation results in combined HCC and RPC mode. 
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Table 3.1 Summary of simulation results 
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3.5 Experimental results 

A 1.2-kW dual boost PFC converter was implemented in order to validate the 

proposed system. The passive and electronic loads used as linear and non-linear loads are 

connected with the grid and converter at the PCC. Figure 3.20 shows the experimental test 

bench and Table 3.2 lists some important experimental values. 

 

 
 

Figure 3.20 Test bench set-up. 

Table 3.2 Experimental setup parameters 

System parameter Values 

AC Source Voltage 110 Vrms / 60Hz 

Rated Power  700 W 

Switching Frequency 20 kHz 

Boost Inductor 1.4 mH (split into two in series) 

DC capacitor 2040 μF   

DSP TMS320F28035 (TI) 

Power device FPDB60PH60B (FAIRCHILD) 

Grid emulator 3120-AMX (PACIFIC) 

Load emulator 63803 (CHROMA) and RLC loads 
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3.5.1 Estimating current distortion levels  

The estimated, simulated and measured output current and grid voltage waveforms 

in different operation modes are presented in Figure 21 and Figure 22 as an example to 

show the effectiveness of the proposed approach for estimating current distortion levels in 

RPC mode, where the peak current and phase references are 17-A and 20º, respectively. 

The waveforms of measured currents are nearly identical to the waveforms of the estimated 

    
 

(a) estimated result (THDcom: 15. 1% )          (b) simulation result (THD: 15.1%) 

 

 
                (c) experimental result (THD: 15.5%) 

Figure 3.21 Comparison of waveforms in capacitive power compensation (𝐼𝑠∗=17A, ϕ=20º). 
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and simulated results. In agreement with the analytical results, the capacitive current suffers 

from the zero-current and cusp distortions as shown in Figure 3.21, whereas the inductive 

current, as shown in Figure 3.22, is distorted only by the zero-current distortion. 

Figure 3.23 shows test results comparing the measured THD values with the 

estimated values. The THD differences between the estimated THD from (3.25) and 

measured THD values from experimental tests are below 1% and the total averaged THD 

  

(a) estimated result (THDcom: 10.9%)  (b) simulation result (THD: 10.7%) 

 

(c) experimental result (THD: 10.3%) 

Figure 3.22 Comparison of waveforms in inductive power compensation (𝐼𝑠∗=17A, ϕ=20º). 
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difference is approximately 0.3%. In addition, it can be observed clearly that the measured 

THD values in capacitive power compensation mode tend to increase as the peak current 

and shifted-phase-angle increase, whereas the measured THD values in inductive power 

compensation are inclined to be constant regardless of the magnitude of the current at a 

fixed phase angle. These features match the previous analytical results. Hence, the 

experimental results demonstrate that the proposed analytical approach is an effective 

solution for estimating current distortion levels in unidirectional ac-dc boost converters 

with RPC modes.  

 

 

  

   

 

(a) capacitive power compensation     (b) inductive power compensation   

  

 Figure 3.23 Experimental results for THD of input currents. 
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3.5.2 Harmonic current compensation 

Figure 3.24 shows the experimental results in HCC mode when an emulated 

nonlinear load with 82% THD current is connected to the unidirectional ac-dc boost 

converter operating at about 700-W at the PCC. Before HCC mode is enabled, the 

converter current THD is 2.7% and the PF is 0.994 while the grid THD is polluted with the 

harmonic current from the nonlinear load, resulting in 15.5% THD with a peak-shape 

waveform as shown in Figure 3.24(a). However, after HCC mode is enabled and the 

converter current is intentionally distorted, it can be observed that the grid current can be a 

sinusoidal waveform with 4.5% THD, along with improved power factor as a result of 

canceling the load harmonic current as shown in Figure 3.24(b) and 3.24(c).  

3.5.3 Reactive power compensation 

Figure 3.25 shows the experimental results in RPC mode when a passive load 

consisting of several resistors and capacitors connected to the unidirectional ac-dc boost 

converter at the PCC is used as a linear load with a poor PF of 0.779, and generating 262-

Var. Before RPC mode is enabled, the grid power factor decreases to 0.963 due to this 

capacitive load, even under the unity power factor of the converter as shown in Figure 

3.25(a). After RPC mode is enabled, the converter consumes 300-Var. It can be observed 

that the power factor of the grid is improved from 0.963 to 0.992 as shown in Figure 

3.25(b). However, the THD of the grid current increases from 1.89% to 3.93% as shown in 

Figure 3.25(c) due to inherent distortions of reactive power current in unidirectional ac-dc 
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boost converters as explained in previous sections. Thus, the amount of reactive power used 

for compensation should be limited to maintain low THD of the grid current. 

3.5.4 Combined compensation mode 

Figure 3.26 shows the experimental results for combined operations of HCC and 

RPC when the two loads used in previous experimental tests are connected at the PCC. 

When the converter is operating in PFC mode, the grid PF and the THD of the grid current 

are 0.960 and 11.2%, respectively. HCC and RPC begin simultaneously, and the resulting 

grid power quality improves to 0.992 P.F and 4% THD at the same time. From 

experimental results, the grid power quality can be partially enhanced through the proposed 

versatile control strategy, even though a unidirectional ac-dc boost converter is 

implemented instead of a bidirectional converter. Experimental results under all test 

conditions are summarized in Table 3.3. 
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(a) before HCC 

 
(b) after HCC 

 
(c) harmonic analysis of the grid current 

Figure 3.24 Experimental results in harmonic compensation mode.  
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(a) before RPC 

 
(b) after RPC 

 
(c) harmonic analysis of the grid current 

Figure 3.25 Experimental results in reactive power compensation mode.  
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(a) before HCC and RPC 

 
(b) after HCC and RPC 

 
(c) harmonic analysis of the grid current 

 

Figure 3.26 Experimental results in combined HCC and RPC mode.  
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3.6 Summary 

Since unidirectional ac-dc boost converters are already ubiquitously connected with 

ac power systems, existing unidirectional ac-dc boost converters possess the ability to 

improve substantially the stability of ac power systems by maximizing functionalities of 

aggregated unidirectional ac-dc boost converters. In this chapter, versatile control methods 

for the unidirectional ac-dc boost converter have been presented to enhance grid power 

quality through the combination of HCC and RPC, which can be a more economical 

solution for future smart grid applications. In addition, the framework for evaluation of the 

current distortion levels in unidirectional ac-dc boost converters when they are employed 

for RPC has been presented. The effectiveness of the proposed control method was 

 

TABLE 3.3 Summary of experimental results 
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validated through simulation and experimental results showing improved power factor and 

total harmonic distortion of the grid. At the same time, it should be noted that due to the 

inherent limitations of the unidirectional ac-dc boost converter, the grid current will be 

distorted unintentionally when operating in RPC mode where the THD of capacitive current 

is worse than that of the inductive current due to extended cusp distortions. Hence, the 

amount of reactive power injected from an individual converter to the grid should be 

restricted. Although, combined operation of these aggregated converters, each restricted in 

RPC, can meet the reactive power demand while still effectively compensating for 

generated harmonics. 
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Figure 4.1 Typical distributed power system integrated bidirectional converters. 

Chapter 4. Bidirectional converters 

4.1 Introduction 

Global concerns regarding environmental regulations and gradual depletion of fossil 

fuel resources have led to a new trend of generating power locally at the distribution level 

by using non-conventional or renewable energy sources such as wind turbines, photovoltaic 

panels, fuel cells and microturbines, generally referred to as distributed power system (DPS) 

or distributed generation (DG) [C5], [C6], [C8]. It exptects that these DPSs play a key role 

to realize micro-grid system, furthermore smart-grid system for better utilizations of power 

systems. For more efficient energy usage within limited available resources, energy storage 

systems and independent battery systems can also be considered as local DPSs [14]-[16]. 

It is common for converters of DPSs to have multiple-stage configurations 

consisting of dc-dc and dc-ac stages as shown in Figure 4.1. The dc-dc converter based on 
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buck, boost, and buck-boost principles accomplishes certain objectives by using maximum 

power point tracking (MPPT) control of PV systems or state of charge (SOC) control of 

V2G systems. The bidirectional dc-ac converter referred to as the grid-tied converter 

delivers the regulated dc energy to the grid or local ac loads along with the  satisfaction of 

stringent requirements of grid power quality [62]. 

In this chapter, modeling approach and control method of general bidirectional 

converters in PV and V2G applications are investigated and proposed for residential DPSs.  

4.2 PV applications 

PV systems can be classified according to their connection method between the PV 

modules and the power conditioning system (PCS) [63], [64]. In a conventional string 

configuration, shown in Figure 4.2(a), which can also be connected with several parallel 

strings, several series PV modules deliver electrical power to the grid and local ac loads 

through a central PCS. However, the central PCS configuration may cause mismatch losses 

of arrays due to differences in manufacturing, temperature, shading, and degradation 

conditions among the PV modules, resulting in a less efficient PV system. Also, failure of 

the PCS affects the reliability of the whole system. On the other hand, the microinverter 

configuration shown in Figure 4.2(b), also referred to as the module-integrated converter 

(MIC), uses individual small PCSs mounted on each PV module, allowing a simple “plug 

and play” installation and more localized control such as independent maximum power 

point tracking (MPPT) at the individual PV module scale [65]-[67]. Compared to the 

centralized PCS configuration, this system is expected to be more reliable with higher 
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energy yield, which justifies its minor cost increase. 

4.2.1 Modeling PV converters 

As PV systems become more popular, higher efficiency and reliability are of 

increasing importance and system-level simulations are critical when addressing these 

needs. Modeling and simulation has thus become essential especially in order to choose the 

proper topology, select appropriate circuit component types and values, evaluate circuit 

performance, and complete a system design [68]-[70].  

 
 

(a) conventional string type 

 

 
 

(b) multiple microinverters type 

 

Figure 4.2 PV system configurations. 
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There are several methods to build power electronics models. Typically switching 

power devices and passive power elements such as inductors, capacitors, and resistors 

involved in the models. Dynamic models including switching actions may not be suitable 

for multiple microinverter aggregated system simulation in spite of their simple 

implementation and accurate transient responses. The increase in the number of 

microinverters in a system simulation yields significant computational burdens and long 

simulation times [71], [72]. Another approach is to use the average PWM switch model 

[73], [74] replacing the switches in the dynamic models with time-averaged models 

represented by voltage and current sources. With the average modeling method, some 

simulation accuracy is lost but the resulting simulation run time and setup time can be 

significantly reduced. The state-space average model is employed to ascertain a set of 

equations describing the system behavior over one switching period, which aids designers 

in understanding the physical relationship between control parameters and converter states 

[68], [70], [75]. Using an average model, the transfer function of the system can also be 

obtained, and larger simulation step sizes can be utilized with minimal loss of accuracy 

which leads to a faster simulation time. Consequently the state-space average model will be 

the most competitive modeling method in simulation studies for aggregated mulitple 

microinverters.  

A number of papers have researched the state-space averaging model for various 

power converter topologies in different operating modes [71], [72], [76]-[82]. The proper 

analytical averaging model for discontinuous conduction mode (DCM) operation in the dc-

dc converter has been studied in [71], which contains implicitly elements to generate a base 
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model applicable to both fixed and variable frequency operations. Many efforts have also 

been made to develop adequate seamless mode transitions from DCM to CCM and vice 

versa in simulation studies of dc-dc converters [77], [78]. Furthermore, the issue of 

parasitic components on these modeling methods is investigated in [72]. Recently the 

conventional converter configurations such as the boost, buck and fly-back converter tend 

to be combined and integrated with other power electronics circuits for high efficiency 

converters and thus their proper averaging model have been required. The boost converter 

with a voltage multiplier cell has been analyzed in [80] to derive its average model which is 

complex and requires the use of advanced techniques due to the resonant circuit. Not only 

small-signal model approaches, but also large-signal model approaches have been 

conducted to investigate large signal behaviors and capabilities in multiple dc-dc [76] or 

dc-ac [82] converters where a generalized state-space averaging method employing the 

Fourier series with time-dependent coefficients. However, these models cannot predict the 

complete dynamic behavior of these systems. While most papers focus on dc-dc converter 

modeling, a small number of papers have been presented on average modeling of dc-ac 

converters to approximate their behavior in grid-connected power electronics such as 

STATCOM, active power filters [83] and PV applications [84]. It should be noted that [71], 

[72], [76]-[84] have all addressed single-stage power converters and inverters, but average 

modeling of multiple-stage converters such as microinverters is still open to research along 

with the adequate simulation strategy that is necessary to improve simulation speed and 

accuracy of multiple cascaded converters, such as multiple PV microinverters in a 

microgrid. 
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The primary focus of this section is to introduce the simulation strategy for 

aggregated multiple microinverters by employing state-space average modeling of multi-

stage power converters represented by a single-matrix-form (SMF). SMF can be derived by 

using the intermediate source model to link to converters with established average models, 

and thus this approach can facilitate integration of existing average models for cascaded, 

parallel, and many topologies. Since the proposed simulation strategy is based on the state-

space average modeling technique which allows investigating small-signal behavior of the 

systems, it can capture important dynamics of PV microinverters in smaller power systems 

such as microgrids even under aggregated multiple converters, but switching transients that 

slow down simulations are over-ridden. The main advantages of the proposed approach are: 

1) achieving a faster simulation time in research on aggregated multiple microinverter 

systems compared to dynamic switching models of converters; 2) providing better 

flexibility with easily interchangeable converter models; 3) understanding the relationship 

of state variables between multi-stage converters; and 4) simple extension to other power 

electronics conversion systems with multiple-stage configurations. It is important to note 

that the main purpose of this section is to introduce this intermediate source methodology 

in multiple-converter systems which can be extended to various topologies and applications, 

especially in the area of modeling and control of microgrids to capture finer dynamics with 

faster simulations that mask switching transients.  

It is common for PV converters to have multiple-stage configurations consisting of 

dc-dc and dc-ac stages [63], [64], [85]. The dc-dc converter provides MPPT at the PV panel 

terminals while the dc-ac converter delivers PV power to the grid or local ac loads in the 
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 second stage as shown in Figure 4.3. The proposed simulation approach to simulate the 

multiple microinverter system is shown in Figure 4.4. Several models are required for a PV 

system simulation—PV module model, power converter model, grid model and local load 

model. PV cell models are very common in the literature, especially those utilizing the 

current source and inverse diode configuration [86], [87]. Using this model, a 200W PV 

panel model is developed for use as the PV module model under different irradiance 

 

 

Figure 4.3 General PCS structure for converting PV power. 

 

 

Figure 4.4 Proposed modeling approach for the multiple microinverters system. 
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conditions. As for the load model, a simple resistor model is used as the passive local load 

model since it yields simpler SMF. If reactive power needs to be consumed or generated by 

local loads, the resistive load model can be replaced with other inductive and capacitive 

loads or an RLC combination. The grid model encompasses a stiff single-phase voltage 

source with fixed voltage and frequency characteristics in series with the grid impedance 

consisting of a resistor and inductor. By using this model, it is possible to simulate all grid 

disturbances such as sag, swell, and interruptions, and adjust the voltage source to include 

voltage harmonics. Details of the converter dc-dc, dc-ac, and combined converter models 

are presented in this section.  

While this section presents examples of specific dc-dc and dc-ac stages, adjusting 

the matrices in the average model of each stage to reflect other converter topologies is 

possible. The methodology proposed in this paper for integrating two average models of dc-

dc and dc-ac stages as shown in Figure 4.5 can thus be followed.  

 

 

 

Figure 4.5 Single matrix form model for multiple-stage converter. 
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A SMF integrated with the dc-dc converter and dc-ac converter models is used for 

better flexibility when other topologies are used as it directly links the state variables 

between both energy conversion stages. 

a) PV model 

The most commonly used the equivalent circuit model to analyze the behavior of 

the PV cell is shown in Figure 4.6. The PV cell has a built-in series resistance, Rs, and shunt 

resistance, Rsh. In general, Rs, which is dependent on contacts and irradiances, needs to be 

very small to avoid any power dissipation, whereas Rsh, which is dependent on their 

materials, needs to be very large. Usually, the difference between the square of the power 

curve and the maximum power, known as the fill factor, is related to these resistances. The 

relationship between the PV output current, ipv, and the PV output voltage, vpv, known as 

the I–V characteristic of the PV cell can be defined as 

 
exp 1

pv pv s pv pv s

pv L o

sh

q v i R v i R
i I I

nkT R

   
     

    
       (4.1) 

 

 

Figure 4.6 Equivalent circuit model for the PV cell. 
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where IL is the light generated current that is proportional to the solar irradiation, Io is the 

saturation current that mainly depends on the temperature, T, n is the ideality factor (from 1 

to 2), k is the Boltzmann constant and q is the electron charge. 

b) DC-DC converter average model 

State-space average modeling is employed to obtain a set of differential equations to 

a selected converter topology [68], [70], [75]. The resulting model is expected to combine 

the dc-dc converter in continuous conduction mode (CCM) and dc-ac converter. Those 

equations are capable of describing the system behavior over one switching period. It is 

also desirable to include all parasitic effects in the state-space average model to predict the 

dynamic behavior and frequency response of the microinverter accurately [72]. The state 

space equation of the converter in CCM can be expressed as 

   1 2 1 2( ) ( ) (1 ( )) ( ) ( ) (1 ( )) ( )t q t q t t q t q t t     x A A x B B u       (4.2) 

where q(t) is the switching function corresponding to the power device’s on/off states, Ak 

and Bk are the system matrices where k=1 or 2 depending on the switch status, and u(t) is an 

input vector. The low-frequency components of state variables such as the inductor currents, 

capacitor voltages and the output duty can be modeled by averaging over the switching 

period, Ts, and can be defined as,  

1
( ) ( )

st T

t
s

t d
T

 


 x x             (4.3) 
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where the bar symbol denotes the so-called fast average or true average of a state variable 

x(t). Using (4.3), the state average equation can be expressed as 

   1 2 1 2( ) ( ) (1 ( )) ( ) ( ) (1 ( )) ( )t d t d t t d t d t t     x A A x B B u       (4.4) 

where d(t) is the duty cycle function.  

Figure 4.7 depicts the grid-connected microinverter, consisting of a non-ideal boost 

converter and H-bridge inverter as an example. In order to obtain the state-space average 

model with a SMF, first of all, these converters can be separately considered as shown in 

Figure 4.8 and Figure 4.9.  

 

The circuit equations of these converters for turn-on and turn-off periods can be 

derived by applying Kirchhoff’s voltage and current laws, and then the system matrices 

according to the switching status can be obtained. From the dc-dc boost converter as shown 

in Figure 4.8, the state-space average model can be defined as 

Figure 4.7 Circuit model for deriving the average model. 
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  
 

1 2

1 2

( ) ( ) ( )

        ( ) (1 ( )) ( )

           ( ) (1 ( )) ( )

d d d d d

dc d dc d d

dc d dc d d

t t t

D t D t t

D t D t t

 

  

  

x A x B u

A A x

B B u

          (4.5) 

where xd = [ipv  vCdc]
T
, ud = [vpv  vm  vd  idc]

T
 and ipv is the dc inductor current, vCdc is the link 

capacitor voltage, vpv is the output voltage of the PV module, vm is the drain-to-source 

voltage of the boost switch, vd is the forward voltage of the diode, idc is the current in the 

dc-bus and Ddc is the duty ratio of the boost converter. Matrices Ad1, Ad2, Bd1 and Bd2 when 

 

Figure 4.8 Circuit model for the dc-dc converter. 

 

Figure 4.9 Circuit model for the dc-ac converter. 
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the switch is on and off are presented. The matrix Ad1, Ad2, Bd1 and Bd2 for the dc-dc 

converter is given by 

d1

( )
0

0 0

Ldc Mdc

dc

R R

L

    
  

A              (4.6) 

d1

1 1
0 0

1
0 0 0

dc dc

dc

L L

C

  
 
 

 
 

B              (4.7) 

d2

( ) 1

1
0

Ldc Cdc d

dc dc

dc

R R R

L L

C

    
 
 
 
 

A            (4.8) 

d2

1 1
0

1
0 0 0

Cdc

dc dc dc

dc

R

L L L

C

  
 
 

 
 

B              (4.9) 

 

 Using these matrices and (4.5)-(4.9), matrices Ad and Bd presented with averaged values 

during one-sample time are  

 

d

(1 ) 1

1
0

Ldc dc Mdc Cdc d dc dc

dc dc

dc

dc

R D R R R D D

L L

D

C

    
  
 
 
 
 

A           (4.10) 
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d

1 (1 )1

1
0 0 0

dc dc dc Cdc

dc dc dc dc

dc

D D D R

L L L L

C

    
 
 

 
 

B                                                 (4.11) 

where Ldc is the boost inductor value, Cdc is the dc link capacitor value, RLdc and RCdc are 

parasitic resistors of the passive components, RMdc and Rd are the switch on-resistance, 

respectively. 

b) DC-AC Converter Average model 

In a procedure similar to that discussed in the previous section, the average model of the H-

bridge converter shown in Figure 4.9 is defined as,  

 
 

1 2

1 2

( ) ( ) ( )

( ) (1 ( )) ( )

    ( ) (1 ( )) ( )

a a a a a

ac a ac a a

ac a ac a a

t t t

D t D t t

D t D t t

 

  

  

x A x B u

A A x

B B u

                  (4.12) 

where xa = [iab  vCac  ig]
T
, ua = [vCdc  vh  vg]

T
 , iab is the ac inductor current, vCac is the 

capacitor voltage in the LC filter, ig is the grid current, vh is the drain-to-source voltage of 

the H-bridge switch, vg is the grid voltage and Dac is the duty ratio of the H-bridge converter. 

It is worthwhile to mention that the relationship between the average duty and modulation 

index (M) of the H-bridge converter can be expressed as Dac(t)=0.5+M∙sin(ωt) where ω is 

the grid frequency since the average duty is between 0 and 1. The matrix Aa1, Aa2, Ba1 and 

Ba2 for the dc-ac converter is given by  
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1

2
Hac Lac

Cac Cdc Cac

ac ac ac

a

ac ac L ac

Cac g

Cac

Cac g

g g g

L

R R

R R R

L L L

C C R C

R R
R

R R
L L L

R

          
 
   

   
 
           

  

A    (4.13) 

1

1 2
0

0 0 0

1
0 0

ac ac

a

g

L L

L

 
 

 
 
 
 
  

B               (4.14) 

2

2
Hac Lac

Cac Cdc Cac

ac ac ac

a

ac ac L ac

Cac g

Cac

Cac g

g g g

L

R R

R R R

L L L

C C R C

R R
R

R R
L L L

R

          
 
   

   
 
           

  

A    (4.15)

2

1 2
0

0 0 0

1
0 0

ac ac

a

g

L L

L

 
  
 
 
 
 
  

B              (4.16) 
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Using these matrices (4.12)-(4.16), matrices Aa and Ba for averaged values during one-

sample time are given by 

2
Hac Lac

Cac Cdc Cac

ac ac ac

a

ac ac L ac

Cac g

Cac

Cac g

g g g

L

R R

R R R

L L L

C C R C

R R
R

R R
L L L

R

          
 
   

   
 
           

  

A       (4.17) 

where 
L

L Cac

R

R R
 


, and,                  

(2 1) 2
0

0 0 0

1
0 0

ac

ac ac

a

g

D

L L

L

 
 

 
 
 
 
  

B               (4.18) 

where, Lac is the ac inductor value, Cac is the capacitor value in the LC filter, RLac and RCac, 

are parasitic resistors of the passive components, RL is the local load resistance, and Lg and 

Rg reflect the grid impedance.  
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c) Combing two convertet models 

As the next step, using the relationship between the dc-bus current and output 

current, two state-space average models obtained in (4.5) and (4.12) can be combined into 

SMF since the common source in the previously derived two state-space average model is 

the dc-bus current. Thus, the dc-bus current can be represented by ac current and ac duty in 

the H-bridge converter as, 

(2 1)dc ac abi D i               (4.19) 

It is notable in (4.19) that the common source model causes the dc-bus current to include ac 

ripples that are twice the ac output frequency, which is also reflected to dc-bus voltage. 

Moreover, the dc voltage vdc and the output ac voltage vo can be expressed as 

dc Cdc pv Cdc Cdc abv R i v R i                (4.20) 

L Cac L CacL
o ab Cac g

L Cac L Cac L Cac

R R R RR
v i v i

R R R R R R

     
              

       (4.21) 

The SMF state-space representation of the dc-dc and dc-ac converters is 

( )
( ) ( )

d t
t t

dt
 

x
Ax Bu                (4.22) 

 ( ) ( )t ty Cx                           (4.23) 

The state variables x, u and y in Figure 4.7, for grid connected mode are defined as  

T

pv Cdc ab Cac gi v i v i   x              (4.24) 
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T

pv m d h gv v v v v   u              (4.25) 

T

pv dc ab o gi v i v i   y              (4.26) 

Finally, matrices for the state, input, and output variables including the boost 

converter and H-bridge converter can be derived as  

(1 )(2 1) 0 0

(2 1) 0 0

0 (2 1)

0 0

0 0

dc ac Cdc dc

d

ac dc

ac ac

a

D D R L

D C

D L

  
   
  
 
 
  

A

A

A

    (4.27) 

1 (1 ) 0 0

0 0 0 0 0

0 0 0 2 0  

0 0 0 0 0

0 0 0 0 1

dc dc dc dc dc

ac

g

L D L D L

L

L

   
 
 
 
 
 
  

B      (4.28) 

1 0 0 0 0

1 0 0

0 0 1 0 0

0 0

0 0 0 0 1

Cdc Cdc

Cac Cac

R R

R R

 
  
 
     
  

C            (4.29) 

Moreover, the state-space average model for stand-alone mode can be obtained in 

(4.27)-(4.29) by setting the grid impedance (Lg and Rg) as infinity and the grid voltage (vg) 

as zero.  
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d) Model validation 

The state-space average model of the microinverter in SMF obtained in the previous 

section can be validated by simulating the model and comparing waveforms with a 

dynamic switching based model, as well as experimental testing. A 200W proto-type 

microinverter board is used for experimental tests. Since long input wires are used for the 

experimental test in the dc-dc converter side, extra input resistance Rin to be added to RLdc 

in each simulation. This validation procedure is intended to validate the plant dynamics in 

the average model, dynamic switching model, and experiments without control effects 

where the plant is the microinverter power stage. This is done using a resistive load with 

the main system parameters for simulation and experimental test are summarized in Table 

4.1 and the input voltage is 30V to mimic that of a solar PV panel.  

 

 

Table 4.1 Simulation and Experimental parameters for open-loop control model. 
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Figure 4.10 shows the dynamic behavior of the dc inductor current, dc voltage and 

ac output current waveforms under open-loop duty disturbances of the dc-dc converter 

while the modulation index of the H-bridge converter remains constant at 0.935 in both 

MATLAB simulation models. At 0.35ms, a 1% step change from 0.800 to 0.792 in duties is 

applied. Simulation results show excellent correspondence between the proposed average 

model based on (4.27)-(4.29) and the dynamic switching model where the current and 

voltage values from established average model are in the middle of the dynamic model 

switching ripple. An experiment was carried out to ensure that the simulated models 

(average and dynamic) match a real setup under the same test conditions where 

IRFP4332PbF and MUR840G are used for power devices. As shown in Figure 4.11 and 

Table 4.2, experimental results are in agreement with simulation results in Figure 4.10, with 

the exception of the settling time which is sensitive to various experimental set-up 

characteristics such as PCB and line parasitic elements.  
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(a) PV current 

 

(b) Dc-bus voltage 

 

(c) Ac output current 

Figure 4.10 Simulation results for a single microinverter under open-loop control with 

resistive load. 
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(a) PV current 

 

(b) Dc-bus voltage 

 

(c) Ac output current 

Figure 4.11 Experimental results for a single microinverter under open-loop control 

with resistive load. 
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In order to validate the fast simulation time of the proposed modeling approach in a 

multiple microinverter configuration, a simulation is carried out in MATLAB/Simulink 

with 20 parallel microinverters at 200W per PV panel for a total power output of 4kW. 

Figure 4.12 and Figure 4.13 show a high-level block diagram of the simulated system and 

the PV module model, respectively. The grid voltage is at 110Vrms and 60Hz and local loads 

is zero (RL →∞) which indicates all generated power from the PV modules is sent to the 

grid. 

Partial shading is applied to some panels in order to demonstrate the simulation 

flexibility. Figure 4.14(a) and 4.14(b) shows the current waveforms of the second and third 

microinverters among the 20 inverters where these panels have irradiance values of 900 

W/m
2
 and 800 W/m

2
, respectively,

 
and the irradiance of the 18 other microinverters is 1000 

W/m
2
.
 
Another waveform shown in Figs. 4.14(a) and 4.14(b) is that of #1 which is at 1000 

W/m
2
. Figure 4.14(c) shows the total grid current from the 20 microinverters. Resulting 

Table 4.2 Experimental results for open-loop control model. 
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waveforms from using the dynamic switching model under the same conditions are shown 

in Figure 4.15. As expected, taking the average of waveforms generated using the dynamic 

model eliminates switching effects and the results match those in Figure 4.14 from the 

proposed average model. 

 

 

 
 

Figure 4.12 Simulation structure for aggregated microinverters. 

 

 

(a) V-I     (b) V-P curve 

Figure 4.13 Electrical characteristics of the simulated PV modules.  
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Generally, the simulation runtime is highly dependent on the computer’s 

performance and specifications, where the simulation tool is run, and solver options. In this 

paper, a computer with an Intel core i5 processor and 16 GB memory and MATLAB 

2010(a) with fixed-time step and Ode4 (Runge -Kutta) are utilized as computational 

 

 (a)                                  (b)             (c) 

Figure 4.14 Simulation results using the state-space average model, (a) PV currents, (b) 

the output currents, and (c) grid voltage and current 

 

 

 
 (a)                                        (b)               (c) 

Figure 4.15 Simulation results using the dynamic switching model, (a) PV currents, (b) 

the output currents, and (c) grid voltage and current 
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medium for simulations. Simulation runtime is compared for both average and dynamic 

models as shown in Figure 4.16. The proposed method allows the use of a smaller step size 

compared to the dynamic model, thus reducing the total simulation runtime. Note that time 

steps ≥ 5.0μs resulted in erratic results in the dynamic model while the average model still 

performed well and all signals in the simulation model were as expected. 

 

  

 

 
 

Figure 4.16 Comparison of the simulation runtime. 
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4.2.2 Control algorithms in PV systems 

PV power is becoming more prevalent as its cost is becoming more competitive 

with traditional power sources and is being considered as one of the visible resources for 

the microgrid systems [88]. However, the utilization of dedicated energy storage systems 

needs to be taken into account because of the intermittent nature of the PV generation [89]. 

Energy storage systems can open the possibility to employ renewable energy sources able 

to operate in stand-alone mode, grid-connected mode, and mode transitions from stand-

alone to grid, or vice versa in microgrid systems.  

Figure 4.17 shows a PV system with a battery for a microgrid application, which 

can be connected to various distributed generation sources such as wind power, fuel cell, 

and diesel turbines. The PV system needs to provide secure power by delivering 

uninterrupted power to loads both in stand-alone operation mode and grid-connected 

operation mode. Using the proposed system configuration, critical loads are powered either 

from the grid or the PV system in grid connected mode. In addition, if critical loads cannot 

be supported because of accidental events and occasional failures due to grid faults, then it 

is necessary to change operation mode autonomously as an intentional islanding until the 

grid conditions return to normal [90]. 

There is no doubt that power converters are willing to maximize output power from 

renewable energy sources to increase the efficiency of conversion in both operation modes. 

However, there are excessive power conditions where the output power of PV modules 

should be adjusted with respect to the balancing power range, not relying on the MPPT 

algorithm. Generally, the wind turbine system has mechanical controllers such as pitch 



 

110 

 

controls and yaw controls as well as dynamic breakers to regulate the extra power beyond 

the power rating range [91], while the PV system are usually dependent on their control 

algorithms and protection strategies to regulate excessive power inside the system [92]. As 

a consequence, the control strategy preventing and limiting the surplus power from PV 

modules can be considered as important as MPPT algorithms, which have been published 

in many papers [93]-[95], in order to improve reliability of the entire PV system. 

The operation modes dependent on power conditions in the stand-alone mode are 

shown in Table. 4.3. It should be noted that the PV converter needs non-MPPT mode at 

some power conditions. For instance, if generated PV power, Ppv(t), is much greater than 

critical load power, Ploads(t), and this surplus power cannot be consumed by battery power, 

Pbat(t), due to limited charging current or full state of charge (SOC), it results in not only, it 

turns out the overvoltage, but also deteriorate the entire PV system reliability. In this 

condition, the power flow relation shows in (4.30): 

( ) ( ) ( )
pv load bat

P t P t P t           (4.30) 

 
 

Figure 4.17 Hybrid photovoltaic-battery systems in microgrids. 
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Therefore, this excessive PV power should be controllable through advanced power 

control algorithms, because this excessive power condition can threaten the system 

reliability happens frequently at drastically load change or the transition period from grid 

connected mode to stand-alone mode. As one of solutions for this problem, wired 

communication between these electrical systems has been discussed to prevent and limit 

excessive power [96]. Another solution is to dissipate the surplus power in the resistor 

banks. However, these methods may be neither practicable nor economical.  

This section presents a power weakening control (PWC) to regulate photovoltaic 

(PV) power in excessive power conditions, when the maximum power point tracking 

(MPPT) algorithm is not needed. Excessive power leads to the overvoltage in the dc bus 

when available power from the PV arrays is greater than the sum of the load power and the 

battery power in the stand-alone mode. It is important to be able to control and limit this 

excessive PV power for protecting the PV-battery system. This section explains how to 

handle excessive power in the PV-battery system. The proposed PWC contains an extra dc 

Table 4.3 Operation modes in the stand-alone mode. 

 

Case Power condition Battery conv. mode PV conv. mode 

I Ppv >Pload Pbat: Charging mode MPPT 

II Ppv>Pload Full SOC Non-MPPT 

III Ppv>>Pload Pbat: Max. Charging mode Non-MPPT 

IV Ppv<Pload Pbat: Discharging mode MPPT 
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voltage control loop, power balance block, and hysteresis control, which decides the 

operation mode between MPPT and non-MPPT modes. The proposed PWC provides the 

load following function, thus it keeps dc voltage to be constant by controlling the surplus 

power. Therefore, it makes the PV-battery system more stable and robust under excessive 

power condition, resulting in improving the reliability of the PV-battery system. 

MATLAB/Simulink is used to validate effectiveness of the proposed control scheme. 

a) DC-DC converters for PV-battery system 

Detail power circuit diagram of DC-DC converters for the proposed PV-battery 

system is shown in Figure 4.18. The general boost converter is used for converting power 

from the PV modules and the general buck-boost converter is implemented for controlling 

bidirectional power of the battery. It may be desirable to be designed that the power 

capability of the battery is higher than one of the PV modules in order to operate the PV 

system at the maximum power point regardless of the maximum charging current, resulting 

in maximum utilization of PV power. However, it costs high for PV-battery system. Thus, 

in the most practical applications, the maximum charging current to the battery should be 

maintained within its safe limits of operation through limiting battery current along with 

SOC due to lower power capability of the battery.  

Two control block diagrams for the dc-dc converters are shown in Figure 4.19. 

Cascaded voltage regulators with current regulators are used to maintain the PV bus voltage 

and dc link voltage within their references, while controlling maximum power point in I-V 

curve of PV arrays by using MPPT algorithms such as perturb & observe (P&O) method 

and incremental conductance method [C8], [93]-[95] and controlling the charging and 
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Figure 4.18 Power circuit diagram of dc-dc converters in a PV-battery system. 

 

 

 

(a) Control block for PV dc-dc converter 

 

(b) Control block for battery dc-dc converter 

Figure 4.19 Control block diagram of a dc-dc converter in a PV-battery system. 
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Figure 4.20 PV power weakening control. 

 

discharging current of the battery within the limited values. For this reason, performances 

of two dc-dc converters affect to the conversion efficiency and reliability of the whole PV 

system. Therefore, when these controllers for dc-dc converters are integrated and combined 

as a system, the coordination control between these converters for the PV and the battery 

still needs much more considerations especially for the microgrid applications, since it is a 

critical for the stability and safety of the system [97].  

Figure 4.20 depicts the principle of the proposed PWC scheme in the I-V curve of 

PV modules. The PWC block does not work at the normal load condition, or the MPPT 

mode until surplus power occurs, because the PV current is controlled along with the 

trajectory of the maximum power point, 𝑶𝑨̅̅ ̅̅ , at different irradiance conditions through 

MPPT algorithms and the dc link voltage is controlled by the battery current inside the 

range of the maximum charging and discharging current of the battery. However, if there is 
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excessive power inducing overvoltage in the dc bus, the extra dc link voltage control for 

PWC keeps the dc bus voltage at the higher dc voltage reference value by 

regulating 𝒊𝒑𝒘𝒄∗ (𝒕) autonomously, which is moving toward open circuit PV voltage at the 

power operation point B or C. 

In the proposed PWC method, two dc voltage control loops are necessary to 

generate dc bus power reference, 𝑃𝑑𝑐∗ (𝑡), and delta PV current reference, 𝑖𝑝𝑤𝑐∗ (𝑡), and also 

can be expressed as 

* * *

1 1( ) ( ( ) ( )) ( ( ) ( ))
dc PDC dc dc IDC dc dc

P t K v t v t K v t v t dt         (4.31) 

* * *

2 2( ) ( ( ) ( )) ( ( ) ( ))
pwc PPWC dc dc IPWC dc dc

i t K v t v t K v t v t dt          
(4.32) 

where, KPDC and KPPWC are proportional gains, and KIDC and KIPWC are integral gains for 

generating 𝑃𝑑𝑐∗ (𝑡) and 𝑖𝑝𝑤𝑐∗ (𝑡), respectively. 𝑣𝑑𝑐(𝑡) is the feedback dc voltage ,𝑣𝑑𝑐1∗ (𝑡) is 

the dc voltage reference during the MPPT mode, and 𝑣𝑑𝑐2∗ (𝑡)  is the upper dc voltage 

reference during excessive power conditions when the generated power is greater than the 

sum of load power and battery power.  

From (4.31) and (4.32), the battery current reference, 𝑖𝑏𝑎𝑡∗ (𝑡),  can be obtained from 

the power balance block in order to control dc-link voltage by balancing input power and 

output power,  and the PV current reference, 𝑖𝑝𝑣∗ (𝑡), can be obtained from the output of  the 

MPPT and PWC blocks.  

* *

*
( ) ( )

( )
( )

dc pv

bat

bat

P t P t
i t

v t


             (4.33) 

* * *( ) ( ) ( )
pv mppt pwc

i t i t i t            (4.34) 



 

116 

 

where, 
* *( ) ( ) ( )
pv pv pv

P t i t v t 
 

In addition, the selection of controllers can be carried out by a hysteresis controller based 

on the feedback dc link voltage value. Thus, the selecting signal for the dc voltage 

controller can be obtained as 

*

1

*

2

 0,     if  ( )
( )

  1,     if  ( )

dc dc

h

dc dc

v t v
s t

v t v

 
 


         (4.35) 

This hysteresis controller can easily switch from MPPT to non-MPPT mode or vice versa. 

Figure 4.21 shows the proposed overall control structure diagram of the PV-battery system 

including the power balance and the PWC. 

The MATLAB/Simulink model was built to validate the proposed system in the 

stand-alone mode with the power conditions shown in Table 4.4. The PV converter controls 

the PV voltage in order to extract maximum power from the PV arrays through P&O MPPT 

algorithm. The battery, which is controlled by another dc-dc converter with the 

bidirectional power flow, can be used to balance the input power and output power.  

Figure 4.22 shows the simulation results without the PWC at excessive power 

conditions. At 0.3s, the load power is changed from 2.8kW to 1.3kW and the battery 

charging current increases to its maximum charging current level, while the PV converter is 

operating at the MPPT. Still, there is excessive power need to be consumed and there is no 

way to absorb this excessive power, which makes an overvoltage in the dc bus, because the 

PV system is still producing power at the maximum power. The DC overvoltage problem 

happens again when the SOC of the battery is full. Therefore, an additional control 

algorithm needs to be considered for non-MPPT mode operation.  
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Figure 4.21 Proposed control block for the PV-battery system. 
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Table 4.4 Power scenarios for simulation. 

Source Conditions 

PV 
4kW  @ T= 25C° and G= 1000 W/𝑚2  

MPPT algorithm : P&O method 

Battery  

Max. charging and discharging 

power :2.1kW 

Initial SOC : 85% 

Maximum SOC: 90% 

Load  

2.8kW : 0s < t < 0.3s 

1.3kW: 0.3s < t < 0.8s 

2.8kW: 0.8s < t < 2s 

DC voltage 

command 

𝑣𝑑𝑐1∗ : 200V @ normal condition 𝑣𝑑𝑐2∗ : 230V @ power weakening control 

 

Figure 4.23 and Figure 4.24 show the simulation results of the proposed PWC 

regulating PV power autonomously based on the dc bus voltage at the previous load 

scenarios. At 0.3s, the dc voltage increases due to the change of load causing excessive 

power, and then PWC starts to maintain constant dc bus voltage operating at a higher dc 

voltage set point (230V) shown in Figure4.23. 𝑖𝑝𝑤𝑐∗ (𝑡) from the PWC block increases to 

reduce PV power and then the PV current reference value goes to the proper value in order 

to remove excessive power. In the proposed control method, there is no component to 

calculate the amount of surplus power to be removed and it is using only the dc bus voltage 

information to determine non-MPPT mode, which makes simple and easy implementation 

with the existing controller. At 0.8s, load power increases to 2.8kW and the PV system 

returns to MPPT mode to generate the maximum power from the PV modules at the given 
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temperature and irradiation and to provide power to the loads. It can be noted that as soon 

as the load is changed, a mismatch between the PV power generation and the load demand 

is created and the battery compensates the mismatch instantaneously. As a consequence, 

these simulation results show that the proposed PWC method keeps the power balance very 

well in excessive power conditions. 

 

 

 

 
 

Figure 4.22 Simulation results without power weakening control. 
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Figure 4.23 Simulation results with power weakening control operation-1. 
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In this section, some conditions in the PV-battery system, which are not in favor of 

the MPPT operation, was pointed out. Unless unintended surplus power from PV modules 

is regulated and limited in these conditions, this induces the over-voltage in the dc bus, 

resulting in tripping the PV-battery system. The power weakening control (PWC) for the 

PV-battery system is proposed to regulate or weaken PV power as moving operation point 

from the maximum power point to the open circuit voltage in the PV curve, where 

excessive PV power can be controlled to meet power demand of the system consisting of 

 

 

Figure 4.24 Simulation results with power weakening control operation-2 
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load power and battery power without overvoltage trip. The proposed PWC contains an 

extra dc voltage control loop, which is switched automatically by a hysteresis controller in 

excessive power conditions to guarantee stable operation by eliminating unintended surplus 

power. The performance of the PV-battery system using PWC at excessive power 

conditions was validated by MATLAB/Simulink simulations. 
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4.3 V2G applications 

The concept of vehicle-to-grid (V2G) integration has recently emerged to 

incorporate electric vehicles into the power system as energy storage units [14]-[17]. In 

such applications, electric vehicles can be used to store excess energy from the grid when 

demand for power is low, and provide power back to the grid when demand for power is 

high. This results in enhanced reliability and performance of the power system by using a 

bidirectional power transfer topology instead of a unidirectional power transfer topology 

used conventionally. 

Many papers have reviewed converter topologies and their characteristics for V2G 

applications being able to control bidirectional power flow [98], but only few papers have 

shortly introduced cycloconverter-type high frequency link (CHFL) converter in spite of 

some papers have asserted that CHFL converters have high potentials as future renewable 

energy converters [99], [100]. Typically bidirectional battery chargers for V2G applications 

have required high power density to reduce volume and weight, high efficiency and long 

life cycle. When these requirements are considered, CHFL converters can be attractive 

candidates because these reduce a power conversion stage by applying ac-ac conversion 

capability and it allow of removing high volume dc energy storages, thus resulting in high 

power density, high efficiency and long life cycle. Moreover, by engrafting the phase-shift 

PWM converter into the cycloconverter converter, the ac current ripple can be two times of 

the switching frequency, which reduces the size of ac output filter. 

In this section, a power control method of the CHFL converter is proposed for V2G 

applications to secure active and reactive power control as well as to satisfy the power 
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quality requirements such as IEEE, SAE, IEC standards for interconnecting bidirectional 

battery chargers with power systems.   

4.3.1 Cycloconverter-type high frequency link  converter 

The proposed battery charger using the CHFL converter for V2G is shown in Figure 

4.25 and mainly consisted of three converters; 1) a synchronous converter keeps the dc-

voltage constant from a variable battery voltage for supplying dc power to the dc-ac high 

frequency converter, 2) a dc-ac converter generates a high frequency bipolar ac-signal for 

ac-ac cycloconverter, and 3) an ac-ac cycloconverter switches are commutated primarily at 

line frequency when the polarities of output current and output voltage are the same and at 

high frequency when the polarities are opposite. This architecture supports bidirectional 

power flow capable of the four-quadrant operation shown in Figure 4.26 and Table 4.5 and 

reduces system complexity by removing the rectifier and the dc-link filter, resulting in the 

high efficiency and high power density. Also, galvanic isolation is achieved by embedding 

the transformer into the overall converter. 

 

 

 
 

 

Figure 4.25 Cycloconverter-type high-frequency link converter for V2G. 
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Figure 4.27 and Figure 4.28 show the switch signals and some key waveforms [99], 

[100]. Referring the analysis on the switching action and the voltage/current waveforms in 

previous slides, the principle of the CHFL operation can be induced as follows; 1) the 

phase-shifted PWM converter (ac-dc converter) generates the pulsating ac voltage 

 
 

Figure 4.26 Four-quadrant operation of a bidirectional converter. 

 

 

 

Table 4.5 Four-quadrant operation mode. 
 

 



 

126 

 

according to the dc-bus voltage, 2) this pulsating voltage are rectified by the cycloconverter 

(ac-ac converter). The rectified voltage can be negative or positive depending on the 

operation mode, 3) Thus, the dc pulsating output voltage of the cycloconverter is switched 

with on/off sequence, and 4) This pulsating output voltage can decrease or increase the 

output current according to the grid voltage, the duty ratio and inductance values (ac side 

inductance and series transformer leakage inductance). It should be noted that the 

frequency of the output current ripple is twice of the switching frequency. That is a major 

benefit of the CHFL converter topology, which can reduce amount of the current ripple 

compared to general ac-dc converters with the same inductance value.  
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Figure 4.27 Key waveforms of the CHFL converters in exporting power mode  

(Positive current) 
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Figure 4.28 Key waveforms of the CHFL converters in exporting power mode  

(Negative current) 
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4.3.2 Control algorithms in V2G systems  

Regardless of power circuit topologies, power control methods for active and 

reactive (P-Q) power commands at the grid-tied converter are necessary to yield output 

duty references. As a result, these output duty references are propagated to the pulse-width-

modulation (PWM) generator, which will convert this information to PWM signals suited 

for specific converter topologies. This process is meant to control the output voltage of 

power devices in ac-dc power stages and then ultimately force the output current waveform 

to satisfy the power reference. Many control methods for active and reactive power 

generation have been well documented in literature [15], [98], [101], [102]. 

Figure 4.29 shows a classfication of PQ power control methods. In method A-1,  

the converter directly control both the magnitude (Vc)and phase (δ) of its outpu voltage by 

P-Q control loop where active and reactive power correspond to the following equations 

below, 

sin( )s c
V V

P
X

              (4.36) 

2

1 coss c

s

V V
Q

X V


 
  

 
           (4.37) 

This method is more suitable for a droop control at converter parallel operation. In method 

A-2, active and reactive power are controlled by converter currents expressed as, 

cos
s c

P V I               (4.38) 

sin
s c

Q V I               (4.39) 

Where Ic and θ are a converter current magnitude and phase difference between a converter 
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voltage and current, respectively. This method is more general and popular method for 

grid-tied converters. The converter output current can be controlled on ac stationary frame 

(method B-1) or αβ-dq synchronous rotating frame (method B-2) and their overall control 

structures are shown in Figure 4.30. In single-phase power systems, the β component is not 

externally available and the virtual axis made by synthesizing a 90 degree phase-shift 

operation at the fundamental frequency need to be used. It will make the system more 

complex to implement, but PQ power can be controlled independently by d and q axis 

currents. Also designing the current controller is easier than method B-1 and the 

performance of the current tracking to references is improved. In method C, the current 

reference can be generated by open-loop (method C-1) or closed-loop (method C-2) 

methods as shown in Figure 4.31. The closed-loop method is more robust to disturbances, 

but requires accurate power calculation and compensators.  

 

 

 
 

 

Figure 4.29 PQ control method classification for a bidirectional converter. 
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(a) Control method on the ac stationary frame 

 

 
(b) Control method on the dq frame 

 
 Figure 4.30 Control methods according to the control frame (Method B) 

 

 
 

 
(a) Open-loop method  

 

 
(b) Closed-loop method 

 
Figure 4.31 Current magnitude reference generators (Method C) 
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Most conventional methods generate current references by utilizing a phase-based 

equation that commonly includes the grid, anti-islanding, and reactive power phase 

information, which are determined by phase-locked- loop (PLL) algorithms [103]-[105], 

anti-islanding algorithms [106]-[111], and active and reactive power references, 

respectively, resulting in increased computational burden. Whereas, the proposed method 

yields the trigonometric-based current references using the sine and cosine terms of the grid 

phase from existing PLL algorithms. Then the amplitudes of these sine and cosine terms are 

caluculated not only for active power control but also reactive power and anti-islanding 

algorithms, resulting in a reduced number of calculation steps and producing a simpler 

current reference generator. These advantages allow the use of fixed point digital signal 

processors rather than high cost, high performance digital signal processors in single phase 

bi-directional converter applications. 

Figure 4.32 shows the proposed power control method of the CHFL converter 

mainly consisting of reference generator, current control, and PWM generator for grid-

connected operation. Reference generator yields the current references by using a grid 

phase, power calculation, and anti-islanding algorithm. The current controller includes the 

general feedback proportional-integral (PI) control and feedforward controller. Finally, the 

PWM signals are fed to the individual phase-shifted PWM converter and cycloconverter. 
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a) Feedback and Feedforward current controller 

To make sure the performance of the current controller theoretically, the current 

controller for the CHFL converter is designed using MATLAB. The CHFL converter in 

exporting power mode can be represented with the buck-converter model shown in Figure 

4.33. Using the buck converter model in MATLAB, the plant transfer function, which is 

 

 
 

Figure 4.32 Proposed power control method of the CHFL converter. 

 

 
 

 

 

Figure 4.33 Simplified model of the CHFL converter. 
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duty to the output current, can be derived. Using SISO Tool in MATLAB, the PI current 

controller can be designed with the given plant model. After obtaining the PI current 

controller for the continuous time domain, this controller can be converted to discrete time 

domain for implementing a digital controller.  

The feedforward controller improves the performance of the current controller by 

compensating the undesired input admittances. The relationship between converter voltage, 

vdc and grid voltage, vg, can be represented with respect duty cycle, d, as   

( ) ab
g leak ac dc

di
v L L dv

dt
             (4.40) 

1
( )   

gab
leak ac

dc dc

FeedforwardFeedback

vdi
d L L

v dt v
           (4.41) 

 

As investigated in Chapter 2, the current tracking performance can be improved by adding 

the feedforward duty to the feedback duty generated by the general PI current controller.  

b) Current reference generator for anti-islanding algorithms 

An islanding condition occurs when a part of a distributed utility system becomes 

isolated from the rest of the system and continues to operate to supply power to a location.  

For example, an islanding condition may occur if the energy from the power grid is 

interrupted, but the grid-connected converter continues to energize a load on the grid.  

When an islanding condition occurs unintentionally, continuing to power a load on the grid 

from the distributed source may create a hazard for utility workers or for the public by 

causing a line to remain energized when the line is assumed to have been disconnected 

from all energy sources.  Furthermore, when an island is formed and isolated, the utility 
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may have no control over the current, voltage, and/or frequency in the island, creating the 

possibility of damaging electrical equipment in the island. As such, anti-islanding 

algorithms need be used in the bidirectional power converter to detect the occurrence of 

unintentional islanding and take the appropriate action (e.g., discontinue exporting power). 

There are many anti-islanding algorithms in recent literatures. Passive techniques are using 

information of the grid voltage or current or frequency and monitoring whether the voltage 

and frequency are under or over to normal conditions, whereas active techniques are 

introducing positive disturbances which leads to trigger under/over voltage and under/over 

frequency protection when the converter is in islanding operation, resulting in reducing 

non-detection zone.  

Among active methods, a slip-mode frequency shift methods (SMS) [110],[111] is 

selected to utilize the proposed reference generator without generating current harmonics. 

In the SMS anti-islanding algorithm, the phase angle of the output current is controlled with 

respect to the frequency of the PCC voltage. For example, if the frequency of the PCC 

voltage is slightly increased after the grid disconnection, the phase angle of the current is 

increased, which reduces the time to the next zero crossing of the PCC voltage. This is 

interpreted by the controller as a frequency increase, so the phase angle of the current is 

increased again, and so on, until the over-frequency protection is triggered. Similarly, when 

the frequency of the PCC voltage decreases after the grid disconnection, the frequency is 

continuously decreased until the under-frequency protection is triggered. 

The current reference for controlling instantaneous output current can be generated 

by active and reactive power references like method A-2. Since the output from the PLL 
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yields sine and cosine value of the grid voltage instead of phase angle, θ, itself, the current 

reference can be represented by the combination of sine and cosine terms. The sine 

coefficient and cosine coefficient can be derived as follows. Conventionally, current 

references with ac signal forms can be described with the magnitude and phase values and 

written as,  

*

_ sin( )ab ref mag pll reactive smsi I              (4.42) 

where,  
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In (4.42), 𝜃𝑚is the maximum phase shift, 𝑓𝑚 is the frequency at the maximum phase shift, 

and 𝑓 is the output frequency of the power converter.  Modified current reference form with 

the combination of sine and cosine components can be expressed as, 

*

1 2sin cosabi k t k t               (4.43) 

To obtain the k1 and k2, the sine term of (4.42) can be re-written as,  
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    (4.44) 

Using (4.42) and (4.44), the current reference can be obtained and the k1 and k2 can be 

expressed as, 
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Furthermore, since θsms is small, cos θsms and sin θsms approach 1 and θsms, respectively.  

Therefore, equations (4.46) and (4.47) for k1 and k2 can be more simplified. 
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Finally, using (4.43), (4.48) and (4.49) the current reference can be expressed as, 

    * 2
sin cosab ref ref sms ref ref sms

grms

i P Q t Q P t
V

   
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  (4.50) 

If power references are commanded as Pref=1.6-kW and Qref=0.3-kVar, actual 

power references are rely on the current grid frequency as shown in Figure 4.34. Thus, 

these reference changes accelerate the PCC frequency to be deviated from the nominal 

frequency (60Hz), resulting in triggering over/under frequency protections. 
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Figure 4.35 shows the experimental test bench for validating the effectiveness of the 

proposed control method. A 1.7 kW single-phase CHFL converter is used. The passive and 

electronic loads used are connected with the grid and converter at the PCC.  

 

 
 

Figure 4.34 Power references variations according to grid frequency. 

 
 

Figure 4.35 Test bench set-up for CHFL. 
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Figure 4.36 shows experimental results for grid-connected operation with four 

active power commands: 0W, 500W, 1000W, and 1600W. In Figure 4.36(a), the converter 

current is circulated and most of current flow from grid to load. In Figure 4.36(b) and 

4.36(c), the active power from the converter is increased as power command increased. The 

amount of grid current is reduced and most of current for the load was provided from the 

V2G converter shown in Figure 4.36.  

Figure 4.37 shows experimental results of anti-islanding algorithms, (a) with the 

passive method when ∆P>>0 and ∆Q>>0, (b) with the passive method ∆P≈0 and ∆Q≈0, 

and (c) with SMS method ∆P≈0 and ∆Q≈0. If the variations of active and reactive powers 

are large, the passive anti-islanding method provides correct response with respect to the 

grid condition. However, if the variations of active and reactive powers are small, the 

response of the passive anti-islanding method may not response. It can be observed in 

Figure 4.37 that the islanding operation could be detected by the active anti-islanding 

algorithms under the same condition where the passive method could not detect it. Since 

the SMS method injected power disturbances depending on the PCC frequency, the PCC 

frequency could be more deviated from the nominal frequency (60Hz), and it triggered the 

over-frequency protection. 
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(a) P =0W      

  
(b) P=500W 

 
(c) P=1000W 

 
 (d) P=1600W 

Figure 4.36 Experimental results using the proposed power control method 
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(a) with the passive method when ∆P>>0 and ∆Q>>0 

 

 
(b) with the passive method ∆P≈0 and ∆Q≈0 

 

 

Figure 4.37 Experimental results of anti-islanding algorithms. 
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Figure  4.38 Experimental results of anti-islanding algorithms with SMS method 

∆P≈0 and ∆Q≈0. 
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4.4 Summary 

In this chapter, modeling approach and control method of general bidirectional 

converters in PV application and power control method of CHFL converters in V2G 

applications are proposed for residential DPSs. 

1. A single-matrix-form state-space representation of the two converter stages is 

derived and used to achieve a better simulation strategy which can be extended to various 

converter topologies. Results show that the proposed state-space average model matches 

experiments and dynamic simulations. The proposed model also provides significant 

reduction in simulation runtime with aggregated inverters in addition to reduction in the 

simulation set-up time compared to the dynamic model. Larger step sizes were shown to be 

possible when using the average model to achieve both accurate and fast simulation 

convergence. The proposed model can be extended for other cascaded power electronic 

topologies.  

2. Unless unintended surplus power from PV modules is regulated and limited in 

these conditions, this induces the over-voltage in the dc bus, resulting in tripping the PV-

battery system. The power weakening control (PWC) for the PV-battery system is proposed 

to regulate or weaken PV power as moving operation point from the maximum power point 

to the open circuit voltage in the PV curve, where excessive PV power can be controlled to 

meet power demand of the system consisting of load power and battery power without 

overvoltage trip. The proposed PWC contains an extra dc voltage control loop, which is 
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switched automatically by a hysteresis controller in excessive power conditions to 

guarantee stable operation by eliminating unintended surplus power. 

3. A power control method for bidirectional converters, especially for both PV and 

V2G systems is proposed. Most conventional methods generate current references by 

utilizing a phase-based equation that commonly includes the grid, anti-islanding, and 

reactive power phase information, which are determined by PLL algorithms, anti-islanding 

algorithms and active and reactive power references, respectively, resulting in increased 

computational burden. Whereas, the proposed method yields the trigonometric-based 

current references not only for active power control but also reactive power and anti-

islanding algorithms, which utilize the sine and cosine terms of the grid phase from existing 

PLL algorithms, resulting in a reduced number of calculation steps and producing a simpler 

current reference generator. These advantages will allow the use of fixed point digital 

signal processors rather than high cost, high performance digital signal processors in single 

phase b-directional converter applications. 
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Chapter 5. Reactive power compensation in 

residential distributed power systems 

5.1 Introduction 

The smart grid can be considered as a modern electric power grid infrastructure for 

enhanced efficiency and reliability through sophisticated control methods for energy 

management, power electronics technology and modern communications infrastructure 

[112], [113] while microgrid is smaller scale such as building block and they can be 

independent of grid power system [114], [115]. Both refer to various efforts to control 

active and reactive power flexibly and efficiently. Their effectiveness in improvement of 

existing power systems have been demonstrated in field applications through many papers 

and reports. However, there are always economic feasibility issues in investing new 

infrastructures, which tend to be more discouraging than technical challenges. Therefore, it 

is necessary to find more cost-effective methods in this research area. 

In this chapter, we aim to find a low cost solution for reactive power compensation 

for residential distributed power systems. Reactive power compensation along with the 

efficient usage of active power in residential applications is important not only for power 

system stability, but also energy efficient use of residential appliances. Since most power 

factor correction circuits in the commercial market utilize unidirectional ac-dc converter 

topologies, these converters have a high potential to significantly enhance the performance 

of load compensation and voltage regulation in ac power systems through reactive power 

compensation. However, reactive power compensation capabilities of unidirectional active 

power factor correction converters should be limited due to extended cusp distortion and 
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zero current distortion. These harmonic distortions can be solved by compensating 

harmonics from a bidirectional converter used for PV or V2G applications which will be 

available soon as their popularity increases. Through this process, these converters 

cooperatively generate reactive power locally without polluting the grid. MATLAB/ 

Simulink simulation results describe the performance of the proposed strategy of 

unidirectional and bidirectional converter control and operations. 

5.2 System control 

Figure 5.1 shows the overall proposed intelligent residential power system with free 

reactive power support, including bidirectional and unidirectional converters. Near future 

residential ac power systems will include: supervisory controllers that allow the utility to 

remotely monitor quality data and to control house loads, bidirectional and unidirectional 

converters as a means of achieving reliability and demand efficiencies for the utility as a 

whole. The supervisory controller can be embedded in either a smart meter or advanced 

metering interface. The unidirectional converters in our experiment will be represented by 

active front-end converter based loads such as heating air ventilation cooling systems 

(HVAC), electric vehicles, and digital appliances. 

Our approach is to combine the reactive power capacities from the unidirectional 

converters to provide free, locally generated reactive power. Harmonics generated by the 

unidirectional converters will be compensated by the bidirectional converter. All 

commands will be issued by the supervisory controller. During this process, active power 

from the grid will still supply the house loads and unidirectional converters. The 

bidirectional converter as a renewable source will also provide active power to either the 
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 unidirectional converters or house loads. Reactive power is circulated throughout the 

system and flows in both directions from the grid to loads and converters. 

5.2.1. Unidirectional converter control  

Figure 5.2 shows the control block diagram of the unidirectional ac-dc converter. 

Although there are many applications using the bidirectional ac-dc converters, the control 

method on the ac-dc converter are similar mostly whereas the control mehtod on the dc-dc 

converter or dc drives are different according to their applications. The main purpose is to 

regulate dc link output voltage while input current is made as sinusoidal as possible. 

Moreover, the reactive power command term from the supervisory controller is added, as 

 

 

 

Figure 5.1 Overall proposed residential distributed power system. 



 

148 

 

discussed in chapter 3, in order to provide reactive power. Then, through the feedback and 

feedforward controllers, the final duty is generated. The duty will be zero when the signs of 

the input voltage and current reference are opposite. 

 

5.2.2. Bidirectional converter control 

Bidirectional converter can be used for compensating harmonic current generated 

by unidirectional converters in  reactive power compernsation mode. Figure 5.4 shows the 

power control block diagram of the bidirectional converter used for PV or V2G 

applications. Usually, it is comprised of two stages: a dc-dc converter that transfers active 
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Figure 5.2 Control block of a unidirectional converter. 
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power by extracting the maximum power point of photovoltaic panel and controlling the 

charging/discharging batttery current, and an ac-dc converter that transfers active power 

and reactive power with respect to the grid demands as discussed in chapter 4. Another role 

of this bidirectional ac-dc converter is to compensate harmonic currents from unidirecional 

converters, thus harmonic extraction terms are added in order to generate harmonic 

reference. 

 

 

  

 

 

 

Figure 5.3 Control block of a bidirectional converter. 



 

150 

 

5.3 Simulation results 

The proposed system was simulated in MATLAB/Simulink as shown in Figure 5.4. 

There are a bidirectional converter and three unidirectional converters along with house 

loads. Table 5.1 lists power rating specification of converters used for simulation model. 

Table 5.2 depicts five power conditions to show the capability of reactive power support 

from combination of the unidirectional and bidirectional converters. 

 

 

 

 

 

Figure 5.4 Simulation model for a residential distributed power system. 
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Below are short descriptions for each power condition. 

 Condition 1:  no reactive power support from any converters, and active power support 

from the BDG. 

 

Table 5.1 List of converter power rating for simulation. 

 
 

 

 

 

 

Table 5.2 Five different power conditions for simulation 
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 Condition 2: active and reactive power support from the BDG. 

 Condition 3: reactive power support from the BDG and UL #1, and active power 

support from the BDG. 

 Condition 4: reactive powers support from the BDG and UL #1, 2, 3, and active power 

support from the BDG. 

 Condition 5: the same as Condition #4, but with additional harmonic current 

compensation from the BDG. 

Figure 5.5 shows overall current waveforms for the UL #1, #2, #3, BDG, HLs and 

grid system during all power conditions.  
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Figure 5.5 Overall current waveforms. 
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The detailed current waveforms in each condition are shown from Figure 5.6 to 

Figure 5.9. In Figure 5.6, since all ULs (#1, #2, #3) are operating at unity power factor 

mode and the BDG generates active power only in Condition 1, there is no harmonic 

distortion in the grid current lagged due to inductive house loads. When the BDG starts to 

provide reactive power (capacitive 600VA) during Condition 2, the PF of the grid current is 

improved slightly with reactive power compensation. 

 

  

 

 

 
 

 

Figure 5.6 Simulation waveforms: left side - Conditions 1, right side - Conditions 2  
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In Figure 5.7, the UL #1 starts to generate reactive power (capacitive 300VA) along 

with 600VA from the BDG during Condition 3 because the grid current requires more 

reactive power compensation to satisfy the need of reactive power of the house load 

(inductive 900VA). As a result, the total reactive power of 900VA can be produced and the 

grid current has no displacement factor with the gird voltage. However, harmonics due to 

ULs #1 deteriorate the grid current slightly. 

 

 

  

 

 

 
 

 

Figure 5.7 Simulation waveforms: left side - Conditions 2, right side - Conditions 3 
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The proposed system aims to improve overall voltage stability of the distribution 

power system through reactive power compensation. Not only for their internal system, but 

also it can provide more reactive power capability for nearby residential systems as long as 

the capacity remains. If there is extra reactive power demand of capacitive 1000VA from 

the supervisory controller for external power systems, the proposed system enables more 

unidirectional converters to provide reactive power.  In Figure 5.8, the UL #2 and the UL 

#3 generate reactive power of 400 VA and 600VA during Condition 4, respectively, 

resulting in capacitive 1000VA, but the input current from unidirectional converters is 

severely distorted , which causes the grid current to be more polluted than Condition 3.  

 

  

 

 

 
 

 

Figure 5.8 Simulation waveforms: left side - Conditions 3, right side - Conditions 4 
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In Condition 5, additional harmonic compensation by the BDG is enabled for 

cleaner grid current. Figure 5.9 shows that the output current of the BDG is intentionally 

distorted to compensate the harmonic current resulting in the clean grid current while the 

three ULs provide different amounts of active and reactive power, resulting in different 

current phase angles as shown in Figure 5.10. By maximizing ULs and BDG converters’ 

reactive power and harmonic compensation capability, we enable cleaner grid current, and 

meet the demand for reactive power without the need for conventional reactive power 

compensation solutions. 

 

  

 

 
 

Figure 5.9 Simulation waveforms: left side - Conditions 4, right side - Conditions 5 
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Figure 5.11 shows the active power and reactive power variations with respect to 

the five conditions. Reactive power compensation does not affect the primary function of 

feeding active power to dc loads or generating active power from a renewable energy 

source. Unity grid power factor as well as support for the reactive power demand is 

achieved by three ULs. Figure 5.12 shows the power factor and THD current variations 

with respect to the five conditions. Initially, the grid provides reactive power to the house 

load. Later, the grid absorbs the reactive power generated by the ULs. In Conditions 3 and 

4, THD was increased due to the influence of the ULs. However, after enabling harmonic 

compensation from the BDG, the grid THD is decreased dramatically. Eventually, the 

proposed integration of ULs and BDGs effectively provide zero power pollution to the grid. 

 
 

Figure 5.10 Simulation waveforms – current waveforms from three ULs 
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(a) Active power 

 
(b) Reactive power 

 

Figure 5.11 Simulation waveforms: active power and reactive power. 
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(a) Power factor 

 
(b) THD 

 

Figure 5.12 Simulation waveforms: PF and THD. 



 

161 

 

5.4 Summary 

Full utilization of reactive power compensation capabilities in unidirectional 

converters was proposed by creating a system of converters, including a bidirectional 

converter. Using unidirectional power factor correction converters typically employed 

within electric vehicles or home appliances, significant reactive power could be generated, 

but the input currents were distorted due to the extended cusp distortion and zero current 

distortion as discussed in chapter 3. A bidirectional converter compensated the harmonic 

distortions. Eventually, these converters cooperatively generate reactive power locally 

without polluting the grid. 
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Chapter 6. Conclusion 

6.1 Summary and contributions 

This dissertation investigates control and integration strategies for bidirectional and 

unidirectional converters in residential distributed power systems to maximize reactive 

power support capabilities of existing aggregated unidirectional converters. 

Usually, unidirectional power factor correction converters are utilized in many 

commercial applications as front-end circuitry in order to minimize the effects of harmonics 

distortion and poor power factor. Since these converters are commonly used, they have 

great potential as huge reactive power storages in distribution level power systems. 

However, the distortion of input current as a result of reactive power compensation cannot 

be avoided due to intrinsic topology limitations. This drawback can be mitigated by 

employing bidirectional converters which would be incorporated in electric vehicles and 

photovoltaic systems, which are becoming increasingly available as residential distributed 

generation systems. 

In this dissertation, the current distortion of the unidirectional converter under 

reactive power compensation is analytically explained and the performance of 

unidirectional converters as an active power filter is evaluated. Control methods of 

bidirectional converters in photovoltaic and vehicle-to-grid systems are investigated. 

Finally, an integration strategy for controlling bidirectional and unidirectional converters is 

proposed. Even though unidirectional active PFC loads have limited reactive power 

generation capabilities due to the extended cusp distortion and zero current distortion, the 

proposed integration method enables reactive power support without any additional cost. 
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The outcome of this dissertation will contribute free reactive power support without 

harmonic pollution in residential distributed generation systems. The following 

contributions are drawn from the work. 

 Control method for unidirectional PFC converters ([J2],[C7], [C9]) 

1. Control methods for unidirectional PFC converters were studied through these 

papers and are utilized for describing state of the art control methods in 

unidirectional PFC converter applications. 

2. The conventional control scheme depends on only the performance of the current-

loop compensator to eliminate lagging-phase effects. As a result, the converter 

encounters a non-unity power factor if the bandwidth of the current-loop 

compensator is limited. 

3. The input impedance and current (IIC) feedforward control method for the 

unidirectional PFC converter was proposed to solve the phase shift problems of the 

input current caused by lagging-phase admittances in low switching/sampling and 

high line frequency applications. The effectiveness of the proposed method was 

analyzed through small-signal input admittances, the distortion and contribution 

factors. 

 Active power filter functionalities in the unidirectional PFC converter ([J1], [C3]) 

1. Versatile control methods for unidirectional ac-dc boost converters were 

investigated for the purpose of mitigating grid power quality: harmonic current 

compensation, reactive power compensation and both harmonic current and reactive 
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power compensation modes simultaneously. 

2. The framework for evaluation of the current distortion levels in unidirectional ac-dc 

boost converters was presented. Due to the inherent limitations of the unidirectional 

ac-dc boost converter, the grid current will be distorted unintentionally when 

operating in reactive power compensation mode where the THD of capacitive 

current is worse than that of the inductive current due to extended cusp distortions. 

Hence, the amount of reactive power injected from an individual converter to the 

grid should be restricted. 

 Control method for bidirectional converters in renewable energy applications 

([P1], [C1], [C4], [C6], [C8]) 

1. Control and modeling methods for bidirectional converters in PV applications were 

studied through these papers and will be utilized for control strategies along with a 

simple power control method for V2G applications in the dissertation. 

2. The control algorithm for the PV-battery system was investigated. It allows the 

system to work in off-grid mode and seamlessly transition from off-grid to grid 

connected mode and vice versa, without changing the control algorithm when 

changing modes of operation. 

3. Unless unintended surplus power from PV modules is regulated and limited in 

excessive power conditions, this induces the over-voltage in the dc bus, resulting in 

tripping the PV-battery system. To solve this problem a power weakening control 

(PWC) was proposed to regulate or weaken PV power by moving the operation 

point from the maximum power point to the open circuit voltage in the PV curve . 



 

165 

 

4. A single state-space representation of the two converter stages is used to achieve a 

better simulation strategy which can be extended to various converter topologies. 

The proposed model also provides significant reduction in simulation runtime with 

aggregated micro-inverters in addition to reduction in the simulation set-up time 

compared to the dynamic model. Larger step sizes were shown to be possible when 

using the average model to achieve both accurate and fast simulation convergence. 

5. An active/reactive power control method of bidirectional converters in single-phase 

power systems based on the stationary ac current control is proposed. Since the 

proposed method employs trigonometric angles of the grid phase directly rather 

than the grid phase itself, the computation time for calculating angles is minimized.  

 Integration Strategy for bidirectional and unidirectional converters in residential 

distributed power systems ([C2]) 

1. Full utilization of unidirectional converters for maximizing their reactive power 

compensation capabilities was proposed by creating a system of converters, including a 

bidirectional DG converter. 

2. Even though unidirectional PFC converters have limited reactive power generation 

capabilities due to the extended cusp distortion and zero current distortion, the proposed 

integration method enables reactive power support without any additional cost. 
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6.2 Scholarly contributions 

 Patents 

[P1] S.M. Park, S.Y. Park, S. Ramsay, M. Kelley, M. Tarca, J. Thompson, D. Gellis, and 

T. Parsons, “Reference Current Generation in Bidirectional Power Converter” 

Invention disclosure, UConn case 14-049 (vehicle-to-grid collaboration with DRS) 

[P2] S.M. Park, S.Y. Park, S. Ramsay, M. Kelley, M. Tarca, J. Thompson, D. Gellis, and 

T. Parsons, “Predictive Current Control in Bidirectional Power Converter” Invention 

disclosure, UConn case 14-049 (vehicle-to-grid collaboration with DRS) 

 

 Journal papers 

[J1] S.M. Park and S.Y. Park, “Versatile Control of Unidirectional AC-DC Boost 

Converter for Power Quality Mitigation,” IEEE Trans. Power Electron, 2014, 

Accepted. 

[J2] S.M. Park, S.Y. Park, and A.M. Bazzi, "Input Impedance and Current Feedforward 

Control of Single-Phase Boost PFC Converters," in Journal of Power Electronics, 

2015, Accepted. 

 

 Conference papers 

[C1] S.M. Park, S.Y. Park, M. Kelley and M. Tarca, “Trigonometric Angle Based 

Active/Reactive Power Control of Cycloconverter-Type High-Frequency Link 

Converter for Vehicle-to-Grid Applications” 2015 IEEE Energy Conversion 

Congress and Exposition (ECCE 2015), Submitted. 

[C2] J. Ivaldi, S.M. Park, S.Y. Park, “Integration Strategy for Bi-directional and Uni-

directional Converters Aiming for Zero Power Pollution in Residential Applications”, 

ICPE 2015-ECCE Asia, Accepted 
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[C3] S.M. Park and S.Y. Park, “Versatile Unidirectional AC-DC Converter with 

Harmonic Current and Reactive Power Compensation for Smart Grid Applications,” 

Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty- Ninth 

Annual IEEE, pp.2163-2170, Mar. 2014. 

[C4] S.M. Park, A.M. Bazzi, S.Y. Park and W. Chen, “A Time-Efficient Modeling and 

Simulation Strategy for Aggregated Multiple Microinverters in Large-Scale PV 

Systems,” Applied Power Electronics Conference and Exposition (APEC), 2014 

Twenty- Ninth Annual IEEE, pp.2754-2761, Mar. 2014. 

[C5] S.M. Park, S.Y. Park, P. Zhang, P. Luh, M. Rakotomavo and C. Serna, “Life Cycle 

Cost Analysis of Hardening Options for Critical Loads,” 5th Innovative Smart Grid 

Technologies Conference (ISGT), 2014 IEEE PES, pp.1-5, Feb. 2014. 

[C6] S.M. Park and S.Y. Park, “Power weakening control of the photovoltaic-battery 

system for seamless energy transfer in microgrids,” Applied Power Electronics 

Conference and Exposition (APEC), 2013 Twenty-Eighth Annual IEEE , pp. 2971-

2976, Mar. 2013. 

[C7] S.M. Park and S.Y. Park, “Input impedance and current feedforward control for 

leading-lagging phase admittance cancellation in the AC-DC boost converter,” 

Applied Power Electronics Conference and Exposition (APEC), 2013 Twenty-

Eighth Annual IEEE , pp. 1912-1919, Mar. 2013. 

[C8] L. Arnedo, S. Dwari, V. Blasko and S.M. Park, “80 kW hybrid solar inverter for 

standalone and grid connected applications,” Applied Power Electronics Conference 

and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE , pp. 270-276, Feb. 

2012. 

[C9] S.M. Park, Y.D. Lee and S.Y. Park, “Voltage sensorless feedforward control of a 
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