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CONTROL AND PROTECTION SYSTEM FOR PARALLELED MODULAR

STATIC INVERTER-CONVERTER SYSTEMS

by Arthur G. Birchenough and Francis Gourash

Lewis Research Center

SUMMARY

The versatility of a modular power conditioning system is greatly enhanced by the
addition of an effective control and protection system. A program was initiated to de-
velop a control and protection system for a modular inverter-converter power system.
The operation and performance of the control and protection system is discussed.
Boolean equations and detailed circuit descriptions are presented.

The control and protection system developed senses primarily output voltage, out-
put frequency, output current, and paralleling current unbalance. A logic system con-
trols contactors to control parallel module operation and to isolate defective power con-
ditioners or loads. A control and monitoring panel is provided for both manual and
automatic control of the inverter-converter system. The control and protection system
was developed for use with 2. 5-Mlowatt, 150-volt dc or three-phase, 120-volt, 400-
hertz modules. The modules operate with a dc input of 56 volts.

INTRODUCTION

As the electrical power requirements of spacecraft increase, a modular approach
becomes a realistic solution to power conditioning requirements. Basically, the modu-
lar approach involves the parallel operation of low-power modules to form multikilowatt
inverter-converter systems. The modular concept provides flexibility, reduced design
time, and reduced cost through the use of standardized modules. Repair and replace-
ment of modules would also be feasible on manned missions.

Parallel operation of modules also increases reliability if an automatic control and
protection system is incorporated. Power system faults such as improper voltage and
frequency, paralleling unbalance, current overloads, and bus faults would be detected.
Contactors in the distribution system would then isolate the defective power conditioners



or loads with a minimum disturbance to the rest of the power system. A control and

monitoring panel would aid in fault identification and provide for manual override of the

automatic operation. The automatic operation could provide for fault checking and tran-

sient overload capabilities.

A control and protection system was, therefore, designed and fabricated by the

Westinghouse Aerospace Electrical Division, under Contract NAS3-9429, and previous

contracts (refs. 1 and 2) as part of a modular power conditioning system. This system

also included the inverter and converter, the paralleling circuits, a distribution system,

and a control and monitoring panel. The system concepts were based on existing air-

craft systems. At the Lewis Research Center the entire power conditioning system was

tested and modified to improve the performance. This report presents the design and

performance of the control and protection system, including the control and monitoring

panel and the distribution system. The basic modules in this system are 2. 5 kilowatt,

150 volt dc or three phase, 120 volt, 400 hertz. Other portions of this power condition-

ing system have been reported previously (refs. 3 to 5).

DESCRIPTION OF CONTROL AND PROTECTION SYSTEM

The control and protection system consists of four major parts:

(1) A distribution system

(2) Sensors which monitor the power system operation

(3) A logic interface between the sensors and the distribution system

(4) A control and monitoring panel

A modular power system with two modules is illustrated in figure 1. Each module

consists of a power conditioner with paralleling circuits, the control and protection sys-

tem, sensors and logic, a distribution system (the contactors), and a control and moni-

toring panel. Detailed descriptions of the circuits are given in appendix A.

Distribution System

The power conditioner is isolated from the input bus by the input contactor (1C) and

connected to its load bus by the load bus contactor (LBC). All acronyms are defined in

appendix D. Also connected to the load bus, through contactors, are the loads and the

tie bus. The tie bus interconnects the paralleled modules. With this arrangement the

loads may be powered independently from the module, or from the tie bus, or both. De-

fective loads can be isolated so that the module can continue to feed the tie bus. Gener-

ally, the load contactor (LC) would feed several loads in parallel and each of these loads
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Figure 1. - Modular power system. Distribution system in each module consists of the input, load, load bus,

and tie bus contactors.

would be fused. The inverter module is three phase, and all contactors and buses are
three phase. In the dc system, the three poles of each contactor are connected in series

to interrupt the positive side of the 150-volt dc bus.

Sensors

The sensors are indicated in figure 2. These sensors detect internal power condi-
tioning faults and load or distribution system faults. Specifically, the frequency refer-
ence protection (FRP) checks the output voltage and frequency of a crystal-controlled
oscillator. This oscillator controls timing operations and the output frequency in each
inverter (ref. 3). The inverters are synchronized by using only one of these crystal
oscillators (the frequency reference) to control all the inverters. Failure of the fre-
quency reference requires that the control be transferred to another oscillator or the
entire power system will be shut down. One oscillator in each module is available for
use as the reference oscillator.

The overvoltage and undervoltage (AV) and overfrequency and underfrequency (AF)
circuits check the output voltage and frequency of the inverter. These are three-phase
sensors for the inverter and a fault on any phase will be detected.

The excessive ripple (ER) circuit checks for excessive 9.6-kilohertz ripple in the
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inverter output waveform. The inverter uses a carrier cancellation technique (refs. 3,

5, and 6) to eliminate the basic carrier frequency (9. 6 kHz) ripple. A failure in an in-

verter may result in a loss of output from one of the four paralleled output stages. This

failure would reduce the maximum output power by 25 percent. But the only externally

noticeable effect is the increased 9.6-kLlohertz ripple. The carrier cancellation tech-

nique which reduces this ripple requires balanced outputs from the four output stages.

The AV, AF, and ER sensors are connected to sense the power conditioner output

before the LBC. Only the AV sensor is used in the converter mode. Therefore, with

either the LBC or the tie bus contactor (TBC) open, the power conditioner is checked

independently of the other modules. A fault detected by any of these sensors will open

the LBC and 1C, which completely isolates the defective power conditioner. The TBC

and LC may remain closed so that the load can be powered from the tie bus.

To detect and correctly identify an overload, both power conditioner output current

and load current are measured. A fault detected by the load overcurrent (LOG) sensor

will open the LC. A fault detected by the inverter overcurrent (IOC) sensor or the con-

verter overcurrent (COC) sensor will open the TBC. If both the LOG and COG or IOC

sensors detect a fault, the LC will be opened. If the IOC or COC fault still exists after

the LC is opened, the TBC will be opened. If only load current and tie bus current were

measured, the power conditioner output current could be above its maximum rating with-

out either sensor indicating a fault.

The load division protection (LDP) sensing circuit checks for proper load current

sharing when the modules are operating in parallel. A LDP fault opens the TBC, and



the isolated module supplies its own load. In the converter mode, an automatic parallel

(AP) sensing circuit determines if the tie bus voltage is correct before the TBC can be
closed. This circuit is permissive if the tie bus voltage is zero (no converters tied to
the bus) or if the tie bus voltage is 150 volts dc. (There is a large filter capacitor on
the output of the converters; and closing into a fault in the converter mode would cause
a current surge, possibly damaging the contactors or the output filter.) This circuit is
not used in the inverter mode.

Logic Interface

The logic interface between the sensors, the contactors, and the control and moni-
toring panel is shown as a block diagram in figure 3. The equations governing the logic
are given in appendix B. In general, the logic controls and sequences the contactors as
dictated by the fault sensors and the control switches on the control and monitoring
panel.
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Figure 3. - Logic interface.



A parallel control signal is generated to energize the inverter-converter paralleling
circuits. An FRP transfer signal controls switching to another synchronizing reference
signal. The FRP transfer signal interconnects with the other modules.

The logic is designed with a recycle feature such that, in case of a fault, a contac-
tor or contactors will be opened. After a time delay of approximately 0. 5 second, the
contactors will be reclosed to see if a fault still exists. The circuit recycles twice be-
fore setting a latch circuit which will hold the contactor open. This latch circuit can
only be reset by manually recycling the startup sequence. If three faults do not occur
within 15 seconds, the counter is reset; and three more faults will have to occur before
the latch will be set. The recycle operation is controlled by the recycle and fault count-
er. An overcurrent fault, for example, may also cause load sharing and undervoltage
faults. Time delays are used in the logic to determine the primary fault and the proper
corrective action.

The modules are rated for 50-percent current overload for 10 minutes. If the cur-
rent is between 110 and 150 percent of rated, a timer in the control and protection sys-
tem is started. If the overload continues for 10 minutes, a contactor will be opened to
isolate the fault. The 10-minute overloads are not checked by recycling. An overload
in excess of 150 percent of rated current causes immediate opening of the contactor,
but the recycle circuit is used.

Control and Monitoring Panel

The control and monitoring panel consists of 19 lights and five switches. Besides
the sensor outputs and signals from other modules, these switches are the only inputs
to the logic. These switches allow manual override of the automatic controls. The
logic controls seven lights which indicate switch and contactor positions and six lights
which indicate the following faults: abnormal voltage (AV); abnormal frequency (AF);
frequency reference protection (FRP); load division fault (LDF); load bus fault (LBF);
and tie bus fault (TBF). Additional lights indicate parallel or isolated operation, man-
ual or automatic control, and inverter or converter mode of operation.

SYSTEM PERFORMANCE

A typical normal startup of an inverter module, which illustrates the timing and
contactor closure sequence, is shown in table I. The startup is shown for automatic



TABLE I. - TYPICAL STARTUP

Time, sec

0

0.8

3.5

End of cycle

Sequence

Input contactor closed

Input contactor switch light off

Load bus contactor closed

Load bus contactor light on

Isolated operation light on

Tie bus contactor closed

Tie bus contactor light on

Parallel control on

Parallel operation light on

Isolated operation light off

TABLE n. - TYPICAL FAULT SEQUENCE

Time, sec

0

3.75

4.3

7.5

8.2

11.4

12.1

End of cycle

Sequence

Input contactor closed

Input contactor switch light off

Abnormal frequency light on

Input contactor open

Input contactor closed

Abnormal frequency light off

Input contactor open

Abnormal frequency light on

Input contactor closed

Abnormal frequency light off

Input contactor open

Abnormal frequency light on

Tie bus contactor closed

Tie bus contactor light on



operation into a parallel mode. Before startup, the control and protection system is

energized, and the load contactor (LC) is closed. All other contactors are open. At

t = 0, the input contactor switch (ICS) is closed.

At t = 0, the 1C is closed, so the power conditioner starts. If no faults are de-

tected, the LBC is closed after 0. 8 second. The loads connected to the module are

energized when the LBC closes. After a 2. 7-second time delay (and if the AP circuit

is permissive in the converter system), the TBC closes and the parallel control signal

which activates the paralleling circuits is generated.

All other lights except the converter mode light, the isolated operation mode light,

and the fault indicators would also be on. If the manual override switch (MOS) was on,

the timing and sequence would be unchanged, unless an LBC or TBC switch were open.

In that case the contactor would not close, and the parallel control signal would not be

on.

Table n illustrates a startup when the inverter has an abnormal frequency (AF)

fault. If the fault had occurred after the inverter had been on, the timing and sequence

would be essentially unchanged; but the TBC and LC would remain closed, supplying

uninterrupted power to the loads from the tie bus. If the module was supplying the fre-

quency reference signal, FRP faults would also be indicated during the sequence. At

the end of this sequence, a latch has been set which will hold the 1C and LBC open until

the module is restarted by opening and closing the 1C switch.

The set points for the sensors are listed in table El. The set points are generally

adjustable and usually were left as set by the contractor. In some cases the set points

are very wide because of noise problems, as discussed in appendix A.
A truth table is given in table IV to indicate faults which will open a contactor. The

truth table does not show conditions to close a contactor, which may be different, or to

switch overrides in the manual mode. A more complete analysis of the logic is given in

appendix B.

Some faults will open a contactor during the fault isolation sequence (recycling),

but the contactor will be reclosed at the end of the sequence. An example is an inverter

over current caused by a tie bus fault. The 1C and LBC will open but will not remain

open.

Power consumption of the control and protection system was approximately 90 watts

under normal operating conditions. Sixty-six watts of this was consumed by the contac-

tors, and 11 watts by the indicator lights. Nearly one-half the remaining power was

power supply loss, approximately 5 watts were actually consumed by the logic and

sensors.



TABLE HI. - SENSOR SET POINTS

Sensor Set point Difference from power

conditioner opera-

tion point,

percent

Inverter sensors

Frequency reference protection (FRP)

Excessive ripple (ER)

Abnormal frequency (AF)

Abnormal voltage (AV)

Inverter overcurrent (IOC):

110- Per cent sensor

150- Per cent sensor

Load overcurrent (LOC):

110- Per cent sensor

150- Percent sensor

Load division protection (LDP)

25 kHz

40 kHz

42 V rms

388 Hz

493 Hz

135 V rms

85 V rms

11.5 A rms

14.5 A rms

11.5 A rms

14.5 A rms

1. 15 A rms

-35

+4

(a)

-4

+20

+ 12

-29

+5

-5

+5

-5

(b)

Converter sensors

Abnormal voltage (AV)

Converter overcurrent (COC):

110- Per cent sensor

150- Per cent sensor

Load overcurrent (LOC):

110- Percent sensor

150- Per cent sensor

Load division protection (LDP)

Automatic parallel (AP)

135 V dc

168 V dc

16 A dc

21 A dc

17 Adc

27. 5 A dc

1.5 Adc

168 V dc

135 Vdc

22 Vdc

-10

+12

-14

-24

-8

+15

(c)

+12

-10

(d)

Maximum 9. 6-kHz ripple, 1 . 2 V rms.

Seven percent above 10-percent maximum load unbalance.
cOne percent above 10-per cent maximum load unbalance.

Normal voltage is zero.



TABLE IV. - FAULTS THAT OPEN CONTACTOR

Contactor

Input contactor

Load contactor

Load bus contactor

Tie bus contactor

Faulta

Frequency

reference
protection

(FRP)

1

X

X

X

1
X

X

X

X

Abnormal

frequency
(AF)

X

1

X

X

X

1
X

X

X

Abnormal

voltage

(AV)

X

X

1

X

X

X

1

X

X

Inverter

over current

(IOC)

X

X

X

X

X

X

X

1
X

Load over-
current

(LOC)

X

X

X

1

X

X

X

0

X

Load division

protection
(LDP)

X

X

X

X

X

X

X

X

1

A "1" denotes signal which will open contactor. A "0" denotes signal must not exist for
contactor to open. An "X" denotes signal has no effect.

CONCLUDING REMARKS

The capabilities of a modular inverter-converter system are significantly increased
if an effective control and protection system is incorporated. The control and protection
system detects and isolates defective elements and connects necessary loads to the avail-
able power sources. The control and protection system described contains sensors
which are simple and designed only to sense severe faults, which is sufficient to pro-
tect the system.

The control system was based on an air craft-style distribution system, using non-
latching contactors. Power distribution was interruptible because of time delays in the
fault sensing and logic. Fault isolation was generally satisfactory.

The transient overload protection was programmed to match the overload charac-
teristics of the power conditioners with a recycle feature to check for fault clearing.

A control and monitoring panel indicates system operating modes and allows manual
or automatic control of the contactors but no override capability for sensor or logic
errors.

10



Power consumption of the unit was high, approximately 90 watts. The primary
cause of this high consumption was the contactors and indicator lights.

Lewis Research Center,

National Aeronautics and Space Administration,
Cleveland, Ohio, January 8, 1973,

503-35.
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APPENDIX A

CIRCUIT DESCRIPTIONS

The circuit diagrams shown and discussed in this appendix are simplified drawings.
Capacitors for noise suppression, redundant elements, and power supply connections to
the integrated circuits are not shown. The reference voltages shown in the following
figures are obtained from the 6-volt supply or from voltage dividers on the 10-volt
supply. The reference voltages are not the same for each sensor, or even for two ref-
erences in a single sensor.

The principal sense element is an integrated-circuit differential input voltage com-
parator (VC). The logic is all integrated-circuit diode-transistor logic (DTL). These
are NAND gates, and the logic convention is that a low or "0" signal is zero volts and
a high or "1" signal is +6 volts. Figure 4 illustrates the symbols used for the inte-

+10 v

+ 10 V

(a) Voltage comparator.

+6V

A —

B -

C—I

e0 • (A • B • C)

O eo

(b) NAND gate.

Figure 4. - Symbols used for integrated circuits.
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(a) Inverter module.

(b) Contactor panel.

Figure 5. - Breadboard modules.

C-71-1645
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grated circuits and a representative internal schematic. A complete schematic of the

entire control and protection system is in appendix C.
The breadboard modules are rack mounted and forced-air cooled. The low-level

circuits of the control and protection system are on printed circuit or perf-board cards.

A front view of a module is shown in figure 5(a). The control and protection is contained
in the top cage. Fans are not required for this cage.

Contactor Panel

Figure 5(b) shows the contactor panel, on which are mounted voltage isolation trans-
formers and current transformers and transducers. The contactors are nonlatching
aircraft type and are powered from a 28-volt dc supply. Reconfiguring of the contactor
wiring when changing between inverter and converter modes is accomplished by jumper
wires on barrier strips. The contactor panel is shown with the jumpers arranged for
inverter operation.

The contactor wiring for the inverter and converter configurations is shown sche-
matically in figure 6. The 1C in both modes and the LC, LBC, and TBC in the converter
mode are connected with the three poles in series to withstand the voltage.
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Figure 6. - Contactor wiring.
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Inverter Sensors

Frequency reference protection sensor. The FRP sensor shown in figure 7 deter-
mines the frequency of the 38. 4-kilohertz reference oscillator. The input to this circuit
is a logic-level square wave. Gate 1 (Gl) is used for isolation and does not change the
waveshape. A network consisting of resistor R2 and capacitor Cl filters the output of
Gl, resulting in a dc level with some ripple. Because R2-C1 form a low-pass filter,
the ripple amplitude is inversely proportional to the frequency.

Underfrequency is sensed by VC1. The output of the R2-C1 filter is compared to a
reference voltage which is slightly greater than the normal peak value of this output. If

Input
(38.4kHz) Overfrequency

O
Underfrequency

Figure 7. - Frequency reference protection sensor.

the input frequency decreases, the ripple magnitude increases and VC1 will switch at
each voltage peak, producing a "0" signal. A compensation network, R3 and C2, re-
duces the speed of the comparator so that once it switches, it will continue to put out a

zero for approximately 50 microseconds.: Since the period of a 38-Mlohertz wave is
less than 50 microseconds, the output will stay low continuously.

To sense an overfrequency, VC2 compares the R2-C1 filter output to a reference
which is slightly less than the normal peak filter output. Thus, VC2 will switch to zero
each cycle if the frequency is correct. The R4 and C3 function the same as R3 and C2
in maintaining this zero. If the input frequency increases, VC2 will stop switching and
its output will go high, indicating a fault.

The detection thresholds were set at 25 and 40 •kilphertz. The overfrequency sensor
rejects noise pulses lasting less than the R4-C3 time delay. But the R3-C2 network on
VC1 tends to increase the noise sensitivity because it acts as a pulse stretcher. There-
fore, the Underfrequency sensor threshold had.to.be set much.wider than the overfre-

quency sensor. . . • • • • • - . ' . ' • • . • : , . .

15



Excessive ripple sensor. - The ER circuit, figure 8, detects 9. 6-kilohertz ripple in
the inverter output voltage. The input is three-phase line voltage, isolated from the in-

verter outputs by a 1:1 transformer. Because of the 9. 6-kilohertz-series resonant fil-
ters C1-L1, C2-L2, and C3-L3, only the 9. 6-kilohertz ripple appears across Rl, R2,
and R3. The ripple is rectified and filtered by Dl, D2, D3, R4, and C4 and compared
to a reference voltage in VC1. Positive feedback, hysteresis, is obtained through R5
and R6. The maximum ripple on any phase will be detected by the ORing action of Dl,
D2, and D3.

Cl LI 01

Excessive

~° rippleC2 L2

C3 L3

V(

Rl
' 02

R2

D3
N

ui !"v '

SR5
R6

»ref

Figure 8. - Ripple sensor.

The minimum input required for sensing is 42 volts rms. The ripple caused by a
bridge failure is nearly an order of magnitude less than this voltage. The sensitivity of
this circuit should be increased, or possibly the ripple current should be sensed, for
this circuit to be functional.

Output frequency sensors. - The input to the underfrequency sensor, figure 9, is
the three-phase inverter output obtained from the same isolation transformer used with
the ER sensor. The 400-hertz sine-wave inputs are clipped into 400-hertz logic-level

square waves by R1-D1, R2-D2, andR3-D3. Gates Gl, G2, and G3 combine these
three-phase 400-hertz square waves into a 1200-hertz square wave at the inputs of G4
and G5.

As in figure 7, R4, R5, and Cl form a low-pass filter, driven by G4 which is used
for isolation (buffer). The comparator VC1 determines underfrequency in the same way
as the underfrequency sensor of the FRP sensor. However, because of the much lower
frequency, a time delay such as the R3-C2 combination of figure 7 becomes impractical.
Instead, a flip-flop memory (G6 and G7) is used.

This memory is set by G6 if an underfrequency fault is detected. But for each cycle,
a reset pulse is generated by G5 and R6, R7, R8, D4, and C2. Positive feedback around

16



Underfrequency

Figure 9. - Underfrequency sensor.

VC1, provided by R9 and RIO, ensures that the pulse out of VC1 overlaps the reset pulse
completely, producing a steady fault signal at the output of G7. Typical waveforms for
the circuit, with an Underfrequency fault, are shown in figure 10.

Circuitry identical to that used for the Underfrequency sensor is used to detect over-
frequency. In fact, most of the parts used for the Underfrequency sensor are used for
the overfrequency circuit. Only the voltage comparator and flip-flop are separate. The
reference voltage for the comparator is less than the normal peak amplitude of the ripple
out of the R5-C1 filter, so the comparator normally switches each cycle. Its normal
operation is identical to the Underfrequency sensor when there is a Underfrequency fault.
The outputs of the Underfrequency and overfrequency sensors are combined into one ab-
normal frequency (AF) fault in the memory flip-flop of the Underfrequency sensor. The
ER circuit output is also NANDed in as an AF fault, as shown in the complete schematic

in appendix C.
The trip points for these sensors were set at 376 and 481 hertz. These sensors

were less noise-sensitive than the FRP sensor because larger capacitors were used for
filtering the low frequency. The sensors depend on a 120° phase shift between phases to
generate the 1200-hertz square wave. Therefore, a large phase-shift error, or no out-
put on one or more phases, will be detected as an AF error. The logic is programmed
so that an undervoltage fault will not be indicated as an abnormal frequency fault. These
sensors respond rapidly, sensing frequency in essentially a cycle-by-cycle basis. Time

17
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(a) Phase A.

(b) Phase B.

(c) Phase C.

(d) Output.

Figure 10. - Underfrequencysensorwaveforms.

delays are incorporated in the control logic to prevent false tripping.

Output voltage sensors. - The under voltage sensor, figure 11, must detect the low-

est of the three-phase voltages. Each input goes through a voltage divider (R1-R2, R3-

R4, or R5-R6) and a rectifier filter (Dl, Cl, R7, etc.). The voltages on Cl, C2, and

C3 will correspond to the three input voltages.

Current flows from the +V supply through RIO and one of the diodes D4, D5, or D6.

Current will flow only through the diode going to the capacitor with the least voltage on

it, because the other two diodes will be reverse biased. Thus, V_ will correspond to
a

the lowest phase voltage. In VC1, V_ is compared to a reference voltage which is nor-
a

mally less than V_, to indicate a fault,a
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Figure 11. - Undervoltage sensor.
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Overvoltage sensing is much less complicated, as shown in figure 12. The highest
voltage is rectified by Dl, D2, or D3 and filtered by Cl. Voltage divider R1-R2 and
VC1 compare the peak voltage to a reference to generate an Overvoltage trip signal.

The rated output voltage is 120 volts rms. The abnormal voltage sensors were ad-
justed for 135 volts rms (112 percent of rated voltage) and 85 volts rms (71 percent of
rated voltage).

One set of isolation transformers is used for the ER, AF, and AV sensing. The
total power consumed from the inverter output is approximately 2. 5 watts. Most of this
power consumption could be eliminated by changing the technique for generating 400-
hertz square waves for the AF sensors.

Overcurrent sensor. - The inverter overcurrent and load overcurrent sensors

(fig. 13) use current transformers as sense elements. Each current transformer (Tl,

coA ipB ipC

\l V V

O Reset

110-Percent
inverter
overcurrent

Ouput
current

150-Percent
inverter
overcurrent

Figure 13. - Inverter overcurrent sensor.
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T2, and T3) has a burden (Rl, R2, or R3); and its output is rectified by Dl, D2, or D3

and filtered by Cl. The output is then compared to a reference voltage corresponding

to 110 percent of rated load current in VC1 or 150 percent of rated load current in VC2.

After an over current fault is sensed, a reset signal of 0 volts is used to discharge Cl

through D4 as the logic starts to recycle. The inverter over current and load over cur-

rent sensors are essentially identical.

The overcurrent trip points were set at 11. 5 and 14. 5 amperes, corresponding to

115 and 145 percent of rated load at 0.7 power factor. These sensors do not detect real

power; and with a unity power factor load, a 110-percent detector would trip at over

15.0 percent of rated load. Thus, overpower as well as overcurrent sensors may be

necessary. Each current transformer has a maximum insertion loss of approximately

1/6 watt, a total of 1 watt for both three-phase sensors.

Load division protection sensor. - The LDP circuit is shown in figure 14. Its oper-

ation is based on a current transformer ring, which is described in reference 4. The

points A and B for phase A, C and D for phase B, and E and F for phase C are connected

in a ring with the corresponding points in other modules. Basically, the current in the

burden resistor R2 (R3, R4) will be proportional to the difference between the A (B, C)

phase output current of this module compared to the average output current of all the

other A (B, C) phases. The current in R2 will cause a voltage across T4 proportional

to the load unbalance. Correspondingly, T5 and T6 will have output voltages propor-

tional to the phase B and phase C unbalance. The largest of these unbalance voltages

will be rectified by D2, D3, or D4 and filtered by R7 and Cl and will be compared to a

reference voltage by VC1.

A gross fault in the load sharing in one module would often cause an LDP fault in

several modules. In order to isolate only the defective module, the fault signals for all

the modules are compared, and only the module with the largest fault signal is switched

off the tie bus. The comparator VC2 and diode D6 determine the module with the larg-

est fault. The points G of all the modules are tied together, and the voltage at this com-

bined point will correspond to the greatest unbalance signal because of the diodes D6 in

each module. Only the D6 in the module with the largest unbalance signal will be for-

ward biased. This forward bias is detected by VC2; both VC1 and VC2 must switch to

generate a LDP fault to the logic through Gl.

The circuit is disabled for isolated operation by turning on Ql, through the LDP

control. With Ql on, the current through Rl will saturate Tl, T2, and T3, essentially

shorting out these current transformers. Diode D5 is required to limit the peak voltage

to avoid damaging the integrated circuits. It also ensures that Cl will discharge to a

low enough voltage during the recycle period that the LDP circuit will not still be indi-

cating a fault when the logic begins a recycle.
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Figure 14. - Inverter load division protection sensor.

The LDP circuit would indicate a fault at 1.15 amperes unbalance. This unbalance
corresponds to 17-percent unbalance at rated load, 0.7 power factor. The inverter
paralleling circuits were designed for a maximum unbalance of 10 percent, and typical
performance was approximately 5-percent unbalance. .Circulating current around the
current transformer ring is approximately 10 milliamperes, which would require only
a very small conductor. Insertion loss of the sensing transformers is less than 1/4 watt

per module.
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Converter Sensors

When the module is operating in a converter mode, a different set of sensors is

used. Approximately the same faults are sensed as for the inverter. However, the
output is now a single 150-volt dc bus instead of three phase and 400 hertz.

Output voltage sensors. - The combined under- and overvoltage sensor is shown in

figure 15. For the inverter sensors, transformers are used to isolate the power system.
For the dc system, a chopper circuit is used. Resistors Rl and R2 reduce the input
voltage, which is then chopped by Ql and Q2. These transistors are driven at approxi-
mately 2 kilohertz by the dc-to-dc converter circuit used in the control and protection

OOvervoltage

Isolation chopper Sensor

Figure 15. - Converter under- and overvoltage sensor.

system power supply. The output of the chopper is isolated by Tl, rectified by Dl and
D2, filtered by Cl, and compared to two reference voltages in VC1 and VC2 to generate
the under- and overvoltage fault signals. Voltage dividers R3, R4, and R5 set the trip

level.

The rated output voltage is 150 volts dc; the sensors were set for 135 and 168 volts,
corresponding to 90 and 112 percent of rated. The chopper circuit had a transfer ratio
of 0. 08. Therefore, for 150 volts input, the chopper output would be 12 volts. The
chopper circuit consumed approximately 2. 5 watts.

Over current sensors. - Full-wave magnetic amplifiers consisting of Rl, Tl, T2,
Dl, D2, and Cl, are used for dc current sensing. The converter overcurrent (COC)
circuit shown in figure 16 compares the magnetic amplifier output to two reference volt-
ages to generate the 110- and 150-percent overcurrent signals. Gates Gl and G2 are
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Figure 16. - Converter overcurrent circuit.

used to lock out the COC 150-percent signal if a 150-percent load overcurrent (LOG)
signal exists so that a tie bus fault will not be indicated. The LOG sensor is essentially
identical except that the lockout circuit using Gl and G2 is omitted. Resistor R2 sets
the trip level for comparators VC1 and VC2.

The COC sensor had its 110- and 150-percent trip points set for 16 and 21 amperes,
respectively, corresponding to 96 and 126 percent of rated current. The LOG sensor
settings, at 17 and 27. 5 amperes, corresponded to 102 and 165 percent of rated load
current. The 165 percent exceeds the capacity of the converter, which limits current at
slightly above 150 percent of rated.

Load division protection. - The converter LDP sensor operates in the same basic
way as the inverter LDP sensor. A voltage is developed which is proportional to the
unbalance. This is compared to a reference and also to the other modules to determine
the most unbalanced modules. As can be seen in figure 17, the logic is the same but
these parts are not shared with the inverter LDP sensor.

The converter LDP sensor does not have its own current sensor. The output cur-
rent, as sensed by the COC magnetic amplifier (fig. 16) is compared to the average out-
put current in the T1-T2 D1-D4 magnetic amplifier in figure 17. One side of the input of
this magnetic amplifier is connected to the same point on all the modules, resulting in
an average current signal at this point. The difference in each module's COC signal
from the average is amplified in the magnetic amplifier, filtered by Cl and Rl, and
sensed by VC1 and VC2. The D5 and Gl function as in figure 14.

The LDP sensor is disabled during isolated operation by the switch shown in fig-
ure 18. The two connections which are switched are on the right. Gate Gl is used for
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Figure 18. - Zero-voltage switch.

isolation and turns on Ql. Turning on Ql closes a diode switch D1-D4, applying a 2-
kilohertz square wave on the primary of Tl. The 2-kilohertz wave is obtained from the
control and protection system power supply. The square wave is then rectified by diode
bridge D5-D8. The output voltage from this diode bridge turns on Q2, through Rl,
causing a current to flow through R2 and D9-D12. The diodes have a very low imped-
ance while in conduction. The switch is "on, " and current can flow through the "con-
tacts. " The voltage drop across the switch will be very low (theoretically zero) if the
diode voltage drops are matched and the signal current is much less than the current in
the diodes.

The LDP fault trip level is set for 1. 5 amperes, or 11 percent of rated load current.
The performance specification on the converter paralleling network is 10 percent of
.maximum unbalance. Typical performance is approximately 7. 5 percent.

Automatic parallel. - An AP sensor is used to control converter system paralleling.
This sensor monitors the tie bus voltage and will not allow the tie bus contactor to be
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closed unless the tie bus voltage is correct.
The sensor, figure 19, is very similar to the abnormal voltage sensor described

previously. A chopper is used for isolation, and its output is measured by three com-
parators. The comparator VC2 is an overvoltage detector and allows paralleling below
168 volts. The comparator VC1 is an undervoltage sensor and allows paralleling only
for a tie bus voltage above 135 volts. Voltage dividers R4, R5, and R6 determine these
set points. Also, the tie bus contactor should be able to be closed if the tie bus voltage

Tie bus

Automatic
parallel

Figure 19. - Automatic parallel sensor.

is zero, because this could mean that no converters are connected to the bus. Transis-
tor Ql turns off for bus voltages less than 22 volts, determined by the divider R1-R2.
Below 22 volts, with Ql off, current flows through R3 and D2, causing VC1 to switch
to a permissive state. Diodes Dl and D2 are an ORing circuit so that VC1 will check
both zero and undervoltage states. The bands over which paralleling is allowed are then
zero to 22 volts and 135 to 168 volts.

Logic Circuits

Frequency reference protection logic. - The FRP logic controls which module will
supply the 38. 4-kilohertz reference signal. The FRP circuit, figure 20, has three in-
puts and three outputs. One input is the 38. 4-kilohertz crystal oscillator signal from
the module. This signal is ±12-volt square wave and is converted to logic levels by the

network (Rl, R2, Cl, Dl, and D2) of Gl, where Gl is the control gate. If enabled, Gl
will allow the 38. 4-kilohertz signal to pass through Gl and the amplifier R3, R4, R5, .
D3, C2, and Ql. This signal is then used for all the modules.

For Gl to be enabled, all of its inputs except the oscillator signal must be high.
The D input indicates if another module is supplying the reference signal. If D is low,
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Figure 20. - Frequency reference protection logic.

then Gl is disabled; and through G2 and G3, E will be low. The E of each module is
connected to D of the next module in a chain technique. Only the first module in the
chain has a D = 1 input, unless that first module has an FRP fault, in which case, its

E will be "1, " and the next module will supply the reference signal, etc.

The M input indicates if the input contactor switch is closed. If this switch is off
(M = 0), there is no power to the reference oscillator; so a FRP transfer (E = 1) is sent
out, and Gl is disabled. When the Gl is opened, a time delay using R6, R7, R8, R9,
C3, Q2, and Q3 is started. This allows the oscillator to start before the FRP sensor
determines if it is defective and locks it out. This time delay is primarily a reset signal
to the G6-G7-G8 FRP fault memory flip-flop.

An FRP fault signal, which turns on the FRP light, is generated only if the module
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should be supplying the reference signal and has failed; that is, if D = 0 or M = 0, the
FRP will not light even though the FRP sensor senses a fault.

The FRP output stages (Ql, etc.) must be paralleled so that any module can supply
the reference signal. If Gl is locked out, then Ql is turned off for that module, and the
output stage looks like an open circuit. In the module supplying the reference signal,
Ql is switching on and off. Thus, the output is pulled up to +V by turning on Ql (active
pullup), and then switches to a negative voltage when Ql is turned off because of resis-
tors in the inverter (passive pulldown).

Possibly the most questionable area in this protection system is the FRP system.
Since many faults open the 1C, the FRP circuit is often forced to transfer, and each
transfer causes a transient in the inverters. One solution would be to relocate the crys-
tal oscillator in the control and protection module. Another, possibly more suitable
modification in terms of inverter reliability would be to open the 1C only after the third
fault and use an already existing internal inverter shutoff command to recycle the in-
verter. This internal command does not interrupt the low-voltage supplies, so the
oscillator continues to operate. Transfer would then occur only after the third fault.

Transfer between FRP circuits due to switching the 1C is very fast, and there is no
noticeable transient in the output voltage. There may be internal transients, however,
because the reference oscillators are not synchronized. However, the time required
for an FRP fault detection and transfer causes some transient in the output voltage and

will cause severe internal stresses, but has never caused traceable failures.
Because the FRP logic is a chain, instead of a ring, the FRP transfer cannot pro-

gress all the way around a loop. And, each time a module supplying a reference is
faulted so that the 1C opens, the reference is transferred. But the reference will trans-
fer back each time the module automatically recycles.

The FRP output stage must be sized according to the number of inverters it must
drive. Each module requires 50 milliamperes from the reference, and a symmetrical
low-rise-time square wave must be maintained. The present driver could handle ap-
proximately three modules, a 10. 8-kilovoIt-ampere system.

Contactor control. - The contactor control has two major functions, the close and
the trip circuits, shown in figure 21. Typically, each of these circuits has a multiple
input gate (Gl or G2), a time delay (Rl, R2, Cl, and VC1 for the close circuit; R3, R4,
C2, and VC2 for the open circuit), and a flip-flop memory (G3-G4 for closing or G6-G7
for opening).

Any "0" (enable) input on Gl will cause a "1" output on Gl. After a time delay of
approximately 1 second for Cl to charge, the output of VC1 will go to zero. This sets
the close flip-flop, if the G3 reset line and the trip flip-flop are high. This is the nor-
mal condition. With the G3-G4 flip-flop set, e will be a "1" because of the inversion
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Figure 21. - Contactor control.

in G5. The contactor driver (shown in appendix C) is essentially a power NAND gate:
all "1's" on the input will close the contactor.

The operation of the trip circuit is the same as the close circuit. Also, a fast trip
line may be included to bypass the time delay. The time delay is primarily used to
eliminate false trips on noise pulses and to ensure the correct sequence of contactor
closures.

Once the trip flip-flop is set, it will hold the contactor open until a reset is received
from the 1C reset or the recycle circuit.

Ten-minute timer. - The 10-minute timer, figure 22, is a two-stage analog-digital
hybrid. The timing action is started when a "0" is received at either A or D, repre-
senting a 110-percent IOC or 110-percent LOG fault. A "0" at A generates a "0" at the
output of G2 through G3, which turns Q2 off. The R1-Q1 form a current source which
charges Cl. In approximately 26 seconds, VC1 switches, turning on Q2 and Q3; and
Q2 discharges Cl. During this discharge time, which is approximately 20 milliseconds
as determined by the R2-C1 time constant, C2 is charged by current source R5-Q3. R3,
R4, Dl, and D2 provide hysteresis and isolation. When Cl is discharged, VC1, Q2,
and Q3 turn off; and Cl begins charging again. For each cycle, the voltage on C2 in-
c'reases. After 21 cycles, approximately 10 minutes, the voltage on C2 exceeds V *;
and VC2 turns on, sending a signal out the "A + 10 minute" line.

Gate Gl and Q4 are used to discharge C2 when the fault disappears. Gates G4, G5,
G6, and G7 control the fault signal steering so that one timer is used for both overcur-

rent delays. The 10-minute delay is complicated because very low-input-current opera-
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Figure 22. -Ten-minutetimer.

tional amplifiers were not readily available at the time the system was designed. Be-

cause of its complexity, one timer was used for both the IOC and LOG delays, which

could cause undesirable interactions. Also, the timer resets immediately if the current

momentarily drops below the 110-percent level. This resetting does not track the ther-

mal conditions in the inverter as it should.

Third-fault logic. - The three-fault counter and one of the third-fault latches is

shown in figure 23. The fault inputs are NANDed together in Gl. A "0" at any input will

start the cycle. After a time delay caused by Rl and Cl, VC1 puts out a pulse, which is

counted by the flip-flop. During this pulse, whose width is determined by R2 and Cl,

G2 generates a recycle reset pulse, which allows the contactors to reclose.
After three counts, Ql and Q2 outputs of the flip-flop will both be "1"; and, for

example, there will be a "1" on the IC-LBC fault line. The G5-G6 latch will then be set

by G4, generating a third-fault signal which will keep the contactor open and generating

a fault signal for the annunciator.

Gate G3 and VC2 are used to reset the counter to zero if three faults are not re-

ceived within 15 seconds. If the counter output is "0, " the output of G3 will be low. If
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the count is not "0, " G3 goes high and C2 starts charging through R3 and R4. After

15 seconds, VC2 resets the counter to "0. " Gate G7 provides a fault signal to the lamp
drivers for the annunciator.

Multiple faults occurring within the same 15-second period will cause abnormal re-
cycling, but the faults will be isolated. The only incorrect operation noted was if an
inverter fails while in parallel operation. Both an AV and an LDP fault will be sensed.
The TBC is opened as a result of the LDP fault, and the module shuts off as a result of
the AV fault. The TBC remains open, and the load cannot be supplied from the tie bus.

Most of the interactions were eliminated by the time delays. The preceding example is
the only noted interaction which caused anything more serious than an incorrectly lit
bulb.

Lamp drivers. - The typical circuit used to drive the bulbs on the control and moni-
toring panel is shown in figure 24. For the bulb to light, Q2 and SCR1 must be on. Nor-
mally, Q2 will be on. (A is normally "1, " so Ql turns Q2 on through Rl . ) To allow
SCR1 to commutate, Q2 is turned off. If all its inputs (B, C, D, etc.) are high, SCR1
is turned on. Diodes Dl, D2, and D3 and R2 perform the NAND function. The B, C,
and D inputs will generally be the fault signal, a contactor position, and possibly a logi-
cal interlock, as with the AF and AV circuits and the IOC and LOG circuits. To improve
the noise threshold at the B-C-D inputs, Cl, D4, D5, and R3 reverse bias the gate-
cathode junction of SCR1.
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Power Supply

The input power for the module is a 56-volt dc bus. The control and protection sys-

tem has a dc-dc converter self-contained. This converter supplies 28 volts dc for the

lights and, in conjunction with a series regulator, +10 and +6 volts dc for the sensors

and logic circuits. In addition, a separate 28-volt dc supply is incorporated to operate

the contactors.

The power consumption, less contactors, is typically 24 watts at 56 volts dc. The

contactors consumed an additional 66 watts. The power consumption could have been

reduced significantly by using latching contactors and lower power indicators. The

power required for the sensors and logic was approximately 5 watts.
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APPENDIX B

LOGIC SYSTEM EQUATIONS

The logic system has five major outputs: the four contactors and the parallel con-
trol signal, and the indicators lights. The inputs to the logic are all digital signals;
they come from the control switches on the control and monitoring panel or from the
sensors.

There are five control switches, all located on the control and monitoring panel.
They are the input contactor switch (ICS), the load contactor switch (LCS), the load bus
contactor switch (LBCS), the tie bus contactor switch (TBCS), and the manual override
switch (MOS).

The ICS is essentially the on-off control for the module. If the ICS is open, only
one contactor can be closed, and there is no power delivered to the power conditioner,
the tie bus, or the loads.

Input Contactor

The ICS is the manual control switch for the input contactor. However, several
other conditions must be met before the input contactor will close. The operation of the
1C can be explained by the following equation:

1C = (ICS)(1C latch)[Fault reset + (IOC150 + AF + AV) x (ICS + Fault reset) x 3. 75 sec]

The interpretation of the equation follows: There are three basic requirements for
the 1C to be closed, as indicated by the brackets. First, the ICS must be closed. Sec-
ond, the 1C latch must not be set. This latch is set if the faults counter indicates three
faults which open the 1C, or if a 10-minute power-conditioner 110-percent current over-
load (lOC^Q x 10 min) has occurred. The third condition is that either a fault reset
signal exists or that neither a 150-percent overload (lOCien) nor •^ or ^ faults have
occurred continuously for 3. 75 seconds after the ICS was closed or the fault reset sig-
nal ended. The fault reset signal occurs after a contactor is opened to clear a fault; it
starts the recycling feature. When the 1C is first closed, the power conditioner has

•been off; so AF and AV faults will be indicated. But after the power conditioner starts,
the AF and AV faults are cleared within the 3.75-second delay period.
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Load Bus Contactor

The load bus contactor (LBC) has two control switches besides the ICS. These are
the LBCS (load bus contactor switch) and the MOS (manual override switch). In the
automatic position (MOS off), the LBCS does nothing. In the manual override position,

the LBCS will open the LBC. The LBCS cannot close the LBC unless all the conditions
for automatic closing are met. The equation for this contactor is

LBC - ICS (MOS x LBCS + MOS) (1C latch)

x f(AF + AV) x 0. 35 sec + LBc|]f(IOC150 + AF + AV)

x 3. 75 sec (ICS + Fault resetH

This equation can be written in terms of the 1C equation:

LBC = IC(MOS x LBCS + MOS)[(AF +AV) x 0. 35 sec + LBc]

The LBC can be closed only if the 1C is closed, and either the MOS is off or the
LBCS is also on. Also, the contactor will close 0. 35 second after the AF and AV faults
disappear and stay closed until 3. 75 seconds after a fault is sensed. The LBC' term
indicates that the LBC is closed and that the 0. 35-second delay has no effect on opening.

Load Contactor

The load contactor (LC) has the simplest equation. The load contactor switch (LCS)
will open the LC at any time, independent of the MOS and ICS. Also, only an LOG fault
will trip the LC.

LC = LCS(LOC110 x 10 min + LC latch)(LOC150 x 1. 3 sec + Fault reset)

The LC is independent of the ICS and can be closed even if the ICS is open. Power
cannot be delivered to the load, however, because neither the LBC or the TBC can be
closed with the ICS off.
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Tie Bus Contactor

The tie bus contactor (TBC) is programmed to permit the closure either to parallel

the modules or to connect the load to the tie bus if the module is defective. A TBCS is

also included, which is functional only in the manual override position. The Boolean

equation is

TBC = ICS(MOS x TBCS + MOS) (TBC latch) [3. 3 sec(LBC latch + AP x LBC)]

x Fault reset + (IOC15Q + LOP x LOG) x 1. 5 sec]

• The term containing LBC latch allows the TBC to tie the load to the tie bus if the

LBC latch is set as a result of three LBC faults or a 10-minute IOC.

Control and Monitoring Panel

Control switches. - There are five switches controlling the inverter: an MOS and a
control switch for each contactor. These contactor control switches cannot override the

automatic control to close a contactor, only to open it. And the only function of the MOS
is to disable the LBCS and TBCS.

Indicators. - The indicator lights for the switches and contactors will light if the
respective switch or contactor is closed. The automatic operation mode (AUTO) light

will light if the MOS is off. The parallel operation (PARA) light will light, and a parallel
control signal is sent to the paralleling circuits, if the LBC and TBC are closed. The

isolated operation (ISO) light will light if the LBC is closed and the TBC is open. Either

the inverter or converter light will light depending on the operating mode.
The six fault indicators blink on during recycle, indicating the fault, and stay on

after the latch is set. The equation for the abnormal voltage light is

AVlight = (AV + AVlight^Fault reset x LBC + IC

The LBC always opens on an AV fault. The operation of the AF light is similar. But an

AV fault, specifically undervoltage, may also be detected as an AF fault. Therefore,

•the AF light cannot come on if the AV light is on.

AFlight = (AF X AVlight + AFlight)(Fault reset X LBC + IC latch)
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The LDP light will indicate if there is an LDP fault and a fault reset or TBC latch sig-
nal. The TBF light requires an IOC fault and the fault reset or TBC latch signal. The
LBF light indicates an LOG fault and recycle or an LC latch.

The FRP light indicates a fault whenever the FRP detector senses a fault if the ICS
is closed. A time delay of 0.15 second is incorporated after the ICS is closed to allow
the oscillator in the inverter to start. An FRP fault will be indicated even if the module
is not supplying the reference signal, if the ICS is closed.
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APPENDIX C

CONTROL AND PROTECTION SYSTEM FOR INVERTER-CONVERTER SYSTEM

r

36

Inverter



Sensors

37



Annun

38



ciator

39



Q 0 0 B ® B B B 0 00 <3 O O

40

Log



?270fl

, 1 i

1C

41



Intermodule connection

To module system N-l

4 5 6 7

D\ /F\ /H\ /J

4 5 6 7

To module system N+l

Manual override switch

Load bus contactor switch

Tie bus contactor switch

Load contactor switch

Input contactor switch

Load bus contactor

Tie bus contactor

Load contactor

Input contactor

Overvoltage

Undervoltage

Abnormal frequency

Automatic parallel

Load overcurrent

Inverter overcurrent

Converter Overcurrent

Tie bus fault

Load division protection

Frequency reference protection

Signal ground

Power ground

a Signals from sensing

circuits

A Signals to intermodule
connectors

Q Annunciator
signals

MOS

LBCS

TBCS

LCS

ICS

LBC

TBC

LC

1C
0V

UV

AF

AP

LOG

IOC
COC
TBF

LOP

FRP

Intermodule Connection and Symbols
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APPENDIX D

ACRONYMS

AF abnormal frequency

AP automatic parallel

AUTO automatic operation mode

AV abnormal voltage

COC converter overcurrent

CONV converter mode light

ER excessive ripple

FRP frequency reference protection

1C input contactor

ICS input contactor switch

INV inverter mode light

IOC inverter overcurrent

ISO isolated operation light

LBC load bus contactor

LBCS load bus contactor switch

LBF load bus fault

LC load contactor

LCS load contactor switch

LDP load division protection

LOG load overcurrent

MAN manual operation mode

MOS manual override switch

PARA parallel operation light

TBC tie bus contactor

•TBCS tie bus contactor switch

TBF tie bus fault
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