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Control and stabilization of a flexible beam attached to a rigid body

6. MORGULt

Weconsider a flexible spacecraftmodelledas a rigid body rotating in inertial space;
a light flexible beam is clamped to the rigid body at one end and is free at the other.
The equations of motion are obtained by using free-body diagrams. It is shown that
suitable boundary controls applied to the free end of the beam and a control torque
applied to the rigid body stabilize the system. The proof is obtained by using the
energy of the system as a Lyapunov functional.

1. Introduction
Many mechanical systems, such as spacecraft with flexible appendages, consist of

coupled elastic and rigid parts. In such systems, if a good performance of the overall
system is desired, the dynamic effect of elastic members becomes important. Thus over
the last decade there has been growing interest in developing new methods for the
design, dynamics and control of systems that have elastic parts (see e.g. Balas (1982)
and references therein).

Consider a system that has rigid and elastic members. The motion of the elastic
members is usually described by a set of partial differential equations with appropriate
boundary conditions. Since the motion of the rigid parts is governed by a set of non
linear ordinary differential equations and the rigid members are coupled with elastic
members, the overall equations of motion generally form a set of coupled non-linear
partial and ordinary differential equations. These equations can be obtained using
standard methods in mechanics (see e.g. Goldstein 1980).

After having obtained the equations of motion, the most commonly used
approach is to consider only finitely many modes of the elastic parts-this is called
'modal analysis'. This approach reduces the original equations to a set of coupled non
linear ordinary differential equations. However, the establishment of a control law for
this reduced set of equations does not always guarantee that the same control law will
work on the original set of equations (for example, one might encounter so-called
'spillover' problems, Balas 1978). Also it should be noted that the actual number of
modes of an elastic system is, in theory, infinite and the number of modes that should
be retained is not known a priori.

Recently Biswas and Ahmed (1986) used a Lyapunov-type approach to prove the
stability of a rigid spacecraft with an elastic beam attached to it under appropriate
forces and torques applied to the beam and the rigid spacecraft. Their proposed
control laws contain distributed forces applied to the beam that are proportional to
the beam deflection velocities. Implementation of such control laws might not be easy.

In recent years, boundary control of elastic systems (i.e. controls applied to the
boundaries of elastic systems) has become an important research area. This idea was
first applied to systems governed by a wave equation, e.g. strings (Chen 1979), and
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recently extended to the beam equations. In particular, Chen et al. (1987) proved that
in a cantilever beam a single actuator applied at the free end of the beam is sufficient to
uniformly stabilize the beam deflections. This approach has recently been applied to
the rigid-body---elastic-beam configuration (Desoer and Morgul 1988).

In this paper we consider the motion of a rigid body with a beam clamped to it, the
other end of the beam being free. The rigid body is assumed to be rotating with its
centre of mass fixed in an inertial frame. After having obtained the equations of
motion, we define the rest state of the system. We then state the control problem,
which is, if the system is perturbed from the rest state, to find appropriate control laws
that drive the system to the rest state. We propose two different control laws, each of
which consist of appropriate boundary force and moment controls applied to the
beam at its free end and a torque control applied to the rigid body. We then show that
the proposed control laws solve the control problem posed above; that is, the rigid
body angular velocity and the beam deflections decay to the rest state.

In § 2 we explain the configuration under consideration and derive the equations
of motion using free-body diagrams. We then state the control problem and propose
some feedback laws. In §§ 3-5 we show that the proposed control laws solve the
control problem posed above.

Notation

Boldface letters r, n etc. denote vectors in [R3, unless stated otherwise; fx,.r. etc.
denote of/ax, of/at etc. x denotes the standard cross-product in [R3 and <,> denotes
the standard inner product in [R3.

2. The configuration

2.1. Equations of motion

We'consider the configuration shown in the Figure, where the rigid body is drawn
as a square and P is a point on the beam. (0, e" ez, e3 ) denotes a right-handed
orthonormal inertial frame, which will be referred to as N, (0, 0" 0z, 03) denotes a
right-handed orthonormal frame fixed in the rigid body, which will be referred as B,
where 0 is also the centre of mass of the rigid body and 0" 0z, 0 3 are along the

Rigid body with flexible beam.
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principal axes of inertia of the rigid body. One end of the beam is clamped to the rigid
body at the point Q along the D 2 axis and the other end is free. Let L be the length of
the beam. We assume that the mass of the rigid body is much larger than the mass
of the beam, so the centre of mass of the rigid body is approximately the centre of
mass of the whole configuration. So the point 0 is fixed in inertial space through
out the motion of the whole configuration, and the rigid body may rotate arbitrarily
in the inertial space.

The beam is initially straight, along the D 2 axis. Let P be a typical beam element
whose distance from Q in the undeformed configuration is x, and let u, and U3 be the
displacements of P along the D , and D 3 axes, respectively. We assume that the beam
is inextensible; that is, the beam deflection U2 along the D 2 axis is identically zero. Let

rex, t) = OP be the position vector of P. We assume that the beam is homogeneous
with uniform cross-sections.

We define the contact force n(x, t) and the contact moment m(x, r) at the beam
cross-sections as follows. Consider a beam cross-section C; at x. The effect of the part
of the beam that lies on the (x, L] segment of the beam on the part that lies on the
[0, x] segment is equivalent to a force applied to the cross-section Cx , which is called
the contact force n(x, t), and a moment applied to the cross-section Cx , which is called
the contact moment m(x, t). For further information see Antman (1972).

Neglecting gravitation, surface loads and rotatory inertia of the beam cross
sections, we obtain the following equations describing the motion of the whole
configuration for t ;;, 0:

on 02r"=..,,., (O<x<L)
vX vt

am ar-a+- x n=O (O<x<L)
x ax

IR • cO + ro x IR • ro= reO, t) x n(O, t) + m(O, t) + Ne(t)

(2.1)

(2.2)

(2.3)

where n(x, t) and m(x, t) are the contact force and the contact moment respectively, A
is the mass per unit length of the beam (which is constant by assumption), L is the
length of the beam, IR is the inertia tensor of the rigid body (which is diagonal), ro is the
angular velocity of the rigid body with respect to the inertial frame N, and Ne(t) is the
control torque applied to the rigid body (see e.g. Antman 1972).

Equations (2.1) and (2.2) state the balance offorces and the balance of moments at
the beam cross-sections, and (2.3) is the rigid-body angular-momentum equation.
Note that the first two terms on the right-hand side of (2.3) represent the torque
applied by the beam to the rigid body.

Remark 2.1

Let r: IR -+ [R3 denote a vector-valued function of time, typically r( t) is the position
of a particle. Let rN = (r~, 1;, r~)T and rB = (,.If, 11, I1)T denote the components of r in
the right-handed orthonormal frame N given by (0, e., e2 , e3 ) and in the right
handed orthonormal frame B given by (0, D

"
D 2 , D 3 ) respectively. Let rodenote the

angular velocity of the frame B with respect to the frame N. Then we have the
following (see Kane and Levinson 1985):

;~3 drN ;~3 dr!'
I -' e; = I -' D; + ro x r

i w I dt i~1 dt
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(2.4)

(
dr) i~3 drN (dr) ,~3 dr!!- = L -' e· - = L -' D·
dt N ,~, dt " dt B ,~, dt '

then we obtain the following equation (see e.g. Goldstein 1980):

( dr) = (dr) + ro x r
dr N dt B

We use the Euler-Bernoulli beam model to give the component form of the
contract force D and the contact moment m in terms of the beam deflections u, and u3 •

For more details see Meirovitch (1967). Assuming that the beam is inextensible,
neglecting the torsion and neglecting the higher-order terms, we express the contact
force D, the contact moment m and the position vector r in terms of u[ and U 3 as
follows: for 0,;;;x ,;;; L, t ;;, 0

m = m[0, + m,O, + m3D3, D = n,DI + n,D, + n3D3 (2.5)

m1 = E13u3xX' n3= -El3u3xxx (2.6)

m3=-EI[u,xx' n,=-EI[u,x.<X (2.7)

r=u[0[+(b+X)0,+u3D3 (2.8)

where EI, and EI 3are the flexural rigidities of the beam deflections along the axes D,
and 0 3 respectively and b is the distance between the points 0 and Q.

Since we have neglected the axial and torsional vibrations of the beam, the axial
component n, of the contact force D and the torsion component m, of the contact
moment m are not determinable from the constitutive equations (see Posbergh 1988).
Once the beam deflections U I and U3 have been found, the D , components of (2.1) and
(2.2) may be used to find n, and m"

Since the beam is clamped to the rigid body at the point Q, we have (see the
Figure)

u,(O, t) = Uix(O, t) = 0, t;;' 0, i = 1,3

The rest state of the system is, by definition,

ro = 0

u,(x) =U3(X) =0, O';;;x,;;;L

u,,(x) = u3,(x) = 0, 0,;;;x';;; L

We now state our stabilization problem.

(2.9)

(2.10 a)

(2.10 b)

(2.10 c)

Stabilization problem
If the system given by (2.1)-(2.9) is perturbed from the rest state defined by

(2..10) then find an appropriate control law that drives the system to the rest state.

2.2. Proposed control laws

We propose two stabilizing control laws. Each law consists of appropriate forces
and torques applied to the beam at the free end and a torque applied to the rigid body.
We note that these two sets differ in the torque applied to the rigid body.



Control offlexible beam attached to a rigid body 15

(2.11)

(2.12)

(2.13 a)Nc(t) = -r(O, r) x 0(0, t) - m(O, t) - K . ro(t)

2.2.1. Control law based on cancellation

This control scheme applies a force n(L, t) and a torque m(L, t) at the free end of
the beam and a torque Nc(t) to the rigid body. They are specified as follows: we choose
rt i> 0, fli> 0, and a 3 x 3 positive-definite constant matrix K (which can be chosen
diagonal); then for all t;;' 0, i = 1, 3, we require the following equations:

ni(L, t) + rtiUi,(L, r) = 0

mi(L, t) + fJiUix,(L, t) = 0

Equation (2.11) (respectively (2.12)) represents a transverse force (respectively
torque) applied at the free end of the beam in the direction (respectively around) the
axis D, whose magnitude is proportional to and whose sign is opposite to the end
point deflection velocity ui, ( L, t) (respectively end-point deflection angular velocity
uix,(L, t)) of the beam along the direction of the D, axis, for i = 1, 3. Also note that
to apply the control laws given by (2.11)-(2.13 a), the end-point deflection velocities
ui,(L, r), the end-point deflection angular velocities uix(L, t), the rigid-body angular
velocity vector ro(t) and the moment applied by the beam to the rigid body must be
measured. This moment consists of the effect of the contact force 0(0, t) and the
contact moment m(O, t) at the clamped end. Both can be measured by using strain
rosettes and strain gauges respectively (J. Anagnost, 1988, personal communication).

The control law (2.13 a) cancels the effect of the beam on the rigid body. To see
this, substitute (2.13 a) into (2.3), then (2.3) becomes a set of non-linear ordinary
differential equations. Then substitute the solution ro(t) of (2.3) into the beam
equation (2.1). Now the latter becomes a set of linear partial differential equations.

Equation (2.13 a) is reminiscent of a 'computed-torque' type control law in
robotics (Paul 1981). When substituted into (2.3), (2.13 a) cancels the effect of the
beam on the rigid body. This type of control law has recently been applied to attitude
control of flexible spacecraft (J. Anagnost, 1988, personal communication).

2.2.2. Natural control law

This control scheme applies the same boundary force o(L, t) and moment m(L, t)
as specified by (2.11) and (2.12) respectively, but the torque applied to the rigid body is
given by

Ne(t) = -r(L, t) x o(L, t) - m(L, t) - K . ro(t) (2.13 b)

where K is a 3 x 3 positive-definite constant matrix.
This control scheme is 'natural' in the sense that it enables one to choose the total

energy of the whole configuration as a Lyapunov function to study the stability of the
system.

Unlike the control law (2.13 a), when (2.13 b) is substituted into (2.3), it does not
cancel the effect of the beam on the rigid body. As a result of this, (2.1)-(2.9), together
with the control laws (2.1l), (2.12) and (2.13 b) form a set of non-linear ordinary and
partial differential equations. The control law (2.11), (2.12), (2.13 b) requires that the
end-point deflections ui(L, t), the end-point deflection velocities ui,(L, t), the end-point
deflection angular velocities uix,(L, t) and the rigid-body angular-velocity vector ro(t)
be measured. The first three could be measured by optical means and the latter by
gyros.
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Throughout our analysis, the initial conditions Ui(X,0) and ui,(x, 0) are assumed to
be sufficiently differentiable (i.e. C 2 in t and C4 in x) and compatible with the
boundary conditions (2.9), (2.11) and (2.12) for i = I, 3.

3. Stability results for the control law based on cancellation
After substituting (2.13 a) into (2.3) we obtain the following rigid-body equation:

IR . W+ 00 X IR . 00 = - K • 00 (3.1)

Proposition 3.1
Consider (3.1). There exist a c > 0 and an Cl > 0 such that for all initial conditions

00(0) E [R3 the solution oo(t) of (2.1) satisfies

(oo(t), oo(tj)';'; ce-·'(w(O), w(O) for all t ~ 0

Proof
Consider the following 'energy function' for the rigid body:

ER(t) =t(oo(t), IR ' oo(t)

(3.2)

(3.3)

ER(I) is the rotational kinetic energy of the rigid body with respect to the inertial
frame N. Also note that, since IR= diag (11' 12,1 3 ) , we have

Imin(oo, (0)';'; 2ER,;,; 1max (00, (0) for all 00 E [R3 (3.4)

where Im;n = min (I I' 12 , 13 ) and 1max = max (11' 12 , 13 ) , Differentiating (3.3) and
using (3.1), we obtain

ER(t) = (00, IR • w)

= - (00, 00 X IR . (0) - (00, K . (0)

= -(00, K· (0) (3.5)

But since K is positive-definite, there exist positive non-zero constants A,I and A,2,
which may be taken as the minimum and the maximum eigenvalues of t(K + KT

)

respectively such that the following holds:

)'1 (00, (0)';'; (00, K . (0)';'; A,2 (00, (0)

Using (3.4)-(3.6), we obtain (3.2) where

(3.6)

max (II' 12 , 13 )

c = min (11' 12 , 13 ) ,
o

Next, we obtain the component form of(2.1). After applying (2.4) twice, we obtain

(~:nN =(~:nB+w x r+2oo x (~;)B +00 x (00 x r) (3.7)

Using (3.7) in (2.1)-(2.10), we obtain the following equations governing the motion of
transverse beam deflections in the D 1 and D 3 directions:

Ell u1xxx x + )'U 111 + 2i,W2u3r + i.(612 + W, W3 ) U3

- ).(w~ + W~)Ul - i.(613 - WI w2)(b + x) = 0, 0 < x < L, I ~ 0 (3.8)



Control offlexible beam attached to a rigid body 17

EI3u3xxxx + AU311- 2),wzult - ),(wz - W 1( 3)U1

-A(wi+wj)u3+),(W 1+wZw3)(b+x)=0, O<x<L, t~O (3.9)

Equations (3.8) and (3.9) can be rewritten in the following state-space form:

o o o

d
dt o 0

o

o

o

o

o 0

o 0

o
o

o
wi+wj

o
o

o
wj + w~

+

o

+
(w3 - WI wz)(b + x)

o
(3.10)

whose solutions evolve in the following function space:

H = {(u1, Ult , U3, u3t)lu, E H6. U3 E H6. Ult E L Z, U3t E U}

where the function spaces LZ
, H k and Ht are defined by

(3.11)

L Z
= {J: (0, L] -+ ~Iff Z dx < oo}

Hk = {IE U If' E L Z
, i = 1, ...• k}

H~ = {IE "'If(O) = f 1(0) = O}

In H we define the following inner product, which is called the 'energy' inner
product:

(3.12)

(z, Z)E'= LL (Ell u1xxu,xx + E/ 3vlxx"lxxl dx

+ LL A(uzuz+vzvz)dx for all zz e H

Note that (3.12) induces a norm on H, which is called the 'energy norm'. This norm is
equivalent to a standard 'Sobolev' type norm, which makes H into a Hilbert space (for
more details. see Pazy 1983, Chen et al. 1987).

To put (3.10) into an abstract equation form. we define the following operators
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A: H -+H, B: IR+ x H -+ H and a functionf: IR+ -+ H:

A=
o o

o

o

o

o

o
(3.13)

-(W2 + w, w3) -2W2

o 0
B(t) =

o

o
W~ + w~

o

o

o
o
o

EI 3 04

-Tox4 0

o o

(3.14)

f(t) =

o
(W3 - WI w 2 )( b + x)

o
-(WI + W 2w 3)(b + x)

o

(3.15)

(3.16)

Remark 3.1
A is an unbounded linear operator on H. B( t) is bounded on IR ", Since ro(t) and

ro(t) are exponentially decaying functions of t (see Proposition 3.1 and (3.1)), so is
IIB(t)ll, where the norm used here is the norm induced by the energy inner product
given by (3.12).

Using the above definitions, (3.10) can be put into the following abstract form:

dz
dt = Az + B(t)z +f(t), z(O)=Zo E H

where z = [u, UII U3 U3t]T. The domain D(A) of the operator A is defined as
follows:

D(A) = {(u l, UIt , U3' u3t ):UI E H~, U3 E H~, UII E Hg, U31E Hg (3.17)

- EI I ulxx.(L) + IX I ult(L) = 0,

EI, u'x.(L) + PI ulxt(L) = 0,

- EI 3u3xx.(L) + 1X 3U3,(L) = 0,

EI3u3x.(L) + P3U3xl(L) = O}.

It is easy to show that D(A) is dense in H (see Chen et al. 1987).
Next, we state the existence and uniqueness theorem of the solutions of (2.16).

Fact 3.1

Consider (3.16) with A, B andfdefined in (3.13)-(3.15). Then
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(i) The operator A generates an exponentially decaying Co semigroup T(t) in H;
that is, there exist an M > 0 and a (j > 0 such that

IIT(t)II::;;Me-~t for all r je O (3.18)

(3.20)

where for all t;;' 0, T(t) are bounded linear maps in H;

(ii) for all Zo E D(A), (3.16) has unique classical solution, defined for all t;;' 0;

(iii) in terms of T(t), that solution z(t) of (3.16) may be written as:

z(t) = T(t)zo +LT(I - s)B(s)z(s) ds +I T(I - s)f(s) ds for all t;;' 0

(3.19)

Proof
(i) Because of the block-diagonal form of A, this is an easy extension of Theorem

3.1 of Chen et al. (1987).

(ii) Since B(t) is globally Lipschitz on Hand IIB(t)11 is exponentially decaying,
owing to Proposition 3.1 (see also Remark 3.1), it follows that A + B(t) defines
a unique, globally defined semigroup on H (see e.g. Marsden 1983, Pazy 1983).
Sincef EL' [R, H] and is a COO function of t (see (3.15)), by standard theorems
on non-homogeneous linear partial differential equations (see e.g. Pazy 1983,
pp. 105-110), it follows that (3.16) has a unique solution defined for all t;;' O.

(iii) That the solution may be given as (3.19) can be verified by substitution, using
dT/dt = AT. 0

Next, we prove the exponential decay of the solutions of 2.16.

Theorem 3.1
Consider (3.16), where the operators A, B(t) and the function f(t) are defined in

(3.13), (3.14) and (3.15) respectively. Then for all Zo E D(A) the solution z(t) of (3.16)
decays exponentially to O.

Proof

By taking norms in (3.19) and using (3.18), we get

Ilz(t)ll::;; Me-~tllzoll +LMe-~(t-')IIB(s)llllz(s)11 ds

+I Me-~(t-')llf(s)11 ds

But, since ro(t) and ro(t) are exponentially decaying, it follows from (3.14) and (3.15)
that there exist positive constants c, > 0, Cz > 0, (jl > 0, (jz > 0, such that for all i» 0

IIB(t)ll::;; cle-~lt

Ilf(l) II ::;; c2e-~2t

(3.21)

(3.22)

Using (3.21) and (3.22) in (3.20), evaluating the last integral, and multiplying each side
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(3.23)

of (3.20) by e", we get

Ilz(t)eb'II';:; Mllzoll + J~C:2(elb-b2)' -I)

+ LM Ct e- b
" Ilz(s)eb'II ds

Now applying a general form of the Bellmann-Gronwall lemma (see e.g. Desoer
1970), and using the simple estimate

(3.24)

we obtain the following:

MC2
Ilz(t)eb' lI ,;:; M Ilzoll + J _ J

2
(e1b- b2)' - I)

+ r' Mc1eM"lb'[Mllzoll + MC2 (elb-b2)'_I)]e-b"ds
J0 J - J2

MC2 M
2
c ( C2 )';:;Mllzoll+ J-J

2

(elb-b2)'-I)+TeM,,16, Ilzoll- J-J
2

(l-e-b,,)

M 2 c C
-;-;:------;;-:-;-;:-..:..1-,:2:..---;:--:- eM' >!6 '(I _ el6 - 6, - 62It ) • ( 3.25)
(J - J2)(J - J1- J2 )

Multiplying each side by e- b
' , we obtain the desired result. 0

4. Stability results for the natural control scheme
To prove the stability of the system given by (2.1)-(2.12) and (2.13 b), we first

define the energy of the system as

1 I • L

E(r) =2(OO,IR • 00> +21 ),(r" r.) dx

1 rL 2 2+2Jo (EJ,u'xx+ EI3u3xxldx (4.1)

where (, >denotes the standard inner product in 1R3
; the first term in (4.1) is the

rotational kinetic energy of the rigid body, the second term is the kinetic energy of the
beam, both with respect to the inertial frame N, and the last term is the potential
energy of the beam.

Proposition 4.1
Consider the system given by (2.1)-(2.12) and (2.13 b). Then the energy E(t)

defined by (4.1) is a non-increasing function of t, along the solutions of (2.1)-(2.12)
and (2.13 b).

Proof
By differentiating E(t) with respect to t, using (2.1) and (2.4), we get
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(4.2)

:t E(t) = <ro, IR • 6» + LL ;'<r" rtl> dx

+ fo
L

(EllUlxxUIXX, + El3u3xxu3xx,) dx

=<w,IR·w>+ f: <r"nx>dx+ LL(EIIUIXXUIXXl+EI3U3XXU3XX,)dX

=<w,IR'w>+ rL

<roxnx>dx-El 1 rL

Ul,Ulxxxxdx-El3 rL

U3t U3xxxx dxJo Jo Jo
+ Ell fo

L
ulxxu,xx, dx + El3 fo

L
U3xxU3xx, dx

Integrating by parts, we obtain the following equation, for i = 1,3:

Eli foL Ui,Uixxxx dx = EI,u'xxAL, t)u,,(L, T) - EI;uixAL, t)uix,(L, t)

(4.3)

Using (4.3) and the boundary conditions (2.11) and (2.12) in (4.2), we get

E(t) = -<ro, K 'ro>-alui,(L,t)-a3U~t(L,t)

- P, uix,(L, t) - P3u5x,(L, t) ~ 0 (4.4)

Since the rate of change of the energy is non-positive, it follows that the energy is a
non-increasing function of time for all Z E H. D

Remark 4.1

If one sets ai = Pi= 0, for i = I, 3. and K = 0 (i.e. no control applied to the
system). one gets E(t) = 0: as expected, the total energy (given by (4.1)) is conserved.

Remark 4.2

We need an estimate that states that if the energy given by (4.1) stays bounded,
then so do the beam deflections ui(x, t) and their derivatives uiAx, t) (hence so also
does r(x, t)) for all x E [0, L] and for i = 1,3. Using the boundary conditions and
the fundamental theorem of calculus, for i = 1,3 we get for all 0 ~ x ~ L and for all
t:;" 0

U;(x, t) = J: u;,(s, t) ds (4.5)

Therefore, using Jensen's inequality (see e.g. Mitrinovic 1970), we get

Uf(X, t) ~ LrUf,(S, t) ds (4.6)

By using the same arguments, we get for all x E [0, L]

ufx(x, t) ~ Lruf,,(s, t) ds (4.7)
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Hence, combining (4.5) and (4.6), we get

uf(x, t) ,,; L LL uf,(s, t) ds s;e LL u;,,(s, t) ds

Next we show that the rate of decay of the energy is at least I/t for large t.

(4.8)

Theorem 4.1

Consider the system described by (2.1)-(2.12) and (2.13 b). Then there exists a
T;;. 0 such that the energy given by (4.1) is bounded above by O(1/t) for all r > T.

Proof
To show that E(t) decreases at least as O( I/t), we first define the following function

for any 6 E (0, I):

V(t) = 2(1- 6)tE(t) + 2ri.x(r" f,> dx

Next, we need a bound on V(t). Note that

Now by using Remark 4.2, we can find an M 1 > 0 and an M 2 > 0 such that

Therefore, using this last inequality in (4.9), we get

[2( 1- 6)t- M 1] E(t) - M 2"; V(t), t;;' 0

(4.9)

(4.10)

(4.11)

(4.12)

Now, differentiating (4.9) and using (2.1 )-(2.12), we get

V(t) = 2(1- 6)E(t) + 2(1- E)tE(t) + 2rJ.x(r", rx> dx

+ 2L
L

J.x(r, r,x> dx (4.13)

Integrating by parts, the third and fourth integrals in (4.13) can be evaluated as
follows:

2L
L
.h(r

"
r,x> dx = i.L(r,(L, t), r,(L, r» -LL A(r

"
r,> dx (4.14)

LL .h(r", rx>dx = LL x(ox> rx> dx

= - LL xUlxEIlUlxxxxdx- LL xU3xEI3u3xxxxdx (4.15)
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To evaluate the last two integrals, we need the following:

LL xUxUxxxx dx = LuxlL, t)uxxx(L, t) - uxlL, t)uxxlL, t)

I 1 3 rL
1-"2 LUxxl L, t) +"2 Jo uxx dx

After using (4.14)-(4.16) in (4.13), we get

V(t)=(I-e)(oo,IRoo>+(I-e) LL A(r"r,>dx

+ (1 - e)r(EI, uixx + EI3u~xx) dx - 2(1 - e)t(oo, K . 00>

- 2(1 - e)a, tui,(L, t) - 2( I - e)a3tu~,(L, t)

- 2(1 - e)p [tuix,(L, t) - 2( I - e)P3 tu~x,(L, t)

+ AL(r,(L, t), r,(L, t» - LL A(r" r,> dx

- 2Lu ,xlL, t)a, uu(L, t) - 2ul.,(L, t)P, u'x,(L, t)

+L
E
Pi uix,(L,t)-3EI, r- uixxdx
It Jo

- 2Lu3xlL, t)a3u3,(L, t) - 2u3xlL, t)P3U3x,(L, t)

+ L EP~ u~x,(L, t) - 3EI3 rL

ilL dx
13 Jo

To estimate some of the terms in (4.17), we need the following inequalities:

(a+W';;2(a1+b1
) , aER, bER

2 1 1ab s; 0 IX + 01 b1 , 0 E R, 0 #-0, a E R, b E R

23

(4.16)

(4.17)

(4.18)

(4.19)

Finally, using Proposition 4.1 and Remark 4.2, we get the following estimate of the
end-point velocities of the beam in the inertial frame:

(r,(L, t), r,(L, t»';; k, [ui,(L, t) + u~,(L, t)] + k1 (00,00> (4.20)

for some k , > 0 and k1 > O. Using these estimates in (4.17), we obtain

V(t)';; -(1- e)(2t(00, K· 00> - (00, IR • 00> - ALk1(00, 00»

rL rL

- eJo A(r" r,> dx - (e + 2) Jo (Ell uixx + EI 3uL) dx

- 2(1 - e)a t tui,(L, r) - 2(1 - e)a3tu~,(L, t)

- 2(1 - e)P, tuix,(L, t) - 2(1 - 0) fJ3 tu~x,(L, t)

+ ALk, [ui,(L, t) + u~,(L, t)] + 2La, [Oi UIx(L, t) + ;i ui,(L, t)]
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(4.21)

where ()i e R are any non-zero real numbers, for i = 1, ... ,4. Now, collecting like terms,
we rearrange (4.21) as follows:

V(r):":; -(I-£)(2t(00, K· ro> - (ro, IR • ro> -ALk2(ro, ro»

rL

[ 2LCX 1J 2-eJo ).(r"r,>dx- 2(1-£)CXlt-).Lkl-~ ulr(L,t)

-[2(I-e)CX3t-ALk l - 2~;3JU~,(L,t)

- [2(1 - £)PI t - 2fzl - L P~ Ju~xl(L, t)
U3 Ell

- [2(1 - e)P3t - 2 ~~ - L P~ JuL,(L, t)
U4 EI 3

-(e+2)·t (EI,U~xx+ EI3u5xx) dx

+ (2Lcx1 ()~ + 2P I ()~) u~.( L, r) + (2Lcx3()~ + 2P 3 ()~) u~.(L, t) (4.22)

By Remark 4.2 (e.g. using (4.7)) and choosing ()i sufficiently small, i = 1, ... ,4, the sum
of the last two lines in (4.22) can be made negative. We then conclude that after some
TeR

V(t):,,:;O (t~ T) (4.23)

hence
V(t):,,:; V(T) (t ~ T) (4.24)

(4.25)(t ~ T)

Using (4.12) and (4.24), we get the following estimate, which proves Theorem 4.1.

()
V(T)+M2

E t :,,:; -:-:-,---------,----:'-::
2(l-£)t-M 1

D

For the sake of clarity, the existence, uniqueness and exponential decay of the
solutions of the equations given by (2.1)-(2.12) and (2.13 b) are presented in the next
section.

5. Existence, uniqueness and exponential decay of solutions
In this section we first give an existence and uniqueness theorem for the linear part

of the equations (2.1)-(2.12) and (2.13 b) (i.e. the 'natural' control scheme). Then,
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including the non-linear terms in Theorem 5.2 we prove the exponential decay of the
solutions of the same equations.

For simplicity, we take the positive-definite matrix K = diag (k" k 2 , k 3 ) . Then
(2.1)-(2.12) and (2.13 b) can be written as

EI, Ulxxxx + Jcu ltl + 2JcW2U3t + Jc(W2 + WI W3)U3

-),(w~+W~)UI-Jc(W3-WIW2)(b+x)=0, O<x<L, t",O (5.1)

EI 3U3xxxx + AU3" - 2Aw2ult - ),(w2- WIW3)U I

-Jc(wi+W~)U3+Jc(WI+WZW3)(b+x)=0, O<x<L, t",O (5.2)

(5.3)

(5.5)

together with the boundary conditions (2.9), (2.11) and (2.12). Let the function space
H be the same as defined in (3.11). Define a new function space H = H X 1R3• Then,
separating the linear and non-linear parts, (5.1)-(5.5) can be put into the following
matrix form:

dz _
dt = Az + 7;(z) + g(z) (5.6)

where Z= [u l U lt U3 U3t WI Wz W3]T. A:H---+H is a linear operator whose
matrix form is specified by

A= {m;{ i = I, ... , 7,j = I, ... , 7)

where all mu are zero except

(5.7)



26 0. Morgiil

1): Ii -->Ii is a non-linear integral operator defined by

o

o

(5.8)

o

o
g: Ii --> Ii is a non-linear operator given by

g(z) = [g, (z)

where the g;(z) are defined by

g.(z) = g3(Z) = 0

(5.9)

1[-/3 1,-/2g2(Z) =---W[W3U3 + ---w,w2(b + x)
12 13

k2 2 2+- W2U3 - 2W2U3t + (W2 + W3)U, - W, W3U3 - WI w 2(b + x)
12

13-/, 12-/3g4(Z) =---W,W3U, ----W2w 3(b+x)12 II

k2 2 2
--W2U, + 2W2U't + (W, + W2)U3 - WI W3U, - W2W3(b + x)12 .

12-/3 13-/1 1[-/2gs(z) =---W2W3' g6(Z) =---W, W3, g7(Z) =--- WI W2I, 12 13

Note that A: Ii --> Ii is an unbounded linear operator and its domain D(A) is defined
as D(A) = D(A) x [R3, where D(A) is defined in (3.17) and is dense in Ii, since D(A) is
dense in H.

In Ii we define the following 'energy' inner product:

(z, £), = I,w[w l + 12w2w 2+ 13w3w 3

+ faL i.[u lt - w 3(b + XI] [u lt - w3(b + x)] dx

+ faL i.[u3t + WI (b + x)] [u3,+ WI (b + x)] dx

+ LL (EI I ulxxu[xx + EI 3U3xxU3xx) dx
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This inner product induces a norm on Ii:

Ilzlli = 2E(t) = II wi + 12w~ + 13w~

+ lL

).{[u" - w3(b + X)]2 + [u3/ + WI(b + x)]Z} dx

+r(EI1uixx+ EI3u~xx) dx (5.10)

Note that the usual 'Sobolev' type norm that makes H a Banach space is given by

Ilzll z= wi + w~ + w~ +r(ui + uix + uLx) dx

+ r(U~+u~x+u~xx)dX+ f:rui/+u~,)dX (5.11)

But by Remark 4.2 and inequalities (4.18)-(4.19) it can be shown that the norms
given by (5.11) and (5.10) are equivalent to each other.

Theorem 5.1
Consider the linear operator A: H---> Ii given by (5.7). Then

(i) A generates a Co semigroup T(t);

(ii) there exist positive constants M > 0 and (j > 0 such that

IIT(t)11 ~ M e- b
, (t ~ 0) (5.12)

(5.13)

(5.14)

Proof

(i) We shall use the Lumer-Phillips theorem to prove (i) (see Pazy 1983, p. 14). So
we have to show that A is dissipative and the operator UI - A) :Ii ---> H is onto for
some). > O.

To prove that A is dissipative, consider the equation

dz • •
dt = Az, z(O) E D(A)

Then, differentiating (5.10) and using (5.13) and (5.7), we get

dE fLdt = II WIWI + 12wzw z + 13w3w3+ 0 ).[u" - w3(b + x)] [u1tl - w3(b + x)] dx

+ lL

).[U3/+Wl(b+x)][U3u+ WI(b+x)]dx

+ fo
L

(EIIUlxxUlxx/ + EI3u3xxu3xx,) dx

= -k lwi - k2W~ - k3W~ -lX, ui/(L, t)

- lX 3u~,(L, t) - /31 uix/( L, t) - /33 u~x/(L, t) ~ 0

This proves that A is dissipative.
To prove that the linear operator .(U - A) :H ---> Ii is onto for some A. > 0, we
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decompose A as follows:

A=AI+To (5.15)

where A I : Ii --+ Ii is defined as

0 0 0 0 0 0

Ell a4
0 0 0 0 0 0-Tax4

0 0 0 0 0 0

0 0
EI 3 a4

0 0 0 0-Tax4

A,= (5.16)

0 0 0 0
k,

0 0
I I

0 0 0 0 0
k2 0
12

0 0 0 0 0 0
k3

13

and the operator To: Ii --+ Ii is defined as

To=A-A, (5.17)

We first note the following.

(I) A, : Ii --+ Ii is a linear unbounded operator. Its domain D(A,) is equal to D(A).
By using Theorem 3.1 of Chen (1987), it can be shown that A I generates an
Co contraction semigroup. Hence (AI - A I) : Ii --+ Ii is an invertible operator
for all ;. > O. In fact the range of (U - A,) -, is equal to D(A,) and by the
Hille-Yosida theorem (see e.g. Pazy 1983, p. 8) we have

(2) To: Ii-+ Ii is a degenerate linear operator relative to the A, (see Kato 1980,
p. 245). By definition, the range space of To is finite-dimensional and there exist
positive constants a and b such that

(5.18)

That the operator To has a finite dimensional range follows from (5.17), (5.7)
and (5.16).

By using (5.17) and (5.11), it can be shown that (5.18) holds for some positive a

and b.
From the remarks (I) and (2) above, it follows that To(Al - A,) -I: Ii --+ Ii is a

bounded linear operator with finite-dimensional range; hence II To(},1 - A,) - 'II :;;; M
for some M > 0, and To(Al - A,) -, is a compact operator (see Kato 1980, p. 245).

Next we need the following fact.
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Fact 5.1

For all J. > 0, I is not an eigenvalue of the compact operator To(AI - A tl- I.

29

Proof

Suppose not. Then there exists a A> 0 and aYE Ii, y #- 0, such that

y = To (AI - A tl- 1Y (5.19)

Define x E D( A tl as
x=(AI-Ad-1y

Then (5.19) implies that the following also holds:

(AI-AI-To)x=O

But, since A= Al + To is dissipative and A> 0, it follows that x = 0, which implies
y =0, which is a contradiction 0

From Fact 5.1 it follows that the operator 1- To(AI - A I) - 1 is invertible for all
A> O. Hence we conclude that (AI - AI - To) :H -->H is invertible for all A> 0 and its
inverse is given by

(AI- Al - To) -I = (AI - Atl- 1 [1- To(A/- AI)-'r 1

This shows that (AI - Al - To): H-->H is onto for all A> O. Then assertion (i) follows
from the Lumer-Phillips theorem (see Pazy 1980).

(ii) To prove that the semigroup f(t) generated by Ais exponentially decaying, we
first follow a similar argument to that we made in proving Theorem 4.1. We first define
the function

V(t)=2(I-B)rE(t)+2rJ.x[u lt - w3(b+x)]u l xdx

+ 2 fL h[u3 t + w,(b + x)]u 3 x dx (5.20)
.0

where B E(0, I) is arbitrary. Applying Schwartz's inequality to the integrals in (5.20), it
can be shown that there exists a K > 0 such that

[2(1 - 8) t - K] E(r) ,,:; V(t)

Differentiating V(t) with respect to t, using (5.1)-(5.5) and following the line of the
proof of Theorem 4.1, we conclude that there exists aT> 0 such that V( t) is bounded
above for all t;;' T. Therefore E(t) is bounded above by O(l/t) for all t;;' T. Hence for
some M >0

f' £2(t) dt s;M

Assertion (ii) then follows from a theorem due to Pazy (1980, p. 116). o

We now show the existence and uniqueness of the solutions of (5.6). The main
difficulty is the fact that the non-linear operator T,(z): H -->H defined by (5.8) is also
unbounded, that is not defined for all z E H. But, with an appropriate norm defined on
D(A) (see (5.21) below), T,(z): D(A) -->H becomes an COO operator.



30 0. Morgiil

Theorem 5.2

Consider (5.6), where the operators A, Toand g are defined in the (5.7)-( 5.9). Then

(i) for all initial conditions z(O) E D(A), (5.6) has a unique classical solution z(t)
defined for all t > 0;

(ii) in terms of the semigroup t(t) generated by the linear operator A, this solution
can be written as

z(t) = t(t)z(O) + J: t(t - s)1;(z(s)) ds + J: t(t - s)g(z(s)) ds

(iii) the solutions of (5.6) are exponentially decaying.

Proof
(i) Following Segal (1963), we define the following norm on D(A):

IllzIl1 = II AzII, z E D(A) (5.21)

where II • II is defined in (5.11). A simple calculation shows that this norm is equivalent
to a standard Sobolov norm for D(A); hence D(A) with this norm becomes a Banach
space. Let us call this space [D(A)]. Then 1;: [D(A)] ->If becomes an COO operator,
since its components are linear combinations of products and integrals of the
components of z over [0, L] (see (5.6) and (5.8)).

Note also that g: H -> H, as defined by (5.9), is a Coo map, since its components are
products of the components of z. Therefore it follows from Theorem 2 of Segal (1963)
that (5.6) has a unique classical solution for all initial conditions z(O) E D(A), defined
in [0, e5] for some e5 > O. But, since Theorem 4. t shows that the solutions decay to 0,
this local existence theorem can be extended globally (i.e. for all t > 0).

(ii) This may be proved by substitution in (5.6).

(iii) Since by Theorem 4.1 the solutions of(5.6) decay to 0 in ii, it follows that the
positive orbits O;(t) = {z(t) E iil,(o)(O) = zo, t > O} belong to a compact set in H.
Therefore, by a generalization of LaSalle's invariance argument to infinite
dimensional spaces (see e.g. Hale 1969), and by the energy decay estimate (4.4) it
follows that the rate of change of the energy defined by (4.4) decays asymptotically to
O. That is, ui,(L, t), uix,(L, r), j = I, 3 and ro(t) decay to 0 as t -> CIJ. Then integrating
by parts in (5.8) and using the same techniques as in the proof of Theorem 4.1, we
obtain the following bounds:

II 1;(z(t)) II ,,;y,(t)llz(t)11

Ilg(z(t))II ,,; Y2(t)llz(t)11

where y, (t) and Y2(t) decay asymptotically to O. From these, and following the
arguments used in the proof of Theorem 3.1, we conclude that the solutions of (5.6)
decay exponentially to O. 0
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