
Received June 17, 2020, accepted July 8, 2020, date of publication July 13, 2020, date of current version July 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008954

Control and Visualisation of a Software Defined
Radio System on the Xilinx RFSoC Platform
Using the PYNQ Framework

JOSH GOLDSMITH , (Graduate Student Member, IEEE), CRAIG RAMSAY ,

DAVID NORTHCOTE , (Member, IEEE), KENNETH W. BARLEE , (Member, IEEE),

LOUISE H. CROCKETT , AND ROBERT W. STEWART
Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, U.K.

Corresponding author: Josh Goldsmith (joshua.goldsmith@strath.ac.uk)

The work of Craig Ramsay was supported by the Engineering and Physical Sciences Research Council (EPSRC) under
Grant EP/N509760/1.

ABSTRACT The availability of commercial Radio Frequency System on Chip (RFSoC) devices brings
new possibilities for implementing Software Defined Radio (SDR) systems. Such systems are of increasing
interest given the pace of innovation in wireless technology, and the pressure on RF spectrum resources,
leading to a growing need to access the spectrum in more dynamic and innovative ways. In this paper,
we present an SDR demonstration system based on the Xilinx RFSoC platform, which leverages the
Python-based ‘PYNQ’ (Python Productivity for Zynq) software framework. In doing so, we highlight
features that can be extremely useful for prototyping radio system design. Notably, our developed system
features Python-based control of hardware processing blocks and Radio Frequency (RF) data converters,
as well as direct visualisation of communications signals captured within the chip. The system architecture
is reviewed, hardware and software components are discussed, functionality is demonstrated, and aspects of
the system’s performance are evaluated. Finally, it is noted that this combined RFSoC + PYNQ approach is
readily extensible for other SDR systems; we highlight our online shared resources, and invite other engineers
to investigate and build upon our work.

INDEX TERMS Software defined radio, SDR, RFSoC, system-on-chip, python, PYNQ, ZCU111.

I. INTRODUCTION

Software Defined Radio (SDR) has gathered interest in recent
years, particularly with the advancing capabilities of base-
band processing technology. SDR refers to radios whose
behaviour is implemented or controlled in some manner
via software. The ability to dynamically change modulation
scheme, carrier frequency, or some other aspect of the radio’s
operation is compelling, especially in the context of next
generation cognitive and Dynamic Spectrum Access (DSA)
schemes, where a high degree of adaptability is required.
SDR features can also be extremely useful at the prototyping
stage, when programmable functionality can be leveraged to
accelerate the development and testing processes.
The implementation of an SDR system requires suitably

capable hardware devices for radio signal processing, paired

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

with software for orchestration. Often, software is also used
to directly implement some of the required signal processing
functionality. Field Programmable Gate Arrays (FPGAs) and
FPGA-based System on Chip (SoC) devices provide a natural
platform for SDR, given their highly reprogrammable nature,
capability to support high data rates and multiple channels,
and the availability of processors for running software.

A significant moment in the development of SoC tech-
nology was the release of the Xilinx Zynq UltraScale+
RFSoC in 2017. This device is an Integrated Circuit (IC)
that incorporates FPGA Programmable Logic (PL), a Pro-
cessing System (PS) based on Arm applications and real-time
processors, a set of high throughput Soft-Decision Forward
Error Correction (SD-FEC) blocks, and a set of high speed
Radio Frequency (RF) data converters (RF Analogue-to-
Digital and Digital-to-Analogue Converters (RF-ADCs and
RF-DACs)), sampling at multiple GHz [1]. With such high
sampling rates, the analogue/digital interface of the radio

129012 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-3257-3300
https://orcid.org/0000-0002-8198-0746
https://orcid.org/0000-0003-0287-1531
https://orcid.org/0000-0003-3202-0594
https://orcid.org/0000-0003-4436-0254
https://orcid.org/0000-0002-7779-8597
https://orcid.org/0000-0001-6829-2263


J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

system can, in many cases, be pushed to the very front of the
radio system, enabling conversion between the analogue and
digital domains at RF frequencies. Therefore, modulation and
demodulation between baseband and RF can be undertaken
entirely in the digital domain, which removes the need for
any external (analogue) RF or Intermediate Frequency (IF)
mixing stages. The ability to perform all processing digitally,
on the same device as the data converters, enables high pre-
cision, deterministic operation.
This paper focuses on software control of, and interaction

with, the radio signal processing hardware (in other words,
the RF data converters and functionality implemented in the
PL). Specifically, we demonstrate that the PS can be lever-
aged to achieve dynamic user control through software, and
facilitate the visualisation of signals captured from the device.
Software control is inherent to Software Defined Radio, and
permits enhanced flexibility and operational adaptability;
meanwhile, visualisation of captured signals is especially
useful for prototyping, debugging, demonstration and educa-
tional purposes.

FIGURE 1. Overview of the Zynq RFSoC architecture (specifically,
the XCZU28DR-2E device architecture is shown).

Fig. 1 presents an overview of the RFSoC, based on the
architecture of the XCZU28DR-2E device (the target for the
work described in this paper, and hereafter referred to simply
as ‘RFSoC’). In the PS, there is an Applications Process-
ing Unit (APU), which houses an Arm Cortex-A53 Multi-
Processor Core (MPCore) consisting of four CPUs. The
APU is suitable for hosting operating systems such as Linux
and FreeRTOS, and executing drivers for peripheral inter-
faces such as Ethernet and USB. The Real-Time Process-
ing Unit (RPU) consists of two Arm Cortex-R5 processor
cores, which enable low latency and deterministic process-
ing capabilities. The PS also contains a Dynamic Random
Access Memory (DRAM) controller for communicating with
external memory chips and an Input Output Unit (IOU) that
is responsible for general connectivity to external periph-
erals. The IOU encloses several peripheral interface cores,
which include a range of different digital interface standards,
memory interface protocols, and EthernetMediaAccess Con-
troller (MAC) and Universal Serial Bus (USB) 3.0 inter-
faces. There is also a Serial IOU (SIOU) for high speed

connectivity, a dedicated platform management unit, and
security configuration cores. Finally, the PL contains Kintex
UltraScale+ FPGA logic fabric, which includes both RF-
ADC and RF-DAC data converters, and SD-FEC hard silicon
Intellectual Property (IP) blocks. There are 8x RF-ADCs
and 8x RF-DACs in the XCZU28DR-2E device, which can
operate at up to 4096Msps and 6554Msps respectively. The
data converter blocks are integrated subsystems that each
contain amixerwith a programmableNumerically Controlled
Oscillator (NCO) for modulation/demodulation, along with a
programmable decimation filter (for the RF-ADCs) or inter-
polation filter (for the RF-DACs) [2], shown in Fig. 2. The 8x
SD-FECs available on the device allow for encoding of low
density parity check (LDPC) codes at a rate of up to 20Gb/s,
and decoding of both LDPC and Turbo codes at a rate of up
to 3Gb/s and 1.8Gb/s respectively [1].

FIGURE 2. High level diagram of the RF DACs (top) and ADCs (bottom),
in the configuration used in our design, showing the mixer and rate
conversion stages.

Software control of SDR systems is often achieved by
developing custom software. This provides flexibility, but
with a high degree of design effort and cost, both in terms
of developing a proprietary solution and subsequently main-
taining it. A more desirable scenario would be to exploit
an existing software framework that reduces the design
effort involved, and provides access to reusable components.
We therefore choose to employ PYNQ (Python Productivity
for Zynq), which is an open-source, Python-based framework
that can be deployed on all Xilinx SoC devices [3]. PYNQ
features a software stack that resides on the PS portion of
the Zynq RFSoC device, and facilitates user interaction via
a network connection and a standard web browser.

Fig. 3 shows the structure of the PYNQ project and sep-
arates out the contributions of this paper. All pink coloured
elements are existing PYNQ components provided by Xilinx,
while the blue elements are existing non-PYNQ components.
Green elements are outputs of this paper, developed by the
authors. Finally, all of the green/pink striped elements are
outputs of this paper, working towards PYNQ support for
RFSoC, produced in collaboration with Xilinx. Some of the
terms introduced in Fig. 3 may be new to most readers, and
will be clarified in the following sections.

VOLUME 8, 2020 129013



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 3. Overview of the existing PYNQ ecosystem, our collaboration with Xilinx for PYNQ’s RFSoC support, and the QPSK design presented in this
paper.

A. APPLICATIONS AND USE CASES FOR THE RFSoC

The RFSoC has a number of potential applications, including
in telecommunications (for both wired and wireless technolo-
gies), instrumentation and measurement, phased array Radar,
and in the evolving LiDAR/ 3D imaging sector. In particular,
with the array of high speed RF Data Converters (RF-DCs),
dedicated SD-FEC cores and large FPGA for parallel process-
ing, it could be argued that the RFSoC is the ideal device to
enable 5G (and beyond) wireless infrastructure.
In 4G and 5G cellular applications, for example, the ultra-

wide operating range of the RFSoC’s multi-channel RF-DCs
enables direct RF support for all Sub-6GHz mobile bands;
and the device can also facilitate implementations of Next
Generation- Radio Access Network (NG-RAN) split archi-
tectures, and aid in the generation of mmWave (>24GHz)
5G-New Radio (5G-NR) signals.
Fig. 4 compares traditional 4G RAN and 5G split

NG-RAN network architectures. The 4G RAN features two
main components: the BaseBand Unit (BBU), which imple-
ments the cellular stack; and the Radio Unit (RU), which per-
forms RF modulation. The unique architecture of the RFSoC

could allow it to operate as a combination of the BBU and
RU all-in-one, and subject to appropriate analogue RF signal
conditioning (analogue filters and amplifiers attached to the
various RF-DC inputs and outputs), a single RFSoC could
operate as a multi-cell, multi-band, Multiple Input Multi-
ple Output (MIMO) basestation, where traditionally multiple
BBUs and RUs are required for each cell and band. And, with
up to 16x RF-DACs and 16x RF-ADCs, the RFSoC can also
support massiveMIMO.

In 5G NG-RAN split architecture networks, the part of the
stack traditionally implemented on a BBU is split across a
Control Unit (CU) and a Data Unit (DU), in regional and
edge data centres. The numerous computing resources com-
bined with the high speed Evolved Common Public Radio
Interface (eCPRI) interfaces and SD-FEC modules mean the
RFSoC is a suitable solution for each of these components.
As with the 4G configuration, when generating Sub-6GHz
5G-NR signals, the RFSoC can directly support all bands.
For mmWave (>24GHz) 5G-NR signals, the RFSoC can be
used as an IF-SDR, to generate multi-GHz wide signals for
subsequent modulation onto mmWave carriers [6].

129014 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 4. A comparison of 4G RAN and 5G NG-RAN cellular network
architectures. The numerous computing resources combined with the
high speed interfaces mean the RFSoC is a suitable solution for many of
these components. (For further information on these RAN architectures,
please see [4]–[6]).

With its wide operating bandwidth and flexible radio front
end, combined with the tight integration of the PS, PL and
RF-DCs, the RFSoC is also an enabler for cognitive DSA-
radio applications. The RFSoC could be used to implement
autonomous radios which are spectrally aware, and able to
make decisions about how best to configure themselves to
transmit and receive information in the given radio envi-
ronment. The SDR could choose which vacant spectrum to
target, what channel bandwidths and modulation schemes to
use, and other parameters such as the most suitable transmit
power, encryption technique and error coding scheme to use.
All of this could be carried out by a single-chip RFSoC radio
node.
In cabled communication systems, the RFSoC is well

suited to the development of next-generations of Hybrid Fibre
Communications (HFC) and Data Over Cable Service Inter-
face Specification (DOCSIS) ‘cable broadband’ networks.
It also has a place in V2X and autonomous vehicle sys-
tems. The RFSoC ICs could be used for instrumentation and
measurement too, for example in wideband oscilloscopes or
spectrum analysers, and our work in this paper is relevant
to these applications. Here, we consider the combination of
PYNQ and RFSoC for the development and testing of an
SDR system, highlighting the potential of this combination
of technologies for run-time introspection and performance
evaluation of digital radio systems.

B. RELATED SDR TECHNOLOGY

At the time of writing, single-IC RFSoC devices are a recent
innovation. A number of other SDR platforms are avail-
able, with different characteristics, many of which have been
investigated for system prototyping and evaluation. These
platforms range from low-cost options (at a level accessible
to students and hobbyists), to more expensive, professional

grade SDR development equipment. It is the higher end of
the spectrum that is most comparable to this work.

Professional SDR hardware encompasses both standalone
development kits, and modules that are interfaced with an
FPGA or SoC development board to form a complete sys-
tem. Examples of professional SDR hardware includes the
set of Universal Software Radio Peripheral (USRP) devices
from Ettus Research [7], the PicoSDR series from Nutaq [8],
the LimeSDR series from LimeMicrosystems [9], and the RF
SOM (System on Module) and set of FMCOMMS modules
produced by Analog Devices [10], [11]. FMCOMMS mod-
ules can be connected to an FPGA/Zynq development board
that is equipped with an FPGA Mezzanine Card (FMC) port,
such as the ZedBoard [12] or ZC706 [13].

The factor differentiating the RFSoC development plat-
form from the above mentioned SDRs is its status as a sin-
gle IC radio—the others feature two major components: an
FPGA or SoC for processing at baseband and IFs, paired
with a separate IC for front-end SDR functionality (the front-
end SDR IC performs the task of modulating and demodu-
lating signals between IF and RF, with associated filtering).
The single-IC opportunities of the RFSoC can be exploited
to achieve control and visualisation at all stages of the
transmit (Tx) and receive (Rx) signal paths (i.e. baseband,
IF and RF).

Prominent software environments for SDR design and
prototyping include MathWorks professional tools (incorpo-
rating MATLAB, Simulink, and its toolboxes and support
packages) [14]; and the open-source GNURadio [15] and
Pothos tools [16]. National Instruments also offers SDR
functionality within its LabView environment, and notably
includes support for MIMO systems in conjunction with its
SDR hardware products [17]. Furthermore, many of these
products include example designs, which are compatible with
many of the SDRs mentioned above; such as the QPSK
transceiver for the AD9361 offered by Mathworks [18], [19].

In our work, the MATLAB and Simulink environment was
used (in conjunction with the System Generator design tool
provided by Xilinx), for designing and simulating transmit
and receive signal processing functionality. The embedded
software components of an SDR can be custom-developed
using these tools, or in the case of prototyping, are often
provided as part of the software support for a particular
platform. In our case, the PYNQ software framework [3] was
leveraged, third party open-source libraries were included,
and custom software was developed.

Beyond the desktop task of developing a single Tx-Rx
system, dedicated large scale experimental facilities may
be required for validation in more complex scenarios. For
instance, multiple testbeds have been established as part
of the Orchestration and Reconfiguration Control Architec-
ture (ORCA) project, enabling a variety of experiments to
be performed using SDR hardware and software [20], [21].
At the time of writing, ORCA testbeds do not feature RFSoC
capabilities, but inclusion of this technology would be a
natural progression for related research.

VOLUME 8, 2020 129015



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

C. LITERATURE REVIEW

The term Software Defined Radio refers to radio systems
in which some or all of the Physical Layer (PHY) com-
ponents traditionally implemented with dedicated hardware
(e.g. mixers, filters, synchronisation circuitry) are instead
realised using DSP algorithms implemented in software or
on programmable hardware [22], [23]. There is much interest
in the research community around the effective design of
SDR systems, in particular the joint programmable hardware/
software co-design of such systems. For instance, researchers
in [24] discuss their approach to an SDR design, based on
the Analog Devices FMCOMMS3, ZedBoard/ZC706, and
MathWorks and Xilinx software tools. Other studies have
investigated the potential of dynamic partial reconfiguration
techniques for implementing flexible SDRs [25].
SDR techniques have also been proven to be effective

outwith the traditional domain of radio communication for
applications such as ground penetrating radar in [26], and
ultrasound transceivers in [27].
Certain aspects of functionality that are similar to our

design have been implemented in other products, or inves-
tigated by other researchers. For instance, hardware accelera-
tion of the FFT (Fast Fourier Transform) algorithm needed
to perform spectrum analysis is an established idea, and a
number of published works have reported on SDR implemen-
tations based on the SDR platforms mentioned earlier (and
others) that use this technique [28]–[30].
However, the themes we explore in this paper, namely

control and visualisation via software hosted on the same IC,
were not considered by any of these earlier studies. Addi-
tionally, the RFSoC device adopted in this work inherently
provides a set of enhanced capabilities, compared to other
available SDR platforms, which have received little attention
in academic research to date.
With that said, some research has been published that

involves designs targeted to RFSoC devices; such as RF
modulation classification in [31], and digital beamforming
in [32], [33] but these, similarly, do not explore the central
themes of this paper.
Perhaps the closest comparable work, in terms of signal

visualisation and user interaction, relates to the Red Pitaya
platform. Users of the Red Pitaya have the option of interac-
tion via Jupyter Notebooks (discussed in Section IV-C1) for
functionality such as signal generation and spectral analysis,
which are hosted on the Zynq processor in a similar manner
to our system, and its use has also been demonstrated for
SDR applications [27], [34]. However, the Red Pitaya does
not adopt the PYNQ software framework, its RF capabilities
are very limited compared to the RFSoC, and it does not
constitute a single IC solution.
The software-based aspects of our design were cre-

ated using PYNQ, which was first released in 2016.
To date, PYNQ has been used for a variety of applica-
tions and research studies, including image processing [35]
and machine learning [36]. The PYNQ framework has
also proved effective in teaching, as it accelerates the

development process and provides students with a direct,
intuitive interface that leverages the popularly taught Python
language. However, to date, PYNQ has not featured promi-
nently in communications research.

To the best of the authors’ knowledge, our work is the first
that has employed and evaluated PYNQ for SDR applica-
tions, and also the first to use PYNQ on the RFSoC. We seek
to exploit the same fundamental benefits (particularly in
terms of productivity, accessibility, and direct interactionwith
hardware) as have been noted in other academic studies for
our radio design scenario.

D. OBJECTIVES

In this paper, we present a design that combines RFSoC
technology with the PYNQ framework to achieve a full
Tx-Rx SDR demonstrator system. As established above, this
represents a new combination of technologies which has not
been investigated before. Our objectives in doing so are to:

• Prove the concept that control and internal signal inspec-
tion can be implemented using a single-IC radio system,
by pairing the RFSoC and PYNQ.

• Develop and evaluate the additional hardware infrastruc-
ture that requires to be incorporated into an SDR design
for use with PYNQ.

• Evaluate open-source software libraries and features for
programming, interaction, and visualisation.

• Evaluate the SDR aspects that are enabled via PYNQ,
in terms of functionality, performance, and user interac-
tion.

• Release the design as an open-source project, available
online, enabling the community to learn from, and build
upon, our work [37].

E. PAPER ORGANISATION

Key elements of the system design are presented in the
remainder of this paper, which is organised as follows: In
Section II, an overview of the system architecture is pro-
vided; Sections III and IV present the hardware and software
portions of the design, respectively; Section V discusses the
configuration of the demonstrator system and evaluates the
results obtained; and the paper is concluded in Section VI.

II. SYSTEM ARCHITECTURE OVERVIEW

The RFSoC is a single IC device comprising of Arm applica-
tions and real-time processors coupled to FPGA logic fabric
and high speedRF-DCs; using theAXI-4 (Advanced eXtensi-
ble Interface) protocol. The RF-DCs feature two pairs of eight
RF-DACs and RF-ADCs that operate up to 4096Msps and
6554Msps respectively. As the purpose of our radio system is
to investigate software control and signal visualisation using
RFSoC and PYNQ, it is important to stress that we do not
use the full capabilities of the RFSoC device in terms of
maximising throughput or sample rate.

For the purpose of demonstrating our proof-of-concept
SDR system using PYNQ, we use a simple and easily
recognisable communications scheme with a low data rate.

129016 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 5. Overview of our SDR system on the RFSoC with PYNQ. (Note, this is a functional block diagram, and does not show the IQ split in the RF-DAC).

Hence, Quadrature Phase Shift Keying (QPSK) with a bit rate
of 1 kb/s has been adopted. As a single channel example, only
one RF-ADC and RF-DAC pair is needed from the bank of
eight available on the target device.
Our radio architecture is implemented entirely using

the ZCU111 development kit [38], which includes the
ZCU111 development board and XM500 add-on board [39].
The XM500 add-on board contains a set of SMA interfaces
and RF baluns, which convert between differential RF sig-
nals and single-ended RF signals. It is important to note
that apart from the RF baluns, there are no other electronic
components required between the RFSoC and SMA inter-
faces. All RF signal processing is performed entirely in the
XCZU28DR-2E RFSoC device on the ZCU111 development
board.
Our radio design is partitioned across the PL and PS por-

tions of the RFSoC in order to leverage the unique capabili-
ties of each resource. The PL is responsible for accelerating
Digital Signal Processing (DSP) algorithms and interfacing to
the RF data converter. The PS executes the PYNQ software
stack to achieve dynamic user control, analysis, and real-time
inspection of our radio system.
An overview of the entire radio architecture is illustrated

in Fig. 5. As shown, the QPSK transmitter and receiver are
implemented in the PL of the same RFSoC device, while
the PYNQ software stack is contained within the PS. The
transmitter and receiver RF data paths are independent of one
another, and do not share clocks or signals.
The remainder of this section outlines the radio architec-

ture and describes the role of PYNQ in our system. Further
technical details are provided in Sections III and IV, where
we explain key design concepts of both.

A. PL SYSTEM OVERVIEW

The PL implements a sequence of DSP algorithms that form
the basis of our radio transmitter and receiver. These algo-
rithms are shown on the right-side of Fig. 5, where they
are directly connected to the RFSoC’s data converters for
transmitting or receiving data.

The transmit chain consists of random symbol genera-
tion, Root Raised Cosine (RRC) pulse-shaping, and multi-
stage interpolation—increasing the data rate from 1 kb/s to
128 Msps—before being transferred to the RF-DAC.

The RF-DAC contains a Digital Upconverter (DUC) that
interpolates the signal by a factor of 8 to achieve 1024Msps.
The interpolated signal passes through a complex RF mixer,
which performs modulation to an RF carrier. The carrier fre-
quency is dynamically selected at run-time using the PYNQ
framework. Finally, the modulated signal is converted from
digital to analogue for RF transmission.

At the receive side, the signal is digitised by the RF-ADC at
a rate of 1024Msps. It is then demodulated and decimated by
a factor of 8, using its internal Digital Downconverter (DDC).
Although the receiver is implemented on the same device
as the transmitter, it is not possible to share clocks between
the RF-DACs and RF-ADCs. Therefore, a full receiver that
includes carrier synchronisation and symbol timing synchro-
nisation is required.

The signal from the RF-ADC is passed through a recip-
rocal, multi-stage decimation reducing the rate to 4 ksps,
followed by coarse frequency synchronisation and a matched
filter. Finally, timing synchronisation is then performed to
recover the received QPSK symbols.

As illustrated in Fig. 5, signals in our radio architecture
are marked for control or visualisation using Control Points
(CPs), and Observation Points (OPs) respectively. These
points within our radio system are interfaced to the PYNQ
framework, allowing us to manipulate or observe a signal
in the architecture. For example, the transmitter contains an
OP after the RRC filter. This OP can be used to obtain time
or frequency domain samples of the pulse-shaped signal for
inspection.

B. PS SYSTEM OVERVIEW

PYNQ is an umbrella term encompassing an entire software
ecosystem for Xilinx SoC devices, which includes the oper-
ating system, a Python software package, and a Jupyter web
server.

VOLUME 8, 2020 129017



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 6. Setup of our SDR system on the RFSoC with PYNQ. Note the
use of a loop-back cable to connect the transmitter and receiver.

The PYNQ operating system is an Ubuntu for Arm-
based Linux distribution, running Xilinx’s own version of
the Linux kernel, containing a collection of both off-the-shelf
and custom software packages. This collection of software
enables the control and management of PS and PL interfaces,
memory, GPIO, interrupts, and more—the core of which is
the PYNQ package, written in the Python language—giving
users the ability to interact with this low-level functionality
within an easy-to-use framework.
One immediate benefit of this type of framework is the

ability to easily write drivers for custom hardware on the
PL—facilitated by the use of the Overlay system within
PYNQ. The Overlay not only contains the FPGA bitstream,
but also incorporates the hardware description file for a
design, which is parsed at run-time and exposes the register
map for all available IPs. This register map can then be used to
control IP functionality, with code written entirely in Python.
At the top of the PYNQ software stack is the Jupyter-

Lab environment, which provides a Graphical User Inter-
face (GUI) for programming and interaction. We exploit
the interactive capabilities of Jupyter to provide control and
visualisation of our radio system. The Jupyter environment is
also responsible for configuring the RFSoC data converters
and other hardware elements. JupyterLab resides on a web
server on the PS, and is accessed over an Ethernet link via a
standard web browser. The system setup is shown in Fig. 6.

Note that, beyond a standard web browser, no software
packages or libraries need to be installed on the client lap-
top. This is a direct consequence of PYNQ’s web-server
based interface. All software packages that run on the
ZCU111 board are included in the PYNQ v2.5 image as
standard (the contents of which were made by Xilinx in col-
laboration with the authors, and include the work discussed
in this paper), and we make particular use of JupyterLab as
an interface, Plotly for interactive graphs, and ipywidgets for
graphical controls.

As shown by Fig. 6, the client laptop can display visu-
alisations of signals from the QPSK design running on the
ZCU111 board. It is important to stress that the transfer of
signal data from ZCU111 to client laptop occurs only when
requested by the user. These visualisations are for introspec-
tion purposes (i.e. debugging or educational) — the whole
DSP chain operates continuously on the PL of the RFSoC
and does not rely on any processing on the client laptop.
Section IV-C3 discusses the communication flow and data
format for these transfers.

III. HARDWARE DESIGN

This section outlines the design of the system hardware,
including the IP blocks that perform the main DSP function-
ality of the transmitter and receiver, and the overall hardware
system design. Further, we highlight the additional hardware
infrastructure that was incorporated to permit data capture
from the signal processing chains for subsequent visualisa-
tion using PYNQ.

A. RADIO TRANSMITTER AND RECEIVER IP CORES

The IP blocks for the transmitter and receiver were each
developed as block-based designs using the Xilinx System
Generator tool, which resides inside Simulink. Simulations
were conducted to verify the correct operation of the blocks,
and Hardware Description Language (HDL) IP cores were
generated for each system. Two approaches were taken when
designing these cores in order to compare driver development
in PYNQ: the transmitter was designed as a monolithic sys-
tem, whereas the receiver was separated into more discrete
functionality—this is further discussed in Section IV. A block
diagram representation of the transmit and receive logic is
shown in Fig. 5, and is explained in detail in this section.

The first stage in the Tx IP block is a LFSR, which gener-
ates random binary data at a rate of 1 kb/s. This is followed by
Gray encoding to form QPSK symbols at 500 Sym/s. The In-
Phase (I) and Quadrature-Phase (Q) symbols thereafter (sep-
arately) pass through interpolation chains comprised of: (i) an
RRC filter, interpolating by 4; (ii) a halfband (HB) filter
interpolating by 2; (iii) a CIC compensation filter (CFIR)
interpolating by 2; and (iv) a 5th order CICfilter, interpolating
by 3200. The overall interpolation ratio is therefore 51,200,
upsampling to a rate of 25.6Msps. These interpolated I and
Q signals are then concatenated to form the Tx IP outputs
required by the RF-DAC IP input.

The Rx system was designed by creating separate IPs for
each stage of the receiver that include:

• A decimation chain acting on the I and Q signals sep-
arately. This performs an overall rate reduction from
25.6Msps to 4 ksps, using two pairs of 3rd order CIC
filters and CFIRs (decimating by 40 and 2, respectively).

• Coarse frequency synchronisation, which is performed
using an FFT-based method.

• Frequency correction is performed by passing the sig-
nal through single rate RRC matched filters, and then
interpolating by a factor of 4 using two cascaded HBs.

129018 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 7. Block diagram of the sample rate changes in the Tx interpolation stage (top) and Rx decimation stage (bottom).

At this point, the I and Q signals are oversampled by a
factor of 32 with respect to symbol rate.

• Timing and fine frequency synchronisation is performed
using an architecture similar to that in [40] and [41].

The resulting symbol samples, along with a qualifying valid
strobe, provide the final, AXI-Stream output. Note that the
sample rate changes in the receiver were not chosen with
efficiency in mind, but rather to enable the observation of
a desired set of signals. The interpolation employed in the
receiver permits an oversampled method to be adopted for
the timing synchroniser. The requirements for interpolation at
this stage could be removed by incorporating a ≈ 2x symbol
rate timing synchroniser, and this is an intended item for
future work.

CIC filters are implemented using the CIC Compiler
4.0 block, and all others as polyphase Finite Impulse
Response (FIR) filters using the FIR Compiler 7.2 block.
A block diagram illustrating the rate changes in the interpo-
lation and decimation stages is shown in Fig. 7. Wordlengths
are generally reduced to 16 bits at each stage, with appropriate
gains inserted to maximise use of the available dynamic
range.

In addition to this primary communications functionality,
each IP includes additional circuitry for data capture and
visualisation, which is described in Section III-C.

B. VIVADO HARDWARE SYSTEM DESIGN

The PL design was developed using Xilinx Vivado IP Integra-
tor (IPI), building around the custom Tx and Rx IPs created in
System Generator. Separate, hierarchical subsystems for the
Tx and Rx IPs were used in order to lower the complexity of
the top-level design, as well as to simplify reference to the
IPs within the PYNQ framework—discussed in Section IV.
Each hierarchy contains multiple AXI-Stream Direct Mem-
ory Access (DMA) cores pertaining to the OPs of the Tx and
Rx IPs, allowing data to be streamed from the PL to PS via
the off-chip PS Dynamic Random Access Memory (DRAM).

At the top level, the Zynq UltraScale+ MPSoC IP
block is configured with two slave and two master

FIGURE 8. High-level Vivado IPI top-level diagram.

High-Performance (HP) ports. The HP slave ports serve the
Tx and Rx IP DMAs routed through an AXI SmartConnect
IP, while the HP master ports serve the AXI-Lite connections
throughout the design. A block diagram of the top-level
design is provided in Fig. 8.

The RF data converters have a minimum sample rate
of 1000Msps, therefore additional sample rate conversion
was required between the connections of the Tx/Rx IPs and
the respective DAC/ADC. Within the Tx hierarchy, an addi-
tional stage of interpolation was performed, upsampling by a
factor of 5 to a rate of 128Msps using a FIR Compiler and
First-In First-Out (FIFO) buffer pair. A further 8x is achieved
by making use of the data converter’s built-in interpola-
tion mode, upsampling to a rate of 1024Msps. A reciprocal
approach was taken for the Rx IP/ADC logic.

Three distinct clock domains are used: a 100MHz PL clock
and two, 409.6MHz off-chip reference clocks generating a

VOLUME 8, 2020 129019



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 9. High-level Vivado IPI Rx hierarchy diagram.

64 MHz clock for the RF-ADC and a 128MHz clock for
the RF-DAC. A 128MHz clock is derived from the 64MHz
clock in order to serve the AXI-Stream outputs of the RF-
ADC, as well as the initial-stage Rx decimation. A 25.6MHz
clock is also derived to serve the AXI-Stream IPs in the Rx
hierarchy. A similar approach is taken for the clocks derived
for the transmit path—although the step to convert from
64MHz to 128MHz is not required, allowing us to free up
Mixed-Mode Clock Manager (MMCM) resources, by using
a Phase Locked Loop (PLL) for the clock down-sampling
to 25.6Msps instead. The PLL has a minimum input clock
frequency of 70MHz and therefore is not viable for the RF-
ADCdata path [42]. The rationale behind themixture of clock
resources is discussed in Section V.

Simplified block diagrams of the Tx and Rx hierarchy
subsystems are provided in Figs. 9 and 10 respectively, con-
taining the elements discussed in this section. For full details
of the IPI design, the reader is encouraged to view the source
code available at [37].

C. DATA CAPTURE AND VISUALISATION INFRASTRUCTURE

An important aspect of our SDR demonstration system is
to visualise and inspect signals in the transmit and receive
paths of our FPGA architecture. As previously illustrated
in Fig. 5, OPs are created at sections of our system that are
to be inspected. Similarly, a CP was also included in the
transmit path to control the output gain of the transmitted
signal.
Each OP in our system uses a custom inspection architec-

ture that moves data from the PL, to the off-chip DRAM.
JupyterLab operating in the PS can then retrieve the data from
DRAM for visualisation and analysis. We name the custom

FIGURE 10. High-level Vivado IPI Tx hierarchy diagram.

inspection architecture theData InspectionModule, and reuse
the architecture at each OP shown in Fig. 5.

The Data Inspection Module is an efficient FPGA data
mover for visualising and inspecting PL data in JupyterLab.
Fig. 11 contains the architecture of the Data Inspection Mod-
ule, designed tomoveRF time domain samples or FFT frames
between the PL and DRAM in the form of packets.
The Data Inspection Module design contains a syn-

chronous FIFO that buffers valid RF data until it is ready to

129020 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 11. Hardware architecture of the data inspector module.

be transferred. The FIFO is consistently updated with new
data samples and ejects old samples if they are not required.
If there is a lack of data in the FIFO for data movement,
the systemwill wait until there is enough data available, equal
to a predetermined packet size.
A counter maintains the number of samples that have been

passed to the DRAM by the data inspector module. When
the packet size has been reached, a relational operator is used
to produce the end of packet signal, TLAST. A Finite State
Machine (FSM) ensures that data transfers to the DRAM are
moderated and that all AXI-Stream sideband signals are cor-
rectly produced, including the TVALID signal that indicates
the transfer of valid data.

The FSM also contains a Start of Frame (SoF) port, indicat-
ing when a frame of FFT data is to be moved to the DRAM.
When the start of the FFT frame is pushed into the FIFO,
the FSM is alerted using the SoF port. The FSM will then
synchronise to the start of the FFT frame and begin transfer
to the DRAM. This method ensures that the FFT frame is
moved to the DRAM in the correct order.

The Master AXI-Stream interface, shown to the right of
Fig. 11, is connected to an optimised Xilinx AXI DMA IP
Core. This IP Core is used to efficiently move data between
the PL and DRAM, via the AXI HP ports. The AXI DMA
is an integral part of the Data Inspection Module architecture
and is essential for achieving efficient data movement.

The Data Inspection Module also uses the AXI-Lite inter-
face to receive the required packet size and data trans-
fer requests from JupyterLab. As data is transferred using

software issued commands from JupyterLab, no underlying
knowledge of the hardware architecture is required to use this
module.

IV. SOFTWARE DESIGN

This section looks at the methods used to develop the system
software. We highlight the PYNQ platform, its use as an
embedded front-end, and explain how we use it to control our
custom IP and the RFSoC’s hardened IPs.

A. THE PYNQ FRAMEWORK

PYNQ is an open-source project from Xilinx that targets its
SoC family of devices, running the Ubuntu for Arm operat-
ing system, powered by Xilinx’s own version of the Linux
kernel. It challenges the traditional embedded C development
process by offering a compelling alternative—an interactive
prototyping environment facilitated by Python and a Jupyter
web interface.

The foundation of the PYNQ project is formed by reuse
of existing open-source projects, combining ideas from dis-
parate fields and applying them to on-chip, embedded pro-
gramming. Alongside this foundation, PYNQ supplies a
Python library to expose the more embedded aspects of
SoC development to Python developers. This includes fun-
damentals such as Memory-Mapped Input/Output (MMIO)
for accessing the physical address space, drivers for DMA
transfers, and plumbing for custom IP drivers. This Python
library is enhanced by the run-time parsing of metadata
accompanying the bitstream, namely the .hwh file generated

VOLUME 8, 2020 129021



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

by Vivado. This allows PYNQ to perform some run-time
introspection on a user’s hardware design, including the IPs,
their configurations, and the address map. PYNQ uses this
introspection to automatically bind drivers to any known IP
cores and bind default drivers (with named register maps!)
to any other IPs — providing a friendly prototyping environ-
ment for a hardware design with very little effort.
More information about the PYNQ project can be found

at [3] and [43].

B. PYTHON DRIVERS FOR RFSoC HARDWARE

Two different types of drivers are needed for this
demonstrator—drivers to control our QPSK IPs in the pro-
grammable logic, and drivers for the hardened RFSoC IP
(including the data converters and clocking infrastructure).
Drivers for the QPSK IPs can be written entirely in Python,

as explored in Section IV-B3. The PYNQ framework makes
writing custom IP drivers a fairly rapid process, largely thanks
to the MMIO and DMA libraries. An interactive approach
can be taken to driver prototyping too—the user is free to
peek and poke memory-mapped registers or perform DMA
transfers in an ad hoc way at first. This can later be refined
into a more formal driver class and automatically bound to its
target IP core or hierarchy of IP cores by PYNQ [44].
Although we implement drivers for the QPSK IPs entirely

in Python, a different approach was chosen for interacting
with the RFSoC’s hardened silicon IPs:

• On-board Clock Synthesizers: because the configuration
is performed over I2C (Inter-IC) and it is convenient to
reuse Linux’s support in C for this. The existing example
code is also written in C.

• RF Data Converters: because there is no documented
register map, we must reuse the vendor’s baremetal
C-code driver.

During this project, PYNQ drivers for the RFSoC’s clock
synthesizers and RF data converters were developed in col-
laboration with Xilinx. The source code is available at [45]
and is included in the v2.5 PYNQ release, available at [46].
In both cases, an existing C driver is compiled as a shared
library and is then used with a Python wrapper. The Python
wrapper communicates with the shared library via the C
Foreign Function Interface (CFFI) module [47].

1) ZCU111 CLOCK SYNTHESIZERS

The ZCU111 board has a set of clock synthesizers that drive
all RF logic—one LMK04208 for a reference clock, then
a bank of 3x LMX2594s. Having some control over the
generation of these clocks is essential. We use an existing C
example [48] with a very simple interface. With this example,
custom clock frequencies can be realised by adding new
register sets to a look-up table, and the user can reference
these register sets to specify a target frequency. A very thin
Python wrapper can then be written to use CFFI to call a
single function in the C code to reconfigure all of the clock
synthesizers. Our implementation can be found at [45].

The clock synthesis driver could be extended to allow for
different generated clock frequencies for each of the domains
(RF{1,2,3}_CLK{A,B}), or enable the generation of reg-
ister values for new target frequencies on demand.

2) RF DATA CONVERTERS

There is a more formal existing C driver for the RF data
converters that can be used as a foundation for the Python
driver [49]. The data converters have a rich set of function-
ality, which can easily result in the API (Application Pro-
gramming Interface) appearing a little intimidating. Instead
of simply exposing a 1:1mapping of the available C functions
to Python equivalents, as is done with the clock synthesizers,
some extra structure can be introduced to make the API more
manageable.

There is a clear hierarchy to the data converters (it is
composed of tiles, where each tile is composed of blocks, etc.)
and this is also heavily suggested by the functions in the API.
The flat list of≈ 50 functions can then be split into an object-
oriented hierarchy, also with a distinction between attributes
(used just to get/set values), and methods (that perform some
action). Fig. 12 shows a UML (UnifiedModelling Language)
interpretation of this structure.

The Python implementation of this wrapper can be made
particularly concise and extensible by exploiting Python’s
support for reflection. This allows for modification of an
object’s structure at run-time. With these tools, namely
setattr(), getter and setter functions for all of the
attributes shown in Fig. 12 can be generated from a simple
data structure—a list of tuples, each describing the C function
name, C data type, and a read-only flag. This approach is
demonstrated in Listing 1.

To appreciate some of the legibility improvements made
by this idiomatic Python implementation, let’s first consider
a small example of using the existingC driver. Listing 2 shows
an excerpt of C code required to update the mixer frequency
of the first RF-ADC block.
Note in particular how all of the driver calls for the ADC

block are made with reference to an IP-level instance pointer
and a set of tile type, tile index, and block index param-
eters. With our Python version of the driver, this accessor
plumbing is translated into an object-orientated hierarchy,
as shown in Listing 3. Here we can store references to
particular RF-ADC/RF-DAC blocks and access their prop-
erties as native Python structures (such as dictionaries for
MixerSettings and other records).
Although we have introduced the benefits of an object-

orientated approach to the driver API, there is still scope
for making a more idiomatic Python interface for the data
converters. This could, for example, also handle the streaming
data transfer as part of a template hardware design (a ‘‘base
overlay’’ in PYNQ nomenclature) for the ZCU111.

3) QPSK TX/RX DRIVERS

As a point of interest, we decided to try different approaches
for building the Tx and Rx IPs. The Tx side was kept

129022 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 12. A class diagram for the Python data converter API
(†read-only).

Listing 1. Example of data driven properties used in the Python wrapper.

as a monolithic System Generator design, while the Rx
side was split into separate System Generator projects; then
composed into a complete system design within Vivado IP
Integrator. This choice also affected how the drivers are
structured.

Listing 2. Example of updating a mixer frequency with the RFDC C driver.

Listing 3. Example of updating a mixer frequency with the RFDC Python
driver.

Because PYNQ can bind a Python class to a specific IP
core (or a hierarchy of IP cores) the developer is naturally
encouraged to write drivers per IP core. So, when presented
with a monolithic IP core it is easy (and somewhat tempting)
to let this translate to a monolithic Python class. As demon-
strated in the Tx side driver (qpsk_tx.py in [37]), this
temptation can lead towards some questionable practices.
For example, there are, in retrospect, clear opportunities for
further abstraction (code for eachOP is essentially copied and
pasted with minor changes). While this can be dismissed as
poor developer practice, the psychology of it is interesting.
In this case, the effort required to abstract over different base
addresses, programatically accommodating all OPs, can be
just enough to encourage this copy-and-paste ‘‘code smell’’
(a characteristic of software that hints at structural issues).

The converse is true for the Rx driver (qpsk_rx.py
in [37]). Here, the full Rx signal path is split into separate
IPs, each with a single OP. Nowwhen approaching the PYNQ
drivers, it becomes very natural to spot the commonality
between them and implement one generic OP class. In this
case (as shown in Listing 4), the whole set of Rx IPs can
simply inherit from the generic OP class, overriding VLNV
(Vendor, Library, Name, and Version) strings and adding any
extra functionality (e.g. automatic reset timer in the timing
synchronisation).

In this section we have observed that the granularity (and
regularity) of IP cores used in a design can very naturally
impact the structure of PYNQ drivers written for them,
largely because of the 1:1 mapping of classes to IP cores.
Of course, there is nothing precluding developers from mak-
ing their own abstractions for large IP cores, but this effect
was evident when following the pragmatic ‘‘path of least
resistance’’ development.

VOLUME 8, 2020 129023



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

Listing 4. Rx IP driver snippet with class hierarchy.

C. INTERACTIVE VISUALISATIONS WITH JupyterLab

The other goal for our software design is to reuse existing
technologies to quickly build an environment for prototyping
RF applications. This should facilitate:

• Real-time introspection of the signal path, without any
(expensive) external instrumentation

• Control of the system through GUI elements

Fortunately, this can be realised readily by combining
some existing open-source efforts—namely JupyterLab as a
web interface, ipywidgets for interactive graphical controls,
and Plotly for interactive plotting. With these three projects,
we can link graphical widgets to configurable aspects of
our design, and provide some quick on-chip instrumentation
for real-time visualisations in the frequency domain, time
domain, and constellation plots. This goes a longway towards
avoiding additional expensive instrumentation (oscilloscopes
and spectrum analyzers) during the prototyping phase of SDR
development. Also, the control aspects provide a good basis
for an interactive dashboard in a deployed design. So, enter,
JupyterLab.

1) JupyterLab

JupyterLab provides a development environment that is struc-
tured as a client/server system; running Python code on
the RFSoC board and rendering an interface on the client
PC’s web browser. Every document produced with Jupyter
(a ‘‘notebook’’) can intermingle markdown formatted docu-
mentation, blocks of Python code, and the output of any code
(which can include anything from numerical or text-based
results to interactive JavaScript plots). One of the original
motivations for the Jupyter project was to give the scientific
community a means of sharing methods and results in a
reproducible fashion [50].
For this project, JupyterLab enables us to produce a

demonstrator (developed with only a web browser), mix-
ing diagrams and documentation of the design with the

top-level code. It also lets us use the client’s web browser
to perform the rendering of our visualisations via JavaScript
delivered by a JupyterLab extension (Plotly).

The last feature of JupyterLab that we exploit is its win-
dowing system. Fig. 13 shows a typical setup where the
user can open multiple windows within a single browser
tab, arranging different combinations of the main notebook,
ipywidgets controls, terminal sessions, and streaming plots—
highlighted in boxes A, B, C, and D respectively.

2) BASIC INTERACTIVITY WITH IPYWIDGETS

Python libraries such as ipywidgets can be used to make
GUI elements that control some of the more commonly used
attributes. For example, we can readily create controls for the
transmitter’s centre frequency and gain (or technically digital
attenuation in our case). An example of slider widgets can
be seen in Fig. 13. Already with these widgets and the plots
from section IV-C3, we could begin to replicate the web-
based dashboards found on commercial radio platforms—for
example the Amarisoft LTE stack which provides controls,
QAM plots and channel response plots [51].
These widgets use callback functions that may occur asyn-

chronously to the main thread. This deserves some extra
thought during development, especially when working with
hardware, to ensure that the design cannot fall into an invalid
state. Our solution ensures atomic access to the RF data con-
verter functions through use of a simple mutex (or ‘‘mutual
exclusion’’) lock for synchronisation.

3) INTERACTIVE PLOTTING WITH PLOTLY

The plotting functionality is based on Plotly—a Javascript
plotting library with good interactivity, some ability to update
plot data dynamically, and JupyterLab integration [52].
We add a thin wrapper around Plotly to provide three main
plot classes: a time domain I/Q plot, a constellation plot, and
a frequency domain plot.
We use Python multithreading to request plot updates

based on real-time data gathered from the PL, without stalling
the main Python thread. This allows users to execute other
cells in the notebook without disrupting any streaming plots.
Even with a fairly naive polling timer approach, we can
achieve ≈ 20 Frames Per Second (FPS) for time domain
plots—as discussed in Section V-B.

It is important to understand the distinction between the
server side (the ZCU111) and client side (the computer’s
web browser) processing here. All Python code is executed
on the server side, but the core Plotly library is actually
JavaScript (delivered via a JupyterLab extension) and is exe-
cuted by the web browser of the client device. The general
flow is:

• The server side will:
– Perform a DMA transfer, bringing a frame of data

into the PS DRAM
– Optionally perform pre-processing such as

resampling or a (software) FFT

129024 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

FIGURE 13. Example of JupyterLab session running our QPSK design, providing real-time control and visualisation including A) the main notebook view,
B) a window with ipywidget controls, C) a terminal session, and D) a window with a streaming constellation plot.

– Generate a JSON (JavaScript Object Notation)
description of a Plotly plot, using Plotly’s python
wrapper library

• JupyterLab sends this JSON description to the client
browser

• The client side will parse the JSON plot description and
render it using JavaScript

Because of this flow, plot performance will depend on
the RFSoC, the client web browser performance, and the
communication link between the two.
We provide infrastructure to lessen the demand on the

link and the client device—although this is not used in the
QPSK example because the data rates are not high enough to
merit it. For any plots with a fixed plot width, the raw data
set can be resampled on the server to reduce the number of
points to, at most, one per pixel. This lessens the demands
on plot rendering and the size of JSON data sent between
server and client. The resampling algorithm can be simple
downsampling, or decimation (including anti-alias filtering).
Resampling can also be triggered by redraw events, so as a

user zooms into a smaller range of time, the full resolution of
the raw data set becomes visible again. This helps produce
large time domain plots that can remain responsive when
viewed at any scale—looking at features spanning a number
of seconds, or a number of microseconds.

V. DEMONSTRATION SYSTEM AND RESULTS

In this section we discuss the effectiveness of the demon-
strator as a learning tool and highlight the benefits of
using the PYNQ framework for embedded development.

This is followed by a quantitative performance analysis of
the software and hardware systems. All results were obtained
from the ZCU111 REV-1.0 development board.

A. PERFORMANCE AS A DEMONSTRATOR

The purpose of the demonstrator is to guide the user through
each step of the QPSK transceiver DSP path, while providing
an interactive environment in order to both educate the user
in software defined radio, and demonstrate the features of
the RFSoC. Each step includes written explanations of the
signal processing involved, while displaying live plots of the
captured data to the user.

The use of PYNQ allows a level of documentation and
user interaction that is difficult to obtain from other methods,
facilitating interaction with driver-level functionality such as
carrier frequency and transmitter gain. The user can manip-
ulate these settings by either editing and running code on-
the-fly or, with the use of ipywidgets, change settings with
GUI sliders—all while receiving live visual feedback with
the use of Python plotting libraries. The ability to use Python
libraries alongside embedded platform code also helps reduce
the code-base, avoiding the need to develop custom GUIs,
which in turn reduces overall embedded development time
and increases code readability. For example, Listing 5 shows
a program for a single DMA transfer using the PYNQ frame-
work in 11 lines of code, where random data is sent to a
FIR filter and the output is displayed on a plot; an equivalent
program in C would be many times the size.

The demonstrator has been in development since the latter
part of 2018 and various stages of the design have been

VOLUME 8, 2020 129025



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

Lsiting 5. PYNQ code for DMA transfers to/from an IP, and plotting
the result.

exhibited at conferences. Furthermore, the entire project has
been released as open-source software, allowing anyone with
access to a RFSoC ZCU111 development board to evaluate
the design, or use it as a template for new projects [37].
An early version of the design, which consisted of the

transmit part of the transceiver only, was exhibited at the 28th

International Conference on Field Programmable Logic &
Applications (FPL), Dublin, in August 2018. The transmitted
signal was verified using a RTL-SDR QPSK receiver as
described in [41]. An initial version of the full transceiver
was then exhibited at theXilinxDeveloper Forum (XDF), San
Jose, in October of that year.

In 2019 the demonstrator was included in the ‘‘PYNQ on
RFSoC’’ workshop at the XSight20: Xilinx Worldwide Sales
Conference, Los Angeles, where over 100 participants over
three days were trained on using the PYNQ framework on
the RFSoC.

The majority of feedback from attendees was that the
demonstrator provided a user-friendly interface that was able
to explain the complexities of RFSoC system design in an
easy-to-understand manner.

B. SOFTWARE PERFORMANCE

1) BROWSER PLOTTING PERFORMANCE

One of the most visually immediate metrics for software
performance is the refresh rate of the real-time plots. Inves-
tigating this can give other engineers a grasp of how well
the web-browser introspection can performwithout needing a
ZCU111 board.While any deficiencies in such a plot are easy
for a human to observe, it is not a trivial metric to analyse due
to the number of different technologies, languages, and hosts
at play. For the raw rendering performance it is sufficient to
consider only the JavaScript code running in the client PC’s

Figure 14. Average rendering periods for each plot type and Observation
Point, with the dashed lines representing the target frame rates.

browser, if we can assume that the thin layer of Python-side
code is not a performance bottleneck.

It is possible to analyse the client-side plot performance
using the built-in Chrome DevTools. We record a browser
performance profile over ≈ 10 seconds while streaming each
plot in turn. It is important to note that the DevTools con-
cept of a frame does not correspond to a full Plotly frame
redraw, so we must obtain frame timing by filtering the event
log by a function name we know to only happen once per
redraw operation—such as o.prepareFn. Fig. 14 shows
the average frame rendering periods, while Table 1 formulates
this data alongside the number of data points and standard
deviation for each plot.

The time domain and FFT plots are rendered nearly with
their respective prescribed timer periods of 50 ms (20 FPS)
and 300 ms (3.3 FPS), while the constellation plot perfor-
mance has a clear dependence on the number of points per
plot. Because time in the constellation plot is implied via
opacity rather than an explicit axis (i.e. samples fade out
as they get older), the resampling technique cannot sensibly
help mitigate poor performance with larger data sets. We can
also note that the anomalous ‘‘Rx data’’ time domain plot
average is explained by the extra preprocessing step required
to classify I/Q values as recovered bits, without adjusting
frame sizes to compensate for this extra step.

Inspecting the averages and distributions of FFT frame
periods from Table 1, we can notice that the timer for the
software FFTs (in the Rx side), inherited from the hardware
FFT (in the Tx side), is not pushing the design to any limit—
indicated by the unusually small deviation from the timer
period. Consequently, either a higher resolution FFT could
be shown at the same rate, or similar FFT could be shown
with a higher refresh rate.

129026 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

TABLE 1. Rendering periods for each plot type and Observation Point.

Figure 15. ZCU111 memory and CPU usages while loading the QPSK
design, generating several one-off plots (before 30 s), and then streaming
live-updates (after 30 s).

These performance results only affect the plotting visual-
isations running on the client laptop and not the DSP on the
ZCU111. The DSP data path runs entirely independently on
the RFSOC’s PL and its performance cannot be impacted by
the software running on either device.

2) ZCU111 CONTROL LATENCY WITH PYNQ

Another software performance metric is the latency of our
controls. As measured by the IPython timeit command,
it takes 4.23 ms to alter either of the RF-DC mixer frequen-
cies. This is done via a CFFI call from Python to C, and
executes a non-trivial C function.

A simple function to set Tx gain via a single MMIO
write, entirely implemented in Python, takes only 11.5 µs

according to timeit. Not only is this function written in
Python, but the PYNQ implementation for MMIO is also
written purely in Python—only relying on standard libraries
such as numpy. This encouraging performance may come
as a surprise to those who are new to using Python in
embedded environments, given the stigma historically asso-
ciated with interpreted languages, especially in the embedded
domain.
Rapid response times like these are particularly

encouraging when considering operation within DSA and
shared spectrum environments, where standards, such as
IEEE 802.22, require spectrum sharing radio nodes to recon-
figure themselves and vacate an RF channel within 2 seconds
of identifying a new licensed incumbent [53].

3) ZCU111 MEMORY AND CPU USAGE

Finally, let’s consider the memory and CPU usage on the
ZCU111 while running the demonstrator. Fig. 15 shows a
trace of percentage use of RAM (4 GB in total) and each of
the 4 Arm Cortex-A53 processors. At time 0 s, the system
is idle and uses 9% of the available RAM to host Ubuntu,
Jupyter, and any other background PYNQ processes. From
here until time 30 s, the demonstrator design is initialised and
we generate time-domain visualisations for OP1, OP2, and
OP4. There are two insights for this period:

1) The memory usage is only slightly increased by our
QPSK demonstrator, reaching a maximum of 13% at
its plateau. This is possible because we only allocate
one buffer for each OP and try to reuse it as much as
possible, without relying on Python’s garbage collec-
tion.

2) There is a single CPU that is nearly at 100% utilisation
for most of this period. This is not indicative of the
workload, but rather a consequence of Python’s inter-
preter design and our use of PYNQ’s blocking DMA
calls (instead of their asyncio counterparts).

To expand on point 2), CPython’s well known Global Inter-
preter Lock (GIL) ensures that even multi-threaded Python
programs are not interpreted concurrently, largely because
CPython’s memory management is not thread-safe. This is
why almost all activity is seen on only one processor —
we have made no efforts to ‘‘break out of’’ the GIL. The
100% utilisation, however, is somewhat misleading. We use
PYNQ’s blocking calls to the DMA engine which will sit
in a busy-waiting loop until the DMA transfer completes,
ensuring very high CPU utilisation for any DMA-bound
tasks. Therefore, Fig. 15 does not imply that the demonstrator
has reached the computational ceiling of the A53 processors!
PYNQ does expose a non-blocking interface to the DMA
engine that makes use of the asyncio library, and this would
greatly impact the CPU utilisation traces.

Beyond 30 s, the time-domain plot for OP4 is left to
stream new data at 50ms intervals. The same busy-wait DMA
effects can be observed here. The CPU utilisation is not 100%
however, because we request 33 ms of samples (128 samples
at 4 kHz) for every 50ms period, leaving some CPU time truly
idle. Note that the time resolution of Fig. 15 is 0.5 s, so this
busy/idle repetition averages out to ≈ 80% CPU usage.

VOLUME 8, 2020 129027



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

In summary, this demonstrator shows that complex PYNQ
designs can run on the ZCU111 with low memory usage.
Processor usage is harder to analyse due to our use of busy-
wait DMA transfers, although the results for plot streaming
are encouraging. For future designs, we encourage designers
to opt for the existing non-blocking DMA calls. Also, if the
designer can escape CPython’s GIL, then there are also three
more processors that could be exploited for DSP tasks.

4) A NOTE ON BOTTLENECKS

With the current system, the main bottleneck has been iden-
tified as the client-side rendering of constellation plots —
part of the only processing performed outside of the RFSoC’s
single-chip solution.
The constellation plots, as shown back in Fig. 14, start

to perform substantially worse than our 20 FPS target when
given large datasets. This effect is likely seen due to the
use of opacity for each point, indicating a sample time. The
effect could be mitigated for time-domain plots with our
dynamic server-side resampling of signals, but this method
is unsuitable for constellation plots. It also does not affect
the FFT plots, as the number of samples relates to resolu-
tion in frequency and not directly to recording length/sample
frequency.
However, our system is producing data at orders of mag-

nitude below the full capability of the RFSoC. Consider the
potential bottlenecks for a system with higher data rates.
As the data rate on the PL increases, it becomes more

difficult to plot time-domain data on the PS due to the amount
of data that must be either resampled or converted to JSON
and sent to the client in full. Moreover, as the data rate reaches
the data converter limits, memory storage becomes an issue
where throughput can be measured in GB/s. In this scenario,
any downsampling or decimation would be best suited to take
place on the PL before being stored in memory.
For systems with any substantial DSP tasks running in

software, CPython’s GIL may also become a bottleneck,
restricting all application execution to a single processor
core. This could be fairly easily overcome by partitioning
the system into different processes and using some form of
inter-process communication, breaking out of the GIL and
exploiting all available cores.

C. FPGA UTILISATION

The FPGA hardware design includes a full QPSK transceiver,
including synchronisation that only utilises <9% of CLBs
(configurable logic blocks), <7% BRAMs (block RAMs),
and ≈ 5% of DSPs. Although this low utilisation is
due to the large size of the FPGA available on the
XCZU28DR-2FFVG1517E, this leaves a large amount of
resources available for multiple instances of the transceiver to
be implemented if a multi-channel system is desired. Table 2
displays an abridged Vivado utilisation report of the Tx and
Rx hierarchies, the data converter, as well as an overall total
of the resources used.

TABLE 2. FPGA resource utilisation for the Tx and Rx hierarchies, and
RF-DCs.

The most notable result here is the MMCM where 12.5%
of resources are used. This is due to the use of a clocking
wizard (requiring 12.5% MMCM resources per instance) for
the Rx logic, which is required to upsample the respective
AXI-Stream clock from 64MHz to 128MHz, as well as
downsampling to 25.6MHz. The use of a MMCM resource
was not required for the Tx logic as theDACproduced exactly
the clock frequency required to support its AXI-Stream chan-
nel. This allowed the clocking wizard to be controlled by
a PLL instead (using only 6.25% resources per instance) to
create the 64MHz and 25.6MHz clocks needed for the Tx
logic. This mixture of MMCM and PLLs allows the maxi-
mumTx/Rx channel pairs (8 each, 16 total on the ZCU111) to
fit within the available PL resources if a multi-channel system
were to be implemented.

An overall total of 2.24% of CLBs and 4.05% of BRAMs
are used by DMAs to accommodate the Observation Points
provided for demonstration purposes. If the transceiver
were to be used in a deployment environment, these could
be removed—further increasing available resources on the
FPGA.

Using the default Vivado implementation strategy, all
timing constraints were met.

VI. CONCLUSION

This paper has introduced an SDR demonstration system
based on the Xilinx RFSoC platform, and the Python-based
PYNQ software framework. The system is the first to demon-
strate successful combination of these two technologies for
SDR, and includes support for software-based control of
radio functionality, as well as the capture and visualisation
of ‘live’ data from the chip.

The paper details the composition of the system, including
the development of the hardware and software portions of
the design. In particular, we highlight the additional infras-
tructure that is incorporated within the hardware system to
support data capture, and the control and visualisation soft-
ware elements implemented using PYNQ. The associated set
of design files have been shared with the community on an
open-source basis, hence there is an opportunity to directly
build upon our work.

129028 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

The developed SDR system was evaluated in several
respects. We exposed early versions at events, and collected
informal feedback that led to subsequent improvement of the
interactive aspects of the system. Design reuse opportunities
were considered, particularly in terms of leveraging existing
open source software, as discussed extensively throughout
the paper. Software/hardware co-design was investigated by
implementing the hardware IPs for the transmit and receive
sides with two different levels of granularity, and assessing
the design from methodology and documentation perspec-
tives. It was found that smaller IP blocks mapped more nat-
urally to object-oriented driver software, leading to elegant,
intuitive code and enhanced design reuse opportunities.
Further, we quantitatively investigated the responsiveness

of the system, in terms of the latencies for applying soft-
ware control parameters to hardware, and for data capture,
and assessed achievable plot refresh rates. It was found that
suitable rates could be achieved for all plot types. We also
provide an analysis of memory and processor utilisation on
the ZCU111 board, demonstrating that there is little pres-
sure on the PS memory. There are, however, some interest-
ing (but, in our case, superficial) patterns in the processor
usage that are attributed to our own software design choices.
We also suggest how to avoid such usage patterns in future
designs. Less than 10% of the resources of a XCZU28DR
RFSoC device were consumed by the entire system, of which
Block RAM (two thirds of that used) was the main cost
for PYNQ-related infrastructure. There is therefore consid-
erable potential to incorporate enhanced radio functionality,
further Observation Points, or to extend the design to multiple
channels.

ACKNOWLEDGMENTS

The authors would like to thank Patrick Lysaght, Cathal
McCabe, Peter Ogden, Graham Schelle (all of Xilinx), and
Enno Leubbers (formerly of Xilinx) for their support of this
work. They also extend their appreciation to two of our
research colleagues at Strathclyde, Andrew Maclellan, and
Marius Šiaučiulis, who have provided useful feedback during
the production of this paper. They also thank Xilinx for the
use of a ZCU111 RFSoC development board, and software
donations.

REFERENCES
[1] Zynq UltraScale+ RFSoCData Sheet: Overview DS889, Xilinx, San Jose,

CA, USA, Jul. 2018.
[2] Zynq UltraScale + RFSoC RF Data Converter 2.0 PG269, Xilinx,

San Jose, CA, USA, Apr. 2018.
[3] Xilinx. PYNQ: Homepage. Accessed: Jun. 17, 2020. [Online]. Available:

https://pynq.io
[4] Xilinx. Xilinx Discusses Fronthaul Challenges for the 5G Optical Net-

work. Accessed: Jun. 17, 2020. [Online]. Available: https://www.youtube.
com/watch?v=UPucJcDAfSk

[5] Medium. Cloud RAN and eCPRI Fronthaul in 5G Networks. Accessed:
Jun. 17, 2020. [Online]. Available: https://medium.com/5g-nr/
cloud-ran-and-ecpri-fronthaul-in-5g-networks-a1f63d13df67

[6] Xilinx. RF Solutions With Zynq UltraScale + RFSoC.
Accessed: Jun. 17, 2020. [Online]. Available: https://www.xilinx.
com/publications/events/developer-forum/2018-frankfurt/rf-solutions-
with-zynq-ultraScale-plus-rfsoc.pdf

[7] Ettus Research Inc. Products Webpage. Accessed: Jun. 17, 2020. [Online].
Available: https://www.ettus.com/products

[8] Nutaq. PicoSDR Series for Wireless Multi-Standard Prototyping.
Accessed: Jun. 17, 2020. [Online]. Available: https://www.nutaq.
com/products/picosdr

[9] Lime Microsystems Ltd. SDR and Companion Board Products. Accessed:
Jun. 17, 2020. [Online]. Available: https://limemicro.com/products/boards

[10] Analog Devices Inc. ADI AD9361 System on Module (SOM) SDR.
Accessed: Jun. 17, 2020. [Online]. Available: https://wiki.analog.
com/resources/eval/user-guides/adrv936x_rfsom

[11] Analog Devices Inc. AD-FMCOMMS3-EBZ User Guide. Accessed:
Jun. 17, 2020. [Online]. Available: https://wiki.analog.com/resources/
eval/user-guides/ad-fmcomms3-ebz

[12] Avnet Inc. Zynq-7000 AP SoC / AD9361 Software-Defined Radio

Evaluation Kit. Accessed: Jun. 17, 2020. [Online]. Available:
http://zedboard.org/sites/default/files/product_briefs/PB-AES-ZSDR2-
ADI-G-V1.pdf

[13] Xilinx. Avnet Zynq-7000 SoC / AD9361 Software-Defined Radio

Systems Development Kit. Accessed: Jun. 17, 2020. [Online].
Available: https://www.xilinx.com/products/boards-and-kits/
1-45sl7b.html#overview

[14] Mathworks Inc. Design and Prototype SDR Systems With MAT-

LAB and Simulink. Accessed: Jun. 17, 2020. [Online]. Available:
https://uk.mathworks.com/discovery/sdr.html

[15] GNURadio Homepage. Accessed: Jun. 17, 2020. [Online]. Available:
https://www.gnuradio.org/

[16] J. Blum. Pothos SDR Dev Environment Wiki. Accessed: Jun. 17, 2020.
[Online]. Available: https://github.com/pothosware/PothosSDR/wiki

[17] National Instruments. Software Defined Radio. Accessed: Jun. 17, 2020.
[Online]. Available: https://www.ni.com/en-gb/innovations/wireless/
software-defined-radio.html

[18] Mathworks Inc. QPSK Receiver Using Analog Devices

AD9361/AD9364. Accessed: Jun. 17, 2020. [Online]. Available:
https://uk.mathworks.com/help/supportpkg/xilinxzynqbasedradio/
examples/qpsk-receiver-using-analog-devices-ad9361-ad9364.html

[19] Mathworks Inc. QPSK Transmitter Using Analog Devices

AD9361/AD9364. Accessed: Jun. 17, 2020. [Online]. Available:
https://uk.mathworks.com/help/supportpkg/xilinxzynqbasedradio/
examples/qpsk-transmitter-using-analog-devices-ad9361-ad9364.html

[20] ORCA. ORCA Functionalities. Accessed: Jun. 17, 2020. [Online]. Avail-
able: https://www.orca-project.eu/orca-functionalities/

[21] M. Danneberg, R. Bomfin, S. Ehsanfar, A. Nimr, Z. Lin, M. Chafii, and
G. Fettweis, ‘‘Online wireless lab testbed,’’ in Proc. IEEE Wireless Com-
mun. Netw. Conf. Workshop (WCNCW), Marrakech, Morocco, Apr. 2019,
pp. 1–5.

[22] J.Mitola, ‘‘The software radio architecture,’’ IEEECommun.Mag., vol. 33,
no. 5, pp. 26–38, May 1995.

[23] SDR Forum. (Nov. 2007). SDRF Cognitive Radio Definitions.
Accessed: Jun. 17, 2020. [Online]. Available: http://www.sdrforum.org/
pages/documentLibrary/documents/SDRF-06-R-0011-V1_0_0.pdf

[24] B. Drozdenko, M. Zimmermann, T. Dao, K. Chowdhury, and M. Leeser,
‘‘Modeling considerations for the hardware-software co-design of flexible
modern wireless transceivers,’’ inProc. 26th Int. Conf. Field Program. Log.
Appl. (FPL), Lausanne, Switzerland, Aug. 2016, pp. 1–4.

[25] S. Hosny, E. Elnader, M. Gamal, A. Hussien, A. H. Khalil, and H. Mostafa,
‘‘A software defined radio transceiver based on dynamic partial reconfig-
uration,’’ in Proc. New Gener. CAS (NGCAS), Valletta, Malta, Nov. 2018,
pp. 158–161.

[26] J. Ralston and C. Hargrave, ‘‘Software defined radar: An open source
platform for prototype GPR development,’’ in Proc. 14th Int. Conf. Ground
Penetrating Radar (GPR), Shanghai, China, Jun. 2012, pp. 172–177.

[27] B. Wang, J. Saniie, S. Bakhtiari, and A. Heifetz, ‘‘Software defined ultra-
sonic system for communication through solid structures,’’ in Proc. IEEE
Int. Conf. Electro/Inf. Technol. (EIT), Rochester, MI, USA, May 2018,
pp. 267–270.

[28] S. Gokceli, T. Levanen, J. Yli-Kaakinen, M. Turunen, M. Allen,
T. Riihonen, A. Palin, M. Renfors, and M. Valkama, ‘‘Software-defined
radio prototype for fast-convolution-based filtered OFDM in 5G NR,’’ in
Proc. Eur. Conf. Netw. Commun. (EuCNC), Valencia, Spain, Jun. 2019,
pp. 235–240.

[29] J. Budroweit and A. Koelpin, ‘‘Design challenges of a highly integrated
SDR platform for multiband spacecraft applications in radiation enviro-
ments,’’ in Proc. IEEE Top. Workshop Internet Space (TWIOS), Anaheim,
CA, USA, Jan. 2018, pp. 9–12.

VOLUME 8, 2020 129029



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

[30] R. W. Stewart, L. Crockett, D. Atkinson, K. Barlee, D. Crawford,
I. Chalmers, M. Mclernon, and E. Sozer, ‘‘A low-cost desktop software
defined radio design environment usingMATLAB, simulink, and the RTL-
SDR,’’ IEEE Commun. Mag., vol. 53, no. 9, pp. 64–71, Sep. 2015.

[31] S. Tridgell, D. Boland, P. H. W. Leong, and S. Siddhartha, ‘‘Real-time
automatic modulation classification,’’ in Proc. Int. Conf. Field-Program.
Technol. (ICFPT), Tianjin, China, Dec. 2019, pp. 299–302.

[32] M. Fosberry and M. Livadaru, ‘‘Digital synthetic receive beamforming
with the Xilinx ZC1275 evaluation board,’’ in Proc. IEEE Int. Symp.

Phased Array Syst. Technol. (PAST), Waltham, MA, USA, Oct. 2019,
pp. 1–2.

[33] M. Livadaru, M. Fosberry, N. Campbell, K. Bassett, S. Speck, J. Fung,
P. Schibly, S. Blackwell, A. Kraemer, A. Redenbaugh, B. Mcmahon, and
R. Lapierre, ‘‘On the integration of wideband adaptable hardware tech-
nologies to enable RF machine learning,’’ in Proc. IEEE Int. Symp. Phased
Array Syst. Technol. (PAST), Waltham, MA, USA, Oct. 2019, pp. 1–2.

[34] Red Pitaya. Red Pitaya’s SDR Transceiver. Accessed: Jun. 17, 2020.
[Online]. Available: https://www.redpitaya.com/n30/red-pitayas-sdr-
transceiver

[35] K. Haeublein, W. Brueckner, S. Vaas, S. Rachuj, M. Reichenbach, and
D. Fey, ‘‘Utilizing PYNQ for accelerating image processing functions in
ADAS applications,’’ in Proc. 32nd Int. Conf. Archit. Comput. Syst. (ARCS
Workshop), Copenhagen, Denmark, May 2019, pp. 1–8.

[36] E. Wang, J. J. Davis, and P. Y. K. Cheung, ‘‘A PYNQ-based framework
for rapid CNN prototyping,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-
Program. CustomComput. Mach. (FCCM), Boulder, CO, USA,May 2018,
p. 223.

[37] University of Strathclyde—Software Defined Radio Research Laboratory.
Accessed: Jun. 17, 2020. [Online]. Available: https://github.com/strath-
sdr/rfsoc_qpsk

[38] Xilinx. ZCU111—Product Page. Accessed: Jun. 17, 2020. [Online]. Avail-
able: https://www.xilinx.com/products/boards-and-kits/zcu111.html

[39] ZCU111 Evaluation Board User Guide UG1271, Xilinx, San Jose, CA,
USA, Oct. 2018.

[40] M. Rice, Digital Communications: A Discrete-Time Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

[41] D. S. W. Atkinson, K. W. Barlee, and R. W. Stewart, Software Defined
Radio Using MATLAB & Simulink and the RTL-SDR. Glasgow, U.K.:
Strathclyde Academic Media, 2015.

[42] Zynq UltraScale+MPSoC Data Sheet: DC and AC Switching Character-

istics DS925, Xilinx, San Jose, CA, USA, Jul. 2019.
[43] C. Ramsay, L. H. Crockett, and N. David, Exploring Zynq MPSoC: With

PYNQ and Machine Learning Applications. Glasgow, U.K.: Strathclyde
Academic Media, 2019.

[44] Xilinx. Python Overlay API. Accessed: Jun. 17, 2020. [Online]. Available:
https://pynq.readthedocs.io/en/v2.3/index.html

[45] Xilinx. ZCU111-PYNQ. Accessed: Jun. 17, 2020. [Online]. Available:
https://github.com/Xilinx/ZCU111-PYNQ

[46] Xilinx. PYNQ: Development Boards. Accessed: Jun. 17, 2020. [Online].
Available: https://pynq.io/board.html

[47] A. Rigo and M. Fijalkowski. CFFI Reference. Accessed: Jun. 17, 2020.
[Online]. Available: https://cffi.readthedocs.io/en/latest/ref.html

[48] Xilinx. Xilinx Embedded Software Development. Accessed:
Jun. 17, 2020. [Online]. Available: https://github.com/Xilinx/
embeddedsw/blob/23eb39df101391b896adf20fa9d6c5aee27b0adc/
XilinxProcessorIPLib/drivers/rfdc/examples/xrfdc_clk.c

[49] Xilinx. Xilinx Embedded Software Development: RFDC.
Accessed: Jun. 17, 2020. [Online]. Available: https://github.com/
Xilinx/embeddedsw/tree/23eb39df101391b896adf20fa9d6c5aee27b0adc/
XilinxProcessorIPLib/drivers/rfdc

[50] F. Perez and B. E. Granger. An Open Source Framework for

Interactive, Collaborative and Reproducible Scientific Computing

and Education. Accessed: Jun. 17, 2020. [Online]. Available:
https://ipython.org/_static/sloangrant/sloan-grant.html

[51] Amarisoft eNodeB: Full Specification. Accessed: Jun. 17, 2020. [Online].
Available: https://www.amarisoft.com/technology/enodeb/

[52] Plotly. Plotly Python Open Source Graphing Library. Accessed:
Jun. 17, 2020. [Online]. Available: https://plot.ly/python/

[53] ISO/IEC/IEEE, Information Technology—Telecommunications and Infor-

mation Exchange Between Systems—Local and Metropolitan Area

Networks—Specific Requirements—Part 22: Cognitive Wireless RAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifi-

cations: Policies and Procedures for Operation in the TV Bands,
IEEE Standard 802-22, May 2015.

JOSH GOLDSMITH (Graduate Student
Member, IEEE) received the B.Eng. degree
(Hons.) from the University of Strathclyde,
in 2017, where he is currently pursuing the Ph.D.
degree with the Software Defined Radio Research
Laboratory. He completed a six month internship
with Xilinx, Longmont, developing hardware sys-
tems and training material for the RFSoC within
the PYNQ Team, in 2019. He is a contributing
author of Exploring Zynq MPSoC Book [43]. His

research interests include run-time reconfigurable hardware, specifically for
FPGA radio applications, signal processing, and embedded systems.

CRAIG RAMSAY received the B.Eng. degree
(Hons.) from the University of Strathclyde,
in 2017, where he is currently pursuing the
Ph.D. degree with the Software Defined Radio
Laboratory. He is a co-author of the Book
Exploring Zynq MPSoC. His current research
interests include functional programming tech-
niques for hardware description, including formal
verification and using dependent types for DSP
applications.

DAVID NORTHCOTE (Member, IEEE) received
the B.Eng. degree (Hons.) in electronic and elec-
trical engineering, in 2015. He is currently a
Researcher with the Department of Electronic
and Electrical Engineering (EEE), University of
Strathclyde. His Ph.D. research was on the effi-
cient implementation of the Hough Transform for
embedded vision systems using Zynq MPSoC.
He is the coauthor of the technical book Exploring
Zynq MPSoC [43]. His research interests include

efficient implementation of wireless communication and computer vision
applications on Zynq.

KENNETH W. BARLEE (Member, IEEE)
received the B.Eng. degree (Hons.), in 2014.
He is currently a Researcher with the Software

Defined Radio Laboratory, University of Strath-
clyde. During his Ph.D. degree, he developed filter
bank multicarrier (FBMC)-based cognitive SDR
transceivers for use in secondary user dynamic
spectrum applications. He is one of the authors of
the SDR textbook Software Defined Radio using
MATLAB& Simulink and the RTL-SDR [41]. From

2018 to 2019, he was a part of the team that designed, developed, and with
the help of partners, deployed a full shared spectrum 4G/5G mobile network
across 360 km2 of the Scottish Orkney Islands, as part of the 5GRuralFirst
Project. He carried out the programming of software defined (radio) basesta-
tions, interoperability testing with third party packet cores, RF planning and
network design, and developed bespoke security and management solutions
for basestation and user equipment.

129030 VOLUME 8, 2020



J. Goldsmith et al.: Control and Visualisation of a SDR System on the Xilinx RFSoC Platform

LOUISE H. CROCKETT received the master’s and
Ph.D. degrees in electronic and electrical engi-
neering from the University of Strathclyde. She
is currently a Senior Teaching Fellow with the
University of Strathclyde. Her teaching focuses on
digital systems design using hardware description
language (HDL), simulink block-based design,
and FPGA/SoC technology, and builds practical
skills to equip graduates for roles in industry. Her
research interests include hardware implementa-

tion of digital signal processing (DSP) systems, in particular for commu-
nications and SDR. She is the principal author of The Zynq Book.

ROBERT W. STEWART received the bachelor’s
and Ph.D. degrees from the University of Strath-
clyde. From 2014 to 2017, he was the Head of
the Department of Electronic and Electrical Engi-
neering, University of Strathclyde. He is currently
a Professor of signal processing and manages a
research group working on DSP, FPGAs, whites-
pace radio, and low-cost SDR implementation. He
leads the Strathclyde cohort of the Scotland 5G
Centre. He is building on the work of 5G Rural-

First, the team has a focus on spectrum sharing, SDR eNodeB deployments,
and developing innovative solutions to combat the connectivity issues faced
in rural areas of the U.K.

VOLUME 8, 2020 129031


