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Control-Aware Motion Planning for

Task-Constrained Aerial Manipulation

M. Tognon1, E. Cataldi2, H. A. Tello Chavez1, G. Antonelli2, J. Cortés1, A. Franchi1

Abstract— This paper presents a new method to address
the problem of task-constrained motion planning for aerial
manipulators. We propose a control-aware planner based on
the paradigm of tight coupling between planning and control.
Such paradigm is especially useful in aerial manipulation, where
the separation between planning and control is not advisable.
The proposed sampling based motion planner uses a controller
composed of a second-order inverse kinematics algorithm and
a dynamic tracker, as a local planner, thus allowing a more
natural consideration of the closed-loop system dynamics. For
task constrained motions, this method lets to i) sample directly
in the reduced and more relevant task space, ii) predict the
behavior of the controller avoiding motions that bring to
singularities or large tracking errors, and iii) guarantee the
correct execution of the maneuver. The method is tested in
simulation for a multidirectional-thrust vehicle endowed with a
two-DoF manipulator. The proposed approach is very general,
and could be applied to ground and underwater robotic systems
to perform manipulation or inspection tasks.

I. INTRODUCTION

The interest in Unmanned Aerial Vehicles (UAVs) has

increased exponentially in the last decade. This comes from

their large applicability in diverse real-world scenarios. A

very recent and promising application field is aerial manipu-

lation. In this case, UAVs are not simply used as remote

sensors in a free-flight configuration. Instead, the robot

needs to physically interact with the environment, exchang-

ing forces. An interesting application is the inspection by

contact of industrial installations. In this context, taking

measurements requires physical contact between the sensor

and the inspected part. For example, in the context of the

EU project Aeroarms, one of the goals is to develop an

aerial manipulator able to take ultrasonic measurements of a

metallic pipe to detect flaws [1].

Compared to ground manipulation, physical interaction

using aerial vehicles endowed with rigid tools or robotic

arms is a much more challenging problem, mainly due to

the use of a floating base. The aerial platform, usually

thrusted by one or several propellers, cannot instantaneously

react to interaction forces between the robotic arm and the

environment. In addition, aerodynamic effects and model

uncertainties yield to inaccurate positioning, thus increasing

the challenging nature of the problem. Several works in

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,
mtognon@laas.fr, htelloch@laas.fr, jcortes@laas.fr

antonio.franchi@laas.fr
2University of Cassino and Southern Lazio, 03043 Cassino, Italy,
gianluca.antonelli@unicas.it, e.cataldi@unicas.it

This work has been funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 644271
AEROARMS.

FR

xR

yR

zR

FW
xW

yWzW FE

xE

yE

zE

pR

qJ1

qJ2

fR1

fRifRn

τJ1
τJ2

Fig. 1: Schematic representation of an aerial manipulator inspecting
a pipe (green surface) by physical contact. The aerial vehicle is an
hexarotor with tilted propellers, endowed with a two-link arm.

the literature presented various types of dynamic controllers

for aerial manipulators to stabilize the system and track a

desired trajectory of the degrees of freedom. They range from

completely decoupled approaches [2], [3], to model-based

approaches [1], [4] and to more recent differential-flatness-

based method [5].

Some relevant applications impose motion constraints de-

rived from the task. For example, one could require the

end-effector to follow a given trajectory or to move while

keeping contact with a surface that has to be inspected.

Figure 1 shows an example where an aerial manipulator has

to inspect the surface of a pipe. To accomplish this type

of task, one of the possible methods is based on inverse

kinematics control [6]. If the system is over-actuated with

respect to (w.r.t.) the desired task, one can also exploit the

redundancy to locally optimize some behaviors (e.g., obstacle

avoidance, minimum energy consumption, etc.), using null-

space-based behavioral control (NSB) [7]. However, due to

the local nature of those approaches, the system can get

trapped in some local minima. This problem often implies

the failure of the sought task.

Techniques using (global) task-constrained motion plan-

ning methods have been proposed in order to overcome

limitations of purely reactive (control-based) methods. Many

works on task-constrained motion planning, as [8]–[10], use

a projection strategy to sample configurations that respect the

task constraints. However they consider the system at a pure

kinematic level, i.e., they assume that the robot can track

any velocity reference, even if discontinuous. By doing so,

they cannot guarantee that the robot will accurately execute

the planned trajectory. This is an important issue for aerial

manipulators that can be easily destabilized by large tracking

errors when dynamic effects are not properly considered.

A dynamic model of the system can be considered at

the planning level using kinodynamic motion planning ap-
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proaches, as in [11]. However, this significantly increases

the complexity of the problem, which is in practice tractable

only for simple systems. Aerial manipulators are in general

characterized by a high number of degrees of freedom, and

thus, the dimension of the state space is too high for the

application of current, general purpose, kinodynamic motion

planners.

Interesting methods have been proposed to circumvent the

complexity of kinodynamic approaches for task-constrained

motion planing problems [12], [13]. However, even if the

planned trajectory is feasible w.r.t. the dynamics of the

system, one cannot guarantee that a given controller will be

able to accurately track it during execution. This strongly

depends on the employed controller. For example, robots

controlled kinematically might show big tracking errors for

certain motions. In those cases, when the available controller

does not allow to precisely track the planned motion, the

separation between planning and control is not suitable. This

is the case for many robotic fields, as aerial manipulation or

humanoid robotics, where the complexity of the system does

not always allow to obtain very precise controllers.

In this paper, we propose an approach to reinforce the con-

nection between motion planning and control in the context

of aerial manipulation. The underlying idea is conceptually

very simple. It consists in using the controller as a local

method to connect neighboring states within a (global) mo-

tion planning algorithm. More precisely, our method is based

on a sampling-based motion planning algorithm that uses

the controller as local planner. The computed trajectories are

guaranteed to satisfy task constraints, in addition to other

geometric, kinematic and dynamic constraints. Assuming an

accurate model and an appropriate control method, the use

of the controller inside the planner guarantees the feasibility

of the trajectory for the real system and also allows to better

predict the behavior of the closed loop system as singularities

or big tracking errors.

Another advantage of the proposed approach is that the use

of control methods that directly treat the redundancy of the

system allows the planner to search for a solution directly in

the reduced and more relevant task space. Planning directly

at the task level permits a more straightforward formulation

of task-constrained motion planning problems, and in general

reduces the dimensionality of the search space. This idea has

been often exploited in related works (see, e.g., [13]). Finally,

by properly defining the task one can choose a good trade-off

between the dimension of the search space and the delegation

of the redundant degrees of freedom to the local controller.

It should be noted here that, although the proposed method

has been firstly conceived for aerial manipulators, it can be

applied to other types of system thanks to the generality of

the paradigm.

The paper is organized as follow: we model the considered

robotic system in Sec. II. The planning problem and the

control-aware planning paradigm are described in Sec. III

and Sec. IV, respectively. The proposed control strategy and

planning algorithm are explained in details in Sec. V and

Sec. VI, respectively. In Sec. VII we show the numerical

results. Conclusions and future development are finally dis-

cussed in Sec. VIII.

II. MODEL

This section presents the mathematical model of an aerial

vehicle equipped with a manipulator. Figure 1 shows an

instance of the generic robotic system under study. We define

an inertial frame FW = {OW ,xW ,yW ,zW}, with origin OW

and unit axes (xW ,yW ,zW ). The vector zW is assumed to be

directed in the opposite direction of the gravity vector.

A body-fixed frame FR = {OR,xR,yR,zR} is attached to

the aerial vehicle, in which the origin OR coincides with the

Center of Mass (CoM) of the vehicle (without arm). The

position and orientation of the vehicle w.r.t. FW are given

by the vector pR 2 R
3 and the rotation matrix RR 2 SO(3),

respectively. We denote by qR =(pR,RR)2CR =R
3⇥SO(3)

the full configuration of the sole aerial vehicle. Its velocity

can be defined as vR = [ṗ>R ω
>
R ]
> 2 VR ⇢ R

6, where ṗR =
dpR/dt and ωR 2R

3 is the angular velocity of FR w.r.t. FW

and expressed in FR. The aerial vehicle is a multidirectional-

thrust platform, with nR 2 N
�6 thrusters rigidly attached to

the vehicle body. We define the vector fR = [ f1 . . . fnR
]> 2

R
nR where fi 2 R�0 for i = 1, . . . ,nR is the force intensity

produced by each rotor.

The vehicle is endowed with a robotic arm consisting of

n 2 N�0 links. In order to describe its configuration, we

rigidly attach to each link a frame FJi = {OJi,xJi,yJi,zJi}
with i = 1, . . . ,n, using the standard Denavit-Hartenberg

convention [14]. In particular, zJi is the axis of actuation of

the i-th joint, either rotational or prismatic; qJi 2 R denotes

the rotation angle about zJi or the translation along zJi. The

configuration of the arm is then given by the vector qA =
[qJ1 . . .qJn]

> 2 CA ⇢ R
n. The velocity of the arm is defined

as vA = q̇A 2VA⇢R
n. We assume that each joint is driven by

a motor applying a generalized torque τJi 2R along the joint

axis zJi, for i= 1, . . . ,n. We define by τA = [τJ1 . . .τJn]
> 2Rn

the vector containing all the motor torques.

We finally denote by q = (qR,qA) 2 C = CR ⇥CA the

full configuration of the aerial robotic system, and by v =
[v>R v>A ]

> 2 V = VR ⇥ VA the corresponding velocity. Its

acceleration is finally given by v̇ = [v̇>R v̇>A ]
> 2A = AR⇥

AA. Using Newton-Euler method, we can write the aerial

manipulator dynamics in the following form:

M(q)v̇ = c(q,v)+g(q)+G(q)u, (1)

where M(q) 2 R
(6+n)⇥(6+n) is the positive-definite inertia

matrix, c(q,v) 2 R
(6+n) is the vector collecting the cen-

trifugal and Coriolis forces, g(q) 2 R
(6+n) represents the

gravitational term, G(q)2R(6+n)⇥(nR+n) is the input matrix,

and u = [f>R τ
>
A ]> 2 R

(nR+n) is the vector containing all

the inputs of the aerial manipulator. The robot state is

defined as x = (q,v, v̇) 2X = C ⇥V ⇥A , collecting the

configuration, the velocity and the acceleration of the robotic

system, whilst X , is defined as the robot extended1 state

space, shortly called state space in the following.

1In fact, strictly speaking, the robot state space is only C ⇥V .
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The end-effector of the arm is characterized by an attached

frame denoted as FE = {OE ,xE ,yE ,zE}. Its configuration is

given by qE = (pE ,RE) 2 CE = R
3⇥SO(3), with pE 2 R

3

and WRE 2 SO(3) representing the corresponding position

and orientation w.r.t. FW , respectively. The linear and an-

gular velocities of the end-effector w.r.t. FW are described

by the vector vE = [ṗ>E ω
>
E ]
> 2 VE ⇢ R

6. The end-effector

pose, velocity and acceleration can be computed from the

full state of the aerial manipulator x, by using the forward

kinematics fE(·) and its time derivatives, :

qE = fE(q), vE = JE(q)v,

v̇E = JE(q)v̇+ J̇E(q,v)v
(2)

where JE(q) 2 R
6⇥(6+n) is the Jacobian matrix. We call

xE = (qE ,vE , v̇E) 2XE = CE ⇥VE ⇥AE , the end-effector

state.

III. PROBLEM FORMULATION

In many applications related to manipulation, we want the

end-effector of a robot to track a certain trajectory or, in the

case of inspection by contact, to reach a series of points on

a surface of interest while being in contact with the surface.

In those cases, we are not interested on the full system

motion, but rather in the correct execution of the sought task.

The redundancy, if any, can be exploited to optimize other

criteria.

Let us define a task characterized by a m-dimensional

vector y belonging to the subset Cy = {y 2 R
m | f c

y
(y) =

0} ✓ R
m, defined by the function f c

y
: Rm ! R

m0 with

0 < m0  m. The task y is linked to the robot configuration

by the kinematic map fy : C ! R
m, such that

y = fy(q). (3)

Notice that a task is feasible if dim(Cy) dim(C ). Then, let

us call Cobs ⇢C the set of configurations for which the robot

is in collision with some obstacles. Consequently, Cfree =
C \Cobs is the free space. In this manuscript we address the

following task-constrained motion planning problem:

Problem 1. Consider the robot whose dynamic model is

described by (1) with a certain initial state, x0. Consider

also a certain task y 2 Cy , which is related to the robot

configuration variables by (3). Given a desired final task

value y? 2 Cy , the problem is to find a collision-free

trajectory q(t) 2 Cfree, which is feasible w.r.t. the robot

dynamics, and such that task constraints are satisfied, i.e.,

y(T ) = fy(q(T )) = y?, and y(t) = fy(q(t)) 2 Cy for all

t 2 [0,T ] and T 2 R>0.

IV. ALGORITHM OVERVIEW

The proposed control-aware motion planner combines a

control method, used as local planner, and a sampling-based

algorithm to compute the global trajectory (global planner).

The approach is based on the following reformulation of

the problem. Given a certain desired task trajectory, yd(t),
we define the vector xd

y
= [yd> ẏd> ÿd>]> 2Xy = Cy ⇥

Vy⇥Ay , called task state, where Vy and Ay are the space of

Cy

C

q
i+1

q
i

y
i

y
i+1

q(t)

y
d(t)

Γ(q,v,xd
y
)

Cobs

Fig. 2: Schematic representation of the control-aware planning
paradigm. To each trajectory in the task space corresponds a motion
of the robot, by-product of the used local controller.

the velocities and accelerations of the task, respectively. The

space Xy will be called task state space in the following.

Then, we assume that a controller

u= Γ(q,v,xd
y
), (4)

is applied to the system (1), such that the task error ey =
yd(t)�y(t) asymptotically converges to zero. If the system

is redundant w.r.t. the task, the controller optimizes the

remaining degrees of freedom according to given criteria (see

Sec. V-B for the details). Inside the proposed motion plan-

ning algorithm, the controller Γ(q,v,xd
y
) will serve as local

planner, also called steering method, to connect states. This

will be further explained in Sec. VI. The task-constrained

motion planning problem can be then reformulated as:

Problem 2. Find a desired task trajectory yd(t) that, used as

reference for the controller (4), will generate a robot motion

that solves Problem 1.

The sampling-based algorithm can then search for a solu-

tion to Problem 2 directly in Xy (also called search space),

delegating to the controller the generation of the full robot

configuration. For a planned (local) trajectory in the task

space yd(t) for t 2 [0 . . .T ], the corresponding motion of

the full robot q(t) is obtained simulating the closed loop

system. The validity (i.e., collision freeness, input feasibility,

etc.) of the states generated by the controller is checked

by the global planner. Indeed, the controller might not have

an obstacle avoidance feature or the capability to check for

other constraints of the system. Figure 2 shows a schematic

representation of the approach.

Once the planner finds a solution, the planned trajectory

in the task space yd(t) can be given as reference to the

controller for execution. Since the closed loop system has

already been simulated inside the planner, even in the case

of tracking errors, the real behavior of the system will be

very close to the planned one. Thus, the execution of the

trajectory will be in general more consistent and reliable.

Trade-off between delegation and exploration

In our approach, the management of redundant degrees of

freedom (w.r.t. the task) is delegated to the controller. It is

clear that a high level of delegation implies a small dimension

of the search space, and thus a lower complexity. However,

it also forces the global planner to look for a solution only
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in the search space, i.e., the space of DoFs of the robot

that are ‘non-redundant’ w.r.t. to the task at hand. In other

words this approach reduces the ‘exploration authority’ of the

global planner for the sake of a reduced complexity. This

is an important issue for the (probabilistic) completeness

of the planner, which may fail to find exiting solutions in

some cases. To circumvent this problem, one can consider

additional ‘tasks’ that increase the dimension of the search

space, increasing the chances to find a solution. In particular

consider that a task y0 2Cy
0 and the relative task space Xy

0

has been defined. Let us assume that the planner, searching

in Xy
0 for a solution, after a certain time, it is still not able to

find a trajectory yd 0(t) solution of Problem 2. To increase the

chances of finding a solution we can then enlarge the search

space defining an additional task y00 2 Cy
00 and the relative

task space Xy
00, such that dim(Cy

0) < dim(Cy
0
⇥Cy

00) 
dim(C ). We can then consider Xy = Xy

0
⇥Xy

00 as a new

task space for the planner, in which it will search for a

solution yd(t) = [yd 0(t)> yd 00(t)>]>. One has only to modify

the second-order inverse kinematics controller to follow the

new extended task y. Doing so, we remove constraints to

the planner, adding them to the controller.

The addition of new tasks to increase the dimension

of the search space can be done incrementally. When the

planner struggles on finding a solution inside Xy , a new

task involving one or a small number of DoFs is added until

a solution is found, if this exists. In the worst case, we will

reach dim(Xy) = dim(X ), thus preserving the probabilistic

completeness of the sampling-based planner, which comes

at the cost of increasing complexity. Nevertheless, this worst

scenario will rarely happen in practical applications.

We have to highlight that the need of increasing the

dimension of Xy strongly depends on the local controller.

For example, if the controller already includes a local ob-

stacle avoidance capability, the planner will probably find

a solution more easily, without the need of extending Xy .

Note also that, using a more sophisticated implementation

of the planner, the extension of Xy could be done only

temporary. If the planner gets blocked in a region of the

space, the dimension of Xy can be locally increased only in

this area. Afterwards, the search space can be reduced back

to the original dimension.

V. CONTROL STRATEGY

The proposed control strategy is based on the separation

between the kinematic and the dynamic loops, yielding the

approach known in the literature as kinematic control. This

approach is particularly suited to handle redundant systems

and thus to assign multiple control objectives beyond the sole

arm’s end-effector, e.g., obstacle avoidance or mechanical

joint limits, etc. Assigning a relative priority leads to what

is known as task-priority inverse kinematics, which has

been successfully implemented for aerial manipulation [6].

Such methods apply null-space-based behavioral control [7].

Figure 3 shows a schematic representation of the proposed

control strategy.

ΓIK(q,v,xd
y
)

q

y
d

q
d

C

q
ΓDY (q,v,x

d) u

Γ(q,v,xd
y
)

qAerial

Manipulator

q
d

C

Inverse Kinematics

Dynamic control

Fig. 3: Block diagram describing the control strategy.

We can decompose the controller (4) in the following way:

xd = ΓIK(q,v,x
d
y
), u= ΓDY (q,v,x

d), (5)

where xd = [qd> vd> v̇d>]>, ΓDY (q,v,x
d) and

ΓIK(q,v,x
d
y
) are the dynamic and inverse kinematics

controller, respectively. Due to the inner-outer loop nature

of the proposed control strategy, the performance of the

inverse kinematics controller to minimize the task error

(outer loop) will improve when the dynamic controller

(inner loop) is able to let the robot accurately follow the

reference trajectory.

A. Dynamic controller

One of the positive features of using the control architec-

ture presented above is that the inverse kinematics and the

dynamic controllers are independent one of each other. A

simple approach for the dynamic controller is obtained by

considering the vehicle and the arm as two separate subsys-

tems, i.e., without physical interaction [2], [3]. This control

strategy obviously suffers for demanding trajectories, when

the interaction terms become significant. More advanced

non linear controllers consider the full system dynamics

providing better performance [1], [4], [15]. However, since

they strongly depend on the dynamic model, they are in

general not very robust to model uncertainties. A recent

technique is instead based on the flatness of the system to

develop a controller that considers the full system dynamics

but is still robust to modeling errors [5].

For the system considered in this work, we imple-

mented a standard feedback linearization technique. This

is possible because the considered vehicle is fully ac-

tuated, i.e., considering (1), G(q) is full rank. There-

fore, we designed the controller as ΓDY (q,v,x
d) =

G(q)�1 (M(q)v̇?�c(q,v)�g(q)) where v̇? is the desired

acceleration that brings the tracking error to zero, i.e., v̇? =
v̇d +KDY

D (vd�v)+KDY
P (qd�q).

B. Inverse kinematics controller

Inverse kinematics techniques can be implemented by

resorting to the first or second order derivatives. In this case,

in order to achieve smooth trajectories, the latter have been

taken into account. Let us consider the task y 2 Cy defined

in (3) and differentiate it twice

ẏ =
∂fy

∂q
v = J(q)v, ÿ = J(q)v̇+ J̇(q,v)v, (6)

where J(q) is the Jacobian of the task w.r.t. q. The trajectory

for the robot configuration, qd(t), that steers y(t) along to
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extraction of solution trajectory (bottom). The images on the left
represent the planning tree. On the right, we illustrate how one edge
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the task space to the robot state space using the local controller.

yd(t), can be computed integrating v̇d , which is calculated

by the following expression:

v̇d = J†
�

ÿr
� J̇v

�

, ÿr = ÿd +KDėy +KPey, (7)

where KD 2 R
m⇥m and KP 2 R

m⇥m are positive defined

matrices, and J† is the Moore-Penrose pseudo-inverse of

the Jacobian matrix.

For the robotic system under study, Cy has a lower

dimension w.r.t. C , i.e., the system is redundant. Therefore,

a multi priority approach can be used such as, e.g. [16]. As

anticipated, the tasks are handled in a flexible way, i.e., by

adding/removing tasks based on the need to find a solution

to Problem 2.

VI. SAMPLING BASED GLOBAL PLANNER

For the sake of clarity, we will consider here only the

case in which the search space is equal to the task space.

Treating the general case would involve the addition of new

variables to increase the dimension of the search space, and

the corresponding modification in the controller to consider

the associated ‘tasks’ as explained in Sec. V-B.

Algorithm 1 shows the pseudo-code of the proposed

control-aware planner. In this work, we have applied the

Rapidly-Exploring Random Trees (RRT) algorithm [11] for

the exploration of the task space. However, as it will be

explained in Section VIII, other algorithms could be used.

The algorithm samples states in the task space with a

uniform distribution and extends the exploration tree using

the controller until a leaf reaches the desired goal.

Although the RRT algorithm operates in the task space,

each vertex of the exploration tree, T , denoted by the

symbol ni, contains the desired task state xd
y

i := xd
y
(ti) and

the corresponding robot state xi := x(ti) at a certain time

ti 2 R>0. The edge, Ei, j, from vertex ni to n j contains the

desired task trajectory xd
y
(t) from value xd

y

i to xd
y

j, and the

outcome of the simulated closed loop system, namely q(t)
for t 2 [ti, t j]. The latter is needed to check the feasibility of

the local motion. Fig. 4 illustrates the several stages of the

planning process.

Algorithm 1: Control-Aware Motion Planner

Input:

1: task y 2 Cy , in terms of functions f c
y
(y) and fy(q)

2: initial robot state, x0 2X

3: desired final task value y? 2 Cy

Output: task trajectory xd
y
(t) for t 2 [0,T ]

Main:

1: x0
y
 forwardKinematics(x0)

2: n0 initVertex(x0
y
,x0)

3: T  initTree(n0)
4: while not stopCondition(T ,y?) do

5: xd
y

rand  sampleRandomTask(Xy)

6: nnear  nearestNeighbor(T ,xd
y

rand)

7: nnext  extend(nnear,xd
y

rand)
8: if notEmpty(nnext) then

9: addNode(T ,nnext)
10: yd(t) getTaskTrajectory(T )
11: return xd

y
(t)

Starting from a given initial robot state x0, the tree is ini-

tialized computing the initial task state x0
y

corresponding to

x0. This is done using forward kinematics, i.e., equations (3)

and (7). The initial vertex n0 = (x0,x0
y
) is then added to the

tree. The methods used at each iteration of the RRT algorithm

are discussed in the following sub-sections. Once the planner

finds a solution, the desired task trajectory is returned. The

latter will be then used as reference for the controller, for

execution with the real robot.

A. Steering method

The function extend(ni,x j
y) in Algorithm 1 is divided

into three main phases:

1) First, a trajectory for the desired task xd
y
(t) is computed

such that xd
y
(ti) = xd

y

i and xd
y
(t j) = xd

y

j for a certain

t j > ti. To this purpose, any trajectory generator can be

applied. However, with the aim to produce short trajec-

tories, we use the minimum-time trajectory generator

presented in [17]. This method ensures the generation

of a continuous and derivable trajectory (up to the

4th order) respecting the constraint xd
y
(t) 2Xy for all

t 2 [ti, t j].
2) The closed loop system, i.e., (1) together with (5), is

simulated starting from the robot state xi and using

xd
y
(t), computed at the previous step, as reference for

the controller. The numerical simulation provides the

motion of the robot, i.e., x(t), while tracking xd
y
(t) for

t 2 [ti, t j].
3) If x(t)2X and q(t)2Cfree for all t 2 [ti, t j], the motion

can be considered as ‘valid’. Afterwards the node n j =
(xd

y

j,x(t j)) and the edge Ei, j are added to the tree.

B. Metric in the task state space

In kinodynamic planning, the metric has a crucial role

to obtain good results. However, computing the distance be-

tween two states can be computationally very expensive [11].

In fact, one should try to extend every node in the tree

toward the sampled state and add to the tree only the edge

characterized by the feasible trajectory with minimum time.
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This will drastically increase the computational cost. Instead,

we use the approximate quasi-metric presented in [17]. This

method allows to compute in closed-form an approximation

of the time associated with the local path that would be

obtained by the steering method trying to extend a vertex. It

has been shown that it is a good approximation that allows

to substantially reduce the computing time for the global

planner.

VII. RESULTS

For the evaluation of the planner, we considered the

aerial manipulator shown in Fig. 1: an hexarotor with

tilted propellers (presented in [1]) endowed with a planar

2-link robotic arm (presented in [5]). A sensor for surface

inspection is installed at the end-effector. The popularity

of multidirectional-thrust vehicles w.r.t. unidirectional-thrust

platform is increasing thanks to their proven superiority for

aerial manipulation [1]. Indeed, they allow to independently

control position and orientation, and to instantaneously react

to interaction forces and external disturbances.

The vehicle is characterized by a mass, mR = 1.2 [kg], and

an inertia tensor w.r.t. FR, JR = diag(0.02,0.02,0.025) [kg ·
m2]. The lengths of the first and second links of the arm are

0.3 [m] and 0.25 [m], respectively. Their masses are 0.145 [kg]
and 0.123 [kg], respectively. The arm is attached at 0.05 [m]
below the CoM of the aerial vehicle, along the z-axis. We

tested the method in simulation using two scenarios:

a) A challenging cluttered environment with several obsta-

cles. One of them is a concave obstacle made of three

walls in a U-shaped configuration. This type of obstacle

can be a trap for classical local controllers. The surface

being inspected is the flat ground.

b) An application-oriented scenario. The task consists in the

inspection by contact of a cylindrical pipe in an industrial

site. The surface of interest is the outer part of the pipe.

In both cases, the task consists in safely bringing the end-

effector of the robot, endowed with the inspection sensor, to

a desired point on the surface of interest, keeping the contact

while moving. In Scenario b) the task includes the orientation

of the end-effector as well. Indeed, the last link has to be

perpendicular to the surface to properly gather the data.

Once defined the task, the robot is controlled as defined

in Sec. V, i.e., using a second order inverse kinematics

controller plus a dynamic controller based on dynamics

inversion.

Figure 5 shows the planned trajectories for the two consid-

ered scenarios. One can notice how the search tree grows in

the task space until the planner finds a task trajectory, yd(t),
solving Problem 2. Videos showing the robot following the

trajectories are in the multimedia attachment.

We compared the proposed method against a purely-

reactive (optimization-based) method based on a local con-

troller using a simplified version of Scenario a) involving

the U-shaped obstacle only. In particular, we used the NSB

method including an obstacle avoidance feature based on

virtual potential fields. As expected, using only the local con-

troller, the robot gets trapped between obstacles and does not

Start

Start

Goal Goal

Fig. 5: Images of the motions provided by the control-aware planner
for the Scenario a) (left) and Scenario b) (right). The desired task
trajectory is represented by a red line, ending in the goal task
position. The yellow dots are the vertexes of the tree, while the
green lines are the edges. The images (from the top to the bottom)
show intermediate snap-shoots along the solution trajectories.

Planning
time

Rejected
nodes

Accepted
nodes

Trajectory
time

Path
length

[s] # # [s] [m]

a)
Average 47.26 58.75 62.15 97.34 9.6

σ 6.61 18.5 2.25 8.14 0.71

b)
Average 21.92 28.5 22.5 35.6 3.7

σ 5.3615 11 0.8 4.08 0.5

Steering
method

Collision
checking

Neighbor
search

Selection of
the best path

% of total time 63.78 1.54 28.94 5.72

TABLE I: Performance of the planner out of 20 runs for the two
scenarios. σ stands for the standard deviation.

reach the goal. Additional details about this experiment are

included in a technical report in the multimedia attachment.

The planner has been implemented in ROS using Moveit!2

and the OMPL library3. To quantify the performance of the

planner, we run the method 20 times for each scenario. Tab. I

reports the average and the standard deviation of the most

meaningful variables. It also shows the repartition of the total

planning time between the four major operations. One can

observe that the majority of the time is taken by the steering

method, which has to simulate the system. Note however that

we have used a preliminary implementation, which could be

substantially improved to reduce computing time.

VIII. CONCLUSIONS

We have presented a task-constrained motion planner for

aerial manipulation based on the paradigm of combining

sampling based motion planning methods together with

local controllers. The motivation comes from the fact that,

2http://moveit.ros.org/
3http://ompl.kavrakilab.org/
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although trajectories generated by planning methods may

have good theoretical properties, in practice, control methods

applied for motion execution may have difficulties to track

them. This is particularly true for complex robot systems

such as aerial manipulators. Therefore, we propose to apply

control methods already at the trajectory planning stage.

More precisely, we considered a second-order inverse kine-

matics controller together with a dynamic controller. The use

of this controller inside a RRT-based planner has a threefold

advantage: i) generating motions that are feasible for the real

closed loop system; ii) planning directly in the reduced and

more relevant task space; iii) considering control singularities

and tracking errors already at the planning level.

In this work, we have applied a basic RRT algorithm

as global planner. However, the proposed paradigm can be

extended to other planners. Note however that the use of the

controller as a local planner imposes some restrictions at this

level, since planning algorithms requiring the solution of a

two-point boundary value problem (BVP) to connect sampled

states involving the full system cannot be directly applied in

this context. This is for instance the case of RRT* [18], which

is an asymptotically-optimal variant of RRT. An interesting

alternative for optimal trajectory planning would be the SST*

algorithm [19], which does to rely on a BVP solver. Other

technical improvements of the algorithm can be investigated,

e.g., biased sampling to favor particular regions of the search

space, post-processing to shorten the trajectory, or real-time

implementation to take into account dynamic environments

or incremental map building, etc.

As natural future work, we aim to test the proposed

approach on a real aerial manipulator. Finally, we should

mention that the general ideas proposed in this paper could

be applied to other areas in robotics in addition to aerial

manipulation.
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Additional Analysis and Simulations for the Control-Aware Planner

Technical report of:

“Control-Aware Motion Planning for Task-Constrained Aerial Manipulation”
IEEE Robotics and Automation Letters, Special Issue on Aerial Manipulation

M. Tognon1, E. Cataldi2, H. A. Tello Chavez1, G. Antonelli2, J. Cortés1, A. Franchi1

Abstract— This document is a technical attachment to [1] as
an extension of the validation part. Here we present additional
plots, simulations, and analysis of the proposed method. The
parameter of the simulated system are the one reported in [1].

I. HOW TO CITE THIS WORK

This technical report is accompanying our IEEE Robotics
and Automation Letters paper [1]. If you wish to reference
this work, please cite this paper as follows:

@Art i c l e {Tognon18ra l ,
a u t h o r = {M. Tognon and E . C a t a l d i and

H. A. T e l l o Chavez and G. A n t o n e l l i and
J . Cor t \ ’ e s and A. F r a n c h i } ,

t i t l e = {C o n t r o l−Aware Motion P l a n n i n g f o r
Task−C o n s t r a i n e d A e r i a l M a n i p u l a t i o n } ,

j o u r n a l = {{ IEEE} Robot . Autom . L e t t . ,
S p e c i a l I s s u e on A e r i a l M a n i p u l a t i o n } ,

y e a r = {2018} ,
d o i = {1 0 . 1 1 0 9 /LRA. 2 0 1 8 . 2 8 0 3 2 0 6} ,

}

II. COMPARISON WITH ONLY LOCAL CONTROL

STRATEGY

We compared the proposed method against a purely-

reactive (optimization-based) method based on a local con-

troller using a simplified version of Scenario a) involving the

U-shaped obstacle.

Figure 1a shows the results obtained using only the local

controller to achieve the goal task. For this, we have used the

NSB method including an obstacle avoidance feature based

on virtual potential fields. As expected, the robot gets trapped

between the walls and does not reach the goal.

On the contrary, the proposed control-aware-planner is

able to find a proper solution to Problem 2 of [1], providing a

good task trajectory, xd
y
(t), that brings the end-effector to the

desired goal avoiding the obstacles. The growth of the tree,

the final desired task trajectory, and the relative execution is

shown in Fig. 1b.

III. ADDITIONAL SIMULATION RESULTS

In the following we present more detailed plots of the

trajectory planed and executed by the robot in the two

scenarios considered in Sec. VII of the paper. In particular,

Fig. 2a and Fig. 2b show the tracking of the end-effector

trajectory and the evolution of the configuration of the robot

for scenario a) and b), respectively.
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Start

Goal

(a) Only local controller with an obstacle avoidance feature.

Start

Goal

(b) Solution fond by the control-aware planner.

Fig. 1: Images of environment and of the motions provided by the local controller alone (a) and by the proposed control-aware planner
(b). In both cases, the desired task trajectory is represented by a red line, ending in the goal task position. In Fig. (b), the yellow dots are
the vertexes of the tree, while the green lines are the edges.
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(a) Scenario a).
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(b) Scenario b).

Fig. 2: End-effector tracking and configurations variables corre-
sponding to the motion found by the planner for the two scenarios
considered in Sec. VII of the paper. (xE ,yE ,zE) and (xr,yr,zr) are
the coordinates of the position of the end-effector and of the aerial
vehicle, respectively. (qJ1,qJ1) are the joint angles of the arm. The
line with circles corresponds to the desired end-effector trajectory
provided by the planner.
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