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Abstract— This paper provides an introduction and overview
of recent work on control barrier functions and their use to ver-
ify and enforce safety properties in the context of (optimization
based) safety-critical controllers. We survey the main technical
results and discuss applications to several domains including
robotic systems.

I. INTRODUCTION

It is easy to agree that any engineered system should

be designed to be safe. In fact, the term safety-critical

system is many times used to distinguish those systems

for which safety is a major design consideration. But what

exactly is safety? How do we define it and how can we

design systems to achieve it? The notion of safety was first

introduced in 1977 in the context of program correctness

by Leslie Lamport [1] and formalized in [2], see also [3].

Intuitively, safety requires that “bad” things do not happen

while liveness requires that “good” things eventually happen,

e.g., asymptotic stability can be seen as an example of a

liveness property in the sense that an asymptotically stable

equilibrium point is eventually reached. Dually, invariance

can be seen as an example of a safety property in the sense

that any trajectory starting inside an invariant set will never

reach the complement of the set, describing the locus where

bad things happen. Based on the identification of liveness

with asymptotic stability and safety with invariance, it can be

argued that safety has received much less attention in control

theory than liveness. Moreover, the notion of Lyapunov

function has played a predominant role in the investigation

of liveness properties.

The objective of this paper is to refocus the discussion

on safety by introducing control barrier functions that play a

role equivalent to Lyapunov functions in the study of liveness

properties. There are two main reasons driving a surge in

research related to safety and control barrier functions: 1) the

recent interest in autonomous systems has brought safety to

the forefront of systems’ design. In particular, autonomous
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systems are expected to operate in unknown and unstructured

environments which makes it considerably harder to enforce

safety properties; 2) the recent introduction of control barrier

functions suggests that many control design techniques based

on Lyapunov and control Lyapunov functions can be suitably

transposed to address safety considerations. Hence, we have

both the societal need for safety as well as the tools to

raise safety to the same level of maturity than liveness in

the design of control systems.

A. Brief History of Barrier Functions

The study of safety in the context of dynamical systems

dates back to the 1940’s when Nagumo provided necessary

and sufficient conditions for set invariance [4] (see [5] for

a more detailed historical account, and [6] for a modern

proof). In particular, given a dynamical system ẋ = f(x)
with x ∈ R

n, assuming that the safe set C is the superlevel

set of a smooth function h : R
n → R, i.e., C = {x ∈

R
n : h(x) ≥ 0}, and that ∂h

∂x
(x) 6= 0 for all x such

that h(x) = 0, then Nagumo’s Theorem gives necessary

and sufficient conditions for set invariance based upon the

derivative of h on the boundary of C:

C is invariant ⇔ ḣ(x) ≥ 0 ∀ x ∈ ∂C.

These conditions have been independently re-discovered on

multiple occasions; in particular, around the 1970s by Bony

and Brezis [7], [8] (the proof in [6] follows Brezis).

In the 2000’s we saw another change of perspective

brought by the need to verify hybrid systems. Barrier cer-

tificates were introduced as a convenient tool to formally

prove safety of nonlinear and hybrid systems [9], [10]; these

results, again, seemed to independently discover Nagumo’s

theorem. The choice of the term “barrier” was motivated by

its use in the optimization literature where barrier functions

are added to cost functions to avoid undesirable regions. In

the case of barrier certificates, one considers an unsafe set

Cu and a set of initial conditions C0 together with a function

B : Rn → R where B(x) ≤ 0 for all x ∈ C0 and B(x) > 0
for all x ∈ Cu. Then B is a barrier certificate if

Ḃ(x) ≤ 0 ⇒ C is invariant

In the notation for C above, by picking the safe set to be the

complement of the unsafe set C = Cc
u, with B(x) = −h(x)

the barrier certificate conditions become: ḣ(x) ≥ 0 which

implies that C is invariant. Therefore, these conditions reduce

to those of Nagumo’s theorem on the boundary. Importantly,

the necessity of barrier certificates were studied [11] along

with their extension to a stochastic setting [12].
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As a means to extend the safety guarantees beyond the

boundary of the set, there have been a variety of approaches

that can be best described as “Lyapunov-like.” That is,

Lyapunov functions yield invariant level sets so, if these level

sets are contained in the safe set one can guarantee safety—

importantly, these conditions can be applied over the entire

set and not just on the boundary. In this case, as developed in

[13], one constructs a “barrier Lyapunov function” B much

as above but with the additional requirement that it is, for

all intents and purposes, positive definite. Then, by enforcing

the condition that Ḃ ≤ 0 over the set C, it ensures invariance

of this set and thus safety. The major limitation is that, while

these conditions ensure safety they also enforce invariance of

every level set. Thus, they are overly strong and conservative.

While the above results addressed closed dynamical sys-

tems, i.e., systems without inputs, the work on viability

theory [14], [15], [16] extended them to open dynamical

systems, e.g., control systems given by ẋ = f(x) + g(x)u
for u ∈ U ⊂ R

m. This required moving from invariant sets

to controlled invariant sets: sets that can be made invariant

by suitably designing a controller.

The notion of a barrier certificate was extended to a

“control” version to yield the first definition of a “control

barrier function” [17]—although this definition is different

than the one considered in this paper. In particular, given

a control system and a safe set C as defined above by a

function h, the conditions in [17] are effectively:

∃ u s.t. ḣ(x, u) ≥ 0 ⇒ C is invariant

These ideas were built upon so as to explicitly combine

barrier functions with control Lyapunov functions [18]—

this was done contemporaneously with the development of

the methods presented in this paper which use optimization

based controllers to unify Lyapunov and barrier functions.

In particular, as further developed in [19], conditions were

given on creating “control Lyapunov barrier functions” that

jointly guarantee safety and stability. Yet, in these cases

the conditions in the end reduce to enforcing ḣ(x, u) ≥
0. However, these conditions are stronger than necessary,

and thus motivate the “modern” version of control barrier

functions.

The aforementioned methods all led to the most recent

formulation of certificates of safety, termed control bar-

rier functions, as recognition of the historical developments

outlined above—these were first introduced in [20], and

later refined in [21]. In particular, the idea was to extend

the barrier function conditions (e.g., those discovered by

Nagumo) to the entirety of the safe set. For a control system,

and a safe set C defined by a function h, this new form of

control barrier functions are defined by the condition:

∃ u s.t. ḣ(x, u) ≥ −α(h(x)) ⇔ C is invariant

for α an (extended) class K function. Importantly, this con-

dition is necessary and sufficient (for compact sets) and thus

is minimally restrictive. Finally, because these conditions are

true over the entire set C they give a way to synthesize safe

controllers—in this case, through the use of optimization-

based control methods that modify the desired controller

again in a minimally invasive fashion. This formulation,

therefore, provides a foundational framework for safety-

critical control.

The utility of this new formulation of control barrier

functions is evidenced by the application domains it has

been applied to since its inception, including: automotive

systems [22], [23], [24], mulit-robot systems [25], [26],

[27], quadrotors [28], [29] and robotic systems including

walking robots [30], [31], [32], to name a few. Additionally,

it allows for the unification of safety (via a control barrier

function) and stability (via a control Lyapunov function) in

the context of an optimization based controller—in fact, it

was optimization based controllers using control Lyapunov

functions that motivated the development of this new form of

barrier function. This formulation of control barrier functions

will be the focus of this paper, as motivated by the conceptual

connections with control Lyapunov functions together with a

recognition of the basic differences between control barrier

and Lyapunov functions.

B. Overview of Paper

Building upon the history of barrier functions, and moti-

vated by the new developments, this paper aims to establish

the basic theory of safety-critical control and highlight some

important applications.

Theory: We begin in Section II by establishing the founda-

tions of control barrier functions. This is motivated from the

perspective of stabilization with control Lyapunov functions,

leading to the “dual” of stability: safety as enforced by

control barrier functions. The properties of these functions

are discussed, along with the synthesis of optimization-based

controllers. In Section III, the application of CBFs to systems

with actuation constraints is considered. Finally, in Section

IV, the extension of CBFs to constraints with higher relative

degree is considered.

Application: The discussion of the application of CBFs be-

gins in Section V with the consideration of robotic systems.

In particular, we begin by considering the “stepping stone”

problem, wherein a robot must walk safely on a series of

stepping stones. This is followed by a brief discussion of

the experimental implementation of barriers in the context

of automotive safety systems and dynamic robotic systems.

Additionally, the application of CBFs in the context of

long duration autonomy is formulated and demonstrated

experimentally.

II. FOUNDATIONS OF CONTROL BARRIER FUNCTIONS

In this section, we introduce the fundamentals of control

barrier functions. That is, we introduce safety, safety sets, and

a means in which to enforce safety in a minimally invasive

fashion. To motivate these considerations, we will begin by

reviewing control Lyapunov functions (CLFs) and discuss

how they can be used to synthesize controllers that enforce

stability. This naturally leads to the “dual” for safety: control

barrier functions (CBFs). We will formulate optimization



based controllers from CBFs and conclude by describing how

they can be unified with CLFs.

Throughout this paper, we will suppose that we have a

nonlinear affine control system:

ẋ = f(x) + g(x)u, (1)

with f and g locally Lipschitz, x ∈ D ⊂ R
n and u ∈ U ⊂

R
m is the set of admissible inputs.

A. Motivation: Control Lyapunov Functions

To motivate safety for systems of this form, and hence

control barrier functions, we begin by considering the famil-

iar objective of stabilizing the system. Suppose we have the

control objective of (asymptotically) stabilizing the nonlinear

control system (1) to a point x∗ = 0, i.e., driving x(t) → 0.

In a nonlinear context, this can be achieved—and, in fact,

understood—by equivalently finding a feedback control law

that drives a positive definite function, V : D ⊂ R
n → R≥0,

to zero. That is, if

∃ u = k(x) s.t. V̇ (x, k(x)) ≤ −γ(V (x)), (2)

where

V̇ (x, k(x)) = LfV (x) + LgV (x)k(x),

then the system is stabilizable to V (x∗) = 0, i.e., x∗ = 0.

Note that here γ : R≥0 → R≥0 is a class K function

defined on the entire real line for simplicity, i.e., γ maps

zero to zero, γ(0) = 0, and it is strictly monotonic: for

all r1, r2 ∈ R≥0, r1 < r2 implies that γ(r1) < γ(r2).
Thus, the process of stabilizing a nonlinear system can be

understood as finding an input that creates a one-dimensional

stable system given by the Lyapunov function: V̇ ≤ −γ(V ),
wherein the comparison lemma (see, e. g., [33]) implies that

the full-order nonlinear system (1) is thus stable under the

control law u = k(x).
The above observations motivate the notion of a control

Lyapunov function wherein a function V is shown to stabilize

the system without the need to explicitly construct the

feedback controller u = k(x). That is, as first observed

by Sontag and Artstein [34], [35], [36], we only need a

controller to exist that results in the desired inequality on

V̇ . Concretely, V is a control Lyapunov function (CLF) if it

is positive definite and satisfies:

inf
u∈U

[LfV (x) + LgV (x)u] ≤ −γ(V (x)), (3)

where γ is again a class K function. The importance of this

definition is that it allows for us to consider the set of all

stabilizing controllers for every point x ∈ D:

Kclf(x) := {u ∈ U : LfV (x) + LgV (x)u ≤ −γ(V (x))}.
(4)

This is an affine constraint in u and thus will allow for

the formulation of optimization based controllers. It also

elucidates conditions on when V is a CLF; for example,

if U = R
m, it is easy to verify that

LgV (x) = 0 =⇒ LfV (x) ≤ −γ(V (x))

=⇒ Kclf(x) 6= ∅

and thus there are stabilizing controllers. More generally, we

have the following central stabilization result for CLFs [37].

Theorem 1. For the nonlinear control system (1), if there

exists a control Lyapunov function V : D → R≥0, i.e., a

positive definite function satisfying (3), then any Lipschitz

continuous feedback controller u(x) ∈ Kclf(x) asymptoti-

cally stabilizes the system to x∗ = 0.

B. Control Barrier Functions

Unlike stability which involves driving a system to a

point (or a set), safety can be framed in the context of

enforcing invariance of a set, i.e., not leaving a safe set. In

particular, we consider a set C defined as the superlevel set

of a continuously differentiable function h : D ⊂ R
n → R,

yielding:

C = {x ∈ D ⊂ R
n : h(x) ≥ 0},

∂C = {x ∈ D ⊂ R
n : h(x) = 0}, (5)

Int(C) = {x ∈ D ⊂ R
n : h(x) > 0}.

We refer to C as the safe set.

Safety. Let u = k(x) be a feedback controller such that the

resulting dynamical system

ẋ = fcl(x) := f(x) + g(x)k(x) (6)

is locally Lipschitz. To formally define safety, due to the

locally Lipschitz assumption, for any initial condition x0 ∈
D there exists a maximum interval of existence I(x0) =
[0, τmax) such that x(t) is the unique solution to (6) on I(x0);
in the case when fcl is forward complete [33], τmax = ∞.

This allows us to define safety:

Definition 1. The set C is forward invariant if for every x0 ∈
C, x(t) ∈ C for x(0) = x0 and all t ∈ I(x0). The system

(6) is safe with respect to the set C if the set C is forward

invariant.

Control Barrier Functions (CBFs). Using control Lya-

punov functions as motivation, we wish to generalize to the

concept of safety. Yet, one must be careful about directly

generalizing Lyapunov (as done, in particular, in [38]). If

there exists a CLF V such that V (x) = 0 =⇒ x ∈ C and

V has a superlevel set Ωc = {x ∈ D : V (x) ≤ c} ⊂ C, then

the corresponding controllers in (4) will render Ωc invariant,

and hence C safe. Nevertheless, this is overly restrictive as

it would render every sublevel set invariant, i.e., Ωc′ for all

c′ < c. Rather, we wish to enforce set invariance without

requiring a positive definite function, i.e., for h to be a

control barrier function it should render C invariant but not

its sublevel sets.

This motivates the formulation of control barrier

functions. Before defining these, we note that an

extended class K∞ function is a function α : R → R that

is strictly increasing and with α(0) = 0; that is, extended

class K∞ functions are defined on the entire real line:

R = (−∞,∞). This allows us to define [21], [22]:



Definition 2. Let C ⊂ D ⊂ R
n be the superlevel set of a

continuously differentiable function h : D → R, then h is

a control barrier function (CBF) if there exists an extended

class K∞ function α such that for the control system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)). (7)

for all x ∈ D.

Remark 3. Note that, as discussed in Section I, the first

notion of a control barrier function [20] was defined in terms

of what are now termed reciprocal barrier functions. These

blow-up on the boundary, hence the use of the term “barrier”:

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) = ∞. (8)

wherein the control barrier function condition (7) becomes:

inf
u∈U

[LfB(x) + LgB(x)u] ≤ α

(

1

B(x)

)

. (9)

This class of barrier functions can be more suitable for some

applications, but typically barrier functions, h, are preferable

since they are well defined outside of C.

Remark 4. The idea of extending set invarience conditions,

i.e., the condition that ḣ ≥ 0 for all x ∈ ∂C, to all of C
was first considered in [14] in the form of the following

condition: ḣ ≥ −h for all x ∈ C. This can be viewed as a

very special case of a CBF wherein α(r) = r in (7).

Guaranteed Safety via CBFs. We can consider the set

consisting of all control values that render C safe:

Kcbf(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.
(10)

That is, as in the case of CLFs, we can quantify the set of

all control inputs at a point x ∈ D that keep the system safe.

The main result of [21], and the main result with regard

to control barrier functions, is that the existence of a control

barrier function implies that the control system is safe:

Theorem 2. Let C ⊂ R
n be a set defined as the superlevel set

of a continuously differentiable function h : D ⊂ R
n → R.

If h is a control barrier function on D and ∂h
∂x

(x) 6= 0
for all x ∈ ∂C, then any Lipschitz continuous controller

u(x) ∈ Kcbf(x) for the system (1) renders the set C safe.

Additionally, the set C is asymptotically stable in D.

Remark 5. The condition that the gradient of h not vanish

on the boundary is equivalent to requiring that 0 is a regular

value of h [6]. Note that this condition was not explicitly

stated in [21], but the proof of this result utilizes Nagumo’s

theorem [4] which requires this regularity condition [6].

Remark 6. It is important to stress that this result not only

guarantees that the safe set C is invariant, but makes the

set C asymptotically stable. This has beneficial consequences

with regard to practical implementation. While a system will

not formally leave the safe set C, noise and modeling errors

might force the system to leave this set. As a result of the

main CBF theorem, controllers in Kcbf(x) will drive the

system back to the set C.

Necessity for Safety. Finally, we note that control barrier

functions provide the strongest possible conditions for safety

in that they are necessary and sufficient given reasonable

assumptions on C [21]:

Theorem 3. Let C be a compact set that is the superlevel

set of a continuously differentiable function h : D → R with

the property that ∂h
∂x

(x) 6= 0 for all x ∈ ∂C. If there exists a

control law u = k(x) that renders C safe, i.e., C is forward

invariant with respect to (6), then h|C : C → R is a control

barrier function on C.

C. Optimization Based Control

Having established that control barrier functions give

(necessary and sufficient) conditions on safety, the question

becomes: how does one synthesize controllers? Importantly,

we wish to do so in a minimally invasive fashion, i.e., modify

an existing controller in a minimal way so as to guarantee

safety. This naturally leads to optimization based controllers:

Safety-Critical Control. Suppose we are given a feedback

controller u = k(x) for the control system (1) and we wish to

guarantee safety. Yet it may be the case that k(x) /∈ Kcbf(x)
for some x ∈ D. To modify this controller in a minimal

way so as to guarentee safety, we start by noticing that the

conditions on safety given in (10) are affine in u. Thus, we

can consider the following Quadratic Program (QP) based

controller that finds the minimum perturbation on u:

u(x) = argmin
u∈Rm

1

2
‖u− k(x)‖2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))

where here we assumed that U = R
m. Thus, when there

are no input constraints, since we have a single inequality

constraint the CBF-QP has a closed-form solution (per the

KKT conditions [39]) given by the min-norm controller; this

was first utilized in the context of CLFs [40], [37].

Unifying with Lyapunov. The QP based formulation of

safety-critical controllers suggests a means in which to unify

safety and stability. In fact, optimization-based controllers

were first utilized in the context of CLFs exactly for the

purpose of multi-objective nonlinear control [41], e.g., com-

bining stability with torque constraints [42]. Concretely, we

consider the following QP based controller:

u(x) = argmin
(u,δ)∈Rm+1

1

2
uTH(x)u+ pδ2 (CLF-CBF QP)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ

Lfh(x) + Lgh(x)u ≥ −α(h(x))

where here H(x) is any positive definite matrix (pointwise

in x), and δ is a relaxation variable that ensures solvability

of the QP as penalized by p > 0 (i.e., to ensure the QP has a

solution one must relax the condition on stability to guarantee

safety). In [21] it was established that this controller is

Lipschitz continuous.



III. CBFS FOR SYSTEMS WITH ACTUATION

CONSTRAINTS

Consider again the nonlinear affine control system (1) and

assume there exists an allowable set of states A = {x ∈ D :
ρ(x) ≥ 0} defined via some performance function ρ : D →
R. Our objective is to construct a CBF h : D → R such that

{x ∈ D : h(x) ≥ 0} ⊆ {x ∈ D : ρ(x) ≥ 0}, (11)

that is, such that the safe set C, corresponding to the

superlevel set of the CBF h, is contained within the set

of allowed states A. Of course, it may be possible to take

h(x) = ρ(x) if this choice satisfies (7) for an appropriate

function α, in which case our objective is met.

However, in this section, we focus on the case when A
cannot be rendered invariant and instead we must find a safe

subset that is a strict subset of the allowable set. The inability

of A itself to be rendered forward invariant could be due to,

e.g., a control set U that restricts the available control actions

or due to dynamics with higher relative degree; an alternative

approach to accommodate the latter is proposed in Section

IV.

We assume that a locally Lipschitz nominal controller

β : D → U (called nominal evading maneuver in [43]) is

known. Intuitively, β encapsulates a controller that, for some

initial conditions, is expected to keep the system within the

allowable set, although no guarantees on the ability of β
to ensure safety are required a priori. For example, for an

autonomous mobile agent, β might be a swerving maneuver

or a rapid deceleration maneuver.

For any t ≥ 0 and x ∈ D, let φβ(t, x) denote the state

of the control system (1) at time t when β is used as input

and the system is initialized at x, that is, φβ(t, x) satisfies

φ̇β(t, x) = f(φβ(t, x)) + g(φβ(t, x))β(φβ(t, x)) with initial

condition φβ(0, x) = x.

A barrier function can be computed from ρ and β as

h(x) = inf
τ∈[0,∞)

ρ(φβ(τ, x)), (12)

that is, the barrier h is constructed by assigning to each point

x ∈ D the infimum value of the performance function ρ
attained along the trajectory initialized at x when the nominal

control strategy β is used. Under mild conditions on ρ and

β, h is indeed a CBF [43].

Theorem 4. Let ρ(x) be a continuously differentiable per-

formance function and let β(x) be a nominal controller such

that f(x) + g(x)β(x) is continuously differentiable. Define

h as in (12) with C the corresponding superlevel set of h
and suppose for each x there exists a unique x∗ such that

h(x) = ρ(x∗) and φβ(τ, x) = x∗ for some τ ≥ 0. Then

1) h is a CBF;

2) C ⊆ A, that is, the safe set is a subset of the allowable

set; and

3) β(x) ∈ Kcbf(x) for all x ∈ C.

In some cases, computing h given in (12) is possible in

closed form; see [43] for examples.

Alternatively, one could approximate h by simulating the

system trajectory for a finite horizon and computing the

infimum in (12) numerically. However, notice that to use

h in a resulting quadratic program as in (CBF-QP) requires

computing the gradient of h, thus such an approach would

also require numerically approximating the gradient of h, and

therefore this approach becomes computationally challenging

as the dimension of the system grows.

Another approach is to parameterize h and search for a

potentially conservative CBF satisfying (11). For example,

we could parameterize h as a fixed degree polynomial and

use sums-of-squares (SOS) programming [44] to enforce the

required conditions on h. To this end, a polynomial s(x)
is a SOS polynomial if s(x) =

∑r
i=1(gi(x))

2 for some

polynomials gi(x) for i = 1, . . . , r. Let Σ[x] denote the set of

SOS polynomials in x. The following Proposition is closely

related to results presented in [24], [45].

Proposition 5. Given the affine control system (1), assume

f(x) and g(x) are polynomials. Let ρ(x) be a polynomial

performance function and let β(x) be a polynomial nominal

controller. A polynomial h(x) is a CBF if there exists positive

constants a > 0, ǫ > 0 and SOS polynomials s1(x), s2(x)
such that

−h(x)− ǫ+ s1(x)ρ(x) ∈ Σ[x], (13)

Lfh(x) + Lgh(x)β(x) + ah(x)− s2(x)h(x) ∈ Σ[x]. (14)

Moreover, C ⊆ A and β(x) ∈ Kcbf(x) for all x ∈ C.

Condition (13) is sufficient for ensuring that h(x) < 0 for

all x such that ρ(x) < 0, thereby implying C ⊆ A. Likewise,

(14) is sufficient for ensuring that Lfh(x) + Lgh(x)β(x) +
ah(x) ≥ 0 for all x ∈ C. Since β(x) ∈ U for all x ∈ D, this

in turn implies (7) with the choice α(s) = as.

There exist efficient computational toolboxes that convert

certain SOS constraints into semidefinite programs such as

[46]. However, viewing h(x), a, s1(x), and s2(x) as decision

variables in the above, the products ah(x) and s2(x)h(x)
are bilinear in the decision variables and prevent such a

conversion.

Nonetheless, a common approach for accommodating such

bilinearities is to propose an iteration of constraints so that

in each iteration, one element of each problematic product is

fixed, i. e., in each iteration, either a and s2(x) are fixed or

h(x) is fixed, leading to an efficient numerical procedure for

finding a CBF h. For example, in [24], a sequence of SOS

programs is proposed to compute a CBF for lane-keeping

and adaptive cruise control in an autonomous vehicle, and

in [45], a sequence of SOS programs is proposed to compute

a region of safe stabilization.

Variants of the SOS-based approach proposed in Propo-

sition 5 are possible and have been explored in related

contexts, e. g., [24], [45]. For example, it is possible to

compute a new nominal controller after computing a barrier

h(x). Further, the constraints (13)–(14) can be augmented

with an objective function that, e. g., seeks to maximize

the volume of the safe set C. In addition, it is possible to



consider an allowable set characterized as the intersection

of the superlevel sets of multiple performance functions

by including a constraint like (13) for each performance

function.

IV. EXPONENTIAL CONTROL BARRIER FUNCTIONS

In the previous sections we have seen how control barrier

functions (CBFs) can be (i) used to enforce safety-critical

constraints for nonlinear (control affine) systems, (ii) com-

bined with control Lyapunov functions to arbitrate between

stability and safety, and (iii) used for systems with actuator

constraints. While CBFs offer a powerful methodology, there

is one critical restriction: the safety-critical constraints have

been so far assumed to be of relative-degree one, i.e.,

the first time-derivative of the CBF has to depend on the

control input. However, this is a restrictive assumption that

is typically not held for most safety constraints for robotic

systems. We therefore need a way to enforce arbitrarily

high relative-degree safety constraints. In this section, we

introduce a special type of CBFs called Exponential CBFs

that enable this functionality.

Control barrier functions for high-relative degree safety

constraints were initially studied simultaneously in [47], [30].

However, the results in [47] only extended to position based

safety constraints with relative-degree 2. On the other hand,

the results in [30] extended to arbitrary high relative-degree

using a backstepping based method. However, backstepping

based CBF design for higher relative-degree systems (greater

than 2) is challenging and has not been attempted. Building

off the work in [47], exponential control barrier functions

were first introduced in [48] as a way to easily enforce high

relative-degree safety constraints. The rest of this section

provides an introduction to exponential CBFs.

A. High Relative-Degree Safety Constraints

Consider the nonlinear dynamical system in (1) with initial

condition x0 with the goal to enforce the forward invariance

of the safe set C defined in (5). However, unlike in earlier

sections, we relax the relative-degree 1 assumption on h(x)
and assume h(x) has arbitrarily high relative-degree r ≥ 1.

This translates to the rth time-derivative of h(x) being,

h(r)(x, u) = Lr
fh(x) + LgL

r−1
f h(x)u, (15)

with LgL
r−1
f h(x) 6= 0 and LgLfh(x) = LgL

2
fh(x) = · · · =

LgL
r−2
f h(x) = 0, ∀x ∈ D. Next, we define,

ηb(x) :=















h(x)

ḣ(x)

ḧ(x)
...

h(r−1)(x)















=















h(x)
Lfh(x)
L2
fh(x)

...

Lr−1
f h(x)















, (16)

and assume for a given µ ∈ Uµ ⊂ R, u can be chosen

such that Lr
fh(x) + LgL

r−1
f h(x)u = µ. This choice of u

is possible since by the relative degree of h(x) we have

LgL
r−1
f h(x) 6= 0, ∀x and moreover µ is a scalar (while u ∈

U ⊂ R
m). With this, the above dynamics of h(x) can be

written as the linear system,

η̇b(x) = Fηb(x) +Gµ,

h(x) = Cηb(x), (17)

where

F =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















, G =















0
0
...

0
1















, (18)

C =
[

1 0 · · · 0
]

.

Clearly, if we choose a state feedback style µ = −Kαηb(x),
then h(x(t)) = Ce(F−GKα)tηb(x0). Moreover, by the

comparison lemma, if µ ≥ −Kαηb(x), then h(x(t)) ≥
Ce(F−GKα)tηb(x0).

We now have everything setup to define exponential con-

trol barrier functions.

Definition 7. Given a set C ⊂ D ⊂ R
n defined

as the superlevel set of a r-times continuously dif-

ferentiable function h : D → R, then h is an

exponential control barrier function (ECBF) if there exists a

row vector Kα ∈ R
r such that for the control system (1),

sup
u∈U

[

Lr
fh(x) + LgL

r−1
f h(x)u

]

≥ −Kαηb(x) (19)

∀ x ∈ Int(C) results in h(x(t)) ≥ Ce(F−GKα)tηb(x0) ≥ 0
whenever h(x0) ≥ 0.

Remark 8. Note that Kα in the above definition needs

to satisfy certain specific properties. As we will see, we

will require Kα to make the closed-loop system matrix

stronger than Hurwitz (total negative) and additionally satisfy

a condition based on the initial conditions ηb(x0). These will

be presented in more detail in the subsequent subsection on

designing ECBFs.

Remark 9. Note that when the relative-degree r = 1,

−Kαηb(x) in (19) reduces to −αh(x) with α > 0. Thus,

Definition 2 defines a relative-degree 1 exponential CBF

when α(h(x)) = αh(x) (with a small abuse of notation),

α > 0. In this sense, the above definition is a generalization

of the definition of CBFs for higher relative-degree functions

h(x).

Given an ECBF, we can implement a controller that

enforces the condition given in Definition 7 by extending

the optimization based control methodology presented ear-

lier. Concretely, we can consider the following QP based

controller:

u(x) = argmin
(u,µ,δ)∈Rm+2

1

2
uTH(x)u+ pδ2 (CLF-ECBF QP)

s.t. LfV (x) + LgV (x)u ≤ −γ(V (x)) + δ

Lr
fh(x) + LgL

r−1
f h(x)u = µ

µ ≥ −Kαηb(x).



B. Designing Exponential Control Barrier Functions

In order to design an exponential CBF, we begin by

noting that (17) is in controllable canonical form and if

Kα =
[

α1 · · · αr

]

then the characteristic polynomial of

F − GKα is λr + αrλ
r−1 + · · · + α2λ + α1 = 0, whose

roots we will denote by p1, · · · , pr. Note that there is a well

established relation between the coefficients of a polynomial

and its roots.

We next define a family of functions νi : D → R and

corresponding superlevel sets Ci for i = 0, · · · , r, as follows:

ν0(x) = h(x), C0 = {x : ν0(x) ≥ 0},

ν1(x) = ν̇0(x) + p1ν0(x), C1 = {x : ν1(x) ≥ 0},

...
...

νr(x) = ν̇r−1(x) + prνr−1(x), Cr = {x : νr(x) ≥ 0}.

Note that C0 is identical to C. Our goal is to design Kα to

ensure C is forward invariant. We begin with the following

result.

Proposition 6 ([48]). For a given i ∈ {1, · · · , r}, if Ci is

forward-invariant then Ci−1 is forward-invariant whenever

pi > 0 and x0 ∈ Ci ∩ Ci−1.

The above result follows from noting that under the given

conditions when x(t) reaches the boundary of Ci−1, we

have ν̇i−1 ≥ 0 resulting in forward invariance of Ci−1. The

recursive application of the above proposition then motivates

the following result:

Theorem 7 ([48]). If Cr is forward-invariant and x0 ∈
⋂r

i=0 Ci then C is forward-invariant.

From the above results, for invariance of C, we require

two conditions for each i: (a) pi > 0 and (b) x0 ∈ Ci. The

first condition on pi implies that the poles of the closed-loop

F−GKα need to be real and negative. The second condition

on x0 and the definition of Ci implies we require νi(x0) ≥
0 ⇐⇒ ν̇i−1(x0) + piνi−1(x0) ≥ 0 ⇐⇒ pi ≥ − ν̇i−1(x0)

νi−1(x0)
.

Both these conditions can be achieved by choosing Kα as

specified in the main result below.

Theorem 8 ([48]). Suppose Kα is chosen such that F −
GKα is Hurwitz and total negative (resulting in negative

real poles) and the eigenvalues satisfy λi(F − GKα) ≥
− ν̇i−1(x0)

νi−1(x0)
, then µ ≥ −Kαηb(x) guarantees h(x) is an

exponential CBF.

Thus, an exponential CBF can be designed using classical

pole placement strategies from linear feedback theory. The

location of the poles is specified to be both real and negative

as well as dependent on the higher time-derivatives of the

barrier function at initial time.

V. APPLICATIONS: CBFS FOR ROBOTIC SYSTEMS

Having seen the theoretical development of control barrier

functions in the earlier sections, we will now present prac-

tical uses of CBFs in various robotic application domains.

Sections V-A to V-C will introduce CBFs for single-agent

Fig. 1. (a) Foreground: The problem of dynamically walking over a
terrain of stepping stones in 3D—a safety-critical problem. (b) Back-
ground: Geometric depiction of step length foot placement constraint. Here,
(O1, R1), (O2, R2) are the centers and radii of the outer and inner circles
respectively, while O is the position of the stance foot, lf , hf denote the
horizontal and vertical position of the swing foot with respect to the stance
foot, and the red thick line between the distances of lmin and lmax from
O denote the stepping stone.

robotic systems: we will look at three sufficiently different

types of robotic systems, i. e. walking robots, cars, and

Segways. Section V-D will introduce CBFs for multi-agent

robotic systems.

A. Dynamic Walking on Stepping Stones

Legged robots are unique in the sense that these systems

are able to locomote over discrete terrains - such as a terrain

with steeping stones with discrete gaps between the steps

(see Fig. 1a). Precisely stepping on the footholds is critical

and missing the foothold even by a few centimeters will

cause a dramatic fall of the robotic system. In this sense,

stepping stones are examples of safety-critical control that

have to be strictly enforced. While this is challenging, in the

preceding sections we have developed the theory to specifi-

cally attack such safety-critical problems. Dynamic walking

over stepping stones using CBFs was first demonstrated in

[49]. Here, we present results on the DURUS bipedal robot

reported in [31].

Legged systems are modeled as multi-domain hybrid

systems with walking consisting of a single-support phase

when one (stance) foot is in contact with the ground and

an instantaneous double-support phase when the swing foot

impacts ground. The single-support phase is modeled as

a continuous-time differential equation while the double-

support phase is modeled as an instantaneous impact due to

the swing foot impacting on the ground. The impact causes

an instantaneous jump in the system state. Mathematically,

this is represented as the hybrid system

Σ :

{

ẋ = f(x) + g(x)u, x /∈ S,

x+ = ∆(x−), x ∈ S,
(20)

with S representing the switching surface that denotes swing

foot contact with the ground.



For the above system, a hybrid zero dynamics (HZD)

based approach (see [50] for details) is used to design a

stable periodic orbit—representing walking—by means of an

offline nonlinear constrained optimization, in order to find a

set of outputs y : Rn → R
m that are then regulated by con-

structing a Lyapunov function V (x) =
[

y ẏ
]

P
[

y ẏ
]T

such that driving V (x) → 0 results in driving the outputs to

zero, resulting in stable walking. This is achieved by the CLF

based approach detailed in Section II-A, with the difference

for a hybrid system being that rapid exponential stability is

sought through a RES-CLF [37] s.t. V̇ (x, u) ≤ − 1
ǫ
γ(V (x)),

where 0 < ǫ < 1. This ensures that the controller contracts

faster than the potential expansion that happens at impacts.

See [37], [42] for more details.

Now, let us look into the problem of how we can guarantee

the safety-critical constraint of precisely placing the feet on

the stepping stone on each step. In Fig. 1b, the start of the

step is shown as the dotted stick-figure with the stance foot at

O. The goal is to move the swing leg and precisely impact

the ground within the solid red foothold at the end of the

step. This is a constraint at the step end-time which can not

be directly enforced as a barrier. We convert this end-time

constraint into a barrier constraint that is enforced point-wise

in time. In particular, if the swing foot position, denoted

by F in the Fig. 1b, is maintained within the outer circle

(with center O1 and radius R1) and outside the inner circle

(with center O2 and radius R2), then the foot follows the

red trajectory and impacts the foothold at the end of step.

This can be formulated through enforcing the nonnegativity

of the following CBFs:

h1(x) = R1 −O1F (x) ≥ 0,

h2(x) = O2F (x)−R2 ≥ 0,

where O1F (x) and O2F (x) are the distances between the

swing foot F and the centers of the two circles at O1

and O2 respectively. Since hi(x), i ∈ {1, 2} are position

constraints, they have relative-degree 2. We thus use the tools

of the exponential CBF to design αi,1, αi,2 and pick u s.t.,

L2
fhi(x, u) + LgLfhi(x)u ≥ −αi,1hi(x) − αi,2ḣi(x). This

results in enforcing hi(x) ≥ 0 resulting in dynamic walking

on stepping stones. Fig. 2a shows h1, h2 plotted against time

to illustrate that they are non-negative. Fig. 2b illustrates

snapshots from simulation of walking over a stepping stone

terrain with different step lengths. This method can also be

used to walk over a terrain of stepping stones with changing

step width or step height.

B. Automotive Systems: Automatic Cruise Control and Lane

Keeping

Our next example is from the automotive domain. Many

modern Advanced Driver Assistance Systems (ADAS) pro-

vide prime examples of safety-critical constraints. For in-

stance, in Adaptive Cruise Control (ACC) the vehicle’s

speed is regulated to a user-set speed when there is no

vehicle immediately ahead in the lane, yet if a vehicle is

detected ahead then a safe following distance is maintained.

(a)

(b)

Fig. 2. Simulation results of dynamic walking over a terrain of stepping
stones with varying step lengths. (a) Plots of the ECBFs h1, h2 being
enforced. (b) Snapshots of walking from simulation. Simulation video:
https://youtu.be/yUSTraDn9-U.

On the other hand, in Lane Keeping (LK) the vehicle’s

steering is controlled so as to maintain the vehicle within a

lane. Furthermore, two or more ADAS control modules can

be simultaneously activated and designing provably correct

controllers for simultaneous operation becomes critical; this

subsection follows from [23], but see also [21].

In order to demonstrate adaptive cruise control and lane

keeping in an experimental setting, we will consider a

Khepera robot modeled as a unicycle model
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, (21)

where (px, py), ψ, v, ω represent the 2D position, orientation,

and longitudinal and angular velocities of the robot respec-

tively, with x ∈ R
5 the resulting state vector. Further, ul is

the longitudinal force and ua is the angular torque and serve

as control inputs. The mass and inertia are m, Iz respectively

and a represents the distance from the center of the wheel-

base to the point of interest (px, py). This model can be

written as a nonlinear control affine system as given in (1).

As mentioned, adaptive speed regulation comprises of

following a user-set speed when there is no vehicle ahead in

the lane. This will be formulated as a soft constraint through

a CLF. However, when there is a vehicle ahead, the speed

needs to be adaptively reduced so as to maintain a fixed

time-headway based follow distance. This will be enforced

as a safety-critical constraint through the following CBF:

hasr(x) = D − τvf .

Here, D is the distance to the vehicle ahead, τ is minimum

time-headway to be maintained, and vf is the velocity of the

vehicle (follower)—see [20] for the derivation.

Similarly, the objective of lane keeping is to maintain the

vehicle within the lane. We need to enforce a safety-critical

https://youtu.be/yUSTraDn9-U


(a) (b)

Fig. 3. Experimental demonstration of adaptive speed regulation and lane
keeping for automotive systems. (a) The robot is kept inside a lane due
to the lane keeping CBF and follows another robot ahead by maintaining a
fixed time-headway through the adaptive speed regulation CBF. (b) Value of
lane keeping, hlk , and adaptive speed regulation, hasr , CBFs for simulation
and experiment. Non-negativity of these values demonstrate enforcement of
the constraints. Video at https://youtu.be/n_tTBq0TCYY.

constraint of the form ylat ≤ dmax, where ylat is the lateral

distance w.r.t. the center of the lane and dmax is the distance

from the center of the lane to either end of the lane that

captures the lane width. We enforce this safety constraint

through the following CBF:

hlk(x) = dmax − sign(vlat)ylat −
1

2

v2lat
amax

.

Here, amax is the maximum lateral acceleration and vlat is

the lateral velocity of the vehicle. More details about the

properties of this CBF are detailed in [21], [23].

Finally, the performance objectives such as driving the

longitudinal velocity to a user-defined velocity (v → vd),

creating a smoother path following (ω → 0), and following

the desired path ((x, y) → Rd) are specified through output

functions that are regulated to zero through CLFs. As earlier,

the CLF and CBF conditions are unified into a single

controller via (CLF-CBF QP) given in Section II-C. Fig. 3a

shows experimental results on the Khepera robot where si-

multaneous enforcement of lane keeping and adaptive speed

regulation safety constraints are enforced. Fig. 3b illustrates

the value of the CBFs in experiments and simulation.

C. Dynamic Balancing on Segways

To demonstrate the application of control barrier func-

tions as “safety filters,” we will consider their experimental

realization on a Segway type robot, i.e., a two-wheeled

inverted pendulum. In particular, this subsection summarizes

the results of [32] which provided the first experimental

evaluation of CBFs on a robotic system that is not statically

stable. To realize these results, a Ninebot Segway was rebuilt,

with only the original chassis and motors remaining—all

of the electronics were customized to allow for the real-

time control of the system via optimization based controllers.

The objective is to ensure “safe” operation of the Segway,

defined in this case as the robot not tipping over, i.e., always

staying upright. Additionally, the goal is to achieve this

safety condition even while using a nominal controller for

the system (that may not be safe) and thus modifying the

controller in a minimally invasive fashion so as to ensure

safety. The result will be a safety filter, or an Active Set

Invariance Filter (ASIF) of the form illustrated in Fig. 4,

where the nominal control input, udes, is filtered through a

QP of the form (CBF-QP) to ensure safety in the system.

Fig. 4. Figure illustrating the filtering of a desired control input through
a safety filter, or Active Set Invariance Filter (ASIF).

The dynamics of the Segway can be written in the standard

form given in (1), where in this case the input, u, is the

voltage input into the motors and x = (v, φ, φ̇)T , where

v is the forward velocity of the Segway, φ is the angle of

the pendulum from upright, and φ̇ is the rate of change of

this angle. Correspondingly, there are input bounds on the

system of the following form: u ∈ [−15, 15]V (this input

bounds will play a role in determining the CBF that will

be implemented on hardware). The safety constraint for the

system is that the pendulum component of the robot stays

upright, i.e., that the Segway does not tip over. This can be

captured by the condition that the angle of the pendulum,

φ, stays within a bounded region, in this case chosen to be

φ ∈ [− π
12 ,

π
12 ]rad. Finally, to ensure valid inputs, we also

restrict the rate of change of the angle of the pendulum to be

φ̇ ∈ [−2π, 2π]rad/s, and the forward velocity of the Segway

to be v ∈ [−5, 5]m/s. Finally, the nominal controller for the

system, udes = k(x), is chosen to be a standard PD controller

that tracks a desired signal, i.e., an angle of the pendulum

and velocity for the wheels.

Since the safety constraint is to keep the Segway upright,

i.e., keep φ ∈ [− π
12 ,

π
12 ]rad, one might be tempted to simply

utilize two control barrier functions of the form:

h1(φ) = −φ+
π

12
, h2(φ) = φ−

π

12
.

Yet, while these could be implemented via a CBF-QP to

enforce these conditions, they will not enforce all of the

additional constraints necessary to guarantee experimental

implementation. Therefore, the Hamilton-Jacobi method [51]

was utilized to determine the safe set C resulting by en-

forcing all the above-mentioned constraints. In particular, a

reachability analysis was performed over a 75x75x75 grid

of the state space with the edges of the grid at the state

constraints given in the previous paragraph. The resulting

safe set can be seen in Fig. 5a. A control barrier function can

then be synthesized from this set—in this case, polynomial

regression was used to create an analytic expression that can

be used in the safety filter.

The safety filter was implemented on hardware using the

general framework indicated in Fig. 4. In particular, the

CLF-QP was solved onboard the hardware on a BeagleBone

https://youtu.be/n_tTBq0TCYY


(a) (b)

(c)

Fig. 5. Experimental results for CBFs realized on a Segway robot to
enforce safety defined as keeping the Segway upright, i.e., keeping the
angle of the pedulum φ ∈ [− π

12
, π
12

]rad, while satisfying additional
phyiscal constraints. (a) The safe set C as calculated using Hamilton-Jacobi
methods so that all physical realizability constraints are valid. (b) Plots
of the angle φ without and with the CBF (enforced via the ASIF). (b)
Snapshot of experiment with and without the CBF implemented with an
external disturbance (a kick)—in the case of no CBF, the Segway falls
over. Experimental video: https://youtu.be/RYXcGTo8Chg.

Black with an average computation time of 0.4 ms, with

the resulting signal uact passed to the motor controller. To

demonstrate the ability of the ASIF to enforce safety, the

desired pendulum angle was passed to the system in the

form of a sinusoidal signal with an amplitude exceeding the
π
12 angle constraint. Two experiments were then performed,

one without and one with the ASIF, i.e., the CLF-QP active.

The results can be seen in Fig. 5b, wherein the system

remains safe only when the safety filter, implementing the

CBF, is active. Finally, to show the potential power of CBFs,

a disturbance is added to the system in the form of a kick—

the system is able to stay upright, and hence safe, with CBFs

while the systems fails without them (illustrated in Fig. 5c).

D. Long Duration Autonomy

Another robotic application of CBFs involves the long

duration autonomy problem for multi-robot systems. This

problem considers a team of robots deployed over long time

scales which are asked to execute tasks (such as environmen-

tal monitoring, search and rescue, or precision agriculture)

that require more than a single charge of the battery of the

robots. An effective control paradigm to use in this case is

the constraint-based control [52], where survivability con-

straints, i.e., conditions for the robots to remain operational

over long temporal scales, can be enforced by means of CBFs

and included in a single constrained optimization problem.

Consider a collection of N mobile robots, whose dynamics

are modeled by the following control affine system:

ẋi = f(xi) + g(xi)ui,

where xi ∈ R
n and ui ∈ R

m, i = 1, . . . , N , are the state

and the input of robot i, respectively, and f and g are locally

Lipschitz. As the energy plays an important role in ensuring

persistent operation, we augment the state xi by the energy

Ei stored in robot i’s battery obtaining: χi = [xTi , Ei]
T . The

energy dynamics are given by

Ėi = f̂(χi) + ĝ(χi)ui,

where f̂ and ĝ are also assumed to be locally Lipschitz. The

dynamics of the augmented state χi are then:

χ̇i =

[

f(xi)

f̂(χi)

]

+

[

g(xi)
ĝ(χi)

]

ui = F (χi) +G(χi)ui.

We assume the robot workspace is endowed with charging

stations, interpreted as regions of the state space where robots

can charge their batteries. Letting

p : xi ∈ R
n 7→ pi ∈ R

d

be a static mapping from robot i’s state to its position pi ∈
R

d, d = 2 for ground robots or d = 3 for aerial robots, we

define

ρi : pi ∈ R
d 7→ ρi(pi) ∈ R≥0

as the function that evaluates the energy that robot i requires

to reach a charging station starting from position pi.
We are now ready to encode the survivability constraints

mentioned above. Following what has been done in [53],

survivability, realized by ensuring that each robot never

gets stranded away from a charging station, is encoded by

ensuring that the following always holds:

hc,i(χi) = Ei − Emin − ρi(p(xi)) ≥ 0 ∀i ∈ {1, . . . , N},

i. e. each robot always has enough energy to reach a charging

station with a minimum desired amount of energy, Emin.

Moreover, to prevent overcharging, we also want the follow-

ing inequality to be always satisfied:

ho,i(χi) = Emax − Ei ≥ 0.

We can combine these two objectives by defining the logical

and of these constraints, he,i = hc,i ∧ ho,i, as

he,i(χi) = min{hc,i(χi), ho,i(χi)}, (22)

and enforcing differential constraints affine in the control

variable ui, which are analogous to (7), as shown in [54].

Considering the environmental monitoring task, we refor-

mulate the task itself using CBFs which can be then com-

bined with the ones related to survivability introduced above

in order to implement persistent environmental monitoring

[55]. Consider N robots tasked with monitoring a compact

and convex set Ω ⊂ R
d. We can define a measure of the

coverage quality by [56]:

J(x) =

N
∑

i=1

∫

Ωi

‖p(xi)− q‖2φ(q)dq, (23)

https://youtu.be/RYXcGTo8Chg


where x is the ensemble state of the robots, {Ω1, . . . ,ΩN}
is the Voronoi tessellation of the set Ω, the value φ(q) ∈
R, φ(q) ≥ 0 ∀q ∈ Ω, encodes the importance of the point

q, and where the quality of the sensor coverage associated

with the point q decreases quadratically with the distance

‖p(xi) − q‖. The further away the point to monitor is, the

worse the coverage is, and the higher the coverage cost J is.

Defining the barrier function related to the task as ht(χ) =
−J(x), where χ represents the ensemble compound state

of the robots, containing xi and Ei of each robot, we can

express the constraint (7) as

LFht(χ) + LGht(χ)u ≥ −α(ht(χ)). (24)

As shown in [22], the constraint (24) ensures that the zero

superlevel set of the function ht(χ) is asymptotically stable,

with the effect of minimizing the coverage cost J defined

above [55].

Additionally, safety, specifically intended as collision

avoidance, can be guaranteed by ensuring that

hs(χi, χj) = ‖p(xi)− p(xj)‖
2 −∆2 ≥ 0

∀ i, j ∈ {1, . . . , N}, i 6= j, where ∆ > 0 is the safety

distance to be maintained between any two robots, i and

j, located at positions p(xi) and p(xj). Similarly to what

has been done to obtain (22), we can define

hi(χi) = min







min
i

{he,i(χi)} ,min
i,j
i 6=j

{hs(χi, χj)}







,

which combines energy and safety constraints, in order to

formulate a differential constraint analogous to (24).

Thus, each robot executes the input ui solution of the

following QP:

min
u1,...,uN ,δ

N
∑

i=1

‖ui‖
2 + κ|δ|2 (25)

s.t. LFhi(χi) + LGhi(χi)ui ≥ −α(hi(χi)), ∀i (26)

LFht(χ) + LGht(χ)u ≥ −α(ht(χ))− δ

where κ > 0 is a weighting factor and the gradients involved

in the computation of the Lie derivatives are intended as

a particular class of generalized gradients (see [54]). Note

that introducing the relaxation variable δ, as discussed in

Section II, allows us to trade the execution of the coverage

task for safety and energy, i. e., survivability.

The persistent environmental monitoring strategy has been

implemented on the Robotarium [27], where six ground

mobile robots have been asked to monitor a given domain

over a time horizon that is longer than their (simulated)

battery life (see Fig. 6). The robots perform coverage control

by minimizing the cost (23) by enforcing the constraint

(24). Additionally, they have to avoid two obstacles moving

in the environment (robots circled in red in Fig. 6) and

never run out of energy. This is realized by means of the

constraint (26). Six charging stations (blue circles, which

turn yellow when the robots are charging) allow the robots

to recharge their battery. The charging stations are projected

(a) (b)

(c) (d)

Fig. 6. A team of six robots is tasked with monitoring a rectangular domain
on the Robotarium, by performing coverage control. The boundary of the
Voronoi partition is depicted using black thick lines. The robots are asked
to perform this task over a time horizon which is much longer than their
(simulated) battery life. Additionally, two more robots, circled in red, act
as obstacles which have to be avoided by the remaining six robots. These
execute the controller solution of (25) to avoid the obstacles, go and recharge
their batteries at the dedicated charging stations (blue circles on the left of
the figures that turn yellow when the robots are charging), while always
covering the given domain. A video of the experiments is available online
at: https://youtu.be/h-OTe4ieOrI.

onto the testbed, together with the boundary of the Voronoi

tessellation of the domain to cover. The execution of the

controller solution of (25) is summarized in Fig. 6.

VI. CONCLUSIONS

This paper presented a summary of recent results in safety-

critical control based upon a novel form of control barrier

functions. The basis theoretic foundations of this formulation

were reviewed, all with selected application domains. Due to

the recent activity in this domain, and the pressing need for

safety in the context of autonomous systems, the authors

imagine control barrier functions to become an essential

component of modern control system design.
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