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Control based bifurcation analysis for

experiments

By Jan Sieber, Bernd Krauskopf

Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering

Mathematics, Queen’s Building, University of Bristol, Bristol BS8 1TR, UK

We introduce a method for tracking nonlinear oscillations and their bifurcations in
nonlinear dynamical systems. Our method does not require a mathematical model
of the dynamical system nor the ability to set its initial conditions. Instead it relies
on feedback stabilizability, which makes the approach applicable in an experiment.
This is demonstrated with a proof-of-concept computer experiment of the clas-
sical autonomous dry friction oscillator, where we use a fixed time step simulation
and include noise to mimic experimental limitations. For this system we track in
one parameter a family of unstable nonlinear oscillations that forms the boundary
between the basins of attraction of a stable equilibrium and a stable stick-slip os-
cillation. Furthermore, we track in two parameters the curves of Hopf bifurcation
and grazing-sliding bifurcation that form the boundary of the bistability region. An
accompanying animation further visualizes the action of the controller during the
tracking process.

Keywords: Bifurcation analysis, numerical continuation, hybrid experiments

1. Introduction

The simplest and most frequently encountered type of self-excited non-stationary
behaviour in nonlinear dynamical systems are periodic oscillations. A common and
typical scenario is a loss of stability of a stable equilibrium in a Hopf bifurcation
when a complex conjugate pair of eigenvalues of the linearization crosses the ima-
ginary axis under variation of a single parameter. At the critical parameter value a
family of oscillations is born. If the system is nonlinear then the oscillations are non-
linear as well, and, close to the Hopf bifurcation, they are either stable (supercritical

Hopf bifurcation) or unstable (subcritical Hopf bifurcation). This scenario is well
understood theoretically and can be found in standard textbooks such as (Kuznet-
sov 2004). If one tracks the emerging family of periodic orbits (which correspond
to the nonlinear oscillations) further, other bifurcations may be encountered. If the
dynamical system is described mathematically in the form of a system of differ-
ential equations then there are numerical continuation tools available (Kuznetsov
2004, Doedel, et al. 1998) that can track families of periodic orbits regardless of
their dynamical stability. What is more, these tools can also track curves of bifurc-
ations in two-dimensional parameter planes. These curves form the boundaries of
parameter regions with qualitatively different long-time behaviour of the dynamical
system (for example, regions of stable steady states, stable nonlinear oscillations,
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2 J. Sieber, B. Krauskopf

or regions with more complicated behaviour such as quasiperiodic or chaotic mo-
tions). Thus, numerical continuation is a tremendously useful method if one knows
the equations of motion and wants to understand the qualitative behaviour of a
nonlinear system and how it depends on the system’s parameters. For example,
references (Kuznetsov 2004, Doedel et al. 1998) discuss and illustrate this approach
with a long list of classical examples and provide an entry point into the extensive
literature.

By contrast, if the dynamical system is given in the form of an experiment
then the task of tracking periodic oscillations and their stability boundaries is quite
challenging. One approach is to run the experiment close to its stability boundary
for a sufficiently long time to determine if the transients decay or grow. However,
the decay or growth of transients is typically very slow close to the stability bound-
ary. Moreover, the polynomial effects caused by nonnormality (Trefethen & Embree
2005) interfere for long periods of time if the exponential decay/growth is weak.
Finally, small perturbations are amplified due to the lack of damping in the crit-
ical directions. Thus, the approach of observing transients is time-consuming and
produces results of low accuracy.

In this paper we present an alternative method for the tracking of unstable
periodic orbits and their bifurcations in experiments. The fundamental assumptions
for our method are, first, that the system is feedback stabilizable (as explained in §4)
and, second, that the feedback control input and the system parameters of interest
can be varied automatically with a precision that corresponds to the accuracy of
the desired results. The core algorithm is a continuation routine which provides
an iterative computational method that prescribes a sequence of control inputs
and parameter values. This sequence eventually converges toward a non-invasive
control input. The computations have to be performed in parallel to running the
experiments, but not in real time. Importantly, it is not necessary to set initial
values of the internal state variables of the experiment explicitly (which would
involve stopping and reinitializing the experiment). Moreover, the dynamical system
always remains in a stable regime with a closed stabilizing feedback loop, so that
our method does not require to run the experiment freely close to its stability
boundary.

The work presented here follows on from (Sieber & Krauskopf 2006) where we
introduced a control-based continuation scheme as an embedding of extended time-
delayed feedback control (see also §2) and demonstrated its use for the continuation
of periodic orbits of a dynamical system where only the output of a simulation
is available. Here we extend this work to the continuation of periodic orbits and

their bifurcations. Furthermore, we use projection onto Fourier modes to obtain a
sufficiently robust continuation method that can be used even in the presence of
limited precision and noise in the experimental measurement.

The performance of our method is demonstrated in a proof of concept with a
classical mechanical system, namely the dry-friction oscillator, which we run as a
computer experiment. To mimic the restrictions faced by experimenters we disturb
the numerical simulation and its output by a small amount of noise and restrict
the output to a discrete time series of fixed sampling stepsize. Specifically, we con-
tinue a family of unstable nonlinear oscillations in one parameter and curves of
Hopf bifurcation and grazing-sliding bifurcation in two parameters. The action of
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Control based bifurcation analysis 3

the controller during the continuation is discussed and further visualized with an
accompanying animation.

Our method is ideally suited for computer-controlled experiments, especially
for hybrid tests such as real-time dynamic substructured testing of mechanical en-
gineering systems (Blakeborough, et al. 2001, Kyrychko, et al. 2005). These tests
couple an experimental test specimen of a poorly understood or critical component
in real time (and bidirectionally) to a computer simulation of the remainder of the
structure. One of the central goals of hybrid experiments is the tracking of stability
boundaries. The automatic and precise variation of parameters and the feedback
stabilizability, which our method requires, are particularly easy to achieve in hybrid
tests (since they are in part run as a computer simulation).

The outline of the paper is as follows. We briefly discuss existing approaches
for finding unknown periodic orbits and bifurcations in dynamical systems without
model in §2. Section 3 introduces the dry friction oscillator, the example used
throughout the paper. In §4 we give the details of the general control-based con-
tinuation algorithm for periodic orbits, and show in §5 how this procedure works
for the family of unstable periodic orbits in the dry friction oscillator. In §6 we
extend the core continuation to enable it to track Hopf and grazing-sliding bifurc-
ations directly, and we demonstrate the tracking of bifurcations in the dry friction
oscillator in §7. We conclude and outline further work in §8.

2. Background on related methods

One approach for finding periodic orbits and equilibria in dynamical systems without
knowledge of equations of motion is stabilization with extended time-delayed feed-
back control (ETDFC). This method aims to stabilize unstable periodic orbits
without prior knowledge of their time profile (Pyragas 1992, Pyragas 2001, Gauth-
ier, et al. 1994). Its essential idea is to feed back a difference between the current
state and the state from one or more periods ago, which nessecitates prior know-
ledge of the period of the orbit. In the case of equilibria the underlying idea can be
further simplified to using adaptive (or washout) filters (Hassouneh & Abed 2004).
The main advantage of this method is that its implementation is possible for any
experiment with feedback stabilizable periodic orbits and equilibria. Furthermore,
the method avoids running the free dynamical system close to its stability bound-
ary. However, it is unclear under which conditions the extended time-delayed or
washout filtered feedback converges. Feedback stabilizability of the periodic orbit
is necessary but not sufficient. The approach in (Sieber & Krauskopf 2006) is to
embed ETDFC into a continuation scheme, which allows for the continuation of
periodic orbits in more general, but still limited situations, for example, through
fold (saddle-node) bifurcations. As will become clear in §4, the method described in
this paper has been inspired directly by the (continuation embedding of) ETDFC,
but modifies it substantially in order to make it more robust. This additional ro-
bustness comes at the price of an increased computational effort.

A second method, known as equation-free coarse-grained (or time-stepper based)
bifurcation analysis, is well-established in the context of microscopic simulations
such as kinetic Monte Carlo simulations; see (Kevrekidis, et al. 2004) for a survey
and references. This approach assumes that a small number of macroscopic quant-
ities (such as the first few moments) already satisfy a closed system of ordinary
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Figure 1. Set-up of an idealised dry friction oscillator.

differential equations (ODEs). The right-hand-side of this ODE and its partial de-
rivatives are then evaluated by running appropriately initialized short bursts of a
microscopic simulator. This procedure relies fundamentally on the ability to ini-
tialize the microscopic simulator ‘at will’, and on the implementation of a ‘lifting
operator’ that maps the values of the macroscopic quantities to initial values of the
ensembles of microscopic particles. If these two ingredients are given then a number
of high-level tasks can be performed on the macroscopic level, including bifurcation
analysis, optimization, controller design and control (Siettos, et al. 2004). Coarse-
grained bifurcation analysis has been demonstrated successfully in the analysis of
equilibrium dynamics of multi-particle systems. Since the microscopic simulator is
treated as a ‘computer experiment’ the approach could, in principle, be applied to
real experiments. The limiting factor in the adoption of this time-stepper based
approach is the impossibility (or impracticality) to initialize the real experiment
at will. In fact, initializing the system is particularly difficult if one aims to find
non-equilibrium dynamics such as periodic orbits. In the continuation approach of
our method the previous solution is used as seed in the Quasi-Newton step, so that
the need for initializing the system does not arise.

Finally, both ETDFC and the method presented here rely on the existence of
a successful feedback control. There exist standard techniques in control engin-
eering that aim to identify the right-hand-side of the system locally by probing
systematically various control inputs. The resulting linear identified system can be
used subsequently to obtain bifurcation diagrams. (De Feo & Maggio 2003) have
demonstrated this for an implementation of the Colpitts oscillator as an electronic
circuit. Their method assumes that the internal state of the dynamical system can
be measured. However, in general, system identification is an inverse problem and,
as such, inherently ill-posed. The method presented here, as well as ETDFC and
coarse-grained bifurcation analysis, avoid the need for solving an inverse problem.

3. The dry friction oscillator with constant forcing

As our illustrating example we consider a dry friction oscillator with constant for-
cing as sketched in figure 1. The friction between the running belt and the mass
induces a force on the mass, pushing it against the damped spring that is fixed to
the wall. The overall force on the mass at position x is

−Kx − Cẋ − Ff (ẋ − v) (3.1)

where x is measured with respect to the reference position of the relaxed spring, K
is the spring constant, C is the damping, Ff is the force exerted by the friction, and
v is the velocity of the running belt. Thus, the dynamics of this nonlinear single-
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Figure 2. Diagram of the experimental results from (Horváth 2000) showing the velocity
v versus the amplitude of oscillations. Dots show the amplitude of measured stick-slip
oscillations (fitted with a solid line) and squares refer to measured equilibria. The dashed
line connecting the transitions is the conjectured family (UP) of dynamically unstable
periodic orbits. (Reprinted with kind permission from G. Stépán; translations from the
Hungarian original courtesy of G. Orosz.)

mass-spring-damper system is governed by an equation of motion of the form

Mẍ + Cẋ + Ff (ẋ − v) + Kx = 0. (3.2)

It has been observed experimentally by (Horváth 2000) that the dynamics of the
dry friction oscillator changes qualitatively when one varies the system parameter
v. The set-up of (Horváth 2000) used a mass fixed to a bending beam on a large
rotating disc to prevent disturbances by lateral degrees of freedom; see also (Stépán
& Insperger 2004). Figure 2 shows the sequence of experimental measurements
from (Horváth 2000) for different values of the velocity v. The figure shows that
for large v the rest state (equilibrium) x0, given by x0 = −Ff (−v)/K and ẋ = 0,
is stable. At a critical velocity vh ≈ 0.188 the rest state x0 loses its stability.
If one decreases v gradually from above vh to below vh one observes a sudden
transition to large-amplitude stick-slip oscillations. Similarly, when increasing v
in the stick-slip oscillation regime the system jumps to a stable equilibrium at a
critical velocity vd > vh. Figure 2 clearly shows this bistability in the parameter
region [vh, vd] ≈ [0.188, 0.52].

If one makes assumptions about all parameters in (3.2) the model can be ana-
lysed numerically using standard numerical methods such as AUTO (Doedel et al.
1998) and SlideCont (Dercole & Kuznetsov 2005). For example, a friction model
that supports the presence of the smooth linear instability at vh is

Ff (w) = [Fc + (Fs − Fc) exp(−|w|) + Fv|w|] sgn(w), (3.3)

which gives the velocity-force curve shown in figure 3. The argument w is positive
in (3.3) for non-sticking trajectories. The analysis of the numerical model (3.2)
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Figure 3. Friction law Ff (w) used in (3.3) for the parameters Fc = −0.5, Fs = 2 and
Fv = 0.3.

completes the diagram in Figure 2 and predicts the following (Galvanetto & Bishop
1999):

(H) the event of loss of stability of the equilibrium is a subcritical Hopf bifurcation,

(UP) there is a family of non-sticking unstable nonlinear oscillations separating the
two stable regimes for parameters v in the interval [vh, vd], and

(GS) the event where the stick-slip oscillations lose their stability is a grazing-sliding

bifurcation, which is a non-smooth bifurcation; see (di Bernardo, et al. 1999)
for a survey.

4. Control-based continuation of periodic orbits

We first explain the core idea behind control-based continuation of a family of
periodic orbits such as the family (UP). The continuation of bifurcations is an
extension of this core algorithm, which we explain in §6. For convenience of notation
let us assume that the measured output y(t) ∈ R

n of the free-running experiment
is governed by an ordinary differential equation (ODE), depending on a tunable
parameter µ ∈ R

k:

ẏ = g(y, µ). (4.1)

We denote a neighbourhood of a point or set m by U(m) and the space of continuous
periodic functions on the unit interval by

Cp([0, 1]; Rn) = {y ∈ C([0, 1]; Rn) : y(0) = y(1)}.

Accordingly, y ∈ C1
p if y is continuously differentiable and ẏ(0) = ẏ(1). Let us

assume that (4.1) has a smooth regular one-parameter family of periodic orbits

Γ = {(ys, µs, Ts) ∈ C1
p([0, 1]; Rn) × R

k × R : s ∈ R}.

That is, the number of parameters k equals one. The periodic time profile ys satisfies
ẏs(Ts·) = Tsg(ys(Ts·), µs) where the argument of ys is the time scaled to the interval
[0, 1], Ts is the period of the orbit, and s ∈ R is parametrizing the family Γ.
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Control based bifurcation analysis 7

(a) Input-output map

We assume that we can measure the time profile y(t) and apply feedback control
to the experiment such that it is governed by an ODE of the form

ẏ = g(y, µ) − h(y, µ)[y(t) − ỹ(t)]. (4.2)

In general we do not know g and h. However, we assume that the control is able to
achieve stabilization of (4.2). More precisely, we assume the existence of a smooth
input-output map

Y : U(Γ) ⊂ Cp([0, 1]; Rn) × R
k × R → Cp([0, 1]; Rn)

which is defined for (y0, µ0, T0) ∈ U(Γ) in the following way. We set ỹ(t) = y0(T0t)
as control target and µ = µ0 in (4.2). Then (4.2) has a unique stable periodic orbit
y(T0·) ∈ Cp([0, 1]; Rn) close to y0(T0·). The map Y is defined by

Y : (y0, µ0, T0) ∈ U(Γ) 7→ y. (4.3)

Thus, the assumption of stabilization means that this periodic orbit y exists, is
(locally) unique for all (y0, µ0, T0) ∈ U(Γ), and its dependence on (y0, µ0, T0) is
smooth. The period of y is automatically T0 and the linearization of Y with respect
to y0 is compact if the output of the experiment is indeed governed by an ODE. A
function y is a periodic orbit of the free experiment governed by (4.1) if and only
if it is a fixed point of the map Y (·, µ0, T0). The same is true for higher iterates
Y m of Y if (4.2), when replacing h by mh, still has a regular linearization in y.
This implies that one can also consider fixed point problems of higher iterates of
Y , which can improve the convergence of the (Quasi-)Newton iteration introduced
in §4(d).

Each evaluation of the map Y in some point (y0, µ0, T0) involves setting the
parameter to µ0, the control target to y0(T0·) and running the controlled experiment
until it has reached a stable state y of period T0. This stable state y is (at least
locally) independent of the initial condition. The basic idea of our control-based
continuation method is to embed the fixed point problem for Y (·, µ0, T0) into a
pseudo-arclength continuation of the family Γ, extending the fixed point problem
with a phase condition and a pseudo-arclength condition determining µ0 and T0;
see also (Sieber & Krauskopf 2006).

The evaluation of Y is potentially time-consuming and (in real experiments) of
low accuracy compared to numerical computations with double precision floating
point arithmetic. This fact has to be taken into account in the algorithm for discret-
izing and solving the fixed point problem. However, this control-based approach has
two advantages that make it particularly practical for application to experimental
dynamical systems. First, in the context of a continuation it is sufficient that the
control (4.2) works in the neighbourhood U(Γ) as the transients occurring in the
controlled experiment (4.2) (when evaluating Y ) are typically small. Second, it is
not necessary to set the initial conditions for the internal states between success-
ive evaluations of Y . In the continuation procedure we only assume the existence
and smoothness of Y without referring to (4.1) or (4.2). Thus, the method works
whenever feedback control input u[ỹ−y] based on some output y is able to stabilize
the observable part of a dynamical system. We avoid any explicit system identi-
fication of the right-hand-side, which is an inverse and, thus, inherently ill-posed
problem.
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8 J. Sieber, B. Krauskopf

(b) Discretization of the fixed point problem

At the core of the continuation procedure is the parameter dependent nonlinear
fixed point problem for y

y = Y (y, µ, T ) (4.4)

with the variables (y, µ, T ) ∈ U(Γ). The popular extended time-delayed feedback
control of unstable periodic orbits (Pyragas 1992, Gauthier et al. 1994) is equivalent
to the approach of solving the fixed point problem (4.4) with the relaxed simple
fixed point iteration yl+1 = (1− κ)yl + κY (yl, µ, T ) for l = 1, 2 . . ., |κ| < 1, fixed µ,
and the ‘correct’ T .

We choose the more robust (and more expensive) alternative of a Quasi-Newton
iteration where the infinite-dimensional variable y is discretized with a Galerkin
projection. A Quasi-Newton iteration requires an estimate of the linearization of Y
which can often only be evaluated with a low precision. Thus, the Galerkin basis
elements must have a large support compared to the basic sampling interval (scaled
by T ) of the output profile y of (4.2) such that the projection has an averaging
effect, which increases the accuracy. This is in contrast to most common numerical
discretization schemes that can afford to choose basis elements with a small support
to obtain sparse matrices (Trefethen 1996). For our demonstrations in §5 and §7
we choose a Fourier mode basis whose elements have global support. For periodic
orbits a projection

Φ : Cp([0, 1]; Rn) 7→ R
(2q+1)×n

onto the first q Fourier modes is defined by

Φ[y]l =

T
∫

0

bl(t/T )y(t) dt where bl(t) =











√
2/T cos(2πlt) for l = −q . . . − 1,√
1/T for l = 0,√
2/T sin(2πlt) for l = 1 . . . q.

(4.5)
This projection gives rise to a discretized version of the fixed point problem (4.4)
for ϕ ∈ R

(2q+1)×n consisting of the 2q + 1 variables ϕl ∈ R
n:

ϕl = Φl



Y





q
∑

j=−q

ϕjbj , µ, T







 , (4.6)

which we write in compact form as

ϕ = Yq(ϕ, µ, T ) where Yq : R
(2q+1)×n × R

k × R 7→ R
(2q+1)×n. (4.7)

One evaluation of Yq requires one evaluation of Y and, thus, running the controlled
experiment (4.2) once. Moreover, for each evaluation of Yq the variable ϕ has to be
converted to its scaled time profile y(t) =

∑q
l=−q ϕlbl(t) and the result has to be

converted back using the projection Φ. In practical applications, where time profiles
are sampled on a discrete time mesh, this conversion can be done efficiently using
the Fast Fourier Transform and its inverse.

(c) Embedding into a pseudo-arclength continuation

We embed the discretized fixed point problem (4.7) into a continuation by in-
cluding the parameter µ ∈ R as a variable and appending two equations to obtain a
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Control based bifurcation analysis 9

regular system of (2q+1)n+2 equations for the variable η = (ϕ, µ, T ) ∈ R
(2q+1)n+2.

Let us assume that j ≥ 1 points ηj of Γ have been computed already and that ηt,j

is an approximation for the tangent to Γ in the last point ηj (for example, the
secant ηt,j = (ηj − ηj−1)/‖ηj − ηj−1‖ if j > 1). In a classical predictor-corrector
pseudo-arclength continuation the next point η = (ϕ, µ, T ) of Γ has to satisfy

ϕ = Yq(η) (4.8)

extended by the pseudo-arclength condition

[ηt,j ]
T [η − ηp] = 0 (4.9)

where ηp = ηj + sηt,j is a prediction that can also be used as a starting point of the
corrector iteration. The stepsize s along Γ is small and determines the approximate
distance between the last point ηj and the new point η on the branch. For one-
parameter families of generic periodic orbits the dimension k of the parameter µ
equals one. In this case η is completely determined by (4.8) and (4.9) plus a phase
condition such as

q
∑

l=−q

l [ϕl]
T ϕj,−l = 0, (4.10)

which guarantees that the projected (and scaled) time profiles y(t) =
∑q

l=−q ϕlbl(t)

satisfy
∫ 1

0
y(t)T ẏj(t)dt = 0. Condition (4.10) fixes the phase of the periodic orbit

in a way that avoids large transients (and, possibly, failure of the control) during
the evaluation of Y . This condition is also implemented, for example, in AUTO
(Doedel et al. 1998) to optimize the mesh adaptation.

(d) Linearization and solution of the nonlinear corrector system

The correction step of the continuation is the iterative solution of the nonlinear
system (4.8)–(4.10). The main costs within each iteration arise from the cost of
obtaining the right-hand-side and its linearization with respect to the variable η
and the subsequent solution of the linear system of equations. If the dimension n of
y is moderate (say, n ≤ 10) and the time profiles y(t) are moderately non-harmonic
(which implies that we can choose the number of Fourier modes q moderate, say, q <
100) then the cost of obtaining the linearization far outweighs the cost of the linear
algebra because the linearization ∂ηYq of Yq is a dense matrix that can, in general,
only be obtained by a finite-difference approximation. Thus, obtaining the complete
finite-difference approximation of ∂ηYq requires in the worst case (2q + 1)n + k + 1
runs of the controlled experiment (4.2). The matrix ∂ϕYq is dense independently of
the choice of the Galerkin basis. In fact, the linearization of the original input-output
map Y with respect to its argument y0 in (4.3) is dense, that is, Y (y0, µ0, T0)(t) in
general depends on y0(t

′) for all t′ ∈ [0, 1].
Near the Hopf bifurcation the matrix ∂ϕYq is approximately blockdiagonal with

respect to the Fourier modes (that is, ∂[(Yq)l]/∂ϕm ≈ 0 if |m| 6= |l|) because the
coefficients of the linearization of (4.2) do not depend on time in the Hopf point.
Thus, near the Hopf bifurcation the linearization of Yq can be obtained by taking
2n + k + 1 finite differences.

For these reasons, (damped) Quasi-Newton iterations, for example, based on
Broyden’s update formulas (see (Eyert 1996) for a recent comparative study on
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10 J. Sieber, B. Krauskopf

update schemes), are more attractive than in the classical continuation schemes
implemented and discussed by (Doedel et al. 1998, Kuznetsov 2004). The continu-
ation of periodic orbits in the example in §5 starts at the Hopf bifurcation. Thus,
we can start the Quasi-Newton iteration with a fully initialized blockdiagonal Jac-
obian matrix that we update with Broyden updates of rank ν ≤ 2 along the curve.
We update the Jacobian directly instead of its inverse because in this way we can
incorporate the analytically known derivatives of extending equations such as (4.9)
and (4.10). Thus, during the corrector iteration we update the old estimate Aold

for ∂ϕYq to the new estimate Anew satisfying

Anew∆ = R and Anew∆⊥ = Aold∆⊥

where ∆ = [ην − η0, . . . , η1 − η0] is a list of differences of recent arguments and
R = [Y (ην) − Y (η0), . . . , Y (η1) − Y (η0)] is the corresponding list of residuals.

5. Tracking periodic orbits of the dry friction oscillator

This section demonstrates how the continuation introduced in §4 can be used to find
the family Γ of unstable nonlinear oscillations (UP), which has been conjectured to
exist in the dry-friction oscillator in §3, and its dependence on the parameter v.

(a) Set-up of the simulation of the controlled experiment

The assumption of feedback stabilization means that we are able to apply a
feedback force to the mass of the form

f [x − x̃1, ẋ − x̃2] = − (k1[x − x̃1] + k2[ẋ − x̃2]) . (5.1)

One option to achieve this (in approximation) is a feedback adjustment of the
position of the wall if C is small.

Our demonstration is based on a computer simulation of the model (3.2) with
feedback

Mẍ + Cẋ + Ff (ẋ − v) + Kx = − (k1[x − x̃1] + k2[ẋ − x̃2]) (5.2)

with the parameters Fc = −0.5, Fs = 2 and Fv = 0.3 in the friction law (3.3) and
with the dimensionless parameters K = 1, M = 1, k1 = 1 , k2 = 2, and C = 0.

In order to mimic some of the restrictions of an experimental situation we add
uniform noise of modulus 0.01 to the right-hand-side of (5.2) and to the output,
and restrict the evaluation of the time profile x(t) to a sampling in constant steps
of length 0.01. Throughout §5 and §7 we treat the numerical simulation of (5.2)
as an experiment and refer also to it as such (even though it is performed on the
computer).

Each Fourier mode ϕl of the control target is in R
2, consisting of a position

component (corresponding to x̃1) and a velocity component (corresponding to x̃2).
The parameter µ ∈ R

1 is the belt velocity v.
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(b) Initialization and method parameters

We have chosen the following method parameters. In (4.8) we replace Yq by its
second iterate. That is, we solve

0 = ϕ − Yq(Yq(ϕ, µ, T ), µ, T )

0 =

q
∑

l=−q

l [ϕl]
T ϕj,−l

0 = [ηt,j ]
T [η − ηp]

(5.3)

for η = (ϕ, µ, T ) instead of (4.8)–(4.10), to achieve a more rapid decay of contrib-
uting Fourier modes and, thus, a more robust convergence of the damped Quasi-
Newton iteration. The number of modes q equals 10. For a given control target
profile y0, parameter µ0, and period T0 we accept the output y as stabilized in t if
it satisfies the L

2-norm condition

1

T0

[∫ 0

−T0

‖y(t + s) − y(t + s − T0)‖2ds

]1/2

< ε (5.4)

(computed by a sum over all sampled steps in the period T0) where ε = 10−3.
We can choose the tolerance ε smaller than the noise level because the integral in
(5.4) averages over all sampling steps (≈ 600 per period). Hence, the accuracy of
evaluations of Yq is ≈ 10−3 (since q ≪ 600).

We begin the continuation of the family Γ at the Hopf bifurcation, initializ-
ing the Jacobian of the determining nonlinear system by a block-diagonal finite-
difference approximation. The Fourier components ϕl of the initial periodic orbit η1

are approximately zero for all l ≥ 2. The detection of the Hopf bifurcation and the
iteration toward the initial periodic orbit η1 approximating the Hopf bifurcation
are discussed in more detail in §7. An approximate initial tangent vector along Γ is
the first Fourier mode ϕ±1 of η1. The tolerance for the convergence of the damped
Quasi-Newton iteration is 5 · 10−3 along Γ. We perform at least two iterations and
accept the result if the L

2-norms of the last proposed correction step and the re-
sidual δ of the right-hand-side of (5.3) are below tolerance. The damping factor is
constant (namely 0.3) along Γ. Significantly sharper convergence tolerances are not
sensible due to the restricted accuracy of the experimental evaluations of Yq. The
maximal (and initial) stepsize s along Γ is 0.05.

(c) Experimental effort during the continuation

Figure 4 shows the result of the continuation of the family Γ. The continuation
stops (the Quasi-Newton iteration fails to converge) at the grazing event when the
minimal modulus of the relative velocity of the periodic orbit becomes zero. The
initial orbit of the family (approximating the Hopf bifurcation) is marked by a circle
in figure 4. The orbit marked by a square approximately grazes; it has a maximal
relative velocity max x̃2 − v ≈ −0.05. The two-parameter continuations in §7 start
from these two marked orbits.

Figure 5 shows the temporal behaviour of the iteration along the part of Γ
that is highlighted by the grey rectangle in figure 4. The motion of the mass on
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Figure 4. One-dimensional bifurcation diagram of family Γ of periodic orbits. The dots
show the minimal and maximal relative velocities x̃2−v of the periodic orbits (x̃1(t), x̃2(t))
obtained by the continuation. The subsequent two parameter continuations started at the
periodic orbits marked by a circle (H) and by a square (GS). The temporal behaviour of
the continuation procedure within the grey rectangle is shown in detail in figure 5.

the belt under the action of the controller during the continuation is shown in the
accompanying animation. Panel (a) shows the time profile of the control target
profile x̃1. It does actually not change very much along this short segment of Γ, but
notice the slight increase of the amplitude of the oscillation. Figure 5(b) shows the
position component x− x̃1 of the control, and panel (c) shows the logarithm of the
residual δ of the right-hand-side of the determining system (5.3). More precisely, the
time coordinates of the crosses in panel (c) are the times t at which the stabilization
condition (5.4) is satisfied. At these times we evaluate the residual and change the
arguments ϕ, µ and T . The comparison to the output x in panel (a) shows that the
relaxation toward an acceptable state takes often only two periods. The squares in
panel (c) of figure 5 mark the starts of periods which also meet the convergence
criterion of the Quasi-Newton iteration. Notice from figure 5(b) how the control
target profile oscillates when a new step is started before settling down to zero.
Figure 5(d) and (e) display the parameter v and the period T , which are both
automatically adjusted during the continuation process. The large steps are due to
the predictor; the smaller changes occur during the Quasi-Newton iterations.

According to figure 5 the Quasi-Newton iteration needs on average only three
to four evaluations of the right-hand-side to meet the convergence criterion. This
makes it more efficient than a full Newton iteration based on Jacobian matrices
obtained by finite-difference approximations. The continuation of the whole family
Γ to the last converging point needs 205 evaluations of the right-hand-side and takes
2740 dimensionless time units (≈ 430 periods). This excludes the initial full Newton
iteration which took six iterations (thus, 42 evaluations of the right-hand-side).
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Figure 5. Time profiles along the part of Γ in the grey region of Fig. 4. Panel (a) shows the
control input x̃1, panel (b) the difference x − x̃1 between input and output, panel (c) the
logarithm of the norm of the residual δ of the right-hand-side of system (5.3), and panels
(d) and (e) show the bifurcation parameters v and T . Crosses in panel (c) mark that the
next period has been accepted as successful evaluation of the map Y , squares mark that
the next period has been accepted as converged. See also the accompanying animation.

6. Continuation of bifurcations

A practical advantage of the continuation procedure introduced in §4 in the con-
text of an experiment is that it can be extended quite easily to the direct tracking
of bifurcations. The only additional requirement on the experimental set-up is the
ability to vary two system parameters. Bifurcations are typically defined by addi-
tional conditions on the system variables. The continuation introduced in §4 oper-
ates only on variables that are easily accessible: the control target time profile y0,
a system parameter µ0 and the control period T0. Thus, additional conditions on
these variables can be introduced without any change in the experimental set-up.
We demonstrate how this can be achieved for the two bifurcations that occur in
the dry-friction oscillator from §3.

(a) Continuation of a Hopf bifurcation

The direct continuation of a Hopf bifurcation (such as in event (H) in §3) can
be approximated by continuing a periodic orbit of fixed small radius and harmonic
time profile. We follow the continuation scheme (5.3) with the modification that
we have k = 2 (the dimension of the parameter µ), choose the number of Fourier
modes q = 1 (since the motion is almost harmonic near the Hopf bifurcation), and
extend system (5.3) by the equation

[ϕ−1]
T ϕ−1 + [ϕ1]

T ϕ1 − r2 = 0 (6.1)
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with a moderately small fixed radius r. The variable ϕ = (ϕ−1, ϕ0, ϕ+1) has di-
mension 3n, giving rise to an overall dimension 3n + 3 for η = (ϕ, µ, T ). Note that
this size is considerably smaller than that required for the continuation of a gen-
eral periodic orbit, which cannot be assumed to be harmonic and requires a much
larger number of Fourier modes q. The component ϕ0 is an approximation of the
Hopf equilibrium and the components ϕ−1/r and ϕ+1/r approximate the pair of
eigenvectors corresponding to the Hopf eigenvalue 2πi/T . Importantly, it is not ne-
cessary to evaluate Y to obtain the bifurcation condition (6.1) and its linearization.
Thus, in an experimental context the continuation of Hopf bifurcations does not
require any additional experimental effort compared to the basic algorithm of §4.

We mention two possible difficulties of our approach of continuing Hopf bi-
furcation. First, due to the assumption that the periodic orbit of radius r is close
to harmonic, the Hopf bifurcation continuation may potentially generate spurious
solutions. However, these can be detected (and then disregarded) by a large discrep-
ancy between the full output time profile y(t) of (4.2) and its projection onto the
first Fourier mode after each evaluation of Y . Second, tracking a family of small
periodic orbits is problematic close to a Bogdanov-Takens bifurcation. At these
generic end points of Hopf bifurcation curves in a two-parameter plane the pair
of complex conjugate Hopf eigenvalues becomes a double zero eigenvalue and the
period T tends to infinity. This provides a possibility to detect the approach to
a Bogdanov-Takens bifurcation. Note that we do not encounter Bogdanov-Takens
bifurcations in this paper.

(b) Continuation of the grazing event in the dry-friction oscillator

If we rely on a bit of problem-specific a-priori knowledge we can even continue
non-smooth bifurcations such as the grazing event (GS) in §3 approximately in two
parameters. We know that the grazing orbits are exactly those that have a single
point with zero relative velocity and that these orbits are unimodal close to their
grazing points (that is, their phase portraits have no points of zero curvature).
Thus, in the case of the dry-friction oscillator we can continue the grazing event
(GS) approximately by extending the system (5.3) with the condition

max
t∈[0,1]

q
∑

l=−q

ϕl,2bl(t) − v = d. (6.2)

The value d < 0 is the small maximal relative velocity of the periodic control target
with the velocity profile x̃2(t) =

∑q
l=−q ϕl,2bl(Tt). The negative d implies that we

approximate the grazing event by continuing a smooth periodic orbit that ‘almost’
grazes. The unimodality of the periodic orbits near their minimal relative velocity
guarantees that condition (6.2) is indeed differentiable with respect to ϕ. Again,
condition (6.2) is not a condition on the experimental output but only on the control
target and the parameter v. Thus, its approximate linearization can be obtained
accurately by a computation of finite differences without additional experimental
effort.
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Figure 6. Tracked curves H (circles) and GS (squares) shown in the (v, C)-plane (a) and
in projection onto the (v, T )-plane (b). The solid curve is the analytically known curve of
Hopf bifurcation of (5.2). The region of bistability is shaded grey in panel (a)

7. Bifurcation tracking for the dry friction oscillator

Figure 6 shows the result of the two-parameter continuation of the Hopf bifurcation
curve H and the grazing bifurcation curve GS in the critical velocity (vh and vd)
and the viscous damping C. Note that the damping can be varied in an experiment,
for example, by including a term of the form Cẋ explicitly into the feedback control
force f in (5.1). Figure 6(a) shows the approximated curves in the (v, C)-plane and
panel (b) shows the period of the respective periodic orbits as a function of their
velocity v. The points representing H are marked by circles and those representing
GS by squares.

The tracking of the curve H is started from the orbit with radius r = 0.25;
compare figure 4. The value of r = 0.25 was chosen to achieve a good trade-off
between two counteracting effects. A large fixed r approximates the Hopf bifurcation
badly, whereas the condition of the Jacobian of system (5.3), (6.1) is of order O(r−1),
making a periodic orbit of very small radius difficult to track at low accuracies.
The initial Hopf bifurcation point is determined by solving (5.3), (6.1) (a system of
dimension nine) with a full Newton iteration for j = 0 where we obtained our initial
guess for ϕ±1 from the transient behaviour of the free running system. (Robust
general bifurcation detection is still an open problem without access to the right-
hand-side.) Only a crude approximation is necessary because almost every choice
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leads to a regular problem. The result of this iteration serves also as the initial
periodic orbit of the continuation in §5.

In figure 6(a) the circles all lie (within the accuracy of the computation) on the
analytically known Hopf bifurcation curve (solid curve) of (5.2). The period along
the curve H is also close to the analytical value of 2π indicated by the horizontal
line in figure 6(b). The tracking of the curve GS is started from the initial ‘almost’
grazing orbit with maximal relative velocity max x̃2 − v ≈ −0.05; compare figure 4.
Notice that the squares also appear to form a nice smooth curve in both figure 6(a)
and (b), which is an indication of the accuracy of the computation.

As one would expect, the curves H and GS form the two boundaries of a region
of bistability, which is shaded in figure 6(a). The approximation with non-zero r
in (6.1) and non-zero d in (6.2) causes a systematic error H and GS, respectively.
As a result, the size of the region of bistability is underestimated. (In our example,
the systematic error has the side effect of adding a safety margin.) In particular,
the curves H and GS already join (become tangent) for v = vmin > 0 and not only
in the limit v → 0. Note that the tracking of H becomes spurious as soon as the
small periodic orbit that is tracked grazes, which happens at v ≈ r = 0.25. As was
mentioned in §a this is detected and spurious solutions are disregarded.

8. Conclusions and further work

We have presented a method that allows for direct tracking of nonlinear oscillations
and their bifurcations in nonlinear dynamical systems depending on two paramet-
ers. The method does not require a model of the dynamical system, so that it is
applicable to the tracking of stability boundaries in experiments and substructuring
tests. The feasibility of our approach in an experimental setting was demonstrated
with the computer experiment of a friction oscillator. In the near future we are
planning to implement our method in prototype substructured experiments, such
as mass-spring-damper and mass-spring-pendulum systems (Kyrychko et al. 2005).

As presented here, our method uses Quasi-Newton iterations, which generally
converge relatively slowly and generate full matrices. When problem specific in-
formation is available (apart from the choice of a suitable control method, which is
simply assumed to be present in this paper) then the efficiency of the iteration can
be increased substantially by incorporating known parts of the linearization into
the Jacobian. For example, in mechanical systems often one half of the variables
(the velocities) are time-derivatives of the other half of the variables, which reduces
the dimension of the problem by half.

Our method can be extended (by formulating suitable conditions) to implement
also the tracking of other bifurcations of equilibria and periodic orbits (also of
periodically forced systems), such as period-doubling, saddle-node, and symmetry-
breaking bifurcations. A more challenging task is the continuation of torus bifurc-
ations and of strongly non-harmonic periodic orbits near homoclinic bifurcations.
This requires other discretizations than projections onto Fourier modes, as well as
a modification of the fixed point problem (4.8). Another interesting open problem
is the efficient detection of bifurcations in an experimental setting; presently only
saddle-node bifurcations are detected as folds of the continued branch (Sieber &
Krauskopf 2006). More generally, the goal is to implement the robust detection of
stability changes directly in an experiment.
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An interesting topic of future research is the continuation of non-periodic tra-

jectories and their stability changes. This capability would be extremely helpful in
the context of substructured tests because it would enable one to decouple simu-
lations and experiments dynamically. In effect, one would only need to match the
interfaces at the end of each iteration. This approach would deal with two funda-
mental problems of the substructuring technology. First, coupling delays and the
effects of unknown actuator dynamics would not play a role anymore and, second,
the real-time restrictions on the computer simulation could be relaxed substantially.
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Electronic supplementary material

The accompanying animation visualizes the time profiles as shown in figure 5. The
diagrams in the background show the bifurcation diagram, as it gradually completes
during the continuation of the family of periodic orbits, and the time profile of the
control. Black dots in the bifurcation diagram and black vertical lines in the control
time profile correspond to acceptance of the control as non-invasive within tolerance.
Red dots in the bifurcation diagram correspond to points where the right-hand-side
of (5.3) has been evaluated.
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