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Abstract—The dynamics of many physical processes can be
suitably described by Port-Hamiltonian (PH) models, where the
importance of the energy function, the interconnection pattern
and the dissipation of the system is underscored. To regulate the
behavior of PH systems it is natural to adopt a Passivity-Based
Control (PBC) perspective, where the control objectives are
achieved shaping the energy function and adding dissipation. In
this paper we consider the PBC techniques of Control by Inter-
connection � � and Standard PBC. In the controller is
another PH system connected to the plant (through a power-pre-
serving interconnection) to add up their energy functions, while
in Standard PBC energy shaping is achieved via static state feed-
back. In spite of the conceptual appeal of formulating the control
problem as the interaction of dynamical systems, the current ver-
sion of imposes a severe restriction on the plant dissipation
structure that stymies its practical application. On the other hand,
Standard PBC, which is usually derived from a uninspiring and
non-intuitive “passive output generation” viewpoint, is one of the
most successful controller design techniques. The main objectives
of this paper are: (1) To extend the method to make it more
widely applicable—in particular, to overcome the aforementioned
dissipation obstacle. (2) To show that various popular variants of
Standard PBC can be derived proceeding from a unified perspec-
tive. (3) To establish the connections between and Standard
PBC proving that the latter is obtained restricting the former to
a suitable subset—providing a nice geometric interpretation to
Standard PBC—and comparing the size of the set of PH plants for
which they are applicable.

Index Terms—Hamiltonian systems, interconnection, nonlinear
systems, passivity, passivity-based control (PBC), stabilization.

I. INTRODUCTION

I
N the last few years we have witnessed in the control
literature, both theoretical and applied, an ever increasing

predominance of control techniques that respect, and ef-
fectively exploit, the structure of the system over the more
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classical techniques that try to impose some predetermined
dynamic behavior—usually through nonlinearity cancellation
and high gain. The property of passivity plays a central role
in most of these developments. Passivity-based control (PBC)
is a generic name, introduced in [26], to define a controller
design methodology which achieves the control objective, e.g.,
stabilization, by rendering the system passive with respect to a
desired storage function and injecting damping. There are many
variations of the basic PBC idea, and we refer the interested
reader to [8], [23], [29], [32], [34] for further details and a list
of references.

In this paper we are interested in the control of dynamical sys-
tems endowed with a special geometric structure, called a port-
Hamiltonian (PH) model. As shown in [33], [34], PH models
provide a suitable representation of many physical processes
and have the essential feature of underscoring the importance
of the energy function, the interconnection pattern and the dis-
sipation of the system.1 There are many possible representa-
tions of PH models, here we will consider the so-called input-
state-output form, where the state is assumed finite dimensional
and the port variables are the input and output vectors, which
satisfy a cyclo-passivity inequality. (The distinction between
cyclo-passivity and the more standard passivity property will
be discussed later.) To regulate the behavior of PH systems it is
natural then to adopt a PBC perspective [1], [2].

We consider in this paper the PBC techniques of Control by
Interconnection (CbI) [6], [24] and Standard PBC [3], [8], [23],
[25], [26], [29], [32]. In the controller is another PH system
with its own state variables and energy function. The regulator
and the plant are interconnected in a power-preserving way, that
is, through a loss-less subsystem. A straightforward applica-
tion of the passivity theorem [7] shows that the overall system
is still cyclo-passive with new energy function the sum of the
energy functions of the plant and the controller. To assign to
the overall energy function a desired shape, it is necessary to
“relate” the states of the plant and the controller via the gen-
eration of invariant sets—defined by, so-called, Casimir func-
tions. In its basic formulation, assumes that only the plant
output is measurable and considers the classical output feed-
back interconnection. In this case, the Casimir functions are
fully determined by the plant, which imposes a severe restric-
tion on the plant dissipation structure. It has been shown in [24]
that, roughly speaking, “dissipation cannot be present on the
coordinates to be shaped.” This, so-called, dissipation obstacle

1Central to the formulation of PH models is the geometric notion of a Dirac
structure. We will not elaborate any further on this powerful concept here and
refer the reader to [33] for more information.
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stymies the use of for applications other than mechanical

systems where the coordinates to be shaped are typically posi-

tions, which are unaffected by friction.

The first objective of our work is to extend the conceptually

appealing method to make it more widely applicable—in

particular, to overcome the aforementioned dissipation ob-

stacle. Towards this end, we introduce two extensions to

the method. First, exploiting the non-uniqueness of the PH

representation of the system, we propose a procedure to gen-

erate new cyclo-passive outputs (with new storage functions).

Applying through these new port variables overcomes

the dissipation obstacle, but still rules out several interesting

physical examples—not surprisingly since this is still an output

feedback control strategy. Our second, and key modification,

assumes that the plant state variables are available for measure-

ment, and proposes to replace the simple output feedback by a

suitably defined state-modulated interconnection. In this way,

the conditions for existence of Casimir functions can be further

relaxed, enlarging the class of PH plants for which the method

is applicable.

We also consider in the paper Standard PBC, where energy

shaping is achieved via static state feedback and damping is in-

jected feeding back the passive output. Standard PBC, which is

usually derived from a uninspiring and non-intuitive “passive

output generation” viewpoint, is currently one of the most suc-

cessful controller design techniques, that includes Energy-Bal-

ancing (EB), Interconnection and Damping Assignment (IDA)

and Power-Shaping (PS) PBC. A second objective of this paper

is to show that all these variants of Standard PBC can be natu-

rally derived in a systematic way: selecting the desired closed-

loop dissipation.

The third objective of the paper is to relate and compare

and Standard PBC, which is done with three different criteria.

First, comparing the size of the set of PH plants for which they

are applicable—this is in its turn determined by the size of the

solution set of the partial differential equations (PDEs) that need

to be solved for each of the methods. Second, proving that the

(static feedback) Standard PBC laws are the restriction of the

(dynamic feedback) on the invariant sets defined by the

Casimir functions. This provides a nice geometric interpreta-

tion to this successful controller design technique.2 Finally, it is

shown that if can stabilize a given plant then this is also

possible with the corresponding Standard PBC—proving that,

from the stabilization viewpoint, there is no advantage in con-

sidering dynamic feedback.

The remaining of the paper is organized as follows. In

Section II we review the basic scheme of for PH systems

and exhibit the dissipation obstacle. Section III is devoted

to the generation of new cyclo-passivity properties for the

system and apply to these new cyclo-passive systems in

Section IV. The use of state-modulated interconnections in

is presented in Section V. The derivation of various Standard

PBCs, proceeding from the selection of the desired dissipation,

is carried out in Section VI, while the connections between

and Standard PBC are established in Section VII. Some

2At a more fundamental level, viewing Standard PBC as (a restriction of)

interconnected subsystems is consistent with the behavioral framework [22],
which rightfully claims that the classical input-to-output assignment perspective

is unsuitable to deal, at an appropriately general level, with the basic tenets of
systems theory.

illustrative academic examples are presented in Section VIII

and we wrap-up the paper with concluding remarks and future

research in Section IX. For ease of reference, a list of acronyms

(that, alas, plague this paper) is given in the Appendix.

Notation: All vectors defined in the paper are column

vectors, even the gradient of a scalar function that we de-

note with the operator . When clear from

the context the subindex of the operator and the argu-

ments of the functions will be omitted. For vector functions

, we define its (transposed) Jacobian matrix

and, for a distinguished

element , we denote .

II. CONTROL BY INTERCONNECTION OF PH SYSTEMS

In order to make this paper self-contained, after presenting

PH models, we briefly review in this section the basic version

of the method, and discuss its limitations in the presence

of dissipation.

A. Cyclo-Passivity of Port-Hamiltonian Systems

PH models of power-conserving physical systems were intro-

duced in [21], see [24], [33], [34] for a review. The input-state-

output representation of PH systems is of the form

(1)

where is the state vector, , , is the control

action, is the total stored energy,

, with and , are the natural

interconnection and damping matrices, respectively, ,

are conjugated variables whose product has units of power and

is assumed full rank. We bring to the readers

attention the important fact that is not assumed to be positive

semi-definite (nor bounded from below). Also, to simplify the

notation in the sequel we define the matrix

which clearly satisfies

(2)

The power conservation property of PH systems is captured

by the power-balance equation

(3)

Using the fact that we obtain the bound

(4)

that, following the original denomination of [36], we refer

as cyclo-passivity inequality. Systems satisfying such an in-

equality are called cyclo-passive, which should be distinguished

from passive systems where is positive semi-definite.3

Remark 1: In words, a system is cyclo-passive when it cannot

create energy over closed paths in the state-space. It might, how-

ever, produce energy along some initial portion of such a trajec-

tory; if so, it would not be passive. On the other hand, every pas-

sive system is cyclo-passive. It has been shown in [11] that, sim-

3In [24], [27] we referred to cyclo-passive systems as energy-balancing.
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Fig. 1. Block diagram of the ��� scheme with external port variables ��� ��.

ilarly to passive systems, one can use storage functions and pas-

sivity inequalities to characterize cyclo-passivity provided we

eliminate the restriction that these storage functions be non-neg-

ative.

Remark 2: Although the paper considers only systems de-

scribed by PH models (1) some of the results are applicable to

the more general class of cyclo-passive systems

where and satisfy .

(This class has been considered, for instance, in [11].) Under

which conditions can be expressed as , for some ver-

ifying , is a difficult question. An affirmative (con-

structive) answer has been given in [27], but the proposed has

singularities. See also [18], [29], [35] and the discussion in Sub-

section 4.2.2 of [34].

B. Energy Shaping via Control by Interconnection

As indicated above, in PBC the control objective is achieved

rendering the system passive with respect to a desired storage

function and injecting damping. For the basic problem of stabi-

lization, the desired energy function should have a minimum at

the equilibrium and the damping injection insures that the func-

tion is non-increasing. In this way, the energy function qualifies

as a Lyapunov function. We now briefly review the PBC method

of for stabilization of PH systems, we refer the reader to

[33], [34] for further details and extensions. The configuration

used for is shown in Fig. 1, where the controller, , is a

PH system, coupled with the plant, , via the interconnec-

tion subsystem, , that we select to be power-preserving. That

is, such that, for all ,

(5)

where is an external signal that we introduce to define the

port variables of the interconnected system and (possibly) inject

additional damping.

We choose the dynamics of the controller to be a simple set

of (possibly nonlinear) integrators, that is,

(6)

where , and is the controllers

energy function—to be defined by the designer. From

(7)

we see that is cyclo-passive (actually, cyclo-lossless). In its

simplest formulation, assumes that we measure only the

plant output and fixes to be the standard negative feedback

interconnection

(8)

which clearly satisfies (5), with the unitary matrix.

Combining (4), (5) and (7), we obtain that the interconnected

system is also cyclo-passive with port variables and en-

ergy function the sum of the energy functions of the plant and

the controller, that is

(9)

To complete the shaping of the energy function invokes the

Energy-Casimir method—well-known in Hamiltonian systems

analysis, see e.g. [6], [19]—and looks for conserved quantities

(dynamical invariants) of the overall system. If such quantities

can be found we can generate Lyapunov function candidates

combining the conserved quantities and the energy function. We

will look, in particular, for conserved quantities that are inde-

pendent of the energy functions and —such functions are

called Casimir.

The application of the Energy-Casimir method for stability

analysis of (output feedback) is summarized below.

Proposition 1: Consider the PH system (1) coupled

with the PH controller (6) through the power-preserving in-

terconnection subsystem (8). Assume there exists a vector

function such that

(10)

Then, for all functions , the function

(11)

is such that

(12)

Hence, the system is cyclo-passive with storage function .

Proof: The dynamics of the interconnected system is given

by

Now,

Evaluating along the closed-loop dynamics above and invoking

(10), yields , for all and . Hence, . This,

together with (9) and (11) completes the proof.

Remark 3: For ease of notation, and with some loss of gen-

erality, we have taken the order of to be equal to the number

of inputs. If we let , for any , we should replace

the interconnection subsystem (8) by
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where . All derivations in this section, i.e., the re-

striction imposed by the dissipation obstacle and the PDEs to

be solved (10), remained unchanged—replacing by , which

amounts to a redefinition of the plant inputs. In Section V we

show that setting and selecting a function of the plant

state the conditions for Casimir generation are simplified. A

discussion on this issue may be found in [34]. See also Remark

7 and point iii) in Section IX.

Remark 4: Necessary and sufficient conditions for the solv-

ability of the PDEs (10), in terms of regularity and involutivity

of certain distributions, are given in Proposition 3 of [5].

Remark 5: In [24] the energy shaping action of was

viewed from an alternative perspective—geometric instead of

Lyapunov-based—that proceeds as follows. First, we notice that

the level sets of the Casimir functions, , are invariant

sets for the interconnected system. That is, the sets

are invariant for the overall dynamics.4 Then, projecting the

system on yields the reduced dynamics , where

plays the role of shaped en-

ergy function. Even though with a proper selection of the ini-

tial conditions of the controller we can set , the fact that

the shaped energy function depends on this constant is rather

unnatural, thus we have presented the result using a Lyapunov

approach.

Remark 6: In Proposition 1, and actually throughout most

of the paper, we have concentrated on the ability of to

shape the energy function, without particular concern of the sta-

bility property. Clearly, will qualify as a Lyapunov function

if we can ensure that the desired equilibrium point is

an isolated minimum of . If is a detectable output

for the overall system [34], asymptotic stability of the equilib-

rium can be enforced adding damping, i.e., setting ,

, and fixing the initial conditions of the con-

troller states as

This initialization is needed to ensure that the trajectory starts

(and remains) in the invariant set , with ,

that contains the desired equilibrium. See point iv) of Section IX

for a discussion on this critical point.

Remark 7: Interestingly, it is possible to show that we cannot

generate Casimirs and at the same time add damping through

the controller unless we increase the dimension of the dynamic

extension, which was taken here to be equal to . Indeed, re-

placing in (6) and repeating the calcula-

tions for the computation of the Casimirs (with ) yields

the necessary condition , which cannot be

satisfied with a positive semi-definite matrix . See Section

3.2 of [23] and Example 4.3.3 of [34] for cases where damping

4We recall that a set � � � is invariant if ������ ����� � � �
������ ����� � � for all � � �. A necessary and sufficient condition for all sets

� , called the foliation of the manifold � , to be invariant is precisely �� � ��.

propagation from the controller is possible with a dynamic ex-

tension of dimension greater than .

C. The Dissipation Obstacle

Proposition 1 shows that, via the selection of and , it

is possible to shape the energy function of the interconnected

system—provided we can generate Casimir functions. That is, if

we can solve the PDEs (10). Unfortunately, the solvability of the

latter imposes a serious constraint on the dissipation structure of

the system, which was called dissipation obstacle in [24].

Proposition 2: If (10) admits a solution then

(13)

for all . Consequently, energy cannot be shaped

for coordinates that are affected by physical damping.

Proof: Spelling out (10) and combining them we get

The proof is completed noting that .

It is also possible to express the dissipation obstacle in terms

of the energy provided to the plant by the controller. More pre-

cisely, we will now show that a PH system with full rank is

stabilizable via only if the power extracted from the con-

troller is zero at the equilibrium.

Proposition 3: Let be the equilibrium of the PH system

(1) to be stabilized via , and , the corresponding input

and output. If (10) admits a solution and is full rank then

.

Proof: First, note that since we have that

is equivalent to . Hence, (10) is

equivalent to

(14)

Consequently, since the inverse of exists, we have

, which replaced in yields

(15)

that is a necessary condition for the existence of Casimirs.

Now, evaluating at the equilibrium we have

the following chain of implications:

where we have invoked (15) to get the third implication. Re-

placing the latter in the power balance equation (3), and evalu-

ating at the equilibrium, yields the desired result.

Remark 8: It is shown in [33] that the dissipation obstacle is

intrinsic, in the sense that it is determined only by the damping

interconnection structure and is independent of the actual value

of the damping elements.

III. GENERATING NEW CYCLO-PASSIVITY PROPERTIES

To overcome the dissipation obstacle we propose in this sec-

tion to exploit the non-uniqueness of the PH representation to
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generate new cyclo-passive outputs. More precisely, we will

look for full rank matrices , with

(16)

and storage functions �� such that

�� (17)

It is clear that, if (16) and (17) hold, then the system

with output �� will be cyclo-passive with

storage function ��. It turns out that �� is not adequate

to overcome the dissipation obstacle and another cyclo-passive

output—that, being related with the power shaping procedure

of [28], we call ��—must be generated. Interestingly, we also

prove that in the single input case a necessary and sufficient con-

dition for the new cyclo-passive output �� to be equal to the

“natural” output �� is precisely the absence of the dissi-

pation obstacle.

A. Construction of ��

The procedure to identify the new cyclo-passive outputs is

contained in the following proposition, which requires to be

full rank and relies on a direct application of Poincare’s Lemma.
5

Proposition 4: For all solutions of the PDE

(18)

verifying (16) there exists a storage function �� such that the

PH system6

��
�� (19)

satisfies the cyclo-passivity inequality

�� �� (20)

Proof: Poincare’s Lemma states that (18) is necessary and

sufficient for the existence of �� such that

�� (21)

which is equivalent to (17). We then have the following chain of

implications:

�� ��

��

��

��

5Poincare’s Lemma: Given � � � , � � � . There exists � � �

such that �� � � if and only if �� � ���� .

6We are using here the definition of PH systems with feed-through term in-
troduced in [33].

where the last inequality is obtained using (16) and the fact that

, for any full rank matrix .

The proof is completed replacing and the definition of �� in

(19) in the latter inequality.

Remark 9: Under the assumption that is full rank we obtain

a trivial solution of (18) setting . In this case, ��

and we obtain the new power-balance equation

��

Comparing with (3) we see that the new passive output is

obtained swapping the damping—as first observed in [15]. In

that paper it is also shown that, for electromechanical systems

with input voltage sources in series with leaky inductors, ��

results from the application of the classical Thevenin-Norton

equivalent of electrical circuits. See also the example in

Section VIII-B.

Remark 10: The construction proposed in [28] for power-

shaping can be used also here to provide solutions of (18), pro-

vided is full rank. Namely, it is easy to show that for all ma-

trices , with and all ,

such that

is full rank, solves (18). The resulting storage

function being �� .

Remark 11: In [33] it is shown that PH systems with feed-

through term take the form

��

where , and the dissipation structure (de-

fined in ) is captured by

Setting, , and

we see that (19) belongs to this class

with ��.

B. When is �� ��? The Role of Dissipation

As indicated above, if (16) and (17) hold, then �� is a

cyclo-passive output and we could apply for the system

with the port variables �� . Introducing the natural

notation , with and

, and doing some simple calculations we can prove that

in this case a necessary condition for generation of Casimirs is

(22)

which still imposes a restriction on the damping—compare with

(15). We will show in the next section that applying to ��,

instead of ��, this restriction is removed. Interestingly,
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the proposition below proves that the construction of Proposi-

tion 4 will generate new passive outputs if and only if (22) does

not hold.7

We require the following basic lemma.

Lemma 1: .

Proof: We compute

The proof is completed with .

Proposition 5: In the single input single output case the new

cyclo-passive output �� is equal to �� if and only if

the dissipation obstacle for the PH system with port variables

�� is absent, that is

�� �� ��

Proof: From the definition of �� in (19) and (17) we have

�� �� ��

��

��

�� ��

where we have added and subtracted �� in the first line

and invoked Lemma 1 to obtain the third identity. The proof is

completed noting that the sum of the first and the second right

hand term in the last equation is zero if and only if

.

Remark 12: Setting we obtain as a simple corollary

of Proposition 5 the equivalence

�� (23)

The sufficiency part of this equivalence had been established

before in [16].

IV. CONTROL BY INTERCONNECTION WITH
��

In this section we apply the methodology to the new PH

system
��

and show that, in this way, we can shape even

the coordinates where dissipation is present. More precisely, we

will remove the second condition for existence of Casimirs in

(10), obviating the dissipation obstacle (13). To differentiate this

controller from the one obtained using we refer to it as

��. Moreover, we distinguish two variations, when ,

that we call Basic ��, and when that we refer as

��.

A. �� Overcomes the Dissipation Obstacle

Proposition 6: Assume the PDE (18) admits a solution

verifying (16) and such that

7In this subsection we assume that the system is single input, e.g., � � �,
in this case, � is a column vector. For the multi-input case the condition is only
sufficient.

(24)

for some vector function . Consider the PH system

(19) coupled with the PH controller (6) through the power-

preserving interconnection subsystem

�� �� (25)

Then, for all functions , the following cyclo-

passivity inequality is satisfied:

�� �� (26)

where the storage function �� is defined as

�� �� (27)

with �� .

Proof: The proof directly mimics the proof of Proposition

1. The dynamics of the interconnected system are described by

��

Computing the time derivatives

where the second equation is obtained from (24), and the last

equation holds for all ��, . Hence, . This, together

with (7), (20) and (27) completes the proof.

Remark 13: The key difference between Propositions 1 and

6 is that the second condition for generation of Casimirs in the

former, namely , is conspicuously absent in the

latter. As pointed out in Section II-C if both conditions in (10)

are satisfied then the dissipation obstacle condition for ap-

pears—see also (15). This restriction is not imposed in ��.

Remark 14: In [20] the cyclo-passive output �� was ob-

tained, in the context of stability analysis of PH systems, with

the following alternative construction. Suppose we can find

satisfying

(28)

Construct now the interconnection and dissipation matrices of

an augmented system as

By construction

implying that are Casimirs for the PH dynamics
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Furthermore, because of (28)

Thus, the augmented systems is the unitary feedback intercon-

nection of the nonlinear integrators (6) with the PH plant with

a different output, that turns out to be �� for ! It is

interesting to note that these derivations do not presume the in-

vertibility of .

Remark 15: From the definition of �� in (19) and (24) we

see that, if the Casimirs exist, �� , which in its turn is equal

to . Hence, if we introduce the partial change of coordinates

, we get . This is another way of viewing that

the controller is rendering all the sets invariant. See Remark

6.

V. CONTROL BY STATE-MODULATED INTERCONNECTION

In this section we will replace the simple negative feedback

interconnection by a state-modulated interconnection [34],

as suggested in Remark 3. In this way we will further relax

the condition for existence of Casimirs: (10) for the of

Section II, and (24) for the �� of Section IV. We will call

the new controllers �� for the former and, for the controllers

using ��, Basic ��

��
if and ��

��
if .

The following elementary, though somehow overlooked, re-

sult will be used in the sequel.

Lemma 2: Let , with . Define

as a full rank left annihilator of , that is,

and . For any ,

(29)

Proof: The matrix is full rank. Hence,

The proof is completed using the annihilating property of

and noting that the square matrix is full rank.

A. Energy Shaping via ��

Proposition 7: Assume the PDE

(30)

admits a solution for some vector function . Con-

sider the PH system (1) coupled with the PH controller

(6) through the state-modulated power-preserving intercon-

nection

�� (31)

where is defined as

(32)

Then, for all functions , the cyclo-passivity in-

equality (12) with storage function (11) is satisfied.

Proof: The proof goes along the same lines as the proof of

Proposition 1, therefore is only sketched here. The dynamics of

the interconnected system is given by

Computing , and noting that, in view of Lemma 2,

and (32) are equivalent to ,

completes the proof.

Remark 16: It is clear that the set of solutions of (30) is

strictly larger than the one of (10). Indeed, (30) is necessary,

but not sufficient, for (10). The inclusion of state modulation

in the interconnection has allowed, through the addition of the

matrix , to significantly extend the class of systems for which

the method is applicable. However, it is easy to show that

the controller above still suffers from the dissipation obstacle,

namely: (30) .

B. Energy Shaping via ��

��

A similar result is obtained for ��, whose proof is omitted

for brevity.

Proposition 8: Assume the PDE (18) admits a solution

verifying (16) and such that

(33)

for some vector function . Consider the PH system

(19) coupled with the PH controller (6) through the state-

modulated power-preserving interconnection subsystem

�� �� �� (34)

where is defined as

(35)

Then, for all functions , the cyclo-passivity in-

equality (26) with storage function (27) is satisfied.

VI. STANDARD PASSIVITY-BASED CONTROL REVISITED

In [24] we introduced the following:

Definition 1: Consider the PH system (1) verifying the

power-balance equation (3), that we repeat here for ease of

reference

with the open-loop dissipation. A con-

trol action solves the Standard PBC problem if the

closed-loop system satisfies the desired power-balance equation

(36)

where is the desired energy function,

is the desired damping, and is a new passive

output.
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The problem above has too many “degrees of freedom”, i.e.,

, , , .8 In spite of this, in the present section we de-

rive from a unified perspective four solutions to this problem.

Namely, we will show that selecting various desired dissipa-

tion functions, , generates different versions of Standard PBC,

which were previously obtained independently invoking other

considerations. The definition below is instrumental to stream-

line our results.

Definition 2: Define the added energy function

(37)

A state feedback that solves the Standard PBC problem satisfies

the Energy-Balancing (EB) property—for short, is EB—if the

added energy equals the energy supplied to the system by

the environment, that is, if

(38)

Consequently, the total energy function is the difference be-

tween the stored and the supplied energies.

A. Preliminary Results and Proposed Approach

Before presenting the main results of the section we find con-

venient to recall the fundamental Hill-Moylan’s Lemma [11]

whose proof, in the present formulation, may be found in [32].

We also present a corollary to Hill-Moylan’s Lemma, that is in-

strumental for the solution of the Standard PBC problem, as well

as the proposed approach.

Lemma 3: The system

is cyclo-passive with storage function , ,

i.e. , iff there exists a damping function

such that9

(39)

(40)

Corollary 1: Consider the PH system (1) in closed-

loop with . Then (36) holds iff

(41)

(42)

for some function .

In view of Corollary 1, that fixes the new passive output via

(42), our problem is now to find that will solve (41)

for a given triple . We propose to select the desired

damping to be able to define a control signal —function of

—so that (41) becomes a linear PDE in the unknown assign-

able energy functions . For solvability purposes, the qualifier

“linear” in the PDE is essential in the procedure.

8To ensure stability of an equilibrium � we impose � � ������� , and
for asymptotic stability � should be a detectable output—see Remark 6.

9Condition (40) justifies the choice of output made in Remark 2. It is impor-
tant o underscore that � is a function of the state.

Remark 17: For linear time-invariant systems, ,

with

(41) becomes the Lyapunov equation

Remark 18: A version of Hill-Moylan’s Lemma for sys-

tems with direct throughput may be found in [11], [32]. For

simplicity, we have decided to consider systems without

throughput. This is done without loss of generality because,

for our purposes, the key equation to be verified is (39) that

remains unchanged.

B. Energy-Balancing PBC

Proposition 9: Fix , and denote

��.

(i) The control law �� , with

solution of the PDEs

(43)

solves the Standard PBC problem.

(ii) The controller is EB, that is, (38) holds.

(iii) EB-PBC suffers from the dissipation obstacle. More pre-

cisely,

(44)

Proof: We will verify that (41) holds. Thus

��

��

��

�� (45)

where we used to obtain the third equivalence. Ap-

plying Lemma 2 to the term in parenthesis we get the proposed

solution

��

To establish the EB property we have

��

where we have used in the first implication,

in the second and �� for the last one. Finally,

from ��, premultiplying by , and using

yields , which is equivalent to

.

Remark 19: EB-PBC are widely popular for potential energy

shaping of mechanical systems. In this case
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and the added energy is , where are

the generalized coordinates and momenta, is the

inertia matrix, is the dissipation due to friction,

is the input matrix and , are the open-loop and desired

potential energies, respectively. Some simple calculations show

that (43) becomes , which is known as the

potential energy matching equation [3], [25].

Remark 20: The restriction imposed by the dissipation cap-

tured by (44) is of the same nature as the one imposed to ,

namely, (13). In both cases, we are unable to shape the coor-

dinates where dissipation is directly present. In Section III-B

we proved that the construction of �� used for �� yielded

the same output, i.e., �� , iff the dissipation obstacle is ab-

sent—that is, when there is no need for the new output! Interest-

ingly, we will show in the next subsection that Standard PBCs

that do not suffer from this limitation will be EB, precisely if the

dissipation obstacle is absent. In other words, for both and

Standard PBC, our ability to ensure that the difference between

the energies is a non-increasing function is determined by the

nature of the dissipation.

Remark 21: In [24] EB-PBC was derived looking for func-

tions and that satisfy (38). This is, of course, equivalent to

solving the PDE �� ��
, which

is the first line in (45).

C. Interconnection and Damping Assignment PBC

We derive in the propositions below the two versions of

IDA-PBC reported in [27]: when the interconnection and

damping matrices are left unchanged, called Basic IDA-PBC,

and when they are modified, that we simply call IDA-PBC.

As shown in [27], neither one of the schemes is limited by

the dissipation obstacle. The proofs of the propositions, being

similar to the proof of Proposition 9, are omitted for the sake

of brevity.

Proposition 10: Fix , and denote

����.

(i) The control law ���� , with

solution of the PDE , solves the Standard

PBC problem.

(ii) If and there is no dissipation obstacle, i.e., if

then Basic IDA-PBC is EB.

Proposition 11: Fix with

, and denote ���.

(i) The control law

���

with solution of the PDE

(46)

solves the Standard PBC problem.

(ii) If , the damping is left unchanged and there is no

dissipation obstacle, i.e.,

then IDA-PBC is EB.

Remark 22: Applying Lemma 2 to the equations in point (i)

of Proposition 10 we conclude that ����, hence the

closed-loop system for Basic IDA-PBC is ,

that is, only the energy is shaped. On the other hand, proceeding

analogously for IDA-PBC we have that the closed-loop is now

, where contains the desired interconnec-

tion and damping matrices—motivating the name IDA.

D. Power-Shaping PBC

Let us briefly recall the methodology of Power Shaping (PS)

PBC that was introduced in [28] as an alternative to energy

shaping PBC for stabilization of nonlinear RLC circuits, and

was later extended for general nonlinear systems of the form

in [9]. The name, Power Shaping, was mo-

tivated by the fact that, in the case of RLC circuits, the storage

functions have units of power, as opposed to energy as is nor-

mally the case in PBC of PH systems.

The starting point for PS-PBC of RLC circuits is to describe

the system using, so-called, Brayton-Moser models [4] where

the state coordinates are the co-energy variables (voltages in ca-

pacitors and currents in inductors) as opposed to energy vari-

ables (charges in capacitors and fluxes in inductors), which are

used in PH models. With this choice of state variables it is pos-

sible to show that, for a large class of nonlinear RLC circuits,

the dynamics are described by10

(47)

where consists of voltage and current sources,

is a full rank block diagonal matrix containing

the generalized inductance and the generalized capacitance ma-

trices, and —which has units of power, and is

called the mixed potential function—captures the interconnec-

tion structure and the dissipation. This should be contrasted with

PH models, where contains the interconnection and damping

matrices and is the energy function.11

Stabilization via PS-PBC proceeds in two steps, first, the se-

lection of a pair such that,

(48)

with . In this way, we can prove that the system

can be written in the form

and clearly satisfies the cyclo-passivity inequality12

10To avoid cluttering we use the same symbol, �, to denote the new state
variables.

11Relationships between the two descriptions have been studied in [13]. See
also [33] for a general procedure to transform from one model to the other via
the Legendre transform. See also the example in Section VIII-B.

12In the Brayton-Moser model for RLC circuits the matrix � is sign indefi-
nite, hence this step is needed to establish the cyclo-passivity.
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This first step is, obviously, identical to the procedure for gen-

eration of �� of Proposition 4. More precisely, identifying

, and �� (48) coincides with (18).

In the second step we shape the power function by adding

a function , solution of the PDE

(49)

which, together with a suitably defined control, yields the

closed-loop dynamics . Identifying

and as above, the PDE (49) reduces to

(33), proving the equivalence of PS-PBC and ��.

PS-PBC can also be derived, like the previous Standard

PBCs, fixing a desired dissipation. Again, in the interest of

brevity, we omit the proof of the proposition.

Proposition 12: Consider the solutions , with

, of (18). Fix �� �� , and

denote ��. The control law �� ,

with solution of the PDE and

�� , solves the Standard PBC problem.

Remark 23: It is also possible to relate PS-PBC and IDA-

PBC, viewing the former as a two step procedure to solve the

PDE of IDA-PBC, (46), which can be written as

. While in IDA-PBC we fix , in PS-PBC we obtain

it from the solution of (18). This ensures ��,

which replaced in the equation above yields . It

is important to note that (46) may have solutions even though

is not a gradient of some function—as required by

(18).

VII. CbI AND STANDARD PBC: RELATIONSHIPS AND

COMPARISONS

In this section we relate and compare and Standard PBC

using three different criteria.

i) Comparing the “size” of the set of PH plants for which

they are applicable—this is determined by the “size” of

the solution set of the PDEs that need to be solved for

each of the methods.

ii) Proving that the (static feedback) Standard PBC laws are

the restriction of the (dynamic feedback) to the in-

variant sets defined by the Casimir functions.

iii) Showing that if can stabilize a given plant then

this is also possible with the corresponding Standard

PBC—showing that, from the stabilization viewpoint,

there is no advantage in considering dynamic feedback.

A. Domain of Applicability

We find convenient to recall the PDEs that need to be solved

for each one of the PBC methods.13

Control by Interconnection

13We recall that we defined � � � , while� � � . However,
in the light of Remark 3, we can always take the order of the dynamic extension

to be one, and � will be a scalar function.

•

• ��

• (Basic ��)

• (Basic ��

��
)

• ��

plus (18).

• ��

��

plus (18).

Standard PBC

• (EB)

• (Basic IDA)

• (PS)

plus (18).

• (IDA)

The relationship between all these schemes is summarized in

the implications diagram of Fig. 2. The notation means

that the set of solutions of the PDEs of B is strictly larger than the

one of A, consequently the set of plants to which B is applicable

is also strictly larger. Also, we say if the PDEs are the

same. We observe that, in this sense, the more general method

is IDA-PBC that has no “CbI version”.

B. Standard PBC as a Restriction of CbI

The following proposition shows that, restricting the dy-

namics of to the set , yields an EB-PBC.
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Fig. 2. Relationship between the different control schemes from the point of
view of domain of applicability.

Proposition 13: Assume the PDEs (10) admit a solution.

Then, for all functions , the PH system

(1) in closed-loop with the static state-feedback control

�� , where �� , satisfies the cyclo-

passivity inequality

(50)

where with14

(51)

Furthermore, the controller is EB.

Proof: Computing from (51) the time derivative

��

where the second identity is obtained using (10) and the last

one replacing �� and the definition of . This establishes the

EB claim. The cyclo-passivity inequality (50) follows replacing

�� in (4), using the definition of and the last

identity above.

Similarly to , �� also admits a static state feedback

realization. Now, the resulting control law and storage function

are solutions of the matching equation of IDA-PBC.

Proposition 14: Assume the PDEs of ��, (18) and (24),

are satisfied. Then, for all , the state-feedback

controller ��� , ensures that the IDA-PBC

matching condition

��� (52)

is satisfied with �� and given by (51).

Proof: For ease of reference, we repeat here the PDEs of

��:

��

14� is, up to an additive constant, the restriction of � (11) to the set � �
����. Clearly, the “free” functions � and � play the same role in the energy-
shaping—as will be further clarified in Section VII-C.

Replacing in the matching equation (52) yields

�� ��� ���

which is satisfied with the expressions of and ��� given in

the proposition.

C. Stabilization via Stabilization via Standard PBC

Throughout the paper we have concentrated our attention on

the ability of the various PBCs to modify the energy function,

without particular concern to stabilization. As indicated above,

stability will be ensured if a strict minimum is assigned to the

total energy function, (or ��) for and for Standard

PBC, at the desired equilibrium point. The proposition below

shows that the use of a scalar dynamic extension in , i.e.,

when we add only one integrator (equivalently, generate only

one Casimir function), does not provide any additional freedom

for minimum assignment to the corresponding static state-feed-

back solutions of Standard PBC.

Proposition 15: Consider the functions

with and . Then

Proof: Compute

where denotes differentiation of a function of a scalar argu-

ment. Now,

On the other hand,

Now,

From Sylvester’s Law of Inertia we have that and the

right hand side matrix above have the same inertia. Conse-

quently,



IE
E
E

P
ro

o
f

12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Fig. 3. The two-tank system.

where we used the fact that in the last equiva-

lence.

Remark 24: Proposition 15 proves that if has a stationary

point at and it is locally strictly convex around this

point, then the same is true for —with respect to .

VIII. EXAMPLES

A. Two-Tanks Level Regulation Problem

Consider the two-tank system depicted in Fig. 3 with an input

flow split between the tanks via a valve. The state variables

and represent the water level in the lower and

upper tank, respectively, and the control action is the flow

pumped from the reservoir. The valve parameter is the constant

, with if the valve is fully open and if the

valve is closed. We will assume in the sequel that .

Using Torricelli’s law the dynamics of the system can be

written in PH form (1) with

(mass) energy function , and cyclo-pas-

sive (constant) output . The system parameters are all

positive and defined as

where , are the cross-sections of the outlet holes and the

tanks respectively, is the gravitation constant, we defined

and, to simplify notation, we assumed .15 The

achievable equilibrium set is the line

15See [17], and references therein, for further details on the model.

and the control objective is to stabilize a given equilibrium point

.

The dissipation obstacle hampers the application of and

EBC. Indeed, the condition (13) for is not satisfied due to

the presence of in the damping matrix and the fact that

the first coordinate has to be shaped. EBC is also not applicable

because the control at the equilibrium

—for all non-trivial points—hence, the power extracted at the

equilibrium .

We now consider Basic �� and start by investigating the

condition for generation of new cyclo-passive outputs (23). This

yields , hence, �� .

Unfortunately, the condition for existence of Casimirs for Basic

��, i.e., (24) with , is not satisfied. Indeed, as can be

easily verified, the vector

is not the gradient of a function.

The fact below, which ensures �� (with ) is appli-

cable, can be verified via direct substitution.

Fact 1: The full rank constant matrix ,

with

(53)

verifies �� and , where

��

We compute the Casimirs for �� using (24), that we repeat

here for ease of reference, . This yields

The next step is to determine the functions and to assign

the desired minimum to

�� ��

which, upon addition of a constant, will then qualify as a Lya-

punov function for the controlled system. Some simple calcula-

tions prove that

��

The Hessian is given by

��

The first matrix in the right hand side is positive definite for

all such that , while the second matrix is positive

semi-definite provided . This suggests the simple choice
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with , which clearly satisfies the minimum conditions

above.

The �� controller is obtained using (19) and setting

��, (with ) to get the nonlinear dynamic state-

feedback controller16

��

where the free parameters and should satisfy (53), and is

an arbitrary positive number. This controller ensures that, for

any , and any , is a stable equilibrium

of the closed-loop system with Lyapunov function ��

�� . See [30] for the modifications required to ensure

asymptotic stability.

It is interesting to remark that, even though Basic ��

��
in-

corporates more information about the plant, is not applicable

for this problem. Indeed, although the Casimir function can be

determined from , it is easy to see that the Hessian

�� is rank deficient, independently of the functions and

.

We wrap-up this example showing that we can considerably

simplify the design, restricting the dynamics of �� to the set

to obtain IDA-PBC—as suggested in Section VII-B.

Towards this end, we set

���

��

The simplest choice ensures

and yields the constant open loop control ��� . A more

interesting option is to select

which ensures that the linear controller

���

guarantees asymptotic stability of for all and

. This controller was derived, following the

classical IDA-PBC methodology in the interesting paper [17].

B. A Nonlinear RC Circuit

Consider the circuit depicted in Fig. 4 consisting of a linear

resistor, a nonlinear capacitor and a voltage source . The capac-

itor is described by its electric energy function , with the

charge, and the constitutive relations and , where

and are the capacitors voltage and current, respectively. One

way to represent the system in PH form is selecting

16In spite of its apparent complexity the control has a simple implementation,
namely,

� �
�

��� �
�
�
� � �

�
� � � �� � �� � � � � ��

with the constants � , � taking values on some suitably defined ranges. This
can, of course, be further simplified selecting � � �.

Fig. 4. Nonlinear RC circuit.

Fig. 5. Norton equivalent of the nonlinear RC circuit.

In this case, the port variables are the voltage and the pas-

sive output , while the power balance equation

becomes

Even though, as expected, all the terms in this equation have

units of power, the physical interpretation of this realization

is best understood appealing to the Thevenin—Norton trans-

formed systems represented in Fig. 5. The control objective is,

again, to stabilize a given equilibrium point .

It is straightforward to see that there is no that satisfies the

Casimir conditions: , , so this

problem can not be solved using .

For any desired equilibrium point , the corresponding input

and output yield the power

. Hence, the condition , necessary for

EB-PBC, can only be satisfied if the capacitor voltage at the

equilibrium is zero. The fact that im-

plies that ��, so we will try the �� technique.

It is worth mentioning that the general ��, where we look

for , satisfying (16) and (17), yields new storage func-

tions of the form , . Since scaling the energy

function does not change its minima, we stay with Basic ��,

i.e. . The new system is thus

��

��

(54)

where �� . We bring to the readers attention the fact

that (54) is an alternative, actually more natural, realization of

the system of Fig. 4, picking up as port variables voltage

and current , which is equal to ��. The Casimirs for ��

are solutions of , which in this example becomes

, so

will be a Casimir. We look now for functions , such that

the function
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Fig. 6. Nonlinear RC circuit with controller.

��

has an isolated minimum at a given equilibrium point

—where, for simplicity, we have taken . We

have

�� (55)

Some simple computations show that the Hessian ��

if and only if

(56)

For the sake of simplicity, let us fix again a quadratic

with , which satisfies the second condition of (55). For

we propose the second order polynomial

, where and are constants to be defined. The first condition

of (55) imposes the following constraint to the free parameters:

. Evaluating conditions (56) at the equilibrium

turns into

from where it is easy to see that if , we can take

and the equilibrium will be stable, for all , with

Lyapunov function �� �� , where

��

The controller is given by

��

As shown in Fig. 6, it has a physical interpretation as a capac-

itor with charge and capacitance in series with a constant

voltage source , coupled with the system of Fig. 4.

Before wrapping-up this example let us illustrate with it the

relation between Brayton-Moser and PH models briefly dis-

cussed in Section VI-D and thoroughly explained in [33]. To

transform from one to the other we assume the function

, is invertible. That is, there exists a function such

that . Define the Legendre transform

. Differentiating the latter with respect to

and evaluating at , it easy to see that .17 Dif-

ferentiating with respect to time we get

which is in the Brayton-Moser form (47) with

the, so-called, generalized capacitance, , input the cur-

rent and mixed potential, , the power

dissipated in the resistor. See Fig. 5.

Multiplying by , and assuming that , we obtain the

cyclo-passivity inequality

It is interesting to note that the characterization of electrical cir-

cuits that verify this kind of cyclo-passivity inequalities (or the

dual ) is an essential step in the solution of the power

factor compensation problem of energy transformation systems

[10].

IX. CONCLUSION

We have investigated in this paper the relationships between

and Standard PBC. We have concentrated our attention

on the ability of the methods to shape the energy function and

the role of dissipation to fulfill this task. Energy-shaping is,

of course, the key step for the successful application of PBCs

and, similarly to all existing methods for nonlinear systems con-

troller (or observer) design, requires the solution of a set of

PDEs. In the case of the solutions of the PDEs are the

Casimir functions and, eventually, . On the other hand, for

Standard PBC their solution directly provides the “added” en-

ergy function , with a free parameter for IDA-PBC or a

solution of another PDE for PS-PBC. The various methods have

been classified comparing the size of the solution sets of these

PDEs.

To enlarge the domain of application of several vari-

ations of the method have been considered—all of them con-

sidering the simple ( -th order) nonlinear integrator controller

subsystem given in (6). Also, various popular Standard PBCs

have been derived adopting a unified perspective, i.e., fixing the

desired dissipation and writing a linear PDE for the unknown

added energy function.

There are many open question and topics for further investi-

gation including:

i) It is well known [29], that the flexibility provided by

the free parameter in IDA-PBC is essential to solve

many practical problems. As seen from the diagram of

Fig. 2 there is no version of IDA-PBC. What is the

modification to that is needed to add this degree of

freedom?

ii) As indicated in Remark 23 PS-PBC (or equivalently
��

��
) suggests a two-step procedure to solve the

non-homogeneous PDE of IDA-PBC. Instead of fixing

and solving the PDE for as is sometimes done

17In the case of a linear capacitor, ���� � ������� , ����� � ��, and
����� � ������ .
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in IDA-PBC, it is proposed to find as a (suitable)

solution of the new PDE (18). This procedure does

not generate all solutions of (46). However, given the

intrinsic difficulty of defining a “suitable” that will

simplify (46), it is interesting to explore the decomposi-

tion as an alternative for generation of . In this respect,

the parametrization of the solutions given in Remark 10

is of particular importance.

iii) For ease of presentation we have fixed the order of the

dynamic extension to be . However, as indicated in Re-

mark 7 there are some advantages for increasing their

number. Also, for simplicity we have taken simple non-

linear integrators, further investigations are required to

see if other structures could be of use.

iv) We have concentrated our attention on the ability of the

various PBCs to modify the energy function, without par-

ticular concern to stabilization. In particular, we have only

briefly addressed in Remark 6 the issue of asymptotic

stabilization, that arises naturally in where the sets

are rendered invariant. Imposing a constraint on the

controller initial conditions is, of course, not practically

reasonable, and is suggested there only to illustrate the

problem. In [30] we propose two alternative solutions: an

adaptive scheme that “estimates” , and the addition of

damping to the controller.

v) Proposition 15 shows that, in the single input case, the use

of a dynamic extension does not provide any additional

freedom for minimum assignment to the corresponding

static state-feedback solutions. On the other hand, the use

of dynamic extension certainly has an impact on perfor-

mance and might provide simpler controller expressions.

Assessment of the performance improvement (or degra-

dation) is a difficult task that will be investigated in the

future.

vi) A special class of PBC has been successfully derived

for systems described by Euler-Lagrange equations of

motion—which includes, among others, mechanical,

electromechanical and power electronic systems—see

[23] for a summary of the main results. The key struc-

tural property of these systems that is exploited in the

controller design is the presence of work-less forces, that

is well-known in mechanics [26] and captured via the

skew-symmetry of the matrix , where

is the inertia matrix and are the Coriolis and

centrifugal forces. This strong property, which is inde-

pendent of passivity of Euler-Lagrange (or PH) systems

[34], has not been used in or Standard PBC and it

would, certainly, be interesting to incorporate it in these

designs.

vii) The procedure to generate new cyclo-passive outputs of

Section III is of interest independently of its application

to CbI. Indeed, several control problems can be recast in

terms of identification of “suitable” (cyclo-)passive out-

puts, which are known to be easy to be regulated—for

instance with a simple PI law. Two practical applications

where this idea has been applied are reported in [12], [31].

viii) As explained in Section VI-D our research on power

shaping was motivated by the study of Brayton-Moser

models of nonlinear RLC circuits, for which the solution

TABLE I
LIST OF ACRONYMS

of the critical PDE (18) is simplified. It is interesting

to explore modelling procedures for other classes of

physical systems, e.g., mechanical systems, that will

yield this kind of structures. See [14] for some results

along this direction.

APPENDIX

See Table I.
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