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Hand amputation can dramatically affect the capabilities of a person. Cortical
reorganization occurs in the brain, but the motor and somatosensorial cortex can
interact with the remnant muscles of the missing hand even many years after the
amputation, leading to the possibility to restore the capabilities of hand amputees
through myoelectric prostheses. Myoelectric hand prostheses with many degrees of
freedom are commercially available and recent advances in rehabilitation robotics
suggest that their natural control can be performed in real life. The first commercial
products exploiting pattern recognition to recognize the movements have recently been
released, however the most common control systems are still usually unnatural and must
be learned through long training. Dexterous and naturally controlled robotic prostheses
can become reality in the everyday life of amputees but the path still requires many steps.
This mini-review aims to improve the situation by giving an overview of the advancements
in the commercial and scientific domains in order to outline the current and future
chances in this field and to foster the integration between market and scientific research.
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INTRODUCTION

It is estimated that 41,000 persons were living with a major loss of an upper limb in 2005
(Ziegler-Graham et al., 2008). A hand amputation is one of the most impairing injuries and it can
dramatically affect the capabilities of a person. Recent scientific and commercial advances in man-
machine interfaces are promising and suggest that dexterous, naturally controlled, proportional
and simultaneous robotic prostheses could be reality in the future of amputees. Nevertheless, the
outline of the situation in the market and scientific field is complex and the path to naturally
controlled prostheses still requires several steps.

Man-machine interfaces have been developed to control hand prostheses via the brain (Lebedev
and Nicolelis, 2006), peripheral nerves (Navarro et al., 2005) or the muscles (Cipriani et al., 2011).
The first two methods are promising but they usually require invasive procedures to obtain robust
performance, thus they are currently applied only in scientific research. The third method (surface
electromyography, sEMG) is probably the most widely used both in commercial settings and in
scientific research.

Myoelectric hand prostheses with many degrees of freedom and very good mechanical
capabilities are now commercially available. However, prosthetics companies target most
of their communication efforts to end users. Thus they highlight the practical capabilities
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of the hands, but they usually do not provide information
regarding the technical functionalities and specifications of the
prostheses that can be exploitable by academic researchers.
Previous papers presented some hand prostheses in detail (Belter
et al., 2013) but the market changes quickly.

The scientific research field is even more complex and
quickly changing. Many papers have been written in scientific
research about the natural control of robotic hands by intact
and transradial hand amputated subjects. Most of the methods
rely on the use of sEMG and of pattern recognition or
proportional control algorithms. The first commercial products
exploiting pattern recognition to recognize the movements
have recently been released. Targeted muscle reinnervation
(TMR) can allow the exploitation of these methods even on
subjects with above-elbow amputations. Benchmark databases
to compare the performance of different methods and setups
have been released (Atzori et al., 2014a). However, several
steps are still required to obtain proportional, naturally
controlled, robust and usable robotic hand prostheses (bionic
hands).

Since the market and the scientific field are so complex
and changing so quickly, it can be difficult to have a complete
overview of them and to remain constantly updated in both
fields. This mini-review aims to be a resource for young and
experienced researchers in academia and prosthetic companies
by providing a synthetic but complete overview of the current
level of advancement in the commercial and scientific reality.

MARKET OUTLINE

A relatively wide choice of devices is available to restore the
capabilities of hand amputees by myoelectric robotic prostheses.
Such devices are continuously evolving according to technology,
scientific research, market needs and user requirements. The
devices usually include two main parts: prosthetic hands and
control systems.

Prosthetic Hands
Currently, hand prostheses include cosmetic prostheses,
kinematic prostheses and myoelectric prostheses. Cosmetic
prostheses offer esthetical and psychological support. Kinematic
prostheses also have functional capabilities, since the user can
control the opening and closing of a gripper hand through
the motion of the shoulder. Myoelectric prosthesis users
can control a battery-powered hand through the electrical
signal emitted by the remnant muscles, usually located in the
forearm.

The continuous improvements in the field and the different
targets and aims of the papers published by the companies
can make it difficult for researchers to remain updated
with the capabilities of available prostheses. For example,
Belter et al. (2013) performed a very thorough description of
the mechanical properties of prosthetic hands produced by
four companies, but in less than 2 years several companies
produced new versions or made substantial changes to the
products from a mechanical or electronic point of view.

Thus, the market and research achievements often remain
disconnected.

Many prosthetic hands are commercially available. However,
few have the capability to reproduce many movements. The
following selection represents some of the currently most
advanced hand prostheses and gives a representation of different
companies and approaches: (1) Touch Bionics i-limb Quantum;
(2) Otto Bock Michelangelo; (3) Steeper Bebionic v3; and
(4) Vincent hand Evolution 2. Table 1 summarizes the most
important features that can be useful in a laboratory. The features
are grouped into the following four categories: general technical
data, dexterity related features, force related features and control
related features.

Control Systems
Usually two or three sEMG electrodes are located in the socket
in correspondence to specific muscles (Figure 1). A myoelectric
impulse (i.e., an increase in the amplitude of the electrical
signal emitted by the muscles) is used to open and close the
prosthetic hand. The number of movements can be increased
employing specific (e.g., sequential) control strategies. Such
control strategies are usually still far from being natural, thus
controlling prostheses requires a high level of skill and a training
procedure. Control problems contribute to the scarce capabilities
and acceptance of sEMG prostheses (Atkins et al., 1996), but they
are likely promising for improvements in a near future.

In Table 1 we summarize some of the most important
control related features for the considered prosthetic hands
including: number of electrodes, movement control type,
movement command and particular features of each control
system. As can be noticed in Table 1, despite the mechanical
characteristics of the prosthesis allowing to reproduce up to 24
hand movements, the control systems rely in most cases on
few (1–3) electrodes and on sequential control strategies or on
specific movement triggers (in some cases tunable through a
mobile app or other strategies). In sequential control strategies,
a specific signal (for example, a simultaneous activation of
two sEMG electrodes, usually called co-contraction) is used to
switch between a set of predefined movements. In movement
triggers on the other hand specific patterns of electrode
activation are related to specific movements of the prosthesis.
The mentioned methods are not natural, in the sense that
they do not correspond to the movement that the subject
would have thought to do before the amputation. However,
they offer robust results, which is one of the main needs in
real life.

Several of the considered prostheses include external
sources of information as well. In particular, Touch Bionics
i-limb Quantum recently introduced gesture control (recorded
via gyroscope, accelerometer and magnetometer) and grip
chips (that use blue-tooth chips attached to specific objects)
to perform movement selection, while Steeper Bebionic
exploits finger position encoders to perform falling object
prevention. Sometimes research achievements translate to
clinical practice too. In 2013 a pattern recognition system
similar to the ones described in the scientific literature was made
commercially available (http://www.coaptengineering.com/).
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TABLE 1 | Characteristics of the examined prosthetic hands.

Company name Touch Bionics Otto Bock Steeper Vincent GmbH
Prosthesis model i-limb Quantum Michelangelo with Bebionic v3 Evolution 2

Axon Bus Technology

General Weight 474–515 g ∼510 g 550–598 g 380–410g
technical data (without battery) (365–390 g small hand)

Operating voltage 7.4 V 11.1 V 7.4 V 6–8 V
Battery type Lithium polymer Li-Ion Li-Ion Li-Pol

Battery capacity 1300–2400 mAh 1500 mAh 1300–2200 mAh 1300–2600 mAh
Number of actuators 6 2 5 6

Dexterity Active fingers 5 independent 3 5 independent 5 (+12 active joints)
Thumb rotation Powered Powered Manual Powered

Total number of grip 24 7 14 20
patterns

Grip patterns available 7 7 11 20
at any moment
Flexible wrist Available Included Available Available
Rotating wrist Available Available Available Available
Rotating wrist (active or passive) (active or passive) (active or passive) (only passive)

Full closing time 0.8 s (0.7 s small hand) 0.37 s 0.5–1 s 0.8 s
Finger position No 2 motor position 5 (one in each 2 (in thumb

encoders encoders actuator) actuators)
Force Power grip 100–136 N ∼70 N 140.1 N (280 N small hand) 60 N

Lateral pinch 40 N (60 N small hand) ∼60 N 26.5 N (53 N small hand) 15 N
Adaptive Grip Yes Yes Yes Yes
Falling object Active (auto-grasp, based on No Active (auto-grip, based on Passive

prevention accidental sEMG finger position encoders) (spring load)
signal detection)

Proportional control Yes Yes Yes Yes
N◦ of electrodes 1–2 1–2–3 1–2 1–2 wired

Control Movement control Movement triggers, Sequential, 4-channel Sequential, Morph RFId Single trigger
type mobile app, bluetooth control GRIP selection or Vincent

grip chips, favorite compatible Morse code
environment, gesture control

Movement Hold open, double impulse, Different switching Co-contraction/ Hold signal
command triple impulse, modes available, open-open signal (opening or closing),

co-contraction fast and high signal controls double signal,
rotation in co-contraction,

4-channel control alternating signal
Particular features Various control Sensor hand speed Fully free Very low weight

methods thumb (stiff and harder finger tips); flexing fingers
rotating manually Fragile objects grasping
and automatically

Feedback No No Audible beeps and/or Vibration (force
vibration (grip changes) detected via

motor current
and DMS sensors)

The Coapt system can include up to eight sEMG electrodes.
It is generic and it is typically set up to control the number
of powered DOFs the patient’s prosthesis has. That is, if
a powered elbow, wrist, and terminal device are built into
the prosthesis then the Coapt system is set to control these.
If, however the prosthesis only has a powered terminal
device and/or wrist, the Coapt system is set up for those
DOFs. Wherever possible, Coapt performs natural control.
The technician is encouraged to work with the patient to
determine which are the most physiological, repeatable,
consistent, and intuitive movements to use for control. Slight
variations can be attempted if necessary, also through re-
calibration procedures. The number of natural grasping patterns
that can be achieved varies. According to Coapt, typically

users can select between 3–6 naturally. It should be noted
that the physical interconnection of the Coapt system and
several prostheses has yet to be implemented. An example of
movement-triggered control that we received by Coapt is the
following one:

1. Hand closing: closing prosthesis.
2. Hand opening: opening prosthesis.
3. Wrist clockwise/counterclockwise rotation: powered wrist

clockwise/counterclockwise rotation.
4. Double impulse of natural hand opening: grip A.
5. Triple impulse of natural hand opening: grip B.
6. Holding the hand open: grip C.
7. Single impulse of natural hand opening: grip D.
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SCIENTIFIC RESEARCH OUTLINE

Many papers have been written in scientific research about the
control of robotic hands and prostheses by intact and hand
amputated subjects.

Usually several electrodes are placed on the forearm of the
subject to record the myoelectric signals (Figure 1) with a dense
sampling approach (Fukuda et al., 2003; Tenore et al., 2009;
Li et al., 2010) or a precise anatomical positioning strategy
(De Luca, 1997; Castellini et al., 2009a). The most common
control procedures can be subdivided into pattern recognition or
proportional control approaches, which can be applied to sEMG
and multimodal signals.

Pattern recognition algorithms are used to classify the
movement that the subject aims to perform according to a
label (Scheme and Englehart, 2011). Pattern recognition results
provided in several cases classification accuracy over 90–95%
on less than 10 classes (e.g., Castellini et al., 2009b), however
average results are usually below 80–90% (Peerdeman et al.,
2011). Movement classification methods require movement
labeling and they are restricted to a predetermined set of
hand movements. Simultaneous pattern recognition has been
studied recently (Jiang et al., 2013b; Ortiz-Catalan et al., 2013;
Young et al., 2013), however usually such procedures consider
simultaneous motions as new classes, thus they can reduce the
robustness of the classifier.

Proportional and simultaneous control of a large number of
degrees of freedom of the prosthesis can allow achieving more
natural and dexterous control using unsupervised or supervised
methods (Fougner et al., 2012; Farina et al., 2014). Unsupervised
methods are usually based on signal factorization (e.g., through
Non-Negative Matrix Factorization, NMF), they require a short
calibration phase and they are relatively independent on the

FIGURE 1 | Scheme of a generic myoelectric control system: (i) for
commercial prosthesis without pattern recognition (blue rectangle);
and (ii) for research (or control system with pattern recognition; red
ellipses). The same architecture is assumed in the external forearm.

number and exact location of the electrodes (Jiang et al., 2009,
2014a,b; Muceli et al., 2014). Supervised methods (Nielsen
et al., 2011; Muceli and Farina, 2012; Ameri et al., 2014a,b;
Gijsberts et al., 2014b; Hahne et al., 2014) are usually based
on regression techniques (e.g., Linear Regression, LR, Artificial
Neural Networks, ANN, Support Vector Machines, SVM) that
require a reliable ground truth for hand kinematics. This is
easy for intact subjects (e.g., using data gloves), but it can
be difficult for amputees, for whom the ground truth can be
acquired only via bilateral mirrored contractions (Nielsen et al.,
2011) or via visual cues (Ameri et al., 2014a,b). Recently, semi-
supervised methods (NMF) and supervised methods (LR, ANN)
were compared to evaluate the impact of precise kinematics
estimation for accurately completing goal-directed tasks (Jiang
et al., 2014b). The results showed that, although the three
algorithms’ mapping accuracies were significantly different, their
online performance was similar. These results underline the
hypothesis that good proportional myoelectric control can be
achieved by the interaction and adaptation of the user with
the myoelectric controller through closed-loop feedback. The
same hypothesis is also demonstrated in other recent papers on
multiple degrees of freedom for intact subjects (Pistohl et al.,
2013; Antuvan et al., 2014) and hand amputees (Jiang et al.,
2014a). Despite most of the proportional studies concentrating
on full hand movements (e.g., hand supination, pronation,
rotation, flexion, extension), proportional and simultaneous
control has a strong potential for decoding finger kinematics
as well. In particular, recent work described average correlation
coefficients of up to 0.9 for the estimation of single finger
movements (Smith et al., 2008) and 0.8 for the estimation of
simultaneous and complex movements (Ngeo et al., 2014).

Also in scientific research, additional sources of information
can be used to improve the performance of myoelectric control.
Computer vision has been integrated to predetermine the
type and size of the required grasp in relation to the object
(Došen et al., 2010; Markovic et al., 2014). Accelerometers
showed excellent capabilities to recognize handmovements using
pattern recognition and regression methods, both alone and
in combination with sEMG electrodes (Atzori et al., 2014b;
Gijsberts et al., 2014a; Krasoulis et al., 2015).

A common problem in the field is that often the studies
are highly specific and they are not directly comparable, due
to different acquisition setups, protocols and analysis pipelines.
Moreover, often the datasets are not publicly available. The
NinaPro project (Atzori et al., 2015) released a publicly available
benchmark with EMG, kinematic and dynamic data sources from
intact and amputated subjects to help the scientific community to
overcome control problems (http://ninaweb.hevs.ch/). Ninapro
was recently used to evaluate regression methods for the
continuous decoding of finger movements from sEMG and
accelerometry (Krasoulis et al., 2015), to apply Dynamic
time warping (DTW) in the context of myoelectric control
(AbdelMaseeh et al., 2015) and to present the Movement Error
Rate, an alternative to the standard window-based accuracy in
pattern recognition (Gijsberts et al., 2014a).

Many factors can theoretically influence sEMG controlled
prosthesis, including anatomical characteristics of the subjects
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(Farina et al., 2002), training in using myoelectric prostheses
(Cipriani et al., 2011), clinical parameters of the subjects (e.g.,
level of the amputation, phantom limb sensation intensity; Atzori
et al., in press), fatigue, sweating, changes in electrode or arm
positioning, surgical procedures used during the amputation and
even cortical reorganization. However, few studies addressed
these effects.

Implanting intramuscular EMG-recording devices reduces
the number of parameters affecting the EMG signal and it can
improve simultaneous control of multi-DOF prosthetic wrist and
hand (Smith et al., 2014, 2015).

TMR is a surgical procedure that redirects the nerves that
used to control the muscles of the hand to innervate accessory
muscles fromwhich surface sEMG is recorded. Impressive results
have been obtained with this method, especially in persons with
above-elbow or shoulder amputations (Kuiken et al., 2009). The
same technique has also been applied on muscles transferred
to the forearm to better integrate with traditional commercial
prostheses (Aszmann et al., 2015).

The opposite neural direction, i.e., transferring information
from the hand prosthesis to the brain, has been studied in
several papers as well. Several attempts have been performed
using non-invasive or invasive methods. Electrocutaneous and
vibratory stimulation channels have been extensively studied in
the past Szeto and Saunders (1982). TMR represents a promising
solution also in this case, since it theoretically allows a certain
amount of sensory feedback (Marasco et al., 2009). However, to
date, the only example of real-time use of neural interfaces for
the effective bidirectional control of dexterous prosthetic hands
performing different grasping tasks is given by Raspopovic et al.
(2014).

Despite the achievements described in this article, there
are still several challenges before amputees can benefit from
the mentioned signal processing developments (Jiang et al.,
2012). First, robustness is probably the most important
and challenging problem, in particular for simultaneous and
proportional control. Second, the sensory-motor loop should
be closed with proper feedback systems, thus opening new
possibilities for effective and intuitive prosthetic control.
Third, most of the studies are performed in controlled
laboratory conditions with non-amputated subjects, which
do not adapt to several different real life conditions of
amputees (Fougner et al., 2011; Jiang et al., 2013a; He et al.,
2015a,b).

CONCLUSIONS

Hand amputation can dramatically affect the capabilities of
a person. The augmentation of the functionalities of the

nervous and muscular system through external devices can
already improve the situation of amputees. The market and
the scientific field are complex and changing quickly, thus it
is often difficult for young researchers to have a complete
overview of them, as well as for experienced researchers
to remain constantly updated in both the fields. In this
mini review, we provide a synthetic but complete overview
of the current level of advancement in the commercial
and scientific reality, addressing each field in a specific
section.

The commercial outline highlights the existence of very
advanced prosthetic hands and control systems. Four of
the most advanced prosthetic hands were analyzed, showing
important mechanical and control differences. In particular,
the number of actuators ranges between 2 (Otto Bock
Michelangelo), 5 (Steeper Bebionic 3) and 6 (Touch Bionics i-
limb Quantum and Vincent Evolution 2) while the number of
finger position encoders ranges between 0 (Touch Bionics i-
limb Quantum), 2 (Otto Bock Michelangelo, Vincent Evolution
2) and 5 (Steeper Bebionic 3). The first commercial control
system based on pattern recognition has been released and
it seems a great advancement with respect to previous ones.
However natural, proportional and simultaneous control of
a large number of degrees of freedom is currently not
available.

The scientific research outline shows a large variety of
control methods and several possible improvements. Pattern
recognition, proportional control and TMR are extremely
promising. Common sEMGdata resources and benchmarks have
been proposed recently to compare different sEMG analysis
methods. Most of the factors that can theoretically affect the
control of myoelectric prostheses, such as clinical data (e.g.,
level of the amputation, phantom limb sensation intensity) were
recently studied. Finally sensorial feedback recently showed very
promising advancements.

In conclusion, the path to proportional, naturally controlled,
robust and usable robotic hand prostheses with sensorial
feedback (bionic hands) seems to be well initiated and extremely
promising for the coming years even though it is still a
challenging work in progress.
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