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Controlling complex systems is a fundamental challenge of network science. Recent advances indicate that
control over the system can be achieved through a minimum driver node set (MDS). The existence of
multiple MDS’s suggests that nodes do not participate in control equally, prompting us to quantify their
participations. Here we introduce control capacity quantifying the likelihood that a node is a driver node. To
efficiently measure this quantity, we develop a random sampling algorithm. This algorithm not only
provides a statistical estimate of the control capacity, but also bridges the gap between multiple microscopic
control configurations and macroscopic properties of the network under control. We demonstrate that the
possibility of being a driver node decreases with a node’s in-degree and is independent of its out-degree.
Given the inherent multiplicity of MDS’s, our findings offer tools to explore control in various complex
systems.

T
he need to control is ubiquitous in many complex systems. For example, a cellular system controls a series of
chemical reactions during its division to guarantee sufficient genetic materials in each daughter cell1–3. A
company controls the dynamics of information flow for efficient task execution or innovation4. In a supply

chain, cost is reduced by controlling the commodity flow5. Therefore there is an increasing need to understand the
control principles of complex systems.

Recent advances in applying control theory6–8 to complex networks9,10 shed new light on this problem11–28.
According to control theory, a dynamical system is controllable if it can be driven from any initial state to any
desired final state within finite time6,7. Obviously, when we influence every element in the system, we obtain full
control. However, control in general can be achieved through the control of only a subset of nodes that we call
driver nodes. In a linear time-invariant system, the minimum driver node set (MDS) can be efficiently identified,
representing the minimum set of nodes through which we can yield control over the whole system12. It has been
shown that the number of driver nodes necessary for control (ND) is fixed in a given network and primarily
determined by the underlying degree distribution. Yet, there are often multiple control configurations with the
same ND

24. For example, in the six-node network shown in Fig. 1a ND 5 4, but control can be achieved via five
different MDS’s: {1, 2, 4, 6}, {1, 2, 4, 5}, {1, 2, 3, 6}, {1, 2, 3, 5} and {1, 2, 3, 4}.

The existence of multiple MDS’s indicates that not all nodes participate in control equiprobability, prompting
us to quantify the role of each node in control. Here we introduce the concept of control capacity w(i), defined as
the fraction of MDS’s in which node i is included. This quantity measures the participation of node i in MDS’s,
hence gives the likelihood that node i is a driver node when the network is under control via a random control
configuration. For example, in Fig. 1a, the control capacity of each node is w(1) 5 w(2) 5 1, w(3) 5 w(4) 5 0.6 and
w(5) 5 w(6) 5 0.4. In connection with previous work that classifies nodes into three categories24, a node with w 5

1 is critical as it always acts as a driver node, w 5 0 is redundant as it never participates in MDS’s whereas 0 , w ,

1 is intermittent as it plays as a driver node in some control configurations but not all.
In spite of its direct relevance control capacity is difficult to measure, as only nodes with w 5 0 and w 5 1 can be

identified in polynomial time24. Intuitively control capacity is readily obtained once all MDS’s are known.
However, enumeration of all MDS’s in an arbitrary network is in the class of #P problem and computationally
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prohibitive for large networks. Indeed, the number of MDS’s can
grow exponentially with networks size, hence a network with only
hundreds of nodes often leads to millions of MDS’s29. To cope with
this difficulty we propose a random sampling algorithm, allowing us
to measure the control capacity within a limited number of MDS’s,
drawn randomly from all MDS’s. In the following we show that our
algorithm yields a random pick of MDS and provides reliable stat-
istical estimation of control capacity of nodes in arbitrary networks.

Results
Random sampling algorithm. We start by briefly reviewing the
process in identifying ND and MDS for an arbitrary directed
network. First, a directed network is converted to a bipartite graph
with two disjoint sets of nodes out and in. The out nodes can be
considered as ‘‘superiors’’ that influence others internally. The in
nodes are ‘‘subordinates’’ that need to be controlled. A directed
link from node i to j corresponds to a connection between node i
in the out set and node j in the in set in the bipartite graph (Fig. 1a, b).
By performing the maximum matching in the bipartite graph12,30, the
minimum driver nodes are unmatched nodes in the in set (Fig. 1c, d).

The method provides a direct connection between a maximumly-
matched set (MMS) and a MDS, as the complementary set of a MMS
yields a MDS. One can use different algorithms to find the maximum
matching in a bipartite graph, such as Hopcroft-Karp algorithm30,
FordFulkerson algorithm31 and Hungarian algorithm32. All these
algorithms aim to increase the matching size in each iteration via
the augmenting path that starts at a matched node, end on a
unmatched node and alternates between unmatched and matched
links on the path17. Because there is no randomness in identifying an
augmenting path, these algorithms will locate only one MMS for a
given initial condition hence they are not appropriate for sampling
purposes. Two simple modifications can be applied to bring random-
ness: one is to randomize the initial matching and the other is to
randomly choose possible augmenting paths. However, sampling
based on these methods are not guaranteed to be uniform among
all MMS’s and can be typically biased.

Here we propose a novel algorithm that performs unbiased ran-
dom sampling among all MMS’s, which equivalently samples all
MDS’s and estimates the control capacity. The steps are as follows:

0. For simplicity, remove the always matched nodes in the in set
and their links (the algorithm to identify always matched nodes is
introduced in reference24). Denote by G the bipartite graph obtained
after node removal.

1. Obtain one MMS (denoted by M).
2. Randomly pick an element in M (denoted by node i).
3. Enumerate all alternative MMS’s that include all other elements

of M except node i. (see Methods)
4. Randomly pick one of these alternative MMS as the current

MMS M.
5. Repeat step 2.

Now we prove that the above steps randomly samples MMS’s.
Considering each MMS as one state, our algorithm maps to a
Markov chain characterized by a transition matrix P with the element
pi,j that equals the probability of transition from state i to j. Without
loosing generality, assume two MMS as sets of m nodes {n1, n2, …, na,
…, nm} and {n1, n2, …, nb, …, nm}, denoted by M1 and M2 respect-
ively. Suppose that there are totally z other MMS’s that include n1, n2,
…, nm except na or nb and consider the MMS M1 and M2 as two state i
and j in the Markov chain that our algorithm maps to. The transition
from state i to j requires the pick of element na out of m elements with
probability 1/m and the pick of set M2 out of z 1 1 alternative sets

with probability 1/(z 1 1). Therefore pi,j~
1

m zz1ð Þ. Similarly, from

state j to i, the probability to pick element nb is 1/m. As the number of
alternative MMS’s including n1, n2, …, nN except nb is also z 1 1,

pj,i~
1

m zz1ð Þ. Hence pi,j 5 pj,i and the transition matrix P is sym-

metric. For Markov chain with symmetric transition matrix, the
steady state distribution is with equal probabilities for all states33.
This means that in the long run, each MMS is picked with the same
probability as all others.

To verify the result, we construct a small network with 244 MDS’s,
perform our sampling algorithm 48,800 iterations and count the time
that each MDS is picked. We find that each MDS is sampled approxi-
mately 200 times (Fig. 2a), which is the expected count a random
sampling yields. The distribution of the counts follows a Gaussian
distribution (Fig. 2b) centered at 200, implying the difference
between actual and expected counts are due to random fluctuation.

One important attribute of a sampling method is the rate of con-
vergence, capturing how fast the estimate converges to the actual
value. Typically the rate of convergence is not known exactly unless
an analytical solution can be found for the sampling process34. Via
numerical tests, we find that the sampling results converges to the
actual value after T 5 N ln N iterations in a network with N nodes.
The interpretation of T is intuitive: as our algorithm randomly draws
the original elements in the MMS and replaces it with the new ones,
the measure will not converge until we have the original MMS com-
pletely shuffled. Assuming that the size of the MMS is m, the expected
number of iterations to obtain the first element replaced is 1, second
element replaced is m/(m 2 1) and the nth element replaced is m/
(m 2 n). Therefore for m elements the expected iteration isX

m{1
i~0

m
m{i

*m ln m. As m varies but is proportional to network

size N, we replace m by N and hence have the characteristic time-step

T.
The characteristic time-step provides the minimum number of

iterations necessary for sampling, therefore capturing the complexity
in quantifying control capacity. The time needed to find one max-
imum matching can be as small asO N0:5Lð Þwith the Hopcroft-Karp
algorithm in a network with N nodes and L links30. To find one
alternative MMS with one node replaced, a breadth first search is
needed withO Lð Þ time. As the number of alternative MMS is capped

Figure 1 | (a) An example of a directed network with six nodes. (b) The

bipartite representation of the directed network in (a) where nodes are

represented as two disjoint sets of nodes out and in. A directed link from

node 1 to node 3 in (a) corresponds to a connection between node 1 in the

out set and node 3 in the in set. (c) One maximum matching configuration

of the bipartite graph (b) where one node can maximumly match another

node through one link. Colored nodes and links are matched nodes and

links respectively. (d) One choice of minimum driver node set (MDS) to

control the network based on the maximum matching in (c), i.e.

controlling nodes 1, 2, 4 and 6 to control the whole system.
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by N, the complexity of one sampling isO NLð Þ. As the sampling time
needed is proportional to T, the control capacity can be estimated in
polynomial time as O N2L ln Nð Þ.

To test our proposition, we construct a network with 100 nodes.
We explicitly enumerate all 153,123 MDS’s (see Methods) and
exactly measure the control capacity of all 33 nodes with 0 , w ,

1. Then we apply the random sampling and estimate the capacity
wt(i) of each node i at time-step t based on the samples collected up to
t. It is observed that wt(i) quickly converges to the expected value in T
5 N ln N steps (Fig. 2c,d). It is also noteworthy that in 3000 itera-
tions, which cover fewer than 2% of all MDS’s, the mean absolute
percentage error (MAPE) of the estimated control capacity is less
than 3% (Fig. 2d), indicating the efficiency of utilizing random

sampling in estimating the control capacity that significantly reduces
the computational complexity.

Control capacity in model and real networks. We check the
relationship between a node’s topological property and its role in
control. On the one hand, we find that a node’s out-degree does
not affect its control capacity (Fig. 3b). This is because the
outgoing links serve as means to control other nodes, which does
not affect how this node itself would be controlled. On the other
hand, control capacity does depend on in-degree. Particularly w 5

1 when kin 5 0, indicating that nodes without incoming links need to
be always controlled, in line with our previous finding24. As in-degree
increases, w decays rapidly (Fig. 3a), indicating that a node with more

Figure 3 | Dependency between control capacity w and nodes’ in- and out-degree. (a) w decays rapidly with in-degree kin, suggesting that nodes with

more incoming links are less likely to be a driver node. w 5 0 when kin 5 0, indicating that nodes without incoming links are always driver nodes.

(b) For the same networks in (a), w does not vary with out-degree kout, indicating control capacity is independent of out-degree. Networks analyzed are

generated by static model (see Methods) with size N 5 10,000 where P kinð Þ*k{cin
in , P koutð Þ*k{cout

out , cin 5 cout 5 c and kinh i~ kouth i~ 1
2

kh i.

Figure 2 | (a) The count on each of 244 MDS’s is around the expected value 200 when taking 48800 samples. (b) The distribution of the counts that is

centered at 200 and can be well fitted by a Gaussian distribution. (c) The time evolution of wt(i)/w(i) of 33 nodes with 0 , w , 1. wt(i) is the control

capacity of node i at time-step t based on the samples collected up to t and w(i) is the expected control capacity of node i that is explicitly measured

through the enumeration of all 153,123 MDS’s. Control capacity starts to converge at the characteristic time-step T. (d) The time evolution of the mean

absolute percentage error MAPE 5 Si | wt(i) 2 w(i) | /n, where n is the number of nodes with 0 , w , 1. MAPE drops quickly after T time-steps.
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incoming links are less likely to be a driver node as they are more
likely to be influenced internally.

We extend the analysis to real systems and check the relationship
between ÆkDæ and Ækæ, which are the average degree of the driver
nodes and all nodes, respectively (Table 1). With control capacity,
ÆkDæ can be explicitly expressed as ÆkDæ 5 Siw(i)k(i)/ND where k(i)
is the degree of an arbitrary node i. One would expect ÆkDæ , Ækæ
in real networks since w decreases with kin. However, while the
fact that the average in-degree of driver nodes is less than that of
the network (ÆkD,inæ , Ækinæ) reflects the relationship between w
and kin, average out-degree of driver nodes (ÆkD,outæ) can be
affected by the in- and out-degree correlation21,35–38 featuring in real
systems and the finite size effect39,40. Indeed several networks are
found with ÆkD,outæ . Ækoutæ (e.g. Seagrass in food web and TRN-
Yeast-2 in regulatory networks of Table 1) and in one network we
even observe that ÆkDæ is slightly higher than Ækæ (TRN-EC-2 in
regulatory networks of Table 1). But for majority of real networks
the average degree of driver nodes are less than that of the whole
network, leading to the conclusion that hubs are less likely to be
driver nodes12.

Finally, we check how control capacity is distributed among nodes
with 0 , w , 1 in Erdös-Rényi networks41, scale-free networks42 (see
Methods) and some real networks (Fig. 4). The distributions are
found to depend on specific network configurations and there seems
no simple universal function for the distribution. But as a common
feature, w typically displays multi-modal distribution, implying that
several clusters of nodes share about the same chance of being driver
nodes. Recent work24 discovered that dense networks with identical
degree distribution can stay in one of the two control modes, cen-
tralized or distributed, depending on the fraction of nodes that can
participate in MDS’s. The distributions of control capacity corres-
ponding to networks in the two control modes also show distinct
features. For networks in distributed mode, a significant fraction of
nodes are with control capacity close to zero (Fig. 4(b), (e)). This
indicates that while many nodes can participate in MDS’s, their
participation is not frequent compared with the huge number of
MDS’s in distributed mode. For networks in centralized mode, the
number of nodes with 0 , w , 1 is small, but the distribution of

capacity among these nodes is similar to that when Ækæ is small
(Fig. 4(c), (f)).

Discussion
In summary, uncovering the role of individual nodes in controlling a
network requires us to understand control capacity, a centrality mea-
sure quantifying a node’s likelihood of being a driver node. While a
network’s control can be achieved via different MDS’s and each may
give rise to different outcomes, we lack a tool to average the effect of
different MDS’s or statistically analyze the consequences driven by
different MDS’s over the network. In this paper we propose a random
sampling algorithm, allowing us to efficiently measure control capa-
city in arbitrary networks. The proposed algorithm bridges the gap
between multiple microscopic control configurations and mac-
roscopic properties of the network under control. One important
example of its application is the study of ÆkDæ, which can not be
properly addressed without the random sampling method12.

The results presented have many potential applications in future
works. For example, recent work on the controllability of bank sys-
tems investigated the time correlation of nodes’ roles in control25,27.
The measure of control capacity could be crucial in such tasks, espe-
cially in temporal networks where a node’s role in control varies with
time43–45. The relationship between control capacity and the effi-
ciency or energy cost in control15,28 are also important issues for
further investigations. The random sampling method is useful in
problems when an overall measure of a network is needed. As an
example, when estimating the control robustness of a network, the
random sampling algorithm has to be considered as different MDS’s
may facing different failure risks. Finally, links do not participate in
control in an equal manner, allowing multiple link combinations to
spread the control signal. Our approach can offer insights for future
work exploring the participation of links in control. Given the inher-
ent multiplicity feature in control, our findings offer fundamental
tools to explore control in various complex systems.

Methods
Enumerating all alternative MMS’s with one node replaced. Suppose the maximum
matching is obtained in a bipartite graph and denote M by the current maximumly-
matched set (MMS) of nodes in the in set. Assume node i is an element of the set M.

Table 1 | Real networks Analyzed. For each network, we show its type, name; number of nodes (N) and links (L); average degree Ækæ;
average degree of driver nodes ÆkDæ and average in- and out-degree of driver nodes (ÆkD,inæ and ÆkD,outæ), respectively

Type Name N L Ækæ ÆkDæ ÆkD,inæ ÆkD,outæ

Regulatory TRN-Yeast-147 4,441 12,873 5.80 5.74 2.82 2.92
TRN-Yeast-248 688 1,079 3.14 3.13 1.31 1.82
TRN-EC-149 1,550 3,340 4.31 4.30 2.09 2.22
TRN-EC-248 418 519 2.48 2.61 1.06 1.55

Trust College student50,51 32 96 6 3.5 0.17 3.33
Prison inmate50,51 67 182 5.43 3.98 1.43 2.55

Food Web Ythan52 135 601 8.90 4.17 0.28 3.89
Little Rock53 183 2,494 27.26 25.87 10.03 15.84
Grassland52 88 137 3.11 2.30 0.29 2.00
Seagrass54 49 226 9.22 6.05 0.55 5.51

Power Grid TexasPowerGrid55 4,889 5,855 2.40 1.9 0.81 1.09
Metabolic E. coli56 2,275 5,763 5.07 3.64 1.76 1.88

S. cerevisiae56 1,511 3,833 5.07 3.71 1.79 1.92
C. elegans56 1,173 2,864 4.88 3.60 1.72 1.88

Electronic s83848 512 819 3.20 2.40 0.87 1.54
Circuits s42048 252 399 3.17 2.43 0.84 1.59

s20848 122 189 3.10 2.49 0.79 1.70
Neuronal C. elegans57 297 2,345 15.79 8.09 2.69 5.40
Internet p2p-158 6301 20777 6.59 5.48 2.29 3.19

p2p-258 8,846 31,839 7.20 6.27 2.73 3.53
p2p-358 8,717 31,525 7.23 6.28 2.79 3.49

Social UCIonline59 1,899 20,296 21.38 5.89 3.37 2.52
Communication Email-epoch60 3,188 39,256 24.63 7.13 2.70 4.43
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The following procedures can provide all MMS’s that contain all other elements of M
except node i. (0) Set node i as the removal node. (1) Identify the node in the out set
that matches the removal node (denoted by node j). (2) Keep the current matched
nodes and links unchanged, remove the removal node with all its links. (3) Check if
there is an augmenting path that starts from node j, ends at an unmatched node and
alternates between unmatched and matched links on the path. (4) If so, we obtain a
new MMS with node i replaced. Update the matched links and nodes
correspondingly. Set the new matched node in the in set as the removal node and
repeat step (1). (5) If not, there is no new MMS with node i replaced and all of them are
enumerated already.

Enumerating all MDS’s. For a given bipartite graph, we first remove all the always
matched nodes in the in set and their links (algorithm discussed in reference24).
Define Si as a set of nodes that a out node i can reach. For example, in Fig. 1b there are
S1 5 {3, 4, 5, 6} and S2 5 {5, 6}. Effectively Si is the set of nodes that node i can match.
In the bipartite graph with no always matched nodes in the in set, a MMS of in nodes is
a set of nodes without duplication, each drawn from one set S. Therefore, we can
repeatedly test all possible combinations to enumerate all MMS’s that equivalently
provides all MDS’s. Note that nodes chosen from different S’s can sometimes give rise
to the same MMS. For example, in Fig. 1b picking node 5 from S1 and node 6 from S2

yields the same MMS as picking node 6 from S1 and node 5 from S2. All MMS’s need
to be recored. Once a valid node combination is found, it needs to be checked with
previously found MMS to avoid double count.

Generating a scale free network. The scale-free networks42 analyzed are generated
via the static model46. We start from N disconnected nodes indexed by integer number
i (i 5 1, … N). The weight wout,in

i ~i{aout,in is assigned to each node in the out and the
in set, with aout,in a real number in the range [0, 1). Randomly selected two nodes i and
j respectively from the out set and the in set, with probability proportional to wout

i and
win

j . Connect node i and j if there is no connection between them, corresponding to a
directed link from node i to node j in the digraph. Otherwise randomly choose
another pair. Repeated the procedure until Ækinæ 5 Ækoutæ 5 Ækæ/2 links are created. The

degree distribution under this construction is Pout,in kð Þ*k
{ 1z 1

aout,in

� �
~k{cout,in in

the large k limit.
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