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CONTROL COMMUNICATION COMPLEXITY OF DISTRIBUTED

CONTROL SYSTEMS∗

WING SHING WONG†

Abstract. This paper introduces a measure of communication complexity for a two-agent dis-
tributed control system where controls are subject to finite bandwidth communication constraints.
The proposed complexity measure is an extension of the idea of communication complexity defined in
distributed computing. Applying this classical concept to control problems with finite communication
constraints leads to a new perspective and a host of new questions, some of which are investigated in
this paper. In particular, one can connect the proposed complexity with the traditional communica-
tion complexity via upper bound and lower bound inequalities. Moreover, the proposed complexity
is shown to be intricately related to the dynamical characteristics of the underlying system.
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1. Introduction. Control under finite bandwidth communication constraints
or digital finite communication bandwidth (DFCB) control, a term coined by Li and
Baillieul in [15], has been receiving much attention for the past decade. While germs
of related ideas may be found in earlier work on systems with quantized states, such
as Delchamps [6], subsequent works, starting with Wong and Brockett [21, 22] and
continuing with Tatikonda, Sahai, and Mitter [20], Brockett and Liberzon [3], Nair
and Evans [17, 18], Baillieul [1], Elia and Mitter [7], Fagnani and Zampieri [9], Li
and Baillieul in [15], Ishii and Francis [12], Tatikonda and Mitter [19], de Persis
and Isidori [5], and many others, focus research interests on the interplay among
data rates, coding structure, communication protocol, and dynamic behavior of the
controlled system, such as containability, asymptotic stability, or observability. Data
quantization plays a fundamental role in these investigations, but of equal importance
are issues on communication, coding, and complexity. Although all results involving
data rates inherently have some implications on system complexity, relatively less
attention has been devoted to addressing complexity directly. A notable exception is
the paper by Fagnani and Zampieri [10]. Building on results in [8, 9], they explicitly
introduce various complexity parameters and analyze their implication on system
performance.

In theoretical computing, complexity plays a paramount role. There is an influ-
ential and thriving program of complexity research based on the concept of commu-
nication complexity first introduced by Yao [24]. (For a more detailed description
on communication complexity, please refer to [13].) Communication complexity and
control under finite communication constraints are ideas coming from two apparently
disjoint disciplines. The main contribution of this paper is to marry the two circles
of ideas by defining a communication complexity for a controlled dynamical system.
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To distinguish between the proposed complexity and traditional communication com-
plexity, the former is labeled as the control communication complexity.

Control communication complexity is a new perspective that opens up a host
of questions and challenges, of which only a very small portion are discussed in this
paper. Nevertheless, preliminary results indicate that there is an intricate relationship
among control communication complexity, system dynamics, and system objectives.

To provide motivation for the new concepts introduced here, two application ex-
amples will be discussed first. The first concerns mobile sensor networks, which have
been serving lately as popular research topics in wireless communication. The sec-
ond example is a variation of the Leontief input-output economic model. These two
examples will be presented in section 2. In section 3, the basic model and related con-
cepts from control with finite communication constraints are described. In section 4,
a two-agent distributed control system is introduced. The concept of control commu-
nication complexity is then defined. Section 5 establishes a connection between the
new complexity and traditional communication complexity by means of upper bound
and lower bound inequalities. In section 6, some classes of examples are presented,
and their corresponding control communication complexity is analyzed. These ex-
amples provide additional insight into the general property of control communication
complexity. Concluding remarks are provided in section 7.

2. Two motivating examples.

2.1. Example 1: Mobile sensor network positioning. Consider a sensor
network consisting of k remote mobile sensors which are deployed to monitor a ge-
ographical area. A network of sensor satellites orbiting in free space is a potential
realization of such a network, but for simplicity it is assumed that the sensors are
confined to lying on a horizontal plane. The geographical area is divided into two
regions, belonging, respectively, to two control agents, Alice and Bob. If one rep-
resents a sensor as a point in a configuration space by its position-momentum pair
(pi(t),mi(t)) ∈ R

4, then the total system configuration of the network is denoted by
the vector x = (p1,p2, . . . ,pk,m1,m2, . . . ,mk)T ∈ R

4k. (In this paper, boldface let-
ters represent vectors or matrices; sets are represented by calligraphic letters.) System
dynamics can then be described by an equation of the form

dx(t)

dt
= Ax(t) + BAuA(t) + BBuB(t), x(0) = x0 ∈ R

4k,(2.1)

where uA and uB represent the respective control of Alice and Bob. The control
functions are assumed to be based on digitized observations, and the control values
are coded and transmitted over finite bandwidth communication channels.

Depending on the choice of the subregions that require attention, there is an
optimal position configuration for the sensors. For illustration, consider a single sensor
system in which Alice’s region consists of two subregions, R1 = [−6,−4]× [−1, 1] and
R2 = [−2, 0] × [−1, 1], while Bob’s subregions are S1 = [4, 6] × [−1, 1] and S2 =
[0, 2] × [−1, 1]. Assume that one subregion from each agent is selected at a time. If
sensor accuracy is distance dependent, then for suitably chosen cost functions, one
can argue that the optimal position of the sensor is located at the midpoint of the
line joining the centers of the subregions to be monitored. These optimal positions
can be summarized in the following table for the previously stated example:
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Bob’s choice\Alice’s choice R1 R2

S1 (0, 0, 0, 0)T (2, 0, 0, 0)T

S2 (−2, 0, 0, 0)T (0, 0, 0, 0)T

In general, assume that the choices for Alice and Bob are contained in finite sets
A and B, respectively. The optimal configurations can be summarized by a table
of size |A| × |B|, with entries that are elements in R

4k. The function table and the
time-invariant system parameters in (2.1) are known to both agents. It is assumed
that Alice chooses an element from A and Bob chooses an element from B, with the
choice unknown to the other agent. The system objective is to define protocols which
can guarantee that the system will reach in finite time the state specified according
to the agents’ choices.

If Alice and Bob do not have direct communication links to each other, a basic
question is whether they can jointly steer the network to the optimal state specified
by their choices. If the answer to the question is positive, it is natural to investigate
how one can quantify the minimum amount of information that needs to be exchanged
between the system and the agents in order to achieve this goal.

2.2. Example 2: Control of a Leontief input-output economic model.

Consider a dynamic Leontief model [2, 14, 16] in which an economy is divided into n
sectors of industries, with xi(t) representing the gross output rate of the ith sector at
time t. The gross output rates are adjusted according to the relation

xi(t) =

n∑

j=1

Aijxj(t) +

n∑

j=1

Bij

dxj

dt
(t) + yi(t)(2.2)

or, in matrix form,

x(t) = Ax(t) + B
dx

dt
(t) + y(t).(2.3)

Here, the nonnegative input coefficient Aij represents the amount of the ith good
needed to produce one unit of the good from the jth sector; B represents the so-called
capital coefficient matrix; yi(t) stands for the exogenous demand of the ith sector at t.
Unlike in traditional models, it is assumed here that the exogenous demand can be
partially controlled by two agents, Alice and Bob, so that

y(t) = uA(t)yA + uB(t)yB + yn(t),(2.4)

with uA(t) and uB(t) controlled by Alice and Bob, respectively, and yn(t) representing
the net exogenous output. Suppose that, for a given choice of α for Alice and β for
Bob, there is a target net exogenous output that they want the system to produce,
which can be achieved when yn reaches the state yα,β . The objective for Alice and
Bob is to jointly steer the system to such a state at some time instant T . If Alice and
Bob can communicate their choices directly to each other, this objective may not be
difficult to achieve. However, if Alice and Bob do not have a direct communication
link (or if they are not allowed to directly communicate due to regulation), can the
system objective be accomplished through communication via the system? If the
answer to this question is positive, what is the minimum amount of information that
needs to be exchanged between the system and the agents?
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Intuitively, the answers to these questions depend on a host of factors, including
the structure of the two-agent objective function, the coding functions, as well as
observability and controllability conditions of the system. In the following sections, a
simple model is proposed so that related questions can be investigated in some detail.

3. Basic dynamical model with communication constraints. The source
of this work can be traced to control systems under finite bandwidth communication
constraints and Yao’s concept of communication complexity. To acquaint readers with
the former circle of ideas, consider the following DFCB control model:

⎧

⎪⎨

⎪⎩

xt = Dxt−1 + Eut−1(ζt−1), x0 ∈ X0 ⊆ R
n,

ψt = Qt(Cxt),

ζt = Kt(ψt, α).

(3.1)

The control coefficient matrix E is of dimension n×m, and the observation matrix C is
of dimension ℓ×n. The function Qt : R

ℓ → Lt is a time-dependent observation quan-
tization/encoding function taking value in a finite set Lt; Kt : Lt ×A → Mt denotes
a feedback control law that depends on a finite parameter set A, which determines
the operating point of the system, and maps an observation code-word from Lt into
a control code-word taking values in a finite set Mt. The function u(·) : Mt → R

m

maps a control code-word to a control vector. Lastly, X0 represents a known set of
initial states.

Equation (3.1) can be interpreted as defining a control system with a distributed
feedback controller. At time t, the observer generates the observation output Cxt−1

and quantizes it by means of the function Qt into λt bits, where

λt = ⌈log2 |Lt|⌉.(3.2)

These observation bits are then sent to the decision-maker. Control decision is com-
puted by the decision-maker via Kt and coded into µt control bits, where

µt = ⌈log2 |Mt|⌉.(3.3)

Thus, for each observation-control cycle, λt +µt bits of information will be exchanged
between the decision-maker and the physical plant. Figure 1 shows a schematic of the
distributed control system.

The second inspiration of this paper comes from communication complexity, which
is, roughly speaking, a measure of the communication required for two agents to
jointly compute a function by means of a distributed protocol. Several closely related
definitions of communication complexity have been proposed subsequent to Yao’s
original definition. The version presented in [13] is adopted here. Let X , Y, and let
Z be finite sets and f be a function from X × Y to Z. In [13], a protocol is formally
defined as a binary tree where each of its internal nodes is identified with a binary
valued function affiliated with either Alice or Bob and each leaf node is affiliated with
an element in Z. To carry out the computation when Alice chooses α from X and
Bob chooses β from Y, one starts from the root node and computes at each internal
node the affiliated function using either α or β as an argument, depending on whether
the node function is affiliated with Alice or Bob. One moves to the left child if the
function evaluates to zero and moves to the right child if it evaluates to one. Output
of the protocol is taken to be the value affiliated with the leaf node reached in the end.
The cost of a protocol is the height of the tree. The communication complexity of f ,
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Physical Plant

Decision-Maker

ζt = Kt(ψt, α)

xt = Dxt−1 + Eut−1(ζt−1), x0 ∈ X0 ⊆ R
n,

ψt = Qt(Cxt).

ψt ζt

Fig. 1. A DFCB control model.

b1(α)

b0(β) 1

0 1

Fig. 2. Example of a protocol computing the function f .

denoted by D(f), is then defined to be the minimum cost among all protocols that
compute f correctly. In this definition of communication complexity, both agents are
required to know the computed value when the protocol halts.

As a simple example, consider the computation of the following binary function,
f : {0, 1} × {0, 1} → {0, 1}:

β\α 0 1
0 1 1
1 0 1

For i = {0, 1} let bi(γ) be a binary function that is equal to 1 if γ = i and 0 otherwise.
Then, the binary tree in Figure 2 describes a correct protocol to compute f that starts
with Alice.

To see why this protocol computes correctly, interpret each node in the graph as a
step of having one communication bit exchanged between the agents. Thus, the first
node represents the step that a bit is sent from Alice to Bob carrying the outcome
of the function, b1(α). If b1(α) is equal to 1, then both agents can conclude that
f(α, β) = 1. Otherwise, one more bit of information needs to be exchanged, this time
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from Bob to Alice. In this example, the depth of the tree is 2, and it can be shown
that for this function D(f) is indeed 2. For the original definition of communication
complexity by Yao, denoted here by C(f), the protocol stops when either Alice or
Bob can determine the value of f . For the protocol defined in Figure 2, this means
that the protocol can stop after one bit has been exchanged. So, in this case,

D(f) = C(f) + 1.(3.4)

In the next section, a two-agent distributed control system is introduced, which is
based on a DFCB control model with a structure akin to the system defined in (3.1).
The concept of communication complexity will then be defined.

Subsequent discussions of the coded observer require the concept of quantization
by means of a lattice [4]. A lattice Λ generated by an n × n full rank matrix, Z =
(z1, . . . , zn), consists of points in R

n of the form

{
n∑

i=1

mizi : mi ∈ Z, i = 1, . . . , n

}

.(3.5)

For any (m1, . . . , mn) ∈ Z
n, a cell X centered at

∑n

i=1 mizi is a subset of R
n:

{
n∑

i=1

(mi + ǫi)zi : −1/2 ≤ ǫi < 1/2, i = 1, . . . , n

}

.(3.6)

When a quantization function is defined via a lattice, all elements in a cell of the
lattice are represented by the cell center. Given a full rank n×n matrix H, one can
define a new lattice HΛ by

HΛ =

{
n∑

i=1

miHzi : mi ∈ Z, i = 1, . . . , n

}

.(3.7)

If X is a cell of Λ centered at x, then HX is a cell of HΛ centered at Hx.

4. A distributed control system and its communication complexity.

Consider a two-agent distributed control system Σ, which is defined by the following
system of equations. For t ≥ 0,

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xt+1 = Dxt + EAu
(A)
t (ζ

(A)
t , . . . , ζ

(A)
0 , ψ

(A)
t , . . . , ψ

(A)
0 )

+EBu
(B)
t (ζ

(B)
t , . . . , ζ

(B)
0 , ψ

(B)
t , . . . , ψ

(B)
0 ),

x0 ∈ X0 ⊆ R
n,

ψ
(A)
t = Q

(A)
t (CAxt, . . . ,CAx0), ψ

(B)
t = Q

(B)
t (CBxt, . . . ,CBx0),

ζ
(A)
t = K

(A)
t (ψ

(A)
t , . . . , ψ

(A)
0 , α), ζ

(B)
t = K

(B)
t (ψ

(B)
t , . . . , ψ

(B)
0 , β).

(4.1)

Here, CA and CB are the observation matrices of dimension ℓA×n and ℓB×n, respec-
tively; EA and EB are control matrices of dimension n×mA and n×mB , respectively.

Q
(A)
t and Q

(B)
t are quantization/coding functions mapping the observations to finite

sets, with their domains and ranges defined by

Q
(A)
t : R

ℓA × · · · × R
ℓA

︸ ︷︷ ︸

t+1

→ L
(A)
t , Q

(B)
t : R

ℓB × · · · × R
ℓB

︸ ︷︷ ︸

t+1

→ L
(B)
t ,(4.2)
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Dynamical System

Alice Bob

ζ
(A)
t = K

(A)
t (ψ

(A)
t , . . . , ψ

(A)
0 , α) ζ

(B)
t = K

(B)
t (ψ

(B)
t , . . . , ψ

(B)
0 , β)

xt+1 = Dxt + EAu
(A)
t (ζ

(A)
t , . . . , ζ

(A)
0 , ψ

(A)
t , . . . , ψ

(A)
0 )

+EBu
(B)
t (ζ

(B)
t , . . . , ζ

(B)
0 , ψ

(B)
t , . . . , ψ

(B)
0 ),

x0 ∈ X0 ⊆ R
n,

ψ
(A)
t = Q

(A)
t (CAxt, . . . ,CAx0), ψ

(B)
t = Q

(B)
t (CBxt, . . . ,CBx0).

ψ
(B)
t ζ

(B)
tψ

(A)
tζ

(A)
t

Fig. 3. A distributed control system.

where L
(A)
t and L

(B)
t are finite sets. Without loss of generality, the mappings Q

(A)
t and

Q
(B)
t are assumed to be surjective. The coded observations ψ

(A)
t and ψ

(B)
t are sent to

Alice and Bob, respectively, over digital communication channels. If the observation
coding function is a constant, then no communication bit needs to be exchanged. Alice

and Bob determine the appropriate control code-words by means of the functions K
(A)
t

and K
(B)
t , respectively. The domains and ranges of these functions are defined as

K
(A)
t : L

(A)
t × · · · × L

(A)
0 ×A → M

(A)
t ,

K
(B)
t : L

(B)
t × · · · × L

(B)
0 × B → M

(B)
t .

(4.3)

Here, A and B are finite sets containing the choices of Alice and Bob, respectively.

Without loss of generality, one can assume that K
(A)
t and K

(B)
t are surjective.

The dynamical system keeps a bank of control mappings for each agent. It can
select which mapping to use based on the observation code-words that have been
sent to that agent up to the moment. (In other words, the system remembers what
observation code-words have been sent to a particular agent.) Alice activates her

control by means of the control code-word sequence {ζ
(A)
0 , . . . , ζ

(A)
t }, and Bob activates

his control by means of {ζ
(B)
0 , . . . , ζ

(B)
t }. Thus, the domain and range of the control

functions can be formulated as follows:

u
(A)
t (·) : M

(A)
t × · · · ×M

(A)
0 × L

(A)
t × · · · × L

(A)
0 → R

mA ,

u
(B)
t (·) : M

(B)
t × · · · ×M

(B)
0 × L

(B)
t × · · · × L

(B)
0 → R

mB .
(4.4)

The functions u
(A)
t and u

(B)
t are of infinite precision and are preloaded before

the dynamical system is activated. (It is possible to assume a simpler structure for
the control functions so that they depend only on the control code-words sent by
the agents. Since the control code-words could include information about the coded
observations, this simpler function structure can achieve controlling effects that are
identical to those of the current approach but at a higher communication cost.)

Definition 1. A distributed control protocol for the system Σ is defined by the

functions {Q
(A)
t }∞t=0, {Q

(B)
t }∞t=0, {K

(A)
t }∞t=0, {K

(B)
t }∞t=0, {u

(A)
t }∞t=0, and {u

(B)
t }∞t=0.

A schematic of the control system is shown in Figure 3.
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4.1. System parameters and protocol operation. It would be informative
to describe for the functions in a control protocol the system parameters on which
they are allowed to depend. These parameters may include

S1. the sets A and B and the target function f ,
S2. the matrices D, EA, EB, CA, and CB,
S3. the initial state set X0.
Before the controls are activated, the functions {K

(A)
t }∞t=0 are distributed to Alice,

{K
(B)
t }∞t=0 are distributed to Bob, and the functions {Q

(A)
t }∞t=0, {Q

(B)
t }∞t=0, {u

(A)
t }∞t=0,

and {u
(B)
t }∞t=0 are implemented at the dynamical system. The agents and the dynam-

ical system are synchronized to start at time 0 and iteratively compute these functions
until the stopping condition is satisfied.

4.2. Information structure and agent knowledge. In order to explain the
stopping rule, it is helpful to provide a precise meaning of the statement that an agent
has knowledge of a function f .

It is common to define information as the observation available to the decision-
maker (see, for example, [11]). Represent the information available to Alice and Bob
at time t by IA(t) and IB(t), respectively. Then,

IA(0) = (ψ
(A)
0 , α), IA(1) = (ψ

(A)
1 , ψ

(A)
0 , α), . . . ,

IB(0) = (ψ
(B)
0 , β), IB(1) = (ψ

(B)
1 , ψ

(B)
0 , β), . . . .

(4.5)

(Since part or all of the system parameters S1, S2, and S3 could be included in

the definition of the functions {K
(A)
t }∞t=0 and {K

(B)
t }∞t=0, these parameters can be

regarded as a priori information known to the agents.)
Although a parameter may not be directly observable, an agent may be able to

deduce its value with certainty from prior knowledge or indirect observations. For
example, although Bob does not have direct observation on α, he can determine its
value from his knowledge of A if it is a singleton set. To make this concept precise,
the following definition is introduced. Let f1, . . . , fp and f0 be real functions defined
on a common set of real variables (z1, . . . , zK).

Definition 2. An agent is said to have knowledge of f0 based on the information
(r1, . . . , rp), which is an instantiation of the functions (f1, . . . , fp), if the set

{f0(z1, . . . , zK) ∈ R : f1(z1, . . . , zK) = r1, . . . , fp(z1, . . . , zK) = rp}(4.6)

is a singleton.

In a traditional communication complexity model, a protocol is specified by a
binary tree and the functions affiliated with its internal nodes. These functions take
either α or β as argument. The bits that are exchanged between the agents represent
the values of these functions. A protocol correctly computes a function f if and only
if the agents have knowledge of f for any instantiation of the node functions.

4.3. System objective and stopping rule. The system objective is to design
a distributed control protocol that enables the agents to achieve a common goal that
is specified by a target function. There are two types of target functions considered
in this paper.

Type A. This type of target function is used when and only when the initial set
is finite. f is a function from A×B to the state space R

n and represents the state to
which Alice and Bob aim to control the system to reach in finite time.
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Type B. This type of target function is used when and only when the initial set is
infinite. f is a function from A×B to cells defined by a lattice Λ on R

n. The function
represents the cell to which Alice and Bob aim to control the system to enter in finite
time.

Denote f(A× B) by FR. It follows that the cardinality of FR satisfies

|FR| ≤ |A| · |B|.(4.7)

Since FR is a finite set, the computation complexity of f in the traditional sense is
well defined.

All functions in a distributed protocol sequence, and hence all information avail-
able to the agents, can ultimately be regarded as functions that take α, β, and x0 as
arguments. To ensure that the agents have knowledge of f is one of the key objectives
of the distributed control system considered here. At the same time, it is important
to guarantee that the system enter the target state at some finite time. Therefore,
formally stated, the objectives of a distributed control protocol are to ensure that, for
any choice α ∈ A of Alice, any choice β ∈ B of Bob, and any initial state x0 ∈ X0,
the following hold:

1. There is a finite time σ such that, based on IA(σ), Alice has knowledge of f ,

and based on IB(σ), Bob has knowledge of f .

2. There is a finite time τ such that

xτ (x0) = f(α, β) for a Type A target function,

xτ (x0) ∈ f(α, β) for a Type B target function,
(4.8)

where xt(x0) is the trajectory xt of (4.1) starting from x0.

3. There is a finite time ρ such that, based on IA(ρ), Alice has knowledge of τ ,

and based on IB(ρ), Bob has knowledge of τ .

The system is considered terminated after time max(σ, τ, ρ). In the definition
of the system objective, there is no condition on how σ, τ , and ρ should relate to
each other. The intention is to allow flexibility in a generic model. It is possible, for
example, to refine the model by requiring that τ ≥ σ.

A distributed control protocol that accomplishes these objectives for any α, β,
and x0 is known as a correct protocol.

4.4. Quantifying the information exchange. To measure the amount of data
that needs to be exchanged at time t, define

λ
(A)
t = ⌈log2 |L

(A)
t |⌉, µ

(A)
t = ⌈log2 |M

(A)
t |⌉,

λ
(B)
t = ⌈log2 |L

(B)
t |⌉, µ

(B)
t = ⌈log2 |M

(B)
t |⌉.

(4.9)

If no information is communicated, the convention is to set the corresponding
function to a constant. Clearly there is no loss of generality in assuming that for
t ≥ max(σ, τ, ρ) no communication bits are exchanged and that

λ
(A)
t = µ

(A)
t = λ

(B)
t = µ

(B)
t = 0.(4.10)

4.5. Rundown of a control cycle. To further illustrate the basic concepts, it
is helpful to describe the rundown of a control cycle. To start the first control cycle,

the system quantizes the observation CAx0 into ψ
(A)
0 and the observation CBx0
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into ψ
(B)
0 . These coded observations are sent to Alice and Bob, respectively. Alice

then computes the control code-word ζ
(A)
0 by means of K

(A)
0 using ψ

(A)
0 and α as

arguments. Similarly, ζ
(B)
0 is computed via K

(B)
0 by Bob using ψ

(B)
0 and β. The

control code-words are then forwarded to the physical system and are mapped into

the corresponding controls, u
(A)
0 and u

(B)
0 , referred by (ζ

(A)
0 , ψ

(A)
0 ) and (ζ

(B)
0 , ψ

(B)
0 ),

respectively. Equation (4.1) is then updated with these controls. This completes the
first control cycle. Subsequent control cycles can be described similarly.

4.6. Control communication complexity. Given a distributed control pro-
tocol Ω for a distributed control system (Σ, f), and given an initial choice of α, β,
and x0, the number of bits exchanged between the agents and the system is summed
up by the formula

c(Ω, α, β,x0) =

∞∑

t=0

(λ
(A)
t + λ

(B)
t + µ

(A)
t + µ

(B)
t ).(4.11)

For a fixed protocol Ω, this sum is a deterministic function defined on A × B × X0

and has a supremum which is denoted by C(Ω). That is,

C(Ω) = sup
(α,β,x0)

c(Ω, α, β,x0).(4.12)

Definition 3. The control communication complexity of a distributed control

system (Σ, f) is defined to be the minimum of C(Ω) as Ω varies over the set of correct

distributed control protocols. That is,

Y (Σ, f) = min
Ω

C(Ω).(4.13)

Y (Σ, f) is closely related to the traditional concept of communication complexity
of f .

5. Basic bounds for control communication complexity. In this section
some basic bounds of the newly defined complexity are introduced.

Theorem 1. For any distributed control system (Σ, f),

2D(f) ≤ Y (Σ, f).(5.1)

Proof. Let Ω be a correct distributed control protocol that achieves the complexity
Y (Σ, f). For any x0 in the initial state set and for any choices α and β, the following
holds:

c(Ω, α, β,x0) ≤ Y (Σ, f).(5.2)

Now consider a modified distributed control system in which the dynamical system
always starts from the state x0 which is known to both Alice and Bob. Regard the
dynamical system and Alice as forming a single entity and label it as Super Alice.
Consider the traditional communication complexity of computing f between Bob and
Super Alice. Viewed in this manner, any distributed control algorithm for the original
problem can be reinterpreted to provide a solution to the traditional problem. For
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example, one can view the system

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xt+1 = Dxt + EAu
(A)
t (ζ

(A)
t , . . . , ζ

(A)
0 , ψ

(A)
t , . . . , ψ

(A)
0 )

+EBu
(B)
t (ζ

(B)
t , . . . , ζ

(B)
0 , ψ

(B)
t , . . . , ψ

(B)
0 ),

x0 given,

ψ
(A)
t = Q

(A)
t (CAxt, . . . ,CAx0), ψ

(B)
t = Q

(B)
t (CBxt, . . . ,CBx0),

ζ
(A)
t = K

(A)
t (ψ

(A)
t , . . . , ψ

(A)
0 , α)

(5.3)

as a computing device for Alice that takes the sequence {ζ
(B)
t } as input and generates

the sequence {ψ
(B)
t } as output. This offers a solution to the traditional distributed

computation problem of f between Bob and Super Alice. Hence,

∞∑

t=0

(λ
(B)
t + µ

(B)
t ) ≥ D(f).(5.4)

A similar argument leads to a corresponding inequality for
∑∞

t=0(λ
(A)
t +µ

(A)
t ). Hence,

2D(f) ≤ c(Ω, α, β,x0) ≤ Y (Σ, f).(5.5)

Definition 4. Given a bounded subset of R
n, X , and a lattice Λ of R

n, the order

of X over Λ, denoted by O(X , Λ), is equal to the number of distinct cells of Λ that

have nonempty intersection with X .

For example, on a two-dimensional plane, the open unit disc centered at the origin
has an order of 9 over the lattice generated by {(0, 1), (1, 0)}.

Definition 5. The triple (D,EA,EB) is jointly controllable if the matrix

(EA,EB,DEA,DEB,D2EA,D2EB, . . . ,Dn−1EA,Dn−1EB)(5.6)

has rank equal to n.

For a jointly controllable triple, let nA be the rank of the matrix (EA,DEA, . . . ,
Dn−1EA); let BA = {e1, . . . , enA

} be a set of independent columns chosen from it.
Let BB = {f1, . . . , fn−nA

} be a set of independent columns chosen from the matrix
(EB,DEB, . . . ,Dn−1EB) that are independent of {e1, . . . , enA

}. Such a set exists
since the matrix (5.6) is of rank n. The union BA ∪ BB forms a basis of R

n, not
necessarily unique or orthogonal.

Given a jointly controllable triple (D,EA,EB) and a base BA ∪ BB, any element
x in R

n has a unique representation

x = xA + xB(5.7)

so that xA is contained in the subspace spanned by BA and xB is contained in the
subspace spanned by BB. Denote the mappings taking x to xA and xB by PA and
PB, respectively.

Theorem 2. Suppose that the triple (D,EA,EB) is jointly controllable with a

base given by BA ∪ BB, the ordered pairs (D,CA) and (D,CB) are both observable,

CBEA 
= 0, and CAEB 
= 0. Then for any distributed control system (Σ, f) with a

finite initial set and a Type A target function, the following inequality holds:

Y (Σ, f) ≤ 4D(f) + 4⌈log2 |X0|⌉ + 2⌈log2 |FR|⌉.(5.8)
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Proof. To prove the bound, consider a protocol Π which achieves the commu-
nication complexity for the affiliated traditional computation problem. Based on it,
one can construct a distributed control protocol which consists of three phases. In
the first phase, the initial state of the system is identified and communicated to the
agents. In the second phase, Alice and Bob communicate to each other by replicating
the bit sequences defined in Π. In the third and final phase, Alice and Bob jointly
steer the system to reach the target state at a fixed time, 2n + D(f) − 1.

The first phase starts from time 0 and ends when the quantized code-words of
the observed state xn−1 are communicated to the agents. In this phase all controls
are set to zero. It follows that xt = Dtx0 for 0 ≤ t ≤ n − 1. Hence

⎛

⎜
⎜
⎜
⎜
⎝

CAx0

CAx1

...

CAxn−1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

CAx0

CADx0

...

CADn−1x0

⎞

⎟
⎟
⎟
⎟
⎠

≡ HAx0,

⎛

⎜
⎜
⎜
⎜
⎝

CBx0

CBx1

...

CBxn−1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

CBx0

CBDx0

...

CBDn−1x0

⎞

⎟
⎟
⎟
⎟
⎠

≡ HBx0.

(5.9)

By the observable assumption, there exist n independent rows in HA and n inde-
pendent rows in HB so that the resulting submatrices are invertible. Hence, one can
determine x0 from the observation sequence {CAx0,CAx1, . . . ,CAxn−1}. Since the

initial state set is finite, one can define a quantization function Q
(A)
n−1 taking this obser-

vation sequence as arguments to uniquely identify x0 by a finite code-word. Similarly,

one can define a function Q
(B)
n−1 taking {CBx0,CBx1, . . . ,CBxn−1} as arguments to

uniquely identify x0 by a finite code-word. The number of code-words needed to
identify the different initial states is equal to the cardinality of X0. Hence, one can
construct these quantization functions so that

|L
(A)
n−1| = |L

(B)
n−1| = |X0|.(5.10)

At the end of phase 1, the code-word representing x0 is sent to Alice and Bob. The
total number of bits exchanged in this phase is

2⌈log2 |X0|⌉.(5.11)

The second phase starts with the computation of the control code-words ζ
(A)
n−1

and ζ
(B)
n−1 and ends at the delivery of the code-words ψ

(A)
n+D(f)−1 and ψ

(B)
n+D(f)−1 to the

agents. During this phase, the protocol Π is transcribed to the distributed control
system.

To explain how the transcription is done, assume without loss of generality that

the first bit is sent by Alice in Π, then set ζ
(A)
n−1 to 1 or −1 depending on whether the

value of the bit sent is 1 or 0. Let vA ∈ R
mA be a vector satisfying CBEAvA 
= 0.

(The existence of such a vector is guaranteed by the assumption CBEA 
= 0.) Define

u
(A)
n−1 = ζ

(A)
n−1vA. Meanwhile, ζ

(B)
n−1 is set to be a fixed value, and the mapping u

(B)
n−1 is

set to zero. It follows that

xn = Dnx0 + ζ
(A)
n−1EAvA.(5.12)
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Since one can uniquely identify x0 from the observation {CBx0,CBx1, . . . ,

CBxn−1}, it follows from (5.12) that ζ
(A)
n−1CBEAvA, and hence ζ

(A)
n−1, is a function of

{CBx0,CBx1, . . . ,CBxn}. So one can define Q
(B)
n taking {CBx0,CBx1, . . . ,CBxn}

as arguments so that

ψ(B)
n = ζ

(A)
n−1.(5.13)

Define ψ
(A)
n to be zero. This completes the description of a bit-sending cycle. At

the end of this cycle Bob has knowledge of the bit sent by Alice, and both agents
can proceed down one level in the protocol tree that defines Π. The rest of the bit-
sending sequence can be transcribed similarly. Note that two bits of communication
are needed for every bit sent in Π: one bit from one of agents to the dynamical system
and one bit from the dynamical system to the other agent.

Depending on the values of α and β, determination of f(α, β) may take D(f) or
fewer cycles. But by definition, the second phase always completes at time n+D(f)−1
with the understanding that once the computation of f(α, β) is completed, no further
communication bits are exchanged in this phase. So at the end of the second phase
and after at most 2D(f) bits have been exchanged, both agents have knowledge of
f(α, β). It follows from (5.12) that the number of possible values of xn is at most
2|X0|; thus in general the number of possible values of xn+D(f)−1 is bounded from
above by

2D(f)|X0|.(5.14)

Since at the end of the second phase both agents have knowledge of x0 and all the
controls used before time n + D(f) − 1, the value of xn+D(f)−1 is known to both
agents.

The final phase starts with the computation of ζ
(A)
n+D(f)−1 and ζ

(B)
n+D(f)−1 and ends

at time 2n + D(f) − 1. Let x(s) denote Dnxn+D(f)−1. Note that both agents have

knowledge of x(s) at the end of the second phase. By the definition of BA and BB,
there exist a vector sequence in R

mA , {zA(1), . . . , zA(n)}, and a vector sequence in
R

mB , {zB(1), . . . , zB(n)}, satisfying

PAf(α, β) = PAx(s) + Dn−1EAzA(1) + Dn−2EAzA(2) + · · · + EAzA(n),(5.15)

PBf(α, β) = PBx(s) + Dn−1EBzB(1) + Dn−2EBzB(2) + · · · + EBzB(n).(5.16)

Hence,

(5.17)

f(α, β) = PAf(α, β) + PBf(α, β)

= PAx(s) + PBx(s) + Dn−1(EAzA(1) + EBzB(1)) + · · · + EAzA(n) + EBzB(n)

= Dnxn+D(f)−1 + Dn−1(EAzA(1) + EBzB(1)) + · · · + EAzA(n) + EBzB(n).

It follows that if one defines

u
(A)
n+D(f)−1 = zA(1), u

(A)
n+D(f) = zA(2), . . . ,u

(A)
n+D(f)+n−2 = zA(n),(5.18)

u
(B)
n+D(f)−1 = zB(1), u

(B)
n+D(f) = zB(2), . . . ,u

(B)
n+D(f)+n−2 = zB(n),(5.19)
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then system (4.1) is assured of reaching f(α, β) at time 2n+D(f)−1. The remaining
task is to estimate the number of bits needed to code the control sequences. Since
there are |FR| possible values for f(α, β), it takes at most

D(f) + ⌈log2 |X0|⌉ + ⌈log2 |FR|⌉(5.20)

bits for Alice to uniquely identify the control sequence defined in (5.18). Similarly, at
most D(f)+⌈log2 |X0|⌉+⌈log2 |FR|⌉ bits are needed for Bob to identify the control se-
quences in (5.19). So by prestoring all the possible control sequences of the form (5.18)

and (5.19) at the dynamical system, and by using ζ
(A)
n+D(f)−1 and ζ

(B)
n+D(f)−1 to signal

the control sequences, the system will reach f(α, β) at time 2n+D(f)−1. No further
control code-words are needed from any of the agents afterwards. Counting all the
bits in all three phases, one can obtain the upper bound in (5.8).

Remark. The conditions CBEA 
= 0 and CAEB 
= 0 ensure that control from one
agent is immediately detectable by the other agent. Since (D,CA) and (D,CB) are
observable, these conditions are not absolutely essential for Theorem 2. Nevertheless,
it significantly simplifies the arguments.

Theorem 3. Consider a distributed control system (Σ, f) with a Type B target

function whose values are cells in lattice Λ. Suppose that the triple (D,EA,EB) is

jointly controllable with a base BA ∪ BB, D is invertible, the ordered pairs (D,CA)
and (D,CB) are both observable, CBEA 
= 0, CAEB 
= 0, and the initial set X0 is

bounded; then

Y (Σ, f) ≤ 4D(f) + 4⌈log2(O(D2n+D(f)−1X0, Λ))⌉ + 2⌈log2 |FR|⌉.(5.21)

Proof. Let Π be a protocol which achieves the communication complexity D(f)
for the computation of f according to the traditional model. The protocol for the
distributed control system is divided into three phases as in the proof of Theorem 2.

The first phase starts from time 0 and ends when the quantized code-word of
the observed state, xn−1, is communicated to the agents. In this phase all con-
trols are set to zero. From the observability assumption, x0 can be determined from
{CAx0,CAx1, . . . ,CAxn−1} or from {CBx0,CBx1, . . . ,CBxn−1} as shown in the
proof of Theorem 2. The value Dn+D(f)−1x0 is then quantized by mapping it to the
cell in the lattice D−nΛ to which it belongs. The values of the quantization functions

Q
(A)
n−1 and Q

(B)
n−1 are the cell indices, the total number of which is bounded above by

O(Dn+D(f)−1X0,D
−nΛ) = O(D2n+D(f)−1X0, Λ).(5.22)

Hence, the number of bits communicated in this phase is

2⌈log2(O(D2n+D(f)−1X0, Λ))⌉.(5.23)

The second phase starts with the computation of ζ
(A)
n−1 and ζ

(B)
n−1 and ends at the

delivery of the code-words ψ
(A)
n+D(f)−1 and ψ

(B)
n+D(f)−1 to the agents. In this phase,

one transcribes Π to the distributed control protocol. The approach is identical to
that in the proof of Theorem 2. Note that a key point of this part of the proof is to
show that the control code-words are functions of the observation sequences of the
form {CAx0,CAx1, . . . ,CAxn−1} or {CBx0,CBx1, . . . ,CBxn−1}. This issue does
not depend on whether the initial set is finite or not. In this phase, at most 2D(f)
bits are communicated.
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The third and final phase starts with the computation of the code-words ζ
(A)
n+D(f)−1

and ζ
(B)
n+D(f)−1 and ends at time 2n + D(f) − 1. Note that

xn+D(f)−1 = Dn+D(f)−1x0 + w(α, β),(5.24)

where w(α, β) represents the total control effect from Alice and Bob up to t =
n + D(f) − 2 and has at most 2D(f) different values. Moreover, since both agents
have knowledge of these control values, w(α, β), which is independent of x0, can be
determined by both agents.

Let 〈Dn+D(f)−1x0〉 represent the center of the cell in the lattice D−nΛ to which
Dn+D(f)−1x0 belongs. The value of 〈Dn+D(f)−1x0〉 is known to both agents. Let

x(f) denote the center of the cell f(α, β). The code-words ζ
(A)
n+D(f)−1 and ζ

(B)
n+D(f)−1

are designed to trigger control sequences that jointly steer 〈Dn+D(f)−1x0〉 + w(α, β)
to x(f) in n steps. Thus we have

(5.25)

x(f) =Dn〈Dn+D(f)−1x0〉 + Dnw(α, β) + Dn−1(EAu
(A)
n+D(f)−1 + EBu

(B)
n+D(f)−1)

+Dn−2(EAu
(A)
n+D(f) + EBu

(B)
n+D(f)) + · · ·

+EAu
(A)
n+D(f)+n−2 + EBu

(B)
n+D(f)+n−2

≡Dn〈Dn+D(f)−1x0〉 + Dnw(α, β) + q

for some control sequences {u
(A)
t } and {u

(B)
t }. Details of this construction are similar

to the approach explained in the proof of Theorem 2 and are not repeated here. Under
these control sequences, the trajectory is steered to the state

x2n+D(f)−1 =Dnxn+D(f)−1 + q

=Dnxn+D(f)−1 + x(f) − Dn〈Dn+D(f)−1x0〉 − Dnw(α, β)

=x(f) + D2n+D(f)−1x0 − Dn〈Dn+D(f)−1x0〉.

(5.26)

Let Λ be generated by the base Z = (z1, . . . , zn). By definition, a cell center in the
lattice D−nΛ satisfies

Dn+D(f)−1x0 − 〈Dn+D(f)−1x0〉 =

n∑

i=1

αiD
−nzi(5.27)

with −1/2 ≤ αi < 1/2 for i = 1, . . . , n. Hence,

x2n+D(f)−1 − x(f) =Dn(Dn+D(f)−1x0 − 〈Dn+D(f)−1x0〉)

=Dn

n∑

i=1

αiD
−nzi =

n∑

i=1

αizi.
(5.28)

Therefore, the state x2n+D(f)−1 is contained in the cell f(α, β) in the lattice Λ. The
number of code-words needed to represent the control sequence for either Alice or
Bob is bounded by

|FR|2
D(f)O(Dn+D(f)−1X0,D

−nΛ) = |FR|2
D(f)O(D2n+D(f)−1X0, Λ).(5.29)
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Hence, at most

2D(f) + 2⌈log2(O(D2n+D(f)−1X0, Λ))⌉ + 2⌈log2 |FR|⌉(5.30)

bits are communicated at phase 3. The theorem then follows.
Theorems 2 and 3 show that there are cases for which the control communication

complexity is finite and hence well defined. The upper bounds, however, are not tight.
It should also be pointed out that the term 4⌈log2(O(D2n+D(f)−1X0, Λ))⌉ in the upper
bound can be improved if Alice and Bob can send some of their bits in parallel rather
than in sequence.

The quantization functions of the observations are allowed to depend on the full
value of past observations. If the initial state set is finite, it is possible to develop
results similarly using quantization functions that are based on quantized values of
past observations.

6. More examples and general properties.

Example 1. Consider the one-dimensional system

(E1)

{

xt+1 = axt + u
(A)
t + u

(B)
t , x0 ∈ X0 ⊆ R,

yt = CAxt = CBxt = xt,
(6.1)

where X0 = {δ, . . . , 2Jδ} ⊆ Λ = {iδ : i ∈ Z}. Let f be a function from A× B to X0

with a communication complexity D(f). Theorem 1 implies the following inequality:

2D(f) ≤ Y (Σ, f).(6.2)

To obtain a sharper upper bound, let Π be a protocol that achieves the communication
complexity D(f). Construct a three-phase protocol similar to Theorem 2. A major
difference is that at the end of phase 1, the state information is sent only to Alice
and the control in phase 3 is triggered only by Alice. Moreover, in the second phase,
the control values used to indicate the bit sequence in the second phase are chosen so

that u
(∗)
t ∈ {δ, 0}. It follows that the state xn+D(f)−1 is of the form

[

aD(f)i0 + (c1a
D(f)−1 + c2a

D(f)−2 + · · · + cD(f))
]

δ,(6.3)

with ci ∈ {0, 1} and x0 = i0δ. If a is a transcendental number, such as π, then the
set of all such elements has exactly

2J+D(f)(6.4)

distinct elements. However, the order of such a set might be reduced if a is an algebraic
number. For example, if a = 1, then all elements represented by (6.3) are of the form
iδ for some integer i, with 1 ≤ i ≤ 2J + D(f), and it takes at most

⌈log2(2
J + D(f))⌉ + ⌈log2 |FR|⌉(6.5)

bits to code the control sequences that steer the system to the target set. In this case,
the control communication complexity is subject to a sharper upper bound:

2D(f) + ⌈log2 |X0|⌉ + ⌈log2(D(f) + |X0|)⌉ + ⌈log2 |FR|⌉.(6.6)

Example 2. The upper bound of Y (Σ, f) in (5.8) contains the term ⌈log2 |X0|⌉.
A natural question is whether the lower bound of Y (Σ, f) should also contain such a
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term. The following example shows that this is not true in general. In fact, the lower
bound is tight for some systems. Consider

(E2)

⎧

⎪⎪⎨

⎪⎪⎩

xt+1 =

(

0 1

0 0

)

xt +

(

0

1

)

(u
(A)
t + u

(B)
t ), x0 ∈ X0,

yt = CAxt = CBxt = (0 1)Txt = xt[1].

(6.7)

Let A and B be arbitrary finite sets and let f be a Boolean function defined on A×B.
Recall that C(f) denotes the original communication complexity defined by Yao [24].
Assume that C(f) is related to D(f) by

D(f) = C(f) + 1.(6.8)

(One can take the example shown in section 3.) Let Π be a protocol that achieves
the communication complexity D(f), with the last bit conveying the value of f(α, β)
sent, without loss of generality, by Alice. One can extend f to a function from A×B
to R

2 by mapping 0 to (0, 0)T and 1 to (1, 0)T . Define a control system using this
extended function. Since

(

0 1

0 0

)2

x0 = 0,(6.9)

by setting

u
(A)
0 = u

(B)
0 = u

(A)
1 = u

(B)
1 = 0(6.10)

one can guarantee that

x2 = 0.(6.11)

Construct a distributed control protocol Ω by extending the sequence in (6.10).
For t ≥ 2, set the control function by adapting the bit patterns of Π to Ω according

to the approach stated in the proof of Theorem 2. In particular, u
(A)
t is equal to the

bit value sent by Alice, and u
(B)
t is equal to the bit value sent by Bob, at time t. At

other times, set the control to 0. Then it follows that

xD(f)+3 =

(

0 1

0 0

) (

0

1

)

u
(A)
D(f)+1 = f(α, β).(6.12)

So in effect the final bit in the communication phase is also used to drive the system
to the target at time D(f) + 3 . In the protocol Ω, the system does not send to the
agents any bits unrelated to Π. Hence,

Y (Σ, f) = 2D(f).(6.13)

This proves the following.
Proposition 1. For the dynamical system defined in (6.7), the lower bound

in (5.1) is achieved by a distributed control protocol.

Although the lower bound in (5.8) is tight for some systems, it can be improved in
general to include the effect of the initial set size and system dynamics. Exploration
in this direction is beyond the scope of the current paper. However, influence of
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system dynamics on the control communication complexity can be easily observed in
the upper bound. For example, if the set D =

⋃

i≥0 DiX0 is bounded, then, for all
i ≥ 0,

O(DiX0, Λ) ≤ M(6.14)

for some M , and the upper bound in (5.21) can be reformulated as

Y (Σ, f) ≤ 4D(f) + 4⌈log2 M⌉ + 2⌈log2 |FR|⌉.(6.15)

Example 3. Consider the control communication complexity of a simple two-way
communication system that allows Alice to send one bit to Bob and Bob to send one
bit to Alice. One can implement this via the so-called equality function EQ (see [13]).
(For multiple bit communication, one can consider a direct sum of EQ.)

If A = B = {0, 1}, then the EQ function can be represented by the following
table:

β\α 0 1
0 1 0
1 0 1

If Alice and Bob can determine the value EQ(α, β), where α and β are the choice
of Alice and Bob, respectively, then Alice can retrieve the bit sent by Bob by using
the operation

EQ(α, β) ⊕ α ⊕ 1,(6.16)

where ⊕ denotes the mod 2 addition. Similarly, Bob can also retrieve the bit sent by
Alice by the operation

EQ(α, β) ⊕ β ⊕ 1.(6.17)

It is well known that the communication complexity of EQ is 2. One can extend
this problem to a control dynamical system. To do so, extend the EQ function to a
function from A×B to R

2 by identifying 0 with [0, 1]T and 1 with [1, 0]T . Label this
function CEQ. Now consider the system

(6.18)

(E3)

⎧

⎪⎪⎨

⎪⎪⎩

xt+1 =

(

0 1

1 0

)

xt +

(

−1

1

)

(u
(A)
t + u

(B)
t ), x0 ∈ X0 =

{[

1

0

]

,

[

0

1

]}

,

yt = CAxt = CBxt = (1 0)Txt = xt[1].

Proposition 2. The control communication complexity for the distributed con-

trol system defined by (6.18) and the CEQ function is 6.
Proof. One can achieve the objective with six communication bits. To show this,

define a quantization function,

P (s) =

{

0 if s ≤ 0,

1 if s > 0.
(6.19)

Define the observation coding at time 0 by

ψ
(A)
0 = ψ

(B)
0 = P (y0).(6.20)
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Thus, 0 indicates that the system starts at [0, 1]T , and 1 indicates that the system

starts at [1, 0]T . Alice then uses ζ
(A)
0 to indicate her choice to Bob by using the

following equations:

ζ
(A)
0 = α, ζ

(B)
0 = u

(B)
0 = 0,

u
(A)
0 =

{

1 if ψ
(A)
0 = 0 and ζ

(A)
0 = 1,

0 otherwise,

ψ
(A)
1 = ψ

(B)
1 = ζ

(A)
1 = ζ

(B)
1 = u

(B)
1 = 0,

u
(A)
1 =

{

1 if ψ
(A)
0 = 1 and ζ

(A)
0 = 1,

0 otherwise,

ψ
(A)
2 = 0, ψ

(B)
2 = P (y2).

(6.21)

Two bits are communicated so far, one for ζ
(A)
0 and one for ψ

(B)
2 . One can check

(ψ
(B)
0 = 0) ∧ (α = 0) ⇒ ψ

(B)
2 = 0, (ψ

(B)
0 = 1) ∧ (α = 1) ⇒ ψ

(B)
2 = 0,

(ψ
(B)
0 = 1) ∧ (α = 0) ⇒ ψ

(B)
2 = 1, (ψ

(B)
0 = 0) ∧ (α = 1) ⇒ ψ

(B)
2 = 1.

(6.22)

Hence, Bob can deduce the value of α from ψ
(B)
2 and ψ

(B)
0 . This completes the task

of sending information from Alice to Bob. Bob sends his choice to Alice via ζ
(B)
2 in

a similar way. Since the system always remains in X0, it reaches f(α, β) at either
t = 4 or t = 5. The exact time can be deduced by both agents based on information
of the initial state and the choices of α and β. Hence, the upper bound for the
communication complexity is six.

To show that the lower bound of the communication control complexity is six,
first note that for this target function, Alice must send at least one bit to Bob via
the system and Bob must send one bit to Alice via the system in relation to the
computation of the EQ function. So, at least four bits are required, of which two are
control code bits and two are observation code bits. Call these the basic bits.

If each agent receives at least two observation bits, then at least six bits must be
communicated. Suppose one of the agents, say Alice, receives only one observation
code bit; that bit must then be a basic bit. The value of that basic bit is arbitrary
depending on Bob’s choice of β. Hence, Alice does not have knowledge of x0. In
order for Alice to have knowledge of τ , the time the target state is reached, it must
be independent of x0. On the other hand, one can show from direct examination of

(6.18) that if the controls u
(A)
t and u

(B)
t are independent of x0, then xτ assumes a

different value for a different initial state. Therefore, u
(B)
t must be dependent on x0

and Bob must have received at least one additional observation bit other than the
basic bit which enables him to determine x0. Moreover, the control that drives the
system to f(α, β) cannot be shared with the basic control bit, since a basic control
bit must have two possible states as outcome in order to code the information from
an agent. Thus the lower bound is six.

Example 4. For the case where FR is a singleton, say containing just the ori-
gin, the traditional communication complexity is zero and the control communication
complexity can be viewed as a measure of the complexity of a stabilizing feedback al-
gorithm. Under this interpretation, the control communication complexity is related
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to the complexity introduced by Fagnani and Zampieri [10]. However, there is at least
one major difference. In [10], computation complexity of the controller state is also
included, while here only communication complexity is considered.

7. Conclusion. In this paper, the concept of communication complexity is ex-
tended to a two-agent distributed control system. This new perspective connects
communication complexity, a classical idea from distributed computing theory, with
ideas from control systems under communication constraints. The concept of con-
trol communication complexity is defined, and some of its fundamental properties
are presented. It is possible to extend the ideas presented here in several directions.
One direction is to define a control communication complexity for a multiagent dis-
tributed control system. This is an important class of problems given the emergence
of peer-to-peer networks such as the Internet and wireless ad hoc networks. An early
investigation on multiagent, low data-rate, distributed controllers can be found in
[23]. In many control and optimization problems, the target states are defined only
implicitly; how to define the control communication complexity for such systems is
another interesting direction for extension.
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