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Abstract—Three-phase dynamic systems and multiphase gen-
erators are frequently modeled and controlled in the synchronous
reference frame. To properly model the cross-coupling terms
in this reference frame, complex vector theory and transfer
function matrices are commonly applied, obtaining multiple-
input multiple output (MIMO) dynamic models. The stability of
MIMO systems can be assessed through the Nyquist Generalized
Stability Criterion. However, the use of the Nyquist diagram
complicates the controller design. The Bode diagram is a more
intuitive tool for the controller design, however, the Bode Stability
Criterion is not applicable to MIMO systems. In this paper,
the MIMO Generalized Bode Criterion is proposed. Since this
stability criterion is based on the Nyquist Generalized Stability
Criterion it can be applied to any system. Furthermore, it is
simple to use, as it only requires information contained in the
open-loop transfer matrix and the Bode diagram. The proposed
stability criterion thus offers an interesting tool for the controller
design procedure in MIMO systems, as it is shown in in this
paper for two common applications: the current control loop of
a power converter, a 2×2 system, and the current control loop
of two independent power converters in parallel, a 4×4 system.

Index Terms—MIMO systems, stability criterion, Nyquist
stability criterion, frequency domain analysis, power converter
control.

I. INTRODUCTION

IN the early stages of power electronics, the synchronous

reference frame control, became increasingly popular, as

it made it possible to obtain time-independent reluctances in

electrical machines while achieving zero tracking error by

means of a simple PI controller. At the same time, with the

development of renewable energies, many power converters

were connected to the grid, adapting the power generated to the

grid requirements. These power converters had normally low

to medium rated powers, and thus, high switching and sam-

pling frequencies. Consequently, the low delays that appeared

in the control loops allowed the cross-coupling terms obtained

as a result of dq control to be properly decoupled [1], [2], [3],

[4]. Thus, the system could be analyzed as a SISO system

[5]. However, in order to reduce converters cost, their rated

power has progressively been increased. These high-power

converters normally have a reduced switching frequency to

limit the power losses, and thus, they have higher delays in the

control loop. As a result, the decoupling strategies now become
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less effective. Although MIMO models take into account dq

cross-coupling effects, they present a higher complexity than

SISO models. As an alternative, resonant controllers in the

stationary reference frame, αβ, are gaining attention [6], [7].

However, the current references are normally computed in the

dq axis, so, to properly determine the system stability, a MIMO

modeling approach is always required [8], [9].

In order to obtain accurate models of systems controlled in

dq coordinates, transfer function matrices, for both symmetric

and non-symmetric systems, and complex transfer functions,

for symmetric systems, have recently gained attention [10],

[11], [12], [13]. In this paper, the scope is focused on

transfer function matrices, as they can be used to model any

MIMO system. This modeling approach has been applied to

three-phase dynamic systems [14], where 2×2 multiple-input

multiple-output (MIMO) systems are obtained as a result of the

modeling procedure. This theory has also been used to model

multiphase systems, such as in multiple winding generators,

where the number of inputs and outputs can be high depending

on the number of phases [15], [16]. Transfer function matrices

properly model the system dynamics. However, the controller

design and the stability analysis become more complicated.

An adequate design of the converter control is extremely

important when the number of power converters connected

to the grid is increased. Nowadays, power converters are

widely used for renewable energy applications, STATCOMS

and drives. Their connection to different grids, especially to

weak grids, has risen stability issues. The great variations in

the grid impedance at the point of connection is forcing to

develop robust controllers [17], [18], while the requirements

imposed by the grid codes to power converters are creating a

need for advanced control designs. Among the issues detected

in the existing literature, some of the most recurring ones are

the resonance of the output filter of the power converter [19],

[17], phase-locked loop instabilities (PLL) [20] and current

control loop instabilities [3], [21]. In order to analyze control

loop stability, it has been shown that the Bode diagram is a

more intuitive diagram compared to Nyquist. For this reason,

Bode stability criterion [22], as well as its revised variations

[23], have been widely applied to the stability analysis of SISO

control loops in power converters. However, these criteria are

only valid under certain application conditions and can fail in

correctly determining the stability of some systems. Recently,

a new criterion, called Generalized Bode Criterion, has been

proposed that overcomes these limitations and can be applied

to any SISO system [24].
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MIMO controllers have been designed in power electronics

literature using internal model control theory [25], impedance

shaping [14], complex vectors [26], [1] and model predic-

tive control [27]. Concerning stability analysis, the dominant

approach to assess the system stability in MIMO systems,

is the Generalized Nyquist Stability Criterion [28], which is

based on the analysis of the open-loop matrix eigenvalues’

Nyquist diagram. This criterion is a generalization of the

Nyquist criterion from SISO to MIMO systems. However,

as it is based on the Nyquist diagram of the eigenvalues,

it has a reduced applicability to design controllers on the

basis of a desired system response, specially in complicated

control loops. Despite the advantages of Bode diagram in the

controller design for SISO systems, the limitations of the Bode

Stability Criterion when been applied to MIMO systems have

prevented its use. In order to extend the benefits of the Bode

diagram to design controllers in MIMO systems, this paper

proposes a new criterion, called MIMO Generalized Bode

Criterion. This criterion is based on the Nyquist Generalized

Stability Criterion, and extends the SISO Generalized Bode

Criterion to MIMO systems. The proposed stability criterion

only requires information contained in the open-loop transfer

function matrix and the eigenvalues’ Bode diagram. These

benefits are illustrated through the design of a typical control

loop such as the dq current control of three-phase grid-

connected inverters with an LCL filter.

This paper is organized as follows. Section II presents

the Nyquist Generalized Stability Criterion for multivariable

systems. In Section III, the MIMO Generalized Bode Criterion

is proposed for a n-order non-symmetric system. Then, in

Section IV, the proposed stability criterion is used to design the

controller for two different cases. In the first one, a three-phase

converter with an LCL output filter, controlled in dq is modeled

using transfer matrices, obtaining a 2×2 system. The stability

is analyzed for this application using the proposed stability

criterion, proving to be an intuitive approach for the controller

design in multivariable systems. In the second case, the MIMO

Generalized Bode Criterion is applied for the controller design

of two power converters connected in parallel to the grid,

resulting in 4×4 MIMO system. Again, the proposed criterion

and design method proves to be an effective tool, obtaining

the desired dynamic response. Finally, in Section V, main

conclusions are drawn.

II. MIMO SYSTEMS AND GENERALIZED NYQUIST

STABILITY CRITERION

A. MIMO systems

A general MIMO feedback system is represented in Fig. 1,

where [G(s)] and [F (s)] are n× n transfer function matrices

and R(s), E(s), Y (s) and M(s) are n dimensional vectors.

Matrix [G(s)] can thus be expressed as

[G(s)] =









G11(s) G12(s) ... G1n(s)
G21(s) G22(s) ... G2n(s)

... ... ... ...
Gn1(s) Gn2(s) ... Gnn(s)









, (1)

Fig. 1. General closed-loop MIMO system.

and [F (s)] has the same form. The open-loop transfer matrix,

[H(s)], for this generic system is given by

M(s) = [H(s)]E(s) => [H(s)] = [F (s)][G(s)]. (2)

The system closed-loop stability of any MIMO system can

be determined from the open-loop transfer matrix by using the

Generalized Nyquist Stability Criterion.

B. Generalized Nyquist Stability Criterion

The Generalized Nyquist stability criterion states that, pro-

vided that there are no hidden unstable modes in the system:

the number of closed-loop unstable poles (poles in the right

half-plane (RHP)), Z, is equal to the number of unstable

poles in the open-loop transfer matrix, P , minus the total

number of anticlockwise encirclements, N , around (-1, 0j) of

the characteristic loci (Nyquist curves) of all the eigenvalues

of [H(s)] [28]:

Z = P −N. (3)

The eigenvalues of the open-loop transfer matrix, λ, can be

obtained from

|λI −H(s)| = 0. (4)

As a result, unlike a SISO system, the stability is not

assessed on the open-loop transfer function, but on the eigen-

values of the open-loop transfer matrix.

Counting the number of open-loop right half plane (RHP)

poles in SISO systems is trivial. However, in MIMO systems,

the number of unstable poles, P , have to be counted for the

open loop transfer matrix, [H(s)], expressed in its Smith–

McMillan form [28].

An example is used to illustrate the application of the

Generalized Nyquist Stability Criterion. A typical MIMO

system in power electronics is the case of a three-phase power

converter controlled in the synchronous reference frame or dq

axis. In any balanced system the homopolar component can

be studied independently, so, the open-loop transfer matrix of

a three-phase system becomes the 2× 2 matrix

[H(s)] =

[

H11(s) H12(s)
H21(s) H22(s)

]

. (5)

The general expression for its eigenvalues is:
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λ1,2(s) =
H11(s) +H22(s)

2

±

√

(

H11(s)−H22(s)

2

)2

+H12(s)H21(s),

(6)

and N must be determined by their (-1, 0j) encirclements in

the Nyquist diagram.

To determine P , which has to be counted in the Smith-

McMillan form of [H(s)], lets suppose that H11(s) =
H22(s) =

1
(s+2)(s−3) , while H12(s) = −H21(s) =

2
(s−2) .

[H(s)] =

[

1
(s+2)(s−3)

2
(s−2)

− 2
(s−2)

1
(s+2)(s−3)

]

(7)

This matrix can be expressed as the product of a 2 × 2

polynomial matrix, [L(s)], and a polynomial, D(s), that is

equal to the least common multiple of the denominators of all

the elements in [H(s)].

[H(s)] =
[L(s)]

D(s)
(8)

where

D(s) = (s+ 2)(s− 3)(s− 2) (9)

and

[L(s)] =

[

(s− 2) 2(s+ 2)(s− 3)
−2(s+ 2)(s− 3) (s− 2)

]

(10)

From D(s) and [L(s)] the Smith-McMillan form of [H(s)]
can be computed. However, to determine the number of

unstable poles P, only the polynomial D(s) needs to be

examined. Consequently, the total number of unstable poles

can be computed from (9), obtained as the least common

multiple of all the poles in [H(s)]. In this example P = 2.

III. PROPOSED STABILITY CRITERION: THE MIMO

GENERALIZED BODE CRITERION

A. Determination of the number of encirclements, N, and

fundamentals of the criterion

The MIMO Generalized Bode Criterion (MIMO-GBC)

translates the stability criterion presented in the previous

section to the Bode diagram, so that the controller design

is facilitated. P is determined in the MIMO-GBC as already

explained, so in the following, the determination of N through

the Bode diagram is comprehensively covered.

Counting the total number of encirclements of (-1, 0j) using

the Nyquist diagram of the eigenvalues becomes complicated

when the order of the system is increased. A simpler approach

to compute N was proposed in [29]. An auxiliary ray can

be traced in a random direction starting at (-1, 0j), and

the crossings of the Nyquist diagram with this ray can be

counted to determine N . The Nyquist stability criterion can

be rewritten as

Z = P − (N+
c −N−

c ) (11)

where N+
c are the number of crossings between the Nyquist

diagram and the ray when the phase is increasing and N−

c

are the number of crossings when the phase is decreasing.

The positive angle is defined in the anticlockwise direction

with respect to the positive real axis of the Nyquist plot. It

must be highlighted that in a MIMO system, N+
c and N−

c

should be counted for each eigenvalue and added together to

compute the total number of encirclements. As the ray can be

chosen in any random direction, [29] proposed to draw this

ray starting at (-1, 0j) in the direction of the real negative half-

axis. In this way, N+
c and N−

c can be counted on the Bode

diagram by counting the number of crossings in the phase

plot with ±m180 degrees, m being an odd integer, when the

magnitude plot is greater than 0 dB, as represented in Fig. 2.

These crossings counted on the Bode diagram are denoted as

C+ when the phase is increasing and C− when the phase is

decreasing.

The Nyquist diagram is represented for positive and negative

frequencies by substitution of s by jω, with −∞ < ω < ∞.

The Bode diagram is only represented for positive frequencies,

0 < ω < ∞. This is not a problem in SISO systems,

whose coefficients are always real valued. If G(s) is a transfer

function with real valued coefficients, it satisfies that G(jω) =
G(−jω), meaning that the Bode diagrams are symmetric with

respect to zero. Consequently, C+ and C− can be counted for

positive frequencies and multiplied by 2 [24].

In MIMO systems, the crossings must be counted for all

the eigenvalues, λ, which might have, in general, complex

coefficients. As a result, the system eigenvalues will not be

symmetric with respect to 0 Hz. However, the magnitude

and phase at negative frequencies of the set of eigenvalues

are unambiguously defined by the magnitude and phase of

the set of eigenvalues at positive frequencies. Appendix A

demonstrates this concept for any two-input two-output MIMO

system. It proves that, depending on the system under analysis,

λ1(jω) = λ1(−jω) and λ2(jω) = λ2(−jω) (12)

or

λ1(jω) = λ2(−jω) and λ2(jω) = λ1(−jω). (13)

Fig. 2. Equivalence between the Nyquist and Bode diagrams.
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Similarly, although it is not demonstrated, the same behavior

is shown for an m × m system in [28]. In this way, we can

count ±m180 degrees crossings with positive magnitude (m
odd integer) only at positive frequencies in the Bode diagram

of all the system eigenvalues, determining the total number of

C+ and C− crossings, and multiply the result by 2 to obtain

N , as in a SISO system.

Besides the crossings C+ and C− identified in the Bode

diagram at positive frequencies, additional crossings can occur

at 0 Hz, which cannot be seen in the Bode diagram and are key

to determine the stability. These crossings are denoted as C0,

defined as the total number of crossings with ±m180 degrees

(m odd integer) at 0 Hz with positive magnitude of the set

of eigenvalues. C0 is positive if the phase is increasing and

negative if it is decreasing. This parameter will be determined

in the next Subsection III-B.

Taking everything into account, the MIMO Generalized

Bode Criterion can be expressed as

Z = P − [2(C+ − C−) + C0]. (14)

The condition that any closed-loop system has to meet to

be asymptotically stable (Z = 0), can thus be expressed as

P = [2(C+ − C−) + C0]. (15)

B. C0 calculation

The last parameter required to assess the system stability

is C0. This parameter accounts for the eigenvalues’ crossings

with ±m180 degrees that may occur at 0 Hz and that cannot be

counted in the Bode diagram. Again, C0 has to be determined

for each eigenvalue and added together in order to obtain the

number of unstable closed-loop poles in (14).

The general expression of an eigenvalue, λi(s) is

λi(s) = KG

∏Nz

q=1(τz,qs+ 1)

sk
∏Np

q=1(τp,qs+ 1)
, i = 1, 2, ..., n (16)

where KG = a + bj, τz,i and τp,i are complex numbers, Nz

is the number of zeros, Np the number of poles, and k the

number of integrators. Each λi(s) is considered to be strictly

proper, Np+ k > Nz , as any real system meets this condition

[30]. As it will be shown in the following, both k and KG,

which is the eigenvalue DC gain without integrators, are key

parameters to determine C0.

The value of C0 will be obtained for a maximum number of

2 integrators in the eigenvalues, since a higher number is not

of practical application. Nevertheless, the cases for a greater

number of integrators are a repetition of the ones studied

here. Table I summarizes the possible C0 values obtained by

analyzing the Nyquist diagrams shown in Fig. 3.

1) Derivatives in the eigenvalue λi(s), k < 0: If k < 0
λi has k derivatives. In this case, there are no possible C0

crossings, as the eigenvalue evaluated at 0 Hz are always zero.

2) No integrators in the eigenvalue λi(s), k = 0: In this

case, λi evaluated at 0 Hz, is equal to

λi(0) = KG = a+ bj. (17)

Consequently, the parameter C0 depends on KG, as rep-

resented by Fig. 3 (a)-(d). If KG has a non-zero imaginary

term, C0 is equal to 0, as there are no possible crossings with

the ray starting at (-1, 0j) in the direction of the negative real

axis (Fig. 3 (a)). If KG is real valued, but greater than -1,

a C0 cannot be produced (Fig. 3 (b)). However, if KG is

real valued, with a < −1, the sign of the positive crossing

depends on the phase at 0+ Hz. Whenever the eigenvalues’

phase at a frequency slightly greater than 0 Hz is lower than

-180◦, ϕ(λi(0
+)) < −180◦, the eigenvalue Nyquist diagram

from 0− to 0+ Hz produces a negative crossing (clockwise),

consequently C0 is equal to -1 (Fig. 3 (c)). This crossing can

be guaranteed because the eigenvalue phase derivative exists

an is thus equal at 0− and 0+ Hz. This means that, in this

case, since the phase decreases at 0+, it also decreases at 0−.

In general, the eigenvalue’s phase derivative is

dϕ(λi(jω))

dω

∣

∣

∣

∣

ω=0

=

Nz
∑

q=1

Re(τz,q)−
Np
∑

q=1

Re(τp,q). (18)

On the other hand, if ϕ(λi(0
+)) > −180◦, a positive

crossing (anticlockwise) is produced and thus C0 is equal

to +1, as it can be seen in Fig. 3 (d). Again, the symmetry

for small frequency variations around 0 Hz guarantees this

crossing.

3) One integrator in the eigenvalue λi(s), k = 1: There

cannot be poles and zeros on the Nyquist contour, Γ, so it has

to be modified in the presence of integrators. This contour,

represented in Fig. 4 is called indented contour, which is

defined by

Γ :



















1. jω, ε < ω < r

2. rejθ, π
2 ≥ θ ≥ −π

2

3. jω, −r < ω < −ε

AB. εejφ, −π
2 ≤ φ ≤ π

2

(19)

for r positive and sufficiently large and ε positive and infinites-

imally small. The Nyquist plot is obtained by plotting λi(Γ).
To calculate C0, the expression λi given in (16) with k = 1,

can be evaluated for the semicircle AB

λi(εe
jφ) =

KG

εejφ
. (20)

From the previous equation it can be concluded that as φ
changes from −π/2 to π/2, an integrator introduces 180◦

rotation through infinity. This rotation is in the clockwise

direction, as it can be deduced if λi(εe
jφ) is evaluated at

−π/2, 0 and π/2, obtaining

λi(εe
−jπ/2) = λi(0

−) =
KG

ε
j =

aj − b

ε
, (21)

λi(εe
0) =

KG

ε
=

a+ bj

ε
, (22)



JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS 5

k=0, b 6= 0 k=0, a > −1 and b = 0
k=0, a < −1 and b = 0,

ϕ(λi(0
+)) < −180

k=0, a < −1 and b = 0,

ϕ(λi(0
+)) > −180

k=1, a > 0 k=1, a < 0 k=1, a = 0 and b > 0 k=1, a = 0 and b < 0

k=2, b 6= 0 k=2, a < 0 and b = 0,

k=2, a > 0 and b = 0,

ϕ(λi(0
+)) < −180

k=2, a > 0 and b = 0,

ϕ(λi(0
+)) > −180

Fig. 3. Nyquist diagrams to calculate C0 depending on the number of integrators and the DC gain without integrators.

λi(εe
jπ/2) = λi(0

+) = −KG

ε
j =

−aj + b

ε
(23)

As represented in Fig. 4, it should also be noted that φ =
−π/2 corresponds to frequency 0− Hz, while φ = π/2 to

Fig. 4. Indented Nyquist contour.

frequency 0+ Hz. Considering (21)-(23), C0 can be computed

depending on KG = a + bj. If a > 0 (Fig. 3 (e)), C0 = 0,

while if is lower than 0, C0 = −1 (Fig. 3 (f)). If a = 0, the

Nyquist diagram at 0+ and 0− Hz is located in the real axis,

so 4 cases must be distinguished under these circumstances. If

b > 0, the phase at 0− determines the number of crossings, as

it can be seen in Fig. 3 (g). With ϕ(λi(0
−)) < −180◦, C0 is

equal to 0, while if it is greater than -180 degrees, a crossing

occurs, C0 = −1. In this paper, the stability is determined

using the eigenvalue’s response at positive frequencies. It has

been proven in (18), that at 0+ and 0− the eigenvalue has the

same phase slope, as the derivative is the same. For this reason,

the condition required for a C0 crossing in case of a = 0 and

b > 0 can be expressed by the phase at 0+. Specifically, if

ϕ(λi(0
+)) < 0, C0 = −1, while if ϕ(λi(0

+)) > 0, C0 = 0.

If a = 0 and b < 0, 0+ falls in the real negative axis

and, consequently, ϕ(λi(0
+)) has to be examined. As shown

in Fig. 3 (h) if ϕ(λi(0
+)) < −180◦, C0 = −1, while no

crossings at 0 Hz are obtained if ϕ(λi(0
+)) > −180◦. All

these cases are summarized in Table I.
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TABLE I
PARAMETER C0 FOR EIGENVALUES WITH UP TO TWO INTEGRATORS.

Number of DC gain without Phase at Crossings

integrators integrators 0+ and 0+ Hz at 0 Hz

(k) (KG = a+ bj) ϕ(λi(0
+)) and ϕ(λi(0

−)) C0

k < 0 - - 0

k = 0

b 6= 0 - 0

a > −1, b = 0 - 0

a < −1, b = 0
ϕ(λi(0

+)) > −180 +1

ϕ(λi(0
+)) < −180 -1

k = 1

a < 0 - -1

a > 0 - 0

a = 0, b > 0
ϕ(λi(0

+)) < 0 -1

ϕ(λi(0
+)) > 0 0

a = 0, b < 0
ϕ(λi(0

+)) > −180 0

ϕ(λi(0
+)) < −180 -1

k = 2

b 6= 0 - -1

b = 0, a < 0 - -1

b = 0, a > 0
ϕ(λi(0

+)) > −180 0

ϕ(λi(0
+)) < −180 -2

4) Two integrators in the eigenvalue λi(s), k = 2: The

same method is followed for two integrators. In this case, the

eigenvalue evaluated in AB is

λi(εe
jφ) =

KG

ε2ej2φ
. (24)

There are 2 integrators, so a 360 degree clockwise revolution

in the Nyquist diagram is obtained:

λi(εe
−jπ/2) = −KG

ε2
,= −a+ bj

ε2
(25)

λi(εe
0) =

KG

ε2
=

a+ bj

ε2
, (26)

λi(εe
jπ/2) = −KG

ε2
= −a+ bj

ε2
. (27)

Again, using (25)-(27), C0 can be calculated depending on

KG = a+ bj. If b 6= 0, as represented in Fig. 3 (i), the 360◦

revolution produces a clockwise crossing: C0 = −1. If b = 0,

0− and 0+ both fall in the real axis and C0 has to be carefully

examined. With a < 0, Fig. 3 (j) shows how 0 Hz falls in the

real positive axis, and C0 = −1. If a > 0 two different cases

should be distinguished depending on the phase at 0+ Hz.

For ϕ(λi(0
+)) < −180◦ (Fig. 3 (k)) an additional crossing

is obtained and C0 = −2, while for ϕ(λi(0
+)) > −180◦

(Fig. 3 (l)) no crossings are produced and C0 = 0.

5) More than two integrators in the eigenvalue λi(s), k ≥
3: With k ≥ 3 a +180◦k rotation in the clockwise direction

is obtained,

λi(εe
jφ) =

KG

εk
e−jkφ (28)

Evaluated for the same angles of segment AB than before

λi(εe
−jπ/2) =

KG

εk
jk, (29)

λi(εe
0) =

KG

εk
, (30)

λi(εe
jπ/2) =

KG

εk
(−j)k. (31)

From these equations, following the same reasoning proce-

dure as before, the cases with a greater number of integrators

are a repetition of the ones already analyzed, changing the

number of complete revolutions. It should be noticed that the

table provided in [24] for SISO systems, matches Table I if

b = 0, meaning that the transfer function under analysis has

no complex valued coefficients.

C0 has been determined in this section for each eigenvalue.

The parameter C0 in (14) will be the sum of the crossings at

0 Hz obtained in all the eigenvalues.

IV. APPLICATION EXAMPLES AND EXPERIMENTAL

RESULTS

The MIMO generalized Bode Criterion is based on the

analysis of the Bode diagram, thus, it becomes strongly inter-

esting to design appropriate control loops for power electronic

systems. In this section, the proposed stability criterion is

used to illustrate the design of controllers for two typical

applications in power electronics.

A. Three-phase grid-connected power converter

The first system under study is the one represented in Fig. 5,

a three-phase power converter connected to the grid through

an LCL filter. The converter current iconv , can be typically

controlled in the dq frame to achieve zero tracking error of

the fundamental frequency component by means of a simple PI

controller. Nevertheless, cross-coupling terms appear between

both dq axis, and the system has to be modeled as a MIMO

system to properly represent its dynamics [14].

Fig. 5. System under analysis.
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In Fig. 5 the converter current control in the dq frame has

been represented. The LCL filter is formed by the converter

inductance Lconv , the filter capacitor, Cf , and the transformer

leakage inductance, Ltransf . The filter capacitor voltage and

the converter current measurements are filtered by a low pass

analog filter, LPAF. The PLL, receiving the capacitor voltage

filtered measurements provides the angle for the transfor-

mation to dq. The filtered variables are transformed to the

synchronous reference frame (dq). Each current component is

controlled by a PI controller. At the output of the controller,

the capacitor voltage is added, in order to improve grid

disturbances rejection. The required action in the SRF is

transformed back to the stationary reference frame and the

modulator determines the switching orders for every individual

switch. This general overview of the control loop is useful to

identify all the elements. Nevertheless, to properly study the

system stability, a detailed model of each of these elements is

required.

As it can be seen, some elements within the control loop,

such as the PI controller and capacitor voltage positive feed-

back are defined in the synchronous reference frame, or dq

axis, while others, such as the LCL filter, LPAF and the

existing delays within the control loop are defined in the

stationary reference frame. In this paper, all the elements are

transformed to dq to analyze the system stability and design

the controller.

LPAF is a first order low pass filter, LPAF (s) = 1/(τlps+
1), applied to all the measurements. This filter can be easily

expressed in dq axis applying the transformation presented in

[31], which leads to

[LPAF dq(s)] =
1

2

[

LPAF1(s) LPAF2(s)
−LPAF2(s) LPAF1(s)

]

. (32)

where LPAF1(s) = LPAF (s+ jω0)+LPAF (s− jω0) and

LPAF2(s) = jLPAF (s + jω0) − jLPAF (s − jω0). It is

clear from (32) that the low pass analog filter expressed in the

synchronous reference frame has cross-coupling terms.

The delay of one sample time, introduced by the computa-

tion in the DSP, and the zero order hold, that represents the

application of the control action during a sample time, are

modeled by means of a fourth order Pade approximation de-

rived in [32]. In the following, it will be denoted by Dconv(s),
which has also to be expressed in dq coordinates, obtaining

a matrix [Ddq
conv(s)], with the same symmetry as (32). Its

diagonal elements are equal to Dconv 1(s) = Dconv(s +
jω0) + Dconv(s − jω0), and its antidiagonal terms equal to

Dconv 2(s) = jDconv(s+ jω0)− jDconv(s− jω0).

The last element that needs to be expressed in the syn-

chronous reference frame is the LCL filter. The typical LCL

plant transfer function is also expressed in dq using the

transformation in [31], obtaining a six order transfer function

matrix [17], [Plant(s)dq], with the same symmetry as (32).

The components of matrices [LPAF dq(s)], [Ddq
conv(s)] and

[Plant(s)dq] can be easily computed using a dedicated soft-

ware such as Matlab, however, their expression are too long

to be reproduced in here.

The PI controller in Fig 6 is already defined in dq and it

has the following expression

[PIdq(s)] =

[

Kp
Tns+1
Tns

0

0 Kp
Tns+1
Tns

]

, (33)

where Tn and Kp are the integral time constant and the

proportional gain.

With all the elements within the control loop defined and

expressed in dq, the control loop diagram can be represented in

Fig. 6. There are two plants defined in this figure, [Plantdqvv(s)]
correlates the converter voltage to the capacitor filter voltage,

while [Plantdqvi (s)] correlates the converter voltage to the

converter side current. It should be noted that all the elements

defined in Fig. 6 are symmetric matrices. Consequently, the

open loop transfer matrix, [H(s)], is also symmetric,

{

Idconv f (s)

Iqconv f (s)

}

=

[

H1(s) H2(s)
−H2(s) H1(s)

]{

εd(s)
εq(s)

}

, (34)

and its eigenvalues are λ1,2(s) = H1(s)±jH2(s). The system

parameters are summarized in Table II.

Each eigenvalue has an integrator, introduced by the PI

controller. The DC-gain without integrators, KG, of each

eigenvalue is:

• Kλ1

G = −0.1469 + 1.2132j
• Kλ2

G = −0.1469− 1.2132j

According to Table I, if k = 1 and KG has a negative real

part (a < 0), the eigenvalue has a negative crossing. Each

eigenvalue has a negative crossing, so C0 = −2.

There are no unstable poles in [H(s)], regardless of the

proportional gain, so P = 0 in both control loops.

According to the MIMO Generalized Bode Criterion

Z = P − [2(C+ − C−) + C0], (35)

with no open-loop right-half plane poles, P = 0, the closed-

loop system is stable, i.e. Z = 0, if

−2(C+ − C−) = C0. (36)

In this way, the net sum of (C+−C−) has to be equal to 1.

For a Tn equal to 30 ms and a Kp equal to 1, the eigenvalues

Bode diagram is represented in Fig. 7 (a). It has been proven

in Section III that the set of eigenvalues is defined only by

TABLE II
SYSTEM PARAMETERS.

Parameter Symbol Value

Converter inductance Lconv 2.2 mH

Converter inductance series resistance Rconv s 100 mΩ

Grid side inductance Ltransf 1 mH

Grid side inductance series resistance Rgt s 70 mΩ

Filter capacitor C 10 µF

Damping resistor Rd 6Ω

Sampling period Tsamp 298.6µs

Analog filter time constant τlp 100 µs
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Fig. 6. Control loop diagram.

its positive frequency response, so the stability limits can be

easily obtained by inspection of Fig. 7 (a). The minimum

proportional gain, Kp min, can be determined from the gain

margin at the first phase cross-over frequency. To guarantee the

C+ crossing, Kp has to be greater than Kp min, equal to 0.104

for this application, otherwise C+ − C− = 0, and the closed

loop system will have two unstable poles. However, there

is an additional stability limit determined by the maximum

proportional gain, Kp max. This limit can be obtained by

examining the gain margin at the second phase cross-over

frequency, in this example Kp max = 8. If the proportional

gain is increased over Kp max, a C− crossing is introduced

that compensates the C+ crossing, so C+ − C− = 0, and

again, the closed loop system will have two unstable poles.

An intuitive range of stability has been derived from the

eigenvalues’ Bode diagram. Obtaining the same stability range

by inspection of the Nyquist diagram in Fig. 7 (b) becomes

more complicated. Kp min is the required gain to avoid (-1, j0)

encirclement of λ1,2. In Fig. 7 (b), for the system under study,

Kp min can be intuitively determined from the distance to

(-1, j0) of the two eigenvalues Nyquist diagrams. However,

the value for Kp max cannot be seen in such a straightforward

way. In contrast to the Bode diagram, the Nyquist diagram

is not represented in logarithmic scale, so when ω tends to

infinity, determining the gain margins at the phase cross-over

frequencies become more complicated. This is the case even

for a simple system such as the one under study. Kp max

is the gain that introduces a clockwise encirclement in the

Nyquist diagram of λ1 and it has been marked in Fig. 7 (b).

Comparing Fig. 7 (a) and (b) it becomes clear that the Bode

diagram presents a more intuitive design approach. Moreover,

the crossings at 0 Hz cannot be determined from the Nyquist

diagram and should be computed by knowing that the case

under study is an example of the one represented in Fig. 3 (f).

It should also be noted that specialized softwares, such as

Matlab, plot the Nyquist diagram at positive frequencies

and assumes symmetry for the negative frequencies. For this

reason, a customized Matlab function needs to be programmed

to draw Fig. 7 (b) and properly represent the positive and

negative frequencies.

The converter current step response is examined through

simulation and represented in Fig. 8 for two different propor-

tional gains. In Fig. 8 (a) Kp is equal to 1.122, greater than

KP min and lower than KP max, so the system is stable, as

predicted by the application of the MIMO Generalized Bode

Criterion. In contrast, in Fig. 8 (b), Kp has been reduced to

0.03, lower than KP min. Consequently, the system has two

RHP poles, showing an unstable step response.

Fig. 7. Bode diagrams of the eigenvalues for Kp = 1 and Tn = 30 ms (a)
and Nyquist diagram of the eigenvalues for the same parameters (b).
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(a)

(b)

Fig. 8. Closed-loop poles for Kp min < Kp < Kp max (a) and for Kp <
Kp min (b).

This theory has also been tested in the three-phase power

converter shown in Fig. 9, whose parameters are the ones

provided in Table II. This converter is controlled by means

of an Arduino Due in dq axis using the strategy described in

this section. In Fig. 10, a step is introduced in the d axis (in

blue), with the controller gain set equal to Kp = 0.03. Initially,

the system is unstable (Kp < Kp min), and the converter

current in both d axis (green curve) and q axis (in pink) start

to grow, as it happened in the simulation results of Fig. 8 (b).

However, if the proportional gain is suddenly changed to 1.122

(Kp min < Kp < Kp max), the system becomes stable and

rapidly recovers from instability.

Fig. 9. Test-bench used for the experimental results.

Fig. 10. Step response transiently changing the controller gain from Kp <
Kp min (unstable) to Kp min < Kp < Kp max (stable).

B. Two different power converters connected in parallel to the

grid

Fig. 11 represents the second system under analysis, two

three-phase power converters connected in parallel to the grid.

Each power converter has the same topology as the one rep-

resented in Fig. 5, using the same control loop structure in dq

axis. However, as indicated in Fig. 11 by the superscripts I and

II , the output filter components and controller parameters can

be different. Consequently, the stability analysis and controller

design cannot be made by the aggregation of both power

converters [33].

The first approach to design the controller of each power

converter is to treat them as independent systems. This is

realized in many applications, where different manufacturers

build their converters and synthesize their controllers without

any knowledge of the rest of power converters. Following

this design option, two independent control diagrams, as the

ones shown in Fig. 6, have to be analyzed. To properly study

the system stability, the low pass analog filters, LPAF I and

LPAF II , the delay of one sample time and zero order hold,

are translated into dq axis, as it is done in the previous

example. Analogously, the LCL output filter is also modeled

in dq. The converter parameters are summarized in Table III,

where the filter components are expressed in per-unit values

(p.u.). Two independent eigenvalues are computed for each

power converter, λI
1,2 for converter I and λII

1,2 for converter II.

To determine the existence of C0 crossings, the DC-gain

without integrators, KG, of each eigenvalue is examined:

• K
λI
1

G = −0.2131 + 1.0686j

TABLE III
SYSTEM PARAMETERS FOR CONVERTER I AND CONVERTER II .

Parameter Symbol I Value I Symbol II Value II

Converter inductance LI
conv 0.08 p.u. LII

conv 0.05 p.u.

Filter capacitor CI
f

0.05 p.u. CII
f

0.095 p.u.

Damping resistor RI
d

1.8 Ω RII
d

2 Ω

Analog filter time constant capacitor τI
lp

100 µs τII
lp

100 µs

Sampling period T I
samp 298.6 µs T II

samp 298.6 µs

Grid inductance Ltransf 0.03 p.u. Ltransf 0.03 p.u.

Grid voltage Vg 230 V Vg 230 V

Converter rated power SI
r 14.2 kW SII

r 14.2 kW
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Fig. 11. System under analysis: two three-phase different power converters
connected in parallel to the grid.

• K
λI
2

G = −0.2131− 1.0686j

• K
λII
1

G = −0.1507 + 1.6665j

• K
λII
2

G = −0.1507− 1.6665j

Each eigenvalue has an integrator (k = 1), introduced by

the PI controller. According to Table I, as the real part of each

eigenvalue is negative (a < 0), each eigenvalue has a negative

crossing at the origin. Consequently, C0 can be calculated in

both control loops:

• Converter I: CI
0 = −2

• Converter II: CII
0 = −2

None of the open-loop transfer matrices has unstable poles,

i.e. P I = 0 and P II = 0. Thus, according to (36) the closed-

loop systems are stable, i.e. ZI = 0 and ZII = 0, if 2(C+ −
C−) is equal to 2 in both control loops. Fig. 12 (a) shows the

eigenvalues’ Bode diagram if both control loops are analyzed

independently. The blue curves are converter’s I eigenvalues,

while the red ones are those of converter II. This Bode diagram

has been represented for a PI controller with a T I
n equal to

0.019 ms and a KI
p = 1 in converter I, while in converter II

T II
n = 0.0064 and KII

p = 1.

An intuitive range of stability can be found for both control

loops so that in each of them the required C+ crossing is

guaranteed. As it can be deduced from Fig. 12 (a), if 0.1161 <
KI

p < 11.37 converter I is stable, while if 0.0551 < KII
p <

9.45 converter II is stable as well. In order to achieve a fast

dynamic response, KI
p = KII

p = 7 is selected.

A simulation has been performed using Matlab SimPower-

Systems library to test the current control loops’ adjustment

and the results are shown in Fig. 12 (b). Initially, only

converter I is connected, it can be seen from the grid current

waveforms that the system is stable. At time instant 0.6 s

converter II is connected in parallel to converter I and the

system becomes unstable, as both power converters interact.

However, when converter I is disconnected at 0.7 s, the system

rapidly becomes stable again. This simulation proves that the

stability analysis and the controller adjustment made is correct.

If only one converter is connected to the grid, it shows a fast

Fig. 12. Eigenvalues’ Bode diagram considering both control loops indepen-
dent (a) and grid-current transiently connecting and disconnecting converter
I and II (b).

and stable dynamic response. However, as both current control

loops are treated independently, the instability detected when

both of them are connected in parallel is neglected in the

design procedure.

This limitation in the design procedure can be overcome

if both power converters are modeled as a single system

instead of considering them independent. From Fig. 11, it

becomes intuitive that the voltage imposed by converter I

affects converter’s II current, and vice versa. These cross-

couplings can be modeled using the modeling procedure

presented in the previous example. First, the plant is obtained

in the stationary reference frame, and then it is translated to

dq axis. The following matrix is obtained

{

IIdqconv(s)
IIIdqconv(s)

}

=

[

[Gdq
I (s)] [Gdq

I−II(s)]

[Gdq
II−I(s)] [Gdq

II(s)]

]

{

V Idq
conv(s)

V IIdq
conv (s)

}

,

(37)

where each component is a 2×2 matrix obtained using the

transformation presented in [31].

Even though the plant model becomes a 4×4 MIMO model,

each converter current control loop only measures its own

capacitor voltages and currents and actuates on their converter
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voltage, as indicated in Fig. 11, so the model for the rest of

the system components, such as low-pass analog filters, PI

controllers or delay and zero order hold, do not require any

modification. The MIMO Generalized Bode Criterion can be

applied to any n× n MIMO system, so in the following it is

applied to the controller design of the resulting 4×4 open-loop

transfer matrix.

The analytical expressions for the eigenvalues become

complicated as the number of inputs and outputs grow, for

this reason, they are numerically computed using Matlab.

Four eigenvalues are obtained, λ1,2,3,4, each of them with an

integrator, provided by the PI controller.

In order to determine the total number of C0 crossings, the

DC-gain is computed, obtaining that every Kλi

G = a+ bj, has

a negative real component (a < 0). Thus, according to Table I,

every eigenvalue has a negative crossing and C0 = −4.

From (36), the closed loop system is stable, i.e. Z = 0, if the

net sum of (C+ −C−) is equal to 2, as there are no unstable

poles in the open-loop transfer matrix. The maximum limits

for Kp are determined by the eigenvalues’ Bode diagram of

Fig. 13 (a). Two crossings, with C+ = 2 and C− = 0, are

guaranteed if 0.0794 < Kp < 6.6834.

The instability observed in Fig. 12 (b) when both power

Fig. 13. Eigenvalues’ Bode diagram (a) and grid-current transiently connect-
ing and disconnecting converter I and II (b).

converters are connected in parallel is explained by the new

stability limits obtained considering the complete 4×4 MIMO

system. As Kp was set to 7 in both power converters, it fell

within the instability region, showing the expected unstable

behavior with the parallel connection. If KI
p and KII

p are

set to 5.5 and the simulation is repeated, Fig. 13 (b), the

instability is avoided and both converters can operate together

and separately.

V. CONCLUSION

In this paper the MIMO Generalized Bode Criterion

(MIMO-GBC) is proposed. This criterion is based on the

Nyquist Generalized Criterion, and can be applied to any

MIMO system. It uses the information of the open-loop

transfer matrix, but instead of using the eigenvalues’ Nyquist

diagram, it is based on the Bode diagram, resulting in an

intuitive tool for the controller design of power electronic

systems. Besides the eigenvalues’ frequency response, the

MIMO-GBC carefully examines the eigenvalues’ response at

0 Hz, as it plays a key role in the system stability.

The proposed stability criterion and controller design ap-

proach is applied to the controller adjustment of two typical

applications in power electronics. The first one consists in the

current control loop of a three-phase power converter, while

the second one is the current control loop of two different

converters connected in parallel to the grid. In both cases, for

2×2 and 4×4 MIMO systems, the MIMO-GBC has proved to

be an intuitive tool for the controller design. The validity of

the stability criterion has been corroborated through simulation

and experimental results.

APPENDIX A

Let [H(s) be the open-loop transfer matrix of a two-input

two-output system

[H(s)] =

[

H11(s) H12(s)
H21(s) H22(s)

]

. (38)

Its two eigenvalues can be computed by solving |λI −
H(s)| = 0, and have the following expression

λ1,2(s) =
H11(s) +H22(s)

2

±

√

(

H11(s)−H22(s)

2

)2

+H12(s)H21(s).

(39)

Each component, Hij(s), has real coefficients, so each in-

dividual transfer function satisfies that Hij(jω) = Hij(−jω).
Lets consider λ1(s) as the the eigenvalue with the positive

square root in (39), so λ1(jω) is equal to

λ1(jω) =
H11(jω) +H22(jω)

2

+

√

(

H11(jω)−H22(jω)

2

)2

+H12(jω)H21(jω)

(40)
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and it can be rewritten as

λ1(jω) =
H11(−jω) +H22(−jω)

2

+

√

√

√

√

(

H11(−jω)−H22(−jω)

2

)2

+H12(−jω) H21(−jω)

(41)

Let z1 and z2 be two complex numbers, the following

properties apply:

1) z1 + z2 = z1 + z2
2) z1 z2 = z1z2
3) (z1)

n = (zn1 ), n being an integer number.

If we use the previous properties of complex numbers to

(41), it can be expressed as

λ1(jω) =
H11(−jω) +H22(−jω)

2

+

√

(

H11(−jω)−H22(−jω)

2

)2

+H12(−jω)H21(−jω)

(42)

If z1 has a modulus |z1| and an argument ϕ1:

•

√
z1 =

√

|z1| −ϕ1/2 + lπ, l = 0, 1
•

√
z1 =

√

|z1| −ϕ1/2− lπ, l = 0, 1

So for l = 0,
√
z1 =

√
z1, while for l = 1,

√
z1 = −√

z1.

The application of this property to (42) leads to the follow-

ing two equalities

λ1(jω) = λ1(−jω) and λ2(jω) = λ2(−jω) (43)

and

λ1(jω) = λ2(−jω) and λ2(jω) = λ1(−jω). (44)

Meaning that in one case each eigenvalue evaluated at

positive frequencies is equal to the conjugate of the same

eigenvalue evaluated at negative frequencies ((43) with l = 0).

While in the other case ((44) with l = 1) each eigenvalue

evaluated at positive frequencies is equal to the conjugate

of the other eigenvalue evaluated at negative frequencies. To

illustrate this idea we are going to analyze two examples. First

of all, lets consider a symmetric system

[H(s)] =

[

H1(s) H2(s)
−H2(s) H1(s)

]

. (45)

Its eigenvalues are equal to λ1,2(s) = H1(s)± jH2(s).
Example A1: If H1(s) = 1/s and H2(s) = 0, the two

eigenvalues are equal (λ1 = λ2 = 1/s). Then

λ1(jω) =
1

jω
(46)

and

λ1(−jω) = − 1

jω
(47)

So it can be concluded that for this case under consideration,

(43) (l = 0) applies.

Example A2: If H1(s) = 2/s and H2(s) = 1/s, the two

eigenvalues are

λ1(s) =
2

s
+ j

1

s
(48)

λ2(s) =
2

s
− j

1

s
(49)

so,

λ1(jω) =
2

jω
+

1

ω
and λ1(−jω) = − 2

jω
− 1

ω
(50)

λ2(jω) =
2

jω
− 1

ω
and λ2(−jω) = − 2

jω
+

1

ω
. (51)

And consequently, (44) (l = 1) applies in this case.

In both cases, the set of eigenvalues form closed symmet-

ric curves and only ±m180 degrees crossings with positive

magnitude (m odd integer) need to be counted at positive

frequencies to determine the total number of C+ and C−

crossings.
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Jesús López (M’05) was born in Pamplona, Spain,
in 1975. He received the M.Sc. degree in industrial
engineering from the Public University of Navarra,
Pamplona, Spain, in 2000. In 2008 he received
the Ph.D. degree in industrial engineering from the
Public University of Navarra, Spain, in collaboration
with the LAPLACE laboratory, Toulouse, France.

In 2001, he joined the Power Electronic Group,
Electrical and Electronic Department at the Public
University of Navarra, where he is currently an
Assistant Professor and is also involved in research

projects mainly in co-operation with industry. His research interests are in
the field of power electronics, power systems quality and renewable energies,
such as wind turbines and photovoltaic plants.

Eugenio Gubia received the M.Sc. and Ph.D.
degrees in industrial engineering from the Public
University of Navarre, Spain, in 1995 and 2003,
respectively.

He joined the Electrical and Electronic Depart-
ment of the Public University of Navarre in 1996,
where he is currently an associate professor and
member of the Institute of Smart Cities (ISC). In
2002, he joined the Electrical Engineering, Power
Electronics, and Renewable Energy Research Group
(INGEPER). From June to December 2005, he

worked as a guest researcher at the Center for Power Electronics Systems
(CPES) in the field of electromagnetic compatibility. His research interests are
in the field of power electronics, renewable energy systems, high-frequency
phenomena, and electromagnetic compatibility.

Pablo Sanchis received the M.Sc. degree in Elec-
trical Engineering, the M.Sc. degree in Management
and Business Administration, and the Ph.D. degree
in Electrical Engineering from the Public University
of Navarre (UPNA, Pamplona, Spain) in 1994, 1995,
and 2002, respectively.

From 1996 to 1998, he was a Guest Researcher at
Delft University of Technology, The Netherlands.

In 1998, he joined the Department of Electrical,
Electronic and Communications Engineering of the
Public University of Navarre, where he is currently

Associate Professor. He is also Director of the UPNA Chair for Renewable
Energies and Head of the Research Group in Electrical Engineering, Power
Electronics, and Renewable Energies. Previously, he was Vice Dean of the
School of Industrial and Telecommunications Engineering and Director of the
University Research Resources and Structures Unit.

He has been involved in more than 80 research projects both with public
funding and in co-operation with industry and is the coinventor of eight
patents. He has also coauthored more than 140 papers and contributions
in international journals and conferences, and supervised ten Ph.D. thesis.
His research interests include renewable energies, power electronics, electric
energy storage technologies, grid integration of renewable energies, and
electric microgrids.

Dr. Sanchis received the UPNA Research Award for the Best Technical
Paper, in 2013, and the UPNA Excellence in Teaching Award, in 2017.


