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Control Design for Interval Type-2 Fuzzy Systems

Under Imperfect Premise Matching
H.K. Lam, Senior Member, IEEE, Hongyi Li, C. Deters, E.L. Secco, H.A. Wurdemann and K. Althoefer,

Member, IEEE

Abstract—This paper focuses on designing interval type-2 (IT2)
control for nonlinear systems subject to parameter uncertainties.
To facilitate the stability analysis and control synthesis, an IT2 T-
S fuzzy model is employed to represent the dynamics of nonlinear
systems of which the parameter uncertainties are captured by
IT2 membership functions characterized by the lower and upper
membership functions. A novel IT2 fuzzy controller is proposed
to perform the control process, where the membership functions
and number of rules can be freely chosen and different from
those of the IT2 T-S fuzzy model. Consequently, the IT2 fuzzy-
model-based (FMB) control system is with imperfectly matched
membership functions, which hinders the stability analysis. To
relax the stability analysis for this class of IT2 FMB control
systems, the information of footprint of uncertainties, and the
lower and upper membership functions are taken into account
for the stability analysis. Based on the Lyapunov stability theory,
some stability conditions in terms of linear matrix inequalities
are obtained to determine the system stability and achieve the
control design. Finally, simulation and experimental examples
are provided to demonstrate the effectiveness and the merit of
the proposed approach.

Index Terms—Fuzzy control, imperfect premise matching,
interval type-2 fuzzy control, stability analysis.

I. INTRODUCTION

TYPE-1 fuzzy control approach has been successfully

applied to a wide range of domestic and industrial control

applications, which demonstrate that it is a promising con-

trol approach for complex nonlinear plants [1]–[4]. Stability

analysis and control synthesis are the two main issues to be

considered in the fuzzy control paradigm. It is well known

that Takagi-Sugeno (T-S) fuzzy model [5] (also known as TSK

fuzzy model [6]) plays an important role to carry out stability

analysis and control design [7]–[13], which provides a gen-

eral modeling framework for nonlinear systems. The system

dynamics of the nonlinear systems can be represented as an

average weighted sum of some local linear sub-systems, where
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the weightings are characterized by the type-1 membership

functions.

Lyapunov stability theory is the most popular method to

investigate the stability of type-1 FMB control systems. Basic

stability conditions in terms of linear matrix inequalities

(LMIs) [14] were achieved in [15], [16]. The fuzzy-model-

based (FMB) control system is guaranteed to be asymptot-

ically stable if there exists a common solution to a set of

Lyapunov inequalities in terms of LMIs. With the proposed

parallel distributed compensation (PDC) design concept, some

stability conditions were relaxed in [16]. More relaxed stability

conditions under PDC can be found in [17]–[19]. With the con-

sideration of the information of type-1 membership functions,

stability conditions can be further relaxed [20]–[22]. Also, the

fuzzy control concept were extended to other stability/control

problems such as output feedback control [23], sampled-data

control [26], control systems with time delay [8], [24], [25],

tracking control [27], large scale fuzzy systems [28] and even

for fuzzy neural networks [29].

Type-1 fuzzy sets are able to effectively capture the system

nonlinearities but not the uncertainties. It has been shown in

the literature that type-2 fuzzy sets [30], which extend the

capability of type-1 fuzzy sets, are good in representing and

capturing uncertainties, supported by a number of applications

such as adaptive filtering [31], analog module implementa-

tion and design [32], [33], active suspension systems [34],

autonomous mobiles [35], electro hydraulic servo systems

[36], extended Kalman filter [37], DC-DC power converters

[38], nonlinear control [39], [40], noise reduction [41], video

streaming [42], inverted pendulum control [43] and so on.

However, type-2 fuzzy set theory was developed for a general

type-2 fuzzy logic system but not mainly for FMB control

scheme. Consequently, there are few research about the type-

2 FMB control systems in the literature. This motivates the

investigation of the system stability and control design of type-

2 FMB control systems.

Recently, some research has been done on system control

and stability analysis based on the existing framework of type-

2 fuzzy systems [39], [44]–[48]. In [31], a basic interval type-

2 (IT2) T-S fuzzy model was proposed, which was extended

to a more general IT2 T-S fuzzy model [39] for a wider

class of nonlinear systems suitable for system analysis and

control design. Preliminary stability analysis work on IT2

FMB system can be found in [39] and [48] of which a set

of LMI-based stability conditions were obtained determining

the system stability and facilitating the control synthesis.

In this paper, we investigate the stability of IT2 FMB
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control systems under imperfect premise matching. Unlike

the authors’ work in [39] under PDC design concept, it was

required that the IT2 fuzzy controller shares the same premise

membership functions and the same number of rules as those

of the IT2 T-S fuzzy model. These limitations constrain the

design flexibility and increase the implementation complexity

of the IT2 fuzzy controller. This work of this paper eliminates

these limitations by proposing an IT2 fuzzy controller that

the membership functions and the number of rules can be

freely chosen enhancing the applicability of the IT2 FMB

control scheme. By choosing simple membership functions

and a smaller number of rules, it can reduce the implemen-

tation complexity of the IT2 fuzzy controller resulting in a

lower implementation cost. However, the IT2 FMB control

systems will have imperfectly matched membership functions,

potentially leading to more difficult stability analysis as the

favourable property of PDC design concept vanishes.

To carry the stability analysis for IT2 FMB control system

subject to imperfect premise membership functions, the lower

and upper membership functions characterized the footprint

of uncertainty (FOU) are chosen to be a favourable rep-

resentation. This favourable representation allows the lower

and upper membership functions to be taken in the stability

analysis. Consequently, the stability conditions in terms of

LMIs are membership function dependent, which is applied

to the nonlinear plant under consideration, but not a family

considered in some existing work. Preliminary result of the

authors in [48] provides technical support to the work in this

paper. To further relax the stability conditions, the FOU is

divided into a number of sub-FOUs. The information of the

sub-FOUs along with those of lower and upper membership

functions are brought to the stability analysis. Based on the

Lyapunov stability theory, LMI-based stability conditions are

obtained to guarantee the stability of the IT2 FMB control

systems and synthesize the IT2 fuzzy controller.

The organization of this paper is as follows. In Section

II, the IT2 T-S fuzzy model representing the nonlinear plant

subject to parameter uncertainties, IT2 fuzzy controller and

IT2 FMB control systems are presented. In Section III, LMI-

based stability conditions are obtained based on the Lyapunov

stability theory for the IT2 FMB control systems. In Section

IV, simulation and experimental examples are given to illus-

trate the merits of the proposed IT2 FMB control scheme. In

Section V, a conclusion is drawn.

II. PRELIMINARIES

Considering a nonlinear plant subject to parameter uncer-

tainties represented by an IT2 T-S fuzzy model [31] and [39],

an IT2 fuzzy controller is proposed to perform the control

process. An IT2 FMB control system is formed by connecting

the IT2 T-S fuzzy model and the IT2 fuzzy controller in a

closed loop. In this paper, it is not required that both the IT2

T-S fuzzy model and the IT2 fuzzy controller share the same

premise membership functions and the same number of rules.

A. IT2 T-S Fuzzy Model

A p-rule IT2 T-S fuzzy model [31], [39] is employed to

describe the dynamics of the nonlinear plant. The rule is of

the following format where the antecedent contains IT2 fuzzy

sets and the consequent is a linear dynamical system.

Rule i: IF f1(x(t)) is M̃ i
1 AND · · · AND fΨ (x(t)) is M̃ i

Ψ

THEN ẋ(t) = Aix(t) +Biu(t), (1)

where M̃ i
α is an IT2 fuzzy set of rule i corresponding to the

function fα(x(t)), α = 1, 2, · · · , Ψ ; i = 1, 2, · · · , p; Ψ

is a positive integer; x(t) ∈ ℜn is the system state vector;

Ai ∈ ℜn×n and Bi ∈ ℜn×m are the known system and input

matrices, respectively; u(t) ∈ ℜm is the input vector. The

firing strength of the i-th rule is of the following interval sets:

Wi(x(t)) =
[

wi(x(t)), wi(x(t))
]

, i = 1, 2, · · · , p, (2)

where

wi(x(t)) =
Ψ
∏

α=1

µ
M̃i

α

(fα(x(t))) ≥ 0, (3)

wi(x(t)) =

Ψ
∏

α=1

µM̃i
α
(fα(x(t))) ≥ 0, (4)

µM̃i
α
(fα(x(t))) ≥ µ

M̃i
α

(fα(x(t))) ≥ 0, (5)

wi(x(t)) ≥ wi(x(t)) ≥ 0, ∀ i, (6)

in which wi(x(t)), wi(x(t)), µ
M̃i

α

(fα(x(t))) and

µM̃i
α
(fα(x(t))) denote the lower grade of membership,

upper grade of membership, lower membership function and

upper membership function, respectively. The inferred IT2

T-S fuzzy model [39] is defined as follows:

ẋ(t) =

p
∑

i=1

w̃i(x(t))(Aix(t) +Biu(t)), (7)

where

w̃i(x(t)) = αi(x(t))wi(x(t)) + αi(x(t))wi(x(t)) ≥ 0 ∀ i,
(8)

p
∑

i=1

w̃i(x(t)) = 1, (9)

0 ≤ αi(x(t)) ≤ 1, ∀ i, (10)

0 ≤ αi(x(t)) ≤ 1, ∀ i, (11)

αi(x(t)) + αi(x(t)) = 1, ∀ i, (12)

in which αi(x(t)) and αi(x(t)) are nonlinear functions not

necessarily be known but exist; w̃i(x(t)) can be regarded

as the grades of membership of the embedded membership

functions and (8) defines the type reduction.

Remark 1: It can be seen from (9) that the actual grades of

membership, w̃i(x(t)), can be reconstructed and expressed as

a linear combination of wi(x(t)) and wi(x(t)), characterized

by the lower and upper membership functions µ
M̃i

α

(fα(x(t)))

and µM̃i
α
(fα(x(t))), which are scaled by the nonlinear

functions αi(x(t)) and αi(x(t)), respectively. In other words,

any membership functions within the FOU [39] can be

reconstructed by the lower and upper membership functions.
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As the nonlinear plant is subject to parameter uncertainties,

w̃i(x(t)) will depend on the parameter uncertainties and thus

leads to the values of αi(x(t)) and αi(x(t)) uncertain. It

should be noted that the IT2 T-S fuzzy model (7) serves as

a mathematical tool to facilitate the stability analysis and

control synthesis, and is not necessarily implemented.

B. IT2 Fuzzy Controller

An IT2 fuzzy controller with c rules of the following format

is proposed to stabilize the nonlinear plant represented by the

IT2 T-S fuzzy model (7).

Rule j: IF g1(x(t)) is Ñ j
1 AND · · · AND gΩ (x(t)) is Ñ j

Ω

THEN u(t) = Gjx(t), (13)

where Ñ j
β is an IT2 fuzzy set of rule j corresponding to the

function gβ(x(t)), β = 1, 2, · · · , Ω ; j = 1, 2, · · · , c; Ω is a

positive integer; Gj ∈ ℜm×n, j = 1, 2, · · · , c, are the constant

feedback gains to be determined. The firing strength of the j-th

rule is the following interval sets:

Mj(x(t)) =
[

mj(x(t)), mj(x(t))
]

, j = 1, 2, · · · , c,
(14)

where

mj(x(t)) =

Ω
∏

β=1

µ
Ñj

β

(gβ(x(t))) ≥ 0, (15)

mj(x(t)) =
Ω
∏

β=1

µÑj

β
(gβ(x(t))) ≥ 0, (16)

µÑj

β
(gβ(x(t))) ≥ µ

Ñj

β

(gβ(x(t))) ≥ 0, ∀ j, (17)

in which mj(x(t)), mj(x(t)), µ
Ñj

β

(gβ(x(t))) and

µÑj

β
(gβ(x(t))) stand for the lower grade of membership,

upper grade of membership, lower membership function and

upper membership function, respectively. The inferred IT2

fuzzy controller is defined as follows:

u(t) =

c
∑

j=1

m̃j(x(t))Gjx(t), (18)

where

m̃j(x(t))

=
β
j
(x(t))mj(x(t)) + βj(x(t))mj(x(t))

c
∑

k=1

(

β
k
(x(t))mk(x(t)) + βk(x(t))mk(x(t))

)

≥ 0, ∀ j, (19)

c
∑

j=1

m̃i(x(t)) = 1, (20)

0 ≤ β
j
(x(t)) ≤ 1, ∀ j, (21)

0 ≤ βj(x(t)) ≤ 1, ∀ j, (22)

β
j
(x(t)) + βj(x(t)) = 1, ∀ j, (23)

in which β
j
(x(t)) and βj(x(t)) are predefined functions;

m̃j(x(t)) can be regarded as the grades of membership of

the embedded membership functions and (19) is the type

reduction.

Remark 2: Compared with the IT2 fuzzy controller in [39],

the proposed one in (18) has the following two enhancements:

1) The type reduction for the IT2 fuzzy controller in [39] is

characterized by the average normalized membership grades

of the lower and upper membership functions, e.g., β
j
(x(t)) =

βj(x(t)) = 0.5 for all j. In this paper, the type reduction of

the proposed IT2 fuzzy controller (18) is characterized by two

predefined functions, β
j
(x(t)) and βj(x(t)).

2) The proposed IT2 fuzzy controller (18) does not need

to share the same lower and upper premise membership

functions, and the same number of fuzzy rules as those of

the IT2 T-S fuzzy model (7). These two enhancements offer a

higher design flexibility to the IT2 fuzzy controller. Moreover,

by employing simple membership functions and a smaller

number of fuzzy rules, the implementation complexity of the

IT2 fuzzy controller (18) can be reduced.

C. IT2 FMB Control Systems

From (7) and (18), with the property of
∑p

i=1 w̃i(x(t)) =
∑c

j=1 m̃j(x(t)) =
∑p

i=1

∑c
j=1 w̃i(x(t))m̃j(x(t)) = 1, we

have the following IT2 FMB control system.

ẋ(t) =

p
∑

i=1

w̃i(x(t))(Aix(t) +Bi

c
∑

j=1

m̃j(x(t))Gjx(t))

=

p
∑

i=1

c
∑

j=1

w̃i(x(t))m̃j(x(t))(Ai +BiGj)x(t). (24)

The control objective of this paper is to guarantee the system

stability by determining the feedback gains, Gj , such that the

IT2 fuzzy controller (18) is able to drive the system states to

the origin, i.e., x(t) → 0 as time t → ∞.

Basic LMI-based stability conditions guaranteeing the sta-

bility of the FMB based control system in the form of (24)

are given in the following theorem.

Theorem 1 ( [15]): The FMB control system in the form

of (24) is guaranteed to be asymptotically stable if there exist

matrices Nj ∈ ℜm×n, j = 1, 2, · · · , c, X = XT ∈ ℜn×n

such that the following LMIs are satisfied.

X > 0;

Qij = AiX+XAT
i +BiNj +NT

j B
T
i < 0 ∀ i, j,

where the feedback gains are defined as Gj = NjX
−1 for all

j.

Remark 3: The stability conditions in Theorem 1 are very

conservative as the membership functions of both fuzzy model

and fuzzy controller are not considered. The stability condi-

tions can be reduced to Qij = AiX+XAT
i +BiN+NTBT

i <
0 for all i by choosing a common feedback gain, i.e., N = Nj

for all j resulting in a linear controller.
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To facilitate the stability analysis of the IT2 FMB control

system (24), the state space of interest denoted as Φ is

divided into q connected sub-state spaces denoted as Φk,

k = 1, 2, · · · , q such that Φ =
⋃q

k=1 Φk. Furthermore, to

consider more information of the IT2 membership functions,

local lower and upper membership functions within the FOU

are introduced. Considering the FOU being divided into τ +1
sub-FOUs, in the l-th sub-FOU, l = 1, 2, · · · , τ +1, the lower

and upper membership functions are defined as follows:

hijl(x(t)) =

q
∑

k=1

2
∑

i1=1

· · ·

2
∑

in=1

n
∏

r=1

vrirkl(xr(t))δiji1i2···inkl

∀ i, j, k, l, (25)

hijl(x(t)) =

q
∑

k=1

2
∑

i1=1

· · ·

2
∑

in=1

n
∏

r=1

vrirkl(xr(t))δiji1i2···inkl

∀ i, j, k, l, (26)

0 ≤ hijl(x(t)) ≤ hijl(x(t)) ≤ 1, (27)

0 ≤ δiji1i2···inkl ≤ δiji1i2···inkl ≤ 1, (28)

where δiji1i2···inkl and δiji1i2···inkl are constant scalars

to be determined; 0 ≤ vriskl(xr(t)) ≤ 1 and

vr1kl(xr(t)) + vr2kl(xr(t)) = 1 for r, s = 1, 2, · · · , n;

l =, 1, 2, · · · , τ + 1; ir = 1, 2; x(t) ∈ Φk; oth-

erwise, vrisk(xr(t)) = 0. As a result, we have
∑q

k=1

∑2
i1=1

∑2
i2=1 · · ·

∑2
in=1

∏n
r=1 vrirkl(xr(t)) = 1 for

all l, which is used in the stability analysis.

We then express the IT2 FMB control system (24) in the

following favourable form:

ẋ(t) =

p
∑

i=1

c
∑

j=1

h̃ij(x(t))(Ai +BiGj)x(t), (29)

where

h̃ij(x(t)) ≡ w̃i(x(t))m̃j(x(t))

=

τ+1
∑

l=1

ξijl(x(t))(γijl
(x(t))hijl(x(t))

+γijlhijl(x(t))), ∀ i, j, (30)

with
p

∑

i=1

c
∑

j=1

h̃ij(x(t)) = 1, (31)

0 ≤ γ
ijl
(x(t)) ≤ γijl(x(t)) ≤ 1 are two functions, which

are not necessary to be known, exhibiting the property that

γ
ijl
(x(t)) + γijl(x(t)) = 1 for all i, j and l; ξijl(x(t)) = 1

if the membership function hijl(x(t)) is within the sub-FOU

l, otherwise, ξijl(x(t)) = 0.

Remark 4: It should be noted that only one ξijl(x(t)) = 1
among the τ + 1 sub-FOUs at any time instant and the rest

equal 0 for the ij-th membership function h̃ij(x(t)). It can

be seen from (30) that the more the sub-FOUs are considered,

the more information about the FOU is contained in the local

lower and upper membership functions.

Remark 5: The local lower and upper membership func-

tions can reconstruct h̃ij(x(t)) ≡ w̃i(x(t))m̃j(x(t)) by repre-

senting it as a linear combination of hijl(x(t)) and hijl(x(t))
in sub-FOU l as shown in (30).

Remark 6: The IT2 FMB control system in (24) is a subset

of (29). Comparing both the IT2 FMB control systems, the one

in (29) demonstrates some favourable properties to facilitate

the stability analysis:

1) The partial information of hijl(x(t)) and hijl(x(t)) is

extracted and represented by the constant scalars δiji1i2···inkl
and δiji1i2···inkl, which are brought to the stability conditions.

2) Referring to (25) and (26), the cross terms,
∏n

r=1 vrirkl(xr(t)), are independent of i and j and, thus, can

be collected in the stability analysis.

3) With the nonlinear functions, γ
ijl
(x(t)) and γijl(x(t)),

h̃ijl(x(t)) can be reconstructed as shown in (30) as a linear

combination of hijl(x(t)) and hijl(x(t)). Furthermore, with

the expressions (25) and (26), the values of hijl(x(t)) and

hijl(x(t)) are determined by the constant scalars δiji1i2···inkl
and δiji1i2···inkl through

∏n
r=1 vrirkl(xr(t)). As a result, the

stability of the IT2 FMB control system can be determined

by hijl(x(t)) and hijl(x(t)) (the local lower and upper

bounds of h̃ij(x(t))) characterized by the constant scalars

δiji1i2···inkl and δiji1i2···inkl. These properties can be seen in

the stability analysis carried out in the next section.

III. STABILITY ANALYSIS

The stability of the IT2 FMB control system (24) is in-

vestigated based on the Lyapunov stability theory with the

consideration of the information of the lower and upper mem-

bership functions, and sub-FOUs. For brevity, in the following

analysis, the time t associated with the variables is dropped

for the situation without ambiguity, e.g., x(t) is denoted as

x. The variables wi(x(t)), wi(x(t)), w̃i(x(t)), mj(x(t)),

mj(x(t)), m̃j(x(t)), h̃ijl(x(t)), v1i1kl(x1(t)), v2i2kl(x2(t)),
· · · , vninkl(xn(t)) and ξijl(x(t)) are denoted by wi, wi, w̃i,

mj , mj , m̃j , h̃ijl, v1i1kl, v2i2kl, · · · , vninkl and ξijl, respec-

tively. Furthermore, the property of
∑p

i=1 w̃i =
∑c

j=1 m̃j =
∑p

i=1

∑c
j=1 w̃im̃j =

∑p
i=1

∑c
j=1 h̃ij = 1 is utilized.

The stability analysis result is summarized in the following

theorem to guarantee the asymptotic stability of the IT2 FMB

control system (24) and facilitate the control synthesis.

Theorem 2: Considering the FOU being divided into τ +1
sub-FOUs, the IT2 FMB control system (24) under imperfect

premise matching, formed by a nonlinear plant (represented by

the IT2 T-S fuzzy model (7)) and an IT2 fuzzy controller (18)

connected in a closed loop, is guaranteed to be asymptotically

stable if there exist matrices M = M ∈ ℜn×n, Nj ∈ ℜm×n,

X = XT ∈ ℜn×n, Wijl = WT
ijl ∈ ℜn×n, i = 1, 2, . . . , p;

j = 1, 2, . . . , c; l = 1, 2, · · · , τ + 1, such that the following

LMIs are satisfied.

X > 0; (32)

Wijl ≥ 0, ∀ i, j; l (33)

Qij +Wijl +M > 0, ∀ i, j; l (34)
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p
∑

i=1

c
∑

j=1

(

δiji1i2···inklQij − (δiji1i2···inkl − δiji1i2···inkl)Wijl

+ δiji1i2···inklM
)

−M < 0, ∀ i1, i2, · · · , in, k, l; (35)

where δiji1i2···inkl and δiji1i2···inkl, i = 1, 2, . . . , p;

j = 1, 2, . . . , c; i1, i2, · · · , in = 1, 2; k = 1, 2, · · · , q;

l = 1, 2, · · · , τ + 1 are pre-defined constant scalars satisfying

(25) and (26); Qij = AiX+XAT
i +BiNj +NT

j B
T
i for all

i and j; and the feedback gains are defined as Gj = NjX
−1

for all j.

Proof: Proof of Theorem 2 is given in the Appendix.

Remark 7: The stability conditions in Theorem 1 is a

particular case of Theorem 2. If there exists a solution to the

stability conditions in Theorem 1, X > 0 and Qij < 0 for

all i and j can be achieved. Choosing M = ε1I > 0 and

Wijl = −Qij + (−ε1 + ε2)I > 0 for all i, j and l with suffi-

ciently small non-zero positive value of ε1 and ε2 in Theorem

2, the LMIs (33) and (34) can be satisfied. As a result, recalling

that δiji1i2···inkl ≥ δiji1i2···inkl ≥ 0, the LMIs in (35) become
∑p

i=1

∑c
j=1(δiji1i2···inklε2I − δiji1i2···inklWijl) − ε1I < 0

for all i1, i2, · · · , in, k and l, which will be satisfied by a

sufficiently small value of ε2. Consequently, the solution of

the stability conditions in Theorem 1 is that of Theorem 2 but

not on the other way round.

IV. SIMULATION AND EXPERIMENTAL EXAMPLES

Simulation and experimental examples are given in this

section to demonstrate the effectiveness and the merit of the

proposed IT2 FMB control approach.

Example 1: A 3-rule IT2 T-S fuzzy model in the form

of (7) is employed to represent a nonlinear plant with

A1 =

[

1.59 −7.29

0.01 0

]

, A2 =

[

0.02 −4.64

0.35 0.21

]

, A3 =

[

−a −4.33

0 0.05

]

, B1 =

[

1

0

]

, B2 =

[

8

0

]

, B3 =

[

−b+ 6

−1

]

, x = [x1 x2]
T , a and b are constant system

parameters.

The IT2 membership functions are chosen to be w̃1(x1) =
µM1

1
(x1) = 1 − 1

1+e−(x1+4+σ(t)) , w̃2(x1) = µM2
1
(x1) = 1 −

w̃1(x1) − w̃3(x1) and w̃3(x1) = µM3
1
(x1) =

1
1+e−(x1−4+σ(t)) .

It should be noted that the IT2 membership functions will lead

to uncertain grades of membership because of the parameter

uncertainty σ(t) ∈ [−0.1, 0.1]. As a result, the existing type-1

stability analysis for FMB control system under PDC design

concept cannot be applied.

The lower and upper membership functions for the IT2

T-S fuzzy model are chosen to be w1(x1) = µ
M̃1

1

(x1) =

1 − 1
1+e−(x1+4+d1) , w3(x1) = µ

M̃3
1

(x1) = 1
1+e−(x1−4−d1) ,

w1(x1) = µM̃1
1
(x1) = 1 − 1

1+e−(x1+4−d1) , w3(x1) =

µM̃3
1
(x1) = 1

1+e−(x1−4+d1) , w2(x1) = µ
M̃2

1

(x1) = 1 −

µM̃1
1
(x1)−µM̃3

1
(x1) and w2(x1) = µM̃2

1
(x1) = 1−µ

M̃1
1

(x1)−

µ
M̃3

1

(x1) where d1 is a constant to be determined.

To stabilize the nonlinear plant, a 2-rule IT2 fuzzy controller

in the form of (18) is employed. For demonstration purposes,

the lower and upper membership functions are chosen as

m1(x1) = µ
Ñ1

1

(x1) = 1 − 1

e
−x1+d2

2

, m1(x1) = µÑ1
1
(x1) =

1 − 1

e
−x1−d2

2

, m2(x1) = µ
Ñ2

1

(x1) = 1 − µÑ1
1
(x1) and

m2(x1) = µÑ2
1
(x1) = 1 − µ

Ñ1
1

(x1). From (19), we have

m̃j(x1) =
β
j
mj(x1)+βjmj(x1)

∑2
k=1(βk

mk(x1)+βkmk(x1))
for j = 1, 2, where β

j

and βj are chosen to be constants; d2 is a constant to be

determined.

In this example, we consider τ = 0, which means that

no sub-FOUs are considered. For simplicity, the subscript l
is dropped for all variables. To determine the (local) lower

and upper membership functions hij(x1) and hij(x1), we

consider x1 ∈ [−10, 10] and divide the state space of x1

into 20 equal-size regions (which is arbitrarily chosen for

demonstration purposes), i.e., φk : x1,k ≤ x1 ≤ x1,k,

k = 1, 2, · · · , 20 where x1,k = (k− 11) and x1,k = (k− 10).
The lower and upper membership functions hij(x1) and

hij(x1) are defined by choosing v11k(x1) = 1 −
x1−x1,k

x1,k−x1,k

and v12k(x1) = 1 − v11k(x1); and the constant scalars

as δij1k = wi(x1,k)mj(x1,k), δij2k = wi(x1,k)mj(x1,k),

δij1k = wi(x1,k)mj(x1,k), δij2k = wi(x1,k)mj(x1,k) for all

k.

It should be noted that, by employing the same lower and

upper membership functions hij(x1) and hij(x1), any β
j

and

βj in the fuzzy controller will make no difference in the

stability analysis result except the implementation of IT2 fuzzy

controller. However, by employing different values of β
j

and

βj , the IT2 fuzzy controller defined in (18) will affect the FOU

of h̃ij ≡ w̃i(x1)m̃j(x1). As a result, different hij(x1) and

hij(x1) fitting better the FOU can be employed for different

cases. In this example, the introduction of d1 and d2 to the

membership functions is for the purpose of obtaining fitter

hij(x1) and hij(x1) for different values of β
j

and βj .

The stability of the IT2 FMB control system subject to

different values of a and b is checked by the LMI-based

stability conditions in Theorem 2 (l = 1) with the help of

Matlab LMI toolbox. Three cases shown in Table I with

different values of β
j
, β

j
, d1 and d2 are considered to

demonstrate the characteristics of IT2 fuzzy controller and

how they influence the stabilization capability. The values of

d1 and d2 are chosen such that h̃ij(x1) in the form of (30) are

within the lower and upper membership functions defined in

(25) and (26), respectively. We consider 10 ≤ a ≤ 20 at the

interval of 1 and 3 ≤ b ≤ 8 at the interval of 0.5 for each of

the 3 cases. The stability regions corresponding to Case 1 to

Case 3 indicated by ‘×’, ‘�’ and ‘◦’, respectively, are shown

in Fig. 1. As seen on these figures, different values of β
j

and

βj leading to different values of d1 and d2 produce different

size of stability regions.

For comparison purposes, Theorem 1 is employed to check

the stability of the IT2 FMB control system. However, there

are no feasible solution by using Matlab LMI toolbox. It

should be noted that the IT2 FMB control system is under
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TABLE I
PARAMETER VALUES FOR β

j
, β

j
, d1 AND d2 IN EXAMPLE 1.

Case 1 Case 2 Case 3

β
j

1 0.5 0

β
j

0 0.5 1

d1 0.3 0.3 0.25

d2 0.25 0.15 0.15

imperfect premise matching, the stability conditions in [39]

for perfect premise matching cannot be applied in this

example. In order to apply the stability conditions in [39], we

consider that the IT2 fuzzy controller share the same lower

and upper membership functions as those of the IT2 T-S

fuzzy model. However, there are still no feasible solution for

this example.

10 11 12 13 14 15 16 17 18 19 20
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

a

b

Fig. 1. Stability regions given by the stability conditions in Theorem 2 for
Case 1 (‘×’, 5 points); Case 2 (‘�’, 41 points); and Case 3 (‘◦’, 110 points)
in Example 1.

Example 2: The simulation results of the system responses

for the IT2 FMB control system given in the previous ex-

ample were performed for the verification of stability anal-

ysis result. The IT2 T-S fuzzy model is given as ẋ =
∑3

i=1 w̃i(x1)(Aix + Biu). A 2-rule IT2 fuzzy controller,

u =
∑2

j=1 m̃j(x1)Gjx, is proposed to close the feedback

loop. As a result, we have the IT2 FMB control system,

ẋ =
∑3

i=1

∑2
j=1 w̃i(x1)m̃j(x1)(Aix + BiGj)x, which can

be represented in the form of (29). The membership functions

are defined in the previous example. In this example, we

consider that the grades of membership are capped such that

w̃i(x1) = w̃i(−10), i = 1, 2, 3 and m̃j(x1) = m̃j(−10),
j = 1, 2, for x1 ≤ −10; and w̃i(x1) = w̃i(10), i = 1, 2, 3 and

m̃j(x1) = m̃j(10), j = 1, 2, for x1 ≥ 10 in order to apply

the stability analysis result obtained in the previous example

for x1 ∈ [−10, 10].
Referring to Fig. 1, we pick arbitrarily a number of points

corresponding to the parameter values of β
j
, β

j
, d1 and d2 as

shown in Table I. We consider the system parameters a = 14
and b = 3 for the parameters of Case 1 in Table I, a = 15

TABLE II
FEEDBACK GAINS OF THE IT2 FUZZY CONTROLLER IN EXAMPLE 2 FOR

DIFFERENT VALUES OF a AND b CORRESPONDING TO THE PARAMETER

VALUES OF β
j

, β
j

, d1 AND d2 FOR DIFFERENT CASES AS SHOWN IN

TABLE I.

Case a, b Feedback gains Gj

1 a = 14, b = 3 G1 = [−2.8221 − 2.9730]
G2 = [−0.4278 0.3379]

2 a = 15, b = 5.5 G1 = [−2.9261 − 3.2335]
G2 = [−0.3885 0.3763]

3 a = 20, b = 5.5 G1 = [−2.5464 − 2.2206]
G2 = [−0.6126 0.2093]

and b = 5.5 for Case 2 and a = 20 and b = 5.5 for Case 3 to

perform the simulations. The parameter uncertainty is chosen

to be σ(t) = 0.1 sin(x1) ∈ [−0.1, 0.1] for demonstration

purposes. With the Matlab LMI toolbox and the LMI-based

stability conditions in Theorem 2, we obtained the feedback

gains of the IT2 fuzzy controller for different cases as shown

in Table II. The phase portraits of x1 and x2 for different

cases with various initial conditions are shown in Fig. 2 to

Fig. 4. It can be seen that the IT2 fuzzy controllers are able

to stabilize the nonlinear plant with different values of a and b.

−90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

x
1
(t)

x
2
(t

)

Fig. 2. Phase portrait of the system states of IT2 FMB control system subject
to various initial conditions for a = 14, b = 3 with parameter values of β

j
,

β
j
, d1 and d2 shown in Case 1 of Table I.

Example 3: In this example, we investigate the effect of

using the information of sub-FOUs to the size of stability

region through a computer simulation . Consider the same

IT2 T-S fuzzy model and IT2 fuzzy controller in Example

1. The LMI-based stability conditions are employed to check

the stability of the IT2 FMB control system with the system

parameters 10 ≤ a ≤ 20 at the interval of 1 and 14 ≤ b ≤ 50
at the interval of 2 (a larger parameter range is considered

compared with Example 1). Three scenarios, with different

number of sub-FOUs from 2 to 4, are considered and shown

in Table III to Table V. For each scenario, we consider the

parameter values of β
j
, β

j
, d1 and d2 as shown in Table I.

As a result, we have 9 combinations in total.

The lower and upper membership functions hij(x1) and
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Fig. 3. Phase portrait of the system states of IT2 FMB control system subject
to various initial conditions for a = 15, b = 5.5, with parameter values of
β
j
, β

j
, d1 and d2 shown in Case 2 of Table I.
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Fig. 4. Phase portrait of the system states of IT2 FMB control system subject
to various initial conditions for a = 20, b = 5.5, with parameter values of
β
j
, β

j
, d1 and d2 shown in Case 3 of Table I.

hij(x1) are defined in Example 1. According to Table III

to Table V, the local lower and upper membership functions

hijl(x1) and hijl(x1) for sub-FOU l, l = 1, 2, · · · , τ +1, can

be defined.

With the Matlab LMI toolbox and the LMI-based stability

conditions in Theorem 2, the stability regions for different

scenarios and cases are shown in Fig. 5 to Fig. 7. Referring

to these figures, it can be seen that different values of β
j
,

β
j
, d1 and d2 will produce different size of stability regions.

It follows the trend that Case 3 produces a larger stability

region than Case 2 while Case 2 produces a larger stability

region than Case 1. Comparing with Example 1, it can be

seen that the stability regions shown in Fig. 5 to Fig. 7 are

larger (it should be noted that the scale in Fig. 7 (3 ≤ b ≤ 8)

is different from Fig. Fig. 5 to Fig. 7 (14 ≤ b ≤ 50)).

TABLE III
LOWER AND UPPER MEMBERSHIP FUNCTIONS hijl(x1) AND hijl(x1), l =

1, 2, FOR SCENARIO 1 IN EXAMPLE 3. THE LOWER AND UPPER

MEMBERSHIP FUNCTIONS hij(x1) AND hij(x1) ARE DEFINED IN

EXAMPLE 1.

τ 1

hijl(x1) hij1(x1) =
hij(x1)+hij(x1)

2
hij2(x1) = hij(x1)

hijl(x1) hij1(x1) = hij(x1)

hij2(x1) =
hij(x1)+hij(x1)

2

TABLE IV
LOWER AND UPPER MEMBERSHIP FUNCTIONS hijl(x1) AND hijl(x1), l =

1, 2, 3, FOR SCENARIO 2 IN EXAMPLE 3. THE LOWER AND UPPER

MEMBERSHIP FUNCTIONS hij(x1) AND hij(x1) ARE DEFINED IN

EXAMPLE 1.

τ 2

hijl(x1) hij1(x1) =
hij(x1)+2hij(x1)

3

hij2(x1) =
2hij(x1)+hij(x1)

3
hij3(x1) = hij(x1)

hijl(x1) hij1(x1) = hij(x1)

hij2(x1) =
hij(x1)+2hij(x1)

3

hij3(x1) =
2hij(x1)+hij(x1)

3

It is because that more information is considered by the

stability conditions in Theorem 2 through the local lower

and upper membership functions hijl(x1) and hijl(x1).
Comparing to the stability regions in Fig. 5 to Fig. 7, it can

be observed that Scenario 3 produces a larger stability region

than Scenario 2 while Scenario 2 produces a larger stability

region than Scenario 1 as more information is utilized when

more sub-FOUs are considered.

Example 4: In this example, we consider an inverted pendu-

lum as shown in Fig. 8 subject to parameter uncertainties [39]

as the nonlinear plant to be controlled. The dynamic equation

TABLE V
LOWER AND UPPER MEMBERSHIP FUNCTIONS hijl(x1) AND hijl(x1), l =

1, 2, 3, 4, FOR SCENARIO 3 IN EXAMPLE 3. THE LOWER AND UPPER

MEMBERSHIP FUNCTIONS hij(x1) AND hij(x1) ARE DEFINED IN

EXAMPLE 1.

τ 3

hijl(x1) hij1(x1) =
hij(x1)+3hij(x1)

4

hij2(x1) =
hij(x1)+hij(x1)

2

hij3(x1) =
3hij(x1)+hij(x1)

4
hij4(x1) = hij(x1)

hijl(x1) hij1(x1) = hij(x1)

hij2(x1) =
hij(x1)+3hij(x1)

4

hij3(x1) =
hij(x1)+hij(x1)

2

hij4(x1) =
3hij(x1)+hij(x1)

4
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Fig. 5. Stability regions of scenario 1 (lower and upper membership functions
defined in Table III) given by the stability conditions in Theorem 2 for Case
1 (‘×’, 7 points); Case 2 (‘�’, 16 points); and Case 3 (‘◦’, 41 points) in
Example 3.
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Fig. 6. Stability regions of scenario 2 (lower and upper membership functions
defined in Table IV) given by the stability conditions in Theorem 2 for Case
1 (‘×’, 67 points); Case 2 (‘�’, 89 points); and Case 3 (‘◦’, 121 points) in
Example 3.

for the inverted pendulum is given by,

θ̈(t) =
g sin(θ(t))− ampLθ̇(t)

2 sin(2θ(t))/2− a cos(θ(t))u(t)

4L/3− ampL cos2(θ(t))
(36)

where θ(t) is the angular displacement of the pendulum,

g = 9.8m/s2 is the acceleration due to gravity, mp ∈

[mpmin
mpmax

] = [2 3]kg is the mass of the pendulum,

Mc ∈ [Mmin Mmax] = [8 12]kg is the mass of the

cart, a = 1/(mp + Mc), 2L = 1m is the length of the

pendulum, and u(t) is the force (N ) applied to the cart.

The inverted pendulum is considered working in the operating

domain characterized by x1 = θ(t) ∈
[

− 5π
12 ,

5π
12

]

and

x2 = θ̇(t) ∈
[

−5, 5
]

.

A 4-rule IT2 T-S fuzzy model in the form of (7) is em-

10 11 12 13 14 15 16 17 18 19 20
14

18

22

26

30

34

38

42

46

50
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b

Fig. 7. Stability regions of scenario 3 (lower and upper membership functions
defined in Table V) given by the stability conditions in Theorem 2 for Case
1 (‘×’, 125 points); Case 2 (‘�’, 144 points); and Case 3 (‘◦’, 168 points)
in Example 3.

t

u t

p
m g

c
M g

L

Fig. 8. An inverted pendulum system.

ployed to describe the inverted pendulum subject to parameter

uncertainties with x =
[

x1 x2

]T
=

[

θ(t) θ̇(t)
]T

;

A1 = A2 =

[

0 1

f1min
0

]

and A3 = A4 =

[

0 1

f1max
0

]

;

B1 = B3 =

[

0

f2min

]

, B2 = B4 =

[

0

f2max

]

;

f1min
= 10.0078, f1max

= 18.4800, f2min
= −0.1765 and

f2max
= −0.0261. The lower and upper membership functions

are deifned in Table VI.

A 2-rule IT2 fuzzy controller is employed to stabilize the

inverted pendulum with the lower and upper membership func-

tions chosen as m1(x1) = µ
Ñ1

1

(x1) = m1(x1) = µÑ1
1
(x1) =

e
−x2

1
0.35 , m2(x1) = µ

Ñ2
1

(x1) = m2(x1) = µÑ2
1
(x1) = 1 −

µÑ1
1
(x1) and β

k
= βk = 1

2 .

In this example, we consider only one sub-FOU, i.e. τ = 0.

For simplicity, the subscript l is dropped for all variables. The

number of equal-size regions for x1 is arbitrarily chosen to

be 500. The lower and upper membership functions hij(x1)

and hij(x1) are defined by choosing v11k(x1) = 1−
x1−x1,k

x1,k−x1,k
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TABLE VI
LOWER AND UPPER MEMBERSHIP FUNCTIONS OF THE IT2 T-S FUZZY

MODEL OF INVERTED PENDULUM IN EXAMPLE 4.

Lower membership functions Upper membership functions

µ
M̃1

1
(x1) = 1− e−

x2
1

1.2 µ
M̃1

1
(x1) = 1− 0.23e−

x2
1

0.25

µ
M̃2

1
(x1) = 1− e−

x2
1

1.2 µ
M̃2

1
(x1) = 1− 0.23e−

x2
1

0.25

µ
M̃3

1
(x1) = 0.23e−

x2
1

0.25 µ
M̃3

1
(x1) = e−

x2
1

1.2

µ
M̃4

1
(x1) = 0.23e−

x2
1

0.25 µ
M̃4

1
(x1) = e−

x2
1

1.2

µ
M̃1

2
(x1) = 0.5e−

x2
1

0.25 µ
M̃1

2
(x1) = e−

x2
1

1.5

µ
M̃2

2
(x1) = 1− e−

x2
1

1.5 µ
M̃2

2
(x1) = 1− 0.5e−

x2
1

0.25

µ
M̃3

2
(x1) = 0.5e−

x2
1

0.25 µ
M̃3

2
(x1) = e−

x2
1

1.5

µ
M̃4

2
(x1) = 1− e−

x2
1

1.5 µ
M̃4

2
(x1) = 1− 0.5e−

x2
1

0.25

and v12k(x1) = 1 − v11k(x1) where x1,k = 10π/12
500 (k − 251)

and x1,k = 10π/12
500 (k − 250), k = 1, 2, · · · , 500. The

constant scalars are chosen as δij1k = wi(x1,k)mj(x1,k),

δij2k = wi(x1,k)mj(x1,k), δij1k = wi(x1,k)mj(x1,k),

δij2k = wi(x1,k)mj(x1,k) for all k.

Theorem 2 with l = 1 is employed to determine

the system stability and synthesize the feedback

gains. A feasible solution was found as X =
[

0.0983 −0.1870

−0.1870 0.4989

]

, G1 =
[

1432.8239 653.0531
]

and G2 =
[

1845.9736 849.8562
]

. The IT2 fuzzy

controller is employed to stabilize the inverted pendulum with

mp = 2kg and Mc = 8kg, and mp = 3kg and Mc = 12kg,

respectively. The phase portrait of the system states is shown

in Fig. 9, which shows that the inverted pendulum can be

stabilized subject to different values of mp and Mc, and

different initial conditions.

For comparison purposes, considering the simulation result

in [39], it can be seen that the IT2 fuzzy controller can

also stabilize the inverted pendulum. However, the number of

rule of the IT2 fuzzy controller is required to be 4 because

of the PDC design concept. In this example, the IT2 T-

S fuzzy model and fuzzy controller do not share the same

premise membership functions and the same number of rules.

Consequently, the stability conditions proposed in [39] cannot

be applied in this example. Furthermore, because the number

of rules is 2 and simpler membership functions are used, the

implementation complexity of the IT2 fuzzy controller are

reduced.

Example 5: An experiment was done to verify the analysis

result. A bolt-tightening tool (DSM BL 57/140 MDW), which

is shown in Fig. 10, is considered as the plant. In real

operation, the bolt-tightening tool is mounted on a robot arm

(Fanuc M6iB) for bolt tightening as shown in Fig. 11. An

integrated encoder and a torque sensor are installed to provide

the information of angular position (360 degree per revolution)

and torque. It accepts voltage in the range of −10V to 10V
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Fig. 9. Phase portrait of the system states of the inverted pendulum subject
to various initial conditions. Solid lines: mp = 2kg and Mc = 8kg. Dotted
lines: mp = 3kg and Mc = 12kg.

as input.

An IT2 fuzzy model is constructed to describe the system

dynamics with the Matlab system identification toolbox. Local

state-space model was obtained using the input-output data,

which are the input voltage, and the output angle position

and angular velocity. Three local state-space models operating

at output angle at around −90◦, 0 and 90◦ were obtained

under no load condition. IT2 fuzzy sets are employed to

combine the 3 local state-space models to form an IT2 fuzzy

model to facilitate the design of IT2 fuzzy controller. The

IT2 fuzzy model was obtained in the form of (7) with

x =
[

x1 x2

]T
, where x1 is the angle position in de-

grees and x2 is the angular velocity in degrees per second,

A1 =

[

0.0009 0.0034

0.0108 −0.0264

]

, A2 =

[

0.0008 0.0042

0.098 −0.0161

]

,

A3 =

[

0.0008 0.0050

0.088 −0.0057

]

, B1 =

[

0.0014

0.0013

]

, B2 =

[

0.0014

0.0016

]

, B3 =

[

0.0014

0.0018

]

. The lower and upper mem-

bership functions are chosen as w1(x1) = µ
M̃1

1

(x1) =

0.8 − 0.8

1+e−
x1+90

15

, w3(x1) = µ
M̃3

1

(x1) = 0.8

1+e−
x1−90

15

,

w1(x1) = µM̃1
1
(x1) = 1− 1

1+e−
x1+90

15

, w3(x1) = µM̃3
1
(x1) =

1

1+e−
x1−90

15

, w2(x1) = µ
M̃2

1

(x1) = 1 − µM̃1
1
(x1) − µM̃3

1
(x1)

and w2(x1) = µM̃2
1
(x1) = 1− µ

M̃1
1

(x1)− µ
M̃3

1

(x1).

A 2-rule IT2 fuzzy controller is employed to stabilize

the angle position, where the lower and upper membership

functions are chosen as m1(x1) = µ
Ñ1

1

(x1) = m1(x1) =

µÑ1
1
(x1) = e

−x2
1

4000 , m2(x1) = µ
Ñ2

1

(x1) = m2(x1) =

µÑ2
1
(x1) = 1− µÑ1

1
(x1) and β

k
= βk = 1

2 .

Similar to the previous example, we consider only one

sub-FOU, i.e. τ = 0 and thus the subscript l is dropped

for all variables. The number of equal-size regions for x1 is

arbitrarily chosen to be 500. The lower and upper member-
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ship functions hij(x1) and hij(x1) are defined by choosing

v11k(x1) = 1 −
x1−x1,k

x1,k−x1,k
and v12k(x1) = 1 − v11k(x1)

where x1,k = 10π/12
500 (k − 251) and x1,k = 10π/12

500 (k −

250), k = 1, 2, · · · , 500. The constant scalars are chosen

as δij1k = wi(x1,k)mj(x1,k), δij2k = wi(x1,k)mj(x1,k),

δij1k = wi(x1,k)mj(x1,k), δij2k = wi(x1,k)mj(x1,k) for all

k.

A feasible solution to Theorem 2 with l = 1

was found as X =

[

0.3917 −1.3310

−1.3310 4.6466

]

× 108,

G1 =
[

−15.5289 −4.6345
]

and G2 =
[

−3.9267 −1.1719
]

.

The IT2 fuzzy controller was implemented with a pro-

grammable logic controller (PLC) which integrates MATLAB

Simulink in real time in a Beckhoff TwinCAT 3 system. The

states responses and control signals of the IT2 FMB control

system subject to initial conditions of x(0) =
[

−180 0
]T

,
[

−75 0
]T

,
[

75 0
]T

and
[

180 0
]T

are shown in

Fig. 12. The system states and control signals were sampled

at 0.05 seconds and filtered by a 10th order lower pass filter at

the signal collection points. It can be seen from the figures that

the IT2 fuzzy controller is able to stabilize the angle position,

however, with a small steady error, which is due to the friction

of the gearbox.

Spring mounted nut

runner (10cm spring)

Torgue sensor

Angle sensor

Servo drive connector

Current sensor

Temperature sensor

Fig. 10. A bolt-tightening tool.

Fig. 11. A bolt-tightening tool mounted on a robot arm.

V. CONCLUSION

The stability of IT2 FMB control systems subject to param-

eter uncertainties has been investigated. Under the imperfect

premise matching, the IT2 fuzzy controller can choose freely

the premise membership functions and the number of rules
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Fig. 12. State responses and control signals of the IT2 FMB controlled bolt-

tightening tool subject to initial conditions of x(0) = [−180 0]T (dotted

line), x(0) = [−75 0]T (dotted lines), x(0) = [75 0]T (solid lines) and

x(0) = [180 0]T (dash-dot lines).

different from the IT2 T-S fuzzy model, enhancing the design

flexibility and reducing the implementation complexity. To

facilitate the stability analysis, a favorable form of lower and

upper membership functions has been proposed and the in-

formation of sub-FOUs has been considered. The information

of membership functions has been brought to the LMI-based

stability conditions resulting in more relaxed stability analysis

result. Simulation and experimental results have been given to

illustrate the merit of the proposed approach. In future work,

we will consider the problems of output-feedback control

and sampled-data control for the nonlinear systems subject

to parameter uncertainties in the frame of this paper.

APPENDIX

PROOF OF THEOREM 2

We consider the following quadratic Lyapunov function

candidate to investigate the stability of the IT2 FMB control

systems (24) expressed in the form of (29).

V = xTPx, (37)

where 0 < P = PT ∈ ℜn×n.

The main objective is to develop a condition guaranteeing

that V > 0 and V̇ < 0 for all x 6= 0. According to the

Lyapunov stability theorem, by satisfying V > 0 and V̇ < 0
for all x 6= 0, the IT2 FMB control system is guaranteed to be

asymptotically stable, implying that x → 0 as time t → ∞.

Denote z = X−1x and X = P−1. Define the feedback

gains Gj = NjX
−1 where Nj ∈ ℜm×n, j = 1, 2, · · · , c, are
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matrices to be determined. From (29) and (37), we have,

V̇ = ẋTPx+ xTPẋ

=

p
∑

i=1

c
∑

j=1

h̃ijx
T
(

(Ai +BiGj)
TP+P(Ai +BiGj)

)

x

=

p
∑

i=1

c
∑

j=1

h̃ijx
TPP−1

(

(Ai +BiGj)
TP

+P(Ai +BiGj)
)

P−1Px

=

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl
(

γ
ijl
hijl + γijlhijl

)

zTQijz, (38)

where Qij = AiX+XAT
i +BiNj +NT

j B
T
i .

Recalling the property that 0 ≤ hijl ≤ hijl ≤ 1, 0 ≤

γ
ijl

≤ 1, 0 ≤ γijl ≤ 1 and γ
ijl

+ γijl = 1 for all i, j and

l, the information of the sub-FOUs is brought to the stability

analysis with the introduction of some slack matrices through

the following inequalities using the S-procedure [14].

(

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl(γijl
hijl + γijlhijl)− 1

)

M = 0, (39)

−

p
∑

i=1

c
∑

j=1

(1− γ
ijl
)(hijl − hijl)Wijl ≥ 0, (40)

where M = MT ∈ ℜn×n are arbitrary matrices and 0 ≤

Wijl = WT
ijl ∈ ℜn×n.

From (30), (38), (39) and (40), we have

V̇ =

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl(γijl
hijl + γijlhijl)z

TQijz

≤

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl(γijl
hijl + (1− γ

ijl
)hijl)z

TQijz

−

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl(1− γ
ijl
)(hijl − hijl)z

TWijlz

+
(

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl(γijl
hijl + (1− γ

ijl
)hijl)− 1

)

zTMz

= zT
(

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijl(hijlQij − (hijl

− hijl)Wijl + hijlM)−M
)

z

+

p
∑

i=1

c
∑

j=1

τ+1
∑

l=1

ξijlγijl
(hijl − hijl)z

T (Qij +Wijl +M)z.

(41)

Referring to (41), V̇ < 0 for x 6= 0 is satisfied

by
∑p

i=1

∑c
j=1

∑τ+1
l=1 ξijl(x)(hijlQij − (hijl − hijl)Wijl +

hijlM) − M < 0 and Qij + Wijl + M > 0 (because

of hijl − hijl ≤ 0) for all i, j and l. Recalling that

only one ξijl = 1 for each fixed value of ij at any time

instant such that
∑τ+1

l=1 ξijl = 1, the first set of inequalities

is satisfied by
∑p

i=1

∑c
j=1(hijlQij − (hijl − hijl)Wijl +

hijlM) − M < 0 for all i, j and l. Expressing hijl

and hijl with (25) and (26), respectively, and recalling that
∑q

k=1

∑2
i1=1

∑2
i2=1 · · ·

∑2
in=1

∏n
r=1 vrirkl = 1 for all l and

vrirkl ≥ 0 for all r, ir, k and l, the first set of inequalities

will be satisfied if the following inequalities hold.

q
∑

k=1

2
∑

i1=1

2
∑

i2=1

· · ·

2
∑

in=1

n
∏

r=1

vrirkl
(

p
∑

i=1

c
∑

j=1

(δiji1i2···inklQij

− (δiji1i2···inkl − δiji1i2···inkl)Wijl + δiji1i2···inklM)

−M
)

< 0, ∀ i1, i2, · · · , in, k, l (42)

Consequently,
∑p

i=1

∑c
j=1(hijlQij − (hijl −

hijl)Wijl + hijlM) − M < 0 can be guaranteed

by
∑p

i=1

∑c
j=1(δiji1i2···inklQij − (δiji1i2···inkl −

δiji1i2···inkl)Wijl + δiji1i2···inklM)−M < 0.

The LMI-based stability conditions above are summarized

in Theorem 2. By satisfying those LMIs, the IT2 FMB control

system (24) is guaranteed to be asymptotically stable.

Referring to (42), the advantages of representing the IT2

FMB control system (24) in the form of (29) can be seen.

The membership functions h̃ij are reconstructed by the lin-

ear combination of the local lower and upper membership

functions hijl and hijl. Consequently, as seen from (41), the

stability of the IT2 FMB control system is determined by the

local lower and upper membership functions hijl and hijl.

By expressing hijl and hijl in the form of (25) and (26),

respectively, they are characterized by the constant scalars

δiji1i2···inkl and δiji1i2···inkl. Furthermore, as the cross terms
∏n

r=1 vrirkl are independent of i and j, they can be extracted

as shown in (42) to facilitate the stability analysis. With

these favourable properties as previously stated in Remark

6, we only need to check
∑p

i=1

∑c
j=1(δiji1i2···inklQijl −

(δiji1i2···inkl − δiji1i2···inkl)Wijl + δiji1i2···inklM)−M < 0

at some discrete points (δiji1i2···inkl and δiji1i2···inkl) instead

of every single point of the local lower and upper member-

ship functions hijl and hijl to guarantee the holding of the

inequality (42).
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