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A b s t r a c C A n  experimental approach to achieve robust 
performance of direct-drive robot motion control i s  pre- 
sented in this paper. I t  consists of: (i) decoupling the robot 
dynamics via feedback linearisation; (ii) frequency domain 
identification o f  the decoupled dynamics; (iir) compensa- 
tion of these decoupled dynamics using feedback control- 
lers designed via p-synthesis. The designed controllers en- 
sure robust performance, i.e., guaranteed accuracy o f  ro- 
bot motions despite uncertainty in i t s  dynamics and dis- 
turbances affecting the robot operation. Theoretical as- 
pects of the control design are formulated. I t s  practical 
implementation on a direct-drive robotic arm is demon- 
strated in detail. Experimental investigation confirms the 
quality o f  the design: specifications on performance and 
robustness are practically realized. 

Index Termy-Robotics, Application, Disturbance mod- 
eling, Robust control, )I-synthesis. 

1. INTRODUCTION 

aintaining a desired performance o f  robot motion control 
in the presence o f  uncertainties in robot dynamics and 

disturbances i s  a problem that has been attracting many re- 
searchers in the recent years. Robust control strategies are 
introduced to stabilize robot motions when confronted with 
uncertainty and disturbance conditions. Together with stabili- 
zation, more advanced robust strategies should ensure per- 
formance that i s  robust against uncertainties and disturbances. 

There are two kinds of uncertainties. The first ones are pa- 
rametric, and they arise if physical values o f  robot inertial 
and/or friction parameters are not known exactly. The second 
ones are unmodelled dynamic effects, e.g. flexibilities. Such 
effects are neglected during modeling, although they might be 
encountered in the real physical system. As examples of dis- 
turbances, one may think o f  a cogging force and quantization 
noise. The former one is common to direct-drive robots, while 
the latter one arises if incremental encoders are used as posi- 
tion sensors. 

A survey of advanced robot control methods i s  available in 
[I]. Control methods, such as adaptive and sliding-mode con- 
trol can improve system performance in the presence ofuncer- 
tainty and disturbance conditions. The non-linearity o f  these 
methods, however, does not facilitate a quantitative prediction 
of system performance for a given robustness level. This i s  a 
limiting factor for their widespread application in practice, 
where it i s  often very important to know in advance a worst- 
case motion accuracy for a given bandwidth o f  reference tra- 
jectories. 

Stability robustness, disturbance rejection, and controlled 
transient response can be jointly and directly imposed using 

M.' ' .  

feedback schemes based on H, control theory [2 ,3] .  These 
schemes enable quantitative prediction of motion perform- 
ance, given bounds on modeling uncertainty and disturbances. 
Moreover, for available knowledge on the system dynamics, 
parasitic effects, and disturbances, motion performance can be 
optimized. These are the reasons that make H, feedback con- 
trollers appealing solutions for practical problems and moti- 
vate their application i n  robotics. 

In  this paper we show how a functional combination ofnon- 
linear control and p-synthesis can realize robust robot per- 
formance o f  high quality. We suggest control design in three 
steps: (i) dynamic compensation o f  nonlinear couplings be- 
tween the robot joints via feedback linearisation [4], (if) fre- 
quency-domain identification of remaining (flexible) dynam- 
ics, (iii) design of feedback controllers using p-synthesis for 
the remaining dynamics to meet perfomiance and robustness 
specifications. These three design steps are not particularly 
novel as long as robust control of linear motion systems i s  
concerned. However, to the best of our knowledge they are not 
common in robust robot control. Especially, identification o f  
the dynamics that remains after feedback linearisation and the 
feedback design dedicated to these identified dynamics are 
hardly encountered in the literature on robust robot control. 
Usually, feedback design in robotics assumes simplified plant 
models. High-order dynamics (flexibilities) are regarded as 
disturbances. In our opinion, such reasoning is conservative, as 
closer knowledge o f  the uncompensated dynamics facilitates 
design of appropriate compensation. 

Theoretical aspects of the control design wi l l  be formulated 
for the general case of a robotic manipulator with ti degrees o f  
freedom. Practical demonstration o f  the design wi l l  be done 
for a direct-drive robot with three rotational degrees of.free- 
dom, implemented as waist, shoulder, and elbow. As similar 
kinematic structure is often met in industry, results obtained 
for the case study should be relevant for industrial cases. This 
paper is an extension of our previous result [SI, where feed- 
back i s  designed via loop-shaping and F!- optimization. Here 
we formulate a systematic control design that preserves advan- 
tages of [SI and leads to robust robot performance. 

The paper i s  organized as follows. In the next section we 
wi l l  formulate the control design. Section 111 wil l  describe a 
direct-drive robotic a rm used for experimental testing. Practi- 
cal control design for this robot wi l l  be explained in Section 
IV. Experimental assessments of the design wi l l  be done in 
Section V. Conclusions wi l l  be given at the end. 

11. CONTROL DESIGN FOR ROBUST PERFORMANCE 

Le t  us represent the rigid-body dynamics of a robot manipu- 
lator with n joints using Euler-Lagrange's equations o f  motion 
[61: 
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M(q(tj)q(r)+h(q(t),il(r))=r(tj, 0 )  
where T is the ( n x l )  vector of jo int  torques, M is the (nxn) 
inertia matrix, q ,  q and q are the (nxl) vectors of joint 
motions, speeds and accelerations, respectively, and h is the 
(nxlj vector of Coriolis/centripetal, gravity and friction ef- 
fects. Steering the joint motions along the reference trajectory 
q,(l) i s  the objective of the motion control problem. It can 
be solved using the model ( I )  as follows: 

M(q(oju(o  + h(q(tf,il(oj = T A O .  (2) 

where sc denotes the total control law and U is the feedback 
control action. The control (2) realizes feedback linearisation 
of the robot dynamics and reduces the motion control prob- 
lem to the linear case: 

q(tj = ~ ( r )  . (3) 

As we have already discussed in  [ 5 ] ,  the reduced control 
problem (3) i s  valid only i f the law (2) perfectly matches the 
real robot dynamics. In practice, this rarely happens, as no 
robot is perfect i n  its implementation and, hence, the rigid- 
body model used in (2) i s  hardly an accurate description of 
the real robot dynamics. Instead of (3) ,  we should rather con- 
sider control o f  a more general control plant P,  defined in 
the frequency domain: 

q(s j=p(s)u ,p is)=[  5.1(.4 "' ... s,m : 1. (4) 

p,j.l(s) '.' e&) 
The transfer functions on the main diagonal o f  P represent 
dynamics between the feedback control action at each robot 
joint and the angular displacement o f  that joint. The cross- 
terms represent remaining couplings between the joints after 
imperfect compensation of the real robot dynamics. If any of 
these cross-terms i s  not negligible, when compared with the 
transfer functions on the main diagonal, we can conclude that 
the dynamic model employed in the feedback linearisation is 
not sufficiently accurate. The inclusion of the cross-terms 
does not principally l imit the design procedure, although it 
makes it more involved. In this paper, for the sake of clarity, 
we assume a situation: the plant P has just a diagonal struc- 
ture. This implies total decoupling of the robot dynamics via 
(2) and simplification of the feedback control design to n 
single-input, single-output cases. When dealing with practical 
problems, the condition o f  total dynamic decoupling (diago- 
nal P )  must be verified before proceeding to the feedback 
control design. 

Each feedback design i s  focused on a particular transfer 
function <,,(sj ( i = l ,  ..., nj, representing a plant to he con- 

trolled. To abbreviate notation, the indices in the subscript 
will be replaced with a singe one. Thus, the plant for the i-th 
joint wi l l  be denoted with e($) ,  It is not a mere double inte- 
grator, as by virtue o f  (3) one would expect, but a higher or- 
der dynamical system with resonance and anti-resonance 
frequencies that emerge because o f  flexibility. Dynamics o f  
the plant also changes for various operating conditions, as 
resonance frequencies and their relative damping vary with 
robot configuration. A plant perturbation model can represent 

uncertainty in the dynamics: 

P , O ( s ) +  F',"(s)(I+A,(s)) ( 5 )  

Here, P,"(s) is the nominal model o f  the plant, and A,($) i s  
the multiplicative uncertainty model representing difference 
between 4" and the real plant dynamics. The uncertainty 
model can he expanded as follows: 

A i ( $ )  =W,6(s)Si(sj. ( 6 )  

The stable parametric weighting function W,6 should satisfy: 

IW,6(jw)I 2 IA,(jwjl V w t  R+, (7) 

to have the normalized uncertainty ISi(jw)l S I , V a t  R'. 

Here, w denotes angular frequency defined on the continuous 
domain of nonnegative real numbers R+={x I x Z 0) .  

The nominal model o f  the i-th plant can be determined by 
a spectrum analysis technique. Measurements should be done 
under closed-loop conditions, since the plant might not be 
asymptotically stable. Several frequency response functions 
(FRF) G:(jw) are measured for the i-th joint, assuming 

feedback control action ui (i-th element of U )  as the input 
variable and the joint displacement q,  as the output. Denote 

the total number o f  measurements with N, , i.e., k =I , . .  ., N, . 
Each G:(jw) .is measured while the i-thjoint i s  moving with 

a low constant speed G,,, , while the remaining joints take 

some static posture, different for every k . A low constant 
speed i s  preferable to reduce the influence o f  friction effects 
on the quality o f  identification. This motion is performed 
within the joint range. A full revolution is made if the range 
i s  not limited. The direction o f  movement is changed after 
reaching the joint l imi t  or after the full revolution. Denote 
with q:(t) an (nxl) vector ofset-points, used when identify- 

ing G:( jw) .  Elements o f  q f ( 1 )  should satisfy: q:,,(f)  = q,,, , 

and qf,, ( r )  s 0 if i # j . There i s  no formal clue how to 

choose N i ,  but, by rule o f  thumb, for a given joint one 
should adopt distant postures in the remaining joints, such as 
to span their ranges of motion. The specified set-points and 
the frequency response measurement can he achieved by ap- 
plying the control law (2) with: 

where K, = d q [ k p l  ,..., k , . ] .  K, =drag[kd,,  ,..., k,,,,] are 

matrices o f  positive position and velocity gains, respectively, 
and the (nxl) vector n contains a random excitation as i-th 
element and zeros elsewhere. Identification is more reliable if 
the influence of noise (e.g., quantization noise) that corrupts 
the measured motion coordinates i s  reduced. To reduce influ- 
ence o f  the noise, M and h in (2) are computed along the 
reference joint motions and speeds. The reiability o f  identifi- 
cation can be enhanced if the i-th element o f  n i s  taken as 
the input variable, instead of the feedback U,. Then, the sen- 
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sitivity FRF S r ( j w )  = (1 +(jwk,,,  + kp , , )Gf ( jw)) - ' )  is 

measured first, and the plant's FRF is determined by 
G f ( j ~ ) = ( I i S f ( , j w ) - I ) / ( j w k ~ , ~  + k , , z ) .  Due to measure- 
ments in closed-loop, reliable results for the plant's FRF are 
only obtained beyond the bandwidth of the closed-loop sys- 
tem. A low bandwidth is thus preferable. 

Once a set of frequency response measurements r, = 

{G!(;w),,,,,GY ( j w ) }  has been collected, the nominal FRF 

GP(jw) can be found. We have at least two possibilities: 

I N .  
GP(jw) = - CG," ( jw )  

N ,  h=I 

For each w ,  the solution (sa) minimizes the distance in the 
complex plain between the nominal response and all the 
members of thk set ri . The solution (9b) is an average of all 
measured FRF's. A choice between the solutions (sa) and 
(9b) can be case dependent. Our experience favors the latter 
one, as it usually gives smoother magnitude and phase fre- 
quency response plots. Feedback design using the psynthesis 
requires a parametric description of the nominal plant model. 
It can be calculated by various techniques of fitting the para- 
metric transfer function p?(jw) into the nbminal frequency 

response data GP(jw). Our choice is a least-square tit using 
an output error model structure [7]. The fit may capture ef- 
fects peculiar to the plant, e.g. phase lag caused by time- 
delay. 

The next step is to construct a parametric weighting func- 
tion W,6 that characterizes a level of uncertainty between the 
nominal model and the real dynamics. For that purpose, we 
can calculate frequency domain data that bound the uncer- 
tainty in the plant dynamics: 

.- 

Performance objectives can be specified via frequency de- 
pendent weighting functions w," and w y .  With W: a de- 
sired low-frequency behavior in the closed loop can be en- 
forced, such as a minimum bandwidth requirement and inte- 
gral control. Attenuation of resonances at low frequencies 
can be enforced, as well. These are defined by constraining 
the sensitivity function from above: 

IS, (;U)[ 5 1 lIW,"(jW)l. vwc R+. (I 1) 

enables enforcing the high-frequency roll-off, which is 
important for robustness against high-frequency resonances 
and the measurement noise. Bounding the input sensitivity 
induces the desired effects: 

IU) (jw)l s I ilwy ( jw ) l ,  v w t  R*. (12) 

According to the small gain theorem [2], the control of the 
perturbed plant ( 5 )  is robustly stable ifthe following holds: 

I r , ( jW) l ,<  I/lw;(jw)I, V'w€IR+. (13) 

Simultaneous specification of above closed-loop control ob- 
jectives can be done using the block-diagram shown in 
Fig. I .  In this figure, the channel from q to p is the uncerta- 
inty channel with the scalar scaled complex uncertainty 6 , .  
The channel from w to is and zu should impose the de- 
sired performance specifications. If we adopt q and w as 
,the input variables, and p .  z s ,  and iu as the output vari- 
ables, then from Fig. I we may determine the interconnecting 
transfer matrix H, : 

Any stable weighting function, preferable of low order, can 
be adopted  for W,6, if its magnitude closely bounds the per- 
turbations IA, I from above. 

The feedback controller in each joint should realize accu- 
rate tracking of a reference motion, robustly under the con- 
sidered level of model uncertainty, parasitic effects not cov- 
ered with the uncertainty model, and disturbances. Mathe- 
matically, these objectives can be represented as weighted 
closed-loop transfer functions that have to be made small 
through a feedback. Standard transfer functions can be em- 
ployed (with C, a feedback controller for the i-thjoint): 
0 Open-loop gain Li = C C , ,  
P Sensitivity function S ,  = I i ( l+  L, , 
o Input sensitivity function U, = C,S, , 
o Complementary sensitivity function T, = 1 - S, . 

-W:T, .-W,'T, 

w,"s, w,"s, 
.w,"u, -wyu, 

Fig. I. Set-up for servo design using p-synthesis 

According to K'-analysis theory [ 2 ] ,  to have the performance 
objectives (1 I) and (12) robustly realized it is sufficient ifthe 
structured singular value ofthe transfer matrix H, satisfies 

 SUP^^, (HO < 1 (15) 
0 

for the extended plant perturbation structure 

where 6,, denotes a complex uncertainty of dimension 1x2. 
The objective of psynthesis is to construct a compensator 
C, that stabilizes the feedback loop shown in Fig. 1 and sat- 
isfies (15). If such a compensator exists, we say that the ro- 
bust performance in the given robot joint is realized. 
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111. EXPERIMENTAL SET-UP 

T h e  robot shown in Fig. 2, i s  an experimental facility for 
the research in motion control [5,8-IO]. I t s  three rotational 
joints (RRR kinematics) are actuated by  gearless brushless 
DC direct-drive motors. The actuators arc Dynaserv DM- 
series servos with nominal torques o f  60, 30, and 15Nm, 
respectively. Each actuator has integrated incremental optical 
encoder having resolution o f  rad. The servos are driven 
by power amplifiers with built in current controllers. The 
joints have infinite range o f  motions, since the power and the 
sensor signals are transferred via sliprings. Both encoders and 
amplifiers are connected to a PC-based control system. This 
system consists o f  the MultiQ I iO board from Quanser Con- 
sulting (8x13 bits ADC, 8x12 bits DAC, 8 digital 1/0, 6 en- 
coder inputs, and 3 hardware timers), combined with a real- 
time controller for MatlabiSimulink (Wincon). Such system 
facilitates control design i n  Simulink and their real-time im- 
plementation. Typically, the controllers run at 1000 Hz sam- 
pling frequency. Due to insufficient st i f fness in mounting the 
robot base to the floor, a resonance at 28 Hz i s  present at the 
base. There is also a time-delay o f  two sample times between 
the control input and thejoint angular response [ 5 ] .  Quantiza- 
tion noise from the incremental encoders is present, as well. 
These effects are problems often met in practice. Effect of the 
time-delay can be captured by the modeling part of the pro- 
cedure presented in this paper. The remaining problems can 
be tackled by the feedback control design. 

\METERS OF .R/ 
THE RRR ROBOT 

0 I 9, I CaCI=C.560 

3 0 PiC,4.415 9? C2P2=0.090 

Fig. 2. The RRR robot 

Closed-form models o f  the robot kinematics and dynamics 
are available in [9]. Their kinematic parameters, according to 
the well-known DH (Denavits-Hartenberg's) notation [I I], 
are presented in Table 1. The inertial and friction parameters 
are estimated with sufficient accuracy in [ IO].  Al l  these allow 
a real-time implementation o f  model-based control schemes. 

IV. CONTROL DESIGN FOR THE RRR ROBOT 

The kinematic model of the RRR robot computes the refe- 
rence joint motions given a trajectory of the robot-tip. The 
dynamic model is used in the control law (2). Stabilisation 
and desired performance o f  the robot motions should be real- 
ized by feedback controllers designed via p-synthesis. Here 
we present the feedback design for.the 1" robot joint only. 
Similar designs are applied to the otherjoints. 

First we explain how the nominal model P: was determ- 
ined. Fig. 3 presents FRF's measured for N ,  = 16 static posi- 

tions in the joints 2 and 3: [O 01, [0 51/21, ..., [ ~ J I  23t] . 
These positions span a complete revolution in both joints. I t  

i s  obvious that,the expected behavior o f  a double integrator, 
see (3), holds only in the low-frequency region (below 
20 Hz), while the real dynamics is much more involved. It i s  
also apparent that up to 4 Hz, the slope o f  the magnitudes i s  
less steep than -2. This frequency range i s  within bandwidth 
o f  the closed-loop system established via (8). As pointed out 
in Section I I ,  the spectral components o f  the measurements 
within the closed-loop bandwidth are not reliable. However, 
at low frequencies the dynamics i s  rigid and i s  easily deter- 
mined from the slope of the spectral components beyond the 
bandwidth. Additional peculiar effects are the resonance 
around 28 Hz, caused by vibrations at the robot base, and 
more profound resonances at higher frequencies. It i s  also 
clear that at low frequencies the phase does not remain at 
-180°, but has a lag growing with increasing frequency. 
The phase lag i s  the consequence o f  the time-delay. The 
nominal FRF GP(jw), calculated with (9b), i s  presented in 
Fig. 3 by the bold line. It is repeated in Fig. 4, together with 
Bode plots o f  the parametric tit P:(jw) determined using 

the output error model structure with a least-square criterion 
[7]. The discrepancy between the unreliable data below 4 Hz 
and the tit is obvious. In addition to determining Py , FRF's 
corresponding to the cross-couplings between joint I and the 
remaining joints were measured. At each frequency within 
the range ofr ig id dynamics, the amplitude o f  4 " ( j w )  was at 

least two orders o f  magnitude higher than the amplitude o f  
any o f  the cross couplings. This justifies independent feed- 
back control design for eachjoint o f  the RRR robot. 

B -50 
d 
.- i! -100 

2 -150 
c 
s. 

1 ou lo' Frqu~lcy[Hz]  

Fig. 3. Experimental FRF's G:,....G:' (thin) and the nomi- 

nal FRF GP (bolded) 

2 
loo 10' Frequency[Hz] 10 

Fig. 4. Bode plots of the nominal data G;' (thick) and of the 

parametric fit P: (thin) 

The thin lines in Fig. 5 present relative differences in mag- 
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nitude between each G:,...,G:6 and 4'. B y  virtue o f  (IO), 
at each w the maximum perturbation from the nominal plant 
model is represented by A , .  It is shown in Fig. 5 with the 
bold line. The dotted line in the same figure represents the 

magnitude o f  the parametric weighting function W : ,  in ac- 
cordance with (7). As already noted, the FRF's o f  the meas- 
ured data below 4 Hz are inaccurate, and hence PVf does not 
bound the uncertainty in the lower frequency range. Fig. 6 
shows the performance weightings W," and W," .The former 
one i s  chosen such that integral control is achieved, together 
with as high as possible reduction o f  the position error at low 
frequencies. Furthermore, it should enforce attenuation of the 
vibrations at 28 Hz. The latter one should enforce the high- 
frequency roll-off. 

1 oo 

Fig. 5 .  Magnitude plots o f  the weighting function W: , o f  

relative differences between PI" and G: ,..., G:' , and enve- 

lope of all differences A ,  

10' lo2 
Frequency [Hz] 

1 oo 

Fig. 6. Magnitude plots o f  the performance weighting func- 
tions W," and W;' 

Finally, a feedback controller was designed using p- 
synthesis that employs iterative scaling o f  the Znd order (D- 
scaling [2]) and L optimization. Five DK iterations were 
necessary to determine C, ensuring robust performance 

specified by W," and W y  in Fig. 6, for the ran, ne o f  uncer- 

tainty given in Fig. 5 .  The Bode plots o f  the resulting C, are 
shown in Fig. 7. The controller introduces integral action at 
low frequencies, and deals with various resonance frequen- 
cies over a broad frequency range. A plot o f  the upper bound 
o f  the achieved structured singular value p,,, i s  given in 

Fig. 8. It is below 1, which implies a satisfactory design. 

V. ASSESSMENT OF THE CONTROL DESIGN 

Let us first verify that the feedback controller designed in the 
previous section guarantees robust stability and robust perfor- 

mance. Fig. 9 shows magnitude plots of the complementary 
sensitivity functions o f  the closed-loop system with the com- 
pensator C, , calculated for the nominal plant model P; and 

for all G:,. . . ,G:6. Since all the plots satisfy the condition 
(13), it i s  confirmed that the system remains stable for all 
postures. - g 110 

.LI a .- B so .. 
2 -- 100 

B o  
I 

c a 
-100 

1 oo O' Frequency [Hz] O2 

Fig. 7. Bode plots o f  the feedback controller C, 

Fig. 8. Upper bound o f  the structured singular value 
forthe 1"joint 

1 o' 1 o2 

Fig. 9. Magnitude plots o f  the nominal and o f  the perturbed 

complementary sensitivity functions are below 1 I W,6 

In Fig. 10 we show plots o f  the sensitivity functions (top) 
and o f  the input sensitivity functions (bottom), calculated for 
all 16 positions and for the nominal model. As all the plots 
are bounded with the magnitudes of 1 I W," , respectively, 

11 W y  , we conclude that the performance specifications are 

robustly satisfied, i.e., the conditions (I I )  and (12) are satis- 
fied for all postures. Results similar to those presented in 
Figs. 8-10 also hold for the other two joints o f  the RRR ro- 
bot. 
To experimentally verify robust performance o f  the robot, the 
reference motion task given in Fig. I I was considered. It 
required all the joints to be displaced for n radians in I [SI, 
with zero initiallterminal speed and acceleration. Such mo- 
tion required the ful l  authority o f  the drives, and it was ex- 
perimentally realized using the designed controllers. 

The achieved position errors are shown in Fig. 12 with 
black lines. For comparison, the errors obtained with the 

I I  
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best-tuned conventional PD feedback controllers [SI are de- 
picted in the same figure with gray lines. With the robust 
feedback, the errors in joints I and 2 remained within the 
range [-10~3,10~3] radians, with PD they were within [-2.S.10- 
', 2.7-10~'], respectively, [-1.7.103, 2.8.10-'] radians. In joint 
3, the robust feedback achieved an error twice that of the first 
two joints, while the PD achieved the range 
[-4.1.10~', 7.10"] radians. Obviously, the robust feedbacks 
realized the reference motions more accurately. The obtained 
accuracy is very good for a direct-drive robot. To evaluate if 
the reduction of the tracking error was below the prescribed 
one, we found the ratio between the spectra (determined by 
Fast Fourier transform) of the error el and of the reference 
Y , , ~ .  The ratio is plotted in Fig. 13, together with inverse of 

the weighting function W: . Apparently, the curve corres- 
ponding to the ratio is always below the weighting. Having in 
mind the relation SI = e l  iq,,, , it follows that condition ( I  I )  
was satisfied, i.e., the specified error reduction was realized. 
It appears that robust performance control of the RRR robot 
was realized in the experiment. 

Fig. I O .  Magnitude plots ofthe nominal and ofthe perturbed 
sensitivity functions (top), and ofthe nominal and of the per- 

turbed input sensitivity functions (bottom) 

Fig. 11. Experimental reference motion task 

Finally, we point out that the suggested procedure does not 
provide the best accuracy in realizing the reference motions. 
I n  [5] we present position errors for the motion task defined 
in Fig. I I ,  obtained with feedback designed via loop-shaping 
and H, optimization. These errors are 10-20 % lower than the 
errors shown in Fig. 12, but the feedback design from [5]  
does not ensure robust performance. As robust performance is 
a desirable property in practice, we believe that further re- 
search should be focused on feedback control design tech- 
niques ensuring such a property, but with increased perform- 
ance. A factor influencing the level of performance is the rep- 
resentation of model uncertainty. We expect that representing 
the uncertainty using a linear parametrically varying (LPV) 

model and designing the appropriate LPV controller, may 
achieve a performance improvement. 

x LO ' Canvnniarlal - praz Robus.  black 
- 2  
5 0  -- -2 

6 

Fig. 12. Experimental position errors 

Fig. 13. Ratio between spectra of the position error (robust 
feedback) and ofthe position reference is below IIW: 

VI. CONCLUSION 

This paper presents a procedure to realize robust control per- 
formance of a robot. It computes the controllers in a system- 
atic way, taking into account experimental characteristics of 
the robot. Uncertainty of the known dynamic model is charac- 
terized' from several frequency responses measured directly. 
The desired performance is specified in the frequency do- 
main. Uncertainty models and performance specifications are 
used in a p-synthesis design of joint servo controllers. The 
procedure is validated on a direct-drive robot. Experimental 
results indicate that robust performance is realized. 
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