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Abstract— Commercial buildings are responsible for a sig-
nificant fraction of the energy consumption and greenhouse
gas emissions in the U.S. and worldwide. Consequently, the
design, optimization and control of energy efficient buildings
can have a tremendous impact on energy cost and greenhouse
gas emission. Buildings are complex, multi-scale in time and
space, multi-physics and highly uncertain dynamic systems with
wide varieties of disturbances. Recent results have shown that
by considering the whole building as an integrated system
and applying modern estimation and control techniques to this
system, one can achieve greater efficiencies than obtained by
optimizing individual building components such as lighting and
HVAC. We consider estimation and control for a distributed
parameter model of a multi-room building. In particular,
we show that distributed parameter control theory, coupled
with high performance computing, can provide insight and
computational algorithms for the optimal placement of sensors
and actuators to maximize observability and controllability.
Numerical examples are provided to illustrate the approach. We
also discuss the problems of design and optimization (for energy
and CO2 reduction) and control (both local and supervisory) of
whole buildings and demonstrate how sensitivities can be used
to address these problems.

I. INTRODUCTION

Whole buildings are complex, multi-scale, multi-physics,
highly uncertain dynamic systems with wide varieties of
disturbances. By itself, whole building simulation is a signifi-
cant computational challenge. However, when addressing the
additional requirements that center on design, optimization
(for energy and CO2) and control (both local and supervi-
sory) of whole buildings, it becomes an immense challenge
to develop practical computational tools that are scalable and
widely applicable to current and future building stock.

At a fundamental level, there are several potential solutions
to the design and control of high performance buildings.
Roughly speaking, these approaches include: (1) Simulation
Based Design, (2) Holistic Fully Integrated Design and (3)
Hybrid Design Methods. Regardless of the approach, it
is clear that computing resources and the development of
computational methods will be an enabling science because
at some point in the design and control process, numerical
methods must be employed. A major question is, “When
does one introduce the approximations”? In the best case

one keeps the physics of the problem as long as possible
and then introduce approximations at the last stage of the
design. The current state is the opposite; the physics is
approximated by a numerical (lumped) model and then used
as a design model. This is what is known as simulation
based design. At the other end of the spectrum is the holistic
approach where the design problem is abstracted and then
computational methods and tools are developed to solve
the fully integrated design, optimization or control problem.
Here the numerical approximations are introduced at the last
stage. Hybrid methods attempt to take advantages of both
approaches. In this paper we show that distributed parameter
control, combined with high performance computing can be
used to provide practical insight into important issues such
as sensor/actuator placement and state estimation for control.

The Model and Problem Formulation

Before focusing on a specific problem it is important to
note that whole buildings are very complex multi-scale (in
time and space) systems as Fig. 1 below illustrates. Optimal
design and control of these systems are very challenging
problems and are often done by first developing a reduced
order model and then basing the design on the simplified
model. In this short paper we show that distributed parameter
control theory can provide useful information about building
design and control and then we suggest future areas of
research.

Fig. 1. A Whole Building is a Complex System
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In order to illustrate some of the ideas, we consider the
problem illustrated by a single room shown in Fig. 2 below.

Fig. 2. Room Control Problem

Here, the goal is to design the room (locate vents, place
sensors, etc.) in order to control the room temperature near
the workspace and minimize energy. The problems of design
and control should be considered simultaneously because the
type and effectiveness of the controller depends on the type
and quality of the sensed information and conversely. In
this problem the system is governed by the Navier-Stokes
equations in the room denoted by Ω and given by

∂v(t,x)

∂t
+ v(t,x) · ∇v(t,x) = −∇p(t,x) +

1

Re
∆v(t,x)

(I.1)
∇ · v(t,x) = 0, (I.2)

∂T (t,x)

∂t
+ v(t,x) · ∇T (t,x) =

1

RePr
∆T (t,x) + B(t,x),

(I.3)

where x ∈ Ω ⊂ R3, v(t,x) is the velocity vector, p(t,x) is
the pressure and T (t,x) is the temperature. Nondimension-
alization has been carried out such that Re is the Reynolds
number and Pr is the Prandtl number. Note that for this study,
the energy equation (I.3) does not influence the momentum
equation (I.1).

The ideas presented in this work should ultimately be
studied on the Boussinesq equations, where temperature
introduces a bouyancy force in (I.1). For ease of presentation,
we assume inflow is fixed and the control term is given by
B(t,x) = b(x)u(t) where b(x) is a given distribution and
u(t) is a thermal control input. The case where the control
is applied at the boundary is slightly more complex and
requires a different technical framework. However, for the
discussion here it is sufficient to think of b(x) as a function
with support near the wall vent defined on the domain Ω.
The controlled output, w, of the system will be defined by a
weighted average over the sub-domain in the room occupied

by the workspace. In particular, let

w(t) =
∫

ΩW

d(x)T (t,x)dx, (I.4)

where ΩW ⊂ Ω is specified to be a region around the desk.
Consider the problem of finding the control that minimizes

J(u) =
∫ ∞

0

{
[w(t)− r(t)]2 + R[u(t)]2

}
dt, (I.5)

where R > 0 and r(t) is a desired average temperature to
be tracked. For the discussion here, we set r(t) = 0.

Also, assume that one has p sensors with supports in the
regions Ωi. In particular, for i = 1, 2, ..., p, let

yi(t) =
∫

Ωi

ci(x)T (t,x)dx, (I.6)

and hence the sensed output is given by

y(t) = [y1(t), y2(t), · · · , yp(t)]
T

.

II. ABSTRACT FORMULATION OF THE CONTROL
PROBLEM

Under suitable assumptions and applying the appropriate
boundary conditions, we formulate (I.1)-(I.3) as a differential
equation on an infinite dimensional (Hilbert) space, Z, of the
form

ż(t) = Az(t) +N (z(t)) + Bu(t), t > 0, (II.1)

z(0) = z0 ∈ Z,

where A : D(A) ⊆ Z → Z generates a C0-semigroup S(t)
on Z, N : D(N ) ⊆ Z → Z is a nonlinear operator and
B : U → Z is a linear input operator (perhaps unbounded)
from the control space U to the state space Z. If the operator
E : Z → R is defined by (I.4), then the cost function (I.5)
has the form

J(u) =
∫ ∞

0

[〈Qz(t), z(t)〉Z + 〈Ru(t), u(t)〉U ] dt, (II.2)

where Q = E∗E .
Also, if the operator C : Z → Rp is defined by (I.6), then

the measured output is defined by

y(t) = Cz(t). (II.3)

Here, Z = V ×R where V is the space of divergent free
vector fields on Ω, and A has the form

A =
[

AO 0
−(∇T )T AAD

]
where AO is the (linear) Oseen operator and AAD is the (lin-
ear) advection-diffusion operator. The state z(t) ∈ Z is iden-
tified with [z(t)] (x) = [ṽ(t,x) T (t,x)]T , where ṽ is a per-
turbation to the mean flow v̄(x) = limτ→∞

1
τ

∫ τ
0

v(s,x)ds,
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i.e. v(t,x) = v̄(x) + ṽ(t,x) (see [18], [27] and [29] for
details). When one linearizes the system about the steady
flow, the resulting linearized equation has the form

ż(t) = Az(t) + Bu(t). (II.4)

The corresponding linear quadratic regulator (LQR) control
problem is defined by minimizing the cost (II.2) subject to
the linear dynamics (II.4). This approach to the control of
Navier-Stokes may be found in [12], [17] and [27].

One can show that under reasonable conditions (see [25])
the LQR problem has an optimal control, in feedback form,

uopt(t) = −Kz(t), (II.5)

where K : Z → Rm is a bounded linear “gain” operator. In
addition, K = R−1B∗Π where Π : Z → Z is a bounded
linear operator, Π = Π∗ and Π satisfies the Riccati equation

A∗Π + ΠA−ΠBR−1B∗Π +Q = 0. (II.6)

The Riesz Representation Theorem implies that there exist
a divergence free vector field kv(x) and a function kT (x)
such that

Kz(t) =
∫

Ω

〈kv(x),v(t,x)〉 dx +
∫

Ω

kT (x)T (t,x)dx

(II.7)
where the kernels kv(x), and kT (x) are called functional
gains. The functional gains define the optimal LQR controller
and can be used to place sensors and design low order
controllers (see [1], [2], [11], [12], [13] and [14]).

Note that we have made two simplifying assumptions.
First of all, we have assumed that the control input only
appears in the energy equation (I.3). Secondly, we have
neglected the Boussinesq term in (I.1). This results in the
lower triangular structure of the operator A. For further
simplicity, we assume that the flow is fixed. Thus, the “fan” is
always “on” and only the temperature of the air is controlled.
Then (II.7) can be written as

Kz(t) =
∫

Ω

kT (x)T (t,x)dx. (II.8)

We now have developed practical methods for computing 3D
functional gains kT (x) (see [8]), and we can use this gain to
guide the choice and placement of the sensors. As we show
below, the functional gains often have localized support and
one can use this fact to determine what regions in space are
most important to the controller. For example, if

kT (x) =
{

kT (x) > 0, x ∈ ΩS
0, x 6∈ ΩS

,

then there is no reason to locate sensors outside ΩS . Also,
it is important (if possible) to place sensors in the regions
where kT (x)� 0.

Consider the linearized system

żT (t) = AADzT (t) + BTu, (II.9)

with a single sensed output

y(t) = CT zT (t),

as defined above in (I.6). Standard linear state estimators
(observers) have the form

że(t) = Aeze(t) + Fy(t), (II.10)

where F : R→ Z has the representation

[Fy](x) = [fv(x), fT (x)]T y,

in general, and

[Fy](x) = fT (x)y

in this particular case, given the simplifications above. The
functions fv(x) and fT (x) are observer functional gains. It
is often not possible to locate sensors in the “optimal” places
and/or to have full state information even with optimal sensor
location. Hence, one must construct a state estimator (ob-
server) and use sensed information to construct (partial) state
information needed for the control. In a practical setting, one
can only measure a localized state such as the temperature on
a wall and this data is often used as the “room” temperature
measurement. Considerable improvements can be made by
employing state estimation and reduced order modeling for
estimation. In [31] the authors use reduced order model
reduction techniques based on Lagrangian Coherent Struc-
tures (LCS) to locate sensors for estimating contaminant
transport in a room. Although reduced order modeling was
employed in [31], understanding the flow physics provides
insight into the number of sensors needed to estimate the
flow. If one combines such ideas with the spatial insight
gained from the functional gains, then the problem of optimal
sensor/actuator location becomes feasible. This requires that
functional (feedback and observer) gains be computed. In the
next section we illustrate this computation for the 3D room
above.

III. NUMERICAL EXAMPLES AND CONCLUSIONS

Here we use distributed parameter LQR theory combined
with finite elements to compute both feedback functional
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gains and observer functional gains for thermal control of
the 3D room above (Fig. 2) with a fixed flow.

The flow is computed in a cubical room with an inflow
duct at (x = 0, 0.375 < y < 0.625, 0.75 < z < 0.825)
with a bi-quadratic flow profile. The Reynolds number, Re,
is 50 based on the height of the room and the maximum
inlet flow velocity. The Prandtl number is Pr = 0.7, which
is appropriate for air. A finite element method using (35,000)
tetrahedral Taylor-Hood elements was used for the flow sim-
ulation. Streamlines as well as velocity vectors and velocity
magnitude contours are shown in Fig. 3. The advection
diffusion equation (II.9) for the control problem uses a
uniform inlet temperature of u(t) and insulated boundary
conditions elsewhere.

Fig. 3. Flow Through the Room

Fig. 4 shows the optimal LQR feedback functional gain
kT (x). Note that a large portion of the support of kT (x) is
concentrated in the center of the room and is zero near the
inflow vent. The maximum value in the center of the room
corresponds with our choice of ΩW = (0.25, 0.75)3. Thus,
the functional gain illustrates the point above, suggesting
that “optimal” sensor placements should be focused near the
workspace. However, in practice one must use “wall” sensors
and use state estimation methods to re-construct the state.

Figs. 5–7 below contain the observer functional gains,
FT , corresponding to three different single sensor locations:
Ω1 = (.25, .50) × (.875, 1) × (.25, .375), Ω2 = (.50, .75) ×
(.875, 1) × (.25, .375), and Ω3 = (.25, .50) × (.75, .875) ×
(.875, 1), see (I.6). Note that when the sensor is placed
near the outflow vent the support of the observer gain is
the largest, while the support of the observer gain when
the sensor is placed on the top wall the smallest. Thus, as

indicated quantitatively in Table I below, placing a sensor
near the exit vent will tend to enhance “observability.”

TABLE I
L2 NORM OF OBSERVER, F

Sensor Location ‖F‖2 max(fT )
centered on side wall 1.37× 10−6 1.83× 10−6

on side wall near exit 1.43× 10−6 1.94× 10−6

on ceiling near side wall 1.22× 10−6 1.61× 10−6

Fig. 4. Feedback Functional Gain

Fig. 5. Observer Gain: Sensor Centered on Side Wall

IV. CONCLUSIONS AND FUTURE WORK

Although these results are preliminary, they illustrate how
one can compute and use infinite dimensional theory to
develop insight into control problems that arise in the design
and operation of high performance buildings. For example,
optimization could be used in the wall sensor placement
problem to maximize ‖F‖2. Likewise, similar optimization
algorithms can be envisioned to optimally place the inflow
vent. However, considerable work needs to be done before
these ideas become useful tools for whole building design
and control.

840



Fig. 6. Observer Gain: Sensor on Side Wall Near Vent

Fig. 7. Observer Gain: Sensor on Top Wall
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