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Abstract

Many algorithms have been proposed in the literature for control of
multi-fingered robot hands. This paper compares the performance of
several of these algorithms, as well as some extensions of imore conven-
tional manipulator control laws, in the case of planar grasping. A brief
introduction to the subject of robot hands and the notation used in this
paper is included.

1 Introduction

Multifingered robot hands can be used to increase the fine motion capa-
bilities of a robot manipulator. Like a human hand, a rohot hand can
accurately perform small manipulations of a wide variety of objects.
A great deal of research has focused on the kinematic issues of hands
and the generation of stable grasps (see for example (20], [10] and [16]).
More recently the problem of generating feedback coutrol laws for coor-
dinated manipulation of an object being grasped by a robot hand has
been considered ({1}, {12], [4]). A related area of interest is the control
of multiple robots performing a single coordinated task([26], [6], [23],
15]).

[ ])There are several articulated hands that have been developed to
study problems in grasping and manipulation ([20), [8], [18]). Many
of these hands, such as the MIT/Utah hand [8] and the Stanford/JPL
hand ([20], [24]) are quite complex and require sophisticated computer
architectures to control them ({21}, [3]). Unfortunately, this combination
makes the implementation of proposed control algorithms correspond-
ingly complex. Others, such as the NYU hand [5}], use stepper molors as
joint actuators and make control schemes which command joint torques
more difficult to implement. As a result of these obstacles, few experi-
mental results of the algorithms proposed by researchers are available.

To provide & facility for experimental verification of control algo-
rithms we have built a very simple two-fingered planar hand. Due to
the simplicity of its design, the implementation of a control algorithm is
simplified and the perforinance of the hand can be studied more quickly
and easily. Additionally, an intuitive understanding of the structure of
a control law can often be reached.

This paper compares the performance of several control schemes
implemented on this hand. In order to allow the control laws to be used
in more complicated environments, we present the algorithms for the
general case of a many-fingered hand operating in three dimensions and
simplily to the planar case only when necessary.

2 Grasp dynamics

This section provides a brief introduction to grasping and the notations
used in this paper. For a more complete discussion of the kinematics of
grasping see [9]. The dynamics outlined here were developed in [12] and
[4] and can also be found in {14).

2.1 Hand kinematics

A contfact between a finger and an object is described by a mapping
between forces exerted by the finger at the point of contact and the
resultant force and torque at some reference point on the object (say
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the center of mass). If we have k fingers contacting the object, then
the net force on the object is the sum of the forces due to each finger.
The grasp map, G, is the map between finger forces and the resultant
object force. We represent this map as xn matrix, where where n is
the number of contact forces generated by the fingers. If F, represents
the forces and lorques exerted on the object in the palin reference frame
and f, is the force exerted by the #” finger in that same frame, then

fe,
F,e RS

Fo = [ Gy oo Gy ] =Gf,, fo € Rrtdm [§9]

Jeu

The grasp map is a function of the position and orientation of the object.
as well as that of the fingertips. ’

The null space of the grasp map corresponds to finger forces which
cause no net force to be exerted on the object. We call the forces on
the object resulting from finger forces which lie in the null space of G,
denoted N(G), internal or null forces. It is these internal forces which
allow us to grip an object.

The velocity of the contact points can be related to the velocity
of the object using the principle of virtual work. Y ». and X, repre-
sent the positions of the fingertips and object, respectively, then it is
straightforward to show

i =GTX,. (2)

We are interested in using kinematic mechanisms as the fingers
of our hand. For each finger ¢ we associate a forward kincinatic map
K; : R™ — R which takes a joint position to an end effector position.
Taking the derivative of this map about a point, 6;, and stacking the
resulting Jacobians for each finger, we get the Jacobian of the forward
kinematic map for the hand, .J,, and

&, = Ju(8)6 (3)
Again we can apply the principle of virtual work to relate the forces al
the contact points, fe, to the individual joint torques, 7 € "t x K2 x
coox R

r=J]0)]. )

2.2 Hand dynamics

The dynamics of a robot. manipulator, and in particular a single finger
of a hand, can be represented as a differential equation with respect to
the joint angles, 0;,

Mi(0)0; + Ci(8:,9,)6; + Nu(9;,6:) = i - IT 1., ()
where M;(0;) € R**™ is the symmetric moment of inertia matrix for
the i*h finger, C,»(0,-,9'.-)6", € R" is a vector of coriolis and centrifugal
terms, N;((),-,(}.-) € R™ is a vector of gravity and friction forces and 7 €
R, is the vector of applied joint torques. The final term in equation 5
is the torque due to the force applied at the fingertip. It is the addition
of this tern: that causes coupling between the fingers (due to the object
being grasped). We also note that with proper definition of C;(8;.8;)
the matrix M; — 2C; is skew-synunetric (see [7] or [17]).

Stacking the equations for all the fingers in the hand we can write
the hand dynamics as

MO+ (0,000 + N@B,0)=1—J] f. (6)

‘Fhe dynamics of the objecl are governed hy the Newton-Euler eqna-
tions. Expressed in the base (inertial) frame, these equations can be



written in terms of the object position, z, and angular velocity, w,,
with respect to the center of mass

m,I 0 %o 0 _| 7
[ 0 I,,][d:a]+[w,xlbwo]7[ro]

where m,I € R?*3 is the object mass matrix, and I, € B¥3 is the
object inertia matrix. Note that the inertia matrix is a function of
object orientation and be written as I, = R,I,RT where R, € SO(3) is
the rotation matrix between the base coordinate frame and a coordinate
frame affixed to the object.

Letting M, represent the combined mass and inertia matrix, X,
represent the position and orientation of the object and F, represent
the forces and torques applied to the object at its center of mnass, we
can write equation 7 more simply as

M, X, +Co(Xo, X )Xo = F,

)

Gl + fe (8)

where the second equality follows from equation | and f. is due to
external forces applied to the object (such as gravity). Once again if we
define C, carefully it can be shown that A, — 2C, is skew-symmetric.

Equations 6 and 8 represent the dynamics of a hand grasping an
object. The only additional equation needed is the specification of the
contact force, f.. In general this force depends on the characteristics
of the fingertip and the compliances of the hand and object. For our
purposes we will assume that all bodies are rigid and the contacts are
never broken. In this case the fingertips are constrained to move at the
sante speed as the contact points on the object. This constraint can be
written as

IO =GTX, (8]

where J,8 is the vector of fingertip velocities and G7 X, is the velocity
of the contact points on the object.
As shown in [14], equations 6, 8 and 9 can he combined to yield

Mp(X,)X, + Ca(Xos Xo)Xo + Ni(Xo, Xo) =G Tr = f. (10)
where
My = M,+GI;TM@)I;'GT
Ch = Co+GIT (C(o, 0 GT + M(G)%(J,.“GT))
Ny = GI;TN(@,0)

and M, — 2C, is skew-symmetric. This is the description of the hand
dynamics in object coordinates. We have d here that the finger
coordinates, 8, are derivable from the object position, X, —this holds
for point contact models, but can fail for rolling contacts in three di-
mensions. See [4] for a more thorough discussion.

In the case of planar grasping the object dynamics are somewhat
simplified since the object is only allowed to rotate about the axis per-
pendicular to the plane of motion. If we represent the position and
orientation of the object as (z,y,¢) and the inertia of the object as
I, € R we have

m, 0 0 E4 Je
0 m, 0 gl=is5 (11)
0 0 I, ¢ Ty

and hence C, = 0. Furthermore, in three dimensions a parameterization
of 50(3) (the space of rigid body rotations) must be selected and this
can add some complexity to the dynamics. Since there is only one axis
of rotation in the planar case, the representation of the orientation of
the object is particularly simple.

3 Control Algorithms for Grasping
3.1 The grasping control problem

Position control of a multi-fingered hand can be broken into two parts

1. tracking - the center of mass of the object should follow a specified
trajectory.

2. holding - the finger forces should lie within the friction cone for
each finger at all times.
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Condition 2 is important not ouly because we do nol. wish to Jose our
grip on the object, but also because we assumied in our derivation of the
grasp dynamics that contact. was maintained. Without this constraint
we would have to specify the dynamics of contact.

1f we choose a grasp properly it can be shown that given an arbitrary
set of finger forces, f., we can find an internal force. fn € A(G), such
that the combined force f. + [ is inside the friction cone [4]. Thus,
given a force generated to solve the tracking problem, we can always add
a force to this such that condition 2 is satisfied. Since internal forces
cause no net motion of the hand or object, this additional force does
not affect the net force exerted by the fingers on the object. We shall
assume in the sequel that such an internal force is available at all times.
Section 3.6 discusses the cloice of this force in more detail.

To satisfy the tracking problem, we will examine several different
algorithins. Each of the algorithins makes different assumptions about
the grasp dynamics and all of them assumie that arbitrary internal and
external forces can be generated by ihe fingers on the object.

3.2 Individual joint control

The first algorithm we will study is based ou the idea that we can specify
the trajectory of the object by transforming that trajectory into the
space of the joint variables and then controlling the fingers individually.
In using this approach we intentionally neglect the dynamics of the
object aud concern ourselves only with the finger dynamics. Thus, we
model the system as .
M{@)+ N@8,§)=r (12)
We are given the desired joint trajectory, 84, and its acceleration,
64 = GTJ,:',{'d + 3‘;(67'];'),\;4, which is calculated using tle inverse
kinematic map between the object location and the joint positions. In
general this map is not unique, but often it is not hard to choose hetween
solitions. For example, of the four possible solutions for a two-fingered
hand in the plane, only one is usually feasible since the other solutions
intersect the object.
To control each individual joint we use a computed torque control

law ({2], [13]).

r= M(a)(é,, + Koo + Kpc,,) + N(0,6) (13)
where K, and K, are positive definite matrices and ¢p = 6:s —0. Our
error dynamics becone

M©O)(é0 + Kb + Kyeo) = 0 (14)
We can now choose K, and K, so that the error dynamics are exponen-
tially stable. j.e. 2 — xq4.

We must also add a null force tern to grip the object. Since the null
force term does not cause any motion in the object, it does not affect
the dynamics of the links and our tracking stability remains unchanged.
If we are given a null force lerm fx, then we can apply this force by
adding a joint torque of JT fi (the null force applied at the finger tips.
reflected back to the joints). ‘The final control law is then

7= MO)(fa + Koéo + Epeo) + N(8,0) + IF In (15)

3.3 Force transformation

If we had only the object dynamics to consider (equation 8), we could
use a compuited torque control law in object coordinates having the form
F,= M,,(i'd 4+ Koér + 1(,«-,,) (16)
This gives us the desired forces (and torque) to be applied to the cen-
ter of mass of the object. We can find the forces that would have to
be applied at the fingertips to get such an object force by premulti-
plying by G+ = GT(GGT)~1, a pseudo-inverse of G. This transforms
object forces to finger forces having minimum norm (i.e., zero internal
force compouent). Similarly, we can transform the finger forces to joint
torques by premultiplying by J7. Thus to generate an object force as
in equation 16 we apply torque
r = I G Mo (R + Kobe + Fpe, ) (17)
This algorithm takes more calculation than the joint control algo-
rithm since typically we must calculate the position of the object given




the joint angles before we can apply the control law. This calculation
requires sine and cosine calculations (for the fingertip locations) and an
arctangent operation (for the orientation of the object). Once the con-
trol law is calculated we must multiply by M(8)J; ' GT which requires
at most n? multiplications (M(8)J,'GT is not block diagonal).

To speed up the overall control sample rate we can break the cal-
culation into two pieces. The update loop calculates M(H).I,"‘GT and
Ji fn while the control loop carries out the matrix multiplications and
additions. [If the trajectory that the object is following is changing
slowly, then we find empirically that we can run the update loop more
slowly and speed up the control loop.

3.4 Generalized Computed Torque

Since the hand dynamics in equation 10 have the same basic form as
the dynamics of a simple manipulator, it is straightforward to extend
manipulator control laws into hand control laws. If we use the computed
torque paradigm with equation 10 we get

r = TG (M (Ra 4 Kobe 4 Kpe) + CuX 4 Ni] 4 5T 1w (18)

This gives an error equation in object coordinates of

Mi (&0 + Ko + Kpes) = 0 (19)
and away from singularities of J4, our dynamics are governed by
ér+ Kyé + Kpe: =0 (20)

The computational resoutces required to implement this algorithn: are
considerable, Not only must we calculate the inertia matrix, but we
have to cancel all the nonlinear terms. These nonlinear terms contain
many trigonometric calculations but they can be minimized by the use
of carefully constructed lookup tables. This algorithn was originally
proposed for multi-fingered hands in [12] and has been extended to the
case of rolling contacts in [4].

3.5 Natural and Stiffness Controllers

Natural control was proposed by Koditschek in 1984 {11] as an alter-
pative to computed torque which did not rely on exact cancellation of
nonlinear dynamics. ft relies on the skew-symmetric property of the
robot dynamics, aT (M —2C)a =0 for all @ € R". It is an extension

of the simpler PD control law and it can he shown to be asymptotically
stable for the tracking control problem. The natural control law has the
form

r=JlG* [M,,S',, FCrXa+ Nu+ Kyéq + l\',‘éI] I VT
where K, and K, are again positive definite gain matrices.

Stiffness control is a slight extension of natural control that has
been shown to have exponentially stable error dynamics. Forms of this
control law with proofs of stability can be found in [19] and [22]. The
control law presented here is a slight generalization of the laws proposed
by others, but similar forms can be found in the literature [25). The
generalization leads to a more complicated proof of stability but allows
more control over the resulting stiffness. We use the contro! law

= J7GH M (Ko +2¢) + O (Xo+2€) + Mo+ Kpe + Koe| + 97
(22)
where A > 0 and K, K, are positive definite.
'The complexity of these algorithms is roughly the same as the com-
puted torque control law.

3.6 Choosing the grasp force, fy

All of the algorithms have relied on the choice of a grasping force, fn €
N (G) which maintains contact between the fingertips and the object by
insuring that the finger forces lie in the friction cone. There are several
possible methods for calculating this term. Since ideally fv does not
affect the force applied to the center of mass of the object we should
be free to choose fy without worrying about its effect on the tracking
control problem. ‘The simplest fy is a constant fy. It must be large
enough so that finger forces never leave the friction cone over the entire
trajectory of the object. Generally this requires a knowledge of the
bounds on the external forces that can be exerted on the object. The
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Figure 1: Top view of Styx

Link lengths {11, I 15.24 e
lg, I22 12.16, 12.55 cn

Fingertip radius ry 1.91 ecm
Base separation b 20.32 cm
Link mass myy, M2y 53 g

myg, My 17,20 ¢
Motor mass M 328¢g
Motor inertia Jy 18 g cm?

Ja 1.74 g em?

Fingertip mass M, 3g

Table 1: Parameter values for Styx

advantage of this approach is that J7 fx cau be calculated at the same
rate as J,—saving computation time.

One difficulty is that in a real-world hand the maximum motor
torques that can be generated are finite. Thus, we are not gnaranteed
that we can apply an fy which causes f. + fy to lie in the friction cone
without saturating the motors. Another issue is the effect of the nulil
force term in the presence of errors. If a large iuternal force term is
used and, due to sensor or actuator crrors, it does not actually lie in the
nult space of the grasp matrix, the resulting force can cause positioning
errors and in the extreme case, instability.

4 Experimental comparison of algorithms

The algorithms presented in the previous chapter have been imple-
mented on a multi-fingered hand known as Styx. Styx is a planar
two-fingered hand built at the University of California, Berkeley to test
different. multi-fingered hand control algorithius. A labeled diagram of
Styx is shown in figure 1; the parameter values can be found in table 1.

The motors used in Styx are direct drive DC' motors mounted at
the base of each joint and are driven with a pulse width modulated
20 kHz square wave. Since the second motor is mounted at the end
of the first joint, the dynamics of the first joint are relatively indepen-
dent of the configuration of the robot (i.e., M(8) can be considered to
constant). Each meotor containg a quadrature encoder which is used Lo
sense position. The resolution of this encoder is 500 lines/revolution.
which generates 2000 edges (or counts) per 360 degree rotation.

Styx is connected to an IBM PC/AT running at 8.0 MHz with an
8087 floating point coprocessor. The motors and encoders are inter-
faced to the AT using a set of four HP HCTL-1000 motion control chips
interfaced to the AT bus. 'The HC'TL chips generate a pulse width mod-
ulated signal which is fed to an amplifier. The quadrature signal from
the position encoders is connected directly to the chip inputs. Although
the HCTL-1009 is capable of on-chip position and velocity control of
a motor, this feature was not used in the experiments presented bere.
All control algorithms were implemented on the IBM PC/AT using the
HCTL-1000 solely as an interface to the motors.

The software to drive Styx is composed of an assembly language
scheduler which controls the sample rate of the inner (control) and outer
(update) loops. The algorithms themselves are written in the ' pro-
gramming language and compiled using the Microsoft 5.1 Optimizing
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Figure 2: Desired trajectory

C compiler. Control rates of 120 Hz have been achieved for the more
complicated controllers by careful use of table lookups and coding. For
the results presented here, all controllers were run with a control loop
frequency of 100 Hz and an update loop frequency which was varied
between 25 Hz and 100 Hz, depending on the algorithm and the type of
comparison petformed.

All of the algorithms implemented on Styx made some basic sim-
plifying assumptions:

1. Motor dynamics can be ignored - for small velocities the torque
generated by a motor is roughly proportional to the input pulse
width. Additionally, friction terms were left out of the dynamic
model (i.e., N(6,0) = 0). This included a relatively large deadband
between the applied motor current and the measured joint torque
due to static friction. This deadband was approximately 10% of the
maximum motor current that could be generated by the amplifiers.

2. Jacobian and mass matrices change slowly - since the trajectories
commanded were slow relative to the control rate, the Jacobian
and mass matrices did not need to be recalculated in the control
loop. The update loop, which runs at a slower rate, was used in-
stead. For Styx, the Jacobian reqnires a much more CPU intensive
calculation than the basic control law (which is similar for all con-
trollers) so that the update rate is the limiting factor in the speed
of an algorithm.

3. Fingers can be modeled as point contacts — the actual finger tips
used on Styx were small rubber circles. To avoid the added com-
putational complexity required to model the rolling contacts, the
fingertips were modeled as simpler point contacts. For Styx this
meant that the center of mass of the object shifted slightly as the
object moved through its trajectory. This shift is typically less than
2.5 mm.

Several different. trajectories were traversed with each control law.
A single circular trajectory is presented here to conserve space and to
allow easy visual interpretation of the results. The trajectory shown
in figure 2 is a circle with a diameter of 5 cm and a period of 0.5 Ilz.
This cirele is too fast for most of the controllers to track accurately
but was chosen to emphasize sources of error in the controllers. The
object being manipulated is a cardboard box with radius 15.18 cm and
mass 33 g. The box was allowed to slide on a wooden table; the friction
between the box and the table was ignored. Heavier boxes were difficuli
to manipulate duc to limits on the maximum joint torques that could
be generated with the current hardware.

Since we are comparing different control algorithins we must decide
on what criterion to judge an algorithm. Although the final test of an
algorithm should be how well it satisfies a set of design criteria, other
comparisons can be useful to get a feel for the relative strengths of an
algorithm. Three types of comparisons are presented here.

4.1 Fixed Gain comparisons

The fized gain comparison uses a fixed K, and K, for each of the algo-
rithms. K, and K, were chosen by selecting the cutoll frequency, wy,
and the damping factor, , for the closed loop system using any of the
computed torque based schemes (which give a linear error equation).
Given these two values, we set K, = w2f and K, = 2(w,]. For all of
the experiments presented in this section, w, was chosen as 2.5 Hz, or
one tenth of the (Jacobian) update frequency. This value of w,, was used
so that noise introduced into the system by the update loop would be
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attenuated by 40 dB. ( was chosen as 0.5 to provide fast transient re-
sponse (using a critical damping factor, { = 1. gave sluggish responsc).
The fixed gain comparison is really a measure of how closely the sys-
tem model matches the actual system—we wonld expect that the most.
complicated model would yield the best controller.

4.1.1 Joint control

The joint control algorithm proved to be very sensitive to the ra-
dius of the object being grasped. Since the inverse kineratic solution
requires knowledge of the object radius, errors in this radins cause the
desired joint position to be wrong. If the modeled radius is too small
we get a constant joinl error and this joint error results in additional
internal force and object position errors (due to nonlinearity of the hand
kinematic map). Likewise, if the modeled object radins is too large then
the internal force term caunses a constant error in the joint positions. Tn
fact, if the controller gains are large enough the PD control law can
override the constant internal graspiug force and cause countact to be
broken. ‘The constant displacement secn in figure 3 is due to uninten-
tionally setting the object radius slightly too large (this same radius was
used by all of the algorithms).

Figure 3 also shows that the orientation error for the joint con-
trol algorithm is very sensitive. Because a small change in orientation
produces a very small change in the joint position (as compared to an
error in object position) the joint control algoritlhn is not very effective
at countrolling the orientation. Increasing the gain in the joints (which
requires an increase in controller rate) can help overcome this problemn.

4.1.2 Force transformation

For Styx, the mass of the fingers is much heavier than the mass of
the object and so we do not expect an algorithm which ignores the finger
dynamics to perform well. Figure 4 confirnis our intuition. Commanding
torques which are suflicient to move only the object produces large errors
due to the mass of the fingers.

4.1.3 Computed torque

The performance of the computed torque algorithi is the best of
any of the algorithms presented in this section (see figure 5). 'the posi-
tion error is comparable to that of the joint countrol algorithm but. the
orientation error is much lower. Also the computed torque algoritlim is
insensitive to errors in the object size—the controller is effectively con-
trolling the position of the line connecting the fingertips and simultane-
ously pushing in along that line. For very small objects, the orientation
becomes very sensilive to the fingertip positions and the performance
degrades somewhat.




L4 AT IR [ e |
4 2 1 0 1 2 3 00 20
x(em) thme (sec)
Figure 5: Computed torque algorithm
y {cm) phi (redivne)
nt o1 |
o E TN
®e R I TIPS SN TN
18 2, (cm)
17 3 -
16 [ —m
£ P
Ll SV TV TN YRR T L T S 2 )
3 2 1 0 1 2 3 00 20
x {can) time (soc)

Figure 6: Natural control law - equivalent gains

4.1.4 Natural and stiffness control

The natural and stiffiness controllers do not give a linear error equa-
tion and hence our design criterion for choosing K, and K, does not
apply. In fact this is one of the problems with these algorithms--there
is no simple method for choosing the gains. The proof of stability gives
general conditions for convergence (K, > 0, K, > 0) but does not
provide a good indication of the performance to be expected. 1f we
execute the algorithms with the gains used in this section we find that
the grasped object moves very slightly (much less than with the force
transformation controller shown in figure 4).

4.2 Equivalent gain comparisons

In order to compensate for the low gains of the natural and stiffness con-
trollers one might consider using My K, and My K, as gains. This would
then give a control law very similar to computed torque and we might
expect equivalent performance. Unfortunately, the stability analysis for
the natural and stiffness controllers requires that the gain matrices be
constant and M, is a function of finger and object position, Further-
more, My > 0 and K, > 0 does not imply M, K > 0. An approximate
solution is available. Since K, and K, are diagonal (by clioice) we can
examine the diagonal entries of M, at some nominal position and use
these entries to scale K, and K,. In the case of a constant diagonal
inertia matrix this would then give us a control law similar to computed
torque. We term this type of comparison an equivalent gain comparison
since it attempts to compensate for differences in the magnitudes of the
overall gain matrices.

4.2.1 Natural control

The results of scaling the gain matrices for the natural controller
are shown in figure 6. We see that the position error is greatly reduced
(before scaling the hand barely moved), but there appear to he oscilla-
tions in the orientation (upper right graph). In fact the controller was
very marginally stable and any slight disturbance would cause the hand
to oscillate. Part of the reason that the controller is so nearly unstable
may be the form of the inertia matrix for the hand. For the experiments
petformed here, the diagonal entries of this matrix were quite large but
the inertial coupling between the x position and the orientation was of
comparable magnitude.

4.2.2 Stiffness control

The stiflness control law appeared to be slightly more stable (see
figure 7). The oscillations in otientation are no longer present although
there was little improvement in trajectory error. Resulis of other tests
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indicate thal the natural controller was in fact more stable but still quite
underdamped.

4.3 Fixed hardware comparisons

The final comparison is the fired hardware comparison. Here we allow
the gains and control rates to be maximized individually. This is the
most realistic comparison since it ranks the controllers in overall effec-
tiveness. It is reasonable to imagine that a simple controller might he
able to perform better because it can run at a much higher servo rate——
thus coupensating for uncertainties more quickly. For each conlroller
the following steps where performed:

1. Maximize controller speed — the update and control rates were cho-
sen as large as possible such that both loops could still finish their
calculations tn the allotted time.

2. Maximize controller gain — the same method as previously outlined
was used: w, was chosen as one tenth of the update frequency and
¢ was set to 0.5.

Since the control law was linked with the frequency of the update loop
and the control loop was running much faster than the dynamics of the
system (effectively emulating a continuous time controller), only the
update frequency was varied in the experiments presented lere. Due
to the structure of the control software, only integer multiples of the
control period were used for the update period.

4.3.1

The simplicity of the joint control algorithm allows a controller
with sufliciently high gain and bandwidth to overcome unmodeled dis-
turbances (see figute 8). Due to other sources of noise in the systeni the
cutofl frequency for this algorithm was placed at 5 Hz instead of 10 iz,
Note the slight shilt in the y position due to the alorementioned ervor
in object radius.

Joint control

4.3.2 Force transformation

We iight. expect the force transformation algorithin to experience
similar improvements. Due (o its moderate complexity, an update rate
of 50 U1z was the maxinnm achievable rate (up from 25 1lz). Figure 9
shows that the overall performance was still very poor. This is to be
expected since the formulation completely ignored the finger dynamics,
which were much larger than the object dynamics.

4.3.3 Computed torque

Computing the full set of nonlinear compensating terns allows the
computed torque algorithm to be run with an update rate of only 25 Hz



¥em) phi (rediane)
af a1 | —
0 L b
0k ab \H_/
F I EPYPEPEPI BRI SRR AP
1 Xy (om)
17 & 3 F
L S TTTR TR FOR VAT A o N S T
3 2 4 0 1 2 3 oo 20
x (em) tme (sec)

Figure 9: Force transformation without nonlinear terms (50 Hz)
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Figure 10: Computed torque without nonlinear terms (33 Hz)

(shown in figure 5). This limits the frequency response of the controller
as well as the DC gain (which is determined by K, = w?). A consid-
erable savings in computational complexity can he gained by ignoring
the nonlinear terms. Calculations indicate that these terms are small
relative to the link/motor inertias. By ignoring these nonlinear terms
we can increase w, to 3.3 Hz and we see that the controller is able to
follow the desired trajectory much more closely (figure 10). Notice how
small the orientation error is compared to other algorithms.

4.3.4 Natural and stiffness control

The natural and stiffiness controllers were of sulficient complexity
that it was not possible to increase the update rate past 25 Hz, even by
ignoring the nonlinear terms. Therefore the equivalent gain comparisons
shown in figures 6 and 7 where the best results obtained.

4.4 Conclusions

Based on the experiments performed on Styx, the most effective con-
trol laws are the simple joint control law and the generalized computed
torque control law. Although the joint control law ignores the interac-
tion between the joints (caused by grasping the object), it can be run
at sufficiently high rates (and hence gains) to overcome errors. It has
the additional advantage that it is stable even when contact is broken,
since the joint controllers are individually stable. The computed torque
control law, being a coordinated control law, relies on the fact that con-
tact is not broken. While intermittent breaks don’t usually present a
problem, the controller does exhibit strange behavior when the object
is removed from the fingers’ grasp—the fingers move in to the center ol
the line connecting the fingertips, where the orientation gain becomes
very large. Undesirable oscillations result.

The disadvantage of the joint control law is that the error dynamics
are not linear and therefore it is difficult to predict the results. If the
object being grasped has a large inertia relative to the fingers, the joint
controller will experience problems like those of the force transforma-
tion controller, resulting in large errors. The performance of the gener-
alized computed torque algorithm will be basically unchanged, since all
dynamics were considered in deriving the algorithm and the resulting
error system is linear. This makes the computed torque control law an
attractive alternative for position control of multi-fingered hands.
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