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Control for Stability and Positivity: Equivalent
Conditions and Computation
Huijun Gao, James Lam, Changhong Wang, and Shengyuan Xu

Abstract—This paper investigates the stabilizability of linear sys-
tems with closed-loop positivity. A necessary and sufficient condi-
tion for the existence of desired state-feedback controllers guaran-
teeing the resultant closed-loop system to be asymptotically stable
and positive is obtained. Both continuous- and discrete-time cases
are considered, and all of the conditions are expressed as linear
matrix inequalities which can be easily verified by using standard
numerical software. Numerical examples are provided to illustrate
the proposed conditions.

Index Terms—Linear matrix inequality, Metzler matrix, non-
negative matrix, positive systems, stabilization.

I. INTRODUCTION

I N MANY practical systems, variables are constrained to be
nonnegative. Such constraints abound in physical systems

where variables are used to represent levels of heat, population,
and storage. For instance, age-structured populations described
by certain Leslie models [6], compartmental models used in hy-
drology and biology applications, can be described by positive
systems [13], [18], whose states and outputs are nonnegative
whenever the initial condition and input signal are nonnega-
tive. Since positive systems are defined on cones, not on linear
spaces, many well-established results of general linear systems
cannot be simply applied to positive systems. Therefore, in re-
cent years, many researchers have shown their interests in pos-
itive systems and many fundamental results have been reported
(see, for instance, [1]–[3], [7], [11], [12], [16], [17], [19], and
[20] and the references therein).

Among the great number of research results obtained for posi-
tive systems, much attention has been devoted to the behavioral
analysis of such systems (readers are referred to [8] and [15]
for a detailed account of the recent developments in positive
systems). Meanwhile, the synthesis problems under the posi-
tivity constraint seem to have received relatively less attention.
More specifically, the results about how to design controllers
to obtain a closed-loop system which is stable and positive are
still very limited [10], [21]. That is, given a possibly unstable
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linear system, does there exist a controller such that the resul-
tant closed-loop system is asymptotically stable and positive?
Moreover, if the answer is yes, how can we find one?

Recently, Kaczorek [14] investigated the problem mentioned
above. Using Gersgorin’s theorem, existence conditions for
state-feedback controllers were proposed for positive systems.
It is worth mentioning that these conditions are only sufficient,
and are only suitable for single-input systems.

In the present work, we further investigate the stabi-
lization problem for both continuous- and discrete-time
multiple-input–multiple-output (MIMO) systems under the
condition that the closed-loop system is positive. Instead of
using algebraic techniques which have been widely employed
for the analysis of positive systems, our development is based
on matrix inequalities. Based on the well-established results
of Lyapunov stability theory and nonnegative matrix, equiv-
alent conditions in terms of linear matrix inequalities (LMIs)
are obtained for the existence of stabilizing state-feedback
controllers. A remarkable advantage of these conditions lies
in the fact that they are not only necessary and sufficient, but
also can be easily verifiable by using some standard numer-
ical software. Moreover, these conditions readily construct a
desired controller if it exists. To the authors’ knowledge, this
work represents the first LMI treatment on control synthesis for
guaranteeing asymptotic stability and positivity.

The remainder of this paper is organized as follows. Sec-
tions II and III present a necessary and sufficient condition for
stabilization with positivity constraint, both for continuous- and
discrete-time linear systems. Numerical examples are given in
Section IV to illustrate the proposed method, and we conclude
this paper in Section V.

Notations: The notations used throughout the paper are
fairly standard. The superscript “ ” stands for matrix transpo-
sition; denotes the -dimensional Euclidean space;
is the set of all real matrices of dimension ; is
the set of all real matrices with nonnegative entries
and ; the notation means that is real
symmetric and positive definite; and 0 represent identity
matrix and zero matrix, respectively; stands for a
block-diagonal matrix. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.

II. CONTINUOUS-TIME CASE

Consider the following MIMO continuous-time system :

(1)
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where is the state vector, is the control
input vector, is the output vector, and

, , ,
are system matrices.

We first introduce the following definitions [4], [8], [15].
Definition 1: System in (1) is called positive if, for any

and any for every , we have
for .

Definition 2: A matrix is called a Metzler matrix if all of
its off-diagonal entries are nonnegative.

Assume that the state variable can be directly measured,
and our purpose in this section is to design a state-feedback
control law of the following form:

(2)

such that the closed-loop system given by

(3)

is asymptotically stable and positive, where
is the controller gain to be determined and

(4)

The following lemmas will be essential for our derivation [8],
[15].

Lemma 1: Given the system in (1) and the controller in
(2), the closed-loop system in (3) is positive if and only if
is a Metzler matrix and , , and .

Remark 1: As the matrices and are invariant under
state-feedback law in (2), their positivity is necessary for to
be positive. However, no such condition is imposed on and
for system , which means that the original system in (1) is not
necessarily positive. Therefore, the controller is designed not
only to stabilize the system, but also to render the closed-loop
system positive.

Lemma 2: Given the system in (1) and the controller in
(2), assume the closed-loop system in (3) is positive, then
it is asymptotically stable if and only if there exists a positive
diagonal matrix satisfying

(5)

We are in a position to present our main result.
Theorem 1: Given the system in (1) with and

. A controller of the form in (2) such that the
closed-loop system in (3) is asymptotically stable and pos-
itive exists if and only if there exist a positive diagonal matrix

and a matrix
satisfying

(6)

(7)

(8)

Under the above conditions, the matrix gain of a desired con-
troller in (2) is given by

(9)

Proof: (Sufficiency) First, from (9), we have
. By noticing , (7) and (8) trivially ensure that

is a Metzler matrix and . Then, by the positivity of
and , from Lemma 1 we know that the

closed-loop system is positive.
Second, from (9), we have

(10)

By substituting (10) into (6), we obtain

(11)

By applying to (11) the congruence transformation defined by
and keeping in mind (4), one gets

By defining , we readily obtain (5). Then, from
Lemma 2, we know that the closed-loop system is asymptot-
ically stable.

(Necessity) Suppose there exists a controller of the form in
(2) such that the closed-loop system in (3) is asymptotically
stable and positive. Then, from Lemmas 1 and 2, we know that

is a Metzler matrix, , and there exists a positive

diagonal matrix satisfying
(5).

First, by applying to (5) the congruence transformation de-
fined by and keeping in mind (4), one obtains

By defining

(12)

we readily obtain (6).
Second, is a Metzler matrix and implies

which are trivially equivalent to (7) and (8), respectively, by
noticing (12).

Remark 2: Theorem 1 presents a necessary and sufficient
condition for the existence of desired controllers. Conditions
(6)–(8) are all LMIs, that is, they are convex in the matrix
variables and ; therefore, these conditions can be readily
checked by using standard numerical software (such as LMI
toolbox in Matlab [9]).

Remark 3: It is noted that the problem addressed in this sec-
tion is similar to the stabilizability-holdability problem consid-
ered in [3, Ch. 7]. In [3], a necessary and sufficient condition is
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proposed for the existence of desired controllers guaranteeing
the closed-loop system to be asymptotically stable and positive.
The condition obtained in [3, p. 133], consisting of a set of in-
equalities, is in general nonlinear and thus not easy to solve.
So far, no efficient algorithm has been proposed to solve that
condition except for the very particular case of scalar input. In
this section, we develop another necessary and sufficient con-
dition for the existence of desired controllers guaranteeing the
closed-loop system to be asymptotically stable and positive,
which is numerically tractable by using standard numerical soft-
ware. An obvious advantage is that the condition developed here
is not only suitable for the case of scalar input, but also appli-
cable to the case of vector input.

III. DISCRETE-TIME CASE

The results obtained in the above section can also be devel-
oped for the discrete-time case. For simplicity, unless otherwise
defined, we associate the same meanings to the notations used
in Section II.

Now consider the following MIMO discrete-time system :

(13)

where , , , , , , and have the same dimen-
sions and meanings as in the continuous-time case.

We introduce the following definition and assumptions [8],
[15].

Definition 3: System in (13) is called positive if for any
and any for every , we have

for .
Assume the state variable can be directly measured, and

our purpose in this section is to design a state-feedback control
law of the form (2) such that the closed-loop system given by

(14)

is asymptotically stable and positive, where and are defined
in (4).

The following lemmas will be useful in the subsequent devel-
opment [8], [15].

Lemma 3: Given the system in (13) and the controller
in (2), the closed-loop system in (14) is positive if and only
if , , , and .

Lemma 4: Given the system in (13) and the controller
in (2), assume that the closed-loop system in (14) is posi-
tive. Then it is asymptotically stable if and only if there exists a
positive diagonal matrix satisfying

(15)

Then our main result for discrete-time systems is expressed
as the following theorem.

Theorem 2: Given the system in (13) with
and , a controller of the form in (2) such that
the closed-loop system in (14) is asymptotically stable and
positive exists if and only if there exist a positive diagonal matrix

and a matrix
satisfying

(16)

(17)

(18)

Under the above conditions, the matrix gain of a desired con-
troller in (2) is given by (9).

Proof: (Sufficiency) First, (17) and (18) trivially ensure
that and . By the positivity of
and , from Lemma 3 we know that the closed-loop
system is positive.

Next, (9) is equivalent to (10). By substituting (10) into (16),
we obtain

(19)

By applying to (19) the congruence transformation defined by
and keeping in mind (4), one obtains

By defining , we readily obtain (15) via Schur com-
plement equivalence [5]. Then, from Lemma 4, we know that
the closed-loop system is asymptotically stable.

(Necessity) Suppose there exists a controller of the form in
(2) such that the closed-loop system in (14) is asymptotically
stable and positive. Then, from Lemmas 3 and 4, we know that

, , and there exists a positive diagonal

matrix satisfying (15).
First, by Schur complement, (15) is equivalent to

(20)

By applying to (20) the congruence transformation defined by
and keeping in mind (4), one obtains

By defining and as in (12), we readily obtain (16).
Second, and trivially imply (17) and

(18), respectively, by noticing (12).

IV. ILLUSTRATIVE EXAMPLES

In this section, we provide several examples to illustrate the
developed theories.

Example 1: Consider the following continuous-time system:

(21)
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It is easy to see that the above system is positive but not asymp-
totically stable. Our purpose is to design a state-feedback con-
troller of the form in (2) such that the closed-loop system is
asymptotically stable and positive. By applying Theorem 1, we
obtain the following matrix variables:

Then, according to (9), the feedback gain matrix of the con-
troller in (2) is given by

(22)

By (21) and (22), the matrices for the closed-loop system in
(3) are given by

It can be seen that is a Metzler matrix and ,
, and . In addition, is a stable matrix.

Example 2: Consider the following example modified from
Example 1:

(23)

It is easy to see that system (23) is neither stable nor positive. By
applying Theorem 1, we obtain the following matrix variables:

Then, according to (9), the feedback gain matrix of the con-
troller in (2) is given by

(24)

By (23) and (24), the matrices for the closed-loop system
in (3) are given by

It can be seen that is a Metzler matrix and ,
, and . In addition, is stable.

To further illustrate the effectiveness of the theories devel-
oped in this paper, let us consider a simple practical example.

Example 3: Suppose there are two stores represented by
and . The numbers of goods in these two stores are represented
by and , respectively. It is assumed that and evolving with
time have the following relationship:

(25)

where , are constant numbers. Our purpose is to keep
the goods in these two stores satisfying the following two
requirements:

for all time (26)

as (27)

If we select

(28)

Then, (25) can be represented by the following state-space
equation:

(29)

where

Obviously, the unforced system of (29) is neither positive nor
asymptotically stable. To meet the requirements in (26) and (27),
we will design a state-feedback controller of the following form:

(30)

such that the closed-loop system

(31)

is both positive and asymptotically stable. By positivity, we have
for all time , which implies (26) by considering (28).

By asymptotic stability, we have as , which
implies (27) by considering (28).

By employing Theorem 2, we obtain the following matrix
variables:

Then, according to (9), a feedback gain for the controller (30)
is given by

(32)
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With (29) and (32), the matrix for the closed-loop system (31)
is given by

It can be seen that the closed-loop system is both positive and
asymptotically stable, showing that the requirements in (26) and
(27) are satisfied.

V. CONCLUDING REMARKS

The control problem for stability and positivity is treated in
this paper for both continuous- and discrete-time linear systems.
Necessary and sufficient conditions are derived in terms of LMIs
for the existence of desired controllers guaranteeing the closed-
loop system to be asymptotically stable and positive. Numerical
examples are provided to illustrate the proposed results.
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