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Abstract— Trajectory optimizers are a powerful class of
methods for generating goal-directed robot motion. Differential
Dynamic Programming (DDP) is an indirect method which
optimizes only over the unconstrained control-space and is
therefore fast enough to allow real-time control of a full hu-
manoid robot on modern computers. Although indirect methods
automatically take into account state constraints, control limits
pose a difficulty. This is particularly problematic when an
expensive robot is strong enough to break itself.

In this paper, we demonstrate that simple heuristics used
to enforce limits (clamping and penalizing) are not efficient in
general. We then propose a generalization of DDP which ac-
commodates box inequality constraints on the controls, without
significantly sacrificing convergence quality or computational
effort. We apply our algorithm to three simulated problems,
including the 36-DoF HRP-2 robot. A movie of our results can
be found here goo.gl/eeiMnn

I. INTRODUCTION

It would be appealing to specify the behavior of a robot in

terms of simple cost functions, and let an intelligent control

algorithm handle the details. This is also the idea behind

the task-function [1] or the operational-space [2] approaches:

instead of working in the configuration space, the motion is

specified with a more abstract function related, for example,

to the position of the end effector or to the output value

of a sensor. The task-function approach naturally leads to

inverse kinematics [3] or operational-space inverse dynamics

[4] and is particularly active nowadays in humanoid robotics

[5], [6], [7] where it is turned into control machinery by

using task sequencing [7]. Classically, a simple proportional

or proportional-derivative controller in the task space is

used [8], but it results in simple trajectories that behave

badly when coming close to obstacles or joint limits. The

convergence basin of these local methods is then very small.

Ad-hoc task trajectories can be learned [9], which enlarge

the convergence basin with a-priori knowledge and provide

a consistent way to define complex task trajectories, but this

is difficult to generalize to new situations.

Trajectory optimization is the process of finding a state-

control sequence which locally minimizes a given cost func-

tion. Shooting methods – which trace their ancestry to the

two-point boundary-value problem of the venerable Maxi-

mum Principle [10] – are an important sub-class of trajec-

tory optimization methods. Unlike so-called direct methods

which explicitly represent the state, these methods parame-

terize only the controls, and obtain the states from forward

integration (hence “shooting”). States are never explicitly

represented in the optimization space and consequently these
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Fig. 1. Left: The humanoid robot HRP-2. Right: Real-time reaching and
balancing behaviors are described in Section IV and in the attached movie.

methods are also known as indirect [11]. Because the dynam-

ics are folded into the optimization, state-control trajectories

are always strictly feasible and “dynamic constraints” are

unnecessary. If additionally the controls are unconstrained,

so is the optimization search-space and shooting methods

can enjoy the benefits of fully unconstrained optimization.

DDP is a second-order shooting method [12] which under

mild assumptions admits quadratic convergence for any sys-

tem with smooth dynamics [13]. It has been shown to posses

convergence properties similar, to or slightly better than,

Newton’s method performed on the entire control sequence

[14]. Classic DDP requires second-order derivatives of the

dynamics, which are usually the most expensive part of

the computation. If only the first-order terms are kept, one

obtains a Gauss-Newton approximation known as iterative-

Linear-Quadratic Regulator (iLQR) [15], [16], which is sim-

ilar to Riccati iterations, but accounts for the regularization

and line-search required to handle the nonlinearity.

Work on constrained indirect methods began with [17],

see [18] for a review. The work most closely related to

ours is [19], see section III-C below. The reader may notice

that these papers had been published several decades ago.

More recent work on constrained trajectory optimization for

robotics has mostly focused on direct methods [20][21][22].

In that context the problem is transcribed into a generic

sequential quadratic programming (SQP) which easily admits

both equality and inequality constraints. We suspect that the

reason these methods have been more popular is the general

availability of off-the-shelf optimization software for generic

SQPs. Both types of methods display different characteristics



and tradeoffs. The direct approach discards the temporal

structure and is forced to search in a constrained space

which is slower, however it is far easier to find better optima

through continuation. The indirect approach is faster and

better suited for warm-starting, but is far more sensitive to

local minima.

In this paper, we consider the solution of control-

constrained problems using indirect methods. We show ex-

perimentally in simulation that simplistic ways of handling

them are inefficient and detrimental to convergence. We then

propose an original solution to explicitly take the inequalities

into account using a projected-Newton QP solver which is in

the general class of active-set methods. The capability of the

method is shown in simulation on a wide range of systems

(random linear systems, a nonholonomic car and a humanoid

robot). In Section II, we quickly recall the Differential

Dynamic Programming algorithm. We characterize the box-

constrained control problem in Section III, along with the

proposed original solution. Finally, Section IV describes the

results, illustrating the usefulness of our approach.

II. DIFFERENTIAL DYNAMIC PROGRAMMING

This section recalls the basics of DDP that are necessary

for the algorithm proposed in Section III. More details are

available, see e.g. [12] for the historical presentation or [23]

for a modern treatment using the same notations as below.

A. Local Dynamic Programming

We consider a system with discrete-time dynamics, but a

similar derivation holds for the continuous case [12]. The

dynamics is modeled by the generic function f

xi+1 = f(xi,ui), (1)

which describes the evolution from time i to i+1 of the state

x ∈Rn, given the control u ∈Rm. A trajectory {X,U} is a

sequence of states X ≜ {x0,x1 . . . ,xN}, and corresponding

controls U ≜ {u0,u1 . . . ,uN−1} satisfying (1).

The total cost denoted by J is the sum of running costs

ℓ and final cost ℓf , incurred when starting from x0 and

applying U until the horizon N is reached:

J(x0,U) = N−1

∑
i=0

ℓ(xi,ui) + ℓf(xN).
As discussed above, indirect methods represent the trajectory

implicitly using only the controls U. The states X are

recovered by integration of (1) from the initial state x0. The

solution of the optimal control problem is the minimizing

control sequence

U∗ ≜ argmin
U

J(x0,U).
Letting Ui ≜ {ui,ui+1 . . . ,uN−1} be the tail of the control

sequence, the cost-to-go Ji is the partial sum of costs from

i to N :

Ji(x,Ui) = N−1

∑
j=i

ℓ(xj ,uj) + ℓf(xN).

The Value at time i is the optimal cost-to-go starting at x:

Vi(x) ≜min
Ui

Ji(x,Ui).
The Value of the final time is defined as VN(x) ≜ ℓf(xN).
The Dynamic Programming Principle then reduces the min-

imization over a sequence of controls Ui, to a sequence of

minimizations over a single control, proceeding backwards

in time:

V (x) =min
u
[ℓ(x,u) + V ′(f(x,u))] (2)

In (2) and below we omit the time index i and use V ′ to

denote the Value at the next time step.

B. Quadratic Approximation

DDP involves iterating a forward pass (or rollout) which

integrates (1) for a given U, followed by a backward pass

which compute a local solution to (2) using a quadratic Tay-

lor expansion. Let Q(δx, δu) be the change in the argument

of the RHS of (2) as a function of small perturbations of the

i-th nominal (x,u) pair:

Q(δx, δu) = ℓ(x+ δx,u+ δu)+V ′(f(x+ δx,u+ δu)) (3)

The Q-function is the discrete-time analogue of the Hamil-

tonian, sometimes known as the pseudo-Hamiltonian. The

second-order expansion of Q is given by:

Qx = ℓx +f
T

x
V ′
x

(4a)

Qu = ℓu +f
T

u
V ′
x

(4b)

Qxx = ℓxx+f
T

x
V ′
xx

fx + V
′

x
⋅ fxx (4c)

Qux = ℓux+f
T

u
V ′
xx

fx + V
′

x
⋅ fux (4d)

Quu = ℓuu+f
T

u
V ′
xx

fu + V
′

x
⋅ fuu. (4e)

where the last terms of (4c, 4d, 4e) denote the product of a

vector with a tensor. The optimal control modification δu∗

for some state perturbation δx, is obtained by minimizing

the quadratic model:

δu∗(δx) = argmin
δu

Q(δx, δu) = k +Kδx. (5a)

This is a locally-linear feedback policy with

k ≜ −Q−1
uu

Qu and K ≜ −Q−1
uu

Qux (5b)

the feed-forward modification and feedback gain matrix,

respectively. Plugging this policy back into the expansion of

Q, a quadratic model of V is obtained. After simplification

it is

∆V = −
1

2
kTQuuk (6a)

Vx = Qx −K
TQuuk (6b)

Vxx = Qxx−K
TQuuK. (6c)

The backward pass begins by initializing the Value function

with the terminal cost and its derivatives VN = ℓf(xN), and

then recursively computing (5) and (6).



C. Line Search

Once the backward pass is completed, the proposed

locally-linear policy is evaluated with a forward pass:

x̂0 = x0 (7a)

ûi = ui + αki +Ki(x̂i − xi) (7b)

x̂i+1 = f(x̂i, ûi), (7c)

where α is a backtracking search parameter, set to 1 and then

iteratively reduced. Finally, this backward-forward process is

repeated until convergence to the (locally) optimal trajectory.

D. Complexity and Regularization

The step taken by DDP corresponds to a Newton-Raphson

step on the whole unconstrained optimal-control problem

[14]. Although DDP searches in the space of control tra-

jectories U ∈ Rm×N , it solves the m-dimensional problem

N times, not a single problem of size mN . The difference is

made stark when considering N Hessians of size m×m rather

than a large Nm×Nm matrix, as in the direct representation.

Since factorization complexity is cubic in the dimension, the

respective complexities are O(Nm3) and O(N3m3).
As with all second-order methods, in order to guarantee a

descent direction, regularization must be used when the Hes-

sian loses positive definiteness. Typically, a Tikhonov regu-

larization term is added when inverting Quu in (5). When

the costs are least-square residuals c(x,u) = 1

2
∣∣r(x,u)∣∣2,

then the Hessians of ℓxx, ℓux and ℓuu are approximated

by the square of the Jacobian (ℓxx ≈ rT
x
rx etc.), while the

Hessians of f are neglected. This approximation corresponds

to the Gauss-Newton variation and is referred as iLQR or

iLQG [16]. The regularization parameter and the descent

step length α are adapted online following a Levenberg-

Marquardt heuristic. Finally, the suboptimal solution ob-

tained after a fixed number of iterations (typically 1) can be

used immediately in a Model Predictive Control setting [23].

III. CONTROL LIMITS

Due to the strict feasibility property of indirect methods,

inequality constraints on the state are handled automatically

under the condition that f maintains regularity, which is

obtained by smoothing hard constraints like rigid contacts

[24]. This has been shown to be very efficient, even in

non-smooth situations like bipedal locomotion, both with

direct [25] and indirect [23] optimization. However, the

same solution cannot be applied directly to handle inequality

constraints on the control. This is an important drawback, as

the control might be the joint torques (limited by the motor

limits [26]), air pressure or valve aperture of pneumatic robot

[27], or as shown in the experiments robot reference angles

(limited by the joint range).

In the following, we consider inequality constraints of the

form:

¯
b ⩽ u ⩽ b̄ (8)

with elementwise inequality and
¯
b, b̄ the respective lower

and upper bounds. The box constraint accurately describes

nearly any set of standard mechanical actuators, and will

allow us to use a specialized active-set algorithm which is

more efficient and easier to implement. A box-constraint

solver can be immediately generalized to any linear inequal-

ity constraints using slack variables [28].

In the next sections, two classical ways to enforce the con-

trol limits are formalized. These easy-to-implement heuristics

will be shown to have significant drawbacks. The last section

presents our original solution.

A. Naı̈ve Clamping

A first attempt to enforce box constraints is to clamp the

controls in the forward-pass. The element-wise clamping,

or projection operator, is denoted by the double square

brackets ⟦⋅⟧b:

⟦u⟧b =min(max(u,
¯
b), b̄),

It is tempting to simply replace (7b) in the forward-pass with

ûi = ⟦ui + αki +Ki(x̂i − xi)⟧b, (9)

however the corresponding search direction may not be a

descent direction anymore, harming convergence. Clamping

can also be introduced to the control modification k in (5):

k ← ⟦k + u⟧b − u,
and it might also seem sensible that the rows of K cor-

responding to clamped controls should be nullified, since

the feedback is inactive in these dimensions. Though this

might seem reasonable and intuitive, it is demonstrated in

the experimental section to be very inefficient.

B. Squashing Functions

Another way to enforce box constraints is to introduce a

sigmoidal squashing function s(u) on the controls

xi+1 = f(xi, s(ui)) (10)

where s() is an element-wise sigmoid with the vector limits

lim
u→−∞

s(u) =
¯
b lim

u→∞
s(u) = b̄.

For example s(u) = b̄−
¯
b

2
tanh(u) + b̄+

¯
b

2
is such a function.

A cost term should be kept on the original u and not only

on the squashed s(u), otherwise it will reach very high

or low values and get stuck on the plateau (see Section

IV-B for a practical discussion). An intuition for the poor

practical performance of squashing is given by the non-

linearity of the sigmoid. Since the backward pass uses a

locally quadratic approximation of the dynamics, significant

higher order terms will always have a detrimental effect on

convergence.

C. Proposed Algorithm

1) Problem Formulation: Clamping does not produce

satisfying results since the clamped directions are not taken

into account during the inversion of Quu. On the other

hand, squashing introduces an artificial non-linearity in the

saturated directions in a way that prevents good performance.

We propose to directly take into account the control limits



while minimizing the quadratic model of Q, which amounts

to solving a quadratic program (QP) subject to the box

constraints (8) at each timestep. The problem is written:

minimize
δu

Q(δx, δu) (11)

subject to
¯
b ⩽ u + δu ⩽ b̄

The QP is a well understood problem with many methods

of solution [29] which together form the backbone of the

Sequential-QP approach to nonlinear optimization. When

choosing an appropriate solver, two characteristics of the

problem at hand should be considered. First, thanks to the

Bellman principle, we are solving several small QP’s rather

than a single big one. Second, since each QP along the

backward pass is similar to the next one, an algorithm that

can enjoy warm starts should be preferred. The warm-start re-

quirement rules out some classes of algorithms, for example

interior-point methods. Since these methods glide smoothly

to the solution from the interior, they do not benefit from

being initialized at the boundary. Standard active-set methods

do traverse the boundary and can be warm-started, but

account separately for each constraint activation/deactivation.

2) Proposed Solution: The Projected-Newton class of

algorithms are a sub-class of active set methods which were

developed for problems with simple constraints, where the

projection operator is trivial – like clamping in the case of the

box. Their key feature is the projected line-search, whereby

the search-point is continuously clamped, allowing multiple

constraints to form and break in each iteration. In [30],

Bertsekas analyses these methods and proves convergence for

a large class of approximate Hessians. In the following we

describe a special case thereof, which uses the exact Hessian

at all times. Its key feature, which we prove in the Appendix,

is that if the initial point has the same active constraint set

as the optimum, the solution will be reached in a single

iteration. Previous work on incorporating control limits in

DDP [17][19], made reference to generic QP algorithms and

did not take into account the considerations detailed above.

Since δx is not known during the backward pass, the QP

needs to compute both the feedfoward and feedback gains k

and K. The first is obtained directly as the optimum of

k = argmin
δu

1

2
δuTQuuδu +Q

T

x
δu

subject to
¯
b ⩽ u + δu ⩽ b̄

However, we require that out QP solver also return the

decomposition of the free dimensions of Quu, denoted by

Quu,f . This decomposition is used to compute the optimal

feedback gain Kf = −Quu,fQux. It follows that Kc, the rows

of K corresponding to clamped controls, are identically zero.

See Appendix I for more details.

3) Complexity: In problems with elaborate dynamics, the

effort required to compute the derivatives in the RHS of (4) is

often significantly larger than that required for the backward-

pass. In that case the extra effort required by the box-QP

solver will go unnoticed. If however we ignore the time re-

quired for the derivatives, or make it very small by computing

them in parallel, the leading complexity term comes from the

Cholesky factorization the Projected Newton solver, which

is O(m3). Since standard DDP requires one factorization

anyway in (5), the question is how many extra factorizations

on average does the box-QP solution impose. The algorithm

performs a factorization whenever the active set changes,

which might not be often, depending on the problem (see

e.g. the middle row of Figure 2). As reported below, in our

experiments the average number of factorizations was never

larger than 2.

IV. RESULTS

We begin with an initial comparison of the three so-

lution types on a set of simple linear systems randomly

selected in Sec. IV-A. We then compare the behavior of

squashing and quadratic programming on a nonholonomic

car problem in Sec. IV-B. Although for this simple problem

analytical optimality can be derived [31], the numerical

solution provides an interesting and generic way to control it.

Finally, we demonstrate box-DDP on a complex platform, the

humanoid robot HRP-2. All the experiments are performed in

simulation, which is enough to demonstrate the relationship

with respect to unconstrained classical DDP. Applying DDP

(and MPC at large) to complex systems such as HRP-2

remains one of the most exciting perspective of this work,

which we will discuss in the conclusion.

A. Linear-Quadratic problems

The finite-horizon Linear-Quadratic (LQ) optimal control

problem is solved by exactly one full iteration of DDP. When

constraints are added, several iteration are necessary. It is

described by linear dynamics:

xi+1 = fxxi + fuui.

and the quadratic optimization criterion

minimize
U

1

2
xT

N ℓf,xxxN +
1

2

N−1

∑
i=0

(xT

i ℓxxxi + u
T

i ℓuuui) .
We generated random LQ problems as follows. The state

dimension n was drawn uniformly from {10 . . .100}. The

control dimension m was drawn from {1 . . . ⌊n
2
⌋}. For a

time-step h the random dynamics matrices were fx = In +

hN(n,n) and fu = hN(n,m), where N is a matrix with

standard normally distributed elements Nij ∼ N (0; 1), and

I is the identity. The cost matrices were ℓxx = ℓf = hIn and

ℓuu = cuhIm with cu the control-cost coefficient. Control

bounds were
¯
b = −1m and b̄ = 1m. The initial state was

drawn from the normal distribution x0 =N(n,1).
The bottom row of Figure 2 shows a comparison between

the clamping and squashing heuristics and the proposed

algorithm. The clamping barely converges to any optimum.

The squashing demonstrates a sub-linear convergence. The

box-QP solution shows a very characteristic quadratic con-

vergence. Quadratic convergence, which amounts to conver-

gence like Newton method means the doubling of correct

significant bits in the solution with each iteration. This

manifests as quadratic-looking traces on a log-plot of the
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convergence trace, as seen in Figure 2. The average number

of factorizations per iteration was 1.5. To see why this

number is so small, observe the low frequency of constraint-

set changes in the middle row of the figure.

B. Car Parking

For the car-like robot, one of the control variables, the an-

gle of the front wheels, is a kinematic, rather than a dynamic

variable. When controls specify kinematic variables, bounds

arise naturally from the geometry of the problem rather

than from actuator limits. This makes kinematic problems

an important class for our proposed algorithm.(x, y, θ, v) is the 4-dimensional state. x, y is the position

of the point midway between the back wheels. θ is the angle

of the car relative to the x-axis. v is the velocity of the front

wheels. The two control signals are ω the front wheel angle

and a the front wheel acceleration. For Euler dynamics with

a time-step h and letting d denote the distance between the

front and back axles, the rolling distance of the front and

back wheels are respectively

f = hv (13a)

b = f cos(ω) + d −√d2 − f2 sin2(ω), (13b)

and the h-step dynamics are

x′ = x + b cos(θ) (13c)

y′ = y + b sin(θ) (13d)

θ′ = θ + sin−1(sin(ω)f
d
) (13e)

v′ = v + ha. (13f)

The “parking” task is encoded as a final-cost on the distance

of the last state from (0,0,0,0), i.e. at the plane origin, facing

east and motionless. Distance was measured using the Huber-

type function z(x, p) =√x2 + p2−p. This function is roughly

quadratic in a p-sized neighborhood of the origin and linear

thereafter. The state cost is

ℓf(x) = z(x, px) + z(y, py) + z(θ, pθ) + z(v, pv)
We chose px = py = 0.1m, pθ = 0.01rad and pv = 1m/s
to compensate for the relative difficulty of changing each

variable. Because it is easier to stop the car (v = 0) than to

orient it (θ = 0), we would like the optimizer to focus on the

harder task once near enough to the goal-state. A running

cost is added to penalize cartesian distance from the origin

ℓ(x) = 0.01(z(x, px) + z(y, py))
This term encourages parking maneuvers which do not take

the car far from the origin. ℓ(u) = cωω
2
+ caa

2 with cω =

0.01 and ca = 0.0001. Cost coefficients were chosen to be

small in order to encourage the controller to hit the bounds

bω = ±0.5rad and ba = ±2m/s2.

Since the “clamping” heuristic performed so badly in the

previous case, here we used the car parking domain to

compare box-DDP only to the “squashing” heuristic. The

squashing function used was

ω(ω̃) = 0.5 × tanh(ω̃)
a(ã) = 2 × tanh(ã).

In order to prevent the “pre-controls” (ω̃, ã) from diverging,

a small explicit cost on these was added

ℓ(ω̃, ã) = cωω2
+ caa

2
+ 10−6(ω̃2

+ ã2).
This additional term is small enough to not significantly

modify the problem, but large enough to pull (ω̃, ã) back

towards the origin when they are too large.

Fig. 3 compares the results obtained with the two solvers.

Similar trajectories are obtained, but with much higher gains

k,K in the squashing case. Fig. 4 gives the convergence

rate comparison. The squashing-function solution barely

converge while the box DDP converges quadratically.
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C. Humanoid robot

Like many modern full-size humanoid robots, HRP-2 [32]

is powered by direct-current electrical motors coupled with

high-ratio gears (typically, harmonic drive with ratio 1/200)

which make it very stiff. Two solutions are possible to apply

the DDP on a robot such as HRP-2. The first one is to

perform precise system identification, taking into account

the well-known motor dynamics, the PD-controller transfer

function and the harmonic gear frictions. The inverse of this

model provides a feed-forward torque control input [33].

However, despite some recent work in this direction [34],

direct feed-forward current control is not yet a functional

option, while the lack of joint torque sensor on most of hu-
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Fig. 4. Cost decrease ∆J of the two algorithms for the car-parking
problem. Box-DDP converges quadratically after 64 iterations, while the
squashing-function solution has barely converged by 500.

manoid robots prevent feedback torque control. Alternatively,

the low-level PD controllers of the robot can be modeled

inside the forward dynamics. The control input u is then the

reference joint angle. This solution is appealing, since the

PD controllers can be considered strong enough to nullify the

gear dry friction, which need not be modelled. The control is

then limited by the joint range, which should not be hit as it

would likely damage the robot. For this reason box-DDP is

appealing since the joint references output by the algorithm

are guaranteed to be inside the limits.

Optimal control allows for very simple specification of

the robot movement. In the demonstrated example, the robot

has to reach a moving target with its right gripper, while

standing and if necessary stepping to maintain its balance.

Several cost functions are used to define various aspects of

the motion of the robot. The balance is enforced by setting

three cost functions: on the chest and pelvis angles θ to keep

them horizontal; on the chest altitude z; and on the capture

point a to keep it on the line between the feet. The two last

ones penalize the linear and angular momenta:

ℓbal(x) =cθ (∥θpelvis(x)∥2 + ∥θchest(x)∥2)
+ cz(zchest(x) − z∗)2 + cαz(a(x) − a⊥(x))

with z∗ the initial chest altitude, a⊥ the orthogonal projection

of a on the line between the ankles, cθ = 0.3, cz = 0.2 and

ca = 1. The stepping is emphasized by putting a cost to keep

the feet parallel to the ground and oriented toward the target:

ℓstep(x) =croll∥θlf,rf(x)∥2 + cyaw(γfeet(x) − γ∗)2



Fig. 5. Reaching a moving target, stepping when necessary. A sequence of frames of full body motion synthesized in real-time for the HRP2 robot. The
robot is trying to reach the moving target while stabilizing itself. When the rotation causes the legs to collide, the robot stumbles, takes a step to balance
itself, and reaches for the target once more.

with θlf,rf the angle of the feet with respect to the ground,

γfeet the yaw angle of the line between the two ankles,

γ∗ the yaw angle of the target in the egocentric cylindrical

coordinates, croll = 0.05 and cyaw = 0.1. Finally, the reaching

is triggered by a cost on the distance to the target:

ℓreach = creach∣∣p(x) − p∗∣∣2
with p the gripper position and p∗ the target position. All

the cost are squares of residuals, which enable us to use the

Gauss-Newton approximation of the second derivatives. This

is an important shortcut since the second order derivatives

would be very expensive to compute with a system of the size

of HRP-2. Collision avoidance is enforced by the simulator

in the forward pass.

An overview of the obtained motion is given in Fig. 5.

The complete motion, along with a set of other examples,

are displayed on the companion video.

V. CONCLUSION

This paper proposed a modification of the DDP which

allows us to incorporate control limits. This is a key feature

for applying the DDP algorithm to real robots. In particular, it

is mandatory when the control input specifies some kinematic

variables, like the steering direction of the car or the joint

references of the humanoid. Our solution is very fast and

keeps the good convergence properties of the DDP algorithm.

It is also exact, in the sense that the specified constraint can

not be exceeded in any situation. It enables us to control

the humanoid robot HRP-2 in real time with a desktop

personal computer in simulation, while interacting with it

using an haptic device. The next step is to apply the same

control scheme on the real HRP-2 robot. The key point for

that is to introduce some feedback terms in addition to the

state estimation to make the MPC behavior more robust to

modeling errors.
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APPENDIX I

PROJECTED-NEWTON QP SOLUTION

Consider the generic problem:

minimize
x

f(x) = 1

2
xTHx + qTx (14a)

subject to
¯
b ⩽ x ⩽ b̄ (14b)

The algorithm proceeds by iteratively identifying the ac-

tive constraints, and then performing a projected Newton step

using the reduced Hessian in the free sub-space. Begin at

some feasible initial guess x = ⟦x⟧b and define the gradient

g = ∇xf = q+Hx. The complimentary sets of clamped and

free indices c and f are

c(x) = ⎧⎪⎪⎨⎪⎪⎩j ∈ 1 . . . n
RRRRRRRRRRR
xj =

¯
bj , gj > 0

or

xj = b̄j , gj < 0

⎫⎪⎪⎬⎪⎪⎭ (15a)

f(x) = {j ∈ 1 . . . n ∣ j ∉ c} (15b)

For readability, we sort the index partition {f, c}:
x← [xf

xc

] , q← [qf

qc

] , H← [Hff Hfc

Hcf Hcc

] , (16)

The gradient in the free subspace is

gf = ∇xf
f = qf +Hffxf +Hfcxc,

The Newton step in the free subspace is then:

∆xf = −H
−1

ff gf = −H
−1

ff (qf +Hfcxc) − xf .

The full step is therefore:

∆x = [∆xf

0c

] . (17)

The projected Newton candidate point x̂ for a line-search

parameter α is

x̂(α) = ⟦x + α∆x⟧b. (18)

A backtracking line-search reduces α until the Armijo con-

dition [35] is satisfied

f(x) − f(x̂(α))
gT(x − x̂(α)) > γ (19)

with 0 < γ < 1

2
the minimally acceptable reduction ratio. We

use the oft-quoted γ = 0.1 in the experiments. By design, the



Algorithm I x∗ ←Ð QP[H, q, b, b̄, x]
Repeat until convergence:

1) Get indices: Equations (15).

2) Get Newton step: Equations (16).

3) Convergence: If ∥gf∥ < ǫ≪ 1, terminate.

4) Line search: Decrease α in (18) until (19) is satisfied.

Accept the candidate x← x̂(α).

key feature of the algorithm is the following:

Lemma. If the initial point x has the same clamped con-

straints as the optimum c(x) = c(x∗), then the solution will

be reached in a single iteration.

Proof. Setting ∆xf = 0 at the optimum, we have from (17)

that x∗
f
= −H−1

ff
(qf +Hfcxc). If c(x) = c(x∗) then xc =

x∗c and therefore ∆xf = x∗
f
− xf taking us directly to the

minimum in one step.
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