
American Journal of Operations Research, 2019, 9, 175-191 

http://www.scirp.org/journal/ajor 

ISSN Online: 2160-8849 

ISSN Print: 2160-8830 

 

DOI: 10.4236/ajor.2019.94011  Jul. 31, 2019 175 American Journal of Operations Research 

 

 

 

 

Control Method of Effect of Robust 
Optimization in Multi-Player  
Multi-Objective  
Decision-Making 

Tomoaki Yatsuka1, Aya Ishigaki1*, Yuki Kinoshita2, Tetsuo Yamada2, Masato Inoue3 

1Department of Industrial Administration, Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan 
2Management Science and Social Informatics Program, Department of Informatics, Graduate School of Informatics and  

Engineering, The University of Electro-Communications, Tokyo, Japan 
3Department of Mechanical Engineering Informatics, Meiji University, Kanagawa, Japan 

 
 

 

Abstract 

In the real situations of supply chain, there are different parts such as facili-

ties, logistics warehouses and retail stores and they handle common kinds of 

products. In this research, these situations are focused on as the background 

of this research. They deal with the common quantities of their products, but 

due to their different environments, the optimal production quantity of one 

part can be unacceptable to another part and it may suffer a heavy loss. To 

avoid that kind of unacceptable situations, the common production quantities 

should be acceptable to all parts in one supply chain. Therefore, the motiva-

tion of this research is the necessity of the method to find the production 

quantities that make all decision makers acceptable is needed. However, it is 

difficult to find the production quantities that make all decision makers ac-

ceptable. Moreover, their acceptable ranges do not always have common 

ranges. In the decision making of car design, there are similar situations to 

this type of decision making. The performance of a car consists of purposes 

such as fuel efficiency, size and so on. Improving one purpose makes another 

worse and the relationship between these purposes is tradeoff. In these cases, 

Suriawase process is applied. This process consists of negotiations and re-

views of the requirements of the purposes. In the step of negotiations, the re-

quirements of the purposes are share among all decision makers and the solu-

tion that makes them as satisfied as possible. In the step of reviews of the re-

quirements, they are reviewed based on the result of the negotiation if the re-

sult is unacceptable to some of decision makers. Therefore, through the itera-

tions of the two steps, the solution that makes all decision makers satisfied is 
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obtained. However, in the previous research, the effects that one decision 

maker reviews requirements in Suriawase process are quantified, but the ma-

thematical model to modify the ranges of production quantities of all decision 

makers simultaneously is not shown. Therefore, in this research, based on 

Suriawase process, the mathematical model of multi-player multi-objective 

decision making is proposed. The mathematical model of multi-player mul-

ti-objective decision making by using linear physical programming (LPP) and 

robust optimization (RO) in the previous research is the basis of the methods 

of this research. LPP is one of the multi-objective optimization methods and 

RO is used to make the balance of the preference levels among decision mak-

ers. In LPP, the preference ranges of all objective functions are needed, so as 

the hypothesis of this research. In the research referred in this research, the 

method to control the effect of RO is not shown. If the effect of RO is too big, 

the average of the preference level becomes worse. The purpose of this re-

search is to reproduce the mathematical model of multi-player multi-objective 

decision making based on Suriawase process and propose the method to con-

trol the effect of RO. In the proposed model, a set of the solutions of the ne-

gotiation problem is obtained and it is proved by the result of the numerical 

experiment. Therefore, the conclusion that the proposed model is available to 

obtain a set of the solutions of the negotiation problems in supply chain.  

 

Keywords 

Linear Physical Programming, Suriawase Process, Multi-Player  

Decision-Making, Supply Chain Coordination, Robust Optimization 

 

1. Introduction 

A supply chain consists of various products, stages, and players, such as produc-

tion facilities, logistics warehouses, and retail stores. It may also treat common 

products. Recent advancements in the manufacturing industry, such as the ad-

vent of Industry 4.0, have paved the way for a system-wide deployment where 

information from all related perspectives can be closely monitored and synchro-

nized between the physical factory floor and cyberspace [1]. Specifically, net-

worked stages in the supply chain can become more efficient, collaborative, and 

resilient by utilizing advanced information analytics. That is, in Industry 4.0, 

systems in the supply chain are connected as a collaborative community [2]. Si-

multaneously, the production system in the Industry 4.0 era can be highly flexi-

ble in terms of production quantities and customization, can have extensive in-

tegration among customers, companies, and suppliers, and, above all, can be 

sustainable [3] [4]. 

To achieve a successful production system in this era, it is necessary to under-

stand how existing non-Industry 4.0-ready production systems can be expanded 

to eventually play a role in an Industry 4.0 supply chain [5] [6]. Through such 

technological support, participants at each stage can meet their full potential and 
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become strategic decision makers and flexible problem-solvers [7]. Moreover, it 

would provide the required inter-disciplinary understanding needed for the im-

plementation of Industry 4.0.  

Successful supply chain coordination faces the need to ensure the sustainable 

evolution in social, environmental, and economic dimensions for all involved 

[4]. However, it is often difficult to integrate the optimal production quantities, 

for example, that are acceptable to all decision makers in the chain. Given dif-

ferent environments, the optimal quantity of a product may differ across stages 

and players [8] [9]. Therefore, the optimal product quantity at one stage could 

be less than optimal at another; in the worst-case scenario, this imbalance could 

cause business failure. To avoid this situation, the product quantity in the supply 

chain should be anticipated and acceptable for all stages and players. 

As mentioned, each stage has different optimal production quantities. Specif-

ically, each has an acceptable range of production quantities, but these ranges 

may not always be the same. The supply chain for a car design is a good example 

of this situation with this type of decision-making. In order for the carmaker to 

maximize effectiveness, different auto parts are designed by different players. To 

determine the total design, each part manufacturer has to make adjustments. In 

Japanese, this is called the “Suriawase” (harmonization or integration) process 

[10] [11] [12]. This process looks for the designs that are acceptable to all the de-

cision makers through iterations of negotiations, sharing, and reviews of the re-

quirements. However, according to [11], in the Suriawase process, although the 

effects of one decision maker’s requirements are quantified, a mathematical 

model to modify the ranges of production quantities for all decision makers si-

multaneously has not been identified. Therefore, a method is needed that identi-

fies the optimal production quantities for all decision makers. Accordingly, the aim 

of this research, based on the Suriawase process, is to propose a decision-making 

mathematical model for a multi-player, multi-objective supply chain. 

The proposed model uses two important techniques. The first is multi-objective 

optimization. Here, each target value of each objective function is considered. 

Goal programming (GP) [13] and linear physical programming (LPP) [14]-[21] 

are known methods for solving this type of multi-objective problem. In these 

methods, a preference function for each objective function is calculated; the pre-

ference function becomes smaller as the objective function value approaches its 

target value. In GP, the preference functions are linear. In contrast, preference 

functions in LPP are piecewise linear, using GP with different target value levels, 

so the preference functions become nonlinear. Therefore, LPP is preferable for 

solving multi-objective problems.  

The second technique is multi-player decision-making. However, in their ba-

sic forms, neither GP nor LPP can be used to address multi-player problems. 

Then, the model to apply LPP to multi-player is developed by using the idea of 

robust optimization (RO) [22] [23] [24] to balance preference levels among the 

decision makers [25]. In this model, the balance between the improvement of 

preference levels for each decision maker and the balance of preference levels 
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among all decision makers by using RO is important, but the method to control 

the effect of RO is not shown. Therefore, the purpose of this research is to pro-

pose the model with the way to control the effect of RO. By adding the way to 

control the effect of RO, it becomes possible to propose not one solution but a 

set of solutions (solutions). The paper is organized as follows: Section 2 presents 

the Suriawase process. Section 3 discusses multi-objective optimization, the pre-

vious model of multi-player multi-objective optimization and the proposed 

model in this research. Section 4 reports the result of a numerical experiment, 

and Section 5 concludes the paper with some perspectives. 

2. Decision Making through Negotiation 

The purpose of this research is to develop the model of decision making of the 

production quantities that makes players of all the stages in the supply chain sa-

tisfied. However, the desirable production quantity of each player differs from 

those of other players because of the different environments among the players. 

And by improving one of the purposes, another may get less desirable. In other 

words, there may be trade-off relations among purposes. Suriawase process is 

one of the negotiation methods of multi-player with different preferences and 

trade-off relations and this method makes it possible to find the solution that all 

the decision makers are satisfied with. This process is applied to the product de-

velopment and the product has multiple purposes (for example, fuel efficiency, 

size, and so on in the case of car). Each decision maker of each purpose shares 

the requirement of each purpose with each other and the result of negotiation is 

obtained by sharing the requirements of all the purposes among all the decision 

makers. Then, if some of the requirements are not satisfied sufficiently, all the 

requirements are reviewed. The iterations of negotiations and reviews of the re-

quirements are continued until all the decision makers are satisfied with the re-

sult. The detailed flow in Suriawase process is shown as follows: 

1) Each decision maker makes the initial optimal design (solution) and the 

requirements of it. 

2) The requirements of all decision makers are shared with each other. 

3) Based on the requirements, the decision makers make one alternative solu-

tion through negotiation. 

4) If the alternative solution is not acceptable to some of decision makers, all 

decision makers review the requirements and return to step 2. 

5) If the alternative solution is acceptable to all decision makers, it is regarded 

as a final design (solution) and this process exterminates. 

Step 1 to 3 are the stage of the negotiation and Step 4 is the stage of the reviews 

of the requirements. In this research, the stage of the negotiation is focused on. 

3. Multi-Player Multi-Objective Model  

3.1. LPP Procedure 

For this case, the multi-objective optimization of the target values of the objec-
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tive functions is the focus. The GP and LPP methods are known for this type of 

multi-objective optimization. We discuss the LPP method. In ordinary GP, the 

objective functions and constraints are given as linear functions [13]. To address 

nonlinear problems, a method is needed to calculate the weight coefficients of 

the objective functions step by step. Thus, LPP enables nonlinear problems to be 

solved using the GP approach while adding preference ranges for the objective 

functions [14]-[21]. In LPP, there are three steps. In the first step, the preference 

ranges of the objective functions are given. In the second step, the weight coeffi-

cients are calculated with the preference ranges. In the third step, the sum of the 

preference functions for all objective functions is minimized. 

In the first step, the preference ranges of the objectives are given for different 

target value levels. Table 1 shows an example of preference range.  

In Table 1, six preference levels are given, where a smaller value of the objec-

tive function is preferable. For example, if μ is defined as a generic design objec-

tive, the ranges of desirability are defined as follows in order of decreasing pre-

ference: 

Ideal range: 25µ ≤  

Desirable range: 25 31µ< ≤  

Tolerable range: 31 36µ< ≤  

Undesirable range: 36 44µ< ≤  

Highly undesirable range: 44 50µ< ≤  

Unacceptable range: 50 µ<  

That is, this case has six targets and five target values (25, 31, 36, 44, and 50). 

The objective functions are classified into four types. “1S” means the smaller 

value of the objective function is more ideal. “2S” means that the larger value of 

the objective function is more ideal. “3S” means that a given value of the objec-

tive function is the most ideal. “4S” means that a given range of the objective 

function is the range of the most ideal values. 

In the second step, based on the preference ranges in the first step, the weight 

coefficients are calculated in the seven steps of the algorithm below. The follow-

ing definitions apply: n  objectives, and sn  preference levels ( 1, ,=  ss n ) of 

each objective, are given. ist  is the target value of level s  of objective i . The 

target values are classified into +
ist  and −

ist ; the target value is +
ist  if it is  

 

Table 1. Preference range (example). 

Level Range 

Ideal <25 

Desirable 25 - 31 

Tolerable 31 - 36 

Undesirable 36 - 44 

Highly Undesirable 44 - 50 

Unacceptable >50 
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larger than the most ideal target value or range (1S, 3S and 4S); in contrast, the 

target value is −
ist  if it is smaller than the most ideal value or range (2S, 3S and 

4S). And the variables +
isd  and −

isd  ( 2, ,=  ss n ) show how far from the target 

values ( )1

+
−i s

t  and ( )1

−
−i s

t . The weight coefficient of level s (between target value 

( )1−i s
t  and ist ) of objective i  is denoted as isw  and classified into +

isw  and 
−
isw . The length of the preference ranges of level s , the increment of the weight 

coefficients between level 1−s  and s , and the distance of the preference func-

tions between ( )1−i s
t  and ist  are denoted as 

ist , 
isw , and  sz , respectively 

( 2, ,=  ss n ). β  is calculated as the common parameter to decide the prefe-

rence function among all objectives. To calculate β , the OVO rule (one vs. 

others) is used; this rule maintains the balance of all preference levels among all 

objectives. For example, when 10 objectives are given, the case where the prefe-

rence levels of all objectives are “Desirable” is better than where the preference 

levels of nine objectives are “Ideal” and the other objective is “Tolerable”. 

Therefore, the following equation is given. 

( ) 11 −> − s s

snz z                           (1) 

By using the parameter ( )1β > , this equation is changed to, 

( ) 11β −= − s s

snz z                          (2) 

Then,  sz  is used to calculate the weight coefficient isw , as follows. 

,+ + − −= =  s s

is is is isw wz t z t                       (3) 

Therefore, if β  is not large enough, the increments of the weight coefficients 

between consecutive levels become too small. Thus, β  is calculated to ensure 

that the minimum 
isw  ( min

w ) is large enough in the following algorithm. 

Step 1. Initial condition: 1.1β = ; 
1 1 0+ −= =i iw w ; 2z  = small number; 0=i ; 

1=s  

Step 2. 1= +i i  

Step 3. 1= +s s  

Step 4. ( ) ( )11 3β −= − ≤ ≤ s s

s sz zn s n  

( ) ( )( )1
2 1 ,3 , 4+ + +

−= − ≤ ≤
is is si s

t t s n S St S  

( ) ( )( )1
2 2 ,3 ,4− − −

−= − ≤ ≤
is is si s

t t s n S St S  

( )( )2 1 ,3 ,4+ += ≤ ≤ s
is is ss n Szw St S  

( )( )2 2 ,3 ,4− −= ≤ ≤ s
is is ss n Szw St S  

( ) ( )( )1
2 1 ,3 , 4+ + +

−= − ≤ ≤
is is si s

w w s n S Sw S  

( ) ( )( )1
2 2 ,3 , 4− − −

−= − ≤ ≤
is is si s

w w s n S Sw S  

( ) ( )min
,

min , 0 2+ −= > ≤ ≤  
is is s

i s
w sw nw  

Step 5. If min
w  is smaller than a chosen small positive value (e.g., 0.1), 

1β β= + , 0, 1= =i s  and go back to Step 2. 
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Step 6. If ≠ ss n , go to Step 3. 

Step 7. If =i n , terminate; otherwise, go to Step 2. 

By using β , the distance of the preference functions between level 1−s  and 

s (  sz ) follow a geometric progression based on the recursion of Equation (2). 

( ){ } ( )2 21 2
ss

s sn s nz zβ
−

= − ≤ ≤                   (4) 

Then, the preference function ( )µi iz  ( isf ) is the following equation, while 

0 0=if . 

( ){ }

( ){ }( ) ( ){ }( )( )

2 2

2 2

1

1

1 1 1 1 2

s s
kk

is s

k k

s

s s s

f n

n n sn

z zβ

β β

−

= =

−

= = −

= − − − − ≤

∑ ∑ 
         (5) 

Based on β , the weight coefficients and the differences of them between 

consecutive levels are calculated. The sum of the preference functions of all ob-

jectives is shown by using +
id  and −

id  of level s ( ,+ −
is isd d ) as the difference 

between the objective function µi  and the target value ( )1−i s
t . +

isd  and −
isd  

are calculated as follows. 

( )1
, 1, , ; 2, ,µ + +

−+ = = = i is si s
d t i n s n                 (6) 

( )1
, 1, , ; 2, ,µ − −

−− = = = i is si s
d t i n s n                 (7) 

Based on +
isd  and −

isd , the sum of the preference functions of all decision 

makers is as follows. 

( )1 1 2

+ + − −
= = =

= +∑ ∑ ∑  sn n n

i is is is isi i s
w wz d d                 (8) 

The above function and constraints are used in the following formulation. The 

objective function is: 

( )1 1 2
min+ + − −

= = =
= + →∑ ∑ ∑  sn n n

i is is is isi i s
z wdw d              (9) 

subject to: 

( )1
, 1, , ; 2, ,µ + +

−+ = = = i is si s
d t i n s n               (10) 

( )1
, 1, , ; 2, ,µ − −

−− = = = i is si s
d t i n s n               (11) 

and other constraints related to ( )1, ,= jx j m  and ( )1, ,µ = i i n . 

Therefore, LPP consists of an algorithm with weight coefficients. Because LPP 

is applied to just a single decision maker, LPP now needs to be extended to a 

multi-player situation to reproduce the Suriawase process. Thus, the method to 

extend LPP to a multi-player framework needs to be identified. 

3.2. Multi-Player LPP 

LPP can be applied to multi-player by applying LPP to the objectives of all deci-

sion makers. To ensure the preference function values for each level for all tar-

gets ( lisf ) are equal among all decision makers ( 1, ,= l L ), a common value of 

β  is used for all decision makers. By using the common value of β , the fol-
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lowing equations are established. 

( )

11 1

21 2

1 2, ,

= =

= = =

= = = =




 


s ns

s ns

L s Lns s

f f

f f

f f s n

                (12) 

Considering these equations, similarly to LPP with a single decision maker, 

the solution is obtained by minimizing the sum of the preference functions 

( )1, ,= liz l L  of all objectives for all decision makers as follows. The objective 

functions ( )1, ,µ = i i n  and the decision variables ( )1, ,= jx j m  are shared 

among all decision makers. The multi-player LPP objective function 

( )1 1 1 1 2
min+ + − −

= = = = =
= + →∑ ∑ ∑ ∑ ∑  sL n L n n

li lis lis lis lisl i l i s
z wdw d       (13) 

is subject to 

( )1
, 1, , ; 1, , ; 2, ,µ + +

−+ = = = =  i lis sli s
d t l L i n s n             (14) 

( )1
 , 1, , ; 1, , ; 2, ,µ − −

−− = = = =  i lis sli s
d t l L i n s n             (15) 

and other constraints related to ( )1, ,= jx j m  and ( )1, ,µ = i i n . 

It is impossible to identify the preference function values between decision 

makers. Therefore, the method to keep the balance of the preference function 

values between decision makers is not shown. 

3.3. Robust Optimization 

The solution obtained by solving this can cause the biases of the sums of the 

preference function values between decision makers. The reason for this is that 

this formula is not able to consider the balance of the sums of the preference 

functions between all decision makers. Therefore, it is necessary to consider ba-

lancing the sums or reducing the biases of the sums of the preference functions. 

Therefore, RO [22] [23] [24] is used to reduce the biases of the sums of the pre-

ference functions between all decision makers. In general, the objective of RO 

models is to obtain solutions that are guaranteed to perform well (in terms of 

feasibility and near-optimality) for all, or at least most, possible realizations of 

the uncertain input parameters. RO is used to find the solution where the objec-

tive function in the worst case is not too bad in an uncertain environment. Al-

though it is possible for each player to solve its own multiple-objective optimiza-

tion problem, behavior of other players cannot be known in advance. It is ne-

cessary to solve the multi-objective optimization problem with consideration of 

the differences between the solutions of decision makers. 

The formulation of the problem with minimization of the objective function is 

as follows using parameters with the fluctuation ( ), 0, ,∈ =u i i uU i n  and the 

variables x . The RO objective function, 

( )
0 0 0min max ,x ux f                       (16) 

is subject to: 
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( ) 1, 0, 1, , ,≤ ∀ ∈ =x u u i i i if i m                 (17) 

( ) 20, 1, ,≤ =x jg j m                     (18) 

When LPP is extended to a multi-player framework, the differences in the 

sums of the preference functions of objectives between decision makers are the 

equivalents of the parameters with fluctuations in RO. Therefore, in [25] the ob-

jective function of multi-player LPP RO is to minimize the sum of the preference 

functions of the decision maker whose sum of preference functions is the largest 

among all decision makers, that is, 

( )1 1 2
max max min+ + − −

= = =
= + →∑ ∑ ∑  sn n n

l li l lis lis lis lisi i s
z d dw w       (19) 

In Equation (19), the decision maker that has the largest sum of the preference 

functions of all decision makers is selected and his or her sum of the preference 

functions is minimized. It makes it possible to avoid the case that the largest sum 

of the preference functions is extremely large. 

3.4. Proposed Model 

RO makes biases in the sums of the preference functions between the decision 

makers smaller. However, using the objective function of RO makes the average 

of the sums of the preference functions of all decision makers larger. Thus, the 

balance between the average (sum) and the reduction of the biases among all de-

cision makers is important. Therefore, the effect of RO in multi-player LPP is 

controlled in our model by using ( )0 1α α≤ ≤  as follows. The multi-player 

LPP with RO objective function, 

( ) ( ) ( )
1 1 2 1 2

1 max minα α+ + − − + + − −

= = = = =

− + + + →∑∑∑ ∑∑   
s sn nL n n

lis lis lis lis lis lis lis lis
l

l i s i s

d d L d dw w w w    (20) 

is subject to 

( )1
 , 1, , ; 1, , ; 2, ,µ + +

−+ = = = =  i lis sli s
d t l L i n s n           (21) 

( )1
 , 1, , ; 1, , ; 2, ,µ − −

−− = = = =  i lis sli s
d t l L i n s n           (22) 

and other constraints related to ( )1, ,= jx j m  and ( )1, ,µ = i i n . 

However, the following inequality between the first term of the objective func-

tion and the second is established when α  is not considered: 

( ) ( )1 1 2 1 2
max+ + − − + + − −

= = = = =
+ ≤ +∑ ∑ ∑ ∑ ∑   s sL n n n n

lis lis lis lis l lis lis lis lisl i s i s
d d L d dw w w w   (23) 

Therefore, the second term affects the result of the objective function more 

than the first term. As a result, it is necessary to unify the scales of their effects. 

The scales can be normalized by using the maximum values of the first and 

second terms, denoted maxLPP and maxRO. maxLPP is calculated in mul-

ti-player LPP with RO by using 0α = , and maxRO is calculated in multi-player 

LPP. By using maxLPP and maxRO, the normalized formulation of multi-player 

LPP with RO is 

( ) ( )( )
( )( )

1 1 2

1 2

1 max

max max min

α

α

+ + − −
= = =

+ + − −
= =

− +

+ + →

∑ ∑ ∑

∑ ∑

 

 

s

s

L n n

lis lis lis lisl i s

n n

l lis lis lis lisi s

d d LPP

L w d d RO

w w

w
      (24) 
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subject to 

( )1
, 1, , ; 1, , ; 2, ,µ + +

−+ = = = =  i lis sli s
d t l L i n s n          (25) 

( )1
, 1, , ; 1, , ; 2, ,µ − −

−− = = = =  i lis sli s
d t l L i n s n          (26) 

and other constraints related to ( )1, ,= jx j m  and ( )1, ,µ = i i n . 

As α  changes in the range of [ ]0,1 , the multi-player LPP is solved as fol-

lows. αn  is the natural number of the iterations of this algorithm. 

Step 1. Initial situation: 0, 0α = =i  

Step 2. Multi-player LPP with RO is solved with α . 

Step 3. If α≠i n , set ( )1 αα α= + n , 1= +i i  and go back to Step 2. If 

α=i n , terminate. 

In this algorithm, several solutions are obtained by changing the strength of 

the effect of the RO. 

4. Multi-Player Experiment 

In this experiment, decision-making around different production quantities is 

the focus. The players in the supply chain, such as facilities, logistics warehouses, 

and retail stores, have several common product items. However, they have dif-

ferent optimal production quantities, due to their different environments. In this 

section, by extending the numerical experiment in [21], a data set of a mul-

ti-player decision-making problem can be developed. Let us assume there are 

three kinds of products and the profit per product A, B, and C is $12 k, $10 k, 

and $8k, respectively. While the total profit is necessary to reach at least $750 k, 

the resources of the products are minimized. Thus, the objective functions are 

classified as 1S (minimization target) for a facility, a logistics warehouse, and a 

retail store. They have different preference ranges for the products as shown in 

Tables 2-4. In this case, there are six preference levels and five target values 

( 5=sn ). 

The weight coefficients are calculated as shown in Tables 5-7.  

The production quantities for products A, B, and C are denoted as Ax , Bx , 

and Cx , respectively, and the objective functions of products A, B, and C are 

denoted as 1µ , 2µ , and 3µ , respectively. To simplify the problem, the objec-

tive functions 1µ , 2µ , and 3µ  are shown as follows. 

 

Table 2. Preference range of product A. 

Level 
Range 

Facility Logistic warehouse Retail store 

Ideal <25 <14 <18 

Desirable 25 - 31 14 - 18 18 - 23 

Tolerable 31 - 36 18 - 25 23 - 30 

Undesirable 36 - 44 25 - 35 30 - 41 

Highly Undesirable 44 - 50 35 - 50 41 - 50 

Unacceptable >50 >50 >50 
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Table 3. Preference range of product B. 

Level 
Range 

Facility Logistic warehouse Retail store 

Ideal <12 <23 <14 

Desirable 12 - 19 23 - 27 14 - 17 

Tolerable 19 - 27 27 - 33 17 - 22 

Undesirable 27 - 33 33 - 36 22 - 32 

Highly Undesirable 33 - 40 36 - 40 32 - 40 

Unacceptable >40 >40 >40 

 

Table 4. Preference range of product C. 

Level 
Range 

Facility Logistic warehouse Retail store 

Ideal <6 <7 <5 

Desirable 6 - 10 7 - 16 5 - 11 

Tolerable 10 - 17 16 - 19 11 - 16 

Undesirable 17 - 22 19 - 23 16 - 22 

Highly Undesirable 22 - 30 23 - 30 22 - 30 

Unacceptable >30 >30 >30 

 

Table 5. Weight coefficients of product A. 

Level 
Range 

Facility Logistic warehouse Retail store 

Ideal 0.0000 0.0000 0.0000 

Desirable 0.0167 0.0250 0.0200 

Tolerable 0.0520 0.0371 0.0371 

Undesirable 0.0845 0.0676 0.0615 

Highly Undesirable 0.2929 0.1172 0.1953 

 

Table 6. Weight coefficients of product B. 

Level 
Range 

Facility Logistic warehouse Retail store 

Ideal 0.0000 0.0000 0.0000 

Desirable 0.0143 0.0250 0.0333 

Tolerable 0.0325 0.0433 0.0520 

Undesirable 0.1127 0.2253 0.0676 

Highly Undesirable 0.2511 0.4394 0.2197 
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Table 7. Weight coefficients of product C. 

Level 
Range 

Facility Logistic warehouse Retail store 

Ideal 0.0000 0.0000 0.0000 

Desirable 0.0250 0.0111 0.0167 

Tolerable 0.0371 0.0867 0.0520 

Undesirable 0.1352 0.1690 0.1127 

Highly Undesirable 0.2197 0.2511 0.2197 

 

1 2 3, ,µ µ µ= = =A B Cx x x                     (27) 

The formulation of this problem is as follows. The objective function 

( ) ( )

( )

3 3 5

1 1 2

3 5

1 2

1 max

max max min

α

α

+ +

= = =

+ +

= =

 
−  

 
 

+ → 
 

∑∑∑

∑∑





lis lis

l i s

lis lis
l

i s

w

w

d LPP

L d RO

            (28) 

is subject to 

( )1
, 1, 2,3; 1,2,3; 2,3,4,5µ + +

−+ = = = =i lis li s
d t l i s           (29) 

1 2 312 10 8 750µ µ µ+ + ≥                    (30) 

1 2 3, ,µ µ µ= = =A B Cx x x                    (31) 

The multi-player LPP with RO is solved with 10000α =n . Thus, the results of 

this numerical experiment are shown in Table 8.  

According to α, seven patterns of the solution set are obtained. In Table 8, 

“Sum” denotes the sum of the preference functions of all decision makers, “Av-

erage” means the average of the sums of the preference functions of the decision 

makers, and “Max” means the largest sum of the preference functions of the 

three decision makers. As α  becomes larger, “Sum” and “Average” become 

larger and “Max” becomes smaller. When 0α = , “Sum” is the smallest. In addi-

tion, when 1α = , “Max” is the smallest. The smallest “Sum” and the smallest 

“Max” are regarded as the best values. Table 9 shows how much larger the 

“Sum” and “Max” are in the other patterns compared with the best values. The 

“Sum percentage” and the “Max percentage” are calculated as follows. 

( ) ( ) ( )( )Sum percentage sum of each pattern the best sum 0α= =  

( ) ( ) ( )( )Max percentage max of each pattern the best sum 1α= =  

In Table 9, as the pattern number becomes larger, the “Sum percentage” be-

comes larger but the “Max percentage” becomes smaller. The minimization of 

the “Sum” becomes smaller and the minimization of the “Max” becomes larger 

as α  becomes larger. Thus, as α  becomes larger, “Sum percentage” becomes 

larger and “Max percentage” becomes smaller. The relationship between “Sum” 

and “Max” is a tradeoff. Finally, we can find solutions that ensure the “Sum” and 

“Max” are simultaneously improved. 
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Table 8. Results of numerical experiment. 

Pattern 
Product Decision maker α 

A B C Facility Logistic warehouse Retail store Lower Upper 

1 31.00 27.00 13.50 0.6900 0.9378 1.3495 0.0000 0.0340 

2 31.00 25.00 16.00 0.7179 0.9156 1.3443 0.0341 0.3953 

3 32.67 23.00 16.00 0.7397 0.9785 1.3117 0.3954 0.4352 

4 35.00 23.00 12.50 0.7309 1.0971 1.2729 0.4353 0.6684 

5 36.00 23.00 11.00 0.7271 1.1976 1.2563 0.6685 0.7514 

6 36.43 22.49 11.00 0.7469 1.2480 1.2483 0.7525 0.9355 

7 36.36 22.00 11.71 0.7514 1.2477 1.2478 0.9356 1.0000 

 

Pattern Sum Max 

1 2.9773 1.3495 

2 2.9777 1.3443 

3 3.0299 1.3117 

4 3.1008 1.2729 

5 3.1811 1.2563 

6 3.2432 1.2483 

7 3.2469 1.2478 

 

Table 9. Increasing rate of sum and max (%). 

Pattern 1 2 3 4 5 6 7 

Sum percentage 100.00 100.01 101.77 104.15 106.85 108.93 109.06 

Max percentage 108.15 107.73 105.12 102.01 100.69 100.04 100.00 

5. Conclusions 

The purpose of this research was to develop a mathematical model for deci-

sion-making, using the Suriawase process with multi-player and multi-objective, 

to find a solution that is satisfactory for all decision makers. To achieve this, in 

[25], LPP is extended to multi-player model and the balance of the preference 

levels between decision makers is considered by adding the effect of RO, but on-

ly one solution is obtained as a predicted result of the negotiation and the me-

thod to control the effect of RO is not shown. Therefore, in this research, the 

method to control the effect of RO is proposed to improve the previous model, 

and this method makes possible to obtain not one solution but a set of solutions. 

From the viewpoint of the model to support the stage of the reviews of the re-

quirements, because several options are obtained in the proposed model, the 

negotiations with the proposed model are more efficient than those with the 

previous model. The proposed model serves a predicted result by predicting the 

behaviors of other players and modifying their own solutions in a supply chain 
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coordination. In the implementation of Industry 4.0, it becomes possible to col-

lect the information from each stage of a supply chain in real time. The deci-

sion-making method in this research not only can predict the numerical value in 

each stage, but also can predict the behavior of each player. This method may be 

help for smooth decision-making in implementation of Industry 4.0. 

The proposed model has two points that should be considered. The one of 

them is the stage of the reviews of the requirements in Suriawase process. In this 

research, the stage of the negotiation is focused. However, in the real situations, 

a solution that makes all decision makers satisfied does not always exist in the 

solutions based on the initial requirements of decision makers. Therefore, it is 

necessary to consider the stage of the reviews of the requirements. The other 

point that should be consider in the proposed model is the implementation of 

the proposed model to various kinds of multi-player multi-objective problems. 

In this research, the multi-objective multi-player optimization problem was 

treated for the case of a supply chain. This method is applicable to various 

scenes, such as optimization by the automobile design and production process in 

mechanical engineering. However, the performance of the proposed method was 

confirmed by only one numerical example with extreme bias. In future research, 

the method proposed here could be applied to different situations, such as where 

there is extreme bias in the preference levels in the results of multi-player LPP 

without RO. Moreover, it is necessary to investigate the difference in preference 

levels under a multi-player environment with various levels of bias. 
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Nomenclature 

The parameters and variables that are used in this paper are shown as followings. 

(LPP) 

n : the number of the objectives 

sn : the number of levels of the preference ranges of the objectives 

µi : the function value of objective i  

ist : the target value of level 1−s  of objective i  


ist : the length of level 𝑠𝑠of objective i  

isw : the weight coefficient of level 𝑠𝑠of objective i  ( +
isw  in 1S, 3S and 4S, and 

−
isw  in 2S, 3S and 4S) 


isw : the weight coefficient increment of objective i  between level 1−s  and 

s  ( +
isw  in 1S, 3S and 4S, and −

isw  in 2S, 3S and 4S) 

isd : the deviational variable between ( )1−i s
t  and µi  

sz : the preference function value of the intersection between level s  and 

1+s . 

 sz : the distance of the preference function values between the target value of 

level 1−s  and that of level s  

β : the parameter to calculate the preference function values 

( )µi iz : the preference function value of objective i  

(Multi-player LPP) 

n : the number of the objectives 

sn : the number of levels of the preference ranges of the objectives 

L : the number of the decision makers 

µli : the function value of objective i  of decision maker l  

list : the target value of level 1−s  of objective i  of decision maker l  


list : the length of level s of objective i  of decision maker l  

lisw : the weight coefficient of level 𝑠𝑠of objective i  of decision maker l  

( +
lisw  in 1S, 3S and 4S, and −

lisw  in 2S, 3S and 4S) 


lisw : the weight coefficient increment of objective i  of decision maker l  

between level 1−s  and s  ( +
isw  in 1S, 3S and 4S, and −

isw  in 2S, 3S and 4S) 

lisd : the deviational variable between ( )1−li s
t  and µli  

sz : the preference function value of the intersection between level s  and 

1+s . 

 sz : the distance of the preference function values between the target value of 

level 1−s  and that of level s  

( )µli liz : the preference function value of objective of i  of decision maker l  
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